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1 Introduction

Most developed economies face rising healthcare expenditures. In many countries

the healthcare sector grows faster than the economy as a whole (OECD 2021). One

of the instruments that governments have to curb this expenditure growth is demand

side cost sharing. The effect of demand side cost sharing on healthcare utilization is

well known. As cost sharing increases, healthcare becomes more expensive for the

individual and demand for treatments falls. It is less clear whether and to which

extent demand side cost sharing induces people to forgo low value care only (New-

house and the Insurance Experiment Group 1993; Schokkaert and van de Voorde

2011).

The traditional view is that health insurance subsidizes health consumption

thereby inducing people to get (expensive) treatments with small health benefits.

Economists tend to refer to this as moral hazard. As the social costs (in contrast

to an individual’s out-of-pocket –oop– expenditure) of such treatments exceed their

value (utility gain), an increase in demand side cost-sharing that reduces moral haz-

ard is seen as welfare enhancing. The traditional trade off is between this increase

in efficiency (due to reduced moral hazard) and the increased oop risk faced by a

risk averse agent.

Here we focus on behavioral hazard which refers to the case where cost-sharing

leads patients to forgo valuable treatments (Baicker, Mullainathan, and Schwartzstein

2015). If a patient decides to skip a treatment where value exceeds costs then social

welfare is reduced. In this paper, we concentrate on the case where people skip or

postpone treatment because it is too expensive.

The goal of this paper is to develop a simple model that can be estimated with

aggregate data to identify whether demand side cost sharing has negative health

effects. In particular, we are interested in the mechanism where demand side cost

sharing reduces health because valuable treatments become too expensive. We start

from the following two ideas. First, if demand side cost sharing reduces valuable

healthcare by making it (too) expensive, this effect will be stronger for people on

low income. Health is a normal good and people with high (enough) income pay

for valuable treatments even if they become expensive in terms of oop expenditure.

Low income can force a patient to postpone or forgo treatment due to liquidity

constraints. Second, if there is a substantial demand reduction for high value care,

we should be able to detect this in aggregate mortality statistics.

To identify the health effects of cost-sharing we use mortality statistics of Eu-
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Figure 1: Mortality in NUTS 2 regions in Europe
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rostat at the NUTS 2 (Nomenclature of Territorial Units for Statistics) regional

level. Figure 1 illustrates NUTS 2 regions used in this paper. Mortality varies by

region/year/age/sex. In regions where the percentage of people on low income is

high and demand side cost sharing is high, we expect to see high mortality. Since

we have panel data, we control for NUTS 2 fixed effects.

Measuring the generosity of a health insurance system is non-trivial. Systems

tend to combine coinsurance with health expenditure caps, like a deductible. This

leads to non-linearities in the oop price of healthcare. To address this, we introduce a

model that links observed variables related to mortality, poverty, oop expenditures

and people forgoing treatment because it is too expensive. The combination of

the model and these variables allows us to identify the mechanism from reduced

health insurance generosity via poverty to people forgoing treatment thereby raising

mortality.

Figure 2 summarizes our main results in the following way. For each country in

our data, we consider the NUTS 2 region where poverty is highest and therefore the

effect likely to be the strongest at the regional level. Using the estimated model, we

simulate the effect of a 500 euro increase in oop on mortality. We report this effect

as the increase in deaths (due to the increase in oop) per 1000 dead. The motivation

for this measure is two-fold. First, mortality is –thankfully– low and hence the effect

of a change in oop on mortality is going to be (very) small. Reporting the increase

in mortality per 1000 dead helps to interpret the numbers. Below we also present

this measure for diseases that have similar orders of magnitude, like pneumonia.

Second, in our model this measure (per 1000 dead) is age-independent. That is, the

number of people dying due to an increase in oop varies with age (as 25 year olds

are less likely to die than 80 year olds). But the fraction of people dying due to the

oop increase as a fraction of the total number of deceased is the same across age

(and gender). This formulation reduces the number of parameters that we need to

estimate and fits the data rather well.

The blue bars indicate the average simulated effect of the 500 euro increase for

this region within each country; the black lines indicate the 95% probability interval

of the effect. The four countries with the biggest effects –Bulgaria, Greece, Hungary

and Romania– have the highest poverty levels in our sample. For these countries

we can easily see that the 95% probability interval of the effect is bounded away

from 0. For the Scandinavian countries, Slovenia and Switzerland the effects are

close to zero at the region level because poverty is very low (even in the NUTS 2

region with highest poverty level per country). Another potential reason for small
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simulated effects is a government scheme targeted at the poor helping to finance

healthcare expenditures. The poor then face lower oop than our country wide oop

variable would suggest.

Figure 2: Increase in number of deaths per 1000 dead due to a 500 euro increase in

oop for the region in each country where poverty is highest.

The results suggest the following policy implications. An increase in oop has a

measurable/significant effect on mortality in regions where poverty is high. Policies

to address this include a scheme that subsidizes healthcare expenditure (on top

of health insurance) for poor people; e.g. through means-tested cost-sharing. A

downside of such a targeted intervention is a higher marginal tax rate at low income

levels contributing to a poverty trap. Indeed, if by earning more, the oop subsidy

falls, the increase in net income is reduced. This makes such an increase in income

less attractive. Alternatively, a government can introduce co-payments that vary

with the cost-effectiveness of the treatment. Treatments with high value added
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would then feature a low co-payment to prevent people from postponing valuable

care. This can also help to reduce mortality associated with cost sharing (Chernew

et al. 2008).

This is not the first paper to consider the effects of demand side-cost sharing on

mortality. There is a string of recent papers using innovative methods and (mostly)

individual level data to identify the causal effect of health insurance on health and

mortality. There are a number of issues when identifying this effect of health insur-

ance on health and mortality using individual level data. First, mortality is a rare

event at most ages. Hence, identifying the effect is difficult, especially if the changes

in oop are small. Second there is the selection effect that people with low health

status tend to buy (generous) health insurance (as they expect high expenditure).

This can bias results in the direction that individuals with (generous) insurance tend

to have adverse health outcomes (e.g. high mortality). Moreover, cost-sharing tends

to be non-linear with e.g. a cap on expenditures that have to be paid oop as with

a deductible. In this case, people with high care use tend to face low (marginal)

treatment prices; for example, because they filled up their deductible. As low health

status is likely to increase care use, people facing low marginal prices (suggesting

generous insurance) are likely to have experienced adverse health outcomes.

A number of papers use the Medicaid eligibility expansion of the Affordable Care

Act which was introduced in different US states at different times. This allows for

a diff-in-diffs identification strategy. Using individual level data, these papers have

shown that the Medicaid expansion (more generous health insurance coverage) re-

duced mortality (Borgschulte and Vogler 2020; Miller, Johnson, and Wherry 2021).

Other papers, focusing on particular causes of death, find similar results: the Med-

icaid expansion was associated with lower cardiovascular mortality in middle-aged

adults (Khatana et al. 2019) and lower 1-year mortality among patients with ESRD

initiating dialysis (Swaminathan et al. 2018).

Others analyze Medicare part D prescription drug coverage where the end-of-

year price is non-linear in expenditure. One paper uses enrollment month (related

to birth month) to get exogenous variation in end-of-year expenditure for people

aged 65 (Chandra, Flack, and Obermeyer 2021). The main finding is that increases

in the oop costs of drugs, reduce drug use including use of high value treatments.

This, in turn, raises mortality. Another approach is to show that the implementation

of Medicare Part D increased the use of drug treatments for cardiovascular disease

which reduced mortality (Huh and Reif 2017). By using exogenous exit of plans in

the Medicare Advantage market to control for endogeneity problems, it is possible
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to show that more generous prescription drug coverage leads to lower mortality

(Abaluck et al. 2020).

Finally, Goldin and coauthors use an experiment where a subset of people who

should buy health insurance under the Affordable Care Act were reminded that

they would face a financial penalty if they did not comply. This reminder tended to

induce people to buy insurance instead of remaining uninsured (Goldin, Lurie, and

McCubbin 2020). Mortality turns out to be lower among the people who received

the reminder compared to the control group who were not reminded in this way.

Compared to these papers on health insurance (generosity) and mortality, our

paper differs along the following lines. First, we use European instead of US data.

The advantage is that within a European country health insurance is more homo-

geneous than in the US. Within a US state or county, people may have generous

employer sponsored insurance, benefit from Medicaid or Medicare or have no insur-

ance at all. Hence, a change in Medicaid coverage may have no detectable effects at

the aggregate level (while an effect can be found with individual level data). In Eu-

ropean countries a number of health insurance features are determined nationally.

