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Buy-side analysts gather and provide critical information to fundmanagers for their exclusive use within
the firm (Cheng, Liu, andQian (2006); Frey andHerbst (2014)). Analysts’ advice, ideas, and recommen-
dations play an important role in determining fund performance and inmeeting investment goals. How-
ever, analysts are often motivated by reputational career concerns (Hong and Kubik (2003); Clement
and Tse (2005)), and so their incentives need not align with those of their fund managers. In partic-
ular, analysts may manipulate their recommendations in order to appear competent, but in so doing,
may negatively impact the fund’s profits. In this paper, we develop a general framework that captures
these divergent incentives and allows us to characterize the fund manager’s optimal dynamic incentive
contracts.

We develop a dynamic adverse selection environment in which a buy-side analyst (the agent) with pri-
vately known ability or skill (high or low) is tasked with providing advice about possible investment deci-
sions by some target date T . This advice typically takes the form of investment recommendations, while
the deadline might correspond to a target date for portfolio rebalancing, a pitchmeeting with a potential
investor, quarterly earnings season, or simply a regulatory filing due date. A fundmanager (the principal)
decides how to act in response to this advice, and also chooses whether or not to retain the services of (or,
equivalently, whether or not to promote) the analyst after observing the performance of the analyst’s
advice. The manager has two competing objectives. First, she wants to maximize the fund’s profits in
the near term by obtaining and optimally using information relevant to her portfolio decisions. Second,
she also wants to maximize the fund’s long-term performance by optimally managing the human capital
of her organization via analyst recruitment and retention—in particular, she only wants to retain (and
eventually promote) the analyst if she is of high ability. Conversely, the analyst is concerned with main-
taining her job; she cares about fund performance to the extent that it reflects on her ability (and thereby
impacts her retention).

Formally, in our model, there is an unknown state of the world corresponding to the fund manager’s
time-T ex post optimal investment decision. Over time, the analyst may observe a private signal that re-
veals the underlying state of the world; the arrival rate of this signal is greater when the analyst is highly
skilled. Since learning is private and only the analyst observes when a signal arrives, she is free tomake any
recommendation at any time to the fund manager regardless of what she may or may not actually know.
The fund manager is free to make and revise her investment decisions at any time, taking into account
the knowledge that the analyst’s advice (if any) is strategic. The resulting payoff from any such actions
serves as a noisy signal of the quality of the analyst’s advice, andmay depend on how early the recommen-
dation arrives: we allow (but do not require) the fund manager to have a preference for early resolution
of uncertainty. The fund manager’s decision to retain the analyst is a function of the recommendation,
the time at which it was made, and its realized ex post performance. We study the following problem:
how should the fund manager use the retention decision to screen analyst ability while accounting for
strategic, untruthful recommendations that negatively affect fund performance?

While ourmodel is novel, its individual ingredients find support from the literature on analysts and fund
managers. As mentioned above, career concerns matter for financial analysts and have repeatedly been
shown to influence their forecasts and advice; for example, Brown, Call, Clement, and Sharp (2016) note
that a majority of buy-side analysts view job security as a “very important” motivator, while Crawford,
Gray, Johnson, and Price (2018) document reputation-building activities by buy-side analysts. Con-
versely, firms work hard to efficiently match responsibility and capital to skill (Berk, van Binsbergen, and
Liu (2017)) and clearly have an incentive to retain the services of good analysts while terminating poor
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ones (Hong, Kubik, and Solomon (2000)). The dynamic information structure where an analyst learns
about the underlying fundamentals via private signals is a natural way to model uncertainty in this envi-
ronment (see for instance, Clarke and Subramanian (2006) and Crane and Crotty (2020)).

In our setting, the fundmanager wants to simultaneously elicit honest advice and screen the skilled from
the unskilled analyst. At first glance, these goals appear to conflict with one another. A contract designed
to weed out a low-ability analyst poses the risk of inducing strategic recommendations that attempt to
mimic her high-ability counterpart. Conversely, a contract designed to elicit accurate recommendations
may do a poor job of screening (a trivial example is the contract that commits to never terminate the
analyst, regardless of her performance). Our first result shows that the fund manager’s dual objectives
need not be in conflict with one another: the optimal dynamic contract incentivizes the analyst to always
provide truthful advice. This is in sharp contrast to the literature on analysts or forecasters facing exoge-
nously given (and suboptimal) incentives (see, e.g., Trueman (1994) or Ottaviani and Sørensen (2006)),
where agents manipulate their advice in order to appear skilled.

This theoretical result finds empirical support while highlighting one of the key distinctions between
buy-side and sell-side analysts. As many studies have shown, recommendations from the sell side are
often overly positive due to conflicts of interest (see, for instance, Cowen, Groysberg, and Healy (2006);
Kolasinski and Kothari (2008); Malmendier and Shanthikumar (2014)); they can also be distorted due
to career concerns induced by the public nature of sell-side forecasts, as analysts compete with each other
for “star” status (Ottaviani and Sørensen (2006)). Meanwhile, there is evidence from the buy side that
supports our theoretical finding: if buy-side analysts’ recommendations are undistorted, fund managers
should be more likely to respond to their advice than to sell-side information. Indeed, Groysberg, Healy,
Serafeim, and Shanthikumar (2013) find that buy-side analysts are less likely to assign optimistic “strong
buy” or “buy” ratings than their sell-side counterparts. Additionally, Rebello andWei (2014) show that
tradesmade by fundmanagers are highly responsive to buy-side recommendations, while reliance on sell-
side research is concentrated in assets that are not followed by buy-side analysts. This prediction fromour
model can also be tested directly: one could compare actual recommendations and forecasts from those in
anonymous surveys where strategic behavior plays no role as Marinovic, Ottaviani, and Sørensen (2013)
do for professional forecasters by comparing the anonymous Survey of Professional Forecasters with the
non-anonymous Business Economic Outlook.

The optimal contract has a simple and, in our view, realistic structure that highlights the key dimensions
along which buy-side analysts should be screened. Because skilled and unskilled analysts in our envi-
ronment are differentiated by the speed at which they learn about the underlying state of the world, the
optimal contract screens using a combination of the timing of advice and its realized performance. The
key qualitative features of the optimal contract are threefold: (i) the later the analyst makes her recom-
mendation, the lower the likelihood of her retention; (ii) the analyst is sometimes retained despite an (ex
post) suboptimal recommendation; and (iii) the analyst is retained with positive probability even if she
abstains frommaking any recommendation at all. We discuss each of these features in turn.

The first of the three properties is perhaps the most intuitive: since the skilled analyst learns faster, con-
tracts that effectively screen ability should reward earlier recommendations. As we have suggested above,
however, the optimal contract must prevent both types of analyst from signaling bymaking uninformed
early guesses in the absence of information. The optimal contract does so by providing an option value
to waiting: the analyst is more likely to be terminated following a recommendation that yields poor re-
sults, and so uninformed guessing (which is more likely to result in poor portfolio performance) is less
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attractive than waiting and potentially learning the underlying state.

In light of the above discussion, it is perhaps surprising that “bad” or ex post incorrect recommendations
are not punished with certain termination, as leniency increases the incentive to guess. Our model al-
lows for the possibility that, given the uncertainties inherent in the market, even sound advice based on
concrete information can sometimes fail to yield strong results. Thus, poor performance is not a perfect
signal that the underlying advice was flawed. Since the optimal contract induces truthful recommenda-
tions and the good type learnsmore quickly, earlier recommendations aremore likely to bemade by good
analysts. Thus, it is not in the manager’s interest to administer draconian punishments for early recom-
mendations that ultimately underperform; the likelihood of retention, while positive, is small enough to
prevent the low-ability analyst from guessing.1 The likelihood of termination after a poorly performing
recommendation thus increases the closer the recommendation is made to the target date T .

The final novel feature of the optimal contract naturally captures the fact that buy-side analysts are typi-
cally responsible for farmore firms than their sell-side counterparts. As a result, even the best analystsmay
not always be able to offer fully informed advice. In such situations, the fund manager is better off not
adjusting her portfolio or, instead, relying on information from the sell side. However, if the analyst is
fired in the absence of a concrete recommendation, shewill always have an incentive to eventually provide
a speculative guess. The only way to prevent this is to guarantee some small likelihood of retention even
in the absence of a recommendation. An alternate interpretation is that, if the analyst does not observe
an informative signal, she may make “safe” recommendations that do not require specialized in-depth
research that depends on analyst ability (for instance, investing in low volatility assets). Stated this way,
this feature of the optimal contract is supported by evidence in Groysberg, Healy, Serafeim, and Shan-
thikumar (2013), who show that buy-side analysts are more likely to make such safe recommendations.

One reason for the relative scarcity of research on buy-side analysts (compared to the sell side) is the diffi-
culty of obtaining data. Most studies use proprietary data procured from a single large fundmanagement
company. Importantly, since our model studies incentive contracts within the firm, it can be tested on
such data sets since we do not require firm heterogeneity. In particular, this flexibility permits tests of the
main high-level implication of the model: career outcomes for analysts should depend not only on the
accuracy but also on the timing of their recommendations. To the best of our knowledge, ours is the first
paper to highlight this channel for analyst differentiation; previous studies have relied on either forecast
accuracy (for example, Gu and Wu (2003)) or forecast volatility (see Hilary and Hsu (2013)) as a proxy
for analyst performance and skill.

Our model is the first to study the optimal design of dynamic incentives for career-concerned analysts;
more generally, we are unaware of other work (even in static environments) that addresses how contracts
should be structured to optimally identify talent within the fund. While our model is written with buy-
side analysts inmind, it is worthmentioning that our setting captures the incentives underlying a number
of other principal-agent settings where a firm cares about both the quality of information provision as
well as about screening. Examples include traders, quantitative analysts, or, more generally, any setting
where a principal employs an “innovator.”

This paper is related to work in economics on dynamic mechanism design (see Bergemann and Välimäki
(2019) for a recent survey) but the structure and key elements of the model differ from much of that

1Manso (2011) studies a two-period setting with moral hazard (in contrast to our dynamic adverse selection setting) where,
despite important modeling differences, also features an optimal contract that tolerates some early failures.
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literature. The closest paper is Deb, Pai, and Said (2018), where a prospective political candidate decides
whether or not to hire an advisor or pollster based on the dynamics of her forecasts in an earlier, unrelated
contest. That paper differs along three key dimensions: (i) the principal there cares only about screening
the agent and not about the actual information she provides; (ii) there are only two possible outcomes
(the identity of the election winner); and (iii) attention is restricted to deterministic contracts. General-
izing along each of these three dimensions is crucial to accurately model buy-side analysts. Clearly, fund
managers care directly about the informational content of analyst recommendations, and fund portfo-
lios can be adjusted along many more than just two dimensions. Finally, the structure of our optimal
contract and the resulting testable predictions highlight the importance of the likelihood that, and not
just whether or not, an analyst is retained.

1. MODEL

In order to study the interaction of analyst incentives with information provision, we develop a dynamic
adverse selection model where a fund manager (the principal) contracts with an analyst (the agent). The
analyst conducts research on behalf of the manager to help optimize the fund portfolio and may recom-
mend certain actions; the portfolio’s future performance is a noisy signal that partially reveals whether or
not the analyst’s advice was in fact correct.

1.1. THE ENVIRONMENT

STATE: The underlying state of the world ω ∈ Ω corresponds to the optimal strategy that the fund
should follow. This state is initially unknown to both themanager and the analyst. We assume that there
are finitely many states of the world and that each state is equally likely; hence, the commonly known
prior distribution is Pr(ω) = 1

n
, where n := |Ω| < ∞. (We defer a discussion of the more general case

with asymmetry to Section 6.)

OUTCOME: After the target date T < ∞, a publicly observed outcome r ∈ Ω is realized. This can be
interpreted as, for instance, realized market prices, and so the firm learns what its optimal strategy should
have been. This outcome is correlated with the true stateω: the outcome rmatches the true stateω with
probability γ ∈

(
1
n
, 1
)
; any other outcome is observed with uniform probability. This implies that

Pr(r|ω) =

{
γ if r = ω,
1−γ
n−1

otherwise.

We assume that γ < 1 to account for the possibility of imperfect foresight, even with maximal infor-
mation. This accounts for the possibility of, for instance, unanticipated shocks or market frictions that
create a wedge between ex ante expectations and ex post outcomes and optimal strategies. For complete-
ness, however, we discuss the case of perfect ex post information (that is, when γ = 1) in Section 6.

1.2. THE ANALYST

PRIVATE TYPE: There is a single agent (the analyst) whose ability or skill is her private information: the
analyst has a privately known type θ ∈ {h, l} corresponding to high ability (h, or “skilled”) or low ability
(l, or “unskilled”). The commonly known prior probability that the analyst is skilled is Pr(θ = h) =
ρ ∈ (0, 1).
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PRIVATE LEARNING: The analyst conducts research that may, over time, reveal the underlying state of
the world. We model the arrival of information as a type-dependent Bernoulli process: in each discrete
period t = 1, . . . , T , the agent learns the unknown state ω with probability αθ and otherwise remains
uninformed.2 Letting ϕ denote the absence of new information, we assume that the agent privately ob-
serves a signal st ∈ S := Ω ∪ {ϕ} in each period t, where

Pr(st|ω, st−1) =


1 if st = ω and st−1 = ω,

αθ if st = ω and st−1 ̸= ω,

1− αθ if st = φ and st−1 ̸= ω,

0 otherwise.

