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1 Introduction

The monocentric city model and its many refinements have given rise to a rich em-
pirical literature on issues related to residential land, such as the extent and causes of
urban sprawl or the effects of land use regulations on housing supply and prices. How-
ever, little is known—both theoretically and empirically—on the role of land in firms’
production processes (Duranton and Puga, 2015). We make progress in that direction
by analyzing the determinants of the employment density and structural density of the
parcels occupied by manufacturing establishments in Canada.

We define employment density as the number of workers of an establishment divided
by the surface of the parcel on which it is located. Similarly, we define structural den-
sity as the building-to-parcel ratio, i.e., the footprint of the building(s) divided by the
surface of the parcel on which it is located.1 We uncover three new facts on the em-
ployment and structural density of parcels occupied by manufacturing establishments
in urban areas: (i) establishments occupy their parcels more densely both in terms of
employment and structure in larger urban areas; (ii) both types of density decrease
with distance to city centers; and (iii) large establishments occupy their parcels more
densely in terms of employment, but not in terms of structure. These empirical reg-
ularities provide guidance on how to model land in the production function of man-
ufacturing establishments. We can rationalize them through the lens of a conceptual
framework—featuring a modified-CES production function—in which land: (i) has a
fixed cost component; and (ii) has a low elasticity of substitution with labor. When
taken together, our results show that big manufacturing firms located in large urban
areas and close to city centers allow for more compact land use than small manu-
facturing firms located in smaller cities or farther away from city centers. These are
interesting findings at a time when the preservation of open space and city compact-
ness become more important to fight climate change.

Our analysis proceeds in four steps. First, we combine proprietary data on geo-
referenced manufacturing establishments in Canada with open-source data for parcel-
and building polygons to construct a detailed dataset on the amount of land occupied
by manufacturing establishments. Doing so, we fill an important gap since in firm-level
balance-sheet data—when data on land is available at all—it is almost always conflated
with data on non-land capital inputs, and quantity measures are usually not reported.2

In a second step, we regress our measures of employment density and of struc-
tural density on several characteristics of the establishments and their geographic en-

1Our definition of structural density is related to, yet slightly different from, the one generally used
in the literature. For example, in Brueckner (1987), structural density is the capital-to-land ratio and is a
measure of building height.

2Even when separate information on land is available, usually only its value is reported.
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vironment, controlling for industry and geographic fixed effects. City size, distance to
city centers, and/or establishment size in terms of employees are among the determi-
nants with the highest explanatory power of the two variables we use to measure how
densely manufacturing establishments occupy land. The results prove resistant to a
wide range of robustness checks. They are also very similar when restricting the anal-
ysis to establishments in Montréal only, for which we can measure parcel size more
precisely based on administrative data from the property assessment roll.

In a third step, we interpret our empirical findings through the lens of a conceptual
framework where firms combine land and labor using a modified-CES production
function with a minimum land requirement, similar to the Stone-Geary utility function
used to model consumer preferences. The minimum land requirement—which may
be viewed as a fixed cost—allows to rationalize the increasing relationship between
employment density and establishment size. Our conceptual framework shows how
the employment density of parcels depends on relative factor prices and their elasticity
of substitution. More precisely, the CES structure of the production function implies
that the elasticity of parcel size per worker to city size is the product of the elasticity of
substitution between land and labor and the elasticity of (relative) land prices to city
size. In the same vein, the semi-elasticity of parcel size per worker to the distance to
city centers is the product of the elasticity of substitution between land and labor and
the land price gradient.

In the last step, we use estimates of the density-elasticity of land prices from
Combes et al. (2019) and of land price gradients from Albouy et al. (2018) to back
out the elasticity of substitution between land and labor for manufacturing firms. We
find positive values between 0.2 and 0.4, much smaller than unity as would be implied
by the Cobb-Douglas production function. This finding suggests that land and labor
are fairly bad substitutes in the production function of manufacturing firms. Note that
the data we have and our focus in this paper is on the amount of land occupied by
manufacturing establishments, not on the floor space they consume. For the subset of
firms located in Montréal, we have information on floor space and our results show
that floor space per worker is insensitive to the distance to city centers. This suggests
that floor space and labor are even worse substitutes than land and labor.3

Our findings shed light on a topic we know little about empirically and contribute
to the literature in a number of ways. First, while density, housing prices, and land
price gradients for residential use have been extensively studied—both theoretically
and empirically—“little to no work has been devoted to the predicted gradients of the capi-
tal intensity of housing development and of housing consumption per household” (Duranton
and Puga, 2015, p. 523). Even less is thus known regarding the capital intensity of

3Put differently, firms can partly save on outdoor space or compensate for a smaller parcel size by
occupying taller buildings, but they can hardly change the amount of floor space per worker they use.
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production sites and of land consumption for production establishments. Our results
reveal a decreasing gradient for structural density in line with estimates for residential
housing (e.g., McMillen, 2006), although our gradients are weaker, and thus imply a
low elasticity of substitution between land and labor.

Second, the few empirical studies on land used for production mostly relate to the
effects of land-use regulations on productivity in the retail sector (e.g., Haskel and
Sadun, 2012; Cheshire et al., 2014) or to the determinants of commercial real estate
prices (e.g., Drennan and Kelly, 2010; Ahlfeldt and McMillen, 2018; Liu et al., 2018).
Except for a couple of works on the patterns and determinants of the floor-to-area
ratio (FAR; see, e.g., Barr and Cohen, 2014; Brueckner et al., 2017), we are not aware of
studies on the quantity of land used by firms. This is likely due to a lack of data, and
our work partially fills this gap by generating a new dataset.

Third, our results contribute to the literature on the costs and benefits of urban
density (see Ahlfeldt and Pietrostefani, 2019, for a recent review) by emphasizing that
the concentration of production in big firms and the concentration of big firms in big
cities allows to save space compared to patterns that would be more dispersed across
both smaller firms and smaller cities.