Consider the first two rows of the OECD Health Systems Characteristics Survey

(https://qdd.oecd.org/data/HSC) showing the share of the population obtaining

basic primary health care coverage through automatic or compulsory insurance cov-

erage. For all European countries this is above 90% and for most 99% or 100%. For

the US this is less than one third. Hence, country or region wide statistics in Europe

give a better picture of the situation applying to most citizens in that region than

in the US.1

Moreover, individual level data sets tend to be within a country not across coun-

tries. But the variation in oop across countries tends to be bigger than within a

country. Hence, across country data –although aggregated at the region level– helps

us to identify the effect of oop on health and mortality.

Second, we show that mortality is high in regions where both oop and poverty are

high. This follows the literature showing that healthcare consumption is liquidity

sensitive (Gross, Layton, and Prinz 2020; Nyman 2003). People on low income

tend to postpone or forgo valuable treatments if these are expensive. This focus on

low incomes can imply that we under-estimate the mortality effect of cost-sharing

1This does not imply that the aggregate statistics perfectly represent everyone’s insurance

situation (e.g. some people may buy complementary insurance where others do not), but it may

be representative enough to identify the interaction effect of poverty and oop payments we are

interested in.
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if higher incomes also forgo valuable treatments due to oop (Brot-Goldberg et al.

2017; Chandra, Flack, and Obermeyer 2021). This is then not so much caused by

liquidity problems but by other forms of behavioral hazard. In this sense, the results

below are a lower bound on the mortality effects of cost-sharing.

Third, we use the regional structure of the Eurostat data. We analyze the effects

of our oop variable times poverty interaction on mortality per age-gender class at

the NUTS 2 regional level. This helps to solve the following potential endogeneity

issue. A country with a population that has low health status (across ages), decides

to have, say, generous health insurance to help people improve their health. This

causal effect is in the opposite direction from the one we are interested in. We avoid

this problem by considering within a country how health per region varies with oop

and poverty, while using NUTS 2 fixed effects to correct for other factors affecting

health. By analysing health/mortality per age cohort, our results are not affected

by a country’s or region’s age distribution. By filtering out these other effects we

mitigate power issues associated with the use of mortality data at the regional level

(Black et al. 2021).

Fourth, Eurostat variables based on the EU-SILC survey allow us to zoom in on

the relevant causal mechanism. This survey asks people whether they had unmet

medical needs in the past months and if so the reason for the unmet needs. One of the

answers is that treatment was postponed or skipped because it was too expensive.

This allows us to simultaneously estimate the fraction of people in a NUTS 2 region

that forgo treatment because it is too expensive and the effect of unmet medical

needs on mortality. In this way, we capture that in regions where the oop × poverty

interaction is high, more people postpone treatment because it is too expensive and

these unmet medical needs raise mortality in the region.

Finally, our focus on the oop × poverty interaction distinguishes our paper from

the literature on the effect of income and wealth on health (Chetty et al. 2016;

Mackenbach et al. 2008; Semyonov, Lewin-Epstein, and Maskileyson 2013) where

papers use cross country data. This literature typically finds that lower income

and wealth is associated with lower health status, although the causal mechanism is

not clear (Cutler, Lleras-Muney, and Vogl 2011). Two possible mechanisms are that

higher income leads to more expenditure on treatments (normal good) and therefore

better health. Alternatively, healthier people are more productive and earn higher

incomes. The combination of fixed effects and the use of the survey question on

unmet medical needs allows us to zoom in on the mechanism where high oop ×
poverty interaction leads to unmet medical needs and hence to low health status
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and high mortality.

In this way, our approach does not suffer from the endogeneity problem with

individual level data discussed above where low health status is correlated with gen-

erous insurance (at the margin). In our data, the unit of observation is a gender/age

category at the regional level. The health status of such a unit, has (almost) no effect

on our country wide oop variable.

Summarizing, compared to papers using individual level data our approach is

more broad brush and less precise in estimating the size of the effect of insurance

generosity on mortality. To illustrate, we do not determine the mortality effect of a

1% change in a deductible. We estimate the mortality effect of a 500 euro increase

in oop. We do not have data on the oop details of each country’s health insurance

system, like what is the coinsurance rate for different types of treatments, which

treatments are exempt from oop etc. Even if we had such detailed institutional

data, it is not obvious how one would summarize the different systems in a way

that makes them comparable across countries. Instead we use the fraction of oop

payments in total healthcare expenditure, OOP, as a summary measure of a health

insurance system’s generosity. The theory section derives that OOP and the fraction

of people postponing treatment because it is too expensive are parametric functions

of the underlying ”generosity parameters” coinsurance rate and deductible level.

This derivation allows us to interpret the relation between OOP and mortality.

Although results based on aggregate data are less precise than those based on

individual level data, our approach is more robust in the sense that it applies across a

number of countries instead of a particular sub-population (like 65 year old Medicare

users in the US). Although we do interpret our results using the size of the effect, our

main goal is to establish that an increase in OOP in a poor region increases mortality.

In particular, we quantify how sure we are that this effect is positive.

The next section presents a model explaining the relationship between the vari-

ables mortality, poverty, OOP and the fraction of people forgoing treatment because

it is too expensive. Then we describe the Eurostat data that we use. We explain the

empirical model that we estimate. Estimation results are presented for the baseline

model and we show that these are robust with respect to a number of our modeling

choices. We conclude with a discussion of the policy implications. The appendix

contains the proofs of our results and more details on our data and estimation re-

sults. The online appendix is the html version of this paper which includes –per

section– the python code that is used in each section’s analysis.2 This is a final

2See the github repository: https://github.com/janboone/out_of_pocket_payments_and_
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advantage of using data at the regional level. The repository contains the python

code that gets the data from Eurostat so that each step of this analysis can be

replicated. The data can be downloaded from DataverseNL (Boone 2022). Most

individual level data sets cannot be freely shared.

2 Theory

The relevant variables in our data are mortality per region/year/age/sex category,

OOP measuring the percentage of healthcare expenditure paid out-of-pocket (oop),

the poverty rate and the fraction of people per region postponing or forgoing treat-

ment because it is too expensive. We introduce a model to explain how these

variables are related.

Consider a population (of a certain age and gender) in an EU region where a

fraction α ∈ 〈0, 1〉 has low income l and fraction 1−α high income h. Let πj denote

the probability that someone with income j = l, h falls ill. As is well known, low

income people tend to have a lower health status (Cutler, Lleras-Muney, and Vogl

2011). We capture this by assuming πl > πh. People on low income may have a less

healthy diet, exercise less etc. due to either the cost of or knowledge about healthy

lifestyle choices. This makes it more likely that they fall ill.

Generally speaking, oop payments tend to take two forms that we want to cap-

ture: a coinsurance rate, which we denote ξ ∈ [0, 1], and a maximum expenditure,

which we denote D (for deductible). Some systems have a combination of the two.

Conditional on falling ill, there is a probability ζi ∈ [0, 1] that the patient is

advised to get treatment i at cost xi for i in the set of ”illnesses” I. We define Iξ

as the subset of I where ξxi < D and oopi = ξxi and set ID where ξxi ≥ D and

oopi = D. To keep things simple, we assume that ζi is exogenous to the patient.

We model the treatment decision on the extensive margin only: an agent accepts or

rejects the treatment proposed by a physician.3 A pure coinsurance system has ξ < 1

and Iξ = I. A pure deductible system ξ = 1 and ID non-empty. A combination of

the two has ξ < 1 and there is a maximum on the oop payment. Health insurance

systems in Europe tend to have such maximum oop expenditure.4 An increase in

health.
3A further simplification is that we do not analyze dynamic incentives like: accepting this

treatment fills up my deductible which makes future treatment (weakly) cheaper for me.
4See question 12 in https://qdd.oecd.org/data/HSC specifying for most European countries

a spending cap.
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either ξ or D is interpreted as making health insurance less generous.

Whereas with individual level data one can determine whether an individual

faces a positive treatment price at the margin (E.g. using the end-of-year price as

in Keeler, Newhouse, and Phelps 1977; Ellis 1986), this is not possible with the

aggregate data that we use here. Hence, we rely on an aggregate summary variable,

denoted OOP, measured as oop payments over total healthcare expenditure. That

is, the fraction of healthcare expenditure paid by patients oop. We interpret this

variable as capturing the generosity of the health insurance system. To illustrate, if

healthcare is free at point of service, OOP equals zero; if there is no health insurance

at all, OOP equals 1. In a pure coinsurance system with rate ξ applying to all

treatments, OOP equals ξ. It is the cap on oop expenditure (like a deductible) that

complicates the relation between OOP and healthcare use. The challenge then is to

capture changes in ξ and D although we do not directly observe these variables in

the data. This is what the model sets out to do.

