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Dynamic stochastic general equilibrium (DSGE) models have proven to be a valuable

empirical framework for understanding aggregate economic dynamics. Since these models

are estimated using historical data, they are suitable to study recurrent dynamics, such as

the business cycle. Can these models remain useful in the face of large unprecedented shocks?

We propose a new methodology to incorporate unusual shocks into our usual models that

does not require modeling the fundamentals of the shock. We apply the methodology to

study the Covid-19 pandemic recession and recovery within the context of a medium-scale

New Keynesian (NK) business cycle model.

Figure 1: Recessions and recoveries in real GDP, 1947–2021
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Note: The figure shows recessions and recoveries in the level of real GDP since 1947. GDP is normalized to
100 at the business cycle peak in quarter 0. The black line corresponds to medians and the shading is the 25
to 75 percentile range from before the Covid recession. The blue line corresponds to the index of the level
of output during the Covid recession and recovery. Source: Haver Analytics and authors’ calculations.

The Covid recession and recovery are highly unusual. Figure 1 compares the Covid

recession to all previous recessions since 1947, as determined by the NBER’s Business Cycle

Dating Committee, with the level of real GDP normalized to 100 at the most recent peak

prior to a recession. The black line corresponds to the median path of output for those pre-

Covid recessions and recoveries, the gray shading indicates the 25 to 75 percentile range for

output from before the Covid recession, and the blue line shows the path of output for the

Covid recession and recovery. Typical recessions last a few quarters and generally involve a

gradual recovery. The collapse in output in 2020q2 is an order of magnitude larger than in a
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Figure 2: GDP growth forecast revisions at the onset of recessions, 1968–2021
Revision of Expectations from recession (t) and previous peak (t-1)
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Note: Real GDP growth forecast revisions in the quarter of the onset of a recession compared to the quarter
before taken from the Survey of Professional Forecasters, which begins in 1968 (and is currently conducted
by the Federal Reserve bank of Philadelphia). The horizontal axis indicates the horizon of the forecast. In
period 0 the revision is the difference between the one-quarter-ahead growth forecast in the quarter before
the recession starts and the nowcast in the quarter it starts. The black line is medians and shading is the
25 to 75 percentile range from before the Covid recession. The blue line corresponds to forecast revisions at
the onset of the Covid recession. Source: Survey of Professional Forecasters and authors’ calculations.

typical postwar recession. Yet output takes just a quarter longer to reach the previous peak.

The Covid recession is far deeper and the subsequent recovery is much faster than those of

a typical business cycle.

The pre-pandemic dynamics get reflected in private sector forecasts of that time. Figure

2 shows forecast revisions for real GDP growth in the first quarter of an NBER recession

taken from the Survey of Professional Forecasters (SPF) starting from the beginning of the

survey in 1968 (the lines and shading are constructed analogously to the previous figure).1

The revision in period 0 is the difference between the SPF nowcast and the forecast from the

period before, when the economy was at its business cycle peak. Before the Covid recession

hit the US economy, forecasters would downgrade their forecasts from prior to a recession’s

start for a couple quarters out – they would expect a slow-to-start and gradual recovery. In

contrast forecasters surveyed in May 2022 expected a fast start to a rapid recovery, with

forecast revisions large and positive for three quarters out.2

1The survey is currently conducted by the Federal Reserve Bank of Philadelphia.
2Eichenbaum, Rebelo, and Trabandt (2021) highlight other unique aspects of the Covid recession. Unlike
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We show that the usual shocks in a canonical medium-scale DSGE model estimated with

data from before the pandemic struggles to capture the highly unusual dynamics shown in

Figures 1 and 2. This poses a challenge to the viability of our usual models. We tackle this

challenge by developing a framework to estimate a new shock called the Covid shock. This

shock proves to play a crucial role in explaining the large contraction in output in the second

quarter of 2020 and the revision to forecasts in that period.

The initial outbreak is represented as the onset of a new shock process, where the shock

loads on wedges in the DSGE model in the same way as a subset of its usual shocks. We

focus on wedges that propagate business cycle co-movement as well as other shocks that

play a major role in explaining consumption, investment, and inflation. The chosen wedges

and corresponding loadings define the nature of the Covid shock. Surprise Covid shocks

come with news about its future path. The surprise and news structure of the Covid shock

provides the flexibility not provided by the usual shocks to account for the dramatic fall

in output in 2020q2 and professional forecasts at that time of a sharp rebound and rapid

recovery starting in 2020q3.

We adopt an event-study approach to identify the nature of the Covid shock. The macroe-

conomic data in 2020q2 clearly are dominated by the public and private sector responses to

the pandemic and so should be particularly informative about the nature of the new shock.

We acknowledge this by estimating the parameters defining the nature of the Covid shock

with data from this quarter alone.3 We use revisions to SPF forecasts of output growth and

inflation to identify this news over time. Including news and holding fixed the nature of the

Covid shock enables us to separate out the macroeconomic effects of Covid from those of the

usual shocks.

Observing professional forecasters’ expectations is particularly helpful when studying an

unusual shock. Forecasters recognize that by its very nature an unusual shock is not captured

in the historical dynamics. As such their forecasts will not be restricted by the historical

a typical recession the drop in output is driven by consumption, which tracks output quite closely. Investment
declines by much less, but also recovers much faster than it does typically.

3The economic impact of the pandemic began to take hold in March 2020 but only shows up as a small
contraction in activity in 2020q1.
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dynamics and will incorporate any new information they are absorbing in real time about

how the shock will propagate through the economy. As forecasters update their beliefs about

the propagation of the shock, this will get reflected in their forecast revisions.4

The nature of the Covid shock includes significant loadings on wedges that generate both

demand and supply effects. On net, the supply forces dominate in 2020q2 as the Covid shock

lowered output and put upward pressure on prices. The latter is notable given that prices

actually fell in that quarter. The supply effects were expected to persist as the revisions

to the SPF forecasts in 2020q2 attributed to the Covid shock had output remaining below

pre-pandemic levels and prices higher over the next four quarters.

We use our model to disentangle the effects of the Covid shock and the usual shocks on

aggregate activity and inflation over the period 2020q2 – 2021q3, taking into account possible

effects from the Delta wave in 2021q3. We measure aggregate activity with de-trended per

capita hours, which is a good indicator of the cyclical position of the US economy. The Covid

shock explains about two-thirds of the massive decline in hours in 2020q2 and contributes

considerably to the extraordinary economic rebound in the next quarter. Over the following

four quarters, the shock is a significant drag on economic activity. The inflationary effects

of the Covid shock are more muted mostly because of the flat Phillips curve. Nonetheless

the Covid shock is inflationary throughout the sample period, significantly so in 2020q2.

An advantage of our methodology is the ability it provides to quantify the role of beliefs

about the path of the pandemic. This is due to the surprise and news structure of the

unusual shock and the observation of revisions to the professional forecasters’ forecasts. We

find that beliefs about the future path of the Covid shock reduced the magnitude of the

2020q2 contraction in GDP by 10 percentage points but were a drag on activity for the

remainder of 2020. We also find that the economic effects of the pandemic were mostly hard

to anticipate. In other words, the professional forecasters were continually surprised by the

abrupt turns the pandemic took, both in terms of the surprise component and the news

4Professional forecasts are also valuable when the effects of an unusual shock are studied in real time.
Given the large uncertainty and the scarcity of data that characterize the initial periods of an unusual
episode, observing such data allows for the best possible real-time estimation of the effects of the unusual
events.
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component of the Covid shock.

The news structure of the novel shock is helpful when unusual events repeat themselves

after their first occurrence. In the case of the Covid pandemic, we observed recurrent waves

of infections as well as the emergence of new variants. In every repetition of the unusual

event, agents become more knowledgeable about the effects of the event. We show that once

the nature of the shock is estimated at the onset of the event, the news structure of the

shock can be used to make different assumptions regarding how much agents have learned

from previous experiences. For instance, when we estimate the effect of the Delta wave we

assume that agents have perfect ex-ante knowledge about the path of the Covid shock as

given by the estimates from the initial wave.

We estimate the Delta shock to be a small fraction of the original shock, and so it has

little effect. A substantial caveat to this result and our analysis in general is that in 2020q2

the pandemic (including the lockdowns) came with a large fiscal intervention that because

of the simplicity of the fiscal block in the canonical NK business cycle model confounds our

identification of the Covid shock. The Delta wave did not involve any new fiscal interventions.

One advantage of our methodology is its generality; that is, it can be applied to any

DSGE model, including models that are more suitable to study the propagation of fiscal

shocks. However, there is no consensus on how to model the propagation of fiscal shocks.

Moreover, most existing models focus on taxes and spending and so seem poorly suited to

study the unusual nature of the pandemic fiscal interventions, in which transfers played a

major role. Given the large fiscal interventions involved, there will be plenty to learn about

the propagation of fiscal shocks from the Covid episode, but it will be necessary to account

for the pandemic dynamics to separately identify their effects. Our framework makes it

possible to do that without having to model the epidemiology of a pandemic.

In the next section of the paper we review the related literature. Next, we describe the

unusual shock, how we use it to isolate the role of beliefs about the pandemic, and how we

estimate it. We then discuss the effects of the estimated shock within the context of an

off-the-shelf medium-scale NK DSGE model. We finish with some concluding remarks.
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1. Related literature

Primiceri and Tambalotti (2020) identify a surprise Covid shock in a monthly vector auto-

regressive model (VAR). Their shock is defined as a linear combination of the VAR’s reduced

form shocks with weights estimated using data from March and April 2020, when aggregate

dynamics clearly were dominated by the Covid shock. We differ in two respects: First,

our shock is a linear combination of wedges in a structural model, and second, we include

forward-looking information to identify news shocks that come with the surprise. Including

the news shocks turns out to be crucial to our estimation of the Covid shock.

Lenza and Primiceri (2022) model Covid in a VAR by scaling the variances of the usual in-

dependently and identically distributed (i.i.d.) residuals by a common scaling parameter that

decays exponentially over time. The scaling parameter and its rate of decay are estimated

using data from March, April, and May 2020. They use their framework to demonstrate that

one obtains similar VAR parameter estimates by dropping those observations. This will be

helpful going forward to estimate VARs with data that includes the pandemic period. We

provide a way to estimate structural models with these data. Note that Lenza and Primiceri

(2022) do not exploit the information in private sector forecasts. Our structure allows us to

measure the sensitivity of private sector decisions to expectations about the future effects of

the pandemic that are revealed through news.

We synthesize our Covid shock from wedges in a structural model and so contribute

to the large literature that studies structural wedges in various contexts. Recent work in

this literature by Inoue, Kuo, and Rossi (2020) is particularly relevant for us. They use

wedges in a medium-scale DSGE model to measure model misspecification. Our approach

acknowledges misspecification through wedges but attributes it all to the Covid shock.

We find that both supply and demand components of the Covid shock play large roles in

accounting for the effects of Covid. Guerrieri, Lorenzoni, Straub, and Werning (2022) show

how a supply shock can cause demand shortages in a two-sector NK model. In our setting

the endogenous effects of the supply shock on demand they describe would be captured by

the loadings of the common factor on the model’s wedges. The wedges also can be viewed as
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a reduced-form characterization of the interaction of demand and supply shocks in the NK

model with input-output linkages studied by Baqaee and Farhi (2022).

Our analysis is complementary to the now large literature that embeds epidemiological

models within otherwise standard business cycle models to study the Covid pandemic, for

example Eichenbaum et al. (2021) and Acemoglu, Chernozhukov, Werning, and Whinston

(2021). These “epi-mac” models yield important new insights but add considerable com-

plexity. Our framework does not involve changing our usual models, but leverages their

existing structure to synthesize a new shock that can capture the dynamics resulting from

the unusual event. By basing our analysis on a standard DSGE model we can assess the

empirical relevance of the new shock relative to the usual shocks that have proved to be

useful in accounting for U.S. business cycles. This assessment is possible because of the

relatively large size of our model that fits the data comparably to how VARs fit them. So

our methodology allows us to single out the effects of the Covid shock from the effects of the

usual business cycle shocks that fit the data in normal times. This suggests our framework

can be used to configure a benchmark for the epi-mac literature.

Our approach addresses the absence of a major pandemic in the postwar data before

Covid that might otherwise be used to identify the effects of Covid. Alternatively one could

use additional time-series data to learn from history about the possible effects of the Covid

shock on the economy. The only comparable major pandemic was the Spanish influenza of

1918 and 1919. Barro, Ursua, and Weng (2020), Barro (2020), and Velde (2020) use this

episode to shed light on the economic effects of a pandemic. Ludvigson, Ma, and Ng (2020)

project the economic impact of Covid based on estimates of the impact of deadly disasters

in recent U.S. history.

2. The Covid shock

This section describes how we introduce the new Covid shock into a DSGE model. First, we

define the shock and introduce enough structure to separately identify the shock and news

about its evolution. We then discuss some implications of the surprise and news structure
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of the Covid shock. Finally, we describe how we estimate the shock. A key feature of our

methodology is that it allows agents’ beliefs about the evolution of the Covid shock to vary

over time. We use data from the SPF on forecasts of output and inflation to identify revisions

to these beliefs.

2.1. Definition

The Covid shock Ψt is defined as

Ψt =
N∑
j=0

ψjt−j, N ≥ 0, (1)

where the random variables ψjt−j are shocks that are anticipated at time t to hit the economy

in period t+ j and N is the anticipation horizon of agents. This information can be divided

into two components. The first component — called surprise — contains all the information

about the current effects of Covid that were not anticipated in previous periods. The surprise

in period t is ψ0
t . The second component — called news — represents all the information

about the future effects of Covid received by agents in the current period. The news received

in period t is {ψ1
t , ψ

2
t , . . . , ψ

N
t }.

The shocks ψjt equal date t revisions to expectations about future Covid shocks Ψt+j.

Specifically, from (1) we have

ψjt = EtΨt+j − Et−1Ψt+j j ∈ {0, 1, . . . , N}. (2)

That is, the news shocks ψjt equal time t revisions to agents’ expectations about the effects

of Covid in period t+ j.

The news shocks have a factor structure given by

ψjt = λj(t)ft, j ∈ {0, 1, . . . , N}, (3)

where the common factor ft is an independent Gaussian random variable with a mean of
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zero and a standard deviation of σ(t). We assume ft = 0 for t < t∗, where t∗ is the date of

the onset of the pandemic. The time-varying factor loadings λ(t) = {λj (t)}Nj=0 and variance

of ft are not random variables from the perspective of agents in the model. Agents treat

them as parameters, and we estimate them.

Notice that given the structure of shocks summarized by equations (1) and (3) we can

write the Covid shock as

Ψt =
N∑
j=0

λj(t− j)ft−j. (4)

It follows that the Covid shock Ψt is serially correlated as it depends on current and past

realizations of ft.

We assume that each of the ψjt map into M DSGE wedges Σt(i), i ∈ {1, 2, . . . ,M}, that

enter into our DSGE model identically to shocks already present — for example, technology

and discount factor shocks. We assume the wedges have i.i.d. surprise and news elements

that relate directly to the news about the Covid shock. Specifically,

Σt(i) =
N∑
j=0

εjt−j(i), (5)

where

εjt(i) = φiψ
j
t . (6)

Combining (1), (5), and (6) we can see that the wedges are proportional to the Covid shock,

that is,

Σt(i) = φiΨt.

