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Refining Public Policies with Machine

Learning: The Case of Tax Auditing
⇤

Marco Battaglini† Luigi Guiso‡ Chiara Lacava§

Douglas L. Miller¶ Eleonora Patacchinik

We study how ML techniques can be used to improve tax auditing effi-
ciency using administrative data without the need of randomized audits.
Using Italy’s population data on sole proprietorship tax returns and au-
dits, our new approach addresses the challenge that predictions must be
trained on human-selected data. There are substantial margins for rais-
ing revenue from audits by improving the selection of taxpayers to audit
with ML. Replacing the 10% least promising audits with an equal number
selected by our algorithm raises detected tax evasion by as much as 38%,
and evasion that is actually paid back by 29%.

Keywords : tax enforcement, tax evasion, policy prediction problems.
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1 Introduction

Tax authorities routinely collect deep datasets on tax filers that can be used to identify
auditing targets. This makes the choice of auditing strategy a prime candidate as an
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application for machine learning techniques (henceforth, ML), that can be deployed
to exploit available information efficiently, consistently and transparently. While
both tax authorities and researchers are aware of these opportunities, the opacity of
the auditing processes followed by most tax authorities makes it unclear the extent
to which they operate at the “production possibility frontier” or whether there are
margins for improvements by a more efficient use of data.

In this paper, we exploit an exclusive dataset from the Italian Revenue Agency
(henceforth, IRA) to explore whether ML techniques can be used to improve au-
dit policies. The dataset includes the tax returns with relative audits and audits’
results for the universe of non-incorporated small businesses in Italy from 2007 to
2012. The dataset, moreover, also includes information on whether the taxpayer ap-
pealed against the audit as well as all the statistical information available to the IRA
concerning the tax file and filer.

The general idea behind ML techniques is to exploit data on policy outcomes
(in our case audits) to train a predictive algorithm designed to achieve specific goals
(maximizing the probability of finding evasion, for example). Ideally, after validating
the analysis out of sample, the algorithm can be used to guide the policy (the choice
of which files to audit, in our specific case). Even when detailed data is available,
however, two challenges make the design and evaluation of policies with ML a diffi-
cult task. The first is what Kleinberg et al. (2018) have defined the selective labels

problem: only outcomes of files that have been endogenously selected for treatment
are observed. In our case, this problem is particularly serious if the IRA selects audits
relying also on unobserved variables that may be relevant for audits’ performance.
The second problem is the omitted payoff bias. This refers to the fact that the objec-
tives of the policymakers may be multidimensional and unobserved, so an auditing
policy that is unsuccessful with respect to a narrow measure of success, may instead
be justified when all the goals of the tax authority are considered. Our data allows
to make progress in evaluating the benefits of improving the auditing process despite
these two problems. The approaches we propose exploit specific features of auditing
data common to several countries, namely the facts that the tax authority is severely
limited in the number of audits and that currently unaudited files can occasionally be
audited at a later date. Both of these features can be found in other environments,
thus our strategies can be applied in other contexts as well.

We start our analysis by documenting the extent to which a ML algorithm can
be used to identify audits that perform particularly poorly within the set of observed
audits. Since we observe the universe of tax audits and relative outcomes, we can test
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our ability of identifying the audits that perform poorly under a variety of criteria.
Contrary to other types of policymaker, tax authorities have a narrow policy mandate
and do not have significant latitude in deciding their policy goals. Still, their activity
is driven by at least two goals: maximizing detected tax evasion; and maximizing
the amount of evaded taxes recovered by the end of the auditing process.1 The
two goals may differ because some audits may appear to be promising in terms of
detected evasion but much less so in terms of the amounts that can be recuperated
since taxpayers may appeal against the audit. Our dataset allows us to assess both
goals. We show that our ML algorithms can accurately rank audits in terms of
both expected tax evasion and expected recovered evasion. More importantly, we
show that the performance of the audits that are predicted as worst performing is
extremely poor. Eliminating the bottom 10% of the audits, would induce a reduction
in detected evasion of only 3%; even more importantly it would also induce a reduction
of recovered evasion of only 2.6% implying that the omitted payoff bias problem, while
important in principle, may not alter qualitative conclusions in practice.

Once we have identified the poorly performing audits, the next question is whether
we can replace the worst performing audits with ex ante superior tax files. Here is
where the selective labeling problem starts to bite. To address this question, we
propose two complementary strategies. The first strategy relies on the longitudinal
nature of our dataset to choose the replacing files. In Italy (like in many other
countries), the IRA has five years to audit a tax file. While most files are never audited
at all, some are audited in later years. This fact gives us a plausible counterfactual for
which we can actually observe the true outcome of an audit: a file that is auditable
but unaudited at t is identical in all following periods in which it is auditable since it
refers to a tax year preceding t. We can therefore replace an audited file we predict
to be non-performing with a file that is available for auditing today but audited in
following years. We find that replacing the worst predicted 10% of files with an equal
number of the best unaudited files audited later yields an improvement of 38% in
detected tax evasion. The set of unaudited files that are audited at a later date may
of course be different from the general population. It is however unlikely that the
IRA intentionally postpones the audit of good files. By not auditing a “good” file at
time t, an agent of the IRA exposes the agency to the risk of never auditing it in the
future (if overlooked by future agents) or to the risk of losing the ability to recuperate

1These statutory goals are well defined by directives from the Treasury and have been described
to us in interviews by many officials from the IRA. Auditors do not have authority to deviate from
these goals.
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any evaded income since some companies may dissolve or go bankrupt before the IRA
can document a claim on the firm balance sheet. Indeed, we document that files that
remain unaudited for a few years but then are audited are not fundamentally different
from other audited files, in terms of both detected and recovered tax evasion.

The second strategy attempts to bound from below the value of replacement with-
out using ML for selecting the replacement files. The strategy relies on the fact that
the IRA is severely constrained in terms of resources, so much that only about 3% of
the sole proprietorships’ files are audited (for comparison, in 2017 the audit coverage
on personal income in France was 5%, and that of the EITC recipients in the U.S.
was 6%). If the authority were to eliminate from a list of proposed audits the bottom
10% of files according to the predicted performance and replace them with an equal
(to fulfill the resource constraint) number of files with random performance, would
the replacement be worthwhile? It is reasonable to assume that for such a marginal
substitution, the replaced files will not be very different from the average audited files.
How bad should be the quality of a replacement relative to the audited files, to make
such substitution undesirable? We show that replacing the bottom 10% of the worst
expected files with average audited files would increase both detected tax evasion and
recovered tax evasion by 6.7% and 7.6%, respectively. Indeed, the replacement would
be advantageous even if the replacing files were significantly below average.

A common risk when using ML to guide policy decision is to inject unintended
bias in the decisions. We assess the extent to which the replacements may introduce
bias by comparing a large set of sensitive observable characteristics before and after
the replacement. We however do not observe significant differences in terms of key
demographics characteristics of the tax filer (gender, age and marital status) and of
the nature of their business (family business status, years of activity and employees).

