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Abstract

This paper provides a dynamic theory of the effects of organizational capacity on

public policy. Consistent with prevailing accounts, a bureaucratic organization with

higher capacity, i.e., a better ability to get things done, is more likely to deliver projects

in a timely, predictable, or efficient fashion. However, capacity also interacts with po-

litical institutions to produce far-reaching implications for the size and distribution of

public projects. Capacity-induced delays and institutional porousness can allow future

political opponents to revise projects in their favor. In response, politicians design

projects to avoid revisions, for example by equalizing distributive benefits, or by over-

scaling projects. We show that higher organizational capacity can increase project size,

inequalities in the distribution of project benefits, and delays. The range of capacity

levels that produce low social benefits increases with the extent of institutional con-

straints. This suggests that political systems with high capacity and high institutional

constraints are especially vulnerable to inefficient projects.
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1 Introduction

It is now a truism that organizations are crucial for the outcome of government policies in

modern society. Election candidates can make platform promises and legislators can pass

laws, but a massive bureaucratic machinery is needed to translate statutes into on-the-

ground results.1 Capturing organizational performance is obviously a formidable task, but

practitioners and scholars have increasingly coalesced around the concept of organizational

capacity as a central determinant. Bodies as varied as the UNDP, USAID, OECD (2011),

and the European Centre for Development Policy Management (Keijzer et al., 2011) identify

organizational capacity as a key development objective, and scholarly mentions of the term

have increased sharply since the 1990s.2

The appeal of organizational capacity is clear. Higher capacity — loosely speaking, a

better ability to “get things done” — should produce policy outputs that are more timely,

more efficient, or of higher quality. Consistent with this perspective, a wide variety of

studies have shown that organizations that are under-resourced, under-paid, or prone to

political interference produce worse results (e.g., Derthick, 1990; Rauch and Evans, 2000;

Gorodnichenko and Peter, 2007; Propper and Van Reenen, 2010). Yet in many political

settings, the implications of capacity are less obvious. To take a simple example, suppose that

a political system gives broad legal standing to actors who have environmental objections to a

construction project. In this setting, a high-capacity bureaucracy might actually encourage

litigation and its attendant delays, since victorious litigants can be confident that their

proposals will be implemented quickly.

This paper develops a dynamic theory of policymaking that jointly considers organiza-

1The Organization for Economic Co-operation and Development estimates that as of 2019, government
entities accounted for an average of 18% of member country employment (OECD, 2021).

2See “Capacity Development: A UNDP Primer,” USAID’s “Measuring Organizational Capacity.” As of
August 2022, Google Scholar returned about 4,880 results for “organizational capacity” between 1990 and
1999, 16,000 between 2000 and 2009, 23,400 between 2010 and 2019, and 15,400 since 2020.
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tional capacity and its political and institutional context. Its main objective is to show how

these features combine to affect the planning and execution of public policies, in terms of

scale, distribution of benefits, and delays. While many elements of our model are standard,

the principal hurdle in any such effort is the lack of consensus about how to characterize

organizational capacity. A predominant approach in empirical research is to treat capac-

ity as an input into organizational production functions. Such inputs include information

(Lee and Zhang, 2017) and perhaps most prominently, human capital (Brown et al., 2009;

Dal Bó et al., 2013; Acemoglu et al., 2015; Bolton et al., 2016). Theoretical efforts have thus

far adopted widely divergent perspectives on how to incorporate the concept into standard

political economy frameworks, ranging from the variance of policy outcomes (Huber and

McCarty, 2004), policy valence (Ting, 2011), to agency cost structures (Foarta, 2022).

Our conceptualization of capacity blends many of the insights of existing approaches. Its

basis is a discrete Markov process representation of policy projects. Completing a project

requires traversing a sequence of bureaucratic stages; for example, research must be com-

pleted before construction can begin. Capacity is the probability of progressing from each

stage to the next in a given period. If it does not progress, the project remains in the same

stage to begin the next period. Benefits are realized upon completion, but each period be-

fore completion imposes costs that are increasing in the project’s scale. Thus in the absence

of renegotiation or political interference, an agency with higher capacity — due to better

personnel or technology — reduces costs and variability in delivery times.

The model embeds this process in an institutional environment that gives access to po-

litical opponents. At the inception of a project, a representative from one group chooses its

scale and an initial distribution of benefits between her group and an opposing group. This

distribution may represent a siting choice, or the selection of contractors. After the project

begins, groups randomly receive opportunities to attempt to revise the project. Depending

on the political system, these opportunities can arise from various sources, for example the
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election of new politicians or the mobilization of NIMBY groups. Attempting a revision

delays project completion by automatically pausing progress. The revision itself succeeds

with some probability that corresponds to the openness of the institutional environment to

outside intervention. This openness reflects factors such as contracting regulations, the judi-

cial system, or administrative procedures such as the US National Environmental Policy Act

(NEPA) review process. A successful revision changes the project’s distribution of payoffs

to favor the revising party. The original project designer must then take the possibility of

strategic revisions into account in choosing the project’s scale and payoff split; in particular,

one liability of low capacity is the increased opportunity for political intervention during the

course of project execution.

A principal attraction of this formulation is its correspondence to the operational realities

of implementing many public policies. A good example is the process of constructing large

infrastructure projects in the US.3 The federal government’s main mechanism for support-

ing significant public transportation projects is the Federal Transit Administration (FTA)

Capital Investment Grants (CIG) program. CIG administers over $2 billion a year through

a competitive grant process, whereby state or local transit agencies propose cost-sharing

collaborations with the FTA. Applications must traverse two stages of FTA review before

construction can begin. The first, “Project Development,” requires a completed NEPA re-

view, approval by local authorities, and secured commitments for at least 30% of non-federal

funds. The second, “Engineering,” finalizes funding sources and design details, including

geotechnical and safety hazard reports. Each phase can be a lengthy undertaking, thus

exposing projects to both lawsuits and political turnover.

We find that the interaction between capacity and the institutional environment has

significant implications for public projects. Consider starting from a benchmark in which the

3The Federal Infrastructure Projects Permitting Dashboard tracks the progress of federally-funded in-
frastructure projects across major permitting requirements. The Center for an Urban Future provides an
overview of the key phases and sources of delay for capital construction projects in New York City.
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opposition group never has an opportunity to attempt a revision. In this case, higher capacity

has the straightforward effects of reducing completion time and costs, thereby increasing

project scale. The initiating politician furthermore awards herself the entire benefit of the

project. If the opposition group is given the opportunity to attempt a revision, then the

threat of the project being revised has two possible effects. First, it encourages the project

initiator to design a larger project. The high running costs of such a project deter revisions

due to the prohibitive escalations in total costs. Second, it encourages more equal payoff

divisions, as these reduce the gains from revisions. These deterrence effects matter only to

politicians who are relatively likely to face future revision attempts: the side that is unlikely

to have revision opportunities will typically not attempt revisions, since their revisions are

likely to be reversed. Thus, a politically favored initial politician is more likely to achieve

her benchmark ideal policy. An unfavored politician is more likely to distort the size and

distribution of her projects in order to avoid revisions. When capacity is very low, politicians

choose more egalitarian distributions and (to compensate for the reduced project gains)

underscaled projects. As capacity increases, they claim an increasing share of project benefits

and switch to overscaling. In all cases, high capacity results in winner-take-all allocations.

These results feature no politically-induced delays in equilibrium, but they assume that

politicians can freely choose any project scale. Also, they assume that scale increases do not

augment running costs so much as to make the project altogether undesirable. In practice,

both of these concerns may be present. Scales are often constrained by budgets or physi-

cal limitations. Even when physically possible, increasing scale may lead to rapidly raising

costs (if the costs are very elastic). Such conditions could make an overscaling strategy

unattainable. Modest scales and high capacity imply low running costs, and thereby encour-

age revisions. The surprising implication is that higher capacity produces greater obstruction

and delay.

The adjustments that project designers make to avoid revisions have important impli-
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cations for social welfare. Underscaled and benchmark projects generally provide greater

benefits than costs, but overscaled projects can cause the agents to do collectively worse

than no project at all. We show that the capacity values that generate such projects both in-

crease and expand with the ease of revisions. A political system that has high organizational

capacity and institutional barriers is therefore most prone to overscaling. Consequently,

the optimal institutional structure should feature either low capacity and high barriers to

completion (i.e., high openness), or high capacity and low barriers.

We finally explore a variant of the model with a more complex project that requires two

phases. Here, scales are chosen independently in each phase and the output of the first

phase is an “investment” that reduces costs for the project in the second phase. The main

result is that the first phase initiator may now invest nothing and effectively cancel a project

if she worries about possible overscaling by the opponent. Thus, the prospect of setting

project parameters mid-stream can force politicians to internalize welfare consequences to

some degree.

Related Literature. A main contribution of this paper is its formalization of organiza-

tional capacity as part of a dynamic political process. The execution of policy in our model

generates measurable outcomes such as the size, timing, cost, and distributive dimensions

of public projects. Several important lines of theoretical work have used related notions of

capacity to explore different policy questions. Perhaps most prominently, a recent literature

on “state capacity” addresses the ability of the state to achieve macro-objectives such as

tax collection and law enforcement (Besley and Persson, 2009; Johnson and Koyama, 2017).

One emphasis of this work is the creation of capacity in the shadow of political transitions.

By contrast, we address policymaking at the organizational level, taking capacity as given.

The granular focus on organizations can be useful because, as many observers have noted,

organizational capabilities can vary greatly within a country (Carpenter, 2001).
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A series of models by Huber and McCarty (2004, 2006) situates bureaucratic capacity in

an explicit institutional setting. They examine the relationship between a legislative prin-

cipal and a bureaucratic agent, and represent capacity as the variance of possible outcomes

following a bureaucratic policy choice. The outcome space in these models is ideological,

and the primary outputs include delegation, compliance, and whether legislation is possible.

Other institutional theories that model capacity as costs include Foarta (2022) and Turner

(2020), who analyze a dynamic electoral setting and policymaking in a separation of powers

system, respectively. Aside from a different set of outcomes, another contribution of our

present paper is formalizing organizational capacity to generate both variance and costs.

Finally, a now extensive set of theoretical models addresses the dynamics of long-term

policies (e.g., Baron, 1996; Battaglini et al., 2012; Callander and Raiha, 2017). Similarly,

a growing literature studies the optimal provision of incentives in dynamic environments

with multiple stage projects (e.g., Toxvaerd, 2006; Green and Taylor, 2016; Feng et al.,

2021). Yet, there is little theoretical work on the political economy of large multistage

public investments. Foarta and Sugaya (2021) study the optimal funding for public projects

by a lender in a repeated relationship with a local policymaker. Their focus is on how the

lender can use the sequential funding of projects to learn and give dynamic incentives to the

policymaker. We focus on a setting with multi-stage projects, and on how the expectation

of future revisions or cancellations affects initial project characteristics.4

Paper Structure. The rest of the paper is organized as follows. The next section dis-

cusses how our modeling approach relates to project features observed in practice. Section

3 describes the model, and Section 4 analyzes it and presents the main results. Section 5

extends the model to allow for multiple decisions over project size. Section 6 briefly presents

4Focusing on transportation projects specifically, Glaeser and Ponzetto (2018) develop a model of project
scale, focusing on voter inattention as the driver for politicians to propose very large projects: increased
voter attention to local negative externalities leads to reductions in project scale, and is consistent with
evidence of positive correlation between voter education and highway costs.
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two examples that illustrate some equilibrium implications. Finally, Section 7 concludes and

the Appendix contains all formal derivations and proofs.

2 Motivating Examples

The parameters and mechanisms of our model map into commonly observed features of

bureaucracies and public projects. In this section we provide examples of how some of the

main components of the model have appeared in the implementation of public policies.

Project Stages and Capacity. The role of the organization is to deliver a completed

project by solving problems in a series of stages. In many cases, stages correspond to well-

defined organizational practices, such as those involved in US federal contracting:

[T]he federal contracting process has three separate but related parts: (1)

planning (how federal agencies decide what and how much to contract for, when

they need given goods or services to be delivered, and what terms and conditions

are they subject to); (2) awarding (the background market research, the com-

munications and outreach to prospective contractors, the budgetary criteria, and

the precise procedures for awarding competitive bids or making noncompetitive

selections); and (3) overseeing (everything from routine reporting requirements

to financial audits, field inspections, public comments, and impact studies). (Di-

Iulio, 2014, p. 65)

We model capacity as the probability p that an organization will progress to the next stage

in a given period. This parameter perhaps corresponds most closely to prevailing empirical

notions of capacity, which often emphasize human capital. Shortfalls in staffing or human

capital have frequently been observed to reduce bureaucratic productivity. For example,

understaffing at the US Office of Information and Regulatory Affairs has been shown to
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delay the issuance of federal rules, including the Biden administration’s current efforts to

update energy efficiency standards for lighting and appliances (Bolton et al., 2016).5

Revisions and Delays. Even the most competent public organizations—fully staffed with

well-trained, well-paid, and uncorrupt bureaucrats, and equipped with modern technology—

face political scrutiny in executing their tasks. As projects become prominent, the oppor-

tunities for intervention multiply, and especially so in decentralized institutional systems

(Pressman and Wildavsky, 1984).

Our model parameterizes these opportunities in two ways. The first is the likelihood that

a party other than the project designer can attempt a revision. Transitions of power due to

elections can play this role, but intra-organizational conflict, interest group mobilization, and

access to litigation provide openings for contestation as well. The second is the probability

that a challenge succeeds. In particular, the extensive reporting requirements of laws such

as NEPA and the California Environmental Quality Act provide rationales for reconsidering

projects, such as insufficient consideration of alternatives (e.g., Mandelker, 2010). As the

model assumes, even unsuccessful challenges can impose costly delays: one report estimated

that the 197 NEPA environmental impact statements completed in 2012 took an average of

4.6 years to finalize (US GAO, 2014) (US GAO, 2014). Academic and policy observers have

increasingly focused on such regulatory barriers as sources of delay and cost inflation in US

infrastructure construction (Smith et al., 1999; Brooks and Liscow, 2022; Mehrotra et al.,

2022).6

Distribution. Challenges to a project frequently aim to alter its distribution of payoffs.

In addition to environmental concerns, revisions may address features such as siting and

5See Anna Phillips, “Biden faces delays in undoing Trump’s war on efficient dishwashers, dryers and
lightbulbs that made him ‘look orange’.” Washington Post, January 9, 2022.