The scalar parameters φi are the loadings of the Covid shock Ψt onto the wedges. We

refer to the choice of wedges and the loadings as the nature of the Covid shock. Note

that while the underlying wedge shocks are i.i.d., the surprise and news structure allows

agents to forecast persistence. Also note that the weights φ = {φi}Mi=1 do not depend on
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the anticipation horizon of the wedges so that the combination of the DSGE wedges, which

is used to approximate expectations about the evolution of the pandemic, does not vary

across anticipation horizons. We think this assumption is natural but it also allows us to

economize on the number of parameters that we need to estimate. Combined with constant

φ this assumption identifies the Covid news separately from news of the usual shocks if it is

already present in the DSGE model, provided that news of each usual shock is not perfectly

correlated as the Covid wedges are in our framework.

To sum up, we capture the dynamics of the Covid shock with the loadings φ and λ(t)

and the common factor ft. The vector φ describes the nature of the Covid shock, defined

as a particular combination of wedges that enter into the DSGE model in the same way as

a subset of the usual shocks. The loadings λ(t) capture evolving beliefs about the Covid

shock. The variance σ(t) summarizes the uncertainty underlying these beliefs. Individual

realizations of the exogenous variable ft account for revisions to agents’ expectations of the

future path of the Covid shock.5

2.2. Surprise, News, and Perfect Foresight

As shown in equation (2), the news shocks ψjt equal time t revision to agents’ expectations

about the economic effects of Covid in period t + j. This anticipation structure allows

us to construct counterfactual exercises under various assumptions regarding the flow of

information about the effects of Covid received by agents. For instance, it is conceivable

that agents are more aware about what to expect from a second pandemic wave than what

they were at the onset of the pandemic. To illustrate how this can be implemented using our

methodology, we assume that agents have perfect foresight about the effects of the second

5In a short note on inflation based on the NY Fed’s DSGE model Del Negro, Gleich, Goyal, Johnson, and
Tambalotti (2022) describe how they account for the pandemic in that model. Their approach also involves
introducing shocks to some of the model’s existing wedges, but it differs in several respects: they do not
exploit the parsimony of a factor structure, they do not use data on professional forecasts, and they calibrate
key parameters, including scaling down the volatility the usual shocks when they estimate their i.i.d wedge
shocks’ variances using data in 2020q2. Cardani, Croitorov, Giovannini, Pfeiffer, Ratto, and Vogel (2022)
also introduce a novel Covid shock into an off-the-shelf DSGE model, in their case a model of the Euro area,
but their shock is based on modifying the model’s structure to include forced savings and labor hoarding
rather than leveraging the model’s pre-existing wedges.
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wave. In this scenario, agents have fully learned what going through a pandemic wave means

and will commit no errors in forecasting the effects of the second wave.

To implement this scenario, we assume that when the second wave hits in period t∗∗, the

following Covid news is realized: ψjt∗∗ = δ ·Ψt∗+j for j ∈ {0, 1, ..., T}, where Ψt∗+j denote the

Covid shocks j periods after the start of the first wave in t∗ and T denotes the duration of the

first wave. The parameter δ is a scaling factor, which determines whether the second wave

is more severe (δ > 1) or less severe (δ < 1) than the first wave. In the subsequent periods

(t∗∗ + 1, t∗∗ + 2, . . . , t∗∗ + T ), there will be neither surprise nor news since all the effects of

the second wave were correctly anticipated from the start and hence there is no revision to

agents’ expectations after the first period. In symbols, ψjt∗∗+i = 0 for any i ∈ {1, 2, . . . , T}

and j ∈ {1, 2, . . . , N}.6

2.3. Estimation

To identify the Covid shock Ψt we need to estimate φ and Ξ(t) = [λ(t), σ(t)] for the number

periods we determine a priori that agents update their beliefs about the Covid shock. We

apply an event-study approach to identify φ. In 2020q2 there was an unusually large drop

in economic activity — far beyond the bounds of a typical business cycle peak to trough —

and an unusual expected rebound. We expect the dramatic variation in 2020q2 is due chiefly

to the Covid shock. This suggests 2020q2 data on current and expected future activity and

inflation will be particularly informative about φ.

Let Θ denote the usual parameters in our DSGE model, which are taken as given. Note

that this includes the volatilities of the usual shocks. This is important because it means

our estimation in effect lets the data speak about the relative volatility of the Covid shock.

We use Bayes’ theorem to obtain a distribution of Ξ(t) and φ conditional on the usual data

6Note that, in this example, ψ0
t∗∗ 6= 0 implies that agents do not anticipate the start of the second wave

and, in fact, are surprised by that. However, at the beginning of the second wave, they can perfectly foresee
its effects. It is straightforward to relax that assumption and assume that agents can correctly anticipate
the start of a new wave k periods in advance: ψj+kt∗∗−k = δΨt∗+j and ψj+kt∗∗−k+i = 0 in any subsequent period
i = {1, 2, . . . , T}.
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up to date t, denoted X t. At date t = t∗ we have,

p
(
Ξ(t), φ|X t,Θ, st−1;M

)
∝ L

(
X t|Ξ(t), φ,Θ, st−1;M

)
p (Ξ(t), φ) , (7)

whereM denotes our DSGE model and st−1 is the model’s state vector estimated one quarter

earlier. The density p (·) is our prior on the new parameters capturing the nature of and

beliefs about the Covid shock. The density L (·) is the likelihood function associated with

the data X t. We expect the dramatic movements in the data at date t = t∗ to be particularly

informative about the nature of the Covid shock, φ. After that period we have

p
(
Ξ(t∗ + j)|X t∗+j, φ,Θ, st∗+j−1;M

)
∝ L

(
X t∗+j|Ξ(t∗ + j), φ,Θ, st∗+j−1;M

)
p (Ξ(t∗ + j)) , (8)

for j = 1, 2, . . . , N − 1.

We estimate φ and Ξ(t) sequentially by maximizing the posterior modes in (7) and (8).

For t = t∗ the intuition is to find the combination of the wedges Σt(i) that, along with the

usual shocks, best explain the one-step-ahead forecast error of the usual data, that includes

current activity and professional forecasts. For t > t∗ the Ξ(t) are identified by the revisions

to the professional forecasts of output and inflation.

We use the Kalman smoother to estimate ft. With ft and our estimates of φ and λ(t)

we obtain estimates of the Covid shock and its anticipated and unanticipated components

from (1) and (3).

3. The DSGE Model

We study the Covid shock within Campbell, Fisher, Justiniano, and Melosi (2016)’s medium-

scale NK model. Most of the model is familiar as it is a variant of Christiano, Eichen-

baum, and Evans (2005) and Smets and Wouters (2007), and so here we just provide a brief

overview.7 The main differences between our model and theirs is the inclusion of a preference

7Our model is closest to Justiniano, Primiceri, and Tambalotti (2013).
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for government bonds, anticipated deviations from the monetary policy rule, and shocks to

investment-specific technological change.8

The representative household’s preferences are non-separable with respect to consump-

tion and hours worked and separable with respect to real government bonds.9 Preferences are

buffeted by shocks to the discount factor and to the preference for government bonds.10 A

positive discount factor shock reduces output, consumption, and hours but increases invest-

ment because it raises the preference for future consumption relative to current consumption.

Justiniano, Primiceri, and Tambalotti (2010) and others show that it is an important driver

of consumption fluctuations.11 We refer to the shock to the preference for government bonds

as the liquidity preference shock. This shock is a source of co-movement between output,

consumption, investment, and hours. A positive liquidity preference shock increases the

demand for government bonds relative to private capital and consumption and so creates a

desire to consume less today compared to tomorrow. This drives down both consumption

and investment and, therefore, overall activity. The two preference shocks follow AR(1)

processes.

The specification of the production side of the economy is standard. It includes perfectly

competitive producers that aggregate intermediate goods into the final good; monopolistic

competitive intermediate goods producers with identical Cobb-Douglas production functions

that require labor and capital as inputs; and labor compositors that package the differentiated

labor of households into a homogeneous labor input supplied to the intermediate goods

producers. The intermediate goods producers and suppliers of differentiated labor are subject

8The details of our model and its estimation are provided in the appendix. Those details are not crucial
to understanding our analysis.

9Fisher (2015) and Campbell et al. (2016) discuss how including a preference for government bonds drives
a steady state wedge between interest rates on private and government bonds that is otherwise absent from
standard models. Doing so brings discounting into the household’s linearized inter-temporal Euler equation
for consumption, which somewhat mitigates the forward guidance puzzle highlighted by Del Negro, Giannoni,
and Patterson (2015). Such preferences are now common in the literature, for example Michaillat and Saez
(2021), Eichenbaum, Johannsen, and Rebelo (2021), and Anzoategui, Comin, Gertler, and Martinez (2019).

10Fisher (2015) showed the latter shock provides a simple micro-foundation for Smets and Wouters (2007)’s
shock to the consumption Euler equation.

11It is often used to motivate why monetary policy might become constrained by the effective lower bound
on nominal interest rates (see, for example, Eggertsson and Woodford (2003)), and so it is particularly
relevant for our analysis which includes episodes when that this constraint is binding.
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to Calvo price and wage setting frictions and charge markups that are subject to shocks.

These “cost-push” shocks follow ARMA(1,1) processes.

The model also includes variable capital utilization with capital depreciation that is an

increasing function of utilization; stochastic investment adjustment costs; and permanent

shocks to neutral and investment-specific technologies. We refer to the shock to investment

adjustment costs as the marginal efficiency of investment (MEI) shock. A positive MEI shock

increases the yield of capital from an additional unit of investment. This drives investment

up and consumption down. Investment rises by more than consumption falls, so output and

hours also rise. Justiniano et al. (2010) and others show that this shock is an important

driver of investment.

The neutral technology shock shifts the production functions of intermediate goods pro-

ducers. In our model this shock is a major source of business cycle co-movement. A positive

neutral technology shock raises the desired stock of capital and makes households richer.

Therefore consumption, investment, and output rise. Because the substitution effect domi-

nates the wealth effect, hours also rise.

A positive investment-specific technology shock increases the rate at which final goods

can be transformed into investment goods. This shock turns out to be relatively unimpor-

tant for cyclical fluctuations.12 The model includes stochastic government spending. These

shocks also are unimportant for business cycles. The shocks to the growth rates of the

two technology shifters and the government spending shock are all assumed to be AR(1)

processes.

There is a central bank that sets its policy rate (the interest rate on one-period risk

free government bonds) with a conventional policy rule. There are two shocks to this rule:

surprise and news. Surprise is an addition or subtraction to the rule’s constant that occurs

in the period of the shock. News shocks add to or subtract from the constant in future

periods, as in Campbell, Evans, Fisher, and Justiniano (2012) and Campbell et al. (2016)

12This is a common finding with empirical NK models. It contrasts with Fisher (2002), who found using
structural VAR methods that these shocks are a significant driver of aggregate fluctuations.
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who build on Laséen and Svensson (2011) and Gürkaynak, Sack, and Swanson (2005).13

Without news shocks, agents’ expectations of future policy rates could violate the effective

lower bound on nominal interest rates (ELB). However, our estimation prevents this from

happening because it matches data on expected future funds rates with the model’s private

expectations of future policy.14 Note that including monetary policy news has the added

benefit of allowing the model to explain strategic deviations from the rule, such as a policy

of “lower for longer” in which lift-off from the ELB is delayed and slower than otherwise

predicted by the monetary policy rule. That said, the news does not have to reflect explicit

forward guidance by the central bank. The conventional policy rule includes gap terms that

depend on publicly observable measures of output and inflation, and a near unit root random

constant term to address inflation’s low-frequency dynamics.

Government spending is financed by lump sum taxes and government bonds are in zero

net supply. This simple fiscal block is standard in the literature. However, it is a limitation

of our analysis of the Covid episode because the first wave of the virus spurred a substantial

fiscal intervention that included both transfers and spending. This means our estimated

Covid shock and its propagation will likely confound some of the effects of these policies.

For example, the revisions to forecasters’ expectations about GDP and inflation we use

to identify the Covid shock and its propagation will include updated views of how fiscal

policy will play out. While we recognize this limitation, it is a consequence of choosing an

off-the-shelf model to demonstrate our approach.

Our empirical strategy involves the solution to the model’s log-linearized equilibrium

conditions and applies econometric techniques that rely on linearity to estimate the model’s

parameters. Using a linearized model to study the dramatic variation due to Covid is another

13Using insights from Chahrour and Jurado (2018), Campbell, Ferroni, Fisher, and Melosi (2019) show
how including monetary policy news is equivalent to an environment in which the central bank communicates
about future policy deviations via noisy signals where agents’ use Bayes’ rule to update their beliefs about
those deviations.

14Since the ELB is not imposed explicitly, distributions of interest rates over states on given dates include
negative values. Our model solution is certainty equivalent, so this does not influence agents’ decisions. As
such, our solution method does not take into account that the probability distributions of future outcomes
are non-symmetric in models with occasionally binding constraints and that this asymmetry affects agents’
beliefs and thereby equilibrium outcomes.
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limitation of our analysis. However, our methods can be applied to non-linear settings.

4. Estimation of the DSGE model with the Covid shock

We now describe the estimation of our model’s usual structural parameters with pre-pandemic

data and the unusual shock and its propagation with data up to 2021q3. We estimate the

model’s usual structural parameters using Bayesian methods with data prior to the pandemic

and then use the onset of the pandemic to estimate the nature and propagation of the Covid

shock as described in Section 2.15

4.1. Pre-pandemic period

Our pre-pandemic estimation follows Campbell et al. (2019), and we refer the reader to that

paper for most of the details. The pre-pandemic sample period is 1993q1–2016q4 and we

assume a sample break in 2008q4. The sample break is motivated by the evidence of lower

interest rates and trend economic growth later in the sample, the greater use of forward-

looking communications by the Fed following the Great Financial Crisis, and the stabilization

of inflation and inflation expectations in the mid-2000s. The sample break is characterized

by unanticipated and permanent reductions in the return on government bonds and steady

state growth, an increase in the horizon of anticipated deviations from the policy rule from

four to ten quarters, and setting the variance of the inflation drift term to zero.16

The model is estimated with a rich array of data, including 26 time series in the first

sample and an additional 6 quarters of interest rate futures prices in the second sample

to identify anticipated deviations from the monetary policy rule over a longer horizon.17

These data include GDP, consumption and investment growth, hours, multiple wage and

15A general overview of Bayesian estimation is provided in Herbst and Schorfheide (2015) and Fernandez-
Villaverde, Rubio-Ramirez, and Schorfheide (2016)

16See Del Negro, Giannone, Giannoni, and Tambalotti (2017) for a more flexible way of modeling the
trends in interest rates and output growth.

17The interest rate futures data is from the Chicago Fed. Unless otherwise noted all other data are from
Haver Analytics. Our identification of the anticipated deviations with only 33 observations in the second
sample relies on its factor structure and our priors. Our priors are informed by estimating a factor model
over the second sample using Gürkaynak et al. (2005)’s high-frequency estimation strategy.
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price inflation series, and series on expected future inflation, output, and interest rates.

The expectations data are of one- to four-quarter-ahead expected core inflation as measured

by both the Consumer Price Index (CPI) and the Price Index of Personal Consumption

Expenditures (PCE), GDP growth, ten-year-ahead-average expected CPI and PCE inflation

from the SPF, and one- to four-quarter-ahead interest rate futures. The second sample

estimation is restricted to estimating the parameters of the monetary policy news, holding

fixed the remaining model parameters at their values estimated using the first sample.18 Our

estimation forces data on real activity, wages, and prices to coexist with the interest rate

futures data, and our model includes a preference for government bonds. These features

yield plausible estimates of the effects of monetary news shocks.19

4.2. The first wave of the pandemic

We assume the synthetic Covid shock is composed of liquidity preference, permanent neutral

technology, marginal efficiency of investment (MEI), discount factor, and inflation cost-push

shocks (M = 5). The first two shocks are major sources of co-movement in the model,

while the MEI and discount factor shocks are important determinants of consumption and

investment but drive them in different directions. We include the price markup shock because

we expect there is a cost-push aspect of Covid. We assume that agents try to anticipate the

effects of the Covid shock up to four quarters ahead (N = 4). Note that the time horizon

of the SPF forecasts ranges from one quarter to four quarters out, exactly matching the

horizon of the anticipated Covid shocks in the model. As we shall explain, observing these

expectations is key to identifying the Covid shocks.