We further assume that 0 < αl < αh < 1, so that a high-ability (type-h) analyst is a better researcher
(and hence a faster learner) than a low-ability (type-l) analyst.

Inwords, this corresponds to an “all-or-nothing” information structure: the analyst either learns the state
of the world perfectly or learns nothing at all. The analyst’s ability determines the rate at which an in-
formative signal arrives, and both types are increasingly likely to have observed an informative signal as
the target date T approaches. This modeling assumption is natural and is supported by evidence from
buy-side analyst compensation. For instance, Groysberg, Healy, and Chapman (2008) document that
buy-side analysts are “rewarded for providing support to portfolio managers and new ideas that differ
from the Street consensus” (emphasis added). Meanwhile, Crane and Crotty (2020) document substan-
tial heterogeneity in analyst skill and show that the heterogeneity in this skill is “driven by differences in
information production ability” (emphasis added). Clearly, the speed at which an analyst learns or gener-
ates new ideas is critical.

This framework corresponds to a pure adverse selection environment, and we do not consider any issues
that might arise from moral hazard. Essentially, we are assuming that the analyst’s cost of research is
sufficiently low that the optimal contract always induces full effort.

PREFERENCES: The agent’s preferences are type-independent: both types of analyst have reputation-
motivated career concerns and therefore act to maximize the probability with which they are retained.
Wemodel this by assuming that the agent receives a payoff of 1 if she is retained by the fund and a payoff
of 0 if not.

As has been shown inHong,Kubik, and Solomon (2000) and subsequentwork, the threat of termination
and the promise of promotion are powerful generators of career concerns. Indeed, analysts are viewed as
“portfoliomanagers in training” at many firms, and the best analysts are “eventually promoted to portfo-
lio manager, which is typically a more highly paid position than that of analyst” (Groysberg, Healy, and
Chapman (2008)). Thus, for the purposes of our model, it is equivalent to think of the analyst caring
either about retention (instead of termination) or about promotion (as opposed to being passed over).

Although reputational considerations are shared by both buy- and sell-side analysts, it is important to
note a key distinction between the two groups that drives our modeling assumptions: since buy-side ad-
vice is private and not disseminated outside the firm, the career concerns of buy-side analysts are much

2This process is the discrete-time analogue of a continuous-time Poisson arrival process, a technology that has been previously
used to model research and innovation by, for instance, Akcigit and Liu (2015).
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simpler than their sell-side counterparts. There are no conflicts of interest with firms that maintain in-
vestment banking relationships with the analyst’s employer, or contest incentives associated with indus-
trywide awards and the desire to achieve “star” status.

1.3. THE FUND MANAGER'S MECHANISM

The fundmanager designs themechanismmediating the analyst–fund interaction. We focus on the case
where the principal fully commits to this mechanism. This design commitment can be thought of as a
choice of organizational policy and institutional rules. It is worth emphasizing that this design aspect
differentiates our paper from the remainder of the literature where analyst incentives are exogenously
fixed.

We limit the fundmanager’s contracting power, however, by ruling out the use of direct revelationmech-
anisms.3 In our employment contract setting, a direct revelation mechanism is prima facie impractical:
it would require the fund manager to first solicit the analyst’s type and (in order to incentivize truthful
disclosure) commit to retaining her despite a revelation that she is unskilled. (This is even more implau-
sible if the manager makes a promotion—as opposed to retention—decision.) Even if a manager could
commit to such a contract, the analyst would surely be concerned about how self-reporting a lack of skill
will affect her future career prospects, as fund managers may share such information across firms.4 As
a result, such direct revelation contracts are not feasible in the real world, and so we instead deliberately
limit the manager to a more practical set of “indirect” contracts.5

COMMUNICATION: In each period t = 1, . . . , T , the analyst (strategically) reports her information
s̃t ∈ S , possibly as the realization of a type-dependentmixed strategy σθ.6 Note that no communication
occurs in period 0, as the agent’s only private information at that time is her initial type θ. This is a natural
restriction on the set of game forms permitted to themanager: in practice, fundmanagers do not ask their
analysts to self-report their ability or skill, nor do they give any credibility to such self-reports given the
strong career concerns in the industry.

Buy-side analysts typically make recommendations that have substantial influence on fund investment
decisions. Here, we are deliberately agnostic as to the specific interpretation of a reported signal: it can
be thought of as a single buy, sell, or hold recommendation, a set of such recommendations for a basket
of securities, or some other form of investment strategy advice. Note that we are free to take such a broad

3The revelation principle for dynamic environments is due to Myerson (1986); as per Sugaya and Wolitzky (2021), it holds
without caveat in our environment. Any outcome that the manager can achieve with an arbitrary game form is also attainable
using an incentive compatible direct revelation mechanism.
4Such privacy concerns would persist if the agent was asked to choose from amenu of contracts—the “traditional” alternative
to direct revelation—instead of being asked tomake an explicit type report, as her choice would indirectly reveal her type. For
a broader discussion of these considerations in mechanism design, see Pai and Roth (2013).
5This is a similar approach to the dynamic pricing literature that characterizes optimal price paths (as opposed tomore general
optimalmechanisms; see Board (2008), for example), or towork in auction theory comparing the revenue generated by various
standard auction formats (as opposed to deriving the optimal auction; see DeMarzo, Kremer, and Skrzypacz (2005), among
others). Note, however, that we will formally prove with Lemma A.1 that this restriction does not reduce the fund’s ability
to separate high-skill analysts from their low-skill counterparts.
6Formally, in each period t, the agent has a private history ht := (st, s̃t−1) that contains the t privately observed signals
st := (s1, . . . , st) and the t − 1 reports s̃t−1 := (s̃1, . . . , s̃t−1)made prior to period t. LettingH =

⋃T
t=1 St × St−1

denote the set of all histories, the type-θ agent’s strategy σθ : H → ∆(S) determines the distribution of reports at each
history. We will use the signal subscript σθ

s(h
t) to denote the probability that the agent reports signal s ∈ S at history ht.
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stance because we impose minimal structure on the fund manager’s payoff function (see below).

RETENTION DECISION: The fund manager chooses (at the beginning of the interaction) a retention
rule χ(s̃T , r) ∈ [0, 1] that specifies the probability with which the manager retains the analyst as a func-
tion of her T reported signals s̃T and the observed outcome r. Although this retention rule χ is not a
direct revelation mechanism—we reiterate that the communication protocol does not solicit the agent’s
private type θ along with her signals—we will still refer to it as a mechanism.

Aswementioned above, it is equivalent to think of themanager’s retention decision as a promotion deci-
sion instead. Tomaintain consistent terminology, however, wewill only refer to this decision as retention
throughout the paper.

PREFERENCES: The fund manager has dual concerns: she wishes to maximize the fund’s profits in
both the short term (by maximizing the value of information relevant to her portfolio decisions) as well
as in the long term (by optimallymanaging the human capital of her organization via analyst recruitment
and retention).

Based on the analyst’s reports s̃t := (s̃1, . . . , s̃t) through period t, the manager has a posterior be-
lief πt about the underlying state of the world. This belief is formed using Bayes’ rule, given the ana-
lyst’s equilibrium (type-dependent) reporting strategy σ := (σh, σl). The manager’s ex post value of
information V (π1, . . . , πT ) ∈ R is a function of her beliefs leading up to period T . At any period
t ≤ T , with past and present beliefs (π1, . . . , πt), the manager’s value of information is the expectation
E [V (π1, . . . , πT )|π1, . . . , πt, σ] of V , taken with respect to the expected future beliefs (which in turn
depend on the analyst’s strategy).

This is an extremely general formulation of the fund manager’s value for information that captures nu-
merous different objective functions. Perhaps themost natural objective corresponds to an environment
where, in every period t, the manager chooses whether, and if so how, to adjust the fund portfolio. Her
decision depends on her beliefs about the underlying state (which in turn informs the optimal ex post
trading strategy). The generality not only allows the manager to anticipate future information and ac-
commodate transaction costs, it also captures the fact that information can have different values in differ-
ent periods: For instance, buying a security that performs well at period T (say because of unexpectedly
high reported earnings) can be more profitable if it is purchased before the market price incorporates the
information via consensus forecasts (typically released closer to T ) and reduces potential gains. Likewise,
our formulation also captures the setting studied in Kadan and Manela (2019) where the principal de-
rives both instrumental and psychic value from information used to trade Arrow-Debreu securities in a
dynamic environment with learning; there, V would correspond to the fraction of wealth the principal
is willing to forgo in return for the earlier resolution of uncertainty.

We assume that high-ability analysts are net positive contributors to the fund’s long-run profitability,
while low-ability analysts detract from the fund’s expected long-run value. Indeed, the fund manager
can rely on information from the sell side instead of employing a low-ability in-house analyst. Therefore,
the principal prefers to retain high-ability analysts and to terminate low-ability ones, and we denote by
W the extent to which the manager separates the two. We allow for asymmetry in the long-run costs and
benefits of the two types due to differences in, for example, their expected future earnings and their future
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contributions to fund profits. Thus, we normalize the value of human capital by letting

W := E
[
χ(s̃T , r) (1θ=h − c1θ=l)

]
, (1)

where c > 0 is the loss incurred by retaining (or promoting) low-skill analysts.

Given the manager’s dual concerns, we can write her payoff as a function

Π(V,W ),

of the value of informationV and the degree of type separationW . We assume thatΠ is strictly increasing
in both V andW , but impose no further restrictions onΠ.

2. BENCHMARK: PUBLICLY OBSERVED SIGNALS

To develop some intuition and provide a contrast to the optimal contract we characterize, we first con-
sider the “first-best” benchmark in which the analyst’s learning occurs publicly: the fund manager ob-
serves any signals as they arrive, and the agent’s only private information is her initial type. Of course, the
lack of private information about the state implies that the fundmanager is able tomaximize the value of
information and associated trading profits without regard to incentive provision to the agent. Likewise,
the agent-retention decision can be entirely decoupled from the portfolio decision. This implies that the
fund manager essentially maximizes her objective Π(V,W ) pointwise with respect to both the value of
information V and long-run human capitalW , yielding a payoff

ΠFB := Π(V FB,W FB),

where V FB is the first-best expected value of information andW FB is the first-best expected degree of
type separation.

Tomore fully characterize the benchmarkW FB , recall from (1) that our measure of type separation can
be written as

W =
∑

sT∈ST

∑
r∈Ω

Pr(sT , r)χ(sT , r)
[
Pr(θ = h|sT , r)− Pr(θ = l|sT , r)c

]
=
∑

sT∈ST

∑
r∈Ω

[
ρ Pr(sT , r|θ = h)− (1− ρ) Pr(sT , r|θ = l)c

]
χ(sT , r). (2)

In words, this is the difference between the expected probability of retaining the high-ability analyst and
the expected probability of retaining the low-ability analyst, accounting for the cost c of retaining the
latter. Maximizing this expression pointwise with respect to χ(sT , r) yields the fund manager’s first-
best rule: retain the analyst if her expected contribution to the future value of the fund is positive, and
terminate the relationship otherwise. This benchmark rule may be written as

χFB(sT , r) =

{
1 if ρ Pr(sT , r|θ = h) ≥ (1− ρ) Pr(sT , r|θ = l)c,

0 otherwise.

Of course, the conditional probabilities featured in the first-best retention rule are easily expressed in
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terms of the underlying primitives. Since signals are conditionally i.i.d. as long as the analyst is unin-
formed, only the arrival time of the first informative signal (if any) plays a role. With this in mind, note
that the probability of type θ observing a signal profile sT in which the first informative signal arrives in
period k is

δk,θ :=

{
αθ(1− αθ)

k−1 if k = 1, . . . , T,

(1− αθ)
T if k = ∞,

(3)

where we denote by k = ∞ the event in which the analyst never observes an informative signal. This
implies that, given such an arrival time k, the expected contribution of the analyst to the fund’s human
capital is positive if, and only if,

∆k := βδk,h − δk,l ≥ 0, where β :=
ρ

(1− ρ)c
. (4)

We now provide a fuller characterization of this first-best retention policy:

THEOREM 1. Suppose the analyst’s signals are publicly observed. There exist thresholds β < 1 < β such
that the analyst is never retained if β ≤ β and is always retained if β ≥ β. When β ∈ (β, β), the
first-best retention policyχFB is a cutoff policy: the analyst is retained if, and only if, an informative signal
arrives in some period t ≤ k̄ := 1 + ln

(
βαh

αl

)/
ln
(

1−αl

1−αh

)
.