6The NYU Transit Costs Project provides a useful overview of the factors that drive transportation costs
in modern infrastructure projects.
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the set of eligible contractors. The expansion of Atlanta’s airport offers a clear example of

the latter considerations (Altshuler and Luberoff, 2003). In 1972, the city purchased 10,000

acres to the north of downtown with an eye toward a new facility, but the 1973 election of

Maynard Jackson, Atlanta’s first black mayor, changed these plans. As a relative outsider,

Jackson advocated instead for expanding the existing Hartsfield airport, which was located

closer to his political base south of downtown. He additionally took the innovative and

controversial step of setting aside 25% of contracts for minority-owned firms (Stone, 1989)

(Stone, 1989). With some compromises, this vision largely prevailed and the completed

airport was subsequently re-christened with its current name, Hartsfield-Jackson.

3 Model

Consider an environment with infinite, discrete time, t = 0, 1, 2.... There are two agents,

A and B, representing two distinct political constituencies. Agent A is in control of policy

at time 0, and may be thought of as a politician in power at that time. Agent B is the

opposition, either another politician or an outside interest group opposed to A. Agent A

initiates a long-term project at time 0. Once initiated, the project is run by a non-strategic

bureaucracy, and it must go through several stages before reaching completion. In the

absence of outside intervention, the bureaucracy moves the project through the required

stages, where each stage lasts at least a period. At the end of each period, a transition that

switches control to the other agent may occur. Whoever is in control can attempt to change

aspects of the ongoing project. The game ends when the project is completed.

The Project. A public project delivers value v > 0 per unit produced. It has two main

characteristics which are chosen at its initial conception: (1) the scale s ∈ [0, smax] with
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smax > 0; this captures the number of units that are produced, up to same maximum cap;7

and (2) the distribution of benefits between the two agents: the fraction w ≥ 0.5 of the

project’s payoff that goes to one agent versus the fraction 1−w that goes to the other. The

project’s inequality is therefore measured by ∆ = 2w − 1 ∈ [0, 1], where ∆ = 1 is maximal

inequality and ∆ = 0 is the equal division of benefits. The project starts in stage d (the

development stage), and it must reach stage e (execution) in order to be completed.

The project delivers its benefits once it reaches stage e. Progression from one stage to

the next depends on the organizational capacity of the bureaucracy. Higher capacity allows

the bureaucracy to overcome the technical hurdles needed to move the project forward with

greater speed. We parameterize capacity by p, the probability with which the project moves

from stage d to stage e in any given period. With probability 1 − p, the project does not

progress that period. Every period spent in stage d costs each agent c(s), where we assume

the following:

Assumption 1 The cost function c(s) is continuous, twice differentiable, satisfies c′(s) > 0,

c′′(s) > 0, c(0) = 0, and has elasticity

ε(s) ≡ c′(s) · s
c(s)

≥ 1.

The per-period cost c(s) captures in reduced from the shared costs of a public project: the

use of general tax revenue or other public resources for keeping the project running. Hence,

the cost is paid by both agents, regardless of the final division of project benefits. The cost

is increasing and convex in s. Its elasticity with respect to s, ε(s), is larger than 1 to ensure

that c(s)
s

is increasing in s, i.e., larger projects are relatively costlier.

7We discuss restrictions on smax in Section 4.3.
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Transitions of Control and Revisions. At the beginning of period 0, agent A chooses

the scale of s and payoff division (w, 1 − w), where agent A receives fraction w of vs and

agent B receives fraction 1 − w. We refer to this distribution of benefits as the project of

type ∆A, as the payoff division favors agent A. Analogously, we denote by ∆B the project

with benefit distribution (1− w,w), where fraction w of the benefit goes to agent B.

At the end of each period t, control over the project may change. With probability

r, agent A has control next period. With probability 1 − r, agent B gets control. This

captures the probability of the opposition winning political power, or it may simply be the

probability with which an opportunity for an appeal arises for the opposition (even under

the same political incumbent). The agent in control may then choose to trigger a project

revision. Once triggered, a revision freezes the project for the current period, so that it

cannot advance to the next stage. With probability q, the revision is successful and changes

the project type. There is no additional cost of triggering a review. The parameter q

captures institutional or legal barriers, with higher values representing greater openness to

amendments of ongoing projects.

Payoffs. A project of type ∆i completed after T periods has payoff to agent i ∈ {A,B}

w · v · s− T · c(s). (1)

Timing. To summarize, the timing is as follows. In period 0, agent A starts a project ∆A,

and chooses its scale s and distribution of benefits (w, 1 − w). In each period t ≥ 1, while

the project is in stage d:

1. With probability r, agent A has control over the project; with probability 1− r, agent

B has control.

2. The agent in control chooses whether to trigger a revision.
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(a) If a revision is triggered, it succeeds with probability q, and the project type

switches from ∆i to ∆j, where i ̸= j, i, j ∈ {A,B}; with probability 1 − q, the

revision fails, the project type does not change, and the project remains in stage

d for the period.8

(b) If a revision is not triggered, then the project moves to stage e with probability

p; with probability 1− p, it remains in stage d for the period.

3. Each agent pays the project operating cost c(s) for the period.

Once the project reaches stage e, its benefits are realized given the current project type.

There is no discounting between periods.

Equilibrium Concept. We derive the Markov Perfect Equilibria of this game with state

variables for periods t ≥ 1 being the current project stage, St ∈ {d, e}, the agent in control

that period, Pt ∈ {A,B}, and the project type ∆i ∈ {∆A,∆B}. In period 0, the state variable

is P0 = A. Each period t ≥ 1, agent Pt chooses a probability of revision σPt(∆i) ∈ [0, 1]

to maximize her expected utility. In period 0, agent P0 chooses s and w to maximize her

expected utility.

We note that any strategy in which an incumbent i revises a project of type ∆i is weakly

dominated. Thus, σi(∆i) = 0, and we simplify notation by denoting σi ≡ σi(∆j), for i ̸= j.

3.1 Benchmark with No Transitions of Control

Our institutional setting allows opportunities for revisions to an ongoing project. To un-

derstand what revisions mean for project characteristics and dynamics, we first analyze the

benchmark case where there are no transitions of control (r = 1). Agent A starts in control

8An alternative effect of a revision could be for the revising agent to directly choose a new benefit
distribution (ŵ, 1 − ŵ); we explore this alternative setup in ongoing work and show how current insights
translate (details available upon request).
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in period 0 and remains in control until the project reaches execution. Agent A has no reason

to revise her own project. She chooses w ∈ [0, 1] and s ∈ [0, smax] to maximize

max
s,w

w · v · s− T(p) · c(s), (2)

where T(p) = 1
p
is the expected time to project completion. Agent A assigns all the benefits

to herself (producing inequality ∆NT = 1) and chooses a scale implicitly given by

c′(sNT ) = vp. (3)

In the full analysis, we can compare how transitions of control and the threat of revisions

affect project characteristics relative to ∆NT and sNT .

4 Public Projects under Transitions of Control

We now analyze the full model. Turnovers in control create the possibility of project revisions,

which delay progress, lengthen completion times, and raise running costs. The goal of our

analysis is to understand if and when revisions occur, and what that implies for the initial

characteristics of projects. The answer is not immediately obvious. On the one hand, the

expectation of higher running costs due to revisions should decrease the initial scale chosen

in period 0 and increase benefit inequality ∆, as each revision can swing the project in

one’s favor. On the other hand, increasing the initial scale or reducing ∆ could be used

strategically to discourage revisions by increasing their cost or decreasing their benefits.

To solve for the equilibrium project scale, distribution of benefits, and the path of revi-

sions, we break up the problem into two main steps. First, for a given scale s and payoff

inequality ∆, we find the optimal revision strategy for each agent in period t ≥ 1. Second,

we find the s and ∆ chosen by agent A at time 0 given the expected continuation play.
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Figure 1: Markov Graph of Project Evolution

Note: Illustrates the Markov Process that governs the evolution of the project. Each state registers the

project stage (d and e), the agent in control (A or B) and the current project type (∆A or ∆B).

4.1 The Revision Response

In each period t ≥ 1, the project’s evolution into the next period can be represented as a

Markov Process with six states, given the possible combination of stage, controlling agent,

and project type. The probability of the project moving from its current state to any of the

possible states depends on the probability of a transition, r, the bureaucracy’s capacity, p,

and the revision probabilities σA and σB. A project at stage e is in an absorbing state, with

payoffs given its type, ∆A or ∆B. The Markov process is represented in graphical form in

Figure 1 and in matrix form in Figure 2. Starting in a state (d, i,∆k) with agent i in control

and project type ∆k, the Markov transition probabilities imply an expected probability of

reaching stage e with project type ∆ℓ of P(e,∆ℓ|d, i,∆k) and an expected number of periods

needed to reach stage (e,∆ℓ) of T(e,∆ℓ|d, i,∆k). We can use these objects to compute the

expected utility for each agent, starting from any project stage, for revision strategies σA

and σB.
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For agent A, the expected utility given controlling agent i ∈ {A,B} and current project

type ∆k is:

UA(i,∆k|s, w) = P(e,∆A|d, i,∆k) · w · v · s+ P(e,∆B|d, i∆k) · (1− w) · v · s

− [P(e,∆A|d, i,∆k) · T(e,∆A|∆k) + P(e,∆B|d, i∆k) · T(e,∆B|d, i,∆k)] · c(s). (4)

For agent B, the only difference is in the payoffs at each terminal state: fraction 1 − w of

v · s at (e,∆A) and fraction w at (e,∆B).

Given revision probability σi, where i ∈ {A,B}, agent j ̸= i prefers to revise if her

expected utility from doing so is higher than the expected utility from continuing with the

current project type. Revisions will be less likely as the scale of the project increases, and

running costs increase with it.

Lemma 1 There exist thresholds s1 ≥ s2 ≥ s3 on project scale s such that

• If c(s)
s

≤ c(s3)
s3

, the project is revised every time there is a transition in control: σA =

σB = 1.

• If c(s3)
s3

< s ≤ c(s2)
s2

, the project is revised only by the agent more likely to be in control:

σA = 1, σB = 0 if r ≥ 1
2
, and σA = 0, σB = 1 if r < 1

2
;

• If c(s2)
s2

< s < c(s1)
s1

, then either exactly one agent revises (σA = 1, σB = 0 or σA =

0, σB = 1) or there is a mixed strategy equilibrium with σA, σB ∈ (0, 1).

• If s ≥ c(s1)
s1

, the project is never revised: σA = σB = 0;

The equilibrium regions are represented in Figure 3.9 Note that Assumption 1 implies

c(s3)
s3

≤ c(s2)
s2

≤ c(s1)
s1

.

9The threshold values are derived in the Appendix as c(s1)
s1

= qv∆, c(s2)
s2

= qv∆ ·

max

{
pr

pr+2q(1−r) ,
p(1−r)

p(1−r)+2qr

}
, c(s3)

s3
= qv∆ ·min

{
pr

pr+2q(1−r) ,
p(1−r)

p(1−r)+2qr

}
.
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The result boils down to the trade-off implied by a revision: a successful revision leads

to a change in payoffs of vs∆; yet, it comes at the cost of project delays, with total costs

proportional to c(s). If c(s)
s

is relatively large, then any delay generated by a revision is too

costly, regardless of whether the other agent revises. Therefore, no agent revises. If c(s)
s

is small, then the implied delay is relatively cheap, regardless of whether the other agent

revises. Then, continuing the project is preferable. The value at which c(s)
s

is too large to

continue is higher for the agent with the higher probability of control in the future. This

agent expects a higher chance of reaching execution of her preferred project type; hence, she

has a higher expected payoff relative to the running cost.

The MPE in each period t ≥ 1 is unique outside the (s2, s1) interval. The region of

equilibrium multiplicity is the region where profitability of one’s revisions depends on the

other agent’s revision strategy. If only one agent revises, that agent’s expected cost under

the revision delay is lower than the expected benefit; however, if both agents were to revise,

the expected cost would be too high. As we will show below, our qualitative results do not

depend on the equilibrium selection in this multiplicity region. In the Appendix, we present

the solution for each possible equilibrium selection.

4.2 Initial Project Design

Given the predicted revision response to the project, agent A in period 0 chooses the scale

s and the inequality ∆ (by choosing w) in order to maximize her expected utility. It is easy

to verify that agent A prefers to start with a project of type ∆A, where she assigns more

of the final payoff to herself. The agent’s expected value for the project therefore becomes

EUA(s, w) = r ·UA(A,∆A|s, w)+ (1− r) ·UA(B,∆A|s, w). Given the strategies described in
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Figure 3: Equilibrium Revision Strategies as a Function of Scale s

(a) r > 1
2 (b) r < 1

2

Note: Dashed lines depict σA and solid lines depict σB given r = 0.6 (Panel a) and r = 0.4
(Panel b), and v = 3, q = 0.25, p = 0.5, w = 1.

Lemma 1, the expected utility in period 0 for Agent A can be expressed as

EUA(s, w) =
[
HAA

1 (q, p, r) · w +HAA
2 (q, p, r) · (1− w)

]
· s · v − c(s)

p
·HAA

3 (q, p, r), (5)

whereHAA
1 (q, p, r), HAA

2 (q, p, r) andHAA
3 (q, p, r) are functions of q, p, r, with expressions that

depend on the equilibrium strategies σA, σB.10 They capture, respectively, the probability of

agent A obtaining fraction w of the project benefits, the probability of this agent obtaining

fraction 1− w, and the expected delay in the project’s completion. This formulation shows

that the expected utility is piecewise linear in w and concave in s whenever σA, σB ∈ {0, 1}.

Given Agent A′s optimal choice of s and w, we can first infer that, under a wide range

of cost structures, σB = 0, as long as Agent A is not constrained by the scale cap:

Lemma 2 Let smax → ∞. There exists the upper bound ε(p, q) ≥ 4 on the elasticity of the

cost function c(s) such that for ε(s) ∈ [1, ε], there are no revisions on the equilibrium path

and the finalized project type is ∆A.

10The superscripts denote the agent in control (A) and the current project type (∆A).These expressions
are stated explicitly in the Appendix.
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Agent A optimally designs the project to avoid revisions down the line. This is possible

as long as the running cost does not increase too fast (i.e., the cost elasticity is not too

large). Otherwise, the increased scale needed to preempt revisions would also make the

entire project too expensive to build.11

To show the trade-offs involved in using scale or payoff inequality strategically to avoid

revisions, it is helpful to consider them sequentially. Take first the choice of payoff division

given a fixed scale s. Without the threat of revisions, Agent A would keep all the benefits

from the project for herself, by setting ∆ = 1. Yet, the more unequal the distribution of

benefits, the more likely it is to trigger a revision from the opposition. For any given scale s,

agent A′s expected payoff from the project increases in ∆, as long as the value ∆ is not large

enough to prompt the opposition to revise. Once the division is so unequal that it triggers

revisions, agent A′s expected value drops. Nevertheless, conditional on revisions, agent A

favors more inequality. Therefore, the problem for agent A reduces to either choosing ∆ just

small enough to avoid revisions, or accepting revisions and setting ∆ = 1. This trade-off is

illustrated in Figure 4.