2 Related Literature

A significant and growing literature at the intersection between computer science and
economics applies ML techniques to policy problems. For example, several papers
present algorithms to detect tax evasion (Bonchi et al., 1999; Bots and Lohman 2003;
Cleary, 2011; Hsu et al., 2015; Ruan et al., 2019; Wu et al., 2020; among others),
insurance fraud (Bhowmik, 2011), and fraudulent financial statements (Kirkos et al.,
2007).2 These papers focus attention on the design of algorithms to predict a positive

2These works are constrained by much smaller datasets than ours, typically limited to a
few thousand taxpayers.
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outcome, limiting the evaluation of their performance to the quality of the out-of-
sample predictions, thus ignoring the selective labels problem and omitted payoff
bias. Therefore, they offer little guidance to the policymaker who is interested in
deciding how to allocate a scarce resource (Athey, 2017). This question is as important
for policy purposes as difficult to solve empirically because it requires information
on counterfactual conditions. While this problem is mitigated in cases of random
allocation of treatments (e.g. random audits),3 policy interventions are almost never
at random. This paper is the first to propose a solution to this question in the
context of tax auditing. The strategies that we propose, however, can be applied to
any allocation problem of a scarce resource where longitudinal data are available, a
fraction of untreated units are treated at a later date, and their outcomes remain
unchanged during the period. The importance of the selective labels problem for
public policy application is highlighted by Lakkaraju and Rudin (2017), Jung et al.
(2017), who rely on a “selection on observables” assumption to assess ML applied to
judicial decisions to release or detain defendants while they await trial. Lakkaraju
et al. (2017) and Kleinberg et al. (2018) rely on institutional features of these decisions.
In particular, Kleinberg et al. (2018) leverage the quasi-random assignment of cases to
judges of differential leniency: they use the algorithm’s predictions for cases handled
by lenient judges to predict the outcomes for defendants released by more stringent
judges. The institutional features that enable the Kleinberg et al. (2018) solution to
the selective labels problem may not be available in all policy prediction applications.
A key contribution of our paper is to identify an alternative approach to the selective
labels problem. Instead of relying on random shocks to propensity to observe the
labels, we use the feature that some labels are only revealed later in time.

3 Institutional Setting and Data

The taxpayers in our dataset are individuals who own a sole proprietorship, where
no legal distinction is made between the enterprise and the sole owner. In most
countries, this fiscal category is the subsample of taxpayers characterized by the
highest evasion rate and accounts for a relevant portion of the total tax gap. We
merge information from two different administrative records that the IRA shared
uniquely with us: returns files and audit files. Records are at the individual level

3Recently, Ash et al. (2021) use randomized audits to evaluate the benefits of using a ML algo-
rithm to predict corruption in Brazilian municipalities. In the context of gun violence prevention
and energy consumption prediction, Bertrand et al. (2022) and Knittel and Stolper (2021) rely on
randomized control trials.
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and cover statements of incomes generated from 2007 to 2012, reported between
2008 and 2013, and audited between 2009 and 2014. Overall, our sample contains
19 million tax returns filed by almost 4.8 million taxpayers, and 405,115 audits.
This database (the Tax Registry) is the one used by the IRA to select audits. It
includes detailed information on all components of taxpayers’ tax returns (including
reported taxable income, turnover, liabilities and deductions) and characteristics of
their business (sector, geographical location, years of activity, number of employees).
The audit data contain information on whether and when a file was audited, as well
as the amount of evaded tax assessed (if any).4 Additionally, the IRA shared with
us the exclusive information on whether the taxpayer is insolvent, that is when the
audited taxpayer does not pay back the assessed evasion. These cases of insolvency
can originate from an appeal against the audit or simply a failure to respond to the
audit notification. In Italy, an average of 5% of audited taxpayers appeal against an
audit, and another 37% of taxpayers neither pay nor appeal within due time after the
audit notification. Both cases of insolvency trigger complicated processes, which last
for many years, entail complex schemes of sanctions, and may involve several layers
of judiciary. The probability of insolvency increases faster for higher levels of tax
evasion, thus hampering seriously the ability of the IRA to recover evasion. Further
details on our data and summary statistics are reported in the Online Appendix A.

4 The Machine Learning Algorithm

Predicted variables. We tailor our statistical model around the two goals of the
IRA: detecting evasion and recovering the detected amount of evaded tax. More
specifically, for each file our two main variables of interest are i) tax evasion, defined
as the difference between the tax amount assessed during an audit and the tax paid
(labeled as TaxEva); and ii) a proxy for the actual tax evasion recovered by the IRA
(labeled as TaxGot). This is equal to tax evasion when the taxpayer pays back within
due time, and zero when the taxpayer is insolvent.5 Because the policy goals are in
levels of detected and recovered evasion, we predict levels of evasion (rather than e.g.
binary indicators for a certain level of evasion).6

4We identify and exclude audits initiated by authorities cooperating with IRA (3%) that might
use other information or selection criteria.

5Because of the lengthy and complicated process triggered by an appeal against an audit men-
tioned before, the actual amount of recovered evasion is not available for many observations in our
sample. In the observed time frame, 97% of the taxpayers who appeal never pay back their debt.

6We have also explored models using the inverse hyperbolic sine transformation of our predicted
variables. Working with these did not produce better predictions, and we focus on predicting
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Model. We use a random forest to separately predict tax evasion and recoverable
tax evasion (Breiman, 2001). This allows for rich interactions among explanatory
variables, and easily adapts to non-linearities. Furthermore, this algorithm is suitable
for handling very rich databases, which in addition to a large sample size feature
a large number of explanatory variables, since the predictive variables are not used
simultaneously. Our random forests contain 1,000 trees each.7 The tuning parameters
that we choose include a minimum leaf size of 28 observations to be eligible for a split,
and 2.5% of features eligible for consideration at each split.8 We train separate models
for TaxEva and TaxGot.

Predictors. We use a rich selection of variables to predict TaxEva and TaxGot.
We include business characteristics (years of activity, the number and logarithm of
the number of employees, dummy indicators for the presence of employees and for the
taxpayer being self-employed) and the full selection of financial variables included in
the Tax Registry. For example, the latter include the reported taxable income (both
the value and its logarithm), a dummy indicating a positive reported taxable income,
reported taxable income net of employees deductions, gross income, revenues, taxable
revenues, total assets, total liabilities, net value of production, VAT taxable turnover,
operating costs, amortized costs, and VAT transactions. Importantly, we were granted
access to the highest level of disaggregation of the sector of activity (ATECO 5-digit
code, i.e. 1,215 sectors) and geographical location (municipality level, i.e. 8,054
municipalities). However, capturing this information using fixed effects poses compu-
tational challenges, given the large number of sectors and municipalities. We use this
information as follows. First, we propose a specification with 5-digit sector of activity
fixed effects and geographical fixed effects at the province level (110 provinces) (spec-
ification i). In an alternative specification, we instead exploit the granularity of the
geographical information contained in the data by building Mundlak-type predictors
(Mundlak, 1978), defined as the average at the municipality for two key financial
accounts, namely taxable income and turnover. We add these variables to 5-digit
sector of activity fixed effects (specification ii). Next, we exclude 5-digit sector of ac-

expected evasion in levels. We winsorize these variables at the top 1 percentile to prevent our model
“chasing” extreme and idiosyncratic observations. To implement this, we consider the top 5% of the
relevant variable, and estimate the parameters for a Pareto distribution to best match. We then use
the conditional mean from this distribution of being in the top 1 percentile as the imputed value.
Separately, the evaded tax can be negative if people pay a higher amount than the due tax. These
instances are typically due to minor errors. We replace negative values of TaxEva or TaxGot with
zeros.