In words, Theorem 1 states that if β is sufficiently small (so that the analyst is ex ante likely to have low
ability, or the cost of erring in retention is large), the agent is never retained, regardless ofwhether orwhen
information arrives. If, instead, β is sufficiently large (so the agent is ex ante likely to have high ability,
or the relative cost of erring and retaining the low-ability type is small), the analyst is always retained,
regardless of whether or when information arrives. But when β takes an intermediate value, screening
is valuable and the principal employs a cutoff k̄ such that the analyst is retained only if she receives an
informative signal by period k̄.

The absence of dynamic adverse selection has two important consequences reflected inTheorem 1’s first-
best policy. First, the optimal policy is deterministic: depending on the arrival time of an informative
signal, the analyst is either sure to be retained or sure to be fired, with a sharp delineation between these
two outcomes at time k̄. Second, since the agent’s signals are public, there is no need for the optimal
policy to use the additional information conveyed by the eventual realized outcome to provide incentives;
therefore, we have χFB(sT , r) = χFB(sT , r′) for all outcomes r, r′ ∈ Ω. Since signals are perfectly
informative of the underlying state for both types, there is no further type-dependent information that
is contained in the final outcome.

An immediate consequence of these two properties is that whenever the first-best policy discriminates
between the two types, the analyst’s career concerns provide a strong incentive for strategicmanipulation.
In particular, if the analyst learns privately, then she can guarantee retention by simply “guessing” and
reporting the arrival of an arbitrary informative signal in any period t ≤ k̄. This strategic reporting
of private information by both types of analyst precludes the implementation of the first-best retention
policy since the agent is always retained—and it also has a deleterious effect on the fund’s trading profits
since the fund manager no longer has access to informed recommendations.
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3. OVERVIEW OF MAIN RESULTS

As established above, the “first-best” incentive contract χFB for β ∈ (β, β) fails spectacularly in the
presence of private learning: it fails to deliver useful information for trading purposes, and it fails to in-
duce any separation between high-ability and low-ability analysts. Unsurprisingly, we can improve on
this contract by providing meaningful incentives to the analyst. Consider, for instance, a contract that
promises to always retain the agent regardless of whether andwhen they report any news. Such a promise
maximally insures the analyst and, hence,makes her indifferent between all reporting strategies; in partic-
ular, it incentivizes truthful reporting. Thus, the principal can attain the first-best value of information
V FB despite achieving no separation between high-skill and low-skill analysts. For precisely this reason,
we will henceforth focus only on the more interesting (nontrivial) case where β ∈ (β, β), so that the
manager has a meaningful incentive to separate the two types.

In this case, the fund has dual objectives, and it may therefore be willing to sacrifice on informativeness in
the short-run in order to decrease the distortions in human capital management. Surprisingly, however,
our first main result shows that such a sacrifice is not necessary. Indeed, the fund manager’s optimal
mechanism attains the first-best value of information V FB while minimizing (though not completely
eliminating) the distortions in analyst retention.

THEOREM 2. Suppose β ∈ (β, β). The fund manager’s expected payoff from the optimal mechanism is
Π∗ := Π(V FB,W ∗), whereW ∗ < W FB is themaximal separation of types possible under private analyst
learning.

It is worth reemphasizing the implication of the above result as it draws a sharp contrast between buy-side
and sell-side analysts. A robust empirical finding is that sell-side analysts’ recommendations are typically
overly optimistic, and furthermore that they tend to herd. By contrast, Theorem 2 implies that it is
possible for funds to construct appropriate contracts to incentivize truthful information revelation by
buy-side analysts; indeed, we show that doing so is optimal and that this can be balanced with the fund
manager’s screening motives. As mentioned earlier, this is because there are fewer conflicts of interest on
the buy side and analysts are not competing with each other via public forecasts. Eliciting such bias-free
advice is one possible reasonwhy buy-side analysts are employed in the first place (instead of funds simply
relying on sell-side advice).

In amore abstract environment, Theorem 2would not be surprising. A “standard” dynamicmechanism
design approach to this class of problems makes use of the full power and generality of the revelation
principle: an incentive compatible direct revelation mechanism where the agent is induced to always
reveal all private information truthfully, regardless of her type or the nature of her private information.
The fund would therefore always be able to attain the first-best value of information.

Our result is therefore surprising precisely because, despite not employing a direct revelationmechanism,
the principal is able to elicit sufficient information to attain her first-best trading outcomes. In fact, we
show that the payoff that the fund manager obtains from our optimal contract coincides with that of
the optimal direct mechanism, and so we effectively show that restricting attention to these real-world
contracts is without loss.

To better understand this striking result, it is helpful to develop some of the underlying intuition. The
first key insight is that direct revelation mechanisms are not necessary to solve the principal’s screening
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problem (in isolation, setting aside the value of information).7 To see why, consider a direct mechanism
χ̄(θ, sT , r) ∈ [0, 1] that specifies the probability of retaining the analyst given her reported ability θ, her
profile of reported signals sT , and the final outcome r. Suppose that this direct mechanism is incentive
compatible, and denote by W̄ the manager’s payoff from screening induced by χ̄. Since χ̄ is incentive
compatible, the analyst always finds it optimal to report her ability truthfully; therefore, mechanically
forcing her to misreport her type yields the analyst a lower payoff, regardless of how she might compen-
sate with additional future misreports. Since (holding all else fixed) the manager’s payoff is decreasing in
the probability the low-ability type-l analyst is retained, reducing the latter’s payoff is beneficial to the
manager. This can be achieved with the indirect mechanism χ(·, r) := χ̄(h, ·, r). Of course, since the
original mechanism χ̄was incentive compatible, it remains optimal for the high-ability type-h analyst to
report information truthfully in χ, and her retention probability remains unchanged; thus, this indirect
mechanism induces at least W̄ type separation, if not strictly more.

Of course, solving the fund’s screening problem and maximizing W alone is generally insufficient for
solving the fund’s joint profits-and-screening problem: attempting to maximize type separation alone
might provide the analyst with an incentive to strategically manipulate her recommendations, thereby
negatively impacting the fund manager’s ability to maximize the value of this advice. There are three
types of suchmanipulations thatmust be prevented in order tomaximize the fund’s value of information
and associated trading profits:

(NM) No Misreporting. The analyst must have an incentive to truthfully report the state when she
learns it instead of misreporting it as some other state.

(ND) NoDelay. The analyst must have an incentive to immediately report when she has learned the
state instead of delaying and reporting in a future period (or never reporting at all).

(NG) No Guessing. The analyst who remains uninformed must be willing to wait for information
to arrive instead of blindly guessing the state.

Recalling that the difference between a skilled analyst and an unskilled analyst in our environment is the
speed atwhich they learn and not the quality of their information, it is immediately clear that the first two
conditions (NM) and (ND) above apply identically to both types of agents—once the analyst has learned
the underlying state, her true ability no longer matters for her incentives. On the other hand, the third
condition abovedoes depend on the analyst’s type, as the option value ofwaiting for information depends
on the agent’s perceived likelihoodof that information actually arriving. But since the high-ability analyst
is more likely to learn the state by waiting than her low-ability counterpart, satisfying condition (NG) for
the type-h analyst does not guarantee that it is satisfied for the type-l analyst—the unskilled agent may
prefer at some point to make an uninformed recommendation instead of waiting for information.

The second key insight necessary to show Theorem 2 is that the fund manager finds it optimal to ensure
that condition (NG) is indeed satisfied for the type-l low-ability analyst at all histories. To see why this
must be the case, suppose for themoment that there is some period t̄where an uninformed type-h analyst
is content to wait for news but an uninformed type-l analyst strictly prefers to guess the state instead of
waiting for more news. Of course, this would imply that only type-h analysts are ever willing to wait for
news beyond time t̄, and therefore that rewarding delayed learning with increased retention probabilities

7We formally state and prove this result as LemmaA.1; this result also appears in the context of evaluating strategic forecasters
in Deb, Pai, and Said (2018).
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can only increase the likelihood of retaining the high-skill type-h analyst. Critically, this can be done in a
way that does not affect the behavior of the unskilled type-l analyst (or her resulting retentionprobability)
since her preference for preemption was strict. Since this increases the principal’s type separation payoff
W while leaving the value of information V unchanged, the fund manager’s overall payoff Π strictly
increases.8

Enumerating themanipulability conditions above also highlights some of the tensions inherent in incen-
tivizing the analyst. For instance, inducing immediate reporting requires the principal to reward earlier
reports of news, whereas the need to provide incentives for waiting require the principal to moderate any
punishment of later reports. These two countervailing forces must be carefully balanced in any optimal
contract.

The conditions above also help illuminate some key qualitative features of the optimal contract. First,
note that since γ < 1, even the high-ability analyst’s best advice is imperfect, and the fund manager
may find it optimal to retain the agent despite an erroneous recommendation. However, the manager’s
lenience for bad advice decreases over time, as declining retention probabilities generate better incentives
for immediate reporting. Likewise, themanager cannot always terminate the analyst if she fails tooffer any
advice at all by the target date T , as doing so guarantees that even a high-ability analyst will occasionally
find it optimal to gamble and provide an uninformed recommendation in order tomaintain her position.
It is therefore critical to sometimes retain the analyst in the absence of a recommendation.9

4. THE OPTIMAL MECHANISM

Wenow turn to a formal characterization of the fundmanager’s optimalmechanism in this environment,
proceeding as follows. We will derive the mechanism that only maximizes the fund manager’s payoffW
from screening. We will then show that this mechanism features the the property that both analyst types
report their signals truthfully. This in turn implies that themechanism thatmaximizesW alsomaximizes
the principal’s joint payoffΠ(V,W ).

Three preliminary observations are particularly useful:

1. As explained above (and formally demonstrated in LemmaA.1), we can restrict attention tomech-
anisms that induce the high-ability type-h analyst to be fully transparentwhile leaving the low-skill
type-l analyst unconstrained.

2. Since learning is “all-or-none” in this environment, only the analyst’s first informative signal mat-
ters: after observing such a signal, the agent perfectly learns the underlying state of theworld. Since
we want full transparency from the type-h analyst, we need only condition on the first reported
non-null signal st ̸= ϕ.

3. Finally, since the underlying states and signals are symmetric, it is without loss to symmetrize the
principal’s mechanism.

These three observations imply that we need only examine indirect mechanisms χ(sT , r) that are incen-

8We formally state and prove this result in the appendix as Lemma B.1.
9In a related contribution, Backus and Little (2020) discuss the difficulties in incentivizing an expert to admit to uncertainty.
Unlike our commitment to retaining the agent, they rely on the ex post verification of “problem difficulty” to induce such
confessions.
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tive compatible for the high-skill type-h analyst, and that can be described by numbers

(pt, qt)
T
t=1 and p∞

such that:

• the agent is retainedwithprobabilitypt if they first report having observed anon-null signal st = ω
in period t and the eventual outcome is r = ω;

• the agent is retainedwith probability qt if they first report having observed a non-null signal st = ω
in period t and the eventual outcome is r ̸= ω; and

• the agent is retained with probability p∞, regardless of outcome, if they never report having ob-
served a non-null signal.

Given such a mechanism, if the analyst truthfully reports her first non-null signal in period t, she is re-
tainedwith probability γpt+(1−γ)qt; if she “guesses” a state in period twhile uninformed (i.e., reports
observing signal s̃t = ω in period t despite having actually only observed null signals ϕ), she is retained
with probability 1

n
pt +

n−1
n
qt.

It is now straightforward to formally specify the constraints that arise from requiring incentive compat-
ibility for the high-ability type-h analyst. First, an informed agent who has learned the true state of the
worldωmust prefer to report that state truthfully instead ofmisreporting it as someω′ ̸= ω. This implies
that we must have

γpt + (1− γ)qt ≥ γqt + (1− γ)

(
1

n− 1
pt +

n− 2

n− 1
qt

)
for all t = 1, . . . , T.

Because γ > 1
n
, this “no-misreporting” condition can be rewritten as

pt ≥ qt for all t = 1, . . . , T. (NM)

In addition, the analyst must have an incentive to immediately report observing an informative signal
instead of delaying and reporting it in a future period (or never reporting it at all); this implies that we
must satisfy the “no-delay” condition

γpt + (1− γ)qt ≥ γpt+1 + (1− γ)qt+1 for all t = 1, . . . , T. (ND)

(We mildly abuse notation here and let pT+1 := p∞ and qT+1 := p∞ for convenience.) Notice that the
incentive constraints (ND) and (NM)applyonly to informedagents, and are therefore type-independent;
therefore, when (ND) and (NM) are satisfied for a high-ability type-h analyst, they are necessarily also be
satisfied for a low-ability type-l analyst.