The inequality choice is made easier by the freedom to set project scale. A larger scale

makes running the project costlier. The higher cost of inducing delays in turn discourages

revisions. By setting the scale large enough, revisions can be deterred no matter the payoff

inequality ∆. The trade-off is that a large scale requires higher running costs until the

project reaches execution. Balancing the gain from higher scale with the loss from higher

project running costs yields the equilibrium scale, as illustrated in Figure 5.

Putting these two steps together, the following picture emerges: if setting ∆ = 1 does not

lead to revisions, then agent A can rely on the opposition’s high cost of action to implement

11The limit on the cost elasticity, ε ≥ 4 is sufficiently high to accommodate a quadratic cost function,
which is our running example for the figures in the paper.
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Figure 4: Project Initiator’s Expected Utility for a Given s

(a) r > 1
2 (b) r < 1

2

Note: Illustrates Agent A′s expected utility as a function of w for s = 0.2 and r = 0.6 (Panel a) or r = 0.4

(Panel b). The other parameters are v = 5, q = 0.25, p = 0.35, s = 0.2. In the region of multiplicity: In

blue, the value function for the equilibrium where only the agent more likely to be in control (advantaged)

revises; in green, the equilibrium where only the disadvantaged agent revises; in orange, the mixing

equilibrium. The dotted vertical lines represent, in ascending order, the values of w at which s = s1,

s = s2, and s = s3.

Figure 5: Project Initiator’s Expected Utility

(a) r = 0.6 (b) r > 0.4

Note: Illustrates Agent A′s expected utility as a function of s given w(s) chosen optimally and r = 0.6

(Panel a) or r = 0.4 (Panel b); v = 5, q = 0.25, p = 0.35. The dotted vertical lines represent the thresholds

between the following equilibrium regions: σA = σB = 1 (left); σA = 1, σB = 0 (middle), σA = σB = 0

(right).
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her unconstrained optimal scale sNT . Otherwise, she can choose a larger scale, in effect

overscaling the project, in order to deter revisions. If overscaling is too expensive, she can

make the project less unequal, in order to deter revisions by reducing their benefit. Yet,

doing so reduces the benefit from the project for Agent A as well. The following result

shows what this means for the resulting project scale:

Proposition 1 (Project Scale) When ε(s) ≤ ε(p, q) and smax → ∞, there exists threshold

q(ε, p, r) ≥ 0 such that the equilibrium scale s∗ satisfies the following:

• (Unconstrained project) If p > q, then s∗ equals the benchmark scale under no transi-

tions of control: s∗ = sNT ;

• (Overscaled project) If p ∈ [q, q], then s∗ is strictly higher than the benchmark without

transitions: s∗ > sNT ;

• (Underscaled project) If p < min{q, q}, then s∗ is strictly lower than in the benchmark

without transitions s∗ < sNT .

We pair this result and its discussion with the corresponding characterization of the

equilibrium project inequality:

Proposition 2 (Project Inequality) When ε(s) ≤ ε(p, q) and smax → ∞, there exists

threshold q(ε, p, r) ≤ q(ε, p, r) such that the equilibrium inequality ∆∗ satisfies:

• (Maximal inequality) If p ≥ q, then inequality is maximal: ∆∗ = 1;

• (Reduced inequality) If p < q, both agents receive some share of the project payoff:

∆∗ < 1;

The expressions for thresholds q(ε, p, r) and q(ε, p, r) are given in the Appendix. We note

here two main characteristics. First, they both increase in q. Second, they take a simple
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form when ε(s) is a constant function. For instance, under the quadratic cost function, where

ε(s) = 2, if r ≥ 1/2, then q = q = 0, whereas if r < 1/2, then q = 2q and q = q.

Propositions 1 and 2 show how the strategic use of scale or inequality is intermediated

by capacity. When capacity is high, the expected duration of the project is short, and so are

the implied running costs. Then, the revision-deterring benefit of a large scale outweighs the

increase in running costs. Agent A chooses a large scale, and this alone is enough to deter

revisions, without the need to compromise on ∆. In fact, the project scale can be as large

as the one chosen by the agent in the benchmark without transitions of control.

As capacity decreases, the expected project runtime and associated costs increase. Agent

A would ideally reduce the scale to adjust for these higher costs. Yet, she must keep the scale

large enough in order to deter revisions by B. This results in overscaling to fight off potential

revisions. Finally, as capacity drops even more and the run time increases further, setting a

large scale in order to deter revisions becomes too costly. This is where Proposition 2 shows

how reducing inequality acts as a strategic substitute for scaling up. Agent A can save on

scale increases by offering the opposition a share of the payoff, thus reducing its benefit from

a revision. As A gives away more, her relative cost of running a large project, vis-a-vis her

benefit, further increases. This drives her to underscale relative to her unconstrained ideal

sNT . We illustrate the equilibrium project characteristics in Figure 6.

An immediate observation coming from Propositions 1 and 2 is that higher capacity

increases both project scale and its inequality. As project runtime is expected to be shorter,

the project initiator harnesses capacity to her advantage: she uses it to make projects larger

and to extract more of the benefits for her group.

Corollary 1 (Effect of Higher Capacity) Higher bureaucratic capacity p increases equi-

librium scale s∗ and payoff inequality ∆∗.
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Figure 6: Equilibrium Project Characteristics

(a) Equilibrium Scale (b) Equilibrium Inequality

Note: Equilibrium s (panel a) and w (panel b) for r = 0.6 (green), r = 0.4 (blue), and v = 5, q = 0.25. The

red dashed line shows the scale and the payoff division under no transitions.

4.3 Project Revisions in Equilibrium

So far, we have shown what happens when agent A has full flexibility to scale up the project,

in that smax is not a binding ceiling. The project’s cost structure was also assumed to allow

for easy scaling (ε(s) ≤ ε). If either of these conditions are not satisfied, revisions may not

be avoidable in equilibrium. In what follows, we take up this issue.

Consider first the exogenous ceiling on project scale, smax. This value may be set, for

instance, by legal budget caps, hard technological or physical space bounds. If this upper

bound binds, the maximum achievable scale for the project may not be large enough to ac-

commodate Agent A′s desired overscaling. Then, revisions cannot be avoided in equilibrium.

Proposition 3 (Scale Caps and Equilibrium Revisions) There exists scale threshold

smax(v, p, q, r) such that if smax ≤ smax, then the equilibrium project inequality is maximal

(∆∗ = 1) and there are revisions on the equilibrium path: each agent revises a project

favorable to their opponent (σA = σB = 1).

The result is illustrated in Figures 7. Agent A uses scale to strategically deter revisions, up
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Figure 7: Limited Scale and Revisions

(a) Equilibrium Scale (b) Equilibrium Inequality

Note: Equilibrium s (Panel a) and w (Panel b) as a function of smax, for p = 0.5 (blue solid line) and

p′ = 0.7 (red dashed line) and q = 0.25, r = 0.4, v = 5. The dotted vertical lines are the thresholds below

which each agent revises in equilibrium for p = 0.5, p′ = 0.7.

until the needed scale reaches the ceiling smax. At that point, the ability to strategically

increase scale is exhausted. If the ceiling smax is low, the cost of delays is low relative to the

potential gain from a revision. Compromising on inequality remains the only tool to deter

revisions. Yet, with a low ceiling smax, the needed compromise would have to be exceedingly

large. Hence, Agent A gives up trying to deter revisions. Instead, she prefers to make the

project highly unequal (∆∗ = 1) and enter a ‘winner-take-all’ regime where everyone revises

the project.

How does this result depend on bureaucratic capacity? For a fixed smax, increasing p

increases the probability that revisions occur in equilibrium. As illustrated in Figure 7, the

scale needed to deter revisions increases with p. Moreover, as p increases, the expected

project duration, and therefore the expected running cost, is smaller. This makes revisions

more appealing and their deterrence more difficult.

Corollary 2 (Higher Capacity under Scale Caps) With smax < ∞, higher bureaucratic

capacity p increases the probability of project revisions and delays. Yet, conditional on being

in the equilibrium with revisions, higher p reduces expected delays.
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Figure 8: Delay due to Revisions

Note: Left panel plots the expected number of periods to project completion under no delays (blue line)

and under revisions by both agents,σA = σB = 1, (red line). Right panel plots the difference between the

two expected times to competition. The plot is for r = 0.4, q = 0.25, though the graphs are qualitatively

similar for other values.

Figure 8 plots the expected delay induced by revisions in the equilibrium with σA = σB = 1.

The delay is relative to the expected time to completion in the benchmark with no transitions.

This delay is inefficient, as it increases running costs.

The second channel for revisions is a highly elastic scaling cost. If ε(s) is very large, then

a small increase in scale is sufficient to inflate the running costs beyond what is desirable for

either agent. In that case, Agent A prefers the alternative of starting a small project and

trying to capture its entire benefit. Each transition of control then triggers a revision of an

unfavorable project, leading to long completion timelines. We can construct such cases by

choosing a very elastic cost function.12

4.4 Welfare

Our results so far show that the organizational capacity of the bureaucracy has pronounced

effects on the strategies of project initiators. Higher values of capacity increase inequality,

12For instance, this is the case if c(s) = s7 and q = 0.35, p = 0.4, 0.47, v = 5.
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while low and medium values result in under- and overscaling. These strategies suggest

significant implications for social benefits. In particular, when capacity lies in the interval

[q, q], projects are both overscaled and unequal, and are therefore especially harmful to the

non-initiating agent.

To investigate the aggregate benefits from the project, we consider the problem for a

social planner who weighs the two agents equally. This results in a social welfare function

W =
1

2
EUA(s∗, w∗) +

1

2
EUB(s∗, w∗). (6)

Given (5) and Propositions 1 and 2, the resulting social welfare function takes a relatively

simple form:

W =
1

2
vs∗ +

c(s∗)

p
. (7)

Proposition 4 uses expression (7) to derive the interval P of capacity values under which

equilibrium projects produce lower welfare than no project at all. That is, where W < 0.

Proposition 4 (Welfare) There exists an interval P = (p, p) such that W (v, p, q, r) < 0

for p ∈ P and W (v, p, q, r) ≥ 0 for p /∈ P if and only if:

• ε(s3) < 2 and r ≥ 1
2
, in which case P = (0, 1), or

• r < 1
2
, in which case P ⊇ (q, q).

Proposition 4 highlights the two drivers of welfare losses. First, a low cost elasticity

(ε(s) < 2) makes large scale projects more desirable. This is socially harmful given that the

initiator does not internalize the cost borne by the other agent. The second driver of welfare

losses is the strategic overscaling in order to deter revisions. The size of the interval P is

determined by the likelihood of transitions of control and institutional constraints. When

the project initiator is more likely to retain control (r ≥ 1
2
), the interval P is empty as long
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Figure 9: Welfare

(a) r > 1
2 (b) r < 1

2

Note: Welfare as a function of p and q when c(s) = s2, v = 5. Left panel has r = 0.6; the quadratic cost

function, with its elasticity ε(s) = 2 is a special case where equilibrium welfare is constant at W = 0. Right

panel has r = 0.4 and a non-empty interval where W < 0.

as the cost elasticity is not too low (ε(s3) ≥ 2). For the opposition, the expected gain from

revisions is low if they are unlikely to stay in control. The project initiator faces a low threat

of revisions, and therefore does not distort the project enough to cause a welfare loss. Even

if the equilibrium scale is higher than socially optimal, the additional cost does not outweigh

the value created.

The calculus changes if the initiator is less likely to retain control of the project (r < 1
2
).

In this case, the expected gains from a revision are larger. To deter revisions, the project

initiator responds with larger distortions. The distortion is particularly costly when the

project is oversized and highly unequal. Therefore, the interval P includes the region [q, q]

where projects are oversized and ∆ = 1. Next, consider the role played by institutional

constraints. We examine the effect of an increase in the likelihood of successful revisions, q:

Corollary 3 If ε(s) = ε̃ ∈ R, then the bounds of P, p, p are increasing in q. Moreover,

whenever p < 1, the difference (p− p) is increasing in q.

As legal or institutional challenges become more potent (i.e., q increases), the interval P

both expands and shifts toward higher values of p. This reflects the greater incentive to
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overscale as the threat of successful revisions increases. As a result, beneficial projects are

realized only under very high or very low organizational capacity in high-q polities.13

Figure 9 illustrates welfare as a function of p and q when a project initiator is more

likely to be in control (Panel a) or less likely to be in control (Panel b). Consistent with

Proposition 4, it shows that the values of p and q that induce overscaling are especially

bad for welfare. As these values move in tandem, the implication is that systems with high

institutional barriers and high capacity are prone to producing poor projects. By contrast,

systems with “mismatched” capacity and barriers produce higher welfare, but with some

drawbacks. Under low capacity and high barriers, projects are costly and possibly too small.

Under high capacity and low barriers, higher social welfare comes at the expense of high

inequality.

Welfare under Scale Caps. Strategic overscaling of projects has negative welfare conse-

quences. Scale caps discussed in Section 4.3 impose a ceiling on overscaling. The reduction

in scale, however, comes at the cost of revisions on the equilibrium path, which add delays.

Given (5), the social welfare function becomes:

W =
1

2
s∗v − c(s∗)

p
HAA

3 (p, q, r), (8)

where s∗ ≤ smax and HAA
3 (p, q, r) > 1 is the expected delay due to revisions. Perhaps

surprisingly, the scale caps policy reverses the effects in Proposition 4:

Proposition 5 (Welfare under Scale Caps) Under a scale cap smax < smax, such that

the conditions of Proposition 3 are satisfied, the equilibrium social welfare is always positive:

W ≥ 0.

13The condition of a constant elasticity of the cost function isolates the effect coming from the strategic
response to revision threats; otherwise, changes in q could have scaling effects coming through changes in
the relative cost of running the project.

29



Welfare is negative if for s∗ ≤ smax, c(s∗)
s∗

is sufficiently large such that the increased cost due

to delays outweighs the benefit of the project. The welfare losses in Proposition 4 are the

result of strategic overscaling to deter revisions or of scaling up without internalizing the

costs borne by the other agent. Scale caps reverse this effect: the project initiator is forced

to underscale the project because of the budget limit. The smaller scale requires a lower

project running cost, such that the ratio c(s∗)
s∗

is no longer large enough to render W < 0.

The project still produces a positive social benefit, albeit a small one.

5 Multiple Project Phases

We now adapt the preceding results to a model with two phases. In the basic model, period

0 is distinguished by the ability of the project initiator to choose key program parameters.