7Increasing the number of trees further does not lead to a sizeable increase in the model fit.
8These were chosen based on a semi-structured grid search, using the random forest Out of Bag

goodness of fit to guide the choice of tuning parameters.

7



tivity fixed effects and use Mundlak-type predictors at both municipality and 5-digit
sector level (specification iii). We discuss the sensitivity of our predictions against
alternative sets of predictors in the Online Appendix B. Because the performance of
the different models is roughly equivalent, we use as baseline the more parsimonious
version of the model, featuring more than 250 variables (specification iii).

Samples. We use files from years 2007, 2008 and 2009, for which we observe the
complete fiscal cycle - that is the following 5 years in which they can receive an audit.
By doing so, we get a representative sample of the composition of the files that are
audited over time. To get a clean partition of the data, our randomized classification
into training and testing samples occurs at the taxpayer (pseudo-)ID level; so that
taxpayers in the training sample for one year are also in the training sample for all
other years. Our training sample for the random forest prediction model consists of
an 80% subset of the universe of audited taxpayers. To assess goodness of fit, we
compare predictions for our testing sample, which consists of the 20% of audits from
each of the fiscal years 2007-2009 excluded from the training sample. In total, our
training sample contains 163,234 files, and our testing sample 40,869 files.

This figure reports the actual tax evasion (blue dots) and the recovered tax evasion (red triangles)
of realized audits in the testing sample by percentiles of predicted values. The green and the orange
line display the predicted tax evasion and the predicted recovered tax evasion, respectively. The
sample includes files of fiscal years 2007-2012 that are audited by IRA.

Figure 1
Model Fit

Out-of-sample assessment of prediction model. To measure the model per-
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formance, we compare predicted outcomes with outcomes assessed during the audit.
In Figure 1, the curved green line reports the average predicted evasion at each per-
centile of predicted evasion and the blue dots report the average evasion detected
by audits that were actually implemented. The curved orange line shows the average
predicted TaxGot for each percentile of predicted TaxGot, and the red triangles report
the average actual TaxGot for that percentile.

The model has a remarkable out-of-sample performance. The Online Appendix
B provides a more rigorous analysis and explores additional tests of the validity of
the prediction model. We show that its performance persists well for different testing
samples, and that the random forest model does better than a straightforward OLS
regression approach.

5 Policy Experiments

While the ML algorithm is very accurate in ranking the audited files in terms of
their expected outcome, the gain of replacing the files that are predicted as poorly
performing with files of superior performance is unclear. This depends on the expected
outcome of unaudited files, for which we only have a ML prediction. To bypass this
problem and quantify a lower bound on the benefit of using ML to refine the auditing
process, we propose two types of exercises. First, we use the prediction model to
calculate gains from a “discarding” exercise, where the audits with the worst predicted
outcomes are simply discarded (Policy A). Audits have both administrative, human
and economic costs on the target taxpayer (e.g. due to psychological distress and/or
interference with the business). Performing audits with zero or minimal results is a
waste of resources even without replacing them by superior audits. Second, we use the
predictions for a “discard and replace” exercise, where these audits are discarded, and
then replaced with audits from an alternative donor pool (Policy B). We propose two
strategies to select the replacements: Policy B.1 chooses replacements by using our
ML algorithm; Policy B.2 substitutes with random files. As for Policy B.1 we propose
two alternatives. The first, Policy B.1a relies on the longitudinal dimension of our
data, that include three complete fiscal cycles, i.e. for incomes produced in 2007, 2008,
and 2009. Our data feature the universe of files in those years that were audited over
the five-year cycle. In our exercise, the pool of audits eligible for discarding are thus
the 2007, 2008, and 2009 files in the testing sample, whose audits occurred 1, 2, or 3
years after filing. The donor pool for replacement audits is 2007, 2008, and 2009 files
in the testing sample, whose audits occurred 4 or 5 years after filing. These files in the
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donor pool are a valid counterfactual because of three institutional features: they i)
were available to audit at the time of decision for the files in our consideration sample,
ii) had their tax file information locked in and so there is no risk of this information
changing, and iii) were ultimately actually audited, and so have been selected into
audit and have observable outcomes. In Policy B.1a we replace the discarded files
with the best files from this pool according to the algorithm. By revealed preference,
files that are available for an audit and overlooked in a given year are considered less
promising by the IRA. Therefore, our suggested replacement procedure produces a
lower bound of the expected gains. As a benchmark, in Policy B.1b, we replace the
files with the best files (based on the predicted outcome) that were available for that
year, even if they were never audited, and we impute their expected return using the
ML prediction.

Policy B.2 instead does not require the use of a ML algorithm for the selection
of the replacements but substitutes the discarded audits with randomly selected files
from the pool of all audited files (Policy B2.b). The assumption here is that the
authority has locally constant returns to auditing: if a small fraction of the audits is
removed, the agency can replace them with a similar average marginal return. This
assumption is motivated by the fact that the authority is severely constrained in terms
of resources, thus able to audit only a tiny fraction of files. This problem resembles
that of a top university selecting prospective students: the tiny fraction of accepted
applicants is not dissimilar to the next 5% of rejected candidates. We also repeat the
exercise by replacing with random files from the pool of later audits used in Policy
B.1a (Policy B2.a).

5.1 Results

Policy A: Discarding audits with low ex ante promise. We consider how much
TaxEva and TaxGot would be lost if the worst X% of audited files (sorted by the
predicted outcome) were not audited. Because we observe the actual outcomes for
these files, this is a straightforward direct calculation, and results in the Lorenz-type
curves in Figure 2.9 We present Lorenz-type curves for both TaxEva (solid line) and
TaxGot (dashed line). For each percentage of discarded files, the curves show the
percentage reduction in each outcome, respectively. The forty-five degree line depicts
the loss in the aggregate outcome resulting from a random discarding of audits. The

9A Lorenz curve shows the share lost by discarding the lowest X% of actual outcomes. The
Lorenz-type curves we present instead show the share lost by discarding the lowest X% of predicted

outcomes.
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“cost” of discarding audits with lowest-predicted outcomes is very small. Indeed,
discarding the worst 10% of audits is associated with less than a 3% loss of detected
tax evaded and 2.6% of recovered tax evasion.

This figure reports in the y-axis the percentage of the total amount of tax evaded and recovered
tax evaded lost by not auditing in each office a given percentage of audits with the lowest predicted
tax evaded and the lowest predicted recoverable tax evaded, respectively.