Last, our results have also theoretical ramifications. Canonical urban models gen-
erally assume that production is concentrated in dimensionless ‘business districts’, i.e.,
production requires no land. Notable exceptions—where firms and residents compete
for land—include Fujita and Ogawa (1982), Lucas and Rossi Hansberg (2002), Pflüger
and Tabuchi (2010), and Wrede (2013), but the way land enters the production function
varies greatly across existing models—sometimes it is a pure fixed cost or Leontief, but
more often it is via a Cobb-Douglas production function. To the best of our knowledge,
no empirical studies corroborate to date a particular modelling strategy. Our empirical
results reject the Cobb-Douglas specification for manufacturing firms and show that
land should enter the production function with both a fixed component and a com-
ponent where land and labor are (fairly) imperfect substitutes.4 There are potentially
several important implications arising from a low elasticity of substitution between
labor and land for firms in an urban setting. For example, the concentration of high
value-added services in urban cores may be due more to land prices pushing manufac-
turing out because of the low elasticity of substitution between labor and land rather

4Several recent studies show that the production function of many manufacturing sectors is not
Cobb-Douglas (see, e.g., Oberfield and Raval 2021 for the US; Imbert et al. 2022 for China; and Mayneris
2022 for France). However, these studies analyze the substitutability between labor and capital without
accounting explicitly for land. The construction sector is the only one for which we are aware of studies
analyzing the role of land in the production process. Epple et al. (2010) and Combes et al. (2019), for
example, estimate production functions for housing where land and non-land inputs (called “capital”
are the two production factors). The latter show that for newly-built single-family homes, the production
function for housing is well, though not perfectly, approximated by a Cobb-Douglas function.
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than strong agglomeration economies pulling the service firms into the core. More
work is called for here, but we conjecture that sorting patterns very much depend on
how much of a firm’s land is a fixed- compared to a variable-cost component.

The remainder of the paper is organized as follows. Section 2 explains the con-
struction of our dataset and shows its representativeness. Section 3 provides sectoral
descriptive statistics on the amount of land occupied by Canadian manufacturing es-
tablishments. Section 4 estimates the elasticity of plant-level land consumption to city-
and plant-level characteristics. We develop a conceptual framework in Section 5 that
puts some structure on our regression results and guides us in the quantification of the
elasticity of substitution between land and labor. Section 6 concludes. Details on the
construction of our database and robustness checks are relegated to the Appendix.

2 Data construction

We collect information on the amount of land occupied by manufacturing establish-
ments to construct the two main measures we use throughout the paper.5 The first
measure is parcel size per worker and is an inverse measure of employment density. To
compute it, we need the surface area of the parcels where the plants are located, which
is derived from the polygons of the parcels. This measure captures both the building
footprint and the outdoor space used by the plant for storage, parking, or green space.
The second measure is the building-to-parcel ratio, i.e., the share of the parcel covered
by the footprint of the buildings where the plants are located. To compute it, we need
the surface area of the building footprint, which we derive from the polygons of the
buildings where the plants are grounded.6 Note that we do not observe the floor space
used by manufacturing establishments and that we cannot infer it from our data. This
is why our analysis is not about the amount of floorspace used by establishments, but
about the amount of land they occupy.7

2.1 Methodology

We first briefly present the methodology used to construct the dataset. Details for each
step and an extensive discussion of the quality of the final dataset are relegated to Ap-
pendices A and B. The dataset we build combines proprietary data on geo-referenced
Canadian manufacturing establishments with open-source data for parcel- and build-
ing polygons. We use GIS tools to associate each establishment with specific building

5In what follows, we interchangeably use the terms ‘establishment’, ‘plant’, and ‘firm’.
6The building footprint is also known as the ‘gross area floor’ in the assessment roll terminology.
7We can provide an analysis of the determinants of floorspace per worker using an auxiliary dataset

covering the establishments located in Montréal (see Section 4.4).
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and parcel polygons. We then compute the parcel size and the building footprint for
each plant using the surface of its associated polygons.

2.1.1 Data collection and processing

Establishment-level data. We use the proprietary Scotts National All Business Direc-
tories, a dataset that draws information on plants operating in Canada from Business
Register records and telephone surveys. It provides a fairly exhaustive coverage of the
manufacturing sector, less so for services, which is one of the reasons why we focus
on manufacturing in this paper. We use cross-sectional data for 2017, the closest year
to the reference year for the polygon datasets that we use. This choice reduces poten-
tial measurement error due to changes in the delineation of buildings and parcels. It
also allows for more precise geocoding as street names and configurations may change
over time. The variables of interest for our analysis include the address of each plant,
its industrial classifications (North American Industry Classification System, naics 6-
digit level), an estimate of the number of workers at the site, and dummy variables
for whether the plant reports an export activity and whether or not it is recorded as a
headquarter. The dataset also contains information on the products manufactured by
the plants and the broad sectors it is active in (manufacturing, wholesale, professional,
scientific and technical services etc.). We geocode the plants using the procedure ex-
plained in Appendix A.8

Polygon datasets. We collect parcel and building polygons in Canada from numerous
provincial and metropolitan sources. The full list of sources from which we collect
these datasets, as well as a discussion of their quality, are relegated to Appendix A
(see Table A1). Concerning parcels, we collect more than 4.5 million polygons covering
the entire provinces of British Columbia (BC), Quebec (QC), and New Brunswick (NB)
as well as the cities of Toronto, Oshawa, Windsor, and York in Ontario (ON). For the
other provinces, we obtain data for Banff in Alberta (AB), Winnipeg in Manitoba (MB)
and Regina and Saskatoon in Saskatchewan (SK). We did not obtain data for Nova
Scotia (NS), Newfoundland and Labrador (NL), Prince Edward Island (PE), and the
three Territories. Concerning buildings, we collect information from the Open Source
data on building footprints in Canada released by Microsoft. These datasets contain
12,663,475 building footprints covering all provinces and territories.9

8The dataset already reports geographic coordinates for each plant but some of these coordinates
are based on postal code centroids obtained from Post Canada’s Postal Code Conversion files. These
are necessarily less accurate than coordinates obtained from rooftop geocoding and do not permit to
precisely associate plants with building- or parcel polygons.

9For additional information, see https://blogs.bing.com/maps/2019-03/microsoft-releases-12-
million-canadian-building-footprints-as-open-data.
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Other datasets. To make use of spatially fine-grained population census data, we
collect the shapefiles of the boundaries of all dissemination areas (DA; the smallest
geographic unit at which census data are publicly released), census metropolitan ar-
eas (CMA), census agglomerations (CA), economic regions (ER), and provinces and
territories in Canada.10 Combined with data from the population census of 2016, we
obtain files that contain information on the population, the surface area, and the rela-
tions between the different levels of the census geography. We also obtain polygon files
released by DMTI which record basic zoning restrictions in Canada, namely the main
type of activity allowed in each area by local zoning policies (commercial/industrial,
residential, recreational). Last, we collect information on some major infrastructures
such as highway junctions (from the Canadian road network files), as well as the lo-
cation of airports, seaports, and train freight stations (from the Open Government
geographic data portal).