Inherently complex projects such as those often funded by FTA Capital Improvement Grants

typically present multiple opportunities for politicians to revisit basic questions of scale

and distribution. For example, in 2011 the Obama administration proposed the $30 billion

Gateway Program to upgrade rail infrastructure between New York and New Jersey. Despite

favorable FTA reviews, the Trump administration effectively canceled the program, only to

have it revived under the Biden administration.14

Complex projects often require advance research and planning, and therefore early phases

of such projects correspond naturally to investments that reduce subsequent construction

or implementation costs. These investments may also provide benefits in their own right,

independently of the final project outcome. It is therefore worth asking how the possibility

of resetting program parameters mid-stream affects investments, project scale, and revisions.

In particular, we examine conditions under which transitions of power may prevent projects

from starting at all.

14See Matt Hickman, “New York and New Jersey’s long-delayed Gateway Program faces a more favorable
outlook under Biden presidency.” The Architect’s Newspaper, November 10, 2020.
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Each phase of the two-phase model is structurally identical to the basic model. Agent A

has control at the start of phase 1, and has control at the start of phase 2 with probability

r. Denote the parameters for scale, distribution, and valuation in phase τ by sτ , ∆τ , and vτ ,

respectively. As in the basic model, sτ and ∆τ are chosen in the initial incumbent in each

phase, vτ is exogenous, and project types are determined by players after the initial period

of the phase. The phase 1 payoffs thus represent the immediate value of investments such as

research contracts or pilot studies. To keep the analysis tractable, when there are multiple

equilibria we select the one in which only the favored agent revises.

The phases are dynamically linked through their cost functions. Let the cost of each

period in phase τ be c(sτ ) = mτs
2
τ , where mτ > 0 and m1 = 1. In phase 2, m2 = 1/s1, so

that early investments in the project reduce future marginal costs. Note that in isolation,

phase 1 of the model is identical to the basic game if s2 = 0, and phase 2 of the model is

identical to the basic game if s1 = 1.

Within each phase τ , actions following the choice of sτ only affect payoffs through the

division of vτ . Thus, the agents’ incentives following the initial period are similar to those of

the one-phase game, and we can exploit the derivations of Section 3 to analyze revisions and

the choice of ∆τ . The second phase primarily affects agent A’s incentives in choosing the

phase 1 scale, which affects phase 2 costs. Due to the simple structure of m2 and quadratic

costs, s1 linearly scales A’s phase 2 expected payoff. Her phase 1 objective can be expressed

as:

EUA(s1, w1) + s1Ũ
A, (9)

where ŨA is agent A’s phase 2 expected payoff prior to the revelation of the phase 2 initiator.
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Using Propositions 1 and 2, this can be expressed as:15

ŨA =



pv2[2p2r−pq(5r+3)+2q2(3r+1)]
8(p−2q)2

if p < q and r > 1/2

pv2[q(4−5r)−2p(1−r)]
8(p−2q)

if p < q and r < 1/2

v2[p2r−4q2(1−r)]
4p

if p ∈
[
q, q
)
and r > 1/2

v2[4qr(p−q)−p2(1−r)]
4p

if p ∈
[
q, q
)
and r < 1/2

pv2(2r−1)
4

if p ≥ q.

(10)

Maximizing (9) with respect to s1 produces our next result. Roughly speaking, the phase

1 investment is the scale of the one-phase game, s∗, adjusted to reflect ŨA. Importantly,

ŨA is negative whenever r < 1/2, as well as for some values of p between q and q (where

q = 2q under quadratic costs) when r > 1/2. When this happens, the phase 1 scale s∗1 is

lower than s∗. Consistent with Lemma 1, s∗1 may even be low enough to induce revisions

in equilibrium. Negative values of ŨA play a role similar to that of increasing the cost of

high project scales in the one-phase model: inhibiting large scales generates projects that

are insufficient to deter revisions.

Beyond merely reducing scale, the optimal scale in the initial phase may be zero, which

in effect cancels the project. Proposition 6 provides conditions under which this occurs.

Proposition 6 (Project Cancellation) If r > 1/2, then s∗1 = 0 only if p ∈ [q, q] and if:

ŨA < − rv [p(1− r) + qr]

p(1− r)r + q (2r2 − 2r + 1)
. (11)

If r < 1/2, s∗1 = 0 if v1 is sufficiently low or v2 is sufficiently high.

For a favored (r > 1/2) phase 1 initiator, cancellations occur because of the potential for

overscaling. As Figure 6 illustrates, under moderate capacity an unfavored agent B overscales

15Note that given c(s) = mts
2, for r > 1

2 , the thresholds q(v, p, q, r) = q(v, p, q, r) = 0. Hence, we denote

by q the threshold q(v, p, q, r|r < 1
2 ) and by q the threshold q(v, p, q, r|r < 1

2 ).
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to prevent revisions. This can produce a highly undesirable expected payoff for agent A,

especially if she is not overwhelmingly likely to retain power. A highly competitive political

environment thereby forces A to internalize in part the social benefits of the project.16 As

Proposition 4 shows, these benefits are minimized at intermediate levels of capacity. By

contrast, under low capacity, underscaled projects are relatively efficient and do not invite

cancellation. And under high capacity, a favored initiator is likely to benefit from an unequal

phase 2 project.

For an unfavored (r < 1/2) phase 1 initiator, the main driver of cancellation is the

distribution of payoffs over time. Phase 1 produces positive expected payoffs for the initiator,

but phase 2 produces negative ex ante expected payoffs at any capacity level. Thus she will

simply cancel if v2 is high relative to v1.

Figure 10 illustrates the role of cancellations in the r > 1/2 case by comparing phase

1 investments against two benchmarks. In the first benchmark, A remains in control with

certainty at the beginning of phase 2, but faces the possibility of revision in both phases. As

expected, the possibility of losing control over the final project depresses investment. The

second benchmark is simply the equilibrium scale sNT in the one-phase game. The initial

investment s∗1 may be under- or overscaled relative to this benchmark, depending on agent

A’s expected phase 2 payoffs. In this example, power transitions are very likely (r = 0.52),

so the threat of overscaling by B in phase 2 causes underscaling and cancellations when

capacity is in the interval [q, q]. This non-monotonicity of project scale with respect to

capacity reflects in part the non-monotonicity of social benefits in the one-phase game, as

illustrated in Figure 9.

16Note, however, that public projects may provide public good benefits to actors besides agents A and B.
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Figure 10: Investment with Two Phases
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Note: Initial investment (s1, blue), benchmark investment (dashed) in a setting with where A chooses s2

and w2 in phase 2, and investment in the one-phase game (s∗ = sNT , green), as a function of p.

Parameters are r = 0.52, v1 = 1, v2 = 5, and q = 0.4. Vertical lines are located at the thresholds q and q,

between which overscaling may occur.

6 Applications

Our model produces a range of predictions about the equilibrium implications of changes

in organizational capacity (p) and the ability to exploit institutional mechanisms to revise

projects (q). This section presents two brief applications to major organizations. The exam-

ples are not meant to advance causal claims, but rather show that our results are consistent

with seemingly disparate facts about the evolution of key project characteristics.

20th Century US Infrastructure. Propositions 1 and 2 show that as q increases, project

designers will prevent revisions by distributing benefits more widely and increasing scales

beyond their ideal levels. As Altshuler and Luberoff (2003) relate, changes in the political

environment that enabled interest group opposition played a strong role in the trajectory of

US infrastructure projects. In the mid-20th century, urban planners exemplified by figures

such as Robert Moses operated with relatively few constraints, often promoting automobile-

centered ideas for urban renewal with the support of local business interests (Caro, 1974).

34



The programs operated, moreover, in relative secrecy, so that those affected

often learned of projects just before the bulldozers rolled. In the early years

there were no organized interest groups monitoring or learning from these ex-

periences, much less providing potential victims with tactical assistance. Since

their cause seemed hopeless, even those most adversely affected generally gave

in without a fight. This tendency was accentuated by the fact that the victims

were disproportionately poor and black. (Altshuler and Luberoff, 2003, p. 22)

Assisted by the national rise of civil rights and environmental movements, as well as

laws such as NEPA and the Clean Air Act, conflicts over infrastructure development rose

drastically starting in the late 1960s. The shock of increasingly effective political mobilization

affected numerous ongoing projects. For example, a 1982 court order paused construction of

the New York Westway in order to protect local fish breeding grounds. The project, which

was intended to replace a decaying highway along the west side of Manhattan, was eventually

canceled in 1985 after over a decade of development and $200 million in expenditures.17

For planners, the response to more effective contestation was not to abandon large

projects, but rather to expand their size and distributive reach. Perhaps the most prominent

example of this strategy is the Boston Central Artery/Tunnel (CA/T, better known as the

“Big Dig”), which replaced an elevated highway in downtown Boston with a technologically

advanced tunnel and associated connecting structures. In addition to local interests, stake-

holders in CA/T included the Massachusetts and federal governments, which provided its

primary funding, as well as neighboring municipalities. The ultimate design reflected their

concerns on issues as varied as tunnel size, public transportation, air quality, land takings,

parking, and interchange design. The over 1,500 mitigation agreements included wetlands

restoration, landfill redevelopment, and the construction of an artificial reef.18 While the

17See Sam Roberts, “The Legacy of Westway: Lessons from its Demise.” New York Times, October 7,
1985.

18See Daniel C. Wood, “Learning From The Big Dig.” Public Roads 65(1), July/August 2001.
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original highway was constructed in five years in the 1950s, the CA/T took over 20 years of

planning and construction, at a cost more than double that of early projections.

Inequality in Government Procurement. By Corollary 1, the distributive consequence

of increasing p is greater inequality at the project level. Government procurement provides a

natural setting for examining this implication. US federal procurement is a highly regulated

process that employs hundreds of thousands of personnel. As in the model, revisions play

an important role. Losing or excluded bidders can challenge award decisions at either the

contracting agency or the Government Accountability Office (GAO), and successful appeals

can change awardees, re-open competition, or result in a range of intermediate steps. Re-

cently, about half of the 2,000 or so cases per year heard by the GAO received some form of

remediation (US GAO, 2022).

The Competition in Contracting Act mandates a default process of “full and open com-

petition,” whereby prospective contractors submit competitive bids that are evaluated ac-

cording to preset criteria. However, a substantial minority of contracts are awarded on a

non-competitive, “sole source” basis. This process is intended for circumstances such as

absence of alternate suppliers, emergencies, or one of several public interest criteria. Such

contracts require increasing levels of justification and approval as their size grows, but ob-

servers have noted that agencies have substantial discretion to adopt them (e.g., Dahlström

et al., 2021). Sole-sourcing therefore serves as a plausible proxy for high-∆ projects.

The Department of Defense (DoD) is both the largest user of sole-source contracts and

one of the few recent examples of a large-scale increase in organizational capacity in the

federal government. In 2009, DoD began a long-term expansion its acquisition workforce,

which had declined significantly since the 1990s (Gates et al., 2022). This effort received

both extensive resources and exemptions from concurrent DoD hiring freezes, resulting in a

workforce growth from about 130,000 to over 180,000 between fiscal years 2009 and 2021.
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The added personnel significantly enhanced the ability of program managers to oversee the

contracting process (DiIulio, 2014). Importantly, expansion was highly uneven during this

period, with no headcount change between fiscal years 2011 and 2014, and a net growth of

15,000 between 2014 and 2017.

The fiscal years 2014 through 2017 coincided with the second term of the Obama pres-

idency, during which Democrats and Republicans split control of government. There was

little change in defense spending, but outlays from non-competitive contracts of all sizes

grew far faster than those from competitive contracts. For example, among awards worth

over $1 million, outlays from competitive contracts (accounting for 53% of the DoD total)

decreased by 1.5%, compared to a 34.4% increase from non-competitive contracts.19 Thus,

this era saw dramatic growth in both organizational capacity and less egalitarian projects.20

7 Conclusion

Within academic and policy circles, bureaucratic capacity has become a hallmark of good

governance. But in contrast to the consensus about its benefits, there is little agreement

on its practical definition, and also too little exploration of its implications for key features

of public policies. Our theory addresses both of these issues. It models capacity as the

transition probability of a simple Markov process, and then situates this process in an in-

stitutional environment that features political contestation and institutional rigidities. This

basic framework allows us to capture a rich set of outputs, such as the scale, timing, and

distributive properties of projects.

The principal equilibrium incentive in the model is the avoidance of revisions, which

can delay completion, increase costs, and reduce payoff shares. Depending on capacity

19Data from https://usaspending.gov. The disparity is somewhat higher for higher-valued contracts.
20The acquisition workforce continued to grow during the Trump administration, and the level of sole

source contracts remained high, but these developments also coincided with higher defense spending starting
in fiscal year 2018.
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levels, this generates different political incentives to manipulate project design. In particular,

intermediate capacity produces overscaling, while low capacity results in underscaling and

more egalitarian payoff divisions. Overall, by reducing opportunities for obstruction, a high

capacity bureaucracy encourages larger and less egalitarian projects.

Our framework produces several additional unexpected and potentially testable impli-

cations. First, constraints on project scale can increase inequality, revisions, and delays as

capacity increases. Second, “matched” levels of capacity and institutional barriers encourage

overscaling and produce poor projects from a social welfare perspective. Finally, in complex

multi-phase projects, potential transitions of power can result in cancellations when overscal-

ing is a possibility. In short, greater capacity does not unambiguously improve performance,

and better projects emerge from profiles of organizational capacity and institutional and

technological constraints that discourage the tactical inflation of projects.