Figure 2
Losses from not auditing the files with lowest predicted evasion

Conversations with IRA officials informed us that an internal assessment of the
cost per audit is around 1,700 euros.10 This amount is similar to that reported as the
cost to the United States’ IRS at $2,278 per audit (Government Accountability Office,
2012). Our model predicts that each audit in the lowest 12% of audits recovers less
than this amount of TaxGot . We plot a dot on the figure to indicate this break-even
point. Of this 12%, the 50% generates exactly zero TaxGot . Eliminating audits below
the break-even would reduce recovered tax evasion by 1,904,746 euros and costs by
2,789,700 euros (number of audits times 1,700 euros). Even ignoring the human and
economic costs of audits on the target taxpayers, this policy would increase the net
recovery by 884,954 euros.11

Policy B: Replacing discarded audits under the ML guidance vs. at

random. One natural way to assess the opportunity cost of an audit is to focus on
10The IRA conducts routine audits, with standard costs.
11The basic monetary cost to the IRA is a lower bound to the actual cost. Actual costs also

include the costs borne by the taxpayer in complying with the audit. Additionally, there may be
social costs. For example, our data reveals that audited taxpayers are more likely to close their
business during the three years following an audit than taxpayers who are not audited.
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the benefit of alternative audits that could have been performed but were not. This
idea leads to the modeling exercise of dropping the “worst” audits and then replacing
them with an equal number of unaudited files. For Policy B.1, we sort the unaudited
files according to the outcome (i.e. TaxEva or TaxGot) predicted by our model. Then
we identify the best N files from the set of unaudited files, where N is the number of
discarded files.

When considering potential replacements, we explore two variations. First, we
deal with the selective labels problem by choosing the replacements among files from
the same fiscal year as the discarded ones that were audited by the same office 4 or
5 years after filing (Policy B.1a). The solid-line in Figure 3, Panel A, shows very
substantial gains of Policy B1.a of this “discard and replace” exercise on TaxEva (left
panel) and TaxGot (right panel). The effects are expressed in percentage of the
aggregate amount of TaxEva and TaxGot that is obtained by the IRA in the actual
audits in our sample (status quo). At a 10% discard rate, this policy would increase
the status quo aggregate TaxEva by 38% and the status quo aggregate TaxGot by
29%.

Second, we consider a more speculative approach for replacing discarded files
(Policy B.1b). Namely, we choose the best files from the full set of unaudited files from
the same fiscal year and office as those discarded, which in addition to files audited
later includes the much larger set of files never audited. We use the predictions
of our model to impute what the outcome would be. This strategy relies on the
accuracy of the out-of-sample predictions from our prediction model at the top of
the distribution. Differently from Policy B.1a we cannot verify this directly. Hence,
this exercise potentially provides an upper bound to the gains from replacement. In
Figure A2 we show that the large gain in replacement from this policy is mainly
driven by the broader pools, since these larger pools have greater scope to identify
promising files. As shown by the dashed line in Figure 3, Panel A, the theoretical
gains of Policy B1.b are significantly higher than the gains in Policy B.1a, which is
based on realistic counterfactuals. These gains amount to 83% of the status quo for
TaxEva and 65% for TaxGot. Because Policy B.1b is more speculative, the actual
gains are likely to be in between Policy B.1a and Policy B.1b.

Finally, to isolate the benefits of a ML-guided discarding from those of a ML-
guided selection of replacements, we compare the gains of Policy B1 with Policy B2,
where we consider replacing with an “average audit” taking as reference the office
average. For ease of illustration, we replace the discarded files with an average file
from the pool of audits, rather than showing Montecarlo simulations using random
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Panel A: Policy B.1 - Replace with the highest ranked files

Panel B: Policy B.2 - Replace with average files

This figure reports on the y-axis the percentage gains of discarding a given percentage of files with
the lowest predicted value of the target variable and replacing them with the same number of files (i)

with the highest predicted value (panel A) or (ii) randomly selected (panel B). The x -axis reports
the discarded percentage. The target variable is tax evaded in the left figures and recoverable tax
evasion in the right figures. All values are reported relatively to the status quo total revenue of
audits set at 100 and represented by a dot.

Figure 3
Gains from “discard and replace” exercise

drawings from this pool.12

In Figure 3, Panel B, the solid line represents Policy B.2a, that is when we consider
the average among the “later audits” pool. Limiting the replacement to the lowest
10% leads to more modest but still significant gains: an overall 6.7% improvement
relative to the status quo in TaxEva and 7.6% in TaxGot. The dashed line denotes

12Montecarlo simulations in the Online Appendix C.3 yield similar results.

13



Policy B.2b, that is when we allow for files audit at any age. The improvements
are similar: 6.5% for TaxEva and 7.5% for TaxGot. This confirms that the average
quality of files audited later is similar to that of the files that are audited at any time.
These exercises show that the range of possible gain may be wide, but even adopting
the most conservative measurements, any gain would be a meaningful improvement
with respect to the status quo.

As within the IRA the selection of audits typically occurs at the local office level,
our baseline results consider only replacements within the same local office.13 How-
ever, in principle there could be greater gains from being able to replace from a
broader pool. In the Online Appendix C.1, we consider replacement from files drawn
within higher level IRA offices, i.e. the same province, the same region, or from
anywhere in the country. While most of the gains are captured by replacing simply
within the same office, reallocation at the higher level increases the performance fur-
ther: with reference to the gains in TaxEva after a 10% replacement under Policy
B.1a, reallocating within office implies a 38% gain, while reallocating at the province,
region and country level increases TaxEva by 42%, 48% and 50%, respectively. This
exercise suggests that some current organizational choices may be suboptimal under
the machine selection.

5.2 Discussion: Policy Goals

Tradeoffs between targeting TaxEva vs. TaxGot . A key challenge in any policy
prediction problem is that the specific goal of the policymaker is usually unknown.
This is the “omitted payoff bias” problem. In our context, we were given direct
information and thus designed algorithms tailored to best predict each of the two

policymaker goals: the TaxEva and TaxGot outcomes. The next question is whether
there are tradeoffs between these two measures. First, we note that a policy of
discarding audits based on predictions for one measure can result in dramatically
reduced improvements for the other measure. The Online Appendix D shows that
the dominant predictors in the random forest differ by some extent among TaxEva and
TaxGot. Also, among our pooled testing sample, the correlation coefficient between
predicted TaxEva and predicted TaxGot is only 0.55. This implies that targeting tax
files to discard (and/or replace) on the “wrong measure” can reduce the value of the
exercise.

To gain insight into the tradeoffs across these outcomes, we model the auditors’
13There are 288 offices.
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utility from choosing a given file into audit as a combination of the predicted TaxEva

and predicted TaxGot,

U
⇣

\TaxEva, \TaxGot
⌘
= \TaxEva

↵
· \TaxGot

1�↵
. (1)

For each file, we compute this utility for a range of values ↵ 2 [0, 1]. For each
value of ↵, we rank them according to their utility and implement our “discard and
replace” exercise, where we replace with the best available files from the donor pool
of files audited at later ages (Policy B.1a). Each line in Figure 4 shows the average
TaxEva and TaxGot per file by discarding and replacing a given percentage of files, as
indicated on the left end of each line. The dashed line corresponds to a 20% discard
rate. When the utility of a file depends only on predicted TaxEva (↵ = 1), our model
results in point E ; when it depends only on predicted TaxGot (↵ = 0) our model
results in point G. The other points on the line represent intermediate degrees of
weighting the two policy goals.