If a patient receives treatment i ∈ I, we denote her (expected) health σi, while

without treatment (expected) health equals σ0 with 0 ≤ σ0 < σi ≤ 1.5 Health is

normalized at value one for a patient who does not fall ill. The trade off between

health and oop is captured by σ0/σi < 1 and we simply assume that utility is

multiplicative in health and consumption. That is, consumption yields higher utility

if you are healthier. We model the patient’s treatment decision as:

νσiu(yj − oopi) > σ0u(yj) (1)

where utility u(.) is determined by how much money can be spent on other goods:

income yj minus oop in case of treatment and yj if no treatment is chosen. The

utility function u(.) is increasing and concave in consumption: u(.), u′(.) > 0 and

u′′(.) < 0. Further, parameter ν captures other factors than pure financial ones

affecting a patient’s treatment choice.6 If inequality (1) holds, the patient accepts

treatment i.

In our data, we have a variable ”unmet medical needs” based on a number of

motivations: treatment is too far away to travel to, there is a long waiting list,

the patient is scared to undergo treatment etc. To make our point, it is enough to

assume that such factors affect utility in a simple multiplicative way. To illustrate,

if the patient has to travel far for treatment, utility is reduced by multiplying it with

5To ease notation we do not let σ0 vary with i.
6Note that we do not model the decision to buy insurance. In Europe (almost) all citizens are

covered by automatic or mandatory insurance.
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a value of ν < 1. Agents differ in ν and the cumulative distribution function of ν is

given by G(ν) and its density function by g(ν). Other factors can include waiting

time till treatment, belief that the condition will resolve itself without intervention,

poor decision making e.g. with a focus on the short term thereby undervaluing the

benefit of treatment. For some proofs in the appendix it is convenient to assume

that G is a Pareto distribution.

The probability that a patient with income yj accepts treatment i offered by a

physician equals

δji = 1−G
(
σ0
σi

u(yj)

u(yj − oopi)

)
that is, ν is big enough that inequality (1) holds. With probability G

(
σ0

σi

u(yj)
u(yj−oopi)

)
the patient decides to postpone or forgo treatment i.

The probability that a patient postpones or skips a treatment because it is too

expensive is given by

G

(
σ0
σi

u(yj)

u(yj − oopi)

)
−G

(
σ0
σi

)
(2)

These are agents ν that would have chosen treatment i if it were free (oopi = 0

and u(yj)/u(yj − oopi) = 1) but who forgo treatment now that it costs oopi > 0.

The probability G(σ0/σi) captures factors like waiting lists or the patient hoping

that the health problems resolve themselves without treatment. That is, reasons for

postponing treatment not related to oop payments.

In the proof of the lemma at the end of this section, we show that the probability

of accepting treatment, δji , is increasing in income yj and decreasing in oopi, as one

would expect.

Note that this model differs from a standard Rothschild and Stiglitz –R&S–

health insurance model (Rothschild and Stiglitz 1976) in the following way. In an

R&S model income plays no role and people with low health status have generous

insurance coverage. Hence, they would not postpone valuable care. In our model,

people with low health tend to have low income and may skip valuable treatment if

the oop expense is high. This negatively affects their health.

An agent’s health is affected by the probability of falling ill and then getting

treatment (or not). We assume that agents’ mortality is affected by health in the

following way, where we define mortality m as the probability of dying in a given

period.

ln(magt) = ln(ηag) + γ ln

(
ma−1,g,t−1

m̄a−1,g

)
− (α(1− πl) + (1− α)(1− πh)) (3)
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−απl
∑
i∈I

ζi(δ
l
iσi + (1− δli)σ0)− (1− α)πh

∑
i∈I

ζi(δ
h
i σi + (1− δhi )σ0)

where we use the following subscripts: age a, gender g ∈ {f,m}, calendar year t. In

words, log mortality in a region depends on the biology of age and gender, ηag. As

people get older, they tend to become less healthy and are more likely to die. We

define this effect as independent of country or year (in the period that we analyze).

Then there are a number of effects that increase or decrease mortality in a region

compared to ηag.

The health of the age-gender cohort in the previous period: if in a NUTS 2 region

there was a shock in t−1 –when this cohort was aged a−1 – that increased mortality

above the average (across years and regions) mortality for this cohort, we interpret

this as a negative health shock. For the people that survived in this cohort in this

region, this health shock can affect their mortality in period t. This is captured by

the coefficient γ.7

People who do not fall ill (α(1−πl)+(1−α)(1−πh)), have the highest health level

(normalized to 1) and hence reduce mortality to the biggest extend. People who

do fall ill with i and get treatment (απlζiδ
l
i and (1 − α)πhζiδ

h
i ), get health σi ≤ 1

and reduce mortality to a smaller extent. Finally, people falling ill but forgoing

treatment lead to the smallest reduction σ0 in mortality.

As we show in the proof of the lemma below, we can write the expression for log

mortality as:

ln(mag2t) = ln(ηag) + µ2 + γ ln

(
ma−1,2,g,t−1

m̄a−1,g

)
+ βpovertyα2t + βunmetUnmet2t (4)

where subscript 2 indicates that the variable varies with NUTS 2 region, µ2 denotes

NUTS 2 fixed effects, poverty α varies with NUTS 2 region and calendar year and

Unmet denotes the fraction of people indicating unmet medical needs in a region in

year t.

In our data, the variable Unmet varies with NUTS 2 region and year and not by

age or gender. Hence, in terms of our model, we define this variable as follows:

Unmet2t =
∑
i∈I

ζi(α2tπ
l(1− δlict) + (1− α2t)π

h(1− δhict)) (5)

with treatment probability δji varying with country c and year t because oop varies

with countries over time.
7Although we think of γ > 0, we allow for γ < 0. The interpretation in the latter case would

be that some people with low health status in cohort a− 1 passed away early, increasing average

health for people remaining in this cohort.
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Further, in our data we have the variable OOP defined as oop payments as a

percentage of healthcare expenditure. In terms of our model, we write this as

OOP =

∑
i∈I ζioopi(απ

lδli + (1− α)πhδhi )∑
i∈I ζixi(απ

lδli + (1− α)πhδhi )

where ζi(απ
lδli + (1− α)πhδhi ) denotes the fraction of people accepting treatment i.

The numerator of OOP contains the oop payments oopi and the denominator expen-

ditures xi. If Iξ = I, it is clear that OOP = ξ. Because ID is non-empty (European

countries have a maximum oop payment), the expression for OOP is actually non-

trivial. We can also write OOP as the ratio of average oop per head and average

healthcare expenditure per head:

OOPct =
oopct
x̄ct

(6)

In our data these variables vary by country and year.

Finally, using equation (2) our model allows us to formalize the fraction of people

that forgo treatment because it is too expensive: fraction of poor people who need

treatment, απl, forgoing treatment because it is too expensive plus the fraction of

rich people, (1− α)πh, forgoing treatment for this reason:

TooExp = απl(
∑
i∈I

ζi

(
G

(
σ0
σi

u(yl)

u(yl − oopi)

)
−G

(
σ0
σi

))
(7)

+(1− α)πh(
∑
i∈I

ζi

(
G

(
σ0
σi

u(yh)

u(yh − oopi)

)
−G

(
σ0
σi

))
In our data, TooExp varies with Nuts 2 region and year. The following lemma

summarizes the main results from the model and presents the equations that we es-

timate below. The innovation is to view equations (6) and (7) as being parametrized

by the underlying parameters ξ and D which are not directly observed in our data.

We prove that this leads to an equation where TooExp is a function of OOP and

poverty.

Lemma 1 Healthcare demand δ = 1−G(.) is increasing in income yj and decreasing

in oopi (ξ or D). We write the expression for gender g mortality of age cohort a in

Nuts 2 region 2 at time t as:

mga2t =
eβag

1 + eβag
e

(
µ2+γ ln

(
ma−1,g,2,t−1

m̄a−1,g

)
+βpovertyPoverty2t+βunmetUnmet2t

)

where βpoverty, βunmet > 0. The linear expansion of TooExp with respect to OOP can

be written as

TooExp2t = b0,2 + b0,t + OOPctx̄ct (boop,c + binteraction,cPoverty2t)
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We model ηag as a sigmoid of age and gender fixed effects, βag. This makes sure

this part of the probability of death is between 0 and 1. We multiply this baseline

probability with a multiplier capturing the other effects. In particular, NUTS 2

region fixed effects which capture regional variation in the probability of falling ill.

Whether this age cohort experienced a health shock in the previous period. Poverty

level and the fraction of people with unmet medical needs in the region in year t.

If the sum of these terms is negative, the multiplier is less than 1 and mortality

for this gender/age/region/year combination is reduced compared to the baseline

probability given by the sigmoid. If the sum of the terms is positive, mortality for

this observation is higher than the baseline probability.

We use a linear expansion of TooExp in terms of OOP. The appendix shows how we

derive this relation using the policy variables ξ and D which affect OOP and TooExp

simultaneously. It turns out that there is a direct effect of OOP on TooExp and an

interaction effect with the fraction of people below the poverty line in a region. We

show that boop, binteraction > 0: a region that lies in a country with high OOP tends to

have high unmet needs and especially so if the region features a high poverty rate.