Our model treats organizational capacity and the institutional or legal environment as

exogenous, but their implications for outcomes raise some basic questions about their ori-

gins. We mention several as possibilities for further inquiry. Just as recent work on state

capacity has explored the political and economic drivers of investment in taxing powers, it

is worth examining the incentives to invest in both the capabilities of agencies that may

far outlive them, as well as the institutional context within which social groups determine

project outcomes. Next, the openness of an institutional system to revisions could invite

more participants, which would be better approximated by having more agents and a richer

distributive space. Finally, it may be useful to unpack the capacity parameter p to reflect the

realities of modern projects. For example, outside contractors often play major roles in large

infrastructure construction, but whether such players enhance capacity, or are symptoms of

low capacity, is unclear.21

21See Ralph Vartabedian, “How California’s faltering high-speed rail project was ‘captured’ by costly
consultants.” Los Angeles Times, April 26, 2019.
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Appendix

A Proofs

A.1 Proof for Lemma 1

Given the Markov transition probabilities, the expected utility of Agent A starting in the
state where control is held by Agent i ∈ {A,B} and the project type is ∆j, j ∈ {A,B}, is

UA(i,∆j|σA, σB) = sv · [H ij
1 (p, q, r) · w +H ij

2 (p, q, r) · (1− w)]− c(s)

p
·H ij

3 (p, q, r), (12)

while the corresponding utility for Agent B is

UB(i,∆j|σA, σB) = sv · [H ij
1 (p, q, r) · (1− w) +H ij

2 (p, q, r) · w]−
c(s)

p
·H ij

3 (p, q, r), (13)

where H ij
1 (p, q, r) =

Γij

Ω
, H ij

2 (p, q, r) =
Υij

Ω
, and H ij

3 (p, q, r) =
Σij

Ω
, and

Ω = p(1− rσA)(1− (1− r)σB) + q(rσA + (1− r)σB)− 2qr(1− r)σAσB;

ΓAA = p(1− rσA)(1− (1− q)(1− r)σB) + qrσA(1− (1− r)σB);

ΓAB = p(1− (1− r)σB)q(1− r)σA + qrσA(1− (1− r)σB)

ΓBA = p(1− rσA)(1− qrσB − (1− r)σB) + qrσA(1− (1− r)σB);

ΓBB = p(1− (1− r)σB)qrσA + qrσA(1− (1− r)σB);

ΥAA = −pq(1− r)σB(1− rσA) + q(1− r)σB(1− rσA)

ΥAB = p(1− rσA − q(1− r)σA)(1− (1− r)σB) + q(1− r)σB(1− rσA);

ΥBA = −pqrσB(1− rσA) + q(1− r)σB(1− rσA);

ΥBB = p(1− (1− r)σB)(1− (1− q)rσA) + q(1− r)σB(1− rσA);

ΣAA = p(1− p(1− r)σB)(1− rσA)− 2qpσAσBr(1− r) + q(rσA + (1− r)σB);

ΣAB = p(1 + p(1− r)σA)(1− (1− r)σB) + 2qpσAσB(1− r)2

+ q(rσA + (1− r)σB);

ΣBA = p(1 + prσB)(1− rσA) + 2qpσAσBr2 + q(rσA + (1− r)σB);

ΣBB = p(1− prσA)(1− (1− r)σB)− 2qpσAσBr(1− r) + q(rσA + (1− r)σB).

Consider first the pure strategy equilibria, σA, σB ∈ {0, 1}. An equilibrium exists if each
agent i ∈ {A,B} prefers to follow his/her prescribed strategy given the other agent j’s
strategy. For agent i, if σi = 1, then the payoff from revision is

EU i,R = rqU i(i,∆i) + r(1− q)U i(i,∆j) + q(1− r)U i(j,∆i) + (1− r)(1− q)U i(j,∆j).
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If σi = 0, then the payoff from project continuation of a project ∆j is

EU i,C = psv(1− w) + (1− p)(1− r)U i(j,∆j) + (1− p)rU i(i,∆j)

Case 1: σA = 1 and σB = 1. This is an equilibrium if EU i,R ≥ EU i,C for i, j ∈ {A,B}.
These conditions reduce to two upper bounds on c(s)/s, such that this equilibrium is sus-
tainable if

c(s)

s
≤ qv∆ ·min

{
p(1− r)

p(1− r) + 2qr
;

pr

pr + 2q(1− r)

}
.

Case 2: σA = 1 and σB = 0. This is an equilibrium if EUA,R ≥ EUA,C and EUB,R <
EUB,C . These conditions reduce to two thresholds:

c(s)

s
≤ qv∆,

c(s)

s
≥ qv∆

p(1− r)

p(1− r) + 2qr
.

Therefore, the equilibrium exists for

c(s)

s
∈
[
qv∆

p(1− r)

p(1− r) + 2qr
, qv∆

]
.

Case 3: σA = 0 and σB = 1. This is an equilibrium if EUA,R < EUA,C and EUB,R ≥
EUB,C . These conditions reduce to two thresholds:

c(s)

s
≥ qv∆

pr

pr + 2q(1− r)
,

c(s)

s
≤ qv∆.

Therefore, the equilibrium exists for

c(s)

s
∈
[
qv∆

pr

pr + 2q(1− r)
, qv∆

]
.

Case 4: σA = 0 and σB = 0. This is an equilibrium if EUA,R < EUA,C and EUB,R <
EUB,C . These conditions reduce to the same lower bound c(s)

s
≥ qv∆.

Consider next the case of mixed strategy equilibria.
Case 5: σA ∈ (0, 1) or σB ∈ (0, 1). If Agent A mixes with σA ∈ (0, 1), this requires

UA(A,∆B|1, σB) = UA(A,∆B|0, σB), and thus the equilibrium σB∗ is

σB∗ =
p(qsv(2w − 1)− c(s))

(1− r)[p(qsv(2w − 1)− c(s)) + 2qc(s)]
. (14)
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Similarly, if Agent B mixes, then UB(B,∆B|σA, 1) = UB(B,∆B|σA, 0). Thus the equilibrium
σA∗ is

σA∗ =
p(qsv(2w − 1)− c(s))

r[p(qsv(2w − 1)− c(s)) + 2qc(s)]
. (15)

The mixing probabilities must satisfy σB ∈ [0, 1] and σA ∈ [0, 1]. Given (14) and (15), this
implies

c(s)

s
∈
[
pqv(2w − 1)max

{
1− r

p(1− r) + 2qr
,

r

pr + 2q(1− r)

}
, qv(2w − 1)

]
. (16)

Notice that the above condition allows for an equilibrium with σA = 1, σB ∈ (0, 1) if c(s)
s

=

1−r
p(1−r)+2qr

and max

{
1−r

p(1−r)+2qr
, r
pr+2q(1−r)

}
= 1−r

p(1−r)+2qr
. Conversely, an equilibrium with σA ∈

(0, 1), σB = 1 exists if c(s)
s

= r
pr+2q(1−r)

and max

{
1−r

p(1−r)+2qr
, r
pr+2q(1−r)

}
= r

pr+2q(1−r)
.

Therefore, we have the following bounds in terms of c(s)/s for the equilibrium regions:

c(s1)

s1
= qv∆,

c(s2)

s2
= qv∆ ·max

{
pr

pr + 2q(1− r)
,

p(1− r)

p(1− r) + 2qr

}
,

c(s3)

s3
= qv∆ ·min

{
pr

pr + 2q(1− r)
,

p(1− r)

p(1− r) + 2qr

}
.

Given ∆ = 2w − 1, this implies the following corresponding bounds on w:

w1(s) =
1

2
+

c(s)

s

1

2qv
, (17)

w2(s) =
1

2
+

c(s)

s

1

2qv
+

c(s)

s

1

pv
min

{
1− r

r
,

r

1− r

}
, (18)

w3(s) =
1

2
+

c(s)

s

1

2qv
+

c(s)

s

1

pv
max

{
1− r

r
,

r

1− r

}
. (19)

A.2 Proof for Lemma 2

We derive the equilibrium s∗ and w∗ chosen by Agent A in period 0. The derivation is
divided into three parts, and within each part the results are organized into Claims.

Part 1: Properties of the Value Function

Claim 1 Agent A′s expected utility at time 0 is piecewise linear in w for w ∈ [0, 1].
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Proof. Given (12) and (13), with pure strategy equilibria, σA, σB ∈ {0, 1},

∂2UA(i,∆j|σA, σB)

∂w2
=

∂2UB(i,∆j|σA, σB)

∂w2
= 0.

For mixed strategy equilibria, we have

∂UA(A,∆A|σA, σB)

∂w
= −(1− 2p)sv,

∂UA(B,∆A|σA, σB)

∂w
= −1− (1− 2p)r

1− r
sv.

Thus, also with mixed strategy equilibria, given (15) and (14),

∂2UA(i,∆j|σA, σB)

∂w2
=

∂2UB(i,∆j|σA, σB)

∂w2
= 0.

Let EUA(s, w) ≡ r ·UA(A,∆A)+(1−r) ·UA(B,∆A). It immediately follows that EUA(s, w)
is linear in w given σA, σB.

Claim 2 Agent A′s expected utility is increasing in w whenever σB = 0.

Proof. In period 0, we have

EUA(s, w|σA, σB) = s · vp
Ω

· (1− rσA) · (1− (1− r)σB) · w

+ s · vq
Ω

· [rσAw + (1− r)σB(1− w)− r(1− r)σAσB]

− c(s)

pΩ

[
q(rσA + (1− r)σB) + p(1− rσA)

]
. (20)

It follows that if σA = σB = 0, or if σA = 1, σB = 0 then

EUA(s, w|0, 0) = EUA(s, w|1, 0) = svw − c(s)

p
, (21)

and thus
∂EUA(s, w)

∂w
= sv > 0.

Claim 3 Agent A′s expected utility is monotone, either increasing or decreasing in w, when-
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ever σB = 1:

∂EUA(s, w|0, 1)
∂w

{
> 0 if p > q 1−r

r

< 0 if p < q 1−r
r

;

∂EUA(s, w|1, 1)
∂w

{
> 0 if p > q 2r−1

r(1−r)

< 0 if p < q 2r−1
r(1−r)

.

Proof. If σA = 0, σB = 1, then

EUA(s, w|0, 1) = sv
q(1− r)(1− w) + prw

q(1− r) + pr
− c(s)

p

q(1− r) + p

q(1− r) + pr
, (22)

and thus
∂EUA(s, w|0, 1)

∂w
= sv

pr − q(1− r)

pr + q(1− r)
, (23)

which means
∂EUA(s, w|0, 1)

∂w

{
> 0 if p > q 1−r

r

< 0 if p < q 1−r
r

.

If σA = 1, σB = 1, then

EUA(s, w|1, 1) = sv
q(1− r)2 + (q(2r − 1) + p(1− r)r)w

q(1− 2r(1− r)) + pr(1− r)

− c(s)

p

p(1− r) + q

q(1− 2r(1− r)) + pr(1− r)
, (24)

and thus
∂EUA(s, w|1, 1)

∂w
= sv

q(2r − 1) + pr(1− r)

q(1− 2r(1− r)) + pr(1− r)
, (25)

which means
∂EUA(s, w|1, 1)

∂w

{
> 0 if p > q 2r−1

r(1−r)

< 0 if p < q 2r−1
r(1−r)

.

Claim 4 Agent A′s expected utility is monotone decreasing in w if the equilibrium is mixing.

Proof. Given the equilibrium mixing probabilities σA, σB, we have

EUA(s, w|σA∗, σB∗) = sv(1− w)− c(s)

(
1

p
− 1

q

)
.

Hence,
∂EUA(s, w|σA∗, σB∗)

∂w
= −sv < 0.
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Claim 5 Given any s, agent A′s expected utility is continuous in w with the exception of a
finite number of discontinuities:

• A jump down at w3(s) if r >
1
2
;

• A jump up at w2(s) if the equilibrium selected when w ∈ (w1, w2) is (i)mixing; (ii)
σA = 0, σB = 1 when r ≥ 1

2
; or (iii) σA = 1, σB = 0 when r < 1

2
.

• A jump down at w1(s) if the equilibrium selected is σA = 0, σB = 1 when w ∈ (w1, w2);

Proof.

Case 1: r ≥ 1
2
. In this case, the bounds w2 and w3 are given by

w2(s) =
1

2
+

c(s)

2qvs
+

c(s)

pvs

1− r

r
, (26)

and

w3(s) =
1

2
+

c(s)

2qvs
+

c(s)

pvs

r

1− r
. (27)

The unique equilibrium when w ∈ (w2, w3) is σA = 1, σB = 0. Therefore, the equilibrium
changes at w3 from σB = 0 to σB = 1. We have

lim
w↑w3

EUA(s, w|0, 0) = sv

2
+ c(s)

[
1

2q
+

2r − 1

p(1− r)

]
,

and

lim
w↓w3

EUA(s, w|1, 1) = sv

2
+

c(s)

2

1

q

pr − q(1− r) + q 3r2

1−r

pr + q(1− r) + q r2

1−r

+
c(s)

p

q r2−2r(1−r)
(1−r)2

− q − p

pr + q(1− r) + q r2

1−r

.

Then,

lim
w↑w3

EUA(s, w)− lim
w↓w3

EUA(s, w) =
c(s)

p

2(1− r)(p(1− r) + 2qr)

q(1− 2r(1− r)) + pr(1− r)
> 0.

If in the region of multiplicity the equilibrium selected is σA = 1, σB = 0, then the
expected utility is continuous and has the same expression as a function of w for all w ≤ w3.

If in the region of multiplicity the equilibrium selected is σA = 0, σB = 1, then the
equilibrium σB changes at both w1 and w2. At w2 we have

lim
w↑w2

EUA(s, w|0, 1) = sv

2
+

c(s)

2q
− c(s)

pr
,
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lim
w↓w2

EUA(s, w|1, 0) = sv

2
+

c(s)

2q
+

c(s)

p

1− 2r

r
.

Then,

lim
w↑w2

EUA(s, w)− lim
w↓w2

EUA(s, w) = −2
c(s)

p

1− r

r
< 0. (28)

Hence, there is a jump up at w2.
At w1, we have

lim
w↑w1

EUA(s, w|0, 0) = sv

2
+

c(s)

2q
− c(s)

p
,

lim
w↓w1

EUA(s, w|0, 1) = sv

2
− (1− r)

c(s)

2
+ c(s)

pr

2q
− c(s)

p

q(1− r) + p

q(1− r) + pr
.

Then,

lim
w↑w1

EUA(s, w)− lim
w↓w1

EUA(s, w) =
c(s)(1− pr + q(1− r))

2q
+

c(s)

p

p(1− r)

q(1− r) + pr
> 0. (29)

Hence, there is a jump down at w1.
If in the region of multiplicity the mixing equilibrium is selected, then at w1, σ

A = 1, σB =
0, and therefore EUA(s, w1|0, 0) = EUA(s, w1|σA, σB). Hence, there is no discontinuity at
w1. At w2, σ

A = 0, σB = 1, and therefore EUA(s, w1|0, 1) = EUA(s, w1|σA, σB). Hence,
there is the same discontinuity at w2 as in (28).

Case 2: r < 1
2
. In this case,

w2(s) =
1

2
+

c(s)

2qvs
+

c(s)

pvs

r

1− r
, (30)

and

w3(s) =
1

2
+

c(s)

2qvs
+

c(s)

pvs

1− r

r
. (31)

As shown above, EUA(s, w|0, 0) = EUA(s, w|1, 0), which implies that there is no disconti-
nuity at w1 if the equilibrium selected in the multiplicity region is σA = 1, σB = 0. If the
equilibrium selected in the region of multiplicity is σA = 0, σB = 1, then at w1 we have the
same discontinuity as in (29). If the mixing equilibrium is selected in the region of multiplic-
ity, then at w1 we have σ

A = 1, σB = 0, and therefore EUA(s, w1|0, 0) = EUA(s, w1|σA, σB).
Hence, there is no discontinuity at w1.