This figure reports the detected tax evasion per file (x -axis) against the recoverable evasion per file
(y-axis) after discarding the files with the lowest predicted utility and replacing them with the same
number of files with the highest predicted utility at the office level (Policy B.1a). Each line reports
a different percentage of discard-and-replace values and each point along aline represents different
combinations of utility weights on the two policy goals, namely maximizing detected tax evasion
and recoverable tax evasion. The status quo levels are represented by a dot.

Figure 4
Tradeoffs between detected and recovered tax evasion

We highlight two features of these results. First, and in line with Figure 3, Fig-
ure 4 shows that there is great scope for improving the selection of files. Second,
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Figure 4 shows that when the policy objective is a simple function as in (1), even
targeting either measure may dramatically improve both outcomes, compared to sta-
tus quo (represented by a dot). However, there is some tradeoff between targeting
only TaxGot versus targeting only TaxEva. Under a 20% replacement rate, targeting
TaxEva only (↵ = 1) produces a 56% increase over status quo in TaxEva, and a 18%
increase in TaxGot . On the other hand, targeting TaxGot only (↵ = 0) produces a
16% increase over status quo in TaxEva, and a 42% increase in TaxGot . In this sense,
the tradeoffs are roughly symmetric across the two measures, in terms of percentage
increase over status quo.

Additional policy goals. Pursuing the two main goals of reducing tax evasion
and insolvency rate could have the unintended consequence of concentrating the audits
among specific groups of taxpayers. For example, the policy may suggest to over-pick
replacement files belonging to a specific sector or income class characterized by higher
evasion rates. However, this could unintentionally hinder the deterrence effects for
other groups of taxpayers. In the Online Appendix E, we repeat the discard and
replace exercise by choosing replacement files only within deciles of taxable income
or within business sectors. We show that, when replacing the files with the lowest
10% of predicted TaxEva, the gains of Policy B1.a and Policy B1.b (38% and 83%,
respectively) are reduced to 22% and 49% when replacements of discarded files are
limited to files in the same income decile as the discarded ones, and to 19% and 51%
when replacements are limited to files in the same business sector. This evidence
indicates that there are considerable gains from replacement even when keeping the
composition of the audited files by key characteristics broadly unchanged.

To further investigate whether the new selection of files is undesirable along ad-
ditional margins, we compare the average observable characteristics of the discarded
and replaced files under these different replacement schemes. Table A3 in the Online
Appendix shows that the ML algorithms select replacement returns filed by taxpayers
with similar demographic characteristics to the ones who filed the discarded returns
and managing similar businesses.

6 Concluding Remarks

This paper exploits an exclusive data-set from the IRA to explore the extent to which
ML can be used to improve audit selection. We use the prediction model to calculate
gains from a “discarding” exercise, where the audits with the worst predicted outcomes
are discarded, and a “discard and replace” exercise, where these audits are discarded
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and then replaced with audits from an alternative donor pool. The discard-only
exercise shows that ML can be reliably used to identify poorly performing audits:
in an out-of-sample analysis, we find that the audits with the lowest 12% outcome
recover less than the material cost of performing the audit.

The “discard and replace” exercise is more delicate since it faces the key challenge
that the actual outcomes for most files are typically not observed, because they did
not receive an audit. We propose novel solutions to this challenge. Because the IRA
has 5 years to audit a file, we develop a methodology where unaudited files audited at
a later stage are used as counterfactuals. This allows to use files that were available at
the time of the audit selection, but were neglected for inferior choices. Since these files
were later audited, we can use later audits to assess their “value” and the performance
of the replacement. We find that even if we restrict this replacement to files from the
same office, very sizable performance improvements are feasible: at a 10% discard
rate, selecting the replacements using ML from this pool yields an improvement of
38% of TaxEva, and of 29% of TaxGot. Allowing the replacements to be selected in
the larger pool of unaudited files (and using the predicted value to evaluate them)
yields much larger improvements: at a 10% discard rate, selecting the replacements
using ML from the larger pool yields an improvement of 83% of TaxEva, and of 65%
of TaxGot.

As a lower-bound, we also evaluate the potential improvements if the replace-
ments are selected at random from the pool of audited files, both limiting the pool of
replacements to files that were later audited and to the larger pool of audited files.
The idea is that if only a small fraction of audited files is discarded and replaced, the
tax agency can at least replicate its “average” performance with the replacements.
In this case, the improvements are naturally smaller, but still significant: at a 10%
discard rate, selecting the replacements at random yields an improvement of about
7% of TaxEva, and of 8% of TaxGot, independently of whether the pool is restricted
or not.

A natural concern is whether selecting replacements with ML algorithm injects
unintended bias in the selection. However, we do not observe significant differences
in terms of key demographics characteristics of the tax filer and of the nature of their
business.

17



References

Ash, E., S. Galletta, and T. Giommoni (2021). A Machine Learning Approach to Analyze and
Support Anti-Corruption Policy. CESifo Working Paper Series 9015.

Athey, S. (2017). Beyond Prediction: Using Big Data for Policy Problems. Science 355 (6324),
483–485.

Bertrand, M., M. Bhatt, C. Blattman, S. B. Heller, and M. Kapustin (2022). Predicting and
Preventing Gun Violence: An Experimental Evaluation of READI Chicago. mimeo.

Bhowmik, R. (2011). Detecting Auto Insurance Fraud by Data Mining Techniques. Journal of

Emerging Trends in Computing and Information Science 2 (4), 156–162.

Bonchi, F., F. Giannotti, G. Mainetto, and D. Pedreschi (1999). A Classification-Based Methodology
for Planning Audit Strategies in Fraud Detection. In Proceedings of the fifth ACM SIGKDD

international conference on Knowledge discovery and data mining, pp. 175–184.

Bots, P. and F. Lohman (2003). Estimating the Added Value of Data Mining: A study for the Dutch
Internal Revenue Service. International Journal of Technology and Policy Management 3 (3/4),
380–395.

Breiman, L. (2001). Random Forests. Machine Learning 45 (1), 5–32.

Cleary, D. (2011). Predictive Analytics in the Public Sector: Using Data Mining to Assist Better
Target Selection for Audit. Electronic Journal of e-Government 9 (2).

Government Accountability Office (2012). IRS Could Significantly Increase Revenues by Better
Targeting Enforcement Resources. GAO-13-151 .

Hsu, K., N. Pathak, J. Srivastava, G. Tschida, and E. Bjorklund (2015). Data Mining Based Tax
Audit Selection: a Case Study of a Pilot Project at the Minnesota Department of Revenue. In
Real world data mining applications, pp. 221–245. Cham: Springer.

Jung, J., C. Concannon, R. Shroff, S. Goel, and D. G. Goldstein (2017). Simple Rules for Complex
Decisions. Stanford University Working Paper .

Kirkos, E., C. Spathis, and Y. Manolopoulos (2007). Data Mining Techniques for the Detection of
Fraudulent Financial Statements. Expert Systems with Applications 32 (995–1003).

Kleinberg, J., H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan (2018). Human Decisions
and Machine Predictions. The Quarterly Journal of Economics 133 (1), 237–293.