An uninformed analyst’s expectations about the future depend on her type, however, as differentially
able analysts learn about the underlying state of the world at different rates. We therefore defineU θ

t as the
expected payoff of an uninformed type-θ agent in period twho reports their null signal st = ϕ truthfully
and waits for an additional period. In that next period, the agent receives (and truthfully reports) an
informative signal with probabilityαθ (yielding a payoff γpt+1+(1− γ)qt+1), and remains uninformed
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(and then proceeds optimally) with probability (1− αθ); thus, we inductively define

U θ
t := αθ (γpt+1 + (1− γ)qt+1)+(1−αθ)max

{
U θ
t+1,

1

n
pt+1 +

n− 1

n
qt+1

}
, with U θ

T := p∞ (5)

as there are no additional private signals to observe after period T . For an uninformed agent to prefer to
wait for an additional signal instead of pretending to be informed andmisreporting an arbitrarily chosen
state, the mechanismmust satisfy a “no-guessing” constraint

Uh
t ≥ 1

n
pt +

n− 1

n
qt for all t = 1, . . . , T, (NGh)

U l
t ≥

1

n
pt +

n− 1

n
qt for all t = 1, . . . , T. (NGl)

Lemma A.1 implies that (NGh) must be satisfied in any solution to the fund manager’s problem, but
that she is free to choose amechanismwhere (NGl) is violated—an uninformed low-ability type-l analyst
may find it in her best interest to act as though informed and simply manufacture news even though her
uninformed high-skill type-h counterpart finds it optimal to remain silent and wait for future learning
opportunities.

Finally, note that U θ
0 , as defined in (5), corresponds to the type-θ analyst’s ex ante expected probability

of being retained. Therefore, we can write the fund manager’s screening problem as

W ∗ = max
(pt,qt)Tt=1,p∞

{
ρUh

0 − (1− ρ)U l
0c
}

s.t., for all t = 1, . . . , T,

(ND), (NM), (NGh),
0 ≤ pt, qt ≤ 1, and 0 ≤ p∞ ≤ 1.

(P)

We are now in a position to describe the manager’s optimal retention rule.10

THEOREM 3. Suppose β ∈ (β, β). The mechanism that maximizes the fund manager’s payoff from
screeningW is also the optimal mechanism that jointly maximizes the payoffΠ(V,W ) from information
and screening. It is characterized by a cutoff period t∗ such that:

• If the analyst correctly reports ω in period t, she is retained with probability

pt =

{
1 if t ≤ t∗,

(1 + αl(γn− 1))t
∗−t if t > t∗.

• If the analyst incorrectly reports ω in period t, she is retained with probability

qt =

1−
(
1− αl(γn−1)

n−1

)t∗−t

if t ≤ t∗,

0 if t > t∗.

10We defer the proof of Theorem 3 to Appendix B.
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• If the analyst never reports a state ω (i.e., only reports null signals), she is retained with probability

p∞ =
1

n
(1 + αl(γn− 1))t

∗−T .

This result shows that, in the optimalmechanism, the principal rewards the arrival of earlier information.
Qualitatively, the nature of this reward takes a different form before and after the cutoff period t∗. If the
agent makes a recommendation before t∗, she is retained (with certainty) if her advice is ex post optimal
(i.e., her reported state correctly matches the outcome) and with positive probability that decreases over
time if the recommendation underperforms. If the agent insteadmakes a recommendation after t∗, she is
only retained (with declining probabilities over time) when that recommendation correctly matches the
eventual outcome.

This property also provides an interesting contrast to the first-best optimal retention rule from Theo-
rem 1. Since the analyst cannot lie in the benchmark environment, the only screening-relevant informa-
tion is when information arrives, not how it performs. Thus, the principal is maximally forgiving and
does not hold the analyst responsible for unhedgeable risks that lead the final outcome to differ from
the underlying state. In the full problem, however, forgiveness is easily manipulated and provides in-
centives for guessing. The principal therefore must penalize these unhedgeable outcomes—despite the
agent’s honest provision of information—to provide incentives for patience in information acquisition.
Of course, the extent of such penalties is tempered by the fact that even high-skilled analysts’ best recom-
mendations are also subject to this risk.

Finally, it is critical to point out that the retention probabilities described in Theorem 3 satisfy the un-
skilled type-l analyst’s no-guessing constraint (NGl). But because a skilled analyst is more likely to ob-
serve an informative signal after waiting than is an unskilled one, the type-h agent is strictlywilling towait
whenever the type-l agent is willing to do so—if constraints (NGl) are satisfied, then so are constraints
(NGh). This implies that themechanism described above is fully incentive compatible for both types, and
the principal receives exactly the same information as in the first-best problemwhere all learning is public.
This observation immediately yields Theorem 2: the fund attains its first-best value of informationV FB .

5. DISCUSSION AND IMPLICATIONS

This paper is the first that attempts to characterize optimal contracts for financial analysts. One possible
reason for this is that the bulk of the research on analysts concentrates (largely due to the availability of
public data) on the sell side. Sell-side analysts have a variety of conflicts of interest related to the public
nature of their forecasts, which significantly complicates the modeling of their competing incentives. By
contrast, one of our important insights is that the behavior and incentives of buy-side analysts can be
more cleanly modeled, thereby opening the door for new theoretically driven empirical analyses of their
optimal compensation structure. To the best of our knowledge, such empirical analyses have not been
conducted on the buy side; however, our model offers several testable implications that can readily be
taken to within-firm data from fund management companies.

We first observe that the optimal contract is not deterministic; the likelihood that the agent is retained
decreases over time and can be interior. This contrast to the first-best highlights the role that adverse se-
lection plays in our model. When the agent cannot strategically distort her information, the principal’s
payoff from type separation (2) is linear in her retention decision, and so randomization has no value.
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When the agent can engage in strategic misreporting, the optimal contract still induces truthful report-
ing, but this has to be incentivized. The only way the principal can provide the appropriate incentives
is by conditioning the retention decision on the final realized outcome r and by distorting the retention
probability. This finding is testable using data on the performance of analyst recommendations and pro-
motion or retention outcomes; likewise, interpreting the scope of an analyst’s coverage responsibilities as
a proxy for the probability of retention allows an additional test of this implication.

The optimal contract also shows that the career consequences of a given forecast depend not just on its
content, but also on its timing. Theoptimal probability of retention following a forecast (whether proven
ex post to be correct or not) is decreasing in the time t it is made. While this is intuitive, the underlying
economics driving the result are subtle. As shown in the solution to the public signal benchmark, later
recommendations are more likely to arise from the unskilled analyst, and so the manager would like to
punish late recommendations regardless of outcome. However, a substantial increase in the likelihood
of termination from period t to period t + 1 will lead an as-yet uninformed analyst to guess in period t.
Therefore, the only way to penalize late recommendations without destroying the quality of the analyst’s
reported information is to lower it gradually over time (as can be seen from the explicit closed-forms in
Theorem 3). Note that our model is able to capture this feature precisely because we permit the manager
to use stochastic contracts; this generality is often disallowed in dynamic mechanism design problems as
it can significantly complicate the analysis.11

Additionally, recall fromTheorem 2 that the optimal contract incentivizes both the high- and low-ability
analyst to reveal signals truthfully. Both the high- and low-ability analyst’s reports are equally likely to
match (ormismatch) the public outcome, so that does not reveal any information about the analyst’s true
underlying ability. Nevertheless, the analyst is punished if the reported signal and the eventual outcome
do not match; this is because, unlike the first best, the contract must provide incentives for the agent
to report truthfully, and this targeted punishment is the most effective way to prevent guessing. This
difference is perhaps the most stark when the analyst reports a signal after t∗; in this case, the analyst is
terminated for sure if the final outcome does notmatch but is retainedwith positive probability when no
signal arrives at all!12 The conclusion that both forecast accuracy and forecast timing should affect ter-
mination decisions also manifests in the evaluation of sell-side analysts. Clarke and Subramanian (2006)
show that there is a significantly negative relationship between the probability of future termination of
security analysts and the error with which they forecast end-of-quarter earning. Additionally, they show
that recent performance has a more significant impact on the probability of future termination.

We end this section by suggesting one way in which our results can be tested with data on buy-side an-
alysts. Analyst recommendations can be separated into two sets: one consisting of “safe” recommenda-
tions that mirror consensus sell-side recommendations, and another containing contrarian recommen-
dations that differ from the consensus or involving assets for which no consensus exists. In terms of our
model, the latter corresponds to signal reports whereas the former can be identified as not reporting a
signal. The timing of the recommendation can computed with respect to relevant events like earnings
announcement for the asset or disclosure deadlines for the fund. Themodel predicts consistent variation
in the likelihood of termination (or, for some firms, promotion) related to the timing and forecast error

11For instance, see Courty and Li (2000), Krähmer and Strausz (2011), or Boleslavsky and Said (2013), who rely on sufficient
conditions to ensure the optimality of deterministic contracts.
12This would remain the case even if the high-ability analyst was less likely to mismatch than her low-skill counterpart, as the
fund manager would still need to disincentivize guessing.
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for recommendations in the second group and the proportion of recommendations that fall in the first
group.

6. EXTENSIONS

In the previous sections, we made certain assumptions to simplify the exposition. However, the results
and intuitions discussed above extend directly to more general environments. In this section, we present
two extensions of our results: first, to the case of fully revealing outcomes; and second, to the asymmetric
case where states and signals are not uniformly distributed.

6.1. FULLY REVEALING OUTCOMES

We assumed throughout our analysis in Sections 3 and 4 that γ ∈
(
1
n
, 1
)
, so that the public outcome

was informative about the true underlying state, but not perfectly so. While we view this to be the more
realistic assumption, there are some contexts where the volume of information that is available ex post
may in fact permit perfect identification of the underlying state, and therefore the assumption that γ = 1
is more appropriate.

Our first main result (Theorem 2) continues to hold when γ = 1: the fund manager faces no loss in
the quality of information she can obtain despite facing a dynamic adverse selection problem. The key
contrast is with respect to the characterization of the manager’s optimal retention mechanism in Theo-
rem 3. In particular, note that when γ = 1, incentivizing the analyst to truthfully report the state when
she learns it (instead of misreporting it as some other state) becomes trivial: the eventual outcome always
perfectly reveals the true state, and so bad advice always corresponds to a misreported state or a guess.
In such cases, the principal is free to maximally punish the analyst. This yields the following optimal
contract:

THEOREM 4. Suppose β ∈ (β, β). The optimal mechanism is such that:

• The analyst is never retained if her report and the eventual outcome do not match, so that qt = 0 for
all t = 1, . . . , T .

• There is a cutoff period t∗ < k̄ such that, if the analyst correctly matches the outcome in period t, she
is retained with probability

pt =

{
1 if t ≤ t∗,

(1 + αl(n− 1))t
∗−t if t > t∗.

• The analyst is retained with probability p∞ = 1
n
pT > 0 if she never reports any information.

This contract yields the fund manager her first-best value of information V FB .

6.2. ASYMMETRIC STATES AND SIGNALS

Ahelpful assumption in the analysis abovewas that all stateswere equally likely. In practice, however, that
is typically not the case. We might expect, for example, that a particular asset is more likely to appreciate
in value over a given time horizon than to depreciate, or that a new firm’s product is likely to experience
costly production disruptions that negatively impact its profitability and viability. Our model can eas-
ily accommodate such asymmetry, and indeed delivers some interesting additional characteristics of the
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optimal contract. We restrict attention to two states in order to illustrate the impact of asymmetry in a
relatively parsimonious fashion.

We assume that there are two states of the worldω ∈ {a, b}. The commonly known prior belief the state
is ω given by πω ∈ (0, 1), where πa + πb = 1. In addition, we assume that the probability the eventual
outcome matches the true state is γω ∈ (πω, 1) for each ω ∈ {a, b}. All other elements of the model
and environment remain as described in Section 1.

Unlike in a fully symmetric environment, the fund manager may offer a mechanism that conditions the
retention decision not only on whether the analyst’s report matches the eventual outcome, but also the
specific content of that report. In particular, the manager chooses probabilities

(pωt , q
ω
t )

T
t=1 and p

ω
∞ for each ω ∈ {a, b}

such that an analyst first reporting st = ω in period t is retained with probability pωt if the eventual
outcome is r = ω and with probability qωt otherwise; and that the analyst is retained with probability
pω∞ if the eventual outcome is r = ω and the analyst never reports observing a non-null signal st ̸= ϕ.

Importantly, observe that the first-best contract in this asymmetric environment remains identical to that
described in Theorem 1. This is because what has changed is the distribution of signals and not their rate
of arrival. Since the principal can observe these signals in the first-best benchmark, the only information
she uses to screen continues to be the time at which the analyst’s first signal arrives.

Based on the above observation, one might be tempted to think that the optimal mechanism might be
symmetric despite the underlying asymmetry in the environment. Recall that the distortions in the opti-
mal mechanism relative to the first-best only arise in order to satisfy incentive constraints, and note that
the optimal mechanism in Theorem 3 continues to satisfy both the no-misreporting and no-delay con-
straints. However, the asymmetry in the environment implies that the uninformed analyst will prefer to
guess the outcome (and not the state) that is unconditionally more likely.

For an uninformed analyst who has not yet received a signal, the likelihood that outcome r = ω occurs
is given by

ηω := πωγω + πω′(1− γω′), where ω′ ̸= ω.