We set t∗ = 2020q2 and use the Kalman filter, data prior to that quarter, and our pre-

pandemic parameter estimates to obtain the state vector in that quarter.20 Since we find

18We also include two auxiliary inflation measures (which do not enter the DSGE model) to map the
model concepts of output and inflation to the their empirical counterparts. We estimate the AR(1) processes
for these variables separately for the two samples.

19The interest rate futures data are from the Chicago Fed. Unless otherwise noted all other data are from
Haver Analytics.

20We also reduce the variance of the measurement error shocks in the equations bridging the model
forecasts of GDP and core PCE inflation one to four quarters ahead with the SPF observed counterparts by
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that λ(t) is poorly identified when we try to estimate it in 2021q1, we assume ft = 0 in

2021q1 and 2021q2.21 We follow the strategy outlined in Section 2.3 and use data from

2020q2–2020q4 to obtain estimates of the Covid parameters, φ̂ and Ξ̂(t).

4.3. The Delta wave

With the arrival of the Delta variant in 2021q3 we assume another Covid shocks hits the

model economy under the assumption that agents have learned from the first wave and so

have perfect foresight of its propagation, as described in Section 2.2. The the size of the

shock, δ, is estimated with 2021q3 data. A potential drawback of our approach to Delta

is that the first wave of Covid came with a substantial fiscal intervention which potentially

influenced our estimate of the composition and propagation of the synthetic shock. The

Delta wave did not involve any new substantial fiscal interventions. We expect that a model

with a richer fiscal structure would better isolate the pandemic-specific features of the initial

wave.22

5. The estimated effects of Covid

In this section, we study the estimated Covid shock. First, we describe the estimated pa-

rameters and their identification. We then study the contributions of the unusual and usual

shocks to the one-quarter-ahead forecast errors and forecast revisions of output and inflation

in 2020q2 and the importance of including the Covid shock to explain the dynamics in Figure

2. Next we examine the effects of the unusual and usual shocks on aggregate activity and

inflation over the pandemic period 2020q2 to 2021q3. Lastly, we study the role of beliefs in

the propagation of the Covid shock.
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Table 1: Parameter Estimates

2020Q2 2020Q3 2020Q4 2021Q3
φb 0.0038 0.0038 0.0038 0.0038
φs 1 1 1 1
φi 0.1696 0.1696 0.1696 0.1696
φν -0.444 -0.444 -0.444 -0.444
φp 0.0103 0.0103 0.0103 0.0103

λ0 1 1 1 1
λ1 -0.1298 -0.3922 -0.0109 -0.5074
λ2 -0.1044 -0.3535 -0.1051 -0.1193
λ3 -0.1405 -0.225 -0.2956 -0.0052
λ4 -0.1068 0.1724 0.2786 0.1021

σf 11.6863 11.6737 9.7799 NA

Note: The parameters φb, φs, φi, φν , and φp, denote the loadings of the Covid shock onto its components
which include the discount rate, liquidity preference, marginal efficiency of investment, permanent neutral
technology, and the cost-push shocks. The entries in the rightmost column replicate the perfect anticipation
of the path of the Covid shock over the horizon of the SPF forecasts. Since this is a deterministic path the
variance is not applicable. The estimates are modal values of the posterior distribution based on normally
distributed loose priors.

5.1. Parameter estimates and their identification

Our estimates of the Covid shock’s parameters are displayed in Table 1. The first three

columns shows the estimated φis and λjs for 2020q2–2020q4. The final column shows the λis

that replicate the perfectly anticipated propagation of the Covid shock. The parameters φs,

φb, φi, φν , and φp, denote the loadings of the Covid shock on the liquidity preference, discount

rate, MEI, neutral technology, and cost-push components of Covid. These parameters are

estimated using just 2020q2 data and they do not change across quarters. We normalize the

loading for the liquidity preference component to 1. Covid loads more on this component

than the others. Neutral technology loads negatively with near half the weight of liquidity

a factor of 10 starting in 2020q2. This is to more closely tie revisions to the SPF forecasts to our estimates
of λ(t).

21By poorly identified we mean the marginal likelihoods of the parameters become very flat.
22In principle we could re-estimate the nature and propagation of the Delta shock in 2021q3. We explored

this approach but found the nature of the shock was poorly identified.
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preference. The next largest loading is MEI which is more modest sized and positive. The

discount factor and cost-push components have much smaller loadings that are positive.

The large loadings on the liquidity preference and neutral technology wedges is broadly

consistent with the widely held view that the Covid shock has both demand and supply

side aspects to it. A shock to the liquidity preference wedge is a demand shock — it moves

output and prices in the same direction. Recall that a positive liquidity preference shock

increases the demand for government bonds over private capital and creates a desire to

consume less today compared to tomorrow. This means the positive shock reduces both

consumption and investment and is therefore broadly contractionary.23 A positive liquidity

preference shock has a small impact on inflation because of the flat Phillips curve. A shock

to the neutral technology wedge is a supply shock as it moves output and prices in opposite

directions. A negative neutral technology shock lowers consumption because of the wealth

effect, investment because of capital becoming less productive, and hours because the of the

substitution effect on labor supply dominating the wealth effect. Negative neutral technology

shocks are significantly inflationary because they lower productivity directly.

The loadings λ of the common factor onto the Covid news shocks are re-estimated each

quarter. From equation (2) we see that Covid news j-steps ahead reflects one-step-ahead

forecast errors of the Covid shock. The loading of the common factor ft onto the unantici-

pated component of the Covid shock, λ0, is normalized to one. In 2020q2 the Covid shock is

entirely unanticipated by construction. The negative values of the λs in that quarter indicate

expectations of the Covid shock going forward were a persistent reversal from the unantic-

ipated shock. The table shows there are similar revisions to expectations in the remaining

quarters of 2020.

We can gain insight into the sign reversal by studying the one-step-ahead forecast errors

and revisions to expectations for GDP growth and core PCE inflation in 2020q2. These

are displayed in Figure 3. The red lines indicate the forecast is conditioned on 2020q1 data

and the black line indicates conditioning on data in 2020q2. Note that the forecasts for

23This contrasts with a positive discount factor shock that causes investment to rise by more than con-
sumption falls.
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Figure 3: One-step-ahead forecast error decomposition in 2020q2
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bars show the contribution to the forecast error of the indicated shocks. Source: Authors’ calculations, SPF,
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GDP growth and core PCE growth in 2020q2 are essentially equal to the SPF data in that

quarter.24 The units are percentage points at an annual rate. In 2020q2 output collapsed

and prices fell, but forecasters expected a quick rebound of both in 2020q3. The expected

rebound explains the sign reversal in our estimates of the λs in 2020q2. Figure 3 also reveals

output growth and inflation were expected to revert to the steady state and target gradually

(output from above and inflation from below).

5.2. Contribution of the Covid shock to forecast errors and revisions in 2020q2

The colored bars in Figure 3 show the decomposition of the forecast errors and revisions

into contributions of the Covid shock, including both surprise and news (blue), the usual

business cycle shocks (pink), surprise and news shocks to monetary policy (green), and

measurement (grey).25 The left plot in Figure 3 shows that Covid explains almost all the

24When we estimate the DSGE model we allow for measurement error in the SPF forecasts. For the Covid
period we reduce the variances of the measurement error by a factor of 10 so there is very little difference
between the SPF forecasts and the model forecasts.

25Measurement includes shocks to variables from outside the model used to map model-consistent GDP
and core PCE inflation into their BEA counterparts and classical measurement error on wage and price
inflation and interest rate futures.
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drop in output in 2020q2 and accounts for a substantial fraction of the rebound anticipated to

occur 2020q3. Monetary policy is expected to be a drag on activity throughout the forecast

horizon, presumably because of expectations that effective lower bound on nominal interest

rates will be binding. The usual shocks reappear as substantial drivers of expected activity

and inflation in 2020q3.

We do not scale down the volatility of the usual shocks in q2 (our estimation is conditional

on the model’s parameters that were estimated using data from before the pandemic) and

so let the data speak about the relative contribution of the Covid shock. If the usual shocks

were useful to explain the dynamics of output and inflation and the other observables in

2020q2, the likelihood would have attributed a junior role to the unusual shock. But this is

not what Figure 3 shows us. The Covid shock explains almost all of the dramatic contraction

in output in 2020q2 and more than half of the expected rebound in the next quarter (the

atypical pattern we highlighted in Figure 2).

Figure 4: Forecast in 2020q2 of GDP growth from the SPF and the DSGE model that excludes
the Covid shock
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Note: Red stars indicate the median SFP forecast in 2020q2 of GDP growth in 2020q3–2021q2. The black line
shows the DSGE model’s inferred forecast without the Covid shock but with otherwise identical parameters.
The difference between the black line and the red stars is due to measurement error identified by the Kalman
filter. Source: Survey of Professional Forecasters and authors’ calculations.

Why does the likelihood function attribute such a large role to the unusual shock? Figure

4 provides some insight into this question. The red stars denote SPF forecasts in 2020q2
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for GDP growth over the next four quarters.26 The black line shows the forecast based on

inferring the usual shocks in 2020q2 from the model without the Covid shock. The difference

between them is measurement error, which provides a visual characterization of the model’s

struggle to explain the data when the Covid shock is shut down. This error is very large to

explain the SPF forecasts of GDP growth over the next three quarters; specifically, the error

is three orders of magnitude larger than its standard deviation in 2020q3. This standard

deviation is estimated using data from the more recent pre-pandemic recessions in Figures

1 and 2 and so the model infers shocks that inherit these dynamics, which are very different

from the Covid dynamics. This implies that our medium-scale DSGE models with only their

usual set of shocks cannot understand the unusual pandemic recession and its anticipated

recovery shown in Figure 2.

The right plot of Figure 3 shows Covid pushed prices higher in 2020q2 and was expected

to put upward pressure on prices through 2021q2. The model attributes the decline in

current and expected inflation to the usual business cycle shocks. The fall in output and rise

in prices attributed to Covid in 2020q2 indicate that the model interprets Covid on net as

a supply shock. The accumulated effect of Covid on the levels of output and prices indicate

that in 2020q2 agents expected the relatively strong supply effects of Covid to persist.

5.3. The effects of the shocks from 2020q2 through 2021q3

We now study the Covid shock’s contributions to aggregate outcomes alongside the usual

shocks over the period 2020q2–2021q3. We measure the shocks with the Kalman smoother

(the results in the previous section use the filter). For ease of interpretation we group

the model’s usual shocks into five categories: demand, transitory supply, persistent supply,

monetary policy, and other. The composition of each category is summarized in Table 2.

We will focus on the contributions of all the shocks to log per capita hours worked and

core PCE inflation. Our empirical measure of hours is de-trended from outside the model

using underlying trends in labor force participation and average hours per worker, as well as

26We reduce the measurement error (estimated with pre-pandemic data) to ensure the model with Covid
corresponds closely to the data
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Table 2: Categories of usual shocks

Category Usual shock
Demand Liquidity preference + Discount factor

Transitory supply Wage and price cost push

Persistent supply Neutral technology + IS technology + MEI

Monetary policy Unanticipated and anticipated

Other Residual (government) spending + measurement

Note: IS denotes investment-specific. Residual spending includes net exports, inventory investment, and
government spending. Measurement includes measurement error in core PCE, as well as shocks to consumer
durable inflation and inflation in the consumption price of residual output. The latter two variables are used
in the measurement equations to map model GDP and inflation onto the U.S. Bureau of Economic Analysis’
GDP and core PCE inflation.

Figure 5: The estimated effects of the Covid shock and the usual shock, 2020q2–2021q3
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inflation equals two. Source: Haver Analytics, Board of Governors, Chicago Fed, and authors’ calculations.
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estimates of the natural rate of unemployment.27 This measure of hours seems to be a good

indicator of the cyclical position of the US economy.

The contributions are displayed in Figure 5. The red lines show the forecast of log hours

(in percentage point deviations from its trend) and inflation conditioned on 2020q1 data.

The black lines show the realizations of these variables from 2020q2 to 2021q3. The colored

bars indicate contributions of the shocks to deviations from steady state. The sum of the

colored bars corresponds to the difference between the red and the black lines.

The left-hand plot in Figure 5 shows the sharp contraction and fast recovery of the labor

market. The Covid shock is the largest factor contributing to the sharp downturn in 2020q2.

This shock is also largely responsible for the initial recovery in 2020q3. If not for demand

shocks, hours would have been 10 percentage points higher. The Covid shock is a persistent

drag on hours, significantly so in 2021. This seems consistent with the impact on labor

supply often attributed to Covid (for example, the lower supply due to some people’s Covid-

related concerns about in-person public-facing jobs). The impact of Delta is very small (we

estimate δ = .03). While overall the contributions of Covid are substantial, the usual shocks

play an important role as well. Demand shocks are a large drag on the labor market early

on. Persistent supply shocks provide a notable boost to activity later on. Monetary policy

is initially contractionary, but its effects turn positive at the beginning of 2021.

The right-hand plot in Figure 5 shows the volatility of core PCE inflation and its sharp

rise in the middle of 2021. Covid is inflationary throughout, consistent with our earlier

interpretation of it as being, on net, a supply shock. While it pushes up inflation, it does

so by relatively little after 2020q2. The model attributes most of the gyrations in inflation

to transitory supply shocks — in this case, price cost-push shocks. This latter finding is

consistent with Del Negro et al. (2022) who estimate a differently specified Covid shock in a

DSGE model (see footnote 5). Our estimates show Covid having a large positive impact on

inflation in 2020q2 and remaining inflationary throughout the period.

27We use the trends that enter into the Federal Reserve Board of Governors’ large scale macro-econometric
model FRB/US, which are available on the Board’s public web site. The natural rate is based on calculations
at the Chicago Fed. Our measurement follows Campbell et al. (2016) and is described in the appendix.
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5.4. The role of beliefs in the propagation of the Covid shock

The macroeconomic effects of the Covid shock in any given period can be fully decomposed

into three parts: those due the current surprise (ψ0
t ), news about the future path of the

Covid shock (ψ1
t , ...,ψNt ), and the propagation through the economy of the past surprises

and news. The latter is simply the sum of the impulse response functions of past surprise

and news shocks. Figure 6 shows the contribution of the smoothed Covid shock to output

growth and inflation decomposed into surprise (blue), news (yellow), and propagation (grey).

The dashed line is the overall effect of Covid (the sum of the bars) and the red stars indicate

data.

Figure 6: The role of beliefs about the Covid shock, 2020q2–2021q3
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Note: This figure features the Kalman smoothed decomposition of the contributions of the surprise, news,
and past surprise and news shocks as described in the main text. The dashed lines shows the total effects
of the Covid shock. The bars decompose the total effects into three components. The blue bars show the
contribution of the surprise shock in the period it is realized. The yellow bars show the contribution of news
in the period it is received. The grey bars shows the contribution of past surprises and news through their
propagation. The red stars indicate data. Source: Haver Analytics and authors’ calculations.

The left plot shows that news about the future path of the Covid shock reduced the

magnitude of the 2020q2 contraction in GDP by roughly 10 percentage points. In 2020q3

and 2020q4 the news about the pandemic dragged down activity, by 8 and .7 percentage

points, respectively. This finding is consistent with concerns about the future path of the

pandemic summarized in releases of Wolters Kluwer’s Blue Chip Economic Indicators at the
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time. According to our model, beliefs of a recrudescence of the pandemic later on lowers

current activity.