2.1.2 Construction of the surface measures

We use GIS tools to relate each geocoded plant in the establishment dataset to parcel
and building polygons (see Appendix A for technical details). The mapping between
plants and polygons allows us to construct the measures of land occupied by manufac-
turing establishments. The parcel size is the surface of the parcel polygon that contains
the establishment, while the building footprint is the ground floor area of the building
polygon that contains the establishment.

There is no one-to-one mapping between establishments, on the one hand, and
parcel and building polygons, on the other hand. Sometimes, several establishments
are on the same parcel. Put differently, there is some sharing of parcels and buildings.
This should, however, not be a major problem for our analysis: compared to service
establishments, manufacturing plants are less likely to have many neighbors. In the
sample used for the analysis of parcel size, the average number of neighbors identified
for each establishment based on the Scotts data is 1.3 and the median is 0. Since
there are still some establishments that share parcels or buildings, we control in the

10A census metropolitan area (CMA) or a census agglomeration (CA) is formed by one or more
adjacent municipalities centered on a population center (known as the core). A CMA must have a total
population of at least 100,000 of which 50,000 or more must live in the core based on adjusted data from
the previous Census of Population Program. A CA must have a core population of at least 10,000 also
based on data from the previous Census of Population Program. To be included in the CMA or CA, other
adjacent municipalities must have a high degree of integration with the core, as measured by commuting
flows derived from data on place of work from the previous Census Program. An economic region (ER)
is a grouping of complete census divisions (CDs), created as a standard geographic unit for analysis of
regional economic activity. There are 76 economic regions in Canada that constitute a partition of the
country. They are much smaller than provinces but, except for the very largest metropolitan areas, much
bigger than cities. Finally, the 10 provinces and 3 territories are the federated political units in Canada.
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regressions for the number of neighbors using a flexible polynomial function. We also
verify that our main results are unchanged when focusing on establishments with no
identified neighbors.11

Furthermore, the locations occupied by manufacturing establishments may be com-
posed of several contiguous parcels and not just the ones on which the establishments
fall during the geocoding process. Following discussions we had with employees from
the Land Register of Québec, we think that this situation occurs rarely. This is coherent
with the fact that, as shown by Brooks and Lutz (2016), assembled parcels have a much
higher value than the sum of the values of the individual parcels, so that owners of
contiguous parcels have an incentive to assemble them. Moreover, for the city of Mon-
tréal, we have exhaustive information from the property assessment roll that allows us
to compute the number of parcels associated with the establishments’ tax lots. We find
that 85% of the manufacturing establishments in Montréal are on tax lots composed of
a single parcel, confirming our discussion with the Land Register of Québec. Hence—
provided that Montréal is representative of the rest of the country—measurement error
remains very limited here.

Finally, for some plants the surface area of the parcel is smaller than the building
footprint. This is because the assignment of establishments to parcels, on the one hand,
and to buildings, on the other hand, is done independently. Hence, an establishment
can be assigned to a building and to a parcel that do not correspond to the same lot.
Furthermore, polygons may be mis-identified by the automatic recognition procedure.
In particular, adjacent buildings may get amalgamated (or are just visible as a single
polygon in the data), thus yielding larger polygons that straddle several parcels. In a
robustness check, we reproduce our main results using only the sample of establish-
ments for which we have both the parcel size and the building footprint, and for which
the parcel size exceeds the building footprint.

2.2 Quality assessment

Assigning geocoded data to polygons delineated from satellite imagery inherently
raises issues regarding data quality and accuracy. We relegate the detailed discus-
sion of these issues to Appendix B. We simply want to mention here that to gauge the
quality of the data obtained after the geocoding and assignment processes, we make
use of the subset of data for the province of Québec (QC). The reason is that the poly-
gon identifiers in the QC dataset are the same as the official identifiers of the polygons

11Although the Scotts dataset provides an almost exhaustive coverage of the manufacturing sector, it
does not constitute the universe of plants in Canada, especially for services which are more sparsely
present in that database. Thus, there is potential measurement error in the count of neighbors. We
discuss the implications of this for the estimation results in Section 4.
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as recorded on the government website of the Land Register “Infolot”. We can thus
randomly draw from our dataset a subset of plants in QC and compare their parcel
identifier from “Infolot” (obtained from the address of the establishment) to the one
obtained with our assignment procedure. Based on this comparison we can build a
variable that measures ‘data quality’—which we construct for the whole dataset, not
just Québec—with three categories: excellent, good, and poor (see Appendix B for ad-
ditional details). In the remainder of the paper, we only keep observations of ‘excellent’
quality (77.1% of the observations for which we have a measure of parcel size). We ver-
ify later that our results hold when: (i) including observations of lower quality; and (ii)
when restricting our analysis to the Montréal dataset for which we have high-quality
administrative data from the property assessment roll.

2.3 The final dataset

Our final dataset contains the plants from the Scotts database that: (i) are precisely
geocoded; and (ii) have an excellent quality in terms of assignment to parcel- or build-
ing polygons.

We now discuss the representativeness of our data. Out of the 32, 417 manufac-
turing plants recorded in the Scotts database for 2017, we can assign parcel size of
excellent quality to 8, 708 (26.86%) of them and building footprint size of excellent
quality to 20, 443 (73%) of them. We are able to compute a building footprint-to-parcel
ratio for 8,514 plants. The loss of data is mainly due to the absence of polygons for
some provinces and cities and, to a lesser extent, the accuracy of the geocoding and
polygon assignments (see Table A2 for more details). Concerning the sectoral repre-
sentativeness of our data, Table A3 in Appendix D shows that the distribution of the
3-digit industries is broadly similar to that in the raw Scotts database. The correlation
between these distributions exceeds 0.98.

From a geographic perspective, Table A4 in Appendix D shows the distribution
of plants across provinces. As explained before, we lack parcel polygons for entire
provinces which are thus missing from the estimation sample. Yet, the correlation of
the geographic distribution with the raw Scotts data remains reasonably high at 0.77.
Moreover, the provinces that host the majority of manufacturing in Canada are very
well represented: Ontario, Quebec, and British Columbia account for 80.1% of the
number of manufacturing plants in Canada and represent 87.3% of the plants in our
parcel sample.