Knittel, C. R. and S. Stolper (2021). Machine Learning about Treatment Effect Heterogeneity: The
Case of Household Energy Use. AEA Papers and Proceedings 111, 440–44.

Lakkaraju, H., J. Kleinberg, J. Leskovec, J. Ludwig, and S. Mullainathan (2017). The Selective
Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables. Pro-

ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (275-284).

18



Lakkaraju, H. and C. Rudin (2017). Learning Cost-Effective and Interpretable Treatment Regimes.
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)

20th.

Mundlak, Y. (1978). On the Pooling of Time Series and Cross Section Data. Econometrica 46 (1),
69–85.

Ruan, J., Z. Yan, B. Dong, Q. Zheng, and B. Qian (2019). Identifying Suspicious Groups of Affiliated-
Transaction-Based Tax Evasion in Big Data. Information Sciences 477, 508–532.

Wu, Y., B. Dong, Q. Zheng, R. Wei, Z. Wang, and X. Li (2020). A Novel Tax Evasion Detection
Framework via Fused Transaction Network Representation. In 2020 IEEE 44th Annual Comput-

ers, Software, and Applications Conference (COMPSAC), pp. 235–244.

19



Online Appendix

Refining Public Policies with Machine

Learning: The Case of Tax Auditing

Marco Battaglini Luigi Guiso Chiara Lacava

Douglas L. Miller Eleonora Patacchini

A Data: Further Details

Our data includes the universe of files and audits to sole-proprietorship taxpayers.
This is the category of tax filers that contributes the most to aggregate tax evasion
in Italy, as well as in other countries. According to estimates of the Italian Treasury
Ministry, in 2018 in Italy, small business (mostly registered as sole-proprietorship
business) account for 60% of the total evasion detected from firms’ reporting, an
amount equal to 8.9 billion euros (Ministero dell’Economia e delle Finanze, 2019).
The U.S. Internal Revenue Service (IRS) estimates that the lost federal tax revenue
due to underreported individual income was 197 billion dollars in 2001 (18% of the
individual income tax liability; U.S. Department of the Treasury, 2006). Johns and
Slemrod (2010) report that in the U.S. 57% of self-employed income is misreported, in
contrast to only 1% of wages and salaries. Similarly, Artavanis et al. (2016) document
that in Greece, evasion by the self-employed accounts for large losses in the public
budget.

Table A1 shows summary statistics. The sample includes 18,923,474 tax files
of income produced in years 2007-2012 by 4,731,693 sole-proprietorship taxpayers.
Among these tax returns, 403,691 returns filed by 304,726 different taxpayers receive
an audit. The probability of receiving an audit over the five years after filing is close
to 3% and similar across sectors, except for business operating in agriculture that
have a much lower audit rate (1.2%).
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Table A1
Summary Statistics - Audited Tax files

mean median sd 10th pct 90th pct
Audit rate 0.029 0 0.169 0 0

Agriculture 0.012 0 0.107 0 0
Trade 0.032 0 0.175 0 0
Construction and Manufacturing 0.033 0 0.179 0 0
Private services 0.032 0 0.175 0 0
Health, education, recreational services 0.030 0 0.170 0 0

Insolvency rate 0.425 0 0.494 0 1
Agriculture 0.302 0 0.459 0 1
Trade 0.431 0 0.495 0 1
Construction and Manufacturing 0.570 1 0.495 0 1
Private services 0.379 0 0.485 0 1
Health, education, recreational services 0.213 0 0.410 0 1

Appeal rate 0.050 0 0.217 0 0
Agriculture 0.046 0 0.210 0 0
Trade 0.052 0 0.223 0 0
Construction and Manufacturing 0.045 0 0.208 0 0
Private services 0.051 0 0.221 0 0
Health, education, recreational services 0.040 0 0.196 0 0

Positive evasion 0.742 1 0.438 0 1
Taxable income 22,783 13,040 52,997 0 49,390
Detected tax evasion (TaxEva) 14,520 1,914 78,111 0 21,655
Recovered tax evasion (TaxGot) 3,436 0 12,556 0 7,952
Years of activity 13.276 11 10.412 0 29
N. employees 0.830 0 3.152 0 2
Turnover 85,047 33,985 2,571,116 3,014 168,474
Notes. The audit rate is calculated for complete fiscal cycles (2007, 2008, 2009 files). Financial accounts are

expressed in euros. Detected and reported tax evasion are reported after winsorization.

Among audited files, the insolvency rate is 42.5%, and varies across sectors. About
57% of audited taxpayers operating in constructions and manufacturing (e.g. small
construction firms, plumbers, artisans, bakers) do not pay back the detected evasion.
Business providing services in trade and private services (e.g. lawyers, hairstylists,
coffee shop owners, architects) have an insolvency rate of 43% and 38%, respectively.
Finally, business in agriculture are insolvent 30% of the time and those providing
health, education and recreational services (e.g. physicians, dentists) are insolvent
21% of the times. The probability that the taxpayer appeals the audit is on average
5%, with low variation across sectors: the appeal rate ranges between 4% -for health,
education and recreational services- and 5.2% -for trade activities.

Audits detect evasion in 74% of the cases. The average detected tax evasion is
14,520 euros, with a quite dispersed distribution (min: 0, max: 21,884,085 before
winsorization). Evasion is a substantial share of the taxable income declared: on
average it amounts to 63% of the taxable income. The average recovered tax evasion
is 3,436 euros.
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The average audited taxpayer has been in operation for 13 years, only 24% of the
business have employees and those with employees on average employee 3.4 workers.
The average reported turnover is 85,047 euros with relevant heterogeneity (standard
deviation: 33,985 euros; 90th percentile 168,474 euros), partly reflecting differences
across industries.

This figure reports the insolvency rate for the percentiles of positive detected tax evasion.

Figure A1
Distribution of the insolvency rate by percentiles of detected tax evasion

Figure A1 shows the relationship between the detected tax evasion and the in-
solvency rate, as measured by the ratio between the number of audited tax files for
which no payment is received in due time among those who are found with positive
evasion. The figure shows a marked non linearity: the insolvency rate is much higher
for files with high evasion.

B Model Performance: Further Details

In this section, we compare the performance of our model with a standard linear
(OLS) prediction model and investigate its robustness when using different sets of
predictors. In Table A2, Panel A, we compare the predicting performance of our
random forest model and a linear probability prediction model estimated using the
baseline set of predictors. We measure the fit of the prediction model by comparing
the predicted evasion and recovered evasion of files in the testing sample that were
actually audited, with the realized values. We report the out-of-sample R-squared
and the RMSE for both variables as a measure of fit. Overall, the R-squared values
are low. This is not surprising, given the nature of the outcome variables: they are

3



highly right-skewed, and additionally have many 0 values. As Figure 1 shows, the
random forest model predicts the conditional average very well. For these data, there
is an inherently large degree of noise around the conditional average, which is reflected
in the R-squared values. As we show in the paper, our prediction models can greatly
improve detected evasion, even given these modest R-squared values. The table shows
that the random forest model improves significantly the prediction of both outcomes:
the R-squared of detected tax evasion doubles and the R-squared of the recovered
tax evasion using the random forest model is 1.5 times that of the OLS model. This
suggests that allowing for nonlinear functions of predictors is important to better
predict detected and recovered tax evasion.