The left plot in Figure 6 also reveals that the macroeconomic consequences of the first

wave of Covid were hard to anticipate. This is captured visually by the predominance of

blue and yellow (compared to the gray). Still, the size of the grey bars suggests that at least

some of the effects of Covid in 2020q3 and 2020q4 could be anticipated.28 The contribution

of news and surprise on inflation, as shown in the right plot, is the mirror image of that on

GDP growth. This suggests that on net both surprise and news about the path of Covid

were dominated by supply effects.

6. Conclusion

We proposed a new methodology for addressing unusual shocks in our usual business cycle

models and used it to study the macroeconomic effects of the Covid-19 pandemic shock in a

canonical medium-scale DSGE model. Our framework can be applied to estimate any DSGE

model with data including the pandemic without necessarily having to model the detailed

epidemiology. It also is easy to extend it to include more survey data that might help inform

the propagation of the Covid shock.

Only when we introduce the Covid shock is the model able to account for the highly

unusual dynamics exhibited in Figures 1 and 2. The Covid shock has both supply and

demand side effects, but on net, the supply forces dominated. It accounts for a significant

fraction of the early business cycle dynamics, was a persistent drag on aggregate activity,

and was inflationary throughout. We also find that a majority of the effects of the Covid

shock were unanticipated.

Our findings are based on the canonical model that has a rudimentary fiscal block. In

order to better isolate the Covid shock one would need to consider a DSGE model with a

sophisticated fiscal block to address the unusual fiscal policy that was implemented to cushion

the blow of the pandemic. This is an important area for future research. Another important

28In the case of Delta, when we assume perfect foresight the yellow and blue would only appear in the
period of the shock and the remainder of the path would be grey bars only.
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area for future research is to consider the Covid shock in non-linear models. The size of the

Covid shock suggests that non-linear effects could be important for its propagation.
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Appendix to “Unusual shocks in our usual models” by Filippo Ferroni, Jonas
Fisher, and Leonardo Melosi29

This appendix describes the DSGE model and its estimation in detail. The first section
presents the model economy’s primitives. Section B gives the formulas used to remove nom-
inal and technological trends from model variables and thereby induce model stationarity,
and Sections C and D discuss the stationary economy’s steady state and the log linearization
of its equilibrium necessary conditions around it. Section E discusses measurement issues
which arise when comparing model-generated data with data measured by the BEA and
BLS. Section F describes our mixed Calibration-Bayesian Estimation empirical strategy and
presents the resulting parameter values.

A. The Model’s Primitives

Eight kinds of agents populate the model economy: Households, investment producers, com-
petitive final goods producers, monopolistically-competitive differentiated goods producers,
labor packers, monopolistically-competitive guilds, a fiscal authority, and a monetary author-
ity. These agents interact with each other in markets for: final goods used for consumption
and investment, investment goods used to augment the stock of productive capital, differen-
tiated intermediate goods, capital services, raw labor, differentiated labor, composite labor,
government bonds, privately-issued bonds, and state-contingent claims.

A.1. Households

Our model’s households are the ultimate owners of all assets in positive net supply (the cap-
ital stock, differentiated goods producers, and guilds). They provide labor and divide their
current after-tax income (from wages and assets) between current consumption, investment
in productive capital, and purchases of financial assets, both those issued by the government
and those issued by other households. The individual household divides its current resources
between consumption and the available vehicles for intertemporal substitution (capital and
financial assets) to maximize a discounted sum of current and expected future felicity.

Et

[
∞∑
τ=0

βτεbt+τ

(
Ut+τ + εst+τL

(
Bt+τ

Pt+τRt+τ

))]

with

Ut =
1

1− γc
(
(Ct − %C̄t−1)(1−H1+γh

t )
)(1−γc)

(9)

The function L(·) is strictly increasing, concave, and differentiable everywhere on [0,∞).
In particular, L′(0) exists and is finite. Without loss of generality, we set L′(0) to one. The
argument of L(·) equals the real value of government bonds in the household’s portfolio:

29This appendix is co-authored with Jeffrey Campbell, University of Notre Dame and Tilberg University,
jcampbel24@nd.edu
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their period t+ 1 redemption value Bt divided by their nominal yield Rt expressed in units
of the consumption good with the nominal price index Pt. The time-varying coefficient
multiplying this felicity from bond holdings, εst , is the liquidity preference shock introduced
by Fisher (2015). A separate shock influences the household’s discounting of future utility to
the present, εbt . Specifically, the household discounts a certain utility in t+ τ back to t with
βτEt

[
εbt+τ/ε

b
t

]
. In logarithms, these two preference shocks follow independent autoregressive

processes.

ln εbt = (1− ρb) ln εb∗ + ρb ln εbt−1 + ηbt , η
b
t ∼ N(0, σ2

b ) (10)

ln εst = (1− ρs) ln εs∗ + ρs ln εst−1 + ηst , η
s
t ∼ N(0, σ2

s). (11)

A household’s wealth at the beginning of period t consists of its nominal government
bond holdings, Bt, its net holdings of privately-issued financial assets, and its capital stock
Kt−1. The household chooses a rate of capital utilization ut, and the capital services resulting
from this choice equal utKt−1. The cost of increasing utilization is higher depreciation. An
increasing, convex and differentiable function δ(U) gives the capital depreciation rate. We
specify this as

δ(u) = δ0 + δ1(u− u?) +
δ2
2

(u− u?)2 .

A household can augment its capital stock with investment, It. Investment requires paying
adjustment costs of the “i-dot” form introduced by Christiano, Eichenbaum, and Evans
(2005). Also, an investment demand shock alters the efficiency of investment in augmenting
the capital stock. Altogether, if the household’s investment in the previous period was It−1,
and it purchases It units of the investment good today, then the stock of capital available in
the next period is

Kt = (1− δ(ut))Kt−1 + εit

(
1− S

(
AKt−1It
AKt It−1

))
It. (12)

In (12), AKt equals the productivity level of capital goods production, described in more
detail below, and εit is the investment demand shock. In logarithms, this follows a first-order
autoregression with a normally-distributed innovation.

ln εit = (1− ρi) ln εi∗ + ρi ln ε
i
t−1 + ηit, η

i
t ∼ N(0, σ2

i ) (13)

A.2. Production

The producers of investment goods use a linear technology to transform the final good into
investment goods. The technological rate of exchange from the final good to the investment
good in period t is AIt . We denote ∆ lnAIt with ωt, which we call the investment-specific
technology shock and which follows first-order autogregression with normally distributed
innovations.

ωt = (1− ρω)ω? + ρωωt−1 + ηωt , η
ω
t ∼ N(0, σ2

ω) (14)
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Investment goods producers are perfectly competitive.
Final good producers also operate a constant-returns-to-scale technology; which takes as

inputs the products of the differentiated goods producers. To specify this, let Yit denote
the quantity of good i purchased by the representative final good producer in period t, for
i ∈ [0, 1]. The representative final good producer’s output then equals

Yt ≡
(∫ 1

0

Y
1

1+λ
p
t

it di

)1+λpt

.

With this technology, the elasticity of substitution between any two differentiated products
equals 1 + 1/λpt in period t. Although this is constant across products within a time period,
it varies stochastically over time according to an ARMA(1, 1) in logarithms.

lnλpt = (1− ρp) lnλp? + ρp lnλpt−1 − θpη
p
t−1 + ηpt , η

p
t ∼ N(0, σ2

p) (15)

Given nominal prices for the intermediate goods Pit, it is a standard exercise to show
that the final goods producers’ marginal cost equals

Pt =

(∫ 1

0

P
− 1

λ
p
t

it di

)−λpt
(16)

Just like investment goods firms, the final goods’ producers are perfectly competitive. There-
fore, profit maximization and positive final goods output together require the competitive
output price to equal Pt. Therefore, we can define inflation of the nominal final good price
as πt ≡ ln(Pt/Pt−1).

The intermediate goods producers each use the technology

Yit = (Ke
it)
α (AYt Hd

it

)1−α − AtΦ (17)

Here, Ke
it and Hd

it are the capital services and labor services used by firm i, and AYt is
the level of neutral technology. Its growth rate, νt ≡ ln(AYt /A

Y
t−1), follows a first-order

autogregression.
νt = (1− ρν) ν∗ + ρvνt−1 + ηνt , η

ν
t ∼ N(0, σ2

ν), (18)

The final term in (17) represents the fixed costs of production. These grow with

At ≡ AYt
(
AIt
) α

1−α . (19)

We demonstrate below that At is the stochastic trend in equilibrium output and consumption,
measured in units of the final good. We denote its growth rate with

zt = νt +
α

1− α
ωt (20)

34



Similarly, define
AKt ≡ AtA

I
t (21)

In the specification of the capital accumulation technology, we labelled AKt the “productivity
level of capital goods production.” We demonstrate below that this is indeed the case with
the definition in (21).

Each intermediate goods producer chooses prices subject to a Calvo (1983) pricing
scheme. With probability ζp ∈ [0, 1], producer i has the opportunity to set Pit without
constraints. With the complementary probability, Pit is set with the indexing rule

Pit = Pit−1π
ιp
t−1π

1−ιp
? . (22)

In (22), π? is the gross rate of price growth along the steady-state growth path, and ιp ∈
[0, 1].30

A.3. Labor Markets

Households’ hours worked pass through two intermediaries, guilds and labor packers, in their
transformation into labor services used by the intermediate goods producers. The guilds take
the households’ homogeneous hours as their only input and produce differentiated labor
services. These are then sold to the labor packers, who assemble the guilds’ services into
composite labor services.

The labor packers operate a constant-returns-to-scale technology with a constant elas-
ticity of substitution between the guilds’ differentiated labor services. For its specification,
let Hit denote the hours of differenziated labor purchased from guild i at time t by the rep-
resentative labor packer. Then that packer’s production of composite labor services, Hs

t are
given by

Hs
t =

(∫ 1

0

(Hit)
1

1+λwt di

)1+λwt

.

As with the final good producer’s technology, an ARMA(1, 1) in logarithms governs the
constant elasticity of substitution between any two guilds’ labor services.

lnλwt = (1− ρw) lnλw? + ρw lnλwt−1 − θwηwt−1 + ηwt , η
w
t ∼ N(0, σ2

w) (23)

Just as with the final goods producers, we can easily show that the labor packers’ marginal
cost equals

Wt =

(∫ 1

0

(Wit)
− 1
λwt di

)−λwt
. (24)

Here, Wit is the nominal price charged by guild i per hour of differentiated labor. Since labor
packers are perfectly competitive, their profit maximization and positive output together

30To model firms’ price-setting opportunities as functions of st, define a random variable upt which is
independent over time and uniformly distributed on [0, 1]. Then, firm i gets a price-setting opportunity if
either upt ≥ ζp and i ∈ [upt − ζp, u

p
t ] or if upt < ζp and i ∈ [0, upt ] ∪ [1 + upt − ζp, 1].
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require that the price of composite labor services equals their marginal cost.
Each guild produces it’s differentiated labor service using a linear technology with the

household’s hours worked as its only input. A Calvo (1983) pricing scheme similar to that
of the differentiated goods producers constrains their nominal prices. Guild i has an un-
constrained opportunity to choose its nominal price with probability ζw ∈ [0, 1]. With the
complementary probability, Wit is set with an indexing rule based on πt−1 and last period’s
trend growth rate, zt−1.

Wit = Wit−1 (πt−1e
zt−1)ιw (π?e

z?)1−ιw . (25)

In (25), z? ≡ ν? + α
1−αω? is the unconditional mean of zt and ιw ∈ [0, 1].

A.4. Fiscal and Monetary Policy

The model economy hosts two policy authorities, each of which follows exogenously-specified
rules that receive stochastic disturbances. The fiscal authority issues bonds, Bt, collects
lump-sum taxes Tt, and buys “wasteful” public goods Gt. Its period-by-period budget con-
straint is

Gt +Bt−1 = Tt +
Bt

Rt

. (26)

The left-hand side gives the government’s uses of funds, public goods spending and the
retirement of existing debt. The left-hand side gives the sources of funds, taxes and the
proceeds of new debt issuance at the interest rate Rt. We assume that the fiscal authority
keeps its budget balanced period-by-period, so Bt = 0. Furthermore, the fiscal authority sets
public goods expenditure equal to a stochastic share of output, expressed in consumption
units.

Gt = (1− 1/gt)Yt, (27)

with
ln gt = (1− ρg) ln sg? + ρg ln gt−1 + ηgt , η

g
t ∼ N(0, σ2

g). (28)

The monetary authority sets the nominal interest rate on government bonds, Rt. For
this, it employs a Taylor rule with interest-rate smoothing and forward guidance shocks.

lnRt = ρR lnRt−1 + (1− ρR) lnRn
t +

M∑
j=0

ξjt−j. (29)

The monetary policy disturbances in (29) are ξ0t , ξ
1
t−1, . . . , ξ

M
t−M . The public learns the value

of ξjt−j in period t− j. The conventional unforecastable shock to current monetary policy is
ξ0t , while for j ≥ 1, these disturbances are forward guidance shocks. We gather all monetary
shocks revealed at time t into the vector εRt . This is normally distributed and i.i.d. across
time. However, its elements may be correlated with each other. That is,

εRt ≡
(
ξ0t , ξ

1
t , . . . , ξ

M
t

)
∼ N(0,Σε). (30)
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The off-diagonal elements of Σ1 are not necessarily zero, so forward-guidance shocks need
not randomly impact expected future monetary policy at two adjacent dates independently.
Current economic circumstances influence Rt through the notional interest rate, Rn

t .

lnRn
t = ln r?+lnπ?t +

φ1

4
Et

1∑
j=−2

(lnπt+j − ln π?t )+
φ2

4
Et

1∑
j=−2

(lnYt+j − ln y? − lnAt+j) . (31)

The constant r? equals the real interest rate along a steady-state growth path, and π?t is
the central bank’s intermediate target for inflation. We call this the inflation-drift shock. it
follows a first-order autoregression with a normally-distributed innovation. Its unconditional
mean equals π?, the inflation rate on a steady-state growth path.

ln π?t = (1− ρπ)π? + ρπ lnπ?t−1 + ηπt , η
π
t ∼ N(0, σ2

π) (32)

Allowing π?t to change over time enables our model to capture the persistent decline in
inflation from the early 1990s through the early 2000s engineered by the Greenspan FOMC.

A.5. Other Financial Markets and Equilibrium Definition

All households participate in the market for nominal risk-free government debt. Additionally,
they can buy and sell two classes of privately issued assets without restriction. The first is
one-period nominal risk-free private debt. We denote the value of household’s net holdings of
such debt at the beginning of period t with BP

t−1 and the interest rate on such debt issued in
period t maturing in t+1 with RP

t+1. The second asset class consists of a complete set of real
state-contingent claims. As of the end of period t, the household’s ownership of securities
that pay off one unit of the aggregate consumption good in period τ if history sτ occurs is
Qt(s

τ ), and the nominal price of such a security in the same period is Jt(s
τ ).

We define an equilibrium for our economy in the usual way: Households maximize their
utility given all prices, taxes, and dividends from both producers and guilds; final goods pro-
ducers and labor packers maximize profits taking their input and output prices as given; dif-
ferentiated goods producers and guilds maximize the market value of their dividend streams
taking as given all input and financial-market prices; differentiated goods producers and
guilds produce to satisfy demand at their posted prices; and otherwise all product, labor,
and financial markets clear.