The no-misreporting condition implies that the analyst must be punished for outcomes that do not
match her reported signal. Therefore, if the analyst were to guess, she would report the state correspond-
ing to the outcome that she thinks is more likely to eventually arise; that is, she would report st = ω if
ηω > ηω′ . Now suppose the optimal mechanism were symmetric. This would imply that the value to
guessing one of the two states would (generically) be strictly greater than the other. This in turn allows
the principal to improve screening by distorting themechanism corresponding to the less likely state back
towards the first-best. We show that this can be done without inducing the agent to guess the other state,
while also satisfying the remaining constraints and (strictly) raising the manager’s payoff.

THEOREM 5. Suppose β ∈ (β, β). The optimal mechanism is such that:

• There are cutoff periods t∗ω for each ω = a, b such that pωt = 1 and qωt > 0 for t < t∗ω ; pωt = 1 and
qωt ≥ 0 for t = t∗ω ; and pωt < 1 and qωt = 0 for t > t∗ω .

• If ηω > ηω′ , then t∗ω ≤ t∗ω′ . Moreover, pωt ≤ pω
′

t and qωt ≤ qω
′

t for all t.
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• The analyst is retained with probability pω∞ = ηωp
ω
T + (1 − ηω)q

ω
T > 0 if she never reports any

information and the eventual outcome is r = ω.

This contract yields the fund manager her first-best value of information V FB .

The key novel economic implication of Theorem 5 is that the analyst is rewarded for riskier recommen-
dations. This reward is both in the form of a greater likelihood of retention when her advice pans out
and a lower likelihood of termination when it does not. The optimal contract ensures that, despite these
asymmetric rewards, the analyst only offers the risky advice when she is certain that it is the best course
of action. This result find support from Clarke and Subramanian (2006), who show that analysts make
bolder forecasts when they face lower probabilities of future termination.

The complete analysis leading to the above result (which we defer to Appendix D) proceeds in a fashion
similar to that of Section 4. One key difference, however, is that the set of constraints an optimal mecha-
nismmust satisfy is doubled: an analyst’s willingness to truthfully and immediately report the state now
depends directly on which state is observed. We can still argue, however, that these constraints must
always hold for both the high- and low-skill analyst, and so the fund manager extracts the same infor-
mation from the analyst as in the first-best world where signals are public; that is, our first main result
(Theorem 2) continues to hold.

7. CONCLUDING REMARKS

Our dynamic adverse selectionmodel captures key features of the relationship between buy-side analysts
and their fund managers. Reputationally motivated analysts have career concerns and wish to appear
competent, while profit-oriented managers want to maximize the quality of information, both in the
short run (by eliciting accurate advice) and in the long run (by employing and retaining only high-skill
analysts). We show that the manager’s optimal incentive contract maximizes the value of information
by incentivizing all analysts, regardless of their ability, to report new information immediately and ac-
curately. The optimal contract rewards both speed and accuracy, but does not punish their absence too
harshly. In particular, late-arriving information and admissions of uncertainty are rewarded, though less
generously than early-arriving advice.

We conclude by suggesting some avenues for further inquiry and investigation. One natural candidate
for generalization is the all-or-nothing information structure we employ, as it rules out the possibility
of forecast revisions; indeed, Boulland, Ornthanalai, and Womack (2022) provide evidence that lower-
skilled sell-side analysts revise their forecasts more frequently than higher-skilled analysts. Accounting
for this property requires informative signals that are not perfectly revealing. For instance, analysts might
differ on two dimensions: the rate at which information arrives and the quality or precision of their infor-
mation once it does. Another possibility is to examine environments with costly information acquisition
and endogenously determined quality of analyst information. We hope to explore these and other related
issues in future research.
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A. OMITTED RESULTS AND PROOFS

PROOF OF THEOREM 1. Suppose first that∆∞ := β(1 − αh)
T − (1 − αl)

T ≥ 0, or equivalently,
that

β ≥
(
1− αl

1− αh

)T

=: β.

Then for any k = 1, . . . , T , we have

∆k := βαh(1− αh)
k−1 − αl(1− αl)

k−1 ≥
(
1− αl

1− αh

)T

αh(1− αh)
k−1 − αl(1− αl)

k−1

= (1− αl)
k−1

(
αh

(
1− αl

1− αh

)T−k+1

− αl

)
> 0,

where the final inequality holds because 0 < αl < αh < 1. Thus, if ∆∞ ≥ 0, ∆k > 0 for all
k = 1, . . . , T and the principal retains the agent, regardless of her signals.

On the other hand, suppose that β < β, so that ∆∞ < 0. The first-best does not retain the agent
if an informative signal never arrives, but will retain her if the arrival time k is such that ∆k ≥ 0, or
equivalently, whenever βαh(1 − αh)

k−1 ≥ αl(1 − αl)
k−1. Taking logs of both sides and rearranging

yields the condition

ln
(
βαh

αl

)
≥ (k − 1) ln

(
1− αl

1− αh

)
.

Since 0 < αl < αh < 1, the logarithm on the right-hand-side is positive, and so the inequality above
can be rewritten as k ≤ k̄, where k̄ is as defined in the statement of Theorem 1.

Note, however, that if
β ≤ αl

αh

:= β,

the inequality above implies that k̄ ≤ 1, and so the principal finds it optimal to never retain the agent,
regardless of whether or when an informative signal arrives. ■

LEMMA A.1. There is amechanism that maximizes type separationW that does not depend on the reported
type. Specifically, for any incentive compatible direct mechanism χ̄, there is an indirect mechanism χ with
the following properties:

1. the separation induced by χ is (weakly) higher than the separation induced by χ̄;
2. the type-h agent has an incentive to report her signals truthfully; and
3. the type-l agent is free to misreport her signals optimally.

PROOF. Fix any incentive compatible direct revelation mechanism χ̄(θ, sT , r) that induces type separa-
tion W̄ , and define the alternative mechanism χ′(sT , r) by

χ′(sT , r) := χ̄(h, sT , r) for all sT ∈ ST and all r ∈ Ω.

Denote byµ(s̃T |sT , σ) the probability that an agent who observes signals sT and follows strategy σ ∈ Σ
reports the sequence s̃T , whereΣ is the set of all dynamic reporting strategies adapted to the signal process
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(as defined in Section 1.3). The separation induced by χ′ is then

W ′ = ρ sup
σh∈Σ

∑
(sT ,r)

Pr(sT , r|h)
∑
s̃T

µ(s̃T |sT , σh)χ̄(h, s̃T , r)


− (1− ρ)c sup

σl∈Σ

∑
(sT ,r)

Pr(sT , r|l)
∑
s̃T

µ(s̃T |sT , σl)χ̄(h, s̃T , r)

 ,

as both the type-h and type-l agents are free to optimize their signal reporting. Note, however, that
incentive compatibility of the original mechanism implies that the type-h agent finds truthful reporting
of signals to be optimal, implying that

W ′ = ρ
∑
(sT ,r)

Pr(sT , r|h)χ̄(h, sT , r)−(1−ρ)c sup
σl∈Σ

∑
(sT ,r)

Pr(sT , r|l)
∑
s̃T

µ(s̃T |sT , σl)χ̄(h, s̃T , r)

 .

In addition, incentive compatibility of the original mechanism implies that forcing the type-l agent to
misreport her initial type and then re-optimize reduces her expected utility; this implies that

W ′ ≥ ρ
∑
(sT ,r)

Pr(sT , r|h)χ̄(h, sT , r)− (1− ρ)c
∑
(sT ,r)

Pr(sT , r|l)χ̄(l, sT , r) =: W̄ .

Thus, since type separationW is decreasing in the utility of the type-l agent, the newmechanismχ′(·, r)
improves this dimension of the principal’s objective. As χ̄(θ, ·, r) was an arbitrary incentive compatible
mechanism, there exists a mechanism that maximizes type separation W that solicits only the agent’s
signals and incentivizes the type-h analyst to report them truthfully. ■
PROOF OF THEOREM 2. The optimal contract described in Theorem 3 satisfies the incentive com-
patibility constraints (ND), (NM), (NGh), and (NGl), so both skilled and unskilled analysts reveal all
new information immediately and truthfully, and neither type fabricates information. Therefore, the
fund manager observes exactly the same information as in the first-best, and so the value of information
generated by the analyst is V FB . ■

B. PROOF OF THEOREM 3

Recall that the fund manager’s objective function in (P) is written in terms of the analyst’s expected
continuation values U θ

t . Notice, however, that these objects’ definition in (5) implicitly assumes that
an uninformed agent who chooses to wait another period—in hopes of obtaining an informative signal
and learning the state—reports any such signal immediately and honestly. Of course, this is precisely
the behavior that is guaranteed by the satisfaction of the no-delay and no-misreporting constraints (ND)
and (NM). Since these conditions are already incorporated into the objective function, we canworkwith
the simpler relaxed problem where we drop these constraints and verify their satisfaction ex post. Thus,
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we will examine—after factoring out the (1− ρ)c term—the relaxed problem

max
(pt,qt)Tt=1,p∞

{
βUh

0 − U l
0

}
s.t., for all t = 1, . . . , T,

(NGh), 0 ≤ pt, qt ≤ 1 and 0 ≤ p∞ ≤ 1.

(P ′)

But recall thatU θ
t , as defined in (5), embeds amaximization term that reflects the analyst’s ability to strate-

gically preempt their learning process and guess the state of the world. Constraint (NGh) guarantees that
the high-skill type-h analyst does not wish to do so, but the possibility remains that the slower-learning
type-b analystmay in fact find guessingworthwhile. In particular, theremay exist some period t̄ such that
type l prefers to guess in period t̄ if she remains uninformed at that time. We show, however, that this is
suboptimal: it is without loss to impose the type-l no-guessing constraint (NGl) on the relaxed problem
(P ′).

LEMMA B.1. There exists a solution to (P ′) where the type-l no-guessing constraint (NGl) is satisfied.

PROOF. Suppose that {(pt, qt)Tt=1, p∞} solves problem (P ′), so that the type-h no-guessing constraints
(NGh) are satisfied, and there is some period t̄ ≤ T such that an uninformed type-l agent strictly prefers
to guess at period t̄ instead of waiting. The uninformed type-l agent will always guess at period t̄, and so
in subsequent periods the principal can only be facing a type-h agent. (Recall from the definition of U θ

t

that the informed agent—of either type—never delays or misreports.)

Suppose first that p∞ < 1, and consider {(p′t, q′t)Tt=1, p
′
∞}with p′∞ = p∞ + ε, p′t = pt, and q′t = qt for

all t ≤ T . Since the type-l agent strictly prefers guessing at t̄ in the original mechanism, she continues to
do so in the new mechanism for ε > 0 small enough. On the other hand, p′∞ > p∞ implies waiting is
more attractive for type h, so the no-guessing constraints (NGh) remain satisfied.

Suppose instead thatp∞ = 1, andnote that this implies that there exists t > t̄ such thatγpt+(1−γ)qt <
1. (If not, U l

t̄ = 1 and so (NGl) cannot be strictly violated.) Let t̂ denote the latest such period (so
γpt̂+1 + (1− γ)qt̂+1 = 1 and Uh

t̂
= 1), and consider a perturbation that increases γpt̂ + (1− γ)qt̂ by

ε > 0. For ε small enough, the type-l agent still strictly prefers to guess at t̄, while (since Uh
t̂
= 1) the

type-h agent still prefers to truthfully report being uninformed.

Since only type-h agents report being uninformed at period t̄ and continue in the mechanism, increas-
ing the probabilities of being retained after period t̄ strictly increases the principal’s payoff, violating the
conjectured optimality of the original solution. ♢
Since the type-h agent has a higher probability of observing an informative signal whenwaiting than does
a type-l agent, the type-h agent is strictlywilling to wait whenever the type-l agent is willing to do so; that
is, constraints (NGh) are implied by (NGl). Moreover, when these constraints are satisfied, we can write
the payoff of an uninformed type-θ analyst in period t as

U θ
t = αθ (γpt+1 + (1− γ)qt+1) + (1− αθ)U

θ
t+1

=
T∑

τ=t+1

αθ(1− αθ)
τ−t−1(γpτ + (1− γ)qτ ) + (1− αθ)

T−tp∞.
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Recalling that, for all t = 1, . . . , T , we had

∆t := βαh(1− αh)
t−1 − αl(1− αl)

t−1 and∆∞ := β(1− αh)
T − (1− αl)

T ,

we can rewrite problem (P ′) as

max
(pt,qt)Tt=1,p∞

{
T∑
t=1

∆t(γpt + (1− γ)qt) + ∆∞p∞

}
s.t., for all t = 1, . . . , T,

(NGl), 0 ≤ pt, qt ≤ 1 and 0 ≤ p∞ ≤ 1.