To conclude, our final dataset has good sectoral and geographic coverage and ap-
pears generally representative of manufacturing in Canada. There could still be some
selection based on establishment characteristics. We hence use a probit model to assess
the extent to which the establishments in the final sample exhibit specific observable
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characteristics compared to those for which we do not have reliable information on
parcel size. Table A5 in Appendix D shows that, beyond the geographic fixed effects,
very few establishment characteristics are related to the probability to be included in
the regression sample. Moreover, the pseudo R-square of the regression is quite low at
0.32, of which only 5 percentage points are related to establishment characteristics. Put
differently, there is little selection in the sample used for the analysis, and most of it is
related to selection across provinces due to the fact that we do not have parcel data for
entire provinces in Canada.

3 Land occupied by manufacturing establishments: Some
sectoral statistics

We now present sectoral statistics on the size of the parcels occupied by manufacturing
establishments in Canada, on parcel size per worker, and on the share of their sur-
face area covered by the footprint of their buildings (building-to-parcel ratio). These
statistics are based on our final dataset.

3.1 Size of parcels by sectors

Figure 1 reveals substantial heterogeneity in the amount of land occupied by manufac-
turing establishments, both between and within sectors (see Table A6 in Appendix D
for the associated figures). The average parcel size of a plant is around 13,354m2, but
the median is more than twice smaller, thus suggesting a very right-skewed distribu-
tion of parcel sizes. Moreover, the coefficient of variation equals 270%, revealing sub-
stantial heterogeneity in our sample. Part of that heterogeneity reflects between-sector
differences, with some sectors having on average large parcels (e.g., “312 Beverages and
Tobacco” (not on the graph); “331 Primary Metal Products”; “324 Petroleum and Coal
Products”; and “322 Paper Manufacturing”) whereas others have much smaller parcels
(e.g., “316 Leather and Allied Products”; “315 Clothing and Textile”; and “323 Printing
and Support Activities”). The coefficient of variation is large in all sectors, ranging
from 130% to 530%, thus showing that the sizes of parcels are not only heterogeneous
between sectors but also within sectors.

Figure 2 focuses on parcel size per worker instead of parcel size (see Table A7 in
Appendix D for the exact figures). Parcel size per worker is an inverse measure of
how densely land is occupied by manufacturing establishments in terms of employees.
The patterns in Figure 2 reveal even more heterogeneity between and within sectors
than for parcel size: the coefficient of variation is 430% for the whole sample, ranging
from 130% to 880% across industries. In addition, the industry-level rank correlation
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Figure 1: Parcel size by industry
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Parce size
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337 Furniture, related product m

336 Transportation equipment man
335 Electrical, appliance manuf.

334 Computer, electronic product
333 Machinery manufacturing

332 Fabricated metal product man
331 Primary metal manufacturing
327 Non-metallic mineral product
326 Plastics, rubber products ma

325 Chemical manufacturing
324 Petrol, coal product manuf.

323 Printing, support activities
322 Paper manufacturing

321 Wood product manufacturing
316 Leather, allied product manu

315 Clothing manufacturing
314 Textile product mills

313 Textile mills
311 Food manufacturing

Notes: This graph shows the distribution of parcel sizes across industries. The industry “312 Beverages and Tobacco” has been

removed to keep the graph readable.

between parcel size and parcel size per worker is not statistically significant: sectors
with the largest parcel sizes are not necessarily those with the most or the least densely
occupied parcels in terms of workers.

3.2 Building-to-parcel ratio

We can compute the building-to-parcel ratio as another way to measure how densely a
parcel is occupied: the higher this ratio, the more densely built the parcel is. Figure 3

shows a fair amount of heterogeneity in terms of the building-to-parcel ratio, both
between and within sectors, even though this heterogeneity is less pronounced than the
one observed for the parcel measure alone (the coefficient of variation equals 60% for
the whole sample, and ranges from 37% to 79%). Some sectors, like “324 Petroleum and
Coal Products”, “331 Primary Metal Products”, or “321 Wood Products” have small
building-to-parcel ratios. On the contrary, “315 Clothing and Textile” and “323 Printing
and Support Activities” exhibit high ratios, thus showing that they use relatively less
outdoor space.

The heterogeneity we observe across sectors certainly reflects the different needs in
terms of land across industries. The sectors with the lowest ratios are sectors that rely
either on outdoor resources (wood, coal, non-metallic mineral products) or for which
space for storage tanks (petrol, beverages) is important. By contrast, the sectors with
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Figure 2: Parcel size per worker by industry
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Figure 3: Building-to-parcel ratio by industry
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Tobacco” has been removed to keep the graph readable. We constrain the sample to observations where the parcel size exceeds

the building footprint.
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the highest ratios are historically located in denser areas and belong to what could be
called ‘light manufacturing’ (clothing, printing, textiles). Note that plants may react to
higher land prices by reducing either their building footprint, their parcel footprint, or
both; and that the ease with which either type of land (‘indoors’ or ‘outdoors’) can be
adjusted may depend on the use (e.g., parking vs storage) and the industry. This might
have important implications for the spatial sorting of sectors and their propensity to
agglomerate. We return to several of these points in the following.

4 Land occupied by manufacturing establishments: An
econometric analysis

We now analyze in detail the characteristics of the manufacturing establishments and
their environment that determine how densely they occupy land. We focus on two
quantities: the surface area of the parcel occupied by an establishment, divided by the
number of workers; and the building-to-parcel ratio. As will become clear in Section 5,
the first variable lends itself well to a structural interpretation of the regression coeffi-
cients. We first explain the equation we estimate, then present the benchmark results,
and finally propose a variety of robustness checks.

4.1 Estimated equation

The equation we bring to the data is the following:

yi(s,z) = αEnvi + βEstabi + γInfrai + θs + ηz + ϵi(s,z), (1)

where i indexes an establishment, s is the 4-digit industry it belongs to, and z the
economic region it is located in. The dependent variable yi(s,z) is either parcel size per
worker—measuring the inverse employment density—or the building-to-parcel ratio—
measuring structural density.