B. Detrending

To remove nominal and real trends, we deflate nominal variables by their matching price
deflators, and we detrend any resulting real variables influenced permanently by technological
change. All scaled versions of variables are the lower-case counterparts.

ct =
Ct
At

it =
It

AtAIt

37



kt =
Kt

AtAIt
ket =

Ke
t

AtAIt

wt =
Wt

AtPt
w̃t =

W̃t

AtPt

p̃t =
P̃t
Pt

πt =
Pt
Pt−1

yt =
Yt
At

mct =
MCt
Pt

rkt =
Rk
tA

I
t

Pt
wht =

W h
t

AtPt
λ1t = Λ1

tA
γC
t λ2t = Λ2

tA
γC
t AIt

εst = AγCt εst

B.1. Detrended Equations

The detrended equations describing our model are listed in the following sections.

Households’ FOC

λ1t = εbt

[(
ct − %

ct−1
ezt

) (
1− εht h

1+γh
t

)]−γc (
1− εht h

1+γh
t

)
λ1tw

h
t = (1 + γh)ε

b
t

[(
ct − %

ct−1
ezt

)(
1− εht h

(1+σh)
t

)]−γc (
ct − %

ct−1
ezt

)
εht h

γh
t

λ1t
RP
t

= βEt

[
λ1t+1e

−γCzt+1

πt+1

]
λ1t
Rt

− L′(0)
εbtε

s
t

Rt

= βEt
λ1t+1

πt+1

e−zt+1γC

λ1t = εitλ
2
t

(
(1− St(·))− S ′t(·)

it
it−1

)
+ βEt

[
εit+1e

(1−γC)zt+1λ2t+1S
′
t+1(·)

i2t+1

i2t

]
λ2t = βEt

[
e−γCzt+1−ωt+1

(
λ1t+1r

k
t+1ut+1 + λ2t+1(1− δ(ut+1))

)]
λ1t r

k
t = λ2t δ

′(ut)

kt = (1− δ(ut)) kt−1e−zt−ωt + εit (1− S(·)) it
ket = utkt−1e

−zt−ωt

Final Goods Price Index

1 =

[
(1− ζp)p̃

1
1−λp,t
t + ζp(π

ιp
t−1π

∗(1−ιp)π−1t )
1

1−λp,t

]1−λp,t
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Intermediate Goods Firms: Capital-Labor Ratio

ket
hdt

=
α

1− α
wt
rkt

Intermediate Goods Firms: Real Marginal Costs

mct =
w1−α
t

(
rkt
)α

εatα
α(1− α)1−α

Intermediate Goods Firms: Price-Setting Equation

0 =Et

∞∑
s=0

ζspβ
sλ1t+s

ỹt,t+s
λp,t+s − 1

(
At+s
At

)1−γC [
λp,t+smct+s − X̃p

t,sp̃t

]

where

X̃p
t,s =

{
1 : s = 0∏s
j=1 π

1−ιp
t+j−1π

ιp
∗∏s

j=1 πt+j
: s = 1, . . . ,∞

}

ỹt,t+s denotes the time t+ j output sold by the producers that have optimized at time t the
last time they have reoptimized. Since it can be shown that optimizing producers all choose
the same price, then we do not have to carry the i-subscript.

Labor Packers: Aggregate Wage Index

wt =

[
(1− ζw)w̃

− 1
λw,t

t + ζw
(
eιwzt−1−zte(1−ιw)z∗πιt−1π

−1
t π1−ιw

∗ wt−1
)− 1

λw,t

]−λw,t

Guilds: Wage-Setting Equation

0 =Et

∞∑
s=0

ζswβλ
1
t+s

(
At+s
At

)1−γC h̃t,t+s
λw,t+s

(
(1 + λw,t+s)w

h
t+s − X̃ l

t,sw̃t

)
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where

X̃ l
t,s =

{
1 : s = 0∏s
j=1(πt+j−1e

zt+j−1)
1−ιw

(πγ)ιw∏s
j=1 πt+je

zt+j : s = 1, . . . ,∞

}

h̃t,t+s denotes the time t + j labor supplied by the guild that have optimized at time t the
last time they have reoptimized. Since it can be shown that optimizing guilds all choose the
same wage, then we do not have to carry the i-subscript.

Monetary Authority

Rt = RρR
t−1

r∗π∗t
(

1∏
j=−2

πt+j
π∗t

)ψ1
4
(

1∏
j=−2

yt+j
y∗

)ψ2
4

1−ρR
M∏
j=0

ξt−j,j

The Aggregate Resource Constraint

yt
gt

=ct + it

Production Function

yt =εat (ket )
α (hdt )

1−α − Φ

Labor Market Clearing Condition

ht = hdt

C. Steady State

We normalize most shocks and the utilization rate:

u? =1 εi =1

εa =1 εb =1

Next, we set the following restriction on adjustment costs:

S(·∗) ≡ 0

S ′(·∗) ≡ 0
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C.1. Prices and Interest Rates

Given β, z∗, γC , and π∗, we can solve for the steady-state nominal interest rate on private
bonds RP

∗ by using the FOC on private bonds:

RP
∗ =

π∗
(βe−γCz∗)

(33)

From the definition of δ(u), we have

δ(1) =δ0

δ′(1) =δ1.

Next, given ω∗, δ0, and the above, we can solve for the real return on capital rk∗ using the
FOC on capital:

rk∗ =
eγCz∗+ω∗

β
− (1− δ0) (34)

C.2. Ratios

Moving to the production side, we can use the aggregate price equation to solve for p̃∗:

p̃∗ = 1

Using this result and given λp,∗, we can use the price Phillips curve to solve for mc∗:

mc∗ =
1

1 + λp,∗
(35)

Given values for α and εa∗, we can use the marginal cost equation to solve for w∗:

w∗ =
(
mc∗α

α(1− α)1−α(rk∗)
−α) 1

1−α (36)

The definition of effective capital gives us a value for ke∗ in terms of k∗:

ke∗ = k∗e
−z∗−ω∗

Calculating y∗ using the labor share of output 1− α:

y∗ =
w∗h∗
1− α

Using capital shares based off our value of α, we can calculate the output to capital ratio
as follows:

y∗
ke∗

=
rk∗
α
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y∗
k∗

=e−z∗−ω∗
rk∗
α

Using the capital accumulation equation, we can get a value for i∗
k∗

i∗
k∗

= 1− (1− δ0)e−z∗−ω∗

Using the resource constraint, we can get c∗
k∗

:

c∗
k∗

=
y∗
k∗s

g
?
− i∗
k∗

These ratios will give us the remaining steady-state levels and ratios:

k∗ =y∗

(
y∗
k∗

)−1
i∗ =

i∗
k∗
k∗

c∗ =
c∗
k∗
k∗ g∗ =gyy∗

C.3. Liquidity Premium

Using the aggregate wage equation, we can get the following for w̃∗:

w̃∗ = w∗

Combining this result with the wage Phillips curve, we get the following:

wh∗ =
w∗

1 + λw,∗

We can use the FOC for consumption and the labor supply to pin down εh and λ1∗

εb
[
c∗

(
1− %

ez

)]−γc (
1− εhh(1+γh)∗

)
− λ1∗ = 0

−(1 + γh)ε
bc(1−γc)∗

(
1− %

εz

)(1−γc) (
1− εhh(1+γh)∗

)−γc
εhhγh∗ + λ1∗w

h
∗ = 0

Finally, the government bond rate is calculated from

λ1∗ − εb∗εs∗ = βR∗
λ1∗
π∗
e−γCz

π∗
βe−γCz︸ ︷︷ ︸
RP∗

− εb∗εs∗
π∗

βe−γCzλ1∗
= R∗
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Noting that RP
∗ = π∗

βe−γCz
we can write

RP
∗ −R∗
RP
∗

=
εb∗ε

s
∗

λ1∗
.

This is the liquidity premium in steady state.

D. Log Linearization

Hatted variables refer to log deviations from steady-state (x̂ = ln
(
xt
x∗

)
). In the cases of zt,

ωt, and νt, we have that x̂ = xt − x∗ as these variables are already in logs.

Households’ First Order Conditions

ε̂bt − λ̂1t − γc
1

1− %
ez

ĉt + γc

%
ez

1− %
ez

(ĉt−1 − ẑt) (37)

λ̂1t + ŵht − ε̂bt − ε̂ht −
1− γc
1− %

ez

ĉt + (1− γc)
%
ez

1− %
ez

(ĉt−1 − ẑt) (38)

−
(
γh + γc (1 + γh)

εhh1+γh∗

(1− εhh1+γh∗ )2

)
ĥt = 0

λ̂1t =
RP
∗ −R∗
RP
∗

(ε̂st + ε̂bt) +
R∗
RP
∗

(R̂t + Et[(λ̂
1
t+1 − π̂t+1 − γC ẑt+1]) (39)

λ̂1t = Et

[
λ̂1t+1 − γC ẑt+1 + R̂t − π̂t+1

]
(40)

λ̂1t =
(

ln εit + λ̂2t

)
− S ′′ (̂ıt − ı̂t−1) + βe(1−γC)γS ′′Et (̂ıt+1 − ı̂t) (41)

λ2∗λ̂
2
t = βe−γCz∗−ω∗

[
λ1∗u∗r

k
∗Et

(
−γC ẑt+1 − ω̂t+1 + λ̂1t+1 + r̂kt+1 + ût+1

)]
+ (42)

+ βe−γCz∗−ω∗
[
(1− δ0)λ2∗Et

(
−γC ẑt+1 − ω̂t+1 + λ̂2t+1

)
− λ2∗δ1u∗Etût+1

]
λ̂1t = λ̂2t +

δ2
δ1
u∗ût − r̂kt (43)

k̂t =

(
1− εi∗i∗

k∗

)(
k̂t−1 − ẑt − ω̂t

)
+
εi∗i∗
k∗

(
ε̂it + ı̂t

)
− δ1u∗e−z∗−ω∗ût (44)

k̂et = ût + k̂t−1 − ẑt − ω̂t (45)

Capital-Labor Ratio

k̂et = ŵt − r̂kt + ĥdt (46)
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Real Marginal Costs

m̂ct = (1− α) ŵt + αr̂kt − ε̂at (47)

The New Keynesian Phillips Curve for Inflation

π̂t =
(1− βζpe(1−γC)z∗)(1− ζp)

(1 + βιpe(1−γC)z∗)ζp

[
λp,∗

1 + λp,∗
λ̂p,t + m̂ct

]
+ (48)

+
ιp

1 + βιpe(1−γC)z∗
π̂t−1 +

βe(1−γC)z∗

1 + βιpe(1−γC)z∗
Etπ̂t+1

Wage Mark-Up

µ̂wt = ŵt − ŵht (49)

The New Keynesian Phillips Curve for Wages

ŵt =
1

1 + βe(1−γC)z∗
ŵt−1 +

βe(1−γC)z∗

1 + βe(1−γC)z∗
ŵt+1 +

βe(1−γC)z∗

1 + βe(1−γC)z∗
(Etπ̂t+1 + Etẑt+1)+ (50)

ιw
1 + βe(1−γC)z∗

(π̂t−1 + ẑt−1)−
1 + ιwβe

(1−γC)z∗

1 + βe(1−γC)z∗
(π̂t + ẑt)+

1− βζwe(1−γC)z∗
1 + βe(1−γC)z∗

1− ζw
ζw

[
λw,∗

1 + λw,∗
λ̂w,t − µ̂wt

]

The Aggregate Resource Constraint

y∗
g∗

(ŷt − ĝt) =
c∗

c∗ + i∗
ĉt +

i∗
c∗ + i∗

ı̂t (51)

The Production Function

ŷt =
1

mc∗

(
ln εat + αk̂et + (1− α) ĥdt

)
(52)

Labor Market Clearing Condition

ĥt = ĥdt (53)
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Monetary Authority’s Reaction Function

R̂t = ρRR̂t−1 + (1− ρR)

[
(1− ψ1) π̂

∗
t +

ψ1

4

(
1∑

j=−2

π̂t+j

)
+
ψ2

4

(
1∑

j=−2

ŷt+j

)]
+

M∑
j=0

ξ̂t−j,j

(54)

E. Measurement

E.1. National Income Accounts

The model economy’s basic structure, with the representative household consuming a single
good and accumulating capital using a different good, differs in some important ways from the
accounting conventions of the Bureau of Economic Analysis (BEA) underlying the National
Income and Product Accounts (NIPA). In particular

1. The BEA treats household purchases of long-lived goods inconsistently. It classifies
purchases of residential structures as investment and treats the service flow from their
stock as part of Personal Consumption Expenditures (PCE) on services. The BEA
classifies households purchases of all other durable goods as consumption expendi-
tures. No service flow from the stock of household durables enters measures of current
consumption. In the model, all long-lived investments add to the productive capital
stock.

2. In our model all government purchases are consumption. In fact government spending
includes investment goods purchased on behalf of the populace. In the model, these
should be treated as additions to the single stock of productive capital.

3. The BEA sums PCE and private expenditures on productive capital (Business Fixed
Investment and Residential Investment), with government spending, inventory invest-
ment, and net exports to create Gross Domestic Product. The model features only the
first three of these.

To bridge these differences, we create four model consistent NIPA measures from the BEA
NIPA data.

1. Model-consistent GDP. Since the model’s capital stock includes both the stock of house-
hold durable goods and the stock of government-purchased capital, a model-consistent
GDP series should include the value of both stocks’ service flows. To construct these,
we followed a five-step procedure.

(a) We begin by estimating a constant (by assumption) service-flow rate by dividing
the nominal value of housing services from NIPA Table 2.4.5 by the beginning-of-
year value of the residential housing stock from the BEA’s Fixed Asset Table 1.1.
We use annual data and average from 1947 through 2014. The resulting estimate
is 0.096. That is, the annual value of housing services equals approximately 10
percent of the housing stock’s value each year.
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(b) In the second step, we estimate estimate constant (by assumption) depreciation
rates for residential structures, durable goods, and government capital. We con-
structed these by first dividing observations of value lost to depreciation over a
calendar year by the end-of-year stocks. Both variables were taken from the BEA’s
Fixed Asset Tables. (Table 1.1 for the stocks and Table 1.3 for the deprecation
values.) We then averaged these ratios from 1947 through 2014. The resulting
estimates are 0.021, 0.194, and 0.044 for the three durable stocks.

(c) In the third step, we calculated the average rates of real price depreciation for the
three stocks. For this, we began with the nominal values and implicit deflators for
PCE Nondurable Goods and PCE Services from NIPA Table 1.2. We used these
series and the Fisher-ideal formula to produce a chain-weighted implicit deflator
for PCE Nondurable Goods and Services. Then, we calculated the price for each
of the three durable good’s stocks in consumption units as the ratio of the implicit
deflator taken from Fixed Asset Table 1.2 to this deflator. Finally, we calculated
average growth rates for these series from 1947 through 2014. The resulting
estimates equal 0.0029, −0.0223, and 0.0146 for residential housing, household
durable goods, and government-purchased capital.

(d) The fourth combines the previous steps’ calculations to estimate constant (by as-
sumption) service-flow rates for household durable goods and government-purchased
capital. To implement this, we assumed that all three stocks yield the same finan-
cial return along a steady-state growth path. These returns sum the per-unit ser-
vice flow with the appropriately depreciated value of the initial investment. This
delivers two equations in two unknowns, the two unknown service-flow rates. The
resulting estimates are 0.29 and 0.12 for household durable goods and government-
purchased capital.

(e) The fifth and final step uses the annual service-flow rates to calculate real and
nominal service flows from the real and nominal stocks of durable goods and
government-purchased capital reported in Fixed Asset Table 1.1. This delivers an
annual series. Since the stocks are measured as of the end of the calendar year,
we interpret these as the service flow values in the next year’s first quarter. We
create quarterly data by linearly interpolating between these values.