At w2, if the equilibrium selected in the multiplicity region is σA = 0, σB = 1, then there
is no discontinuity, as the equilibrium in (w2, w3) is also σA = 0, σB = 1. If the equilibrium
selected in the multiplicity region is σA = 1, σB = 0, then
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lim
w↑w2

EUA(s, w|1, 0) = sv

2
+

c(s)

2q
+

c(s)

p

2r − 1

1− r
,

lim
w↓w2

EUA(s, w|0, 1) = sv

2
+

c(s)

2q
− c(s)

p(1− r)
− c(s)

2(1− 2r)

pr + q(1− r)
.

Then,

lim
w↑w2

EUA(s, w)− lim
w↓w2

EUA(s, w) = c(s)
2

p

p(1− r) + qr

pr + q(1− r)
> 0.

Hence, there is a jump down at w2.
If the mixing equilibrium is selected in the multiplicity region, then at w2, σ

A = 1, σB =
r

1−r
.

lim
w↑w2

EUA(s, w|(σA, σB)) =
sv

2
+

c(s)

2q
− c(s)

2p(1− r)

Then,

lim
w↑w2

EUA(s, w)− lim
w↓w2

EUA(s, w) =
c(s)

2p(1− r)
+ c(s)

2(1− 2r)

pr + q(1− r)
> 0.

Hence, there is also a jump down at w2 under mixing.
Finally, at w3,

lim
w↑w3

EUA(s, w) =
sv

2
+

c(s)

2q
− c(s)

pr
= lim

w↓w3

EUA(s, w)

Thus, there is no jump at w3 if r < 0.5

Claim 6 It is never the case that ∂EUA(s,w|0,1)
∂w

> 0 > ∂EUA(s,w|1,1)
∂w

.

Proof. By Claim 3, given that 1−r
r

> 1−2r
r(1−r)

, we have

0 <
∂EUA(s, w|0, 1)

∂w
and 0 <

∂EUA(s, w|1, 1)
∂w

if p > q
1− r

r
,

∂EUA(s, w|0, 1)
∂w

< 0 <
∂EUA(s, w|1, 1)

∂w
if q

1− 2r

r(1− r)
< p < q

1− r

r
,

∂EUA(s, w|0, 1)
∂w

< 0 and
∂EUA(s, w|1, 1)

∂w
< 0 if p < q

1− 2r

r(1− r)
.

Part 2: Agent A′s choice of w(s) for a given s

Consider the problem for Agent A of choosing w for a given s. Denote this value w∗(s).

Claim 7 If r ≥ 0.5, then either w∗(s) = w3(s) < 1 or w∗(s) = 1.

50



Proof. By Claims 1, 2 and 4, the solution w∗(s) ∈ {w1(s), w2(s), w3(s), 1}. If r ≥ 0.5, then
w∗(s) /∈ (w1, w2) if w2(s) ≤ 1, given that the function is monotone in between these bounds,
by Lemmas 2-4. By Claim 5, there is either a jump down or continuity at w1, followed by
a jump up or continuity at w2. Hence, the equilibrium selection in the multiplicity region is
irrelevant for the value of w∗(s). Claim 2 shows that EUA(s, w) is increasing for w ≤ w1(s)

and for w ∈ [w2(s), w3(s)]. Lemma 6 implies that ∂EUA(s,w|1,1)
∂w

> 0, since q 1−2r
r(1−r)

< 0.

Therefore, the expected utility is increasing for all w /∈ (w1, w2). By Lemma 5, the only
discontinuity for w /∈ [w1, w2] is at w3(s), where the function jumps down. Therefore, the
maximum satisfies w∗(s) ∈ {w3(s), 1}.

Claim 8 If r < 0.5,

• if in the multiplicity region the equilibrium selected is σA = 0, σB = 1 or the mixing
equilibrium, then w∗(s) = w1(s) < 1 or w∗(s) = 1;

• otherwise, w∗(s) = w2(s) < 1 or w∗(s) = 1.

Proof. By Claims 1, 2 and 4, the solution w∗(s) ∈ {w1(s), w2(s), w3(s), 1}; but Claim 6
implies that the solution cannot be w3(s). If the selected equilibrium is σA = 0, σB = 1
in the multiplicity region, then the expected utility function has the same expression for
w ∈ [w1(s), w3(s)] and is monotone in this interval, hence the solution cannot be at w2(s) ∈
[w1(s), w3(s)]. By Claim 5, there is jump down at w1(s) and the expected utility is otherwise
continuous. Therefore, w∗(s) ∈ {w1(s), 1}.

If in the multiplicity region the equilibrium selected is the mixing equilibrium, then by
Claim 5, the only discontinuity is at w2(s), where the expected utility jumps down. By
Claim 4, the expected utility is decreasing in the mixing region. Hence, w2(s) cannot be the
solution. Therefore, w∗(s) ∈ {w1(s), 1}.

If in the multiplicity region the equilibrium selected is σA = 1, σB = 0, then by Claim 2,
the expected utility is increasing for all w ≤ w2(s). By Claim 5, the only discontinuity is at
w2(s), where the expected utility jumps down. Hence, w∗(s) ∈ {w2(s), 1}.

Part 3: Agent A′s choice of s

Given w∗(s), we can now move to the selection of s. Denote the optimal scale chosen by A as
s∗. Notice that given w = 1, the expression for EUA(s, 1) implied by (12) is strictly concave
in s for any combination σA, σB ∈ {0, 1}. Moreover, it is either concave or increasing convex
in s for the σA, σB corresponding to the mixing equilibrium.

Claim 9 If r ≥ 1
2
, then w∗ = 1 and

c′(s∗) =

 vp, if p ≥ q ·
(
ε(s3)− 2r

1−r

)
c′(s3), otherwise

. (32)
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Proof. Consider first the case when the equilibrium selected in the multiplicity region is
(σA, σB) = (1, 0). By Claim 7, w∗(s) ∈ {w3(s), 1}. We have w3 ≤ 1 iff c(s)

s
≤ vq p(1−r)

p(1−r)+2qr
=

c(s3(w=1))
s3(w=1)

. Thus, if c(s)
s

> c(s3(w=1))
s3(w=1)

, then w3 > 1, and σB = 0 at w = 1. The problem for
Agent A in this case is

max
s>s3

sv − c(s)

p
. (33)

This leads to
c′(s∗) = max{vp, c′(s3)}. (34)

If c(s)
s

≤ c(s3)
s3

, then w3 ≤ 1. At w3, the expected utility of Agent A is

EUA(s, w3|1, 0) =
vs

2
+ c(s)

(
2r − 1

p(1− r)
+

1

2q

)
, (35)

which is strictly convex and increasing in s, reaching the maximum at s3(w3), where w3 = 1.
Thus,

EUA(s3, 1) = s3 · v ·
(
1− q(1− r)

p(1− r) + 2qr

)
(36)

At w = 1 (with w3 < 1 such that σB = 1), we have EUA(s, 1|1, 1) ≤ EUA(s, 1|1, 0) since

EUA(s, 1|1, 1) ≤ sv
q(1− r)2 + (q(2r − 1) + p(1− r)r)

q(1− 2r(1− r)) + pr(1− r)

≤ s3v
p(1− r) + 2qr − q(1− r)

p(1− r) + 2qr
= EUA(s3, 1|1, 0).

Therefore, the maximum utility value reached in the region of s values where w3 < 1 is below
the utility reached when s = s3(w = 1). Hence, Agent A′s optimal choices are w∗ = 1, and

c′(s∗) =

{
vp, if p ≥ q(ε, q, r|r ≥ 0.5)

c′(s3(w = 1)), otherwise
, (37)

where

q(ε, q, r|r ≥ 0.5) ≡ max

{
0, q ·

(
ε(s3(w = 1))− 2r

1− r

)}
. (38)

The equilibrium revision strategies are (0, 0) if w1 ≥ 1, that is, if s∗ ≥ s1. Otherwise, the
revision equilibrium is (σA, σB) = (1, 0). For completion, define q(ε, q, r|r ≥ 0.5) = 0.

Other equilibrium selections under multiplicity. When the equilibrium selected in
the multiplicity region is not (σA, σB) = (1, 0), the above analysis is unchanged if w2(s) ≤ 1.

If w1(s) ≤ 1 < w2(s), i.e., if
c(s2(w=1))
s2(w=1)

< c(s)
s

≤ c(s1(w=1))
s1(w=1)

, then at w = 1, σB ̸= 0. In this

case, given Claim 5, the solution w∗(s) is w1(s). Then s is chosen to maximize the following
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function over s:

EUA(s, w1(s)) =
sv

2
+

c(s)

2q
− c(s)

p
. (39)

If p ≥ 2q, then s∗ > s1(w = 1) and therefore the solution cannot be at w1 ≤ 1. Instead,
w = 1 and the solution for s∗ is as described above. Otherwise, if p < 2q, then the solution
to (39) in interior. But in this case, notice that (i) at s1, we have EUA(s1, 1) = EUA(s1, w1)

and (ii) at s2, we have EUA(s2, 1) > EUA(s2, w1), since
c(s2)
s2

< vq. Then note also that (iii)

0 > ∂2EUA(s,w1)
∂s2

> ∂2EUA(s,1)
∂s2

. Then (i)-(iii) imply that the optimum s satisfies s /∈ (s2(w =
1), s1(w = 1)). Therefore, the solution is w = 1 and s∗ as in the case when the equilibrium
selected in the multiplicity region is (σA, σB) = (1, 0).

Claim 10 If r < 1
2
, then there exist thresholds 0 ≤ q ≤ q such that

c′(s∗) = vqp
2q−p

, w∗ = w1(s
∗) < 1, if p ≤ q

c′(s∗) = c′(s∗), w∗ = 1, if q < p < q

c′(s∗) = vp, w∗ = 1, if p ≥ q

, (40)

where s∗ = s1(w = 1) if the equilibrium selected in the multiplicity region has σB ̸= 0, and
s∗ = s2(w = 1) if the equilibrium selected in the multiplicity region has σB = 0. The threshold
values q, q also depend on the equilibrium selection in the multiplicity region.

Proof. By Claim 8, w∗(s) ∈ {w1(s), w2(s), 1}. Consider first the case where the equilibrium
selected in the multiplicity region is not (σA, σB) = (1, 0), such that w∗(s) ∈ {w1(s), 1}. If
s ≥ s1(w = 1), we have w1(s) ≥ 1 and the expected utility at w1 is

EUA(s, 1|0, 0) = vs− c(s)

p
. (41)

The solution is

c′(s) = max

{
vp, c′(s1)

}
.

If s < s1, then w1(s) < 1 and the expected utility at w1 is

EUA(s, w1|0, 0) =
vs

2
− c(s)

(
1

p
− 1

2q

)
. (42)

The solution for s∗ when w1(s
∗) is chosen is

c′(s∗) =


vqp
2q−p

, if p ≤ q(ε, q, r|r < 0.5),

c′(s1(w = 1)), if q(ε, q, r|r < 0.5) < p < q(ε, q, r|r < 0.5),

vp, if p ≥ q(ε, q, r|r < 0.5),

(43)
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where

q(ε, q, r|r < 0.5) = q · ε(s1(w = 1)), (44)

q(ε, q, r|r < 0.5) = 2q · ε(s1(w = 1))

1 + ε(s1(w = 1))
(45)

Notice that the solution can be w = 1, with equilibrium revision strategies (σA, σB) = (1, 1)

only if q 1−2r
r(1−r)

< p and s∗ ≤ s3(w = 1). In this case, agent A′s expected utility is

EUA(s, 1|1, 1) = vs
r(p(1− r) + qr)

r(p(1− r) + qr) + q(1− r)2
− c(s)

p

p(1− r) + q

r(p(1− r) + qr) + q(1− r)2
, (46)

The solution is at the corner w = 1 if EUA(s, 1|1, 1) − EUA(s, w1|0, 0)) ≥ 0, which is
equivalent to

c(s)

s
≤ c(s11)

s11
≡ vqp · pr(1− r)− q(1− 2r)

(1− r)r(p− 2q)2 + pq(3− 2r)
, (47)

where it can be verified that s11 < s3(w = 1). Else, if s > s11, then w1(s) is optimal.
This implies that in the region s ∈ [0, s11], the optimal s is

c′(s∗) = min

{
vp · r(p(1− r) + qr)

p(1− r) + q
, c′(s11)

}
, (48)

whereas in the region s > s11, the solution is as in (43).
Having found the solution for s ≤ s11 and for s > s11, it remains to find the global

optimum.
First, if c′(s∗) = vqp

2q−p
, then note that

p(1− r) + q

r(p(1− r) + qr) + q(1− r)2
>

2q − p

2q
, (49)

which means that

∂2EUA(s|w = 1, (1, 1))

∂s2
<

∂2EUA(s|w = w1, (0, 0))

∂s2
, (50)

and therefore a sufficient condition for the global maximum to satisfy s∗ ≥ s11 is that

−∂EUA(s11|w = 1, (1, 1))

∂s
<

∂EUA(s11|w = w1, (0, 0))

∂s
,

which reduces to

c′(s11) ≤ vpq
(3r(1− r)p+ q(1− 2r + 4r2))

pq(1− 2r) + 4q2 − (p− 2q)2r(1− r)
. (51)
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Given (47), the above implies an upper bound on the elasticity of c(s) of

ε(s) =
s · c′(s)
c(s)

≤ min
p∈(q 1−2r

r(1−r)
,2q),q∈[0,1],r∈[0,0.5]

{
r(1− r)(p− 2q)2 + pq(3− 2r)

p(1− r)r − q(1− 2r)

· (3r(1− r)p+ q(1− 2r + 4r2))

pq(1− 2r) + 4q2 − (p− 2q)2r(1− r)

}
.

This bound is decreasing in r, which means that the problem can be reduced to

ε(s) ≤ min
p∈(0,2q),q∈[0,1]

{
(p+ 2q)(3p+ 4q)

p(6q − p)

}
. (52)

Using numerical minimization methods, we can show that this bound for the elasticity is at
least 4.19. Therefore, a sufficient condition for the solution to satisfy s∗ ≥ s11 is

ε(s) ≤ 4 ≤ min
p∈[0,2q],q∈[0,1]

{
(p+ 2q)(3p+ 4q)

p(6q − p)

}
≡ ε(p, q). (53)

Next, consider the case where c′(s1) = vqp
2q−p

and q < p. Notice that at q = p, we

have s∗00 ≡ argmaxEUA(s, w1|0, 0) that satisfies c′(s∗00) = vq ≤ c′(s1). Thus, the maximum
value EUA(s, w1|0, 0) is reached at s < s1 for q = p. Let s∗11 denote the solution for
argmaxEUA(s, 1|1, 1) and let r = 1/2, in order to maximize EUA(s∗11, 1|1, 1). The effect of
decreasing q at s = s11 is

−∂2EUA(s, 1|1, 1)
∂s∂q

=
vp

(p+ 2q)2
, (54)

−∂2EUA(s, w1|0, 0)
∂s∂q

=
c′(s∗00)

2q2
, (55)

−∂3EUA(s, 1|1, 1)
∂s∂q

= 0, (56)

−∂3EUA(s, w1|0, 0)
∂s2∂q

=
c′′(s∗00)

2q2
. (57)

This implies

−
(
∂2EUA(s, w1|0, 0)

∂s∂q
+

∂2EUA(s, 1|1, 1)
∂s∂q

)
> 0, (58)

while the rate of decrease in the slope of EUA(s, w) is steeper for EUA(s, w1|0, 0) compared
to EUA(s, 1|1, 1). Then, (58) together with (56) and (57) along with condition (53) imply
that

max
s≤s1

EUA(s, w1|0, 0) > max
s≤s1

EUA(s, 1|1, 1)for q ∈ [0, p]. (59)
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In the third case, if c′(s) = vp, then notice that

EUA(s, 1|0, 0)− EUA(s, 1|1, 1) > 0, (60)

and
∂EUA(s, 1|0, 0)

∂s

∣∣∣∣
s=s1

> 0 =⇒ ∂EUA(s, w1|0, 0)
∂s

∣∣∣∣
s=s1

≥ 0.