Table A2
Comparison across models

A. OLS vs Random Forest

Model N. predictors N. obs. Out-of-sample R-squared Out-of-sample RMSE
TaxEva TaxGot TaxEva TaxGot

OLS 255 40,869 0.041 0.055 95,329 13,498
Random Forest (baseline) 255 40,869 0.131 0.083 90,746 13,297

B. Random Forest: Alternative Sets of Predictors

Predictors N. predictors N. obs. Out-of-sample R-squared Out-of-sample RMSE
TaxEva TaxGot TaxEva TaxGot

5 dgt sector FE 1,467 40,869 0.131 0.082 90,728 13,305
5 dgt sector FE + Mundlak’s municipality 1,469 40,869 0.131 0.082 90,732 13,303
Mundlak’s municipality & 5-dgt sector (baseline) 255 40,869 0.131 0.083 90,746 13,297
no Mundlak’s controls 251 40,869 0.127 0.081 90,952 13,310
no detailed financial accounts 150 40,869 0.092 0.080 92,750 13,319
no province and 2-dgt sector FE 20 40,869 0.072 0.064 93,772 13,433

C. Random Forest: Alternative Testing Samples

Testing sample N. predictors N. obs. Out-of-sample R-squared Out-of-sample RMSE
TaxEva TaxGot TaxEva TaxGot

Estimation years, 2007–2009 (baseline) 255 40,869 0.131 0.083 90,746 13,297
Post-estimation years, 2010–2013 255 11,177 0.127 0.081 71,759 15,267

Another key decision that characterizes the prediction model is the preferred set of
predictors. We use as our baseline set of predictors the full set of variables reported in
the tax returns, combinations of those variables, and dummy variables at the province
and at the 2-digit sector level (100 and 21 variables, respectively). In addition, we
exploit the granularity of the geographical and sectoral information contained in the
data using Mundlak-type predictors (Mundlak, 1978), defined as the average at the
municipality and at 5-digit sector level of two key financial accounts, namely taxable
income and turnover. In Table A2, Panel B, we test the sensitivity of our algorithm
to alternative sets of predictors. First, as discussed above, we show that by substitut-
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ing the Mundlak’s controls with the 5-digit sector fixed effects (with or without the
Mundlak’s municipality variables) leads to a similar prediction accuracy. Second, we
evaluate the explanatory power of different types of variables by eliminating different
sets of controls in turn. When removing the Mundlak’s controls the fit of the model
changes only slightly, for both outcomes. When removing detailed financial variables
there is instead an important reduction in the fit of the model for tax evasion, while
the improvement for recovered tax evasion proxy is minor, suggesting that the full set
of financial accounts does not help much predicting insolvency.14 On the other hand,
both tax evasion and insolvency shows a strong sectorial and geographical dimension:
when removing sector and province fixed effects (last row) the performance of the
model for both variables is dramatically reduced.15

C Discard and Replace Exercise: Further Evidence

C.1 Expanding the geography of the pool of available replace-
ments

In this section, we repeat our baseline discard-and-replace exercise (Policy B.1a),
allowing discarded and replacement files to come from a broader pool of audits. In
other words, we envision a scenario in which higher-level organizational units of the
IRA can impose replacement of files across tax offices. We consider replacement
within the province, the region, and the whole country. For example, when the
province is chosen as the organizational unit, we model dropping the 10% of audits
with the lowest predicted outcome (among those that were audited 1-3 years after
filing) within the province, and replacing them with an equal number of audits on
the files with the highest predicted outcome among later audits (i.e. among those
that were audited 4 or 5 years after filing) within the province. Results from these
exercises are presented in Figure A2. We show two panels, one for each outcome,
and use different line patterns for different replacement pools. The solid lines show
the results from the baseline discard-and-replace Policy B.1a within an office, and

14A basic set of financial variables is included in all models. This set includes the reported taxable
income (both the value and its logarithm), a dummy equal to one if the reported taxable income was
positive, reported taxable income net of employees deductions, gross income, revenues, total assets,
total liabilities, net value of production, VAT taxable turnover, total taxable revenues, operating
costs, amortized costs, VAT transactions.

15We also experimented with the use of lagged variables as additional controls. Results show
that the performance remains roughly unchanged. The lagged structure of the variables however
substantially reduces the sample sizes.
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gives the same results as in Figure 3, whereas dashed, dashed-dotted or dotted lines
show the results for using province, or region as the organizational units (with region
outperforming province), or the whole country. The picture shows that, for both
outcomes, expanding the organizational level for discard-and-replace can improve the
outcomes, but only modestly.

This figure reports the percentage gains of discarding the files with the lowest predicted tax evasion
(left panel) or with the lowest predicted recoverable tax evasion (right panel), and replacing them
with the same number of files with the highest predicted value at the local office (solid line) provincial
office (dashed line), regional office (dashed-dotted line), and centralized-country level (dotted line).
All values are reported relatively to the status quo total revenue of audits set at 100 and represented
by a dot.

Figure A2
Discard and Replace at different organizational levels

C.2 Expanding the size of the pool of available replacements

The gain in replacement from the main exercise with the broader pool (Policy B.1b)
may be partly due to a higher probability of replacement with extreme values. To test
this conjecture, we repeat our B.1b replacement exercise allowing for a random sample
from a broader pool (which includes unaudited files) but with the same sample size as
the pool of replacement files audited four and five years after filing. That is, we keep
the replacement pool the same size as Policy B.1a. Figure A3 reports on this exercise
when repeating the random draw 100 times. The 95% confidence interval is presented
as a shaded blue region (however there is little variation across the 100 draws, so in
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the figure this looks like a thick blue line). The figure shows that when limiting
the size of the pool to the same size as Policy B1.a, Policy B1.b does worse than
Policy B.1a. This is perhaps unsurprising since the files chosen to be audited (the 1a
pool) are positively selected compared to the overall pool of files. The magnitude of
this selection effect is moderate. On the other hand, the magnitude of the difference
between the “full size” B.1b and the “small size” B.1b is very large. This indicates
that the success of the B.1b Policy is driven by having a large pool of files from which
to choose the best.

This figure reports on the y-axis the percentage gains of discarding a given percentage of files
with the lowest predicted value of the target variable and replacing them with the same number
of files with the highest predicted value using different replacement pools: (i) the pool of later
audits (baseline Policy B1.a, green dashed lines); (ii) the pool of all unaudited files (Policy B1.b,
black dashed lines); (iii) a random pool of all unaudited files that has equal size of pool (i) (blue
solid lines). The orange solid line reports the gains of replacing the discarded percentage with files
with outcome equal to the average value of those of pool (i) (Policy B2.a). The x -axis reports the
discarded percentage. The target variable is tax evaded in the left figures and recoverable tax evasion
in the right figures. All values are reported relatively to the status quo total revenue of audits set
at 100 and represented by a dot.