With these real and nominal service flow series in hand, we create nominal model-
consistent GDP by summing the BEA’s definition of nominal GDP with the nominal
values of the two service flows. We create the analogous series for model-consistent
real GDP by applying the Fisher ideal formula to the nominal values and price indices
for these three components.

2. Model-consistent Investment. The nominal version of this series sums nominal Busi-
ness Fixed Investment, Residential Investment, PCE Durable Goods, and government
investment expenditures. The first three of these come from NIPA Table 1.1.5, while
government investment expenditures sums Federal Defense, Federal Nondefense, and
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State and Local expenditures from NIPA Table 1.5.5. We construct the analogous
series for real Model-consistent Investment by combining these series with their real
chain-weighted counterparts found in NIPA Tables 1.1.3 and 1.5.3 using the Fisher
ideal formula. By construction, this produces an implicit deflator for Model-consistent
investment as well.

3. Model-consistent Consumption. The nominal version of this series sums nominal PCE
Nondurable Goods, PCE Services, and the series for nominal services from the durable
goods stock. The first two of these come from NIPA Table 1.1.5. We construct the
analogous series for real Model-consistent consumption by combining these series with
their real chain-weighted counterparts using the Fisher ideal formula. The two real
PCE series come from NIPA Table 1.1.3. Again, this produces an implicit deflator for
Model-consistent consumption as a by-product.

4. Model-consistent Government Purchases. Conceptually, the model’s measure of Gov-
ernment Purchases includes all expenditures not otherwise classified as Investment
or Consumption: Inventory Investment, Net Exports, and actual Government Pur-
chases. We construct the nominal version of this series simply by subtracting nominal
Model-consistent Investment and Consumption from nominal Model-consistent GDP.
We calculate the analogous real series using “chain subtraction.” This applies the
Fisher ideal formula to Model-consistent GDP and the negatives of Model-consistent
Consumption and Investment.

Our empirical analysis requires us to compare model-consistent series measured from the
NIPA data with their counterparts from the model’s solution. To do this, we begin by solving
the log-linearized system above, and then we feed the model specific paths for all exogenous
shocks starting from a particular initial condition. for a given such simulation, the growth
rates of Model-consistent Consumption and Investment equal

∆ lnCobs
t = z∗ + ∆ĉt + zt and

∆ ln Iobst = z∗ + ω∗ + ∆ît + zt + ωt

The measurement of GDP growth in the model is substantially more complicated, because
the variables Yt and yt denote model output in consumption units. In contrast, we mimic
the BEA by using a chain-weighted Fisher ideal index to measure model-consistent GDP.
Therefore, we construct an analogus chain-weighted GDP index from model data. Since
such an ideal index is invariant to the units with which nominal prices are measured, we
can normalize the price of consumption to equal one and employ the prices of investment
goods and government purchases relative to current consumption. Our model identifies
the first of these relative prices as with investment-specific technology. However, the model
characterizes only government purchases in consumption units, because private agents do not
care about their division into “real” purchases and their relative price. For this reason, we
use a simple autoregression to characterize the evolution of the price of government services
in consumption units. Denote this price in quarter t with P g

t . We construct this for the US
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economy by dividing the Fisher-ideal price index for model-consistent government purchases
by that for model-consistent consumption. Then, our model for its evolution is

πg,obst = ln(P g
t /P

t
t−1) = (1−β2,1−β2,2)π∗g +β2,1 ln(P g

t−1/P
g
t−2) +β2,2 ln(P g

t−2/P
g
t−3) +ugt . (55)

Here, ugt ∼ N(0, σ2
g). Given an arbitrary normalization of P g

t to one for some time period,
simulations from (55) can be used to construct simulated values of P g

t for all other time
periods. With these and a simulation from the model of all other variables in hand, we can
calculate the simulation’s values for Fisher ideal GDP growth using

Qt

Qt−1
≡
√
Q̇P
t Q̇

L
t , (56)

where the Paasche and Laspeyres indices of quantity growth are

Q̇P
t ≡ Ct + P I

t It + PG
t (Gt/P

G
t )

Ct−1 + P I
t It−1 + PG

t (Gt−1/P
g
t−1)

and (57)

Q̇L
t ≡

Ct + P I
t−1It + PG

t−1(Gt/P
G
t )

Ct−1 + P I
t−1It−1 + PG

t−1(Gt−1/PG
t−1)

. (58)

In both (57) and (58), P I
t is the relative price of investment to consumption. In equilibrium,

this always equals AIt .
The above gives a complete recipe for simulating the growth of model-consistent real

GDP growth. However, we also embody its insights into our estimation with a log-linear
approximation. For this, we start by removing stochastic trends from all variables in (57)
and (58), and we proceed by taking a log-linear approximation of the resulting expression.
Details are available from the authors upon request.

E.1.1. Output Growth Expectations

We also discipline our model’s inferences about the state of the economy by comparing
expectations of one- to four-quarter ahead real GDP growth from the Survey of Professional
Forecasters with the analogous expectations from our model. The Survey of Professional
Forecasters did not report these expectations prior to 2007, so we use them only in the
second sample. As discussed in previous section, the quarterly per-capita model-consistent
real GDP growth (∆ lnQt) does not map one-to-one with the SPF forecast of the BEA
annual real GDP growth (∆ lnY BEA

t ). So we transform the former into the latter by adding
back population growth to the per-capita model-consistent real GDP growth and by fitting
a linear regression model of BEA real GDP growth on model-consistent real GDP growth
over the sample 1993:Q1-2016Q4. In particular, we estimate the following model

∆ lnY BEA
t = a︸︷︷︸

−0.14

+ b︸︷︷︸
1.06

[4× (∆ lnQobs
t + popt)] R2 = 0.996
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When we bridge model and SPF forecasts, we allow these two sets of expectations to dif-
fer from each other by including serially correlated measurement errors. The observation
equations are

∆ lnY l,obs
t = a+ 4b(∆ lnQl,obs

t + poplt), l = 1, 2, 3, 4;

and we assume that population forecast is at 1 percent at annual rate throughout. The two
measurement errors follow mutually-independent first-order autoregressive processes.

E.2. Hours Worked Measurement

Empirical work using DSGE models like our own typically measure labor input with hours
worked per capita, constructed directly from BLS measures of hours worked and the civilian
non-institutional population over age 16. However, this measure corresponds poorly with
business cycle models because it contains underlying low frequency variation. This fact led
us to construct a new measure of hours for the model using labor market trends produced
for the FRB/US model and for the Chicago Fed’s in-house labor market analysis.

We begin with a multiplicative decomposition of hours worked per capita into hours per
worker, the employment rate of those in the labor force, and the labor-force participation rate.
The BLS provides CPS-based measures of the last two rates for the US as a whole. However,
its measure of hours per worker comes from the Establishment Survey and covers only the
private business sector. If we use hours per worker in the business sector to approximate
hours per worker in the economy as a whole, then we can measure hours per capita as

Ht

Pt
=
HE
t

EE
t

EC
t

LCt

LCt
PC
t

.

Here, Ht and Pt equal total hours worked and the total population, HE
t /E

E
t equals hours

per worker measured with the Establishment survey, EC
t /L

C
t equals one minus the CPS

based unemployment rate, and LCt /P
C
t equals the CPS based labor-force participation rate.

Our measure of model-relevant hours worked deflates each component on the right-hand
side by an exogenously measured trend. The trend for the unemployment rate comes from
the Chicago Fed’s Microeconomics team, while those for hours per worker and labor-force
participation come from the FRB/US model files.

E.3. Inflation

Our empirical analysis compares model predictions of price inflation, wage inflation, inflation
in the price of investment goods relative to consumption goods, and inflation expectations
with their observed values from the U.S. economy. We describe our implementations of these
comparisons sequentially below.
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E.3.1. Price Inflation

Our model directly characterizes the inflation rate for Model-consistent Consumption. In
principle, this is close to the FOMC’s preferred inflation rate, that for the implicit deflator
of PCE. However, in practice the match between the two inflation rates is poor. In the
data, short-run movements in food and energy prices substantially influences the short-
run evolution of PCE inflation. Our model lacks such a volatile sector, so if we ask it to
match observed short-run inflation dynamics, it will attribute those to transitory shocks to
intermediate goods’ producers’ desired markups driven by λpt .

To avoid this outcome, we adopt a different strategy for matching model and data inflation
rates, which follows that of Justiniano, Primiceri, and Tambalotti (2013). This relates three
observable inflation rates – core CPI inflation, core PCE inflation, and market-based PCE
inflation – to Model-consistent consumption inflation using auxiliary observation equations.
For core PCE inflation, this equation is

π1,obs
t = π∗ + π1

∗ + βπ,1π̂t + γπ,jπd,obst + uπ,1t , (59)

In (59) as elsewhere, π∗ equals the long-run inflation rate. The constant π1
∗ is an adjust-

ment to this long-run inflation rate which accounts for possible long-run differences between
realized inflation and the FOMC’s goal of π? (for PCE inflation π1

∗ is set to zero). The right-
hand side’s inflation rates, π̂t and πd,obst equal Model-consistent consumption inflation and
PCE Durables inflation. We refer to the coefficients multiplying them, βπ,1 and γπ,1, as the
inflation loadings. We include PCE Durables inflation on the right-hand side of (59) because
the principle adjustment required to transform Model-consistent inflation into core PCE in-
flation is the replacement of the price index for durable goods services with that for durable
goods purchases. The disturbance term uπ,1t follows a zero-mean first-order autoregressive
process.

The other two observed inflation measures, market-based PCE inflation and core CPI
inflation, have identically specified observation equations. We use 2 and 3 in superscripts
to denote these equations parameters and error terms, and we use the same expressions as
subscripts to denote the parameters governing the evolution of their error terms. We assume
that the error terms uπ,1t , uπ,2t , and uπ,3t are independent of each other at all leads and lags.

To produce forecasts of inflation with these these three observation equations, we must
forecast their right-hand side variables. The model itself gives forecasts of π̂t. The forecasts
of durable goods inflation come from a second-order autoregression.

πd,obst = (1− β1,1 − β1,2)πd∗ + β1,1π
d,obs
t−1 + β1,2π

d,obs
t−2 + udt (60)

Its innovation is normally distributed and serially uncorrelated.

E.3.2. Wage Inflation

Although observed wage inflation does not feature the same short-run variability as does
price inflation, it does include the influences of persistent demographic labor-market trends
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which we removed ex ante from our measure of hours worked. Therefore, we follow the same
general strategy of relating observed measures of wage inflation to the model’s predicted wage
inflation with a error-augmented observation equation. For this, we employ two measures of
compensation per hour, Earnings per Hour and Total Compensation per Hour. In parallel
with our notation for inflation measures, we use 1 and 2 to denote these two wage measures
of wage inflation. The observation equation for Earnings per Hour is

∆ lnw1,obs
t = z∗ + wj∗ + βw,1 (ŵt − ŵt−1 + ẑt) + uw,1t , (61)

where “∆” is the first difference operator. Just as with the price inflation measurement
errors, uw,1t follows a zero-mean first-order autoregressive process. The observation equation
for Total Compensation per Hour is analogous to (61).

E.3.3. Relative Price Inflation

To empirically ground investment-specific technological change in the model, we use an error-
augmented observation equation to relate the relative price of investment to consumption,
both model-consistent measures constructed from NIPA and Fixed Asset tables as described
above, with the model’s growth rate of the rate of technological transformation between
these two goods, ωt.

πi,obst = ω∗ + ω̂t + u
c/i
t ;

Here, πi,obst denotes the price of consumption relative to investment. The measurement error

u
c/i
t follows a i.i.d. zero-mean normally-distributed innovation.

We also discipline our model’s inferences about the state of the economy by comparing
expectations of one- to four-quarter ahead and 10-year inflation from the Survey of Profes-
sional Forecasters with the analogous expectations from our model. Just as with all of the
other inflation measures, we allow these two sets of expectations to differ from each other
by including serially correlated measurement errors. The observation equations are

πl,j,obst = π∗ + πl,j∗ + βl,jEtπ̂t+l + ul,j,πt , j = 1, 2, l = 1, ...4;

πl,j,obst = π∗ + πl,j∗ +
βl,j

l

l∑
i=1

Etπ̂t+i + ul,j,πt , j = 1, 2, l = 40;

The measurement errors follow mutually-independent first-order autoregressive processes.

E.4. Interest Rates and Monetary Policy Shocks

Since our model features forward guidance shocks, it has non-trivial implications for the
current policy rate as well as for expected future policy rates. To discipline the parameters
governing their realizations, the elements of Σε, using data, we compare the model’s monetary
policy shocks to high-frequency interest-rate innovations informed by event studies, such as
that of Gürkaynak, Sack, and Swanson (2005). Those authors applied a factor structure
to innovations in implied expected interest rates from futures prices around FOMC policy
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announcement dates. Specifically, they show that the vector of M implied interest rate
changes following an FOMC policy announcement, ∆rt, can be written as

∆rt = Λft + ηt

Where f is a 2×1 vector of factors, Λ is a H×2 matrix of factor loadings, and η is an H×1
vector of mutually independent shocks. Denoting the 2 × 2 diagonal variance covariance
matrix of f with Σf and the H × H diagonal variance-covariance matrix of η with Ψ, we
can express the observed variance-covariance matrix of ∆r as ΛΣfΛ

′ + Ψ.
Our model has implications for this same variance covariance matrix. For this, use

the model’s solution to express the changes in current and future expected interest rates
following monetary policy shocks as ∆r = Γ1ε

R. Here, εRt is the vector which collects the
current monetary policy shock with M − 1 forward guidance shocks, and Γ1 is an H × H
matrix. In general, Γ1 does not simply equal the identity matrix, because current and future
inflation and output gaps respond to the monetary policy shocks and thereby influence future
monetary policy “indirectly” through the interest rate rule.

We assume that a factor structure determines the cross-correlations among monetary
policy shocks. Specifically, we assume

εjR,t = αjf
α
t + βjf

β
t + ηjt ,

where the factors fαt and fβt and factor loadings αi and βi are scalars, ηjt is a measurement
error. The factors and shocks have zero means and are independent and normally distributed.
In matrix notation, we have

εRt = αfαt + βfβt + ηt,

where α = [α0, . . . , αH ]′, β = [β0, . . . , βH ]′. Let Ση = E (ηtη
′
t) denote the variance-covariance

matrix of the idiosyncratic shocks, and σ2
α (σ2

β) denote the variance of fαt (fβt ). Therefore
we have that

ΛΣfΛ
′ + Ψ = Γ1(αα′σ2

α + ββ′σ2
β)Γ′1 + Γ1ΣηΓ

′
1

E.5. Measurement Equations Synthesis

To summarize the measurement equations are as follows:

∆ lnQobs
t = f

(
ĉt, ĉt−1, ît, ît−1, ĝt, ω̂t, π̂

g,obs
t

)
≡ ∆ lnQj

t ;

∆ lnY l,obs
t = a+ 4b(∆ lnQl

t + poplt), l = 1, 2, 3, 4;

∆ lnCobs
t = z∗ + ∆ĉt + ẑt;

∆ ln Iobst = z∗ + ω∗ + ∆ı̂t + ẑt + ω̂t;

logHobs
t = Ĥt;

πi,obst = ω∗ + ω̂t + uit;

Robs
t = R∗ + R̂t;
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Rj,obs
t = R∗ + EtR̂t+j, j = 1, 2, . . . , H;

πl,j,obst = π∗ + πl,j∗ + βl,jEtπ̂t+l + ul,j,πt , j = 1, 2, l = 1, ...4;

πl,j,obst = π∗ + πl,j∗ +
βl,j

l

l∑
i=1

Etπ̂t+i + ul,j,πt , j = 1, 2, l = 40;

πj,obst = π∗ + πj∗ + βπ,jπ̂t + γπ,jπd,obst + uj,pt , with βπ,1 = 1, j = 1, 2, 3;

∆ lnwj,obst = z∗ + wj∗ + βw,j (ŵt − ŵt−1 + ẑt) + uj,wt , with βw,1 = 1, j = 1, 2;

πd,obst = (1− β1,1 − β1,2)πd∗ + β1,1π
d,obs
t−1 + β1,2π

d,obs
t−2 + udt ;

πg,obst = (1− β2,1 − β2,2)πg∗ + β2,1π
g,obs
t−1 + β2,2π

g,obs
t−2 + ugt .