Then, the argmaxs≥s1 EUA(s, 1|0, 0) is the global maximum.
In sum, under condition (53), the global solution is
c′(s∗) = vqp

2q−p
, w∗ = w1 < 1, if p ≤ q(ε(s1), q, r|r < 0.5),

c′(s∗) = c′(s1), w
∗ = 1, if q(ε(s1), q, r|r < 0.5) < p < q(ε(s1), q, r|r < 0.5),

c′(s∗) = vp, w∗ = 1, if p ≥ q(ε(s1), q, r|r < 0.5),

, (61)

where q(ε, q, r|r < 0.5) and q(ε, q, r|r < 0.5) are given in (44)-(45). On the equilibrium path

σB(s∗, w∗) = 0.

Other equilibrium selections under multiplicity. Consider next the case where the
equilibrium selected in the multiplicity region is (σA, σB) = (1, 0). In this case, w∗ ∈
{w2(s), 1}. The analysis above carries over under the change of threshold from w1 to w2.
Notice that EUA(s, w2|0, 0) ≥ EUA(s, w1|0, 0), which means that condition (53) is sufficient
to ensure that the global solution is not w = 1 and (σA, σB) = (1, 1). The solution for s∗

when w∗ becomes
c′(s∗) = vqp(1−r)

2q(1−2r)−p(1−r)
, w∗ = w1 < 1 if p ≤ qalt,

c′(s∗) = c′(s2(w = 1)), w∗ = 1 if qalt < p < qalt,

c′(s∗) = vp, w∗ = 1 if p ≥ qalt,

, (62)

where

s2(w = 1) = vq
p(1− r)

p(1− r) + 2qr
, (63)

qalt(ε, q, r|r < 0.5) = 2q
(1− 2r)ε(s2(w = 1))− r

(1− r)(1 + ε(s2(w = 1)))
, (64)

qalt(ε, q, r|r < 0.5) = q

(
ε(s2(w = 1))− 2r

1− r

)
. (65)

and the bound c(s11)
s11

is replaced by

c(salt11 )

salt11

= vqp · (1− r)(pr(1− r)− q(1− 2r))

(2qr + (1− r)p)((p+ 4q)r(1− r) + q(3− 2r))
. (66)
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Finally, if the equilibrium in the multiplicity region is mixing, then the analysis the same
as when σA = 0, σB = 1.

A.3 Proof for Proposition 1

The unconstrained scale in the benchmark with no transitions in control: c′(sNT ) = vp.
Hence, given the above derivations, for r ≥ 1

2
,

s∗

{
= sNT if p ≥ q

> sNT if p < q
.

Notice that the case s∗ > sNT requires ϵ(s3) > 2.

If r < 1
2
and the equilibrium selected in the multiplicity region is not (σA, σB) = (1, 0),

then notice that vq q
2q−p

< vp implies p < q. Thus,

s∗


= sNT if p ≥ q or p = q

> sNT if q < p < q

< sNT if p < q

.

If r < 1
2
and the equilibrium selected in the multiplicity region is (σA, σB) = (1, 0), then

s∗


= sNT if p ≥ qalt or p = q

> sNT if q < p < qalt

< sNT if p < q

.

A.4 Proof for Proposition 2

The equilibrium payoff inequality is ∆∗ = 2w∗−1. The result follows from Lemma 2, defining
q(ε, q, r|r ≥ 0.5) ≡ 0 and q(ε, q, r|r < 0.5) as in (45).

A.5 Proof for Corollary 1

Follows from Propositions 1 and 2 given the expressions in Claims 9 and 10.

A.6 Proof for Proposition 3

From the proof to Lemma 2, if r ≥ 1/2 and c(s)
s

≤ c(s3)
s3

, then the optimal choice for agent

A is either w3(s), with corresponding revision strategies σA = 1, σB = 0, or w = 1, with
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corresponding revision strategies σA = σB = 1. The latter results in a higher payoff if

EUA(s, 1|1, 1) ≥ EUA(s, w3|1, 0). That is, if c(s)
s

≤ c(sh11)

sh11
where

c(sh11)

sh11
= vpq

(1− r)(q(2r − 1) + pr(1− r))

(p(1− r) + 2qr)(pr(1− r) + q(3− 6r + 4r2))
. (67)

Note that
c(sh11)

sh11
≤ c(s3)

s3
. Then, let smax < s∗(1, 0) (the optimal scale for s ∈ [sh11, s3(w =

1)]). Then, given that ∂EUA(s,w3|0,0)
∂s

> 0 for s ≤ smax, the optimal s in the interval
[0, smax] is either smax (such that σB = 0) or s∗11 = argmaxs≤sh11

EUA(s, 1|1, 1). Since

EUA(sh11, w1|0, 0) = EUA(sh11, 1|1, 1) and EUA(s∗11, 1|1, 1) ≥ EUA(sh11, 1|1, 1) , it follows that
there exists smax(v, p, q, r) ∈ [sh11, s

∗) such that EUA(s∗11, 1|1, 1) ≥ EUA(smax, w3|0, 0).
If r < 1

2
, the analysis is analogous. Let smax < s∗(0, 0) the optimal scale for s ∈

[s11, s1] (remember that s∗(1, 0) = s∗(0, 0)). Then, given that ∂EUA(s,w|0,0)
∂s

> 0 for s ≤
smax, the optimal s in the interval [0, smax] is either smax (such that σB = 0) or s∗11 =
argmaxs≤s11 EUA(s, 1|1, 1). SinceEUA(s11, w1|0, 0) = EUA(s11, 1|1, 1) and EUA(s∗11, 1|1, 1) ≥
EUA(s11, 1|1, 1) , it follows that there exists smax(v, p, q, r) ∈ [s11, s

∗) such thatEUA(s∗11, 1|1, 1) ≥
EUA(smax, w1|0, 0).

Hence, for smax ≤ smax, the equilibrium is σA = σB = 1, and w∗ = 1.

A.7 Proof for Corollary 2

Follows from the proof of Proposition 3 that smax is decreasing in p. Conditional on the equi-

librium being σA = σB, notice that the expected time to completion
HAA

3 (p,q,r)

p
is decreasing

in p, with HAA
3 (p, q, r) defined in the proof to Lemma 1.

A.8 Proof for Proposition 4

Equations (12) and (13) imply that the welfare function given project designer A and project
∆A is

W =
1

2
sv · [HAA

1 (p, q, r) +HAA
2 (p, q, r)]− c(s)

p
·HAA

3 (p, q, r), (68)

In equilibrium there are no revisions, so (σA, σB) = (0, 0) or (σA, σB) = (1, 0) . Then,
the welfare function becomes

W =
1

2
s∗v − c(s∗)

p
.

Thus, W < 0 is equivalent to c(s∗)
s∗

> vp
2
.

If r ≥ 1
2
. If s∗ = s3,

c(s3)

s3
=

vpq(1− r)

p(1− r) + 2qr
<

vp

2
,
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which means that W > 0. If c′(s∗) = vp, then22

W < 0 ⇔ ε(s∗) < 2 and p > q

(
ε(s3)−

2r

1− r

)
. (69)

Notice that for r ≥ 1
2
, we have 2r

1−r
≥ 2. Thus, if ε(s∗) < 2, then q < 0. Therefore, the

condition p > q

(
ε(s3)− 2r

1−r

)
is always satisfied.

If r < 1
2
. Consider first the case where the equilibrium selection in the multiplicity region

has σB ̸= 0. If p ≥ q(ε, q, r|r < 0.5), then c′(s∗) = vp and the condition for W < 0 is as in
(69). If q(ε, q, r|r < 0.5) < p < q(ε, q, r|r < 0.5), then s∗ = s1. Then,

W < 0 if p > qmax

{
1, 2

ε(s1)

1 + ε(s1)

}
= 2

ε(s1)

1 + ε(s1)
.

Hence, W < 0 for q(ε, q, r|r < 0.5) < p < q(ε, q, r|r < 0.5).

If p ≤ q(ε, q, r|r < 0.5), then c′(s∗) = vqp
2q−p

, which leads to W < 0 if p > 2q ε(s∗)−1
ε(s∗)

. Thus

W < 0 ⇔ 2q
ε(s∗)− 1

ε(s∗)
< p < 2q

ε(s1)

1 + ε(s1)
. (70)

Putting it all together,

W < 0 if


ε(s∗) < 2 & r ≥ 1

2
,

qε(s1) < p < 1 & ε(s∗) < 2 & r < 1
2
,

2q ·min

{
ε(s∗)−1
ε(s∗)

, ε(s1)
ε(s1)+1

}
< p < qε(s1) & r < 1

2

.

Let E ≡ min

{
ε(c′−1( vpq

2q−p
))−1

ε(c′−1( vpq
2q−p

))
, ε(s1)
ε(s1)+1

}
. The interval P = (p, p) is therefore defined as

(assuming the inverse of c(s) exists; else we take ε(s∗) in the expressions below):

P =


∅ if r ≥ 1

2
and p < q(ε, q, r) or ε(c′−1(vp)) ≥ 2,

(0, 1) if r ≥ 1
2
and ε(c′−1(vp)) < 2,

(2qE, qε(s1)) if r <
1
2
and ε(c′−1(vp)) ≥ 2,

(2qE, 1) if r < 1
2
and ε(c′−1(vp)) < 2.

(71)

Other equilibrium selection in multiplicity region. If in the multiplicity region we
select the equilibrium with σB = 0, then for p ≥ qalt, the solution is as in (69). If qalt < p <

22Note that for c(s) = s2, we have ε = 2, hence W ≥ 0 when r ≥ 1
2 .

59



qalt, then s∗ = s2. This means c(s∗)
s∗

= qvp(1−r)
p(1−r)+2qr

, and therefore qvp(1−r)
p(1−r)+2qr

> vp
2
if p < 2q(1−2r)

1−r
.

This leads to

W < 0 ⇔ qalt < p <
q

1− r
min{2(1− 2r), (ε(s2)(1− r)− 2r)}. (72)

Finally, if p ≤ qalt, then W < 0 if p > 2q ε(s∗)−1
ε(s∗)

.23

A.9 Proof for Corollary 3

The values p and p are given in (71). If ε(s) = ε̃, then ∂εs
∂s

= 0. Then, given (71), it follows
that p and p are (weakly) increasing if q. Moreover,

∂(p− p)

∂q
= εs1 − 2E ≥ 0.

A.10 Proof for Proposition 5

Consider a cap smax such that we are under the conditions of Proposition 3. Then, in (68),
given s ≤ smaxwe have

W =
1

2
sv − c(s)

p

q + p(1− r)(1− p(1− r)− 2qr)

p(1− r)r + q(1− 2r + 2r2)
. (73)

Thus, W < 0 if
c(s)

s
>

vp

2

p(1− r)r + q(1− 2r + 2r2)

q + p(1− r)(1− p(1− r)− 2qr)
. (74)

If r < 1
2
, a necessary condition for the equilibrium s to satisfy the conditions of Proposition

3 is that c(s)
s

≤ c(s11)
s11

, where s11 is defined in (47). That is, a necessary condition for W < 0
given (74) is

p(1− r)r + q(1− 2r + 2r2)

q + p(1− r)(1− p(1− r)− 2qr)
< 2q · pr(1− r)− q(1− 2r)

(1− r)r(p− 2q)2 + pq(3− 2r)
(75)

Yet, (75) reduces to the necessary condition that r ≥ 1
2
. Thus, for r < 1

2
, with scale caps as

in Proposition 3, we have W ≥ 0.

If r ≥ 1
2
, to satisfy the conditions of Proposition 3 we need c(s)

s
≤ c(sh11)

sh11
, where sh11 is

defined in (67). Therefore, a necessary condition for W < 0 is that

vp

(
1

2

p(1− r)r + q(1− 2r + 2r2)

q + p(1− r)(1− p(1− r)− 2qr)
−q

(1− r)(q(2r − 1) + pr(1− r))

(p(1− r) + 2qr)(pr(1− r) + q(3− 6r + 4r2))

)
< 0

(76)

23Note that for c(s) = s2, we have ε = 2 and therefore W < 0 for q < p < qalt.
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Yet, for r ≥ 1
2
, the expression in (76) is always positive. Hence, for r ≥ 1

2
, with scale caps as

in Proposition 3, we have W ≥ 0.

A.11 Proof for Proposition 6

Observe first that because revisions in phase 1 cannot affect payoffs in phase 2, revision
strategies are identical to those in the one-phase game. As the result focuses on phase 1
strategies, we omit notation for phases. Moreover, we analyze the case where in the region
of multiplicity the equilibrium selected is the one where the agent more likely to be in control
revises (agent A if r ≥ 1

2
and Agent B if r < 1

2
).