As explained in the proof of the lemma, the linear expansion of TooExp in OOP and

OOP × Poverty interaction does not determine the intercept b0. Therefore, we allow

b0 to vary by region and year: b0,2 + b0,t.

Figure 3 illustrates this approximation of the relation between (log-odds) TooExp

and OOP for simulated values in the model above. We simulate data for a country

with varying values for ξ and D. Then both OOP and expenditure per head vary

leading to the graph in the left panel of Figure 3 (see web appendix for details). For

this simulated data, the approximation where the (log odds of) fraction of people

forgoing treatment because it is too expensive depends linearly on OOP × Poverty

seems reasonable. As shown in the proof of the lemma, we need to multiply OOP and

OOP × Poverty by healthcare expenditure per head because the underlying changing

variable is not the endogenous OOP but the parameters ξ and D. As illustrated in

equation (6), the relation between changes in D and OOP is multiplied by expenditure

per head: dOOP/dD ∝ 1/x̄ct.

The right panel of Figure 3 illustrates this relation for regional data from Roma-

nia. Again a linear approximation looks reasonable. The size of the dots indicates

the level of OOP for that observation. To identify the colors for the different Roma-

nian regions, a color version of the pdf (or the website) is useful.
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Figure 3: The simulated relation between fraction of people who forgo treatment

because it is too expensive and OOP measure for different values of ξ, D (left panel)

and this relation for NUTS 2 regions and years in Romania (right panel).

3 Data

The data that we use is from Eurostat’s regional database and provides for NUTS 2

regions population size and number of deaths per age-gender category. In principle,

we have data on 14 countries and 78 NUTS 2 regions for the years 2009-2019, ages 35-

85 for women and men. The years 2009-2019 were chosen because, at the time of the

analysis, data on poverty was available from 2009 onward and data on the number of

deaths ran till 2019. We start at age 35 because at ages below 35, mortality is so low

that there is hardly a difference between mortality in regions with different poverty

levels (see Figure 4 below). For ages above 85 population numbers per region get

rather low. We drop NUTS 2 region-year combinations where for an age-gender

category –due to reporting issues or people moving– the number of deaths in a year

exceeds the population size at the start of the year. For the baseline analysis, we

focus on observations where we have complete records on mortality, the fraction of

people indicating they postponed treatment because it was too expensive and oop

expenditure. We come back to this in the robustness analysis where we estimate

the model including observations with missing values.

Table 1 shows the summary statistics for our variables. We have more than 50k

observations.8 The average population size per region-age-gender category is about

8A rough estimate of the max. number of observations that we could have is: 78 (regions) ∗ 10

(years) ∗ 50 (ages) ∗ 2 (genders) = 78k. Missing observations on some of the key variables reduces
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7500 and the average number of deaths 100. Median population size per category

equals 6500 and median number of deaths 56. In our data, the percentage of people

dying in a NUTS 2/year/age/gender category (mortality) equals 2% on average

with a maximum of 20% for some region and age combination.

Table 1: Summary statistics main variables

count mean std min median max

population 52612.00 7491.28 4805.28 440.00 6477.00 36117.00

deaths 52612.00 103.19 126.49 0.00 56.00 1033.00

mortality 52612.00 2.12 2.94 0.00 0.81 20.72

poverty 50878.00 16.54 6.58 2.60 15.30 36.10

deprivation 52612.00 11.23 12.78 0.00 3.40 52.30

too exp. 52612.00 2.00 3.09 0.00 0.60 16.00

unmet 52612.00 5.81 4.08 0.00 4.80 20.90

out-of-pocket 52612.00 21.99 8.88 8.83 19.46 47.74

voluntary 52612.00 3.13 3.07 0.33 1.59 15.20

expend. per head 52612.00 3386.59 2691.25 307.69 3559.49 8484.88

We use two measures for poverty; each of these measures comes from the EU

statistics on income and living conditions (EU-SILC) survey. The first is ”at-risk-

of-poverty rate” that we refer to as poverty. This is a relative poverty measure:

the share of people with disposable income after social transfers below a threshold

based on the national median disposable income. The material deprivation measure

(denoted deprivation) refers to the enforced inability to pay unexpected expenses,

afford adequate heating of the home, durable goods like a washing machine etc. See

the appendix for details.

In our data, the (unweighted) average (across regions and years) percentage

of people at risk of poverty equals 16% with a maximum of 36%. For material

deprivation the numbers are 11% and 52%. These measures vary by NUTS 2 region

and year but not by age or gender. We use deprivation in our baseline analysis

because it captures more closely the idea of postponing treatment due to financial

constraints. The poverty variable is used in a robustness check.

Also from the EU-SILC survey, we use the variable capturing unmet medical

needs because the forgone treatment was too expensive (too exp). The variable

unmet measures percentage of people in need of healthcare that postpone or forgo

this to 50k.
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treatment because it is either too expensive, the hospital is too far away, there is

a waiting list for the treatment, the patient hopes that symptoms will disappear

without treatment, the patient is afraid of treatment or has no time to visit a

physician. As explained in the model above, our analysis uses both too exp and

unmet (which includes too exp as reason for unmet medical needs) as variables.

The measure OOP that we use in the baseline model, is based on household

oop payments (out-of-pocket). In particular, this measures the percentage of

healthcare expenditures paid oop. This varies by country and year. The higher

OOP, the less generous the healthcare system is (in terms of higher coinsurance ξ or

deductible D in the model above). We expect that high OOP is especially problematic

in regions with a high percentage of people with low income.

In a robustness analysis we consider the sum of oop and payments to voluntary

health insurance (voluntary) as a percentage of health expenditures as our OOP

measure. The reason why we also consider voluntary insurance is that basic or

mandatory insurance packages can differ between countries. If people are willing

to spend money on voluntary insurance, it can be the case that this voluntary

insurance covers treatments that people deem to be important. Put differently, a

country that finances all expenditure (”free at point of service”) for a very narrow set

of treatments would appear generous if we only used oop payments. The narrowness

of this insurance would then be signalled by people buying voluntary insurance to

cover other treatments.

As can be seen in Table 1, out-of-pocket is the most important component of

the two OOP inputs. Percentage of healthcare expenditure paid oop is a multiple of

the percentage financed via voluntary insurance (both in terms of the mean and of

the minimum, median and maximum reported in the table). Therefore, the baseline

model works with oop payments (only).

Finally, as shown in Lemma 1, healthcare expenditure per head (expend per

head) affects how OOP influences the fraction of people forgoing treatment because

it is too expensive. Expenditure per head is on average 3300 euro for the countries

in our data. But the variation is big with a standard deviation of almost 2700 euro.

Figure 4 (left panel) shows average mortality as a function of age for women and

men. This is the pattern that one would expect: clearly increasing with age from

age 40 onward and higher for men than for women (as women tend to live longer

than men). Figure 4 (middle panel) shows the effect we are interested in: mortality

is higher in regions where the interaction OOP × Poverty is high than where it is

low and this difference increases with age. Both for women and for men, we plot
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per age category the difference between average mortality in regions that are at

least 0.5 standard deviation above the mean for OOP × Poverty and regions that are

0.5 standard deviation below the mean. Around age 82, this mortality difference

equals approximately 4 percentage points. In the raw data, for 100 women aged

82, there are 4 additional deaths in regions with high OOP × Poverty compared to

regions with low interaction. Note that this plot of the raw data does not correct

for other factors, like the poverty level itself, and thus over-estimates the size of the

effect of OOP × Poverty on mortality. The right panel in this figure does a similar

exercise with the fraction of people reporting unmet medical needs. Mortality is

higher in regions where unmet needs are at least 0.5 standard deviation above the

mean compared to regions where it is 0.5 standard deviation below the mean.

The observation from the figure that the difference between the two sets of regions

is approximately zero for people below 35, is our motivation to include ages above 35

only in our data. Further, the difference in mortality between the regions increases

with the mortality level in the left panel. This is in line with our specification in

Lemma 1 where unmet needs has a multiplicative effect on the underlying mortality

rate modeled by eβag/(1 + eβag).

Figure 4: Mortality and difference in mortality between regions with high and low

interaction OOP × Poverty and high and low unmet medical needs.

4 Estimation

In this section, we explain how we estimate the equations in Lemma 1.
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4.1 Empirical model

First, we estimate a binomial model with population size as the number of draws

and deaths as the number of events. We do this for every combination of NUTS 2

region, calendar year, age and gender in our data. The probability of k ≤ n deaths

out of a population n is then given by(
n

k

)
mk(1−m)n−k

where m denotes mortality, the probability of death. The advantage of modeling

k as a binomial distribution is that it automatically captures that the variance in

the proportion of deaths will be bigger if population size n is smaller. The equation

that we estimate for m2atg is given in the lemma. The coefficient we are especially

interested in is βunmet. This is the coefficient through which an increase in unmet

medical needs because of financial problems affects mortality.