We relax this problem further by dropping the feasibility constraints that lower-bound pt and p∞, as well
as those that upper-bound p∞ and qt. Multiplying both sides of the period-t no-guess constraint (NGl)
by (1− αl)

t, we arrive at a relaxed primal problem in standard form:

max
(pt,qt)Tt=1,p∞

{
T∑
t=1

∆t(γpt + (1− γ)qt) + ∆∞p∞

}
s.t., for all t = 1, . . . , T,

(1− αl)
t

(
1

n
pt +

n− 1

n
qt

)
−

T∑
τ=t+1

αl(1− αl)
τ−1(γpτ + (1− γ)qτ )− (1− αl)

Tp∞ ≤ 0,

pt ≤ 1, and qt ≥ 0.

(R)

This corresponds to the following dual problem, whereλt is the dual variable for the feasibility constraint
on pt and µt is the dual variable for the type-l agent’s period-t no-guessing constraint:

min
(λt,µt)Tt=1

{
T∑
t=1

λt

}
s.t., for all t = 1, . . . , T,

λt +
1

n
(1− αl)

tµt − αl(1− αl)
t−1γ

t−1∑
τ=1

µτ = γ∆t,

n− 1

n
(1− αl)

tµt − αl(1− αl)
t−1(1− γ)

t−1∑
τ=1

µτ ≥ (1− γ)∆t,

− (1− αl)
T

T∑
τ=1

µτ = ∆∞,

λt ≥ 0, and µt ≥ 0.

(D)

Notice that, because we have dropped the nonnegativity constraints on pt and p∞ in the relaxed primal
problem (R), their complementary constraints in the dual (D) are equalities.
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LEMMA B.2. In any solution, the type-l agent’s no-guessing constraints (NGl)must bind in every period.

PROOF. Let {(pt, qt)Tt=1, p∞} be a candidate solution to the relaxed primal problem (R), and suppose
that the type-l agent’s no-guessing constraint (NGl) is slack for some period t̄.

Let {(λt, µt)
T
t=1} be the nonnegative solution to the dual problem (D) that complements the candidate

primal solution. Complementary slackness implies that we must have µt̄ = 0, and we can write the
period-t̄ dual constraint corresponding to qt̄ as

αl(1− αl)
t̄−1

t̄−1∑
τ=1

µτ ≤ −∆t̄.

Suppose first that t̄ < T . The dual constraint complemented by pt̄+1 can be written as

λt̄+1 +
1

n
(1−αl)

t̄+1µt̄+1 = γ

(
∆t̄+1 + αl(1− αl)

t̄

t̄∑
τ=1

µτ

)
= γ

(
∆t̄+1 + αl(1− αl)

t̄

t̄−1∑
τ=1

µτ

)
≤ γ (∆t̄+1 − (1− αl)∆t̄) = γβαh(1− αh)

t̄−1(αl − αh) < 0,

where the second equality follows from µt̄ = 0 and the final inequality from the fact that αh > αl. Of
course, this yields a contradiction, since λt̄+1 and µt̄+1 are both nonnegative.

If, instead, t̄ = T , note that the dual constraint complemented by p∞ can be written as

0 = ∆∞ + (1− αl)
T

t̄∑
τ=1

µτ = ∆∞ + (1− αl)
T

t̄−1∑
τ=1

µτ

≤ ∆∞−1− αl

αl

∆t̄ = β(1−αh)
T−1

(
(1− αh)−

αh

αl

(1− αl)

)
= β(1−αh)

T−1

(
1− αh

αl

)
< 0,

where the second equality follows from µt̄ = 0 and the final inequality from the fact thatαh > αl. This
is, of course, another contradiction. ♢

LEMMAB.3. In any solution{(pt, qt)Tt=1, p∞} to the relaxed primal (R), we have qt = 0wheneverpt < 1.

PROOF. Suppose not; that is, suppose that there exists a solution {(pt, qt)Tt=1, p∞} with 1 > pt̄ and
qt̄ > 0 for some t̄. Consider a perturbation to this solution that increases pt̄ by ε > 0 and decreases qt̄
by γ

1−γ
ε. For sufficiently small ε, this perturbation is feasible. Moreover, it does not affect the objective

value of the relaxed primal problem (R) or any of the period-t no-guessing constraints (NGl) for any
t ̸= t̄. But since γ > 1

n
, this perturbation relaxes the period-t̄ no-guessing constraint. This of course

contradicts Lemma B.2, which showed that the no-guessing constraints (NGl), for all t = 1, . . . , T , are
binding in any solution. ♢
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Recalling that the type-l continuation value when uninformed in period-t is

U l
t =

T∑
τ=t+1

αθ(1− αθ)
τ−t−1(γpτ + (1− γ)qτ ) + (1− αθ)

T−tp∞,

the binding type-l no-guessing constraint implies that

U l
t =

1

n
pt +

n− 1

n
qt

for all t = 1, . . . , T . Moreover, Lemma B.3 above implies that this can be rewritten as

pt = min
{
1, nU l

t

}
and qt =

nU l
t − pt

n− 1
.

It is easy to verify that U l
t is strictly decreasing in t. This implies that there is a cutoff period t∗ such that

the optimal contract {(p∗t , q∗t )Tt=1, p
∗
∞} is such that p∗t = 1 and q∗t > 0 for t < t∗; p∗t∗ = 1 and q∗t∗ ≥ 0;

p∗t < 1 and q∗t = 0 for t > t∗; and p∗∞ = 1
n
p∗T + n−1

n
q∗T ∈ (0, 1).

LEMMA B.4. There is an optimal contract {(p∗t , q∗t )Tt=1, p
∗
∞} with q∗t∗ = 0.

PROOF. The optimal contract properties described above are sufficient to pin down the dual variables
that complement an optimal solution. Note that q∗t > 0 for all t < t∗ implies that the dual program (D)
constraint complemented by qt binds. Dividing through by n−1

n
(1− αl)

t, this can be written as

− αl(1− γ)n

(1− αl)(n− 1)

t−1∑
τ=1

µτ + µt =
(1− γ)n∆t

(1− αl)t(n− 1)
. (B.1)

In addition, p∗t < 1 for all t > t∗ implies that λt = 0 and therefore that the dual program (D) constraint
complemented by pt can be rewritten as

− αlγn

1− αl

t−1∑
τ=1

µτ + µt =
γn∆t

(1− αl)t
, (B.2)

where we have divided through by 1
n
(1 − αl)

t. Finally, we can rewrite the binding dual program (D)
constraint complemented by p∞ as

T∑
τ=1

µτ = − ∆∞

(1− αl)T
. (B.3)

Jointly, equations (B.1), (B.2), and (B.3) form a system of T equations in the T unknowns {µt}Tt=1.

Subtracting the period-T equation (B.2) from equation (B.3) yields(
1 +

αlγn

1− αl

) T−1∑
τ=1

µτ = −∆∞ + γn∆T

(1− αl)T
.
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Subtracting (1 + αlγn
1−αl

) times the period-(T − 1) equation (B.2) from this result then yields

(
1 +

αlγn

1− αl

)2 T−2∑
τ=1

µτ = −∆∞ + γn∆T + (1 + αl(γn− 1))γn∆T−1

(1− αl)T
,

where we make use of the fact that 1 + αlγn
1−αl

= 1+αl(γn−1)
1−αl

. Similarly, subtracting (1 + αlγn
1−αl

)2 times the
period-(T − 2) equation (B.2) from the result above yields(
1 +

αlγn

1− αl

)3 T−3∑
τ=1

µτ = −∆∞ + γn∆T + (1 + αl(γn− 1))γn∆T−1 + (1 + αl(γn− 1))2γn∆T−2

(1− αl)T
.

Proceeding inductively in this fashion, we arrive at(
1 + αl(γn− 1)

1− αl

)T−t∗ t∗∑
τ=1

µτ = −
∆∞ +

∑T
τ=t∗+1 (1 + αl(γn− 1))T−τγn∆τ

(1− αl)T
. (B.4)

Thus, we can replace the original systemof equations (B.1), (B.2), and (B.3) by (B.1), (B.2), and (B.4). It is
easy to see that (after reordering the equations so that equation (B.4) precedes equations (B.2) for t > t∗)
the system corresponds to a lower triangular matrix with non-zero entries on its diagonal. Therefore,
there exists a unique solution {µ∗

t}Tt=1 to the system that can be found through forward substitution. Of
course, such a solution also uniquely pins down the remaining dual variables λ∗

t for all t ≤ t∗ (recalling
that λ∗

t = 0 for all t > t∗) via the dual constraints complemented by p∗t .

Now consider the dual constraint complemented by q∗t∗ , evaluated at the solution to the system of equa-
tions (B.1), (B.2), and (B.4):

n− 1

n
(1− αl)

t∗µ∗
t∗ − αl(1− αl)

t∗−1(1− γ)
t∗−1∑
τ=1

µ∗
τ ≥ (1− γ)∆t∗ .

This constraint is satisfied by assumption, as {(p∗t , q∗t )Tt=1, p
∗
∞} is optimal. If it holds strictly, then com-

plementary slackness implies we must have q∗t∗ = 0 in the optimal contract. If, instead, the constraint
binds, we can define another contract {(p̂t, q̂t)Tt=1, p̂∞} constructed as follows:

• Let Û l
t∗ :=

1
n
, and inductively define Û l

t by

Û l
t :=

{
Û l
t+1 +

αl(γn−1)
n−1

(1− Û l
t+1) for all t < t∗, working backwards from t∗ − 1, and

1
1+αl(γn−1)

Û l
t−1 for all t > t∗, working forwards from t∗ + 1.

Note that Û l
t is strictly decreasing in t.

• For each t = 1, . . . , T , let p̂t := min{1, nÛ l
t} and q̂t :=

nÛ l
t−p̂t

n−1
, and let p̂∞ := 1

n
p̂T .

Note that this contract satisfies the type-l no-guessing constraints (NGl) by construction, and so is fea-
sible in the relaxed primal problem (R). Furthermore, q̂t > 0 for all t < t∗, p̂t < 1 for all t > t∗, and
p̂φ ∈ (0, 1), implying that this contract complements the same dual solution (λ∗

t , µ
∗
t )

T
t=1 as the original
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optimal contract; this implies that this construction (inwhich q̂t∗ = 0) solves the relaxed primal problem
(R). ♢
We can further pin down the retention probabilities in the solution to (R) by combining the above result
with the binding type-l no-guessing constraints (NGl). In particular, for any t = 1, . . . , T , the definition
of U l

t and the binding no-guessing constraint imply, respectively, that

U l
t = αl(γp

∗
t+1 + (1− γ)q∗t+1) + (1− αl)U

l
t+1 and U

l
t =

1

n
p∗t +

n− 1

n
q∗t .

Moreover, since we can write p∗t = min{1, nU l
t} and q∗t =

nU l
t−p∗t
n−1

, the two expressions above can be
combined into the recurrence relation

U l
t :=

{
U l
t+1 +

αl(γn−1)
n−1

(1− U l
t+1) for all t < t∗, and

1
1+αl(γn−1)

U l
t−1 for all t > t∗.

where we have made use of the fact that p∗t = 1 for all t < t∗ and q∗t = 0 for all t > t∗. Since p∗t∗ = 1
and q∗t∗ = 0, we have U l

t∗ = 1
n
, and it is therefore easy to see that the unique solution to this recurrence

relation is

U l
t :=

1− n−1
n

(
1− αl(γn−1)

n−1

)t∗−t

for all t ≤ t∗, and
1
n
(1 + αl(γn− 1))t

∗−t for all t ≥ t∗.

Thus, we have

p∗t =

{
1 for t ≤ t∗,

(1 + αl(γn− 1))t
∗−t for t > t∗;

q∗t =

1−
(
1− αl(γn−1)

n−1

)t∗−t

for t ≤ t∗,

0 for t > t∗;

and p∗∞ =
1

n
(1 + αl(γn− 1))t

∗−T .

Notice that this contract is such that 1 ≥ p∗t > q∗t ≥ 0 for all t = 1, . . . , T , and furthermore that both
p∗t and q∗t are (weakly) decreasing in t. In addition, γp∗T +(1− γ)q∗T > p∗∞ ∈ (0, 1). Thus, the contract
satisfies the no-delay constraints (ND), the no-misreporting constraints (NM), and the feasibility con-
straints from the (unrelaxed) problem (P); that is, this contract solves the principal’s original problem,
and is therefore optimal. ■
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C. PROOF OF THEOREM 4

Suppose that γ = 1. The relaxed primal and dual problems (R) and (D) can be rewritten as

max
(pt,qt)Tt=1,p∞

{
T∑
t=1

∆tpt +∆∞p∞

}
s.t., for all t = 1, . . . , T,

(1− αl)
t

(
1

n
pt +

n− 1

n
qt

)
−

T∑
τ=t+1

αl(1− αl)
τ−1pτ − (1− αl)

Tp∞ ≤ 0,

pt ≤ 1, and qt ≥ 0.

(R′)

and

min
(λt,µt)Tt=1

{
T∑
t=1

λt

}
s.t., for all t = 1, . . . , T,

λt +
1

n
(1− αl)

tµt − αl(1− αl)
t−1

t−1∑
τ=1

µτ = ∆t,

n− 1

n
(1− αl)

tµt ≥ 0,

− (1− αl)
T

T∑
τ=1

µτ = ∆∞,

λt ≥ 0, and µt ≥ 0.