The left hand side variables represent data (Q denotes chain-weighted GDP). The function f
in the first equation represents the linear approximation to the chain-weighted GDP formula.
As previously discussed, two variables are included to complete the mapping from model to
data but are not endogenous to the model. Specifically, the consumption price of government
consumption plus net exports, πg,obst , helps map model GDP to our model-consistent measure
of chain-weighted GDP, and inflation in the consumption price of consumer durable goods,
πd,obst , is used to complete the mapping from model inflation to measured inflation.

The measurement equations indicate we use 21 time series to estimate the model in the
first sample. In addition to the real quantities and federal funds rate that are standard
in the literature our estimation includes multiple measures of wage and consumer price
inflation, two measures each of average inflation expected over the next ten years and over
one quarter, and H = 4 quarters of interest rate futures. Our second sample estimation is
restricted to estimating the parameters of the stochastic process for forward guidance news
with H = 10 plus the processes driving πg,obst and πd,obst (only the constant and the standard
deviation). This estimation uses the measurement equations involving the current federal
funds rate and 10 quarters of expected future policy rates plus the last two equations. We
take into account the change in steady state but keep the remaining structural parameters
at their first sample values. Because our estimation forces data on real activity, wages and
prices to coexist with the interest rate futures data, we expect the estimation to mitigate
the forward guidance puzzle. Finally, it is worth stressing that our estimation respects the
ELB in the second sample. This is because we measure expected future rates in the model,
the EtR̂t+j, using the corresponding empirical futures rates, Rj,obs

t , and we use futures rates
extending out 10 quarters. Finally, in the second sample we extend the use the Survey of
Professional Forecasts about near term inflation expectations using the 1Q-4Q ahead CPI
and PCE inflation expectations, and introduce the SPF expectations about near term real
GDP growth expectations, i.e. 1Q ahead until 4Q ahead.

E.6. Data Synopsis

31

31Unless otherwise indicated all data are from Haver Analytics.
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Model-Consistent Output

• The DSGE model output is the chained sum of conventional GDP with government
capital services and durable goods services. This series is de-trended by population
growth.

Model-Consistent Consumption

• DSGE consumption is defined as the chained sum of conventional PCE nondurable
goods with PCE services and durable goods services. This series is de-trended by
population growth.

Model-Consistent Investment

• Model-consistent Investment is the chained sum of durable goods purchases, fixed in-
vestment, and government investment. This series is de-trended by population growth.

Model-Consistent Residual Output Inflation

• The residual output is the chained difference of model consumption and investment
from model GDP. Residual output reflects government spending and net exports.

Relative Price of Consumption to Investment

• The relative price is constructed by dividing the consumption price series and invest-
ment price series.

Deflators for Consumer Durables

• We take the log difference32 of the PCE Durable Goods Chain Price Index for the
deflators for consumer durables.

Inflation Expectations

• Our inflation expectations series are quarterly inflation expectations data from the
Survey of Professional Forecasters at the Philadelphia Fed. They report inflation ex-
pectations at various horizons for both PCE and CPI measures. We use their aggregate
measures of 1Q to 4Q ahead core CPI and core PCE inflation expectations, 40Q ahead
average inflation expectations for CPI and PCE. The SPF did not report expectations
for PCE prior to 2007, so we do not have many observations for the first sample of our
data. However, we continue to include these few observations in order to initialize the
kalman filter for second sample estimation. We have the full data for CPI expectations.

Real GDP Growth Expectations

32All log differenced series are multipled by 100.
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• Our real GDP growth expectations series are annualized expectations data from the
Survey of Professional Forecasters at the Philadelphia Fed. We use their BEA real
GDP growth expectations from 1Q to 4Q ahead. The SPF reports these expectations
throughout our sample period. We use them only in the second sample because the
inflation data are only available for the second sample.

Real Wages

• We have two different measures of wages in the model - average hourly earnings and
employment compensation. We take the average hourly earnings and divide by the
chain price index of core PCE, then take the log difference.

• We repeat the same steps to calculate employment compensation but use the employ-
ment cost index for the compensation of civilian workers.

Price Inflation

• We use three different measures of price inflation: Core PCE, Market-Based Core PCE,
and Core CPI.

Hours

• We construct our hours series with the methodology as described in Forward Guidance
and Macroeconomic Outcomes Since the Financial Crisis (Campbell et al., 2016).

Effective Federal Funds Rate

• For the first sample (1993q1-2008q3), we use the federal funds target rate observed as
the average over the last month of the quarter.

• For the second sample (2008q4-2018q4), we use the federal funds target rate observed
at the end of the quarter.

• We divide the series by 4 to convert to quarterly rates.

Expected Federal Funds Rate (FFR)

• From 1993Q1 to 2005Q4, our 4-quarter ahead path comes from Eurodollar futures.
Eurodollar futures have expiration dates that lie about two weeks before the end of
each quarter. Eurodollar rate is closely tied to expectations for the Federal Funds rates
over the same period, so the Eurodollar futures rate corresponds with the Fed Funds
rate at the middle of the last month of each quarter.

• Beginning with 2006Q1, our 4-quarter ahead, and later, 10-quarter ahead path comes
from the Overnight Index Swaps (OIS). The OIS data are converted into a point
estimate of the Fed Funds for a particular date using a Svensson term structure model.
The dates of the OIS data reflect the middle of the quarter values, and we interpolate
to obtain the end of quarter values.
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• From 2014Q1, we began to use the expected Fed Funds from the Survey of Market
Participant (SMP). The SMP correspond to the survey participants’ expected Fed
Funds at the end of the quarter.

• All expected FFR series are in quarterly rates.

F. Calibration and Bayesian Estimation

As we discussed, we follow a two-stage approach to the estimation of our model’s parame-
ters. In a calibration stage, we set the values of selected parameters so that the model has
empirically-sensible implications for long-run averages from the U.S. economy. In this stage,
we also enforce several normalizations and a judgemental restriction on one of the measure-
ment error variances. In the second stage, we estimate the model’s remaining parameters
using standard Bayesian methods.

F.1. Calibration

Our calibration strategy is the same as in Campbell, Fisher, Justiniano, and Melosi (2016)
except that we address the well-known evidence of secular declines in economic growth and
rates of return on nominally risk free assets. We address these developments by imposing
a change in steady state in 2008q4 (the choice of this date is motivated in the next subsec-
tion). Steady state GDP growth is governed by the mean growth rates of the neutral and
investment-specific technologies, ν∗ and ω∗. We adjust ω∗ down to account for the slower
decline in the relative price of investment since 2008q4. Given this change we then lower ν∗
so that steady state GDP growth is reduced to 2%. To match a lower real risk-free rate of 1%
we increase the steady state marginal utility of government bonds using εs∗.

33 These adjust-
ments leave the other calibrated parameters unchanged but do change the steady state values
of the endogenous variables and therefore the point at which the economy is log-linearized.34

We observe the long-run average of the following aggregates: nominal federal funds rate,
labor share, government spending share, investment spending share, the capital-output ratio,
real per-capita GDP growth (gy), inflation in price of government, net exports and inventory
investment relative to non-durables and services consumption, and the growth rate of the
consumption-investment relative price.

• The labor share can be used to calibrate the parameter α.

• The government spending share determines sg∗.

• The government price growth rate pins down πg∗ .

33The targets for steady state GDP growth and risk-free rate reflect a variety of evidence including the
Fed’s Summary of Economic Projections.

34Our re-calibration changes the return on private assets by a little. This small change is consistent with
Yi and Zhang (2017) who show that rates of return on private capital have stayed roughly constant in the
face of declines in risk free rates.
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• The growth rate of the consumption-investment relative price pins down ω∗.

• The investment share pins down i∗/y∗.

• The capital output ratio pins down k∗/y∗.

• Calculate the consumption-output share

c∗
y∗

=

(
1− i∗

y∗
− g∗
y∗

)
. (62)

• The growth rate of real chain-weighted GDP is used to pin down the growth rate of
the common trend z∗. First

gy = ez∗

√√√√ c∗
y∗

+ eω i∗
y∗

+ (πg∗)
−1 g∗

y∗
c∗
y∗

+ e−ω i∗
y∗

+ πg∗
g∗
y∗

All the variables in this equation are known except for z∗. So we can solve for z∗:

z∗ = gy −
1

2
ln

(
c∗
y∗

+ eω i∗
y∗

+ (πg∗)
−1 g∗

y∗
c∗
y∗

+ e−ω i∗
y∗

+ πg∗
g∗
y∗

)
(63)

• The growth rate of the labor-augmenting technology ν∗ can be easily obtained by
exploiting the following equation:

z∗ = v∗ +
α

1− α
ω∗. (64)

• We are now in a position to identify the depreciation rate δ0 using the steady-state
equation pinning down the investment capital ratio:

i∗
k∗

= 1− (1− δ0)e−z∗−ω∗

⇒ δ0 = 1 +

(
i∗
k∗
− 1

)
ez∗+ω∗

where the investment capital ratio is obtained combining the investment share and the
capital output ratio:

i∗
k∗

=
i∗/y∗
k∗/y∗

. (65)

• From the steady-state equilibrium we have that

y∗
k∗

= e−z∗−ω∗
δ1
α
. (66)
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Therefore

δ1 = α

(
k∗
y∗

)−1
ez∗+ω∗ (67)

where the capital output ratio is given above.

• In steady state, the real rate of return on private bonds is derived from the first order
condition for private bonds:

rp∗ ≡
RP
∗
π∗

=
eγcz∗

β
. (68)

In steady state the real rental rate of capital is derived from the first order condition
for capital:

rk∗ =

[
eγcz∗

β

]
eω∗ − (1− δ0) (69)

Combining these last two equations yields

rk∗ = rp∗e
ω∗ − (1− δ0)

and hence
rp∗ =

[
rk∗ + 1− δ0

]
e−ω∗ .

Note that rk∗ = δ1 from the first order condition for capacity utilization. It follows that

rp∗ = (1− δ0 + δ1) e
−ω∗

• The liquidity premium in steady state (i.e., R∗/π∗
rp∗

) can be computed now by assuming
a nominal average federal funds rate, R∗, and an annualized average inflation rate.

• Using equation (69) and the fact that rk∗ = δ1, we can calibrate the discount factor β :

β = (1− δ0 + δ1)
−1 eω∗eγcz∗

where γc is a parameter of the utility function to be estimated.

F.2. Bayesian Estimation

Our Bayesian estimation uses the same split-sample strategy as in Campbell, Fisher, Jus-
tiniano, and Melosi (2016) except that we incorporate the change in steady state described
above and one other change noted below. As in Campbell, Fisher, Justiniano, and Melosi
(2016) our sample begins in 1993q1. This date is based on the availability and reliability of
the overnight interest rate futures data. The sample period ends in 2016q4 but we impose a
sample break in 2008q4. Our choice of this latter date is motivated by three main consider-
ations. First, there is the evidence that points to lower interest rates and economic growth
later in the sample. Second, it seems clear that the horizon over which forward guidance
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was communicated by the Fed lengthened substantially during the ELB period. Finally, the
downward trends in inflation and inflation expectations from the early 1990s appear to come
to an end in the mid-2000s. Splitting the sample in 2008q4 and assuming some parameters
change at that date is our way of striking a balance between parsimony and addressing the
multiple structural changes that seem to occur around the same time.

We estimate the full suite of non-calibrated structural parameters in the first sample
under the assumption that forward guidance extends for H = 4 quarters. Starting in 2008q4
we assume the model environment changes in three ways. First we assume the change in
the steady state described above. Second, forward guidance lengthens to H = 10 quarters
Third, the time-varying inflation target from the first sample becomes a constant equal to
the steady state rate of inflation, 2% at an annual rate. All three changes are assumed to
be unanticipated and permanent.

We employ standard prior distributions, but those governing monetary policy shocks
deserve further elaboration. Our estimation requires the variance-covariance matrix of mon-
etary policy shocks to be consistent with the factor-structure of interest rate innovations used
by Gürkaynak, Sack, and Swanson (2005), as described above. Therefore, we parameterize
Σε in terms of factors STD (σα and σβ), factor loadings (α and β) and STD of the idiosyn-
cratic errors (ση,j). We then center our priors for these parameters at their estimates from
event-studies. However, we do not require our estimates to equal their prior values. Our
Bayesian estimation procedure employs quarterly data on expected future interest rates, the
posterior likelihood function includes them as free parameters. It is well known that factors
STD and loadings are not separately identified, so we impose two scale normalizations and
one rotation normalization on α and β. The rotation normalization requires that the first
factor, which we label “Factor A”, is the only factor influence the current policy rate. That
is, the second factor, “Factor B” influences only future policy rates. Gürkaynak, Sack, and
Swanson (2005) call Factors A and B the “target” and “path” factors.

F.3. Posterior Estimates

We report the results of our two-stage two-sample estimation in a series of tables. Table 3
reports our most notable calibration targets. The long-run policy rate equals 1.1 percent
on a quarterly basis. We target a two percent growth rate of per capita GDP. Given an
average population growth rate of one percent per year, this implies that our potential GDP
growth rate equals three percent. The other empirical moments we target are a nominal
investment to output ratio of 26 percent and nominal government purchases to output ratio
of 15 percent. Finally, we target a capital to output ratio of approximately 10 on a quarterly
basis.