Figure 4 illustrates that without the multiplicative specification for mga2t in the

lemma, the coefficients for βunmet, βpoverty would have to vary with age. Indeed, for

the young mortality is low even in regions with high poverty or high unmet needs.

This would have considerably increased the number of parameters that we need to

estimate.

The second equation captures how an increase in OOP affects the fraction of

people in a region that postpone or skip treatment because it is too expensive.

In our estimation we want to ensure that TooExp is between 0 and 1. For this we

assume that TooExp has a logit-normal distribution. That is, the log-odds of TooExp

is normally distributed.

We use the variables in Table 1 to capture their theoretical counterparts. As

mentioned, in the baseline specification we use deprivation as (absolute) poverty

measure and out-of-pocket as the measure for OOP. In robustness checks, we use at-

risk-of-poverty as (relative) poverty measure and include voluntary health insurance

expenditure as part of OOP.

4.2 Bayesian estimation

We use Markov Chain Monte Carlo (MCMC), in particular the NUTS sampler to

explore the posterior distributions of our parameters. For this sampler, we have the

guarantee that the whole posterior distribution is captured as long as we have enough

samples. Although this is an asymptotic result, we are confident that drawing four

chains of 2000 samples (1000 samples of which are used for tuning) is enough to
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cover the posterior distribution. In the appendix we discuss a number of checks on

this convergence.

It is not straightforward to put priors on the coefficients of the two equations in

Lemma 1. To illustrate, how strong is the reaction of mortality to a 0.1 increase in

the fraction of people reporting unmet medical needs? We are not aware of previous

studies looking into this and have no a priori information on the strength of this

effect. Therefore, we use a hierarchical model to determine the parameters of the

prior distributions. Details on the priors can be found in the online appendix.

In the robustness section, we have two checks on our model with missing obser-

vations. First, when we use at-risk-of-poverty instead of deprivation as measure for

low income. As can be seen in Table 1, poverty is reported less frequently by the

countries in our sample than the other variables. Second, when we allow for missing

observations in deprivation and unmet medical needs due to financial constraints.

We explain below how Bayesian estimation deals with missing observations without

imputing missing values.

5 Results

In this section we present the results of the estimation of the baseline model. Before

presenting the outcome of our estimation, we present graphically two checks of our

model.

5.1 model fit

Figure 5 gives an idea of the fit of the model in terms of predicting deaths per

gender/age/region/year category and the fraction of people postponing treatment

because it is too expensive.

The left panel shows observed number of deaths per category on the horizontal

axis and the posterior predictive for this on the vertical axis. For each row in our

data, we have observed number of deaths and a prediction of this number. In the

figure, we show the average prediction of deaths across the posterior samples. The

predictions are not perfect but do follow the 45-degree line closely.

The right panel shows the (log odds of the) fraction of people per region/year

indicating they went without treatment (for a while) because it was too expensive.

Two things are different in this panel compared to the left. First, this fraction does

not vary by gender and age. Hence, we do not have a prediction for each row in

21



our data. Second, this fraction TooExp is based on (EU-SILC) survey data where

we do not know the number of people interviewed. Hence, we cannot model this

as a binomial distribution where we predict the number of people indicating unmet

medical needs because of financial constraints.

Therefore, the right panel shows the observed and predicted fraction for TooExp

per region/year. The dots indicate the average posterior prediction of this log-odds

ratio. For small observed values of the TooExp (log-odds below−5 in the figure) there

is a range of predicted values. Although this range seems wide in log-odds space,

both the observed and predicted values are basically equal to zero. To illustrate, for

practical purposes it does not matter if a probability equals 0.0001 (log-odds of -9)

or 0.002 (log-odds of -6). Given our log-odds specification, the model cannot predict

a zero probability.

A final observation is that TooExp equals 0 for a number of region/year combi-

nations. To handle this numerically, we use a lower bound for the log-odds. This

corresponds to a probability of 0.0001 which is close enough to zero for our purposes.

The right panel shows this bunching for a number of observations slightly below −9.

Compared to the observed number of deaths, the predictions for TooExp seem

less accurate. This is to be expected as there are a lot fewer observations for this

variable compared to mortality. But all in all the fit does not seem unreasonable as

the points cluster around the 45-degree line.

Figure 5: Fit of estimated and observed mortality across all observations and ob-

served and predicted fraction of people indicating TooExp across NUTS 2 regions.

Another way to check how well the model fits, is to see how well it captures the
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age profile of mortality. This we present in Figure 6. The left panel shows the age

profile ηag = eβag/(1 + eβag). If the other terms in equation (4) equal 0, ηag gives

the probability of death for category ag. The right panel includes for every region

and calendar year the correction on ηag to yield mortality for that combination of

gender/age/region/year. On average, the model captures the age profile perfectly.

Figure 6: Fit of average mortality by age

The appendix presents two further checks of the model. Figure 9 shows the trace

plots for the parameters of interest. The figures in the left panel show the posterior

distribution of the parameters in the figure. The coefficients b oop, b interaction

vary by country and hence we have different colors for the distributions in these

graphs. The beta parameters do not vary with country (or another index) and

hence there is one color only. In the beta figures it is easy to see that there are four

distributions per parameter. These correspond to the four chains that are sampled

by the NUTS algorithm.

The right panels show the same samples but now ordered across the horizontal

axis as they were drawn. We check these plots for the following three features.

First, the plot should be stationary; that is, not trending upward or downward.

This implies that the posterior mean of the coefficient is (more or less) constant

as we sample. Second, there should be good mixing which translates in condensed

zig-zagging. In other words, the algorithm manages to draw values across the whole

domain of the posterior quickly after each other. Finally, the four chains cover the

same regions. All three features are satisfied for all coefficients in the right panel of

the figure.

Another check on the convergence of the algorithm are the r-hat values in Table 6.
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This table summarizes the posterior distribution for the slopes that we are interested

in. It provides the mean and standard deviation for each of these parameters, the

95% probability/credibility intervals and the number of effective samples for each

parameter. As the number of these samples is above 500 for all and above 1000 for

most parameters, this looks fine. The final column presents the values for r-hat for

each parameter. Since these are all equal (close) to one, we can be confident that

the NUTS algorithm converged for these parameters.

5.2 size of effects

Table 6 in the appendix presents the posterior values for each of the parameters.

Here we focus on the effect we are interested in: what is the increase in mortality

due to an increase in oop? As we show in the appendix, a 500 euro increase in oop

leads to the following increase in mortality:

dmga2t

mga2t

= βunmetTooExp2t(1− TooExp2t)500(boop,c + binteraction,cPoverty2t) (8)

Note that this increase in the number of deaths dmga2t per the number of deaths

mga2t is independent of age. This is due to our formulation of mortality in equation

(4) where we have a baseline mortality ηag and a deviation from this baseline based

on poverty and unmet medical needs etc. Figure 2 reports the expression in the

equation above multiplied by 1000. That is, we report the increase in deaths due to

the oop increase per 1000 deaths.

Note that the 500 euro change in OOP enters multiplicatively. In other words,

dividing the effect in Figure 2 by ten gives the effect of a 50 euro increase in OOP for

each country. In this sense, the choice of 500 euro is a matter of presentation.9

As the expression for dm/m varies with country, year and NUTS 2 region, Figure

2 summarizes our main findings in the following way. For each country we focus

on the region where deprivation is highest. This is the region where we expect

the mortality effect of an oop increase to be highest as many people could have

problems paying medical bills. Table 2 presents this region for each country in

our data together with the value of deprivation, the fraction of people with unmet

medical needs due to financial constraints and the country’s value for OOP. As the

table illustrates, the fraction of people indicating that treatment was too expensive

tends to be high when both deprivation and OOP are high.

9In this sense, the observation in Table 1 that in some countries expenditure per head is below

500 euro is not a problem here.
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Table 2: Region per country with highest fraction of material deprivation.

region country deprivation too expensive OOP

BG33 Bulgaria 0.40 0.08 0.43

HR04 Croatia 0.13 0.01 0.11

DK02 Denmark 0.04 0.00 0.14

FI1C Finland 0.03 0.00 0.18

EL63 Greece 0.28 0.07 0.37

HU31 Hungary 0.32 0.02 0.28

IE06 Ireland 0.07 0.02 0.12

LT02 Lithuania 0.12 0.01 0.32

NO01 Norway 0.02 0.00 0.14

RO22 Romania 0.32 0.11 0.21

SK04 Slovakia 0.11 0.01 0.20

SI03 Slovenia 0.05 0.00 0.12

SE22 Sweden 0.02 0.00 0.15

CH01 Switzerland 0.02 0.02 0.26

Substituting these values from the table into the expression for dm/m we get

the numbers in Figure 2. As mentioned, the blue bars give the average effect of

the 500 euro increase in oop on mortality. As we have the posterior distributions

for each of the parameters, we also have the posterior distribution for the mortality

effects per country (taking the uncertainty for all parameters into account). The

black horizontal lines present the 95% intervals around the mean effect.