(D′)

LEMMA C.1. qt = 0 for all t = 1, . . . , T .

PROOF. Fix any t and notice that qt does not appear in the objective of the relaxed primal (R′), and
only with a positive coefficient in the period-t no-guessing constraint. Thus, lowering qt relaxes that
constraint. In addition, the dual constraint that complements qt is now redundant—thedual (D′) already
constrains µt to be nonnegative. Thus, we can take qt = 0 in any solution to (R′). ♢

LEMMA C.2. There exists a period t∗ such that type-l agent’s no-guessing constraint is slack for all t < t∗

and binds for all t ≥ t∗.

PROOF. Let {(pt, qt)Tt=1, p∞} be a candidate solution to the relaxed primal problem (R′), and suppose
that the type-l agent’s no-guessing constraint binds in some period t but is slack in period t + 1. (Note
that this implies that t+ 1 ≤ T .) The binding constraint in period t can be written as

1

n
(1− αl)

tpt − αl(1− αl)
tpt+1 =

T∑
τ=t+2

αl(1− αl)
τ−1pτ + (1− αl)

Tp∞,
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while the slack constraint in period t+ 1 can be written as

1

n
(1− αl)

t+1pt+1 <

T∑
τ=t+2

αl(1− αl)
τ−1pτ + (1− αl)

Tp∞.

Combining these two expressions yields

1

n
(1− αl)

tpt − αl(1− αl)
tpt+1 >

1

n
(1− αl)

t+1pt+1, or, equivalently, pt > (1 + αl(n− 1))pt+1.

Since we must have pt ≤ 1 in any solution, this implies that pt+1 < 1.

Let {(λt, µt)
T
t=1} be the nonnegative solution to the dual (D′) that complements the candidate relaxed

primal solution. Complementary slackness implies that we must have λt+1 = µt+1 = 0, and so we can
write the period-(t+ 1) dual constraint corresponding to pt+1 as

αl(1− αl)
t

t∑
τ=1

µτ = −∆t+1.

Suppose first that t+ 1 < T . The dual constraint complemented by pt+2 can be written as

λt+2 +
1

n
(1− αl)

t+2µt+2 = ∆t+2 + αl(1− αl)
t+1

t+1∑
τ=1

µτ = ∆t+2 + αl(1− αl)
t+1

t∑
τ=1

µτ

≤ ∆t+2 − (1− αl)∆t+1 = βαh(1− αh)
t(αl − αh) < 0,

where the second equality follows from µt+1 = 0 and the final inequality from the fact that αh > αl.
Of course, this yields a contradiction, since λt+2 and µt+2 are both nonnegative.

If, instead, t+ 1 = T , note that the dual constraint complemented by p∞ can be written as

0 = ∆∞ + (1− αl)
T

t+1∑
τ=1

µτ = ∆∞ + (1− αl)
T

t∑
τ=1

µτ

≤ ∆∞ − 1− αl

αl

∆t+1 = β(1− αh)
T−1

(
(1− αh)−

αh

αl

(1− αl)

)
= β(1− αh)

T−1

(
1− αh

αl

)
< 0,

where the second equality follows from µt+1 = 0 and the final inequality from the fact that αh > αl.
This is, of course, another contradiction.

Thus, if the no-guessing constraint ever binds in any period t∗, it must bind in all future periods t′ >
t∗. To see that such a period t∗ must exist, assume the contrary: that is, suppose that the no-guessing
constraint is slack in all periods. This implies that we must have µt = 0 for all t = 1, . . . , T . Since
∆∞ < 0, this violates the dual constraint complemented by p∞. ♢
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Since the no-guessing constraint is slack for all t < t∗, complementary slackness implies that µt = 0 for
all t < t∗. Therefore, the dual constraint complemented by pt, for any t < t∗, becomes

λt = ∆t.

Meanwhile, the dual constraint complemented by pt∗ becomes

λt∗ +
1

n
(1− αl)

t∗µt∗ = ∆t∗ .

Of course, since λt∗ ≥ 0 and µt∗ ≥ 0, this implies that we must have∆t∗ ≥ 0. In addition, note that

∆τ+1 −∆τ = βαh[(1− αh)
τ − (1− αh)

τ−1]− αl[(1− αl)
τ − (1− αl)

τ−1]

=

(
αl

1− αl

)
αl(1− αl)

τ − β

(
αh

1− αh

)
αh(1− αh)

τ

<

(
αh

1− αh

)
αl(1− αl)

τ − β

(
αh

1− αh

)
αh(1− αh)

τ = −
(

αh

1− αh

)
∆τ+1,

where the strict inequality follows from the fact that αh > αl. Since∆t∗ ≥ 0, this implies that λt =
∆t > 0 for all t < t∗. By complementary slackness, we therefore have pt = 1 for all t < t∗.

On the other hand, since the no-guessing constraint binds for all t ≥ t∗, we can write the period-T
no-guess constraint as

1

n
(1− αl)

TpT = (1− αl)
Tp∞, or, equivalently, p∞ =

1

n
pT .

Likewise, for any t ≥ t∗, we can subtract the binding period-(t+1)no-guess constraint from the binding
period-t no-guess constraint, which yields

1

n
(1− αl)

tpt − αl(1− αl)
tpt+1 =

1

n
(1− αl)

t+1pt+1, or, equivalently, pt+1 =
1

1 + αl(n− 1)
pt.

Working inductively, this implies that, for all t > t∗,

pt = (1 + αl(n− 1))t
∗−tpt∗ and p∞ =

(1 + αl(n− 1))t
∗−T

n
pt∗ .

Since pt∗ ≤ 1, this implies that pt < 1 for all t > t∗, and so (by complementary slackness) we must also
have λt = 0 for all t > t∗.

The only remaining variable to determine is pt∗ . In particular, wemust determinewhether the constraint
pt∗ ≤ 1 binds or is slack.

LEMMA C.3.Wemust have pt∗ = 1 in an optimal contract.

PROOF. The properties of the optimal contract we describe above are sufficient to pin down the dual
variables that complement an optimal solution. Recall that λt = ∆t > 0 and µt = 0 for all t < t∗,
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while λt = 0 for all t > t∗. This implies that we can write

1

n
(1− αl)

tµt − αl(1− αl)
t−1γ

t−1∑
τ=t∗

µτ = γ∆t for all t > t∗, and − (1− αl)
T

T∑
τ=t∗

µτ = ∆∞.

These equations can be rewritten as

µt −
αln

1− αl

t−1∑
τ=t∗

µτ =
n∆t

(1− αl)t
for all t > t∗, and (C.1)

T∑
τ=t∗

µτ = − ∆∞

(1− αl)T
. (C.2)

Subtracting the period-T instance of equation (C.1) above from equation (C.2) yields

1 + αl(n− 1)

1− αl

T−1∑
τ=t∗

µτ = − ∆∞

(1− αl)T
− n∆T

(1− αl)T
,

which can be rearranged as

T−1∑
τ=t∗

µτ = − ∆∞ + n∆T

(1 + αl(n− 1))(1− αl)T−1
.

Similarly, subtracting the period-(T − 1) instance of equation (C.1) from this expression then yields

1 + αl(n− 1)

1− αl

T−2∑
τ=t∗

µτ = − ∆∞ + n∆T

(1 + αl(n− 1))(1− αl)T−1
− n∆T−1

(1− αl)T−1
,

which can be rewritten as

T−2∑
τ=t∗

µτ = −∆∞ + n∆T + (1− αl(n− 1))n∆T−1

(1 + αl(n− 1))2(1− αl)T−2
.

Proceeding inductively in this manner, we arrive at

µt∗ = − ∆φ

(1 + αl(n− 1))T−t∗(1− αl)t
∗ − n

(1− αl)t
∗

T∑
τ=t∗+1

∆τ

(1 + αl(n− 1))τ−t∗
.

With this expression in hand, recall that the final remaining dual constraint (which is complemented by
pt∗) can be rewritten as

λt∗ = ∆t∗ −
(1− αl)

t∗

n
µt∗ =

T∑
τ=t∗

(1 + αl(n− 1))t
∗−τ∆τ +

(1 + αl(n− 1))t
∗−T

n
∆∞. (C.3)
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Thus, the value of the dual program (D′) is

T∑
τ=1

λt =
t∗−1∑
τ=1

∆τ +
T∑

τ=t∗

(1 + αl(n− 1))t
∗−τ∆τ +

(1 + αl(n− 1))t
∗−T

n
∆∞.

Meanwhile, the objective of the relaxed primal program (R′) can now be written as

T∑
τ=1

∆τpτ +∆∞p∞ =
t∗−1∑
τ=1

∆τ + pt∗

(
T∑

τ=t∗

(1 + αl(n− 1))t
∗−τ∆τ +

(1 + αl(n− 1))t
∗−T

n
∆∞

)
.

Since the value of the primal must equal that of the dual at a solution to this linear program, we must
therefore have pt∗ = 1. ♢
Notice that the contract that solves the relaxed problem (R′) is such that 1 ≥ pt > qt = 0 for all
t = 1, . . . , T , and furthermore that pt is (weakly) decreasing in t. In addition, pT > p∞ ∈ (0, 1).
Thus, the contract satisfies the no-delay constraints (ND), the no-misreporting constraints (NM), and
the feasibility constraints from the (unrelaxed) problem (P); that is, this contract solves the principal’s
original problem, and is therefore optimal.

Finally, recall from the proof of Theorem 1 that ∆∞ < 0 whenever β < β (as is the case here), and
moreover that∆t > 0 for all t < k̄ and∆t < 0 for all t > k̄ (where k̄ is the first-best cutoff defined in
Theorem 1). In addition, note from (C.3) that we can write

λt∗ = ∆t∗ +
T∑

τ=t∗+1

(1 + αl(n− 1))t
∗−τ∆τ +

(1 + αl(n− 1))t
∗−T

n
∆∞.

Since∆∞ < 0, the the dual constraint λt∗ ≥ 0 can only be satisfied if t∗ < k̄. ■

D. PROOF OF THEOREM 5

Amechanism for asymmetric states consists of probabilities {(pωt , qωt )Tt=1, p
ω
∞}ω=a,b such that an analyst

reporting ω in period t is retained with probability pωt if r = ω and with probability qωt otherwise; and
that the analyst is retained with probability pω∞ if they eventual outcome is r = ω and the analyst never
reports a non-null signal.

Given such a mechanism, if the analyst truthfully reports ω ∈ {a, b} in period t, she is retained with
probability γωpωt + (1− γω)q

ω
t ; if she misreports ω ∈ {a, b} as ω′ ̸= ω in period t, she is retained with

probability γωqω
′

t +(1−γω)p
ω′
t ; and if she “guesses” stateω in period twhile uninformed, she is retained

with probability ηωpωt + (1 − ηω)q
ω
t , where ηω := πωγω + (1 − πω)(1 − γω) is the (unconditional)

probability of observing outcome r = ω.

Wenowspecify the constraints arising fromrequiring incentive compatibility for the type-h analyst. First,
an informed agentwho has learned the true state of theworldωmust prefer to report that state truthfully
instead of misreporting it as ω′ ̸= ω. This implies that we must have

γωp
ω
t + (1− γω)q

ω
t ≥ γωq

ω′

t + (1− γω)p
ω′

t for ω = a, b and ω′ ̸= ω, and all t = 1, . . . , T. (NMω)
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The analyst must also have an incentive to immediately report observing an informative signal instead of
delaying and reporting it in a future period (or never reporting it at all); this implies that we must satisfy
the “no-delay” condition

γωp
ω
t + (1− γω)q

ω
t ≥ γωp

ω
t+1 + (1− γω)q

ω
t+1 for ω = a, b and all t = 1, . . . , T. (NDω)

(We mildly abuse notation and let pωT+1 := pω∞ and qωT+1 := pω
′

∞ for convenience.) The constraints
(NDω) and (NMω) apply only to informed agents, and are therefore type-independent.

We define U θ
t as the expected payoff of an uninformed type-θ agent in period t who reports their null

signal st = ϕ truthfully and waits for an additional period. In that next period, the agent receives (and
truthfully reports) an informative signalwith probabilityαθ and remains uninformed (and then proceeds
optimally) with probability (1− αθ); thus, we inductively define

U θ
t := αθ

∑
ω=a,b

πω

(
γωp

ω
t+1 + (1− γω)q

ω
t+1

)
+(1−αθ)max

{
U θ
t+1,max

ω

{
ηωp

ω
t+1 + (1− ηω)q

ω
t+1

}}
,

where we let U θ
T :=

∑
ω=a,b ηωp

ω
∞, as there are no additional private signals to observe after T . For an

uninformed agent to prefer to wait instead of pretending to be informed andmisreporting some state ω,
the mechanismmust satisfy “no-guessing” constraints

Uh
t ≥ ηωp

ω
t + (1− ηω)q

ω
t for ω = a, b and all t = 1, . . . , T, (NGω-h)

U l
t ≥ ηωp

ω
t + (1− ηω)q

ω
t for ω = a, b and all t = 1, . . . , T. (NGω-l)

Lemma A.1 implies that (NGω-h) must be satisfied in any solution to the fund manager’s problem, but
that she is free to choose a mechanism where (NGω-l) is violated.