In equation (1), Envi is a vector of characteristics related to the environment of
establishment i. It includes the (log) size of the urban area it is located in, both in terms
of population and of surface area (as per the 2016 Census); the weighted distance of the
establishment to the city centers of the urban area; fixed effects identifying the type of
zoning (commercial/industrial, residential, or recreational) in use at its location; and a
fourth-degree polynomial in the number of neighbors on the same parcel.12 In some
specifications, we also control for the local density around the plant, measured by the
(log) population density in the dissemination areas within a 500 meters radius.

12The urban area corresponds either to the Census Metropolitan Area or the Census Agglomeration.
To identify city centers, we use a routine that identifies clusters of densely populated dissemination
areas. The details of the procedure, as well as the weighting scheme, are presented in Appendix C.
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Estabi is a vector of characteristics related to the size and type of the activities car-
ried out by establishment i. We control, in particular, for the (log) number of employees
of the plant, dummies identifying headquarters and exporting plants, as well as counts
of the number of 4-digit industries, of products, and of broad types of activity the plant
is involved in.

Proximity to specific infrastructures might influence the amount of land per worker
occupied by manufacturing establishments and their building-to-parcel ratio, either
because of the size of the parcels available close to these infrastructures or because of
how ‘packed’ establishments accept to be in order to enjoy proximity to these infras-
tructures. Infrai is thus a vector containing the (log) distance from establishment i to
the closest major airport, major seaport, train freight station, and highway junction.

Finally, θs and ηz stand for sector and economic regions fixed effects. They cap-
ture technological parameters and regional determinants that may drive how densely
manufacturing establishments occupy land.

To account for auto-correlation between observations within urban areas, we cluster
all standard errors at the CMA/CA level (Moulton, 1990). As mentioned in Section 2.2,
we restrict the sample to observations for which our data on parcel size are of the
highest quality.

4.2 Benchmark results

Employment density. Table 1 shows results with the parcel size per worker as the de-
pendent variable. All regressions include industry- and economic region fixed effects,
as well as a fourth-degree polynomial in the number of neighbors of the establishment
on its parcel. In column (1), the only other covariates are the characteristics of the ge-
ographic environment of the establishment. In column (2), the log employment of the
establishment is added to the set of regressors. Column (3) considers other individual
characteristics of the establishment, while we control in column (4) for the log dis-
tance to various transport infrastructures. We retain this regression as the benchmark
specification and use its estimates—together with others available in the literature—in
Section 5 to infer the elasticity of substitution between land and labor in the production
function through the lens of a theoretical framework. In column (5), we add to the set of
environment characteristics the log population density in a 500 meters radius around
the establishment. Finally, we present in column (6) the standardized coefficients of
the benchmark specification from column (4).

Our regression results exhibit several robust patterns. First, with regard to the
local environment, plants in populated urban areas, as well as plants that are located
closer to city centers within urban areas, use less land per worker (the coefficient on
the weighted distance to city centers being positive). In our benchmark specification,
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the elasticity of parcel size per worker to city population equals −0.227 and the semi-
elasticity of parcel size to the weighted distance to city centers equals 0.033. Note
that both coefficients decrease in absolute value when we control for the population
density in the immediate surroundings of the establishment in column (5) (this latter
variable has a negative and highly significant coefficient). This reflects the fact that
population density is not homogeneous within cities yet decreases, on average, with
distance to the center. Hence, when local population density is accounted for, the
effect of the other two variables in weaker. Land prices are higher in big cities and
lower at higher distances from city centers. We will show in Section 5 how we can
use these elasticities to recover values for the elasticity of substitution between land
and labor in the production function. Regarding zoning, not surprisingly, compared to
establishments in commercial/industrial areas (the reference category), manufacturing
plants in residential areas occupy less land per worker. This may be because land use
is restricted to certain industries or parcels are smaller in the residential parts of cities
so that they attract establishments with lower land requirements.

Turning to establishment characteristics, as expected, headquarters occupy less land
per worker, while the opposite is true for exporters: ‘office’ functions require less
space than functions related to production and exports for which factory space and
warehousing are needed. The results also show that plants with a broader range of
activity—measured in terms of the number of NAICS and product codes—tend to oc-
cupy less land per worker, even though the relationship is statistically weaker. Finally,
the highest correlation is found for establishment size in terms of employees, with an
elasticity between −0.65 and −0.60 depending on the specification: bigger establish-
ments use less land per worker.

We see several explanations to this negative correlation. First, moving, opening,
or closing a facility is costly so that firms adjust the size of the parcel they use less
easily than their workforce; only when shocks are large and permanent enough do
firms adjust their land consumption, most likely by moving or by opening and closing
establishments (Bergeaud and Ray, 2021). This means that when firms grow or shrink,
they first do so by adjusting their number of employees only, especially if they face
transitory shocks. Then, if big firms are those that have grown more compared to their
initial size, the negative correlation between parcel size per worker and establishment
size could be related to the existence of adjustment cost. However, we ran regressions
controlling for plant-level employment growth between 2013 and 2017, and the coeffi-
cient on establishment size is unaffected.13 Second, as already mentioned before, the
Scotts data are exhaustive for manufacturing but not for services, so that we possibly
mis-measure the number of neighbors on the parcel. If there is measurement error, it
is arguably more severe for small firms: they are more likely to share their location

13These results are available upon request.
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Table 1: Determinants of parcel size per worker (inverse of employment density)

ln Parcel size per worker
(1) (2) (3) (4) (5) (6)

Characteristics of the local environment
Ln Population CMA -0.264

a -0.242
a -0.241

a -0.227
a -0.125

b -0.237
a

(0.070) (0.056) (0.055) (0.065) (0.051)
Ln CMA surface area 0.081 0.064 0.068 0.088 0.025 0.047

(0.091) (0.067) (0.067) (0.083) (0.069)
Weighted Distance to city centers 0.040

a
0.038

a
0.038

a
0.033

a
0.025

a
0.220

a

(0.003) (0.004) (0.004) (0.006) (0.004)
1 Residential -0.504

a -0.924
a -0.918

a -0.889
a -0.707

a -0.289
a

(0.080) (0.105) (0.103) (0.104) (0.097)
1 Recreational 0.114 0.084 0.083 0.089 -0.000 0.022