The first observation is that for Bulgaria, Greece, Hungary and Romania the

95% probability interval is bounded away from zero. For these countries we can

clearly see that an increase in oop negatively affects health and increases mortality.

Why are the effects smaller for the other countries? The effects are basically

zero for the Scandinavian countries, Slovenia and Switzerland. As shown in Table

2, for these countries both deprivation and the fraction of people indicating unmet

medical needs because treatment is too expensive are small. For the Scandinavian

countries in the region with highest deprivation, TooExp is basically zero. It then

follows from equation (8) that the effect on mortality is (close to) zero.

The equation also features the following positive second derivative effect. As

OOP increases, TooExp increases (especially in regions with high deprivation). This
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increases the mortality effect of a further increase in OOP.10 Hence, the effect of an

increase in OOP is bigger, the higher the starting point of OOP. Countries where OOP is

already high, should be careful increasing it further because the detrimental health

effects are stronger. In contrast, low initial values for OOP and TooExp imply that

an increase in oop expenditure hardly affects health and mortality.

Another reason why the effects are small for some countries is that the underlying

parameters b oop, b interaction are small for these countries. This can be seen

in Table 6 in the appendix. If countries have policies to subsidize healthcare for

poor families, the effect of country wide OOP on these families’ unmet medical needs

is small as they actually pay a lower fraction of their treatments’ costs oop.

Summarizing, we can identify in our data the effect that an oop increase, raises

the number of people with unmet medical needs due to financial constraints and

hence increases mortality. This is especially the case in regions with high poverty

and high initial OOP. Confirming this effect was the main objective of the paper.

A follow up question is: how big is this effect? In order to interpret the size of

the oop effect, Table 3 presents the number of people dying from a particular cause

per 1000 dead.11 If we would consider all causes and add them up, the sum of the

second column in Table 3 would equal 1000. The table focuses on causes of death

with an order of magnitude comparable to the effects in Figure 2. The table is based

on EU wide data in 2017 for ages 35-85.

Note that the comparison of the numbers in the figure with the numbers in the

table is just to get an idea of the order of magnitude. But –strictly speaking– the

causes are not comparable. Nobody dies of an increase in oop in the way people

die from pneumonia. Due to an increase in oop, people may have gone without

treatment which can then lead to death from, say, lung cancer. Hence, one should

be careful in interpreting the simulation results with the numbers in Table 3. But

the table does provide some context in interpreting the size of the simulated effects.

The average mortality effect due to a 500 euro increase in oop in Romania is

approximately 33 (per 1000 dead). This exceeds deaths due to each of the causes

in the table. The average effects in Bulgaria and Greece are around 15 and 22

resp. which places them between deaths due to Alzheimer disease and diabetes. In

Hungary the order of magnitude is comparable to deaths due to transport accidents.

However, these are effects aggregated at the regional level (of the regions with

10Note that we use here that TooExp is smaller than 0.5: d(x(1−x))/dx = 1−2x > 0 for x < 0.5.

As Table 2 shows, TooExp is indeed below 0.5 in our data.
11We use the icd-10 classification here.
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Table 3: Number of people dying by cause (per 1000 dead) for ages 35-85 (EU

average).

icd10 per 1000

Malignant neoplasm of breast 23.66

Malignant neoplasm of prostate 16.16

Malignant neoplasm of bladder 9.72

Diabetes mellitus 22.59

Mental and behavioural disorders 26.85

Parkinson disease 9.17

Alzheimer disease 13.08

Pneumonia 19.74

Transport accidents 5.90

highest poverty levels). Suppose we are willing to assume that the incidence of the

increase in mortality due to the 500 euro increase in oop falls mainly in the group

of people who live in material deprivation. Table 2 shows this is around 30% for

the relevant regions in Greece, Hungary and Romania. To get these effects at the

region level, the effects among this specific group is an order of magnitude bigger.

Finally, there is also the following dynamic effect. As oop increases, 35 year

olds postpone treatments thereby lowering their health status. Part of this reduced

health leads to higher mortality among 35 year olds but some of these people survive

this year. Next year, they start with lower than average health which can then raise

mortality among 36 year olds. These dynamic feedback effects are captured by the

parameter γ in Lemma 1. As shown in Table 6 in the appendix, the estimated value

for γ is approximately 0.5 (coefficient beta lagged log mortality). As effects

accumulate across age and time, the effect for 85 year olds almost doubles (1 + γ +

... + γ50 ≈ 2). To illustrate, the long run effect of a 500 euro increase in OOP leads

to 66 deaths per 1000 dead for 85 year old Romanians in its poorest region.

One of the advantages of doing a Bayesian analysis is that we can easily show the

uncertainty surrounding our estimated effects. This is illustrated in Figure 7 where

we show for eight Romanian regions the probability that the mortality effect exceeds

a certain value. Region RO22 tends to have the biggest effect (reported in Figure

2), while the effect per 1000 dead is smallest in NUTS 2 region RO42. We are pretty

sure (probability close to 1) that in RO22 the effect is at least 15 per 1000 dead.

While in RO42 this probability is less than 40%. In RO42 we are 80% sure that the
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effect exceeds 10 per 1000 dead. This is due to the fact that both deprivation and

too expensive are substantially lower in RO42 compared to RO22.

Figure 7: Uncertainty of the mortality effects in eight NUTS 2 regions in Romania.

Summarizing the discussion on the size of the effect, we find the following. In

countries where poverty and OOP are high, a 500 euro further increase in oop leads

to an increase in mortality (per 1000 dead) that is comparable to causes varying

from Alzheimer disease to diabetes or breast cancer.

6 Robustness checks

In this section we discuss four different robustness checks. We explain each robust-

ness check and discuss the results. The details of these checks can be found in the

online appendix.
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First, we use the at-risk-of-poverty variable, instead of deprivation as our variable

capturing the fraction of people on low income. Second, we extend our definition

of oop costs with expenditures on voluntary health insurance. Third, instead of

focusing on the coefficient βunmet in the mortality equation, we work with TooExp

in this equation. The idea here is that other reasons for unmet needs (than too

expensive) may have bigger effects on mortality. If this would be the case, the

baseline model overestimates the effect of too expensive (and hence of oop) on

mortality. Finally, we allow for missing observations in our data for the variables

deprivation and TooExp. This means that we have almost 70k observations for the

other variables, as shown in Table 4.

Table 4: Summary statistics extended sample

count mean std min median max

population 69442.00 7079.73 5115.71 383.00 5835.00 36117.00

deaths 69442.00 96.61 124.32 0.00 48.00 1033.00

mortality 69442.00 2.07 2.88 0.00 0.79 20.72

deprivation 52612.00 11.23 12.78 0.00 3.40 52.30

too exp. 52612.00 2.00 3.09 0.00 0.60 16.00

unmet 69442.00 4.41 4.34 0.00 3.20 20.90

out-of-pocket 69442.00 24.02 9.04 8.83 25.16 47.74

expend. per head 69442.00 2922.90 2501.32 307.69 1522.08 8484.88

Comparing the numbers in this table (for the variables used in the robustness

analysis) with Table 1, we see the following. Population and number of deaths are

slightly smaller in the extended data, suggesting that smaller regions have missing

data on deprivation and fraction of people who postpone treatment because it is too

expensive. Deprivation and too expensive are the same in both samples. Unmet

is slightly lower in the extended data. Out-of-pocket expenditure is two percentage

points higher and expenditure per head 400 euro lower in the extended data. This

suggests that we have missing observations mainly in regions of poorer countries.

In two robustness checks we need to estimate our model taking missing observa-

tions into account. As shown in Table 1, we need to do this when using poverty as

our measure on low income instead of deprivation and not shrink our sample size.

And we do this in the last robustness check with many missing observations for

deprivation and too expensive.

In Bayesian analysis there is a natural way to deal with missing variables which
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is an improvement on two standard ways of dealing with this: (i) dropping observa-

tions (rows) with missing values (sometimes called complete case analysis) and (ii)

interpolating the missing values. The former would change our sample when com-

paring the results with poverty and with deprivation. And it would not increase our

sample size to almost 70k in our last robustness check. Interpolating data, say by

replacing a missing value with the mean value of the variable makes the estimation

method ”too confident” about this value, thereby negatively affecting the quality of

the inference.