Table 4 lists the parameters which we calibrate along with their given values. The table
includes many more parameters than there are targets in Table 3. This is because Table
3 omitted calibration targets which map one-to-one with particular parameter values. For
example, we calibrate the steady-state capital depreciation rate (δ0) using standard methods
applied to data from the Fixed Asset tables. It is also because Table 4 lists several parameters
which are normalized prior to estimation. Most notable among these are the three factor
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loadings listed at the table’s bottom. Tables 5 and 8 report prior distributions and posterior
modes for the model’s remaining parameters, for the first and second samples respectively.
gnificantly.
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Table 3: First Sample Calibration Targets

Description Expression Value
Fixed Interest Rate (quarterly, gross) R∗ 1.011
Per-Capita Steady-State Output Growth Rate (quarterly) Yt+1/Yt 1.005
Investment to Output Ratio It/Yt 0.2597
Capital to Output Ratio Kt/Yt 10.7629
Fraction of Final Good Output Spent on Public Goods Gt/Yt 0.1532
Growth Rate of Relative Price of Consumption to Investment PC/PI 0.371
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Table 4: First Sample Calibrated Parameters

Parameter Symbol Value
Discount Factor β 0.9857
Steady-State Measured TFP Growth (quarterly) z∗ 0.489
Investment-Specific Technology Growth Rate ω∗ 0.371
Elasticity of Output w.r.t Capital Services α 0.401
Steady-State Wage Markup λw∗ 1.500
Steady-State Price Markup λp∗ 1.500
Steady-State Scale of the Economy H∗ 1.000
Steady-State Inflation Rate (quarterly) π∗ 0.500
Steady-State Depreciation Rate δ0 0.0162
Steady-State Marginal Depreciation Cost δ1 0.0385
Core PCE, 1Q Ahead and 10Y Ahead Expected PCE

Constant π1
∗, π

l,1
∗ 0.000

Loading 1 βπ,1, βl,1 1.000
Core CPI, 1Q Ahead and 10Y Ahead Expected CPI

Constant π2
∗, π

l,2
∗ 0.122

10Y Ahead Expected CPI and PCE

Standard Deviation of u40,j,πt 0.010
PCE Durable Goods Inflation

1st Lag Coefficient β1,1 0.418
2nd Lag Coefficient β1,2 0.379

Inflation in Relative Price of Government,
Inventories and Net Exports to Consumption

1st Lag Coefficient β2,1 0.311
2nd Lag Coefficient β2,2 0.0057

Compensation
Constant w1

∗ -0.202
Loading βw,1 1.000

Earnings Constant w2
∗ -0.237

Loading 0 Factor A α0 0.981
Loading 0 Factor B β0 0.000
Loading 4 Factor B β4 0.951
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Table 5: First Sample Estimated Parameters

Prior Posterior
Parameter Symbol Density Mean Std.Dev Mode

Depreciation Curve δ2
δ1

G 1.0000 0.150 0.474

Active Price Indexation Rate ιp B 0.5000 0.150 0.409
Active Wage Indexation Rate ιw B 0.5000 0.150 0.077
External Habit Weight λ B 0.7500 0.025 0.780
Labor Supply Elasticity γH N 0.6000 0.050 0.589
Price Stickiness Probability ζp B 0.8000 0.050 0.831
Wage Stickiness Probability ζw B 0.7500 0.050 0.914
Adjustment Cost of Investment ϕ G 3.0000 0.750 5.354
Elasticity of Intertemporal Substitution γc N 1.5000 0.375 1.319
Interest Rate Response to Inflation ψ1 G 1.7000 0.150 1.791
Interest Rate Response to Output ψ2 G 0.2500 0.100 0.398
Interest Rate Smoothing Coefficient ρR B 0.8000 0.100 0.801
Autoregressive Coefficients of Shocks

Discount Factor ρb B 0.5000 0.250 0.813
Inflation Drift ρπ B 0.9900 0.010 0.998
Exogenous Spending ρg B 0.6000 0.100 0.887
Investment-Demand ρi B 0.5000 0.100 0.791
Liquidity Preference ρs B 0.6000 0.200 0.887
Price Markup ρλp B 0.6000 0.200 0.136
Wage Markup ρλw B 0.5000 0.150 0.469
Neutral Technology ρν B 0.3000 0.150 0.492
Investment Specific Technology ρω B 0.3500 0.100 0.303

Moving Average Coefficients of Shocks
Price Markup θλp B 0.4000 0.200 0.307
Wage Markup θλw B 0.4000 0.200 0.391

Standard Deviations of Innovations
Discount Factor σb U 0.5000 2.000 1.768
Inflation Drift σπ I 0.0150 0.0075 0.077
Exogenous Spending σg U 1.0000 2.000 4.139
Investment-Demand σi I 0.2000 0.200 0.549
Liquidity Preference σs U 0.5000 2.000 0.341
Price Markup σλp I 0.1000 1.000 0.101
Wage Markup σλw I 0.1000 1.000 0.035
Neutral Technology σν U 0.5000 0.250 0.530
Investment Specific Technology σω I 0.2000 0.100 0.259
Relative Price of Cons to Inv σ c

i
I 0.0500 2.000 0.675

Monetary Policy
Notes: Distributions (N) Normal, (G) Gamma, (B) Beta, (I) Inverse-gamma-1, (U) Uniform
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First Sample Estimated Parameters (Continued)

Prior Posterior
Parameter Symbol Density Mean Std.Dev Mode

Unanticipated ση0 N 0.0050 0.0025 0.012
1Q Ahead ση1 N 0.0050 0.0025 0.012
2Q Ahead ση2 N 0.0050 0.0025 0.008
3Q Ahead ση3 N 0.0050 0.0025 0.009
4Q Ahead ση4 N 0.0050 0.0025 0.012

Compensation

Standard Deviation of u1,wt I 0.0500 0.100 0.194

AR(1) Coefficient of u1,wt B 0.4000 0.100 0.458
Earnings

Loading 1 βw,2 N 0.8000 0.100 0.904

Standard Deviation of u2,wt I 0.0500 0.100 0.143

AR(1) Coefficient of u2,wt B 0.4000 0.100 0.674
Core PCE

Loading 2 γπ,1 N 0.0000 1.000 0.045

Standard Deviation of u1,pt I 0.0500 0.100 0.046

AR(1) Coefficient of u1,pt B 0.2000 0.100 0.108
Core CPI

Loading 1 βπ,2 N 1.0000 0.100 0.808
Loading 2 γπ,2 N 0.0000 1.000 0.087

Standard Deviation of u2,pt I 0.1000 0.100 0.077

AR(1) Coefficient of u2,pt B 0.4000 0.200 0.586
Market-Based Core PCE

Constant π3
∗ N -0.1000 0.100 -0.037

Loading 1 βπ,3 N 1.0000 0.100 1.121
Loading 2 γπ,3 N 0.0000 1.000 0.015

Standard Deviation of u3,pt I 0.0500 0.100 0.035

AR(1) Coefficient of u3,pt B 0.2000 0.100 0.144
1Q Ahead Expected PCE

Standard Deviation of u1,1,πt I 0.0500 0.100 0.026

AR(1) Coefficient of u1,1,πt B 0.2000 0.100 0.196
1Q Ahead Expected CPI

Loading β1,2 N 1.0000 0.100 0.980

Standard Deviation of u1,2,πt I 0.0500 0.100 0.062

AR(1) Coefficient of u1,2,πt B 0.2000 0.100 0.198
10Y Ahead Expected PCE

AR(1) Coefficient of u40,1,πt B 0.2000 0.100 0.271
10Y Ahead Expected CPI

Loading β40,2 N 1.0000 0.100 1.021
Notes: Distributions (N) Normal, (G) Gamma, (B) Beta, (I) Inverse-gamma-1, (U) Uniform
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First Sample Estimated Parameters (Continued)

Prior Posterior
Parameter Symbol Density Mean Std.Dev Mode

AR(1) Coefficient of u40,2,πt B 0.2000 0.100 0.213
PCE Durable Goods Inflation

Constant πd∗ N -0.3500 0.100 -0.360
Standard Deviation of udt I 0.2000 2.000 0.286

Notes: Distributions (N) Normal, (G) Gamma, (B) Beta, (I) Inverse-gamma-1, (U) Uniform
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First Sample Estimated Parameters (Continued)

Prior Posterior
Parameter Symbol Density Mean Std.Dev Mode

Inflation in Relative Price of Government,
Inventories and Net Exports to Consumption

Constant πg∗ N 0.1980 1.000 -0.666
Standard Deviation of ugt I 0.5000 2.000 1.861

Factor A
Loading 1 α1 N 0.6839 0.200 1.305
Loading 2 α2 N 0.5224 0.200 0.877
Loading 3 α3 N 0.4314 0.200 0.306
Loading 4 α4 N 0.3243 0.200 -0.012
Standard Deviation σα N 0.1000 0.0750 0.040

Factor B
Loading 1 β1 N 0.3310 0.200 0.656
Loading 2 β2 N 0.6525 0.200 1.104
Loading 3 β3 N 0.8059 0.200 1.162
Standard Deviation σβ N 0.1000 0.0750 0.078

Notes: Distributions (N) Normal, (G) Gamma, (B) Beta, (I) Inverse-gamma-1, (U) Uniform
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Table 6: Second Sample Calibration Targets (Different from First Sample)

Description Expression Value
Fixed Interest Rate (quarterly, gross) R∗ 1.007
Per-Capita Steady-State Output Growth Rate (quarterly) Yt+1/Yt 1.003
Growth Rate of Relative Price of Consumption to Investment PC/PI 0.171

Table 7: Second Sample Calibrated Parameters (Different from First Sample)

Parameter Symbol Value
Steady-State Measured TFP Growth (quarterly) z∗ 0.489
Investment-Specific Technology Growth Rate ω∗ 0.171
Steady-State Marginal Depreciation Cost δ1 0.038
Core CPI, 1Q Ahead and 10Y Ahead Expected CPI

Constant π2
∗, π

l,2
∗ 0.122

10Y Ahead Expected CPI and PCE

Standard Deviation of u40,j,πt 0.020
PCE Durable Goods Inflation

1st Lag Coefficient β1,1 0.000
2nd Lag Coefficient β1,2 0.000

Inflation in Relative Price of Government,
Inventories and Net Exports to Consumption

1st Lag Coefficient β2,1 0.320
2nd Lag Coefficient β2,2 -0.240

Compensation Loading βw,1 1.000
Loading 5 Factor A α5 0.932
Loading 8 Factor B β8 0.210
Loading 10 Factor B β10 0.000
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Table 8: Second Sample Estimated Parameters

Prior Posterior
Parameter Symbol Mean Std.Dev Mode
Compensation

Constant w1
∗ -0.2023 0.000 -0.2023

Standard Deviation of u1,wt 0.1941 0.100 0.284

AR(1) Coefficient of u1,wt 0.4579 0.000 0.4579
Earnings

Constant w2
∗ -0.2370 0.000 -0.237

Loading 1 βw,2 0.9039 0.000 0.9039

Standard Deviation of u2,wt 0.1434 0.100 0.304

AR(1) Coefficient of u2,wt 0.6741 0.000 0.6741
Core PCE

Loading 2 γπ,1 0.0449 0.000 0.0449

Standard Deviation of u1,pt 0.0457 0.100 0.274

AR(1) Coefficient of u1,pt 0.1081 0.000 0.1801
Core CPI

Loading 1 βπ,2 0.8083 0.00 0.8083
Loading 2 γπ,2 0.0868 0.000 0.0868

Standard Deviation of u2,pt 0.0770 0.100 0.2517

AR(1) Coefficient of u2,pt 0.5856 0.000 0.5856
Market PCE

Constant π3
∗ -0.0367 0.000 -0.0367

Loading 1 βπ,3 1.1213 0.000 1.1213
Loading 2 γπ,3 0.0153 0.000 0.0153

Standard Deviation of u3,pt 0.0349 0.100 0.2553

AR(1) Coefficient of u3,pt 0.1436 0.000 0.1436
1Q Ahead Expected PCE

Standard Deviation of u1,1,πt 0.0259 0.020 0.0412

AR(1) Coefficient of u1,1,πt 0.1960 0.050 0.1832
2Q Ahead Expected PCE

Standard Deviation of u2,1,πt 0.0259 0.020 0.0175

AR(1) Coefficient of u2,1,πt 0.1960 0.050 0.2140
3Q Ahead Expected PCE

Standard Deviation of u3,1,πt 0.0259 0.020 0.0193

AR(1) Coefficient of u3,1,πt 0.1960 0.050 0.2202
4Q Ahead Expected PCE

Standard Deviation of u4,1,πt 0.0259 0.020 0.0156

AR(1) Coefficient of u4,1,πt 0.1960 0.050 0.2075
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Second Sample Estimated Parameters (Continued)

Prior Posterior
Parameter Symbol Mean Std.Dev Mode
1Q Ahead Expected CPI

Loading β1,2 0.9803 0.080 1.0022

Standard Deviation of u1,2,πt 0.0622 0.020 0.095

AR(1) Coefficient of u1,2,πt 0.1982 0.050 0.206
2Q Ahead Expected CPI

Loading β1,2 0.9803 0.080 1.2433

Standard Deviation of u2,2,πt 0.0622 0.020 0.0411

AR(1) Coefficient of u2,2,πt 0.1982 0.050 0.2532
3Q Ahead Expected CPI

Loading β1,2 0.9803 0.080 1.2662

Standard Deviation of u3,2,πt 0.0622 0.020 0.0399

AR(1) Coefficient of u3,2,πt 0.1982 0.050 0.2607
4Q Ahead Expected CPI

Loading β1,2 0.9803 0.080 1.2354

Standard Deviation of u4,2,πt 0.0622 0.020 0.0406

AR(1) Coefficient of u4,2,πt 0.1982 0.050 0.2782
10Y Ahead Expected PCE

AR(1) Coefficient of u40,1,πt 0.2711 0.000 0.2711
10Y Ahead Expected CPI

Loading β40,2 1.0207 0.000 1.0207

AR(1) Coefficient of u40,2,πt 0.2133 0.000 0.2133
1Q Ahead Expected GDP

Standard Deviation of u1,1,Yt 0.10 0.100 0.9827

AR(1) Coefficient of u1,1,Yt 0.20 0.100 0.1300
2Q Ahead Expected GDP

Standard Deviation of u2,1,Yt 0.10 0.100 0.6263

AR(1) Coefficient of u2,1,Yt 0.20 0.100 0.1825
3Q Ahead Expected GDP

Standard Deviation of u3,1,Yt 0.10 0.100 0.9779

AR(1) Coefficient of u3,1,Yt 0.20 0.100 0.1767
4Q Ahead Expected GDP

Standard Deviation of u4,1,Yt 0.10 0.100 0.3664

AR(1) Coefficient of u4,1,Yt 0.20 0.100 0.2747
PCE Durable Goods Inflation

Constant πd∗ -0.4500 0.200 -0.4858
Standard Deviation of udt 0.5000 0.150 0.325

Inflation in Relative Price of Government,
Inventories and Net Exports to Consumption
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Second Sample Estimated Parameters (Continued)

Prior Posterior
Parameter Symbol Mean Std.Dev Mode

Constant πg∗ 0.8900 0.400 -0.1177
Standard Deviation of ugt 0.8143 0.150 1.267

Factor A
Loading 0 α0 0.0180 0.250 0.099
Loading 1 α1 0.0574 0.250 0.202
Loading 2 α2 0.1941 0.250 0.397
Loading 3 α3 0.3996 0.250 0.591
Loading 4 α4 0.6520 0.250 0.792
Loading 6 α6 1.2266 0.250 1.116
Loading 7 α7 1.5237 0.250 1.281
Loading 8 α8 1.8139 0.250 1.406
Loading 9 α9 2.0914 0.250 1.517
Loading 10 α10 2.3523 0.250 2.851
Standard Deviation σα 0.0442 0.100 0.056

Factor B
Loading 0 β0 -0.0181 0.300 0.051
Loading 1 β1 0.2211 0.300 0.083
Loading 2 β2 0.3679 0.300 0.125
Loading 3 β3 0.4424 0.300 0.152
Loading 4 β4 0.4612 0.300 0.167
Loading 5 β5 0.4370 0.300 0.181
Loading 6 β6 0.3817 0.300 0.192
Loading 7 β7 0.3032 0.300 0.203
Loading 9 β9 0.1074 0.300 0.210
Standard Deviation σβ 0.0334 0.100 0.449

Standard Deviations of Monetary Policy Innovations
Unanticipated ση0 0.0061 0.005 0.011
1Q Ahead ση1 0.0021 0.005 0.010
2Q Ahead ση2 0.0004 0.005 0.010
3Q Ahead ση3 0.0019 0.005 0.010
4Q Ahead ση4 0.0001 0.005 0.010
5Q Ahead ση5 0.0025 0.005 0.009
6Q Ahead ση6 0.0019 0.005 0.010
7Q Ahead ση7 0.0011 0.005 0.009
8Q Ahead ση8 0.0001 0.005 0.009
9Q Ahead ση9 0.0014 0.005 0.010
10Q Ahead ση10 0.0028 0.005 0.0001
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