(0.094) (0.107) (0.107) (0.105) (0.091)
Ln Population density 500m -0.148

a

(0.012)
Characteristics of the establishment
Ln Employment -0.619

a -0.624
a -0.626

a -0.645
a -0.590

a

(0.016) (0.016) (0.016) (0.017)
1 Headquarter -0.070

b -0.077
a -0.058

b -0.016
a

(0.026) (0.025) (0.023)
1 Exporter 0.114

a
0.107

a
0.086

a
0.036

a

(0.021) (0.021) (0.020)
# functions in the estab. -0.019 -0.019 -0.007 -0.007

(0.039) (0.037) (0.035)
# 4-digit NAICS in the estab. -0.021

c -0.020
c -0.020

c -0.018
c

(0.012) (0.012) (0.012)
# products produced in the estab. -0.010

b -0.010
b -0.009

b -0.017
b

(0.004) (0.004) (0.004)
Distance to transport infrastructure
Ln Distance to major airport -0.134

c -0.009 -0.122
c

(0.068) (0.076)
Ln Distance to major seaport 0.129

b
0.085

b
0.135

b

(0.054) (0.041)
Ln Distance to freight station 0.020 0.022 0.016

(0.052) (0.026)
Ln Distance to junction -0.033 -0.007 -0.027

(0.041) (0.041)

Observations 8,707 8,707 8,707 8,707 8,707 8,708

R-squared 0.287 0.561 0.564 0.568 0.588 0.568

Industry (4-digit) fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Economic region fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Controls for # neighbors ✓ ✓ ✓ ✓ ✓ ✓

Notes: All regressions include a polynomial function of degree 4 in the number of neighbors of the establish-
ment on its parcel. Only observations with the highest reliable information on parcel size are included. 1

denotes {0, 1} dummy variables. Standard errors clustered at the CMA/CA level in parentheses. a p<0.01,
b p<0.05, c p<0.1.
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with other businesses, and we may thus overestimate their parcel size per worker. This
could also explain the negative correlation between parcel size per worker and estab-
lishment size we find. However, as shown in Figure 4, when we run our benchmark
regression separately by establishment-size bins, the correlation between parcel size
per worker and establishment size is close to −1 for establishments with 1–5 employ-
ees, and close to −0.6, the coefficient found for the whole sample, for establishments
with 5–15, 15–50 and 50+ employees. This pattern of heterogeneity is inconsistent with
the idea that the negative correlation estimated on the whole sample mostly reflects an
overestimation of parcel size per worker for smaller plants. Thus, two explanations are
more likely to explain why parcel size per worker decreases with establishment size.

First, land likely has a fixed cost component. Indeed, if land were a variable cost
only, under usual functional forms of the production function (e.g., Cobb-Douglas or
CES, see Section 5 below), land per worker would be independent of the firm size in
terms of employees. However, part of the land used by firms has the nature of a fixed
cost: corridors, bathrooms, office spaces, or production spaces have a size that is partly
independent of the number of workers using them. A second possible explanation
is that—even though it is not the most frequent situation—some manufacturing firms
occupy buildings with several floors. In Montréal, for example, we know the number
of floors of the buildings occupied by establishments: 64% of the manufacturing estab-
lishments occupy a one-floor building, 16% a two-floor building, 5% a 3-floor building,
and about 15% a 4-plus floor building.14 It is likely that larger establishments occupy
taller buildings but not necessarily much bigger parcels, which would show up in a
lower parcel size per worker.

Finally, among the various types of transport infrastructure we consider, distance to
major seaports is the only one robustly correlated with the amount of land per worker
used by manufacturing establishments: plants located close to major seaports use less
land per worker.

From a quantitative perspective, it is worth noting that the R2 in our model is
fairly large in all specifications, between 0.5 and 0.6, and that it is not soley driven by
the industry- and economic region fixed effects. Thus, although we work with micro
data at the establishment level, the model explains a substantial part of the variation
in land per worker for the establishments. Among the regressors we consider, the
standardized coefficients in column (6) show that four characteristics particularly stand
out: the establishment size in terms of employees, being located in a residential zone,
the population of the CMA and the weighted distance to city centers. Thus, city size
and distance to the center, land use regulations, and establishment size have first-order
effects on plants’ land use per worker.

14This information is derived from the property assessment roll we have for Montréal. Unfortunately,
we do not have it for the other cities in our sample.
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Figure 4: Parcel size per worker and establishment size across size bins

1-5 emp.

5-15 emp.

15-50 emp.

50+ emp.

-1 -.9 -.8 -.7 -.6 -.5
Coef. Ln Emp.

Notes: This figure shows the coefficient and the 95% confidence interval on establishment size for the benchmark regression in
column (4) of Table 1 run separately for each employment-size bin.

Structural density. That parcels in larger cities, in more central locations, and in res-
idential zones within cities are more densely occupied in terms of employees does not
mean that the establishments occupying these parcels use less floor space per worker:
buildings on these parcels could cover a greater share of the parcel or could have mul-
tiple floors. The data we have do not allow us to recover floor space information, but
we have the footprint of the buildings so that we can compute the building-to-parcel
ratio, our measure of structural density.

Table 2 shows our results when the building-to-parcel ratio is used as the dependent
variable (the regression sample is thus composed of establishments for which we have
information on both building footprint and parcel size). Two of the four main determi-
nants of the parcel size per worker appear as important determinants of the building-
to-parcel ratio too: the city population and the weighted distance to city centers, with
standardized coefficients well above 0.2 in absolute value. The building-to-parcel ratio
increases with city size and decreases with the weighted distance to city centers. This
latter effect likely reflects the fact that outdoor space is partly used for parking lots or
green space, two dimensions on which firms can accept restrictions when land prices
are high. We also know that the cost of surface parking increases with the value of land,
which implies that firms and households save on land by investing in underground or
structural parking when being closer to the city center (Brueckner and Franco, 2017).
Indoor space probably exhibits, on the contrary, a stronger complementarity with the
other production factors and can less easily be compressed. Interestingly, the coef-
ficient on establishment size, by far the main determinant of parcel size per worker,
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Table 2: Determinants of building-to-parcel ratio (structural density)

ln Building-to-parcel ratio
(1) (2) (3) (4) (5) (6)