We use the following method to deal with missing values (As desribed in McEl-

reath 2020). The uncertainty surrounding the value of a missing observation is taken

into account in the posterior distributions of our parameters. When sampling the

posterior, if we encounter a missing value in a variable, this value is drawn from

its distribution. We work with 4000 samples for the posterior and hence we draw

4000 different values for each missing observation. In this way, the uncertainty

about the (missing) value translates into posterior uncertainty of the parameters

and predictions.

We summarize the robustness checks in Figure 8. The figure has the baseline

average effects of Figure 2 on the horizontal axis. For a number of countries these

effects are smaller than 5 (per 1000 dead). In all of the robustness checks, these

effects remain small.

The four countries with baseline effects exceeding five are explicitly named in

the figure. For a given baseline effect, there are four (vertically aligned per country)

robustness effects. Ideally, all four points would lie on the 45-degree line. But,

obviously, there is some variation in the effect size for different specifications.

Including voluntary health insurance payments in our oop measure has the small-

est effect on outcomes. The points are very close to the 45-degree line: the effects

are basically the same as with the baseline specification.

Using too expensive in the mortality equation yields smaller effects for Hun-

gary and Bulgaria, but the differences with the baseline are relatively small. The

ranking of the effect size across the four countries (with significant effects) remains

the same.

The differences are bigger if we use the at-risk-of-poverty rate instead of depri-

vation. Especially in Bulgaria and Romania, the effects are substantially smaller.

As at-risk-of-poverty is relative measure, one would expect the effect of this variable

on too expensive and hence on unmet needs to be smaller than with deprivation.

This also reduces the overall effect of oop on mortality.
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Figure 8: Summary of four robustness checks
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The biggest difference can be seen when we extend our data by almost 20k

observations which include a substantial number of missing observations. The effect

of this change in sample for Romania is basically zero and it is relatively small

for Bulgaria. But the deviations from the baseline results are big for Hungary

and Greece. In fact, for Greece the effect in this robustness check is smaller than

for Bulgaria thereby changing the order among countries in effect size. It is not

surprising that adding 20k rows to the dataframe with missing values for a number

of variables increases the variability of our outcomes.

Overall the picture is that the baseline results are fairly robust to the use of dif-

ferent variables and different specifications. Extending the data by 20k observations,

allowing for missing values for deprivation and too expensive leads to the biggest

deviation compared to the baseline results. But also in this case we find that the

extra deaths (per 1000 dead) due to a 500 euro oop increase lie above the deaths

due to Alzheimer disease and breast cancer for the countries with the most sizable

effects.

7 Discussion and policy implications

The Introduction discusses a recent literature using individual level data analyzing

whether demand side cost sharing reduces expenditure on low value treatments

(usually referred to as moral hazard) or whether it leads patients to postpone or

forgo valuable treatments thereby negatively affecting their health. This literature

is focused on US individual level data and argues that it is hard to identify negative

health effects of cost sharing in aggregate data. We use European data at the (NUTS

2) regional level to show that a high share of out-of-pocket expenditures (in total

healthcare expenditures) has a clear effect on mortality in regions where the fraction

of low income households is high. The size of the mortality effect increases with the

initial level of out-of-pocket expenditure and hence the initial fraction of people

indicating they skip or postpone treatment because it is too expensive.

Healthcare costs keep increasing in most, if not all, developed countries. Demand

side cost sharing is a well known instrument to curb the growth in expenditure.

This paper shows that there is threshold of out-of-pocket expenditure beyond which

regions with high poverty levels start to show increased mortality rates. To avoid

this mortality effect, policy makers in countries with high out-of-pocket expenditure

need to search for alternative instruments. Possible alternatives are means tested

cost sharing or co-payments that are lower for cost-effective treatments. In the latter
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case, high value treatments are cheaper than low value care and hence less likely to

be postponed by people on low income.
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A Proof of results

Proof of Lemma 1 First, we show that the probability of treatment, δji = 1 −
G(σ0/σiu(yj)/u(yj − oopi)), is increasing in yj and decreasing in oopi. Taking the

derivative

d
(

u(yj)
u(yj−oopi)

)
dyj

=
u′(yj)u(yj − oopi)− u(yj)u′(yj − oopi)

u(yj − oopi)2
< 0

because u is positive and increasing in y, u′ > 0 is decreasing in y and oopi >

0. Hence, the probability of treatment is increasing in income y. Similarly, the

treatment probability falls with oop.

The expression for mortality follows from equation (3) which we can write as:

ln(magt) = ln(ηag)+γ ln

(
ha−1,g,t−1
ḡa−1,g

)
−(1−πh)−πh

∑
i∈I

ζi+α(πl−πh)(1−
∑
i∈I

ζi)σ0

+
∑
i∈I

ζi(σi − σ0)(απl(1− δli) + (1− α)πh(1− δhi ))

We capture ηag with a sigmoid of age and gender fixed effects, βag. The NUTS 2

fixed effects capture (1− πh) + πh
∑

i∈I ζi. As α denotes poverty, we have

βpoverty = (πl − πh)(1−
∑
i∈I

ζi)σ0 > 0

With the expression for Unmet in equation (5), we find that

βunmet =

∑
i∈I ζi(σi − σ0)(απl(1− δli) + (1− α)πh(1− δhi ))∑

i∈I ζi(απ
l(1− δli) + (1− α)πh(1− δhi ))

which is a weighted average of the σi−σ0 > 0 terms: if the medical needs were met,

health would equal σi but for this group it is σ0 < σi. Hence, βunmet = E(σi−σ0) > 0.

Finally, we derive how the fraction of people that forgo treatment because it is

too expensive depends on OOP. We first derive this for an increase in D. We start

from
dTooExp

dOOP
=
dTooExp

dD

(
dOOP

dD

)−1
=
dTooExp

dD

∑
i∈I ζixiδi∑
i∈ID ζiδi

(9)

where we use that in Europe oop payments tend to be small relative to yearly income

and hence we use the approximation that δji is constant across j, δji ≈ δi:

OOP =

∑
i∈Iξ ζiξxiδi +

∑
i∈ID ζiDδi∑

i∈I ζixiδi
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Further, equation (7) implies we can approximate the slope of TooExp with

respect to D around 0 as:

dTooExp

dD
=
∑
i∈ID

ζi

(
απlgli

σ0
σi

u′(yl)

u(yl)
+ (1− α)πhghi

σ0
σi

u′(yh)

u(yh)

)
where we use notation gji = g(σ0/σi ∗ u(yj)/u(yj −D)) for i ∈ ID. Again using the

approximation that yj is big compared to D, we have that gji = gi:

dTooExp

dD
=
∑
i∈ID

ζigi
σ0
σi

[
πh
u′(yh)

u(yh)
+ α

(
πl
u′(yl)

u(yl)
− πhu

′(yh)

u(yh)

)]

where
(
πl u

′(yl)
u(yl)

− πh u
′(yh)
u(yh)

)
> 0 because πl > πh, u′(yl) > u′(yh) and u(yl) < u(yh).

A similar derivation shows

dTooExp

dξ
=
∑
i∈Iξ

ζixigi
σ0
σi

[
πh
u′(yh)

u(yh)
+ α

(
πl
u′(yl)

u(yl)
− πhu

′(yh)

u(yh)

)]
Using equation (9), we find that

dTooExp

dOOP
=

[
πh
u′(yh)

u(yh)
+ α

(
πl
u′(yl)

u(yl)
− πhu

′(yh)

u(yh)

)]∑
i∈ID

ζigi
σ0
σi

∑
i∈I ζixiδi∑
i∈ID ζiδi

(10)

And, similarly, for ξ:

dTooExp

dOOP
=

[
πh
u′(yh)

u(yh)
+ α

(
πl
u′(yl)

u(yl)
− πhu

′(yh)

u(yh)

)]∑
i∈Iξ

ζixigi
σ0
σi

∑
i∈I ζixiδi∑
i∈Iξ ζiδixi

Using that δi = 1−Gi, we can write the last term in (10) as:

∑
i∈ID

ζigi
σ0
σi

∑
i∈I ζixiδi∑
i∈ID ζiδi

=

(∑
i∈I

ζixiδi

)∑
i∈ID

ζiδi∑
i∈ID ζiδi

gi
σ0

σi

1−Gi

=

(∑
i∈I

ζixiδi

)
κ

where κ > 0 denotes the parameter of the Pareto distribution:

1−G(ν) = (ν/ν)κ

if ν ≥ ν and 1 other wise. With this distribution we have g(ν)ν/(1−G(ν)) = κ for

each ν > ν. It is routine to verify that we get the same expression for the expansion

with respect to ξ. If we assume that G(ν) denotes the cumulative distribution

function of a Pareto distribution, the linear expansion that we use below is exact.

Otherwise, it is an approximation as κ is a function of δi and hence of ξ and D.