Finally, since U θ
0 corresponds to the type-θ analyst’s ex ante expected probability of being retained, we

can write the fund manager’s screening problem as

W ∗ = max
{(pωt ,qωt )Tt=1,p

ω
∞}ω=a,b

{
ρUh

0 − (1− ρ)U l
0c
}

s.t., for all ω = a, b and all t = 1, . . . , T,

(NDω), (NMω), (NGω-h),
0 ≤ pωt , q

ω
t ≤ 1 and 0 ≤ pω∞ ≤ 1.

(Pω)

As in Appendix B, the U θ
t terms in the manager’s objective function (Pω) already implicitly incorporate

the no-delay and no-misreporting constraints (NDω) and (NMω). Therefore, we can work with the sim-
pler relaxed problemwhere we drop these constraints and verify their satisfaction ex post. After factoring
out the (1− ρ)c term, we arrive at the relaxed problem

max
{(pωt ,qωt )Tt=1,p

ω
∞}ω=a,b

{
βUh

0 − U l
0

}
s.t., for all ω = a, b and all t = 1, . . . , T,

(NGω-h), 0 ≤ pωt , q
ω
t ≤ 1 and 0 ≤ pω∞ ≤ 1.

(P ′
ω)
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LEMMA D.1. There exists a solution to (P ′
ω) where (NGω-l) is satisfied for ω = a, b.

PROOF. Suppose that {(pωt , qωt )Tt=1, p
ω
∞}ω=a,b solves problem (P ′

ω), so the type-h no-guessing con-
straints (NGω-h) are satisfied. Suppose further that there is some period t̄ ≤ T such that an uninformed
type-l agent strictly prefers to guess at period t̄ instead of waiting an additional period. This implies that
the uninformed type-l agent will always guess at period t̄, and so in subsequent periods the principal
can only be facing a type-h agent. (Recall from the definition of U θ

t that the informed agent—of either
type—never delays or misreports their information.)

Suppose first thatUh
T < 1, implying minω{pω∞} < 1. Then there exists ε > 0 sufficiently small that it is

possible to increase
∑

ω=a,b ηωp
ω
∞ without violating the feasibility constraint. This only makes waiting

more attractive for the uninformed type-h agent in period T , so the no-guessing constraints (NGω-h)
remain satisfied. However, for ε small enough, the type-l agent’s strict preference to guess remains un-
changed.

Now suppose instead that Uh
T = 1, so pω∞ = 1 for all ω. But (NGω-l) strictly violated implies that there

exists t > t̄ such that ηω̂pω̂t + (1− ηω̂)q
ω̂
t < 1 for some ω̂. (Otherwise, we haveU θ

t = 1 for all t > t̄ and
no violation of (NGω-l) is possible.) Let t̂ denote the latest such period (so ηωpωt̂+1

+ (1− ηω)q
ω
t̂+1

= 1

for all ω and Uh
t̂
= 1), and consider a perturbation that increases ηω̂pω̂t̂ + (1 − ηω̂)q

ω̂
t̂
by ε > 0. For ε

small enough, the type-l agent still strictly prefers to guess at t̄, while (sinceUh
t̂
= 1) the type-h agent still

prefers to truthfully report being uninformed.

Since only type-h agents report being uninformed at period t̄ and continue in themechanism, increasing
the probability of retaining the type-h analyst without affecting the retention probability of the type-l
analyst. This strictly increases the principal’s payoff, violating the conjectured optimality of the original
solution. ♢
Since the type-h agent has a higher probability of observing an informative signal in any period than does
a type-l agent, the type-h agent is strictly willing to wait whenever the type-l agent is willing to do so;
that is, (NGω-h) is implied by (NGω-l). Moreover, when these constraints are satisfied, we can write the
payoff of an uninformed type-θ analyst in period t as

U θ
t = αθ

(∑
ω=a,b

πω

(
γωp

ω
t+1 + (1− γω)q

ω
t+1

))
+ (1− αθ)U

θ
t+1

=
T∑

τ=t+1

αθ(1− αθ)
τ−t−1

(∑
ω=a,b

πω (γωp
ω
t + (1− γω)q

ω
t )

)
+ (1− αθ)

T−t
∑
ω=a,b

ηωp
ω
∞.

Recalling that, for all t = 1, . . . , T , we had

∆t := βαh(1− αh)
t−1 − αl(1− αl)

t−1 and∆∞ := β(1− αh)
T − (1− αl)

T ,
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we can rewrite problem (P ′
ω) as

max
{(pωt ,qωt )Tt=1,p

ω
∞}ω=a,b

{
T∑
t=1

∆t

∑
ω=a,b

πω (γωp
ω
t + (1− γω)q

ω
t ) + ∆∞

∑
ω=a,b

ηωp
ω
∞

}
s.t., for all ω = a, b and all t = 1, . . . , T,

(NGω-l), 0 ≤ pωt , q
ω
t ≤ 1 and 0 ≤ pω∞ ≤ 1.

We relax this problem further by dropping the feasibility constraints that lower-bound pωt and pω∞, as
well as those that upper-bound pω∞ and qωt . Multiplying both sides of the period-t no-guess constraint
(NGω-l) by (1− αl)

t, we arrive at a relaxed primal problem in standard form:

max
{(pωt ,qωt )Tt=1,p

ω
∞}ω=a,b

{
T∑
t=1

∆t

∑
ω=a,b

πω (γωp
ω
t + (1− γω)q

ω
t ) + ∆∞

∑
ω=a,b

ηωp
ω
∞

}
s.t., for all ω = a, b and all t = 1, . . . , T,

(1− αl)
t (ηωp

ω
t + (1− ηω)q

ω
t )

−
T∑

τ=t+1

αl(1− αl)
τ−1

∑
ω′=a,b

πω′

(
γω′pω

′

τ + (1− γω′)qω
′

τ

)
− (1− αl)

T
∑

ω′=a,b

ηω′pω
′

∞ ≤ 0,

pωt ≤ 1, and qωt ≥ 0.

(Rω)

This corresponds to the following dual problem, where λω
t is the dual variable for the pωt -feasibility con-

straint and µω
t is the dual variable for the type-l agent’s period-t no-guessing-ω constraint:

min
{(λω

t ,µ
ω
t )

T
t=1}ω=a,b

{
T∑
t=1

∑
ω=a,b

λω
t

}
s.t., for all ω = a, b and all t = 1, . . . , T,

λω
t + (1− αl)

tηωµ
ω
t − αl(1− αl)

t−1πωγω

t−1∑
τ=1

∑
ω′=a,b

µω′

τ = πωγω∆t,

(1− αl)
t(1− ηω)µ

ω
t − αl(1− αl)

t−1πω(1− γω)
t−1∑
τ=1

∑
ω′=a,b

µω′

τ ≥ πω(1− γω)∆t,

− (1− αl)
T

T∑
τ=1

∑
ω′=a,b

µω′

τ = ∆∞,

λω
t ≥ 0, and µω

t ≥ 0.

(Dω)

Because we have dropped the nonnegativity constraints on pωt and pω∞ in the relaxed primal problem
(Rω), their complementary constraints in the dual (Dω) are equalities.

LEMMA D.2. In any solution, the type-l agent’s no-guessing constraints (NGω-l)must bind for every possible
state ω = a, b and every period t = 1, . . . , T .
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PROOF. Suppose that there exists some period t̄ such that µω
t̄ = 0 for all ω. This implies we can write

the dual constraint complementing qωt̄ (for either ω) as

αl(1− αl)
t̄−1

t̄−1∑
τ=1

∑
ω′=a,b

µω′

τ ≤ −∆t̄.

If t̄ < T , then the dual constraint complementing pωt̄+1 is

λω
t̄+1 + (1− αl)

t̄+1ηωµ
ω
t̄+1 = πωγω

(
∆t̄+1 + αl(1− αl)

t̄

t̄∑
τ=1

∑
ω′=a,b

µω′

τ

)
≤ πωγω (∆t̄+1 − (1− αl)∆t̄)

= πωγωβαh(1− αh)
t̄−1(αl − αh) < 0.

This of course contradicts thenonnegativity ofλω
t̄+1 andµ

ω
t̄+1. If, instead, t̄ = T , then the dual constraint

complementing pω∞ is

0 = ∆∞ + (1− αl)
T

T∑
τ=1

∑
ω′=a,b

µω′

τ

= ∆∞ +
(1− αl)

αl

αl(1− αl)
t̄−1

t̄−1∑
τ=1

∑
ω′=a,b

µω′

τ

≤ ∆∞ − (1− αl)

αl

∆t̄ = β(1− αh)
t̄−1(1− αh

αl

) < 0.

This is, of course, a contradiction. Thus, we must have
∑

ω=a,b µ
ω
t > 0 for all t = 1, . . . , T .

Now suppose that for some t, we have µω̂
t > 0 = µω̃

t . If µω̃
t = 0, we can write the dual constraint

complemented by qω̃t as

αl(1− αl)
t−1

t−1∑
τ=1

∑
ω′=a,b

µω′

τ +∆t ≤ 0.

This implies that the dual constraint complemented by pω̃t can be written as

λω̃
t = πω̃γω̃

[
αl(1− αl)

t−1

t−1∑
τ=1

∑
ω′=a,b

µω′

τ +∆t

]
≤ 0.

But recall that we must also have λω̃
t ≥ 0. Therefore, µω̃

t = 0 implies that λω̃
t = 0 and

αl(1− αl)
t−1

t−1∑
τ=1

∑
ω′=a,b

µω′

τ +∆t = 0.
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Now consider the constraint complemented by pω̂t , which can be written as

λω̂
t + (1− αl)

tηω̂µ
ω̂
t = πω̂γω̂

[
αl(1− αl)

t−1

t−1∑
τ=1

∑
ω′=a,b

µω′

τ +∆t

]
= 0.

This is a contradiction, as µω̂
t > 0 by hypothesis and λω̂

t ≥ 0 by constraint. Since ω̂ ̸= ω̃ were arbitrarily
chosen, this implies that we must have µω

t > 0 for all ω = a, b and all t = 1, . . . , T ; by complementary
slackness, this implies that in any solution, the type-l agent’s no-guessing constraints (NGω-l) always
bind. ♢

LEMMA D.3. In any solution to the relaxed primal (Rω), we have qωt = 0 whenever pωt < 1.

PROOF. Suppose not; that is, suppose there exists a solution {(pωt , qωt )Tt=1, p
ω
∞}ω=a,b with pω̄t̄ < 1 and

qω̄t̄ > 0 for some t̄ and ω̄. Consider a perturbation to this solution that increases pω̄t̄ by ε > 0 and de-
creases qω̄t̄ by γω̄

1−γω̄
ε. For sufficiently small ε, this perturbation is feasible. Moreover, it does not affect the

objective value of the relaxed primal problem (Rω) or any of the period-t no-guessing constraints (NGω-
l) for any t ̸= t̄. But since γω > πω, this perturbation relaxes the period-t̄ no-guessing -ω constraint.
This of course contradicts LemmaD.2, which showed that the constraints (NGω-l) bind for allω = a, b
and t = 1, . . . , T in any solution. ♢
By Lemma D.2, we can write the type-l continuation value when uninformed in period-t as

U l
t = ηωp

ω
t + (1− ηω)q

ω
t

for all ω = a, b and all t = 1, . . . , T . Lemma D.3 above implies that this can be rewritten as

pωt = min
{
1,

U l
t

ηω

}
and qωt =

U l
t − ηωp

ω
t

1− ηω
.

It is easy to verify that U l
t is strictly decreasing in t. This implies that there are cutoff periods t∗ω so that,

in any solution to (Rω), pωt = 1 and qωt > for t < t∗ω; pωt = 1 and qωt ≥ 0 for t = t∗ω; and pωt < 1 and
qωt = 0 for t > t∗ω. In addition, we are free to set pω∞ = ηωp

ω
T + (1− ηω)q

ω
T ∈ (0, 1).

Moreover, note that if ηω > ηω′ , then we must have t∗ω ≤ t∗ω′ and pωt ≤ pω
′

t . In addition, since ηω′ =
1− ηω, we can write

ηω(p
ω
t − qω

′

t ) = (1− ηω)(p
ω′

t − qωt )

for all t = 1, . . . , T . Therefore, qωt ≤ qω
′

t .

In addition, note that U l
t decreasing in t immediately implies that (pωt , qωt ) are decreasing, and so the

no-delay constraints (NDω) are satisfied. Finally, observe that γω > πω for both ω = a, b implies that
γω > ηω; this implies that the no-misreporting constraints (NMω) are satisfied. ■
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