Characteristics of the local environment
Ln Population CMA 0.366

a
0.367

a
0.370

a
0.391

a
0.321

a
0.457

a

(0.074) (0.075) (0.074) (0.086) (0.079)
Ln CMA surface area -0.147 -0.147 -0.150 -0.209

c -0.164 -0.126
c

(0.099) (0.100) (0.099) (0.123) (0.116)
Weighted Distance to city centers -0.045

a -0.045
a -0.045

a -0.040
a -0.034

a -0.298
a

(0.005) (0.005) (0.005) (0.007) (0.006)
1 Residential 0.432

a
0.411

a
0.413

a
0.386

a
0.261

a
0.142

a

(0.073) (0.072) (0.072) (0.085) (0.074)
1 Recreational -0.228

b -0.230
b -0.226

b -0.232
b -0.172

c -0.062
b

(0.090) (0.090) (0.089) (0.095) (0.094)
Ln Population density 500m 0.101

a

(0.017)
Characteristics of the establishment
Ln Employment -0.031

a -0.028
a -0.029

a -0.016 -0.031
a

(0.008) (0.009) (0.009) (0.010)
1 Headquarter -0.051 -0.041 -0.055 -0.010

(0.038) (0.034) (0.034)
1 Exporter -0.024 -0.019 -0.006 -0.007

(0.020) (0.020) (0.020)
# functions in the estab. -0.035 -0.032 -0.040 -0.014

(0.041) (0.038) (0.037)
# 4-digit NAICS 0.004 0.001 0.000 0.001

(0.016) (0.015) (0.016)
# products 0.009

c
0.009

b
0.009

b
0.019

b

(0.004) (0.004) (0.004)
Distance to transport infrastructure
Ln Distance to major airport 0.211

a
0.125 0.216

a

(0.074) (0.079)
Ln Distance to major seaport -0.120

b -0.090
c -0.143

b

(0.054) (0.053)
Ln Distance to freight station -0.077 -0.078

c -0.068

(0.057) (0.040)
Ln Distance to junction -0.030 -0.048 -0.027

(0.051) (0.049)

Observations 8,513 8,513 8,513 8,513 8,513 8,514

R-squared 0.290 0.291 0.292 0.299 0.311 0.299

Industry (4-digit) fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Economic region fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Notes: All regressions include a polynomial function of degree 4 in the number of neighbors of the establish-
ment on its parcel. Only observations with the highest reliable information on parcel size are included. 1

denotes {0, 1} dummy variables. Standard errors clustered at the CMA/CA level in parentheses. a p<0.01,
b p<0.05, c p<0.1.
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is now close to 0. All else equal, structural density is very modestly correlated with
establishment size.

4.3 Robustness checks

Table 3 summarizes robustness checks on the determinants of the parcel size per
worker and the building-to-parcel ratio. We present the coefficients for three vari-
ables of interest only, namely city population, weighted distance to city centers, and
establishment size, but all covariates of the benchmark specification are included in the
different regressions.

Table 3: Robustness checks

(a) Employment density: ln parcel size per worker
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Ln Population CMA -0.227
a -0.191

a -0.224
a -0.221

a -0.142
a -0.213

a -0.222
a -0.245

a -0.165
c

(0.065) (0.055) (0.059) (0.066) (0.049) (0.066) (0.066) (0.067) (0.085)
Weighted Distance to city centers 0.033

a
0.027

a
0.030

a
0.032

a
0.021

a
0.034

a
0.033

a
0.036

a
0.028

a

(0.006) (0.004) (0.005) (0.005) (0.003) (0.007) (0.005) (0.006) (0.007)
Ln Employment -0.626

a -0.655
a -0.568

a -0.625
a -0.630

a -0.709
a -0.542

a -0.633
a -0.620

a

(0.016) (0.017) (0.014) (0.016) (0.019) (0.018) (0.015) (0.019) (0.020)

Observations 8,707 12,138 8,531 8,048 7,254 6,947 5,333 8,707 6,793

R-squared 0.568 0.488 0.549 0.570 0.596 0.547 0.458 0.538 0.579

(b) Structural density: ln building-to-parcel ratio
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Ln Population CMA 0.391
a

0.358
a

0.285
a

0.368
a

0.252
a

0.386
a

0.362
a

0.379
a

0.289
a

(0.086) (0.059) (0.072) (0.082) (0.049) (0.095) (0.096) (0.080) (0.097)
Weighted Distance to city centers -0.040

a -0.036
a -0.032

a -0.038
a -0.022

a -0.043
a -0.041

a -0.040
a -0.031

a

(0.007) (0.005) (0.005) (0.006) (0.004) (0.008) (0.006) (0.006) (0.007)
Ln Employment -0.029

a -0.012 -0.010 -0.034
a

0.018
c

0.018 -0.032
b -0.016 -0.013

(0.009) (0.012) (0.010) (0.008) (0.010) (0.018) (0.014) (0.010) (0.010)

Observations 8,513 11,793 8,341 8,048 7,254 6,830 5,206 8,513 6,629

R-squared 0.299 0.251 0.285 0.292 0.220 0.312 0.314 0.300 0.283

Notes: All regressions include industry (4-digit) fixed effects, economic region fixed effects, and a polynomial function of degree 4 in
the number of neighbors of the establishment on its parcel. Only observations with the highest reliable information on parcel size are
included. 1 denotes {0, 1} dummy variables. Standard errors clustered at the CMA/CA level in parentheses. a p<0.01, b p<0.05, c p<0.1.
See main text for a description of the sample used in each regression.

We show eight different robustness checks. Column (1) shows the benchmark re-
sults as a point of comparison. In column (2), we expand the sample to include all
establishments for which we have information on the dependent variable, irrespective
of the quality of the geocoding and polygon assignment procedures. In column (3),
we eliminate the 1% tails of the distribution in terms of the dependent variable. In
column (4), the sample only contains observations for which the information on both
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the parcel size and the building footprint is of excellent quality. In column (5), we
eliminate observations for which parcel size is smaller than building footprint (which
reflects misidentified polygons, mis-assignment to parcel and/or building polygons,
or problems in the raw Microsoft building data as explained before). In column (6), we
restrict the sample to manufacturing establishments with less than 50 employees to ad-
dress the fact that large establishments may occupy several adjacent parcels, in which
case we underestimate the amount of space they use (even though, as mentioned in
Section 2.1.2, this case is certainly rare). In column (7), we restrict the sample to those
establishments that have no identified neighbors on the same parcel or in the same
building. Indeed, despite the fact that we control for the number of neighbors in the
benchmark regressions using a fourth-degree polynomial, it is still possible that we
mis-measure the actual amount of land occupied by establishments when several man-
ufacturing firms occupy the same parcel. In the same vein, in column (8), we replace
the number of neighbors by the mean of the number of neighbors on the parcel and
in the building when both values are available. Indeed, the spatial mappings between
establishments and parcels, on the one hand, and establishments and buildings, on the
other hand, being done independently, these two figures may not be exactly the same.
Finally, column (9) restricts the sample to establishments that are located farther than
5 kilometres from a city center, to ensure the patterns we uncover are not driven by
what happens in very central locations.