Hence, irrespective of whether we expand with respect to D or ξ, we find that

dTooExp

dOOP
= κ

[
πh
u′(yh)

u(yh)
+ α

(
πl
u′(yl)

u(yl)
− πhu

′(yh)

u(yh)

)]∑
i∈I

ζixiδi
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where we capture
∑

i∈I ζixiδi with expenditure per head in our data.

Using this, we estimate the following linear expansion TooExp = b0+
dTooExp
dOOP

OOP:

TooExp2t = b0,2 + b0,t + OOPctx̄ct (boop,c + binteraction,cPoverty2t) (11)

where

boop,c = κπhu′(yh)/u(yh) > 0

and

binteraction,c = κ

(
πl
u′(yl)

u(yl)
− πhu

′(yh)

u(yh)

)
> 0

As it is hard to know what determines the intercept for this linear expansion, we

allow it to vary with NUTS 2 region and calendar year: b0 = b0,2 + b0,t. Finally, to

facilitate the estimation of this equation we assume that TooExp has a logit-normal

distribution. That is, the log-odds of TooExp are normally distributed with the

mean given by equation (11). This ensures that TooExp in the estimation always

lies between 0 and 1.

Q.E.D.

B Data

All our variables come from Eurostat. Table 5 shows the dimensions over which our

variables vary: country, NUTS 2, calendar time, age and sex. We also present a

clickable link to the variable on the Eurostat website for ease of reference. The file

./getting_data.org presents the code to download the Eurostat data.12

The variables on poverty, deprivation and access to care (unmet and too ex-

pensive) come from the EU statistics on income and living conditions (EU-SILC)

survey.

From the Eurostat Glossary: ”The at-risk-of-poverty rate is the share of people

with an equivalised disposable income (after social transfers) below the at-risk-of-

poverty threshold, which is set at 60 % of the national median equivalised disposable

income after social transfers. This indicator does not measure wealth or poverty,

but low income in comparison to other residents in that country, which does not

necessarily imply a low standard of living. The equivalised disposable income is the

total income of a household, after tax and other deductions, that is available for

spending or saving, divided by the number of household members converted into

12This file can be found in the github repository: https://github.com/janboone/out_of_

pocket_payments_and_health.
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Table 5: Variables and the dimensions over which they vary.

variable country NUTS 2 time age sex reference

population x x x x link

deaths x x x x link

at-risk-of-poverty x x link

material deprivation x x link

fraction too expensive x x link

unmet x x link

out-of-pocket x x link

voluntary x x link

expenditure per head x x link

equalised adults; household members are equalised or made equivalent by weighting

each according to their age, using the so-called modified OECD equivalence scale.”

”Material deprivation refers to a state of economic strain and durables, defined

as the enforced inability (rather than the choice not to do so) to pay unexpected

expenses, afford a one-week annual holiday away from home, a meal involving meat,

chicken or fish every second day, the adequate heating of a dwelling, durable goods

like a washing machine, colour television, telephone or car, being confronted with

payment arrears (mortgage or rent, utility bills, hire purchase instalments or other

loan payments).” Our variable ”material deprivation” equals the share of people in

a NUTS 2 region in material deprivation.

Fraction of people with self-reported unmet needs for medical examination is

based on the same survey. In particular, the definition of this item is ”Self-reported

unmet needs for health care: Proportion of people in need of health care reporting to

have experienced delay in getting health care in the previous 12 months for reasons

of financial barriers, long waiting lists, distance or transportation problems.”. We

use both the general definition of unmet needs and the specific reason that treatment

was too expensive.

We characterize how generous a health insurance system is using the variable OOP

in our analysis. This variable is derived from data on health care expenditure by

financing scheme. For our OOP measure we focus on voluntary healthcare payment

schemes (voluntary) and household out-of-pocket payment (out-of-pocket). Both

measured as share of total current health expenditure. The baseline specification

uses out-of-pocket only.
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Expenditure per head refers to healthcare expenditure per head at the country

level.

C Estimation

This section presents the trace plots for the baseline model, the table with the

relevant coefficients and the derivation of the change in mortality as a function of

the change in oop.

C.1 trace plots

Figure 9 gives the trace plots for the parameters that we are interested in. That is,

we leave out the traces for the (age, calendar year and region) fixed effects.

As explained in the main text, we are interested in three features in the plots on

the right. First, the plots are stationary; second, condensed zig-zagging and third,

the four chains cover the same regions of the parameter space.

C.2 table of coefficients baseline model

Table 6 provides summary statistics for the posteriors of the coefficients we are inter-

ested in. For some countries the hdi 3% lower bound for the b oop or b interaction

equals zero. This is compatible with the OOP effect on mortality being bounded away

from zero as the coefficients can be correlated: say, low b oop going together with

high b interaction leading to an overall strictly positive effect.

Hence, to understand the mortality effects of an increase in oop, we use equation

(8) with the posterior distributions substituted in for all the parameters. This gives

us Figure 2.

C.3 derivation of the effect of oop on mortality

As we assume that TooExp has a logit-normal distribution, the derivative of the

expression in Lemma 1 with respect to OOPx̄ is given by

dTooExp

d(OOPx̄)
= TooExp(1− TooExp)(boop,c + binteraction,cPoverty2t)

In the simulation we work with a 500 euro increase in oop: d(OOPx̄) = 500. That is,

we multiply the fraction of healthcare expenditure paid oop with average healthcare

expenditure per head. This gives us oop in euro terms. We assume that the increase
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Figure 9: Trace plots of the coefficients of interest
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Table 6: Summary statictics for estimated coefficients

mean sd hdi 3% hdi 97% ess bulk r hat

beta unmet 0.09 0.02 0.06 0.13 2507.00 1.00

beta lagged log mortality 0.54 0.00 0.53 0.54 2535.00 1.00

beta poverty 0.01 0.01 0.00 0.01 2840.00 1.00

b oop[Bulgaria] 0.83 0.64 0.00 2.00 1230.00 1.00

b oop[Croatia] 1.91 1.50 0.00 4.60 1245.00 1.00

b oop[Denmark] 2.54 0.52 1.57 3.54 855.00 1.00

b oop[Finland] 0.04 0.04 0.00 0.11 3337.00 1.00

b oop[Greece] 20.01 0.64 18.77 21.14 928.00 1.01

b oop[Hungary] 0.12 0.12 0.00 0.34 2260.00 1.00

b oop[Ireland] 6.64 0.85 4.90 8.11 1264.00 1.00

b oop[Lithuania] 3.44 1.49 0.62 6.07 1811.00 1.00

b oop[Norway] 0.03 0.03 0.00 0.07 3025.00 1.00

b oop[Romania] 13.61 1.70 10.36 16.65 1041.00 1.00

b oop[Slovakia] 1.90 1.10 0.00 3.75 757.00 1.00

b oop[Slovenia] 0.33 0.31 0.00 0.91 2474.00 1.00

b oop[Sweden] 0.48 0.27 0.00 0.94 539.00 1.00

b oop[Switzerland] 0.02 0.02 0.00 0.06 2059.00 1.00

b interaction[Bulgaria] 27.49 2.05 23.74 31.33 1695.00 1.00

b interaction[Croatia] 2.45 1.88 0.00 5.88 1535.00 1.00

b interaction[Denmark] 36.41 3.16 30.67 42.50 2411.00 1.00

b interaction[Finland] 0.71 0.68 0.00 1.93 2556.00 1.00

b interaction[Greece] 3.80 2.32 0.01 7.75 1226.00 1.00

b interaction[Hungary] 56.73 2.68 51.98 61.99 1006.00 1.01

b interaction[Ireland] 3.08 2.17 0.00 6.93 2799.00 1.00

b interaction[Lithuania] 2.70 1.96 0.00 6.11 1987.00 1.00

b interaction[Norway] 25.39 2.90 20.18 30.88 1989.00 1.00

b interaction[Romania] 18.73 2.95 13.12 24.03 2239.00 1.00

b interaction[Slovakia] 1.23 1.08 0.00 3.24 2618.00 1.00

b interaction[Slovenia] 2.08 1.62 0.01 5.05 2362.00 1.00

b interaction[Sweden] 10.35 2.81 5.01 15.45 1722.00 1.00

b interaction[Switzerland] 22.36 1.70 19.20 25.55 1927.00 1.00

sd prior b 2.94 0.08 2.79 3.08 1391.00 1.00

sd prior beta 0.22 0.04 0.14 0.31 3505.00 1.00
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in TooExp translates one-for-one in an increase in Unmet. Hence, the change in

mortality is given by:

dmga2t

mga2t

= βunmetTooExp(1− TooExp)500(boop,c + binteraction,cPoverty2t)

This is the increase in deaths per one dead. In Figure 2 we multiply this expression

by 1000: number of deaths per 1000 dead.
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