Figure A3
Changing the size of donor pool impacts the gains

C.3 Montecarlo experiment

In Section 5.1, we consider replacing with the average file from either all those files
audited (Policy B.2b) or the average of those audited 4-5 years after filing (Policy
B.2a). Because the “average file” is not a feasible direct choice, in this section we
consider replacement with a random subset of actual files. We conduct 100 simula-
tions, and in each one we draw a random subset of files as replacements. The 95%
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confidence intervals for this exercise are reported in Figure A4. This figure shows that
the results of these random draws are similar to “replacing with the average” shown
in Section 5. It also shows that there is not a lot of variability across the random
draws.

This figure reports on the y-axis the percentage gains of discarding a given percentage of files with
the lowest predicted value of the target variable and replacing them with the same number of files
with the highest predicted value using 100 random samples of the pool of later audits (first row,
alternative implementation of Policy B.2a) and the pool of all unaudited files (second row, alternative
implementation of Policy B.2b). The x -axis reports the discarded percentage. The target variable is
tax evaded in the left figures and recoverable tax evasion in the right figures. All values are reported
relatively to the status quo total revenue of audits set at 100 and represented by a dot.

Figure A4
Policy B.2 - Replacement with random draws

D Predictors of Different Policy Objectives

In this section, we explore which variables are the main drivers of our prediction
model. More specifically, we report the mean decrease in impurity (Gini impor-
tance) as described in Breiman (2001). At each split in each tree, the classification
is performed by selecting, out of all splits of the candidate variables, the split that
minimizes the Gini impurity. By doing so, we can measure how each predictor de-
creases the impurity of the split. The mean decrease in impurity is the sum over
the number of splits (across all trees) that include the predictor, proportionally to
the number of samples it splits. Figure A5 displays the predicting importance of the
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predictors in our baseline model with the highest mean decrease in impurity, sepa-
rately for each target variable. Notice that the main predictors for both variables
are the different accounts reporting income (net, gross, business income excluding
salary income), turnover, net production and VAT credits. The most relevant cost
entries in predicting detectable and recoverable tax evasion are the purchases and
imports relevant to the determination of the VAT tax base. Moreover, the years of
activity and the business size (measured as the number of employees and its log) are
demographic characteristics useful in predicting evasion. Interestingly, there is high
variation in the predictive power of some predictors for the two target variables. This
underlines the tradeoff between multiple targets when building a prediction model
and complements our discussion in Section 5.2.

This figure reports the importance of predictors using mean decrease in impurity. The fifteen
predictors with the highest maximum mean decrease in impurity in detected and recovered evasion
are displayed.

Figure A5
Dominant predictors of tax evasion

E Additional Policy Objectives

In this section, we consider a “constrained” discard and replace exercise. We focus
on Policy B.1a, replacing discarded audits from the pool of files audited 4 or 5 years
after file. The constraints we explore are either (1) income-decile constraints, or
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(2) business sector constraints. To implement these constraints, we treat each file-
year-by-office-by-income-decile as its own discard-and-replace pool. That is, if we
are targeting a 10% discard rate, we do so for each file-year-office-decile pool, among
those files that were audited 1-3 years after filing. And we replace within the same
file-year-office-decile pool, using files audited 4-5 years after filing.

This figure reports on the y-axis the percentage gains of discarding a given percentage of files with
the lowest predicted value of the target variable and replacing them with the same number of files
selected with the highest predicted value (i) within the same office (baseline Policy B1.a, solid line);
(ii) within the same office and income decile (dashed-dotted line); and (ii) within the same office and
sector of activity (dashed line). The x-axis reports the discarded percentage. The target variable is
tax evaded in the left figure and recoverable tax evasion in the right figure.

Figure A6
Discard and Replace within income deciles and sectors

Figure A6 shows the result of this exercise. The top green line is the unconstrained
exercise Policy B.1a reported in the main text. The blue dash-dot line shows results
when constraining replacements within the same income deciles, and the red dashed
line shows results constraining replacements to be within the same sector. These
lines show a similar profile of the gains of reallocation under the sector and income
decile constraint to one another. They are each about one half as effective as the
unconstrained exercise; but still represent a substantial improvement over status quo.

Table A3 shows that the proposed policies are not associated with a selection of
files that differ systematically along additional margins. The table reports the average
of a set of observable characteristics of the status quo selection of audits, and of the
replacement files under the alternative versions of Policy B.1a replacement schemes
mentioned above (i.e. the baseline replacements within office, replacements within
office and sector, and within office and income decile), and the status quo (actual)
selection of audits. Results for different target variables are reported in different
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Table A3
Characteristics of files when discarding 20% and replacing with the best later audits

Panel A Panel B

Target: TaxEva Target: TaxGot
Status quo Office Office/Sector Office/Income Office Office/Sector Office/Income

Woman 0.226 0.199 0.217 0.212 0.202 0.213 0.227
Age 2.695 3.049 2.985 2.980 3.058 2.982 2.984
Married 0.681 0.679 0.678 0.677 0.717 0.710 0.698
Family business 0.102 0.102 0.102 0.104 0.133 0.130 0.127
Has employees 0.425 0.495 0.469 0.464 0.504 0.486 0.479
N. employees 1.907 2.861 2.409 2.392 2.712 2.427 2.406
Years of activity 13.000 12.842 12.906 12.853 13.865 13.470 13.471
Sectors:

Agriculture 0.036 0.035 0.036 0.037 0.041 0.036 0.041
Trade 0.334 0.314 0.334 0.325 0.315 0.334 0.338
Construction & Manufacturing 0.236 0.290 0.236 0.273 0.207 0.236 0.218
Private services 0.367 0.336 0.367 0.342 0.399 0.367 0.374
Health & Education services 0.027 0.025 0.027 0.024 0.038 0.027 0.029

Taxable income 26,370 36,199 31,438 28,847 47,256 35,660 30,127
Turnover 211,931 322,852 280,666 263,051 326,900 288,665 264,621
Notes. This table reports the mean characteristics of files (as indicated in the first column) after discarding and replacing 20%

audits under Policy B.1a. Colums represent alternative sample selection, depending on the target variable and on the replacement
pool. Column 2 ("Status quo") reports mean for the actual selection. "Office" indicates replacement with a later file in the same
IRA office, "Office/Sector" and "Office/Income" allow replacement only with files of the same sector of activity and income decile,
respectively. Financial accounts are expressed in euros.

panels (TaxEva in panel A, TaxGot in panel B). We find that the replacement tax
files selected following the ML predictions are filed by taxpayers with similar demo-
graphic characteristics to the ones who filed the discarded returns irrespective of the
replacement scheme (e.g. gender, age and marital status). Business characteristics
are balanced too: the discarded and the replacement pools involve businesses that
are comparable in terms of family business status, presence of employees, and years
of activity. Perhaps interestingly, the sectorial composition of replacements and dis-
card is not strikingly different even if balancing across sectors is not targeted (first
column in both panels), which guarantees that deterrence effects mediated through
the sectors are similar to those in the status quo. As expected, the striking difference
between the replacement sample and the actual status quo sample emerges with re-
spect to the financial accounts, since the level of evasion targeted by the algorithm is
increasing in the business turnover. However, these differences are largely attenuated
when replacing within the same income decile (third column in both panels), while
maintaining balance in all other characteristics.
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