Part 1: r > 1/2. Following the proof of Lemma 2, distribution and revision strategies
given s are as follows: 

σA = 1, σB = 1,∆ = 1 s ≤ ŝ3 (a)
σA = 1, σB = 0,∆ = w3 s ∈ (ŝ3, ŝ1] (b)
σA = 0, σB = 0,∆ = 1 s > ŝ1 (c)

where w3 is given in (19) and:

ŝ3 =
pq(1− r)v[p(1− r)r + q(2r − 1)]

(p(1− r) + 2qr) [p(1− r)r + q (4r2 − 6r + 3)]
,

ŝ1 =
pq(1− r)v

p(1− r) + 2qr
,

which satisfies 0 < ŝ3 < ŝ1.
As in the text, denote by ŨA A’s ex ante expected value of a single phase of play when

m = 1 (10), the corresponding objective for agent A is:

V̂ A(s) =


V A
a (s) =

(
rv(p(1−r)+qr)

p(1−r)r+q(2r2−2r+1)
+ ŨA

)
s− (q+p(1−r))s2

p(p(1−r)r+q(2r2−2r+1))
s ≤ ŝ3, (a)

V A
b (s) = (v

2
+ ŨA)s+

(
1
2q

+ 2r−1
p(1−r)

)
s2 s ∈ (ŝ3, ŝ1] , (b)

V A
c (s) = (v + ŨA)s− s2

p
s > ŝ1. (c)

We note several properties of V̂ A(s) and its components. It is straightforward to verify that
V̂ A(s) is continuous, concave in regions (a) and (c), and convex in region (b). Additionally,

V A
a (0) = V A

b (0) = V A
c (0) = 0. Finally, dV A

c (s)
ds

> dV A
a (s)
ds

. Together, these facts imply that

V̂ A(s) can be maximized only at 0, ŝ1, ŝ3, or sa or sc, the interior values of s that maximize
V A
a (s) or V A

c (s), respectively, if they exist.
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Taking first order conditions yields the following candidate interior solutions:

sa =
p

2

(
r(v + ŨA) +

q(1− r)[(1− 2r)ŨA − rv]

p(1− r) + q

)
, (77)

sc =
p

2
(v + ŨA). (78)

We make three observations that narrow the set of possible solutions. First, the region
(c) solution is interior (i.e., sc > ŝ1) if:

ŨA > ϕc ≡ −v(p(1− r) + 2q(2r − 1))

p(1− r) + 2qr
. (79)

Second, sa > 0 if:

ŨA > ϕa ≡ − vr(p(1− r) + qr)

p(1− r)r + q (2r2 − 2r + 1)
. (80)

Third, V̂ A(ŝ3) < V̂ A(ŝ1) if:

ŨA > ϕb ≡ −v (3p2(1−r)2r + pq(1−r)(2r(9r−7)− 5)− 2q2(6(3−2r)r2 − 11r) + 2))

2(p(1− r) + 2qr) (p(1− r)r + q(4r2 − 6r + 3))
. (81)

Under the assumed parameter values, ϕb < ϕa < ϕc.
We now derive the optimal s for each possible value of ŨA. There are four cases.
(i) ŨA > ϕc. Because V A

c (s) > V A
a (s) for s > 0, s∗ = sc.

(ii) ŨA ∈ (ϕa, ϕc]. The possible solutions are sa and ŝ1. Solving V A(sa) = V A(ŝ1) for
ŨA produces a unique value ϕac of Ũ

A such that ϕac ∈ (ϕa, ϕc] and s∗ = sa if ŨA < ϕac and
s∗ = ŝ1 otherwise. (We omit the expression for ϕac due to excessive length.)

(iii) ŨA ∈ (ϕb, ϕa]. The possible solutions are 0 and ŝ1. Observe that V A
c (ŝ1) ≥ 0 only for

ŨA > rv(p(1−r)+qr)
p(1−r)r+q(2r2−2r+1)

, but this value of ŨA is greater than ϕa. Thus the optimal solution
must be s∗ = 0.

(iv) ŨA ≤ ϕb. The possible solutions are 0 and ŝ3. But ŝ3 cannot be the solution because
V A
a (s) is decreasing in s for s > 0 when ŨA ≤ ϕa; thus the optimal solution must be s∗ = 0.
Combining cases produces:

s∗ =


sc if ŨA > ϕc

ŝ1 if ŨA ∈ (ϕac, ϕc]

sa if ŨA ∈ (ϕa, ϕac]

0 if ŨA ≤ ϕa.

(82)

Comparing ŨA with ϕa, it is clear that the project will not be cancelled in phase 1 if
p < q or p > 2q = q.

Part 2: r < 1/2. Following the proof of Propositions 1 and 2, distribution and revision
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strategies given s are as follows:
σA = 1, σB = 1,∆ = 1 s ≤ š3 (a)
σA = 0, σB = 0,∆ = w1 s ∈ (š3, š1] (b)
σA = 0, σB = 0,∆ = 1 s > š1 (c)

where w1 =
1
2
+ s

2qv
and:

š3 =
pqv [p(1− r)r − q(1− 2r)]

(p2 + 4q2)(1− r)r + pq(4r2 − 6r + 3)

š1 = qv,

which satisfies š3 < š1.
The corresponding objective for agent A is:

V̌ A(s) =


V A
a (s) =

(
rv(p(1−r)+qr)

p(1−r)r+q(2r2−2r+1)
+ ŨA

)
s− (p(1−r)+q)s2

p[p(1−r)r+q(2r2−2r+1)]
s ≤ š3 (a)

V̌ A
b (s) = (v

2
+ ŨA)s+

(
1
2q

− 1
p

)
s2 s ∈ (š3, š1] (b)

V A
c (s) = (v + ŨA)s− s2

p
s > š1 (c)

We note several properties of V̌ A(s) and its components. In regions (a) and (c), the compo-
nent functions are identical to those in Part 1 (and thus concave). V̌ A

b (s) is convex if p > 2q
and concave otherwise. It is straightforward to verify that V̌ A(s) is continuous. Additionally,
V A
a (0) = V̌ A

b (0) = V A
c (0) = 0. Together, these facts imply that V̌ A(s) can be maximized

only at 0, š3, š1, or sa, šb, or sc, which are the interior values of s that maximize V A
a (s),

V̌ A
b (s), or V A

c (s), respectively, if they exist. Finally, š1 is positive but š3 may be negative;
solutions in region (a) can exist only if š3 > 0.

Taking first order conditions yields the following candidate interior solution for region
(b), with the interior solutions sa and sc for regions (a) and (c) given by (77) and (78),
respectively:

šb =
pq(v + 2ŨA)

4q − 2p
.

For šb to be interior it must be both positive, which holds if ŨA > −v/2, and in the interval
(š3, š1], which occurs if ŨA ∈

(
ϕ̌l
b, ϕ̌

h
b

]
, where:

ϕ̌l
b =

v [4q2(r2 + r − 1)− 3p2(1− r)r − pq(8r2 − 6r + 1)]

2 [(4q2 + p2)(1− r)r + pq (4r2 − 6r + 3)]

ϕ̌h
b = v

(
2q

p
− 3

2

)
.

We make three observations that narrow the set of possible solutions. First, the region
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(c) solution is interior (i.e., sc > š1) if:

ŨA > ϕ̌c ≡ v

(
2q

p
− 1

)
. (83)

Second, the region (a) solution is interior (i.e., sa ∈ (0, š3)) if ŨA > ϕa (i.e., condition
(80) from Part 1), and ŨA < ϕ̌h

a, where:

v
[
(1− r)r2

(
p3(1− r) + 4q3r

)
+ p2qr

(
1− r(5r2 − 9r + 5)

)
+

ϕ̌h
a ≡ q2(1− 2r) (2p+ 2q − pr(4r2 − 5r + 4))]

((1− r)r(2q − p)− q) [(1− r)r (p2 + 4q2) + pq (4r2 − 6r + 3)]
.

The condition sa < sha is equivalent to š3 > 0.
Third, if either šb or sc are interior, then A prefers them to š1, which belongs to both

regions (b) and (c). Similarly, if either sa or šb are interior, then A prefers them to š3.
We now derive the optimal s for each possible value of ŨA and q.
(i) ŨA > ϕ̌c. When ϕ̌c is interior, the only possible alternative solutions are 0, š3, and

sa. By the concavity of V A
c (s), V A

c (sc) > V A
c (0), and dV A

c (s)
ds

> dV A
a (s)
ds

implies that V A
c (sc) >

V A
a (sa) when sa > 0. Finally, straightforward calculation shows that V A

c (sc) > V A
a (š3) when

š3 > 0. Thus, s∗ = sc.
For subcases (ii)-(v), p < 2q, so the objective V̌ A

b (s) in region (b) is concave. As ŨA < 0
for agent A when r < 1/2, it it is impossible for condition (83) to be satisfied and thus
subcase (i) is irrelevant.

(ii) ŨA ∈ (ϕ̌h
b , ϕ̌c]. In this subcase, V̌ A

b (s) is maximized at some s > š1 and šb is not
feasible. If š3 ≤ 0, then the optimal s is the region (b) corner: s∗ = š1.

If š3 > 0, then V̌ A
b (š1) > V̌ A

b (š3). By the concavity of V̌ A
b (s), V̌ A

b (š1) > V̌ A
b (0), and so

the remaining candidate solutions are š1 and sa. Performing the necessary substitutions and
solving, V̌ A

a (sa) > V̌ A
b (š1) iff ŨA < ϕ̌a1, where:

ϕ̌a1 ≡
v
[
2q2 − p2(1−r)r − pq(r2+2r−2)− 2q

√
2(1−r)(p(1−r)+qr)(p(1−r) + q)

]
p [p(1− r)r + q (2r2 − 2r + 1)]

. (84)

It is straightforward to verify that ϕ̌a1 < ϕ̌c. Thus we have s∗ = š1 if ŨA ∈ (ϕ̌a1, ϕ̌c], and
s∗ = sa if ŨA ∈ (ϕ̌h

b , ϕ̌a1], where the latter interval may be empty.
(iii) ŨA ∈ (max{−v/2, ϕ̌l

b}, ϕ̌h
b ]. In this subcase, šb is a feasible solution, which A ob-

viously prefers to š3 and š1. By the concavity of V A
b (s), V̌ A

b (šb) > V̌ A
b (0), and so the only

other possible candidate solution is sa, if region (a) is non-empty. Thus ŝ3 ≤ 0 implies that
the solution is šb. Furthermore, ŝ3 ≤ 0 also implies that −v/2 > ϕ̌l

b.
If ŝ3 > 0, then performing the necessary substitutions and solving, there exists ϕab such

that V̌ A
a (sa) > V̌ A

b (šb) if ŨA < ϕab, where ϕab > max{−v/2, ϕ̌l
b, ϕ̌a1} and ϕab ∈ [ϕa, ϕ

h
a].

(We omit the expression for ϕab due to excessive length.) Thus we have s∗ = sa if ŨA ∈
(max{−v/2, ϕ̌l

b}, ϕab], and s∗ = šb if Ũ
A ∈ (ϕab, ϕ̌

h
b ].
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(iv) ŨA ≤ max{−v/2, ϕ̌l
b}. V̌ A

b (s) is strictly decreasing for s ≥ 0, so if š3 ≤ 0 then the
solution is s∗ = 0. If š3 ≥ 0, the only feasible solutions are the set of region (a) solutions, or
{0, sa, š3}. Thus the solution is s∗ = 0 for ŨA ≤ ϕa, s

∗ = sa for ŨA ∈ (ϕa, ϕ̌
h
a], and s∗ = š3

for ŨA > ϕ̌h
a.

Combining cases (i)-(iv) produces the following optimal scales. For š3 ≤ 0:

s∗ =


š1 if ŨA ∈ (ϕ̌h

b , ϕ̌c]

šb if ŨA ∈ (−v/2, ϕ̌h
b ]

0 if ŨA ≤ −v/2.

And for š3 > 0:

s∗ =



š1 if ŨA ∈ (ϕ̌a1, ϕ̌c]

sa if ŨA ∈ (ϕ̌h
b , ϕ̌a1]

šb if ŨA ∈ (ϕab, ϕ̌
h
b ]

sa if ŨA ∈ (max{−v/2, ϕ̌l
b}, ϕab]

š3 if ŨA ∈ (ϕ̌h
a,max{−v/2, ϕ̌l

b}]
sa if ŨA ∈ (ϕa, ϕ̌

h
a]

0 if ŨA ≤ ϕa.

(85)

It is straightforward to verify that at most one of the regions for which s∗ = sa is non-empty.
For subcases (v)-(viii), p > 2q, so the objective V̌ A

b (s) in region (b) is convex and šb is
not a feasible solution. Thus the optimal s is either in region (b) (with possible solutions 0,
š3, š1), or in region (a), as described in subcase (iv). We first consider the subcase where
š3 ≤ 0, so region (a) is empty.

(v) ŨA ≤ ϕ̌c and š3 ≤ 0. The only possible solutions are 0 and š1. Solving V̌ A
b (š1) ≥ 0

for ŨA produces:

s∗ =


sc if ŨA > ϕ̌c

š1 if ŨA ∈ (v(q − p)/p, ϕ̌c]

0 if ŨA ≤ v(q − p)/p.

(86)

For the remaining subcases, š3 > 0, so region (a) is non-empty.
(vi) ŨA ∈ (ϕ̌h

a, ϕ̌c] and š3 > 0. The only feasible solutions are š3 and š1. Performing the
necessary substitutions and solving, there exists ϕ̌13 such that V̌ A

a (š3) > V̌ A
b (š1) iff ŨA < ϕ̌13,

where:

ϕ̌13 ≡
v [4pq2(1− 2r)2 − (1− r)r(3p3 − 8q3)− p2q(12r2 − 14r + 5)]

2p [(1− r)r(p2 + 4q2) + pq(4r2 − 6r + 3)]
.

It is easily verified that ϕ̌13 < ϕ̌c. Thus s
∗ = š3 if Ũ

A ∈ (ϕ̌h
a, ϕ̌13], and s∗ = š1 if Ũ

A ∈ (ϕ̌13, ϕ̌c],
where the former interval may be empty.

(vii) ŨA ∈ (ϕa, ϕ̌
h
a]. In this subcase, the interior solution sa is feasible. Using expression

(84), V̌ A
a (sa) > V̌ A

b (š1) if ŨA > ϕ̌a1. Thus s∗ = š1 if ŨA ∈ (ϕ̌a1, ϕ̌
h
a], and s∗ = sa if

ŨA ∈ (ϕa, ϕ̌a1], where either interval may be empty.
(viii) ŨA ≤ ϕa. Analogously to subcase (iv), V̌ A

a (s) is strictly decreasing for s ≥ 0, so
s∗ = 0.
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Combining cases (i) and (vi)-(viii) produces:

s∗ =



sc if ŨA > ϕ̌c

š1 if ŨA ∈ (ϕ̌13, ϕ̌c]

š3 if ŨA ∈ (ϕ̌h
a, ϕ̌13]

š1 if ŨA ∈ (ϕ̌a1, ϕ̌
h
a]

sa if ŨA ∈ (ϕa, ϕ̌a1]

0 if ŨA ≤ ϕa.

It is straightforward to verify that at most one of the regions for which s∗ = sa is non-empty.
Summarizing the conditions for cancellation, when š3 > 0 A cancels the project in phase

1 if ŨA ≤ ϕa. When š1 ≤ 0, A cancels when ŨA ≤ −v/2 if p < 2q and ŨA ≤ v(q − p)/p
if p > 2q. As ŨA is independent of v and negative and decreasing in v2 when r < 1/2, we
conclude that A cancels when v2 is sufficiently large.
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