Irrespective of whether we consider parcel size per worker or the building-to-parcel
ratio, our results for city population and weighted distance to city centers are remark-
ably stable, both qualitatively and quantitatively (most of the time). The same applies
to the relationship between parcel size per worker and establishment size, while the
sign and significance of the correlation between building-to-parcel ratio and establish-
ment size is less stable, but always close to zero and almost always negative. We are
thus confident in our key results from the benchmark econometric analysis: control-
ling for establishment size, manufacturing establishments occupy parcels more densely
in big cities and in central locations within cities, both in terms of employment- and
structural density. Moreover, controlling for location, larger establishments use less
land per worker—as measured by parcel size per worker.

4.4 Zooming in on Montréal

We have access to the property assessment roll for the city of Montréal.15 These data
contain information on the floor space of the properties and on the surface area of
the parcels on which they are built (surface of the parcels being reported more often

15Property assessment rolls are decentralized in Canada and unfortunately, we could not get similar
data for other cities or provinces.
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than floor space). Using the geographic coordinates of the properties in the assessment
roll, we can merge this information with the data used for the core analysis for 1,115

establishments (out of which 937 have information on floor space). Reassuringly, when
both variables are available, the correlation between the surface area of the parcels we
have used so far and the ones filled in the property assessment roll equals 0.883. This
confirms that the spatial join procedure we have implemented generally allows us to
recover reliable information on parcel sizes.

Table 4 reproduces the benchmark analyses of Tables 1 and 2 using the sample of
Montréal establishments for which we have information from the assessment roll. We
run regressions using alternatively the original and the roll data. We complement the
results on parcel size per worker and building-to-parcel ratios with a regression where
(the log of) floor space per worker is used as the dependent variable.16 The results
convey three main messages. First, when comparing columns (1) and (3) of Table 4

to the last column of Tables 1 and 2 respectively, it appears that Montréal is very rep-
resentative of the whole Canadian sample: for the two variables of interest (average
distance to city centers and establishment size) and for most of the covariates, the re-
sults are both qualitatively and quantitatively similar when using the whole sample
and the sample restricted to Montréal. Second, the comparisons of columns (1) and (2)
and of columns (3) and (4) of Table 4 reveal that using the original or the roll data
does not affect the results, be it in terms of sign, size, or significance of the coefficients.
Manufacturing establishments occupy their parcels more densely both in terms of em-
ployment and in terms of building footprint when they are located close to city centers.
And bigger establishments occupy their parcels more densely too, especially in terms
of parcel size per worker. Finally, the results in column (5) of Table 4 show that bigger
establishments occupy less floor space per worker, but floor space per worker is not
significantly related to the average distance to city centers. If—as for parcel size per
worker and building-to-parcel ratio—the results on the Montréal sample are represen-
tative of the whole sample, this means that establishment do not reduce the amount
of floor space they use when locating closer to city centers; they simply occupy the
parcels more densely.

Overall, we believe the results on the Montréal sample strongly confirm the relia-
bility of the benchmark results obtained with the data we assembled for a broader set
of Canadian cities and provinces.

16Note that the distance to major seaports is removed since its correlation with the weighted distance
to city centers equals 0.84 in Montréal. Population and surface area of the CMA are also excluded since
there is no variation for these variables when focusing the analysis on a single CMA.
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5 Conceptual framework and structural interpretation

We now propose a simple conceptual framework to interpret the empirical regularities
described in the previous section and use it to give a structural interpretation for some
of the elasticities we estimate.

5.1 Setup

We assume that input markets are competitive and that firms are price takers in factor
markets. Let i denote firms, s sectors, and z zones. We index firms by i(s, z). When
there is no confusion, we use i for short. Firm i has the following production function:17

Yi(s,z) = Ai

{
αi(s,z)

[
κi(s,z)(Pi − P s)

]σs−1
σs + (1 − αi(s,z))L

σs−1
σs

i

} σs
σs−1

(2)

where Yi, Pi, and Li stand for firm-level output, parcel (land) inputs, and the number of
workers, respectively; Ai is a Hicks-neutral productivity shifter; αi(s,z) is a technological
parameter—with both a sectoral and a firm component—that influences the intensity of
the production function in land and labor; and κi(s,z) is a land-augmenting productivity
parameter specific to firm i (and/or its industry and zone). Observe that there is
a minimum land requirement P s in sector s, which captures the presence of some
fixed costs or indivisibilities in land consumption. Furthermore, σs is the elasticity of
substitution between land and labor. We assume this parameter is industry specific
and σs > 0, i.e., land and labor inputs are imperfect substitutes in production. Note
that (2) exhibits constant returns to scale at the firm level in Pi − P s and Li.18

Letting pz and wz denote the unit price for parcels and labor in zone z, respectively,
standard unit cost minimization yields:

pz =
αi(s,z)κi(s,z)[κi(s,z)(Pi − P s)]−

1
σYi(s,z)

αi(s,z)[κi(s,z)(Pi − P s)]
σs−1
σs + (1 − αi(s,z))L

σs−1
σs

i

(3)

wz =
(1 − αi(s,z))L

− 1
σs

i Yi(s,z)

αi(s,z)[κi(s,z)(Pi − P s)]
σs−1
σs + (1 − αi(s,z))L

σs−1
σs

i

(4)

17We can easily add capital as a third production factor. If we consider that its price is constant
across space—as usual in the literature—this does not change the analysis. With different prices across
locations, the analysis becomes more involved. Since we are mostly interested in parcel size per worker,
we do not develop the case with capital in more detail in this paper.

18We do not rule out the presence of increasing returns to scale external to the firm. This would, e.g.,
be the case when Ai = Ai(Ls,z) depends on aggregate employment Ls,z in sector s and zone z.
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We focus on the ratio Pi/Li as this is the theoretical equivalent of the parcel size per
worker used in our empirical analysis. Since

pz
wz

=
αi(s,z)

1 − αi(s,z)
(κi(s,z))

σs−1
σs

(
Li

Pi − P s

) 1
σs

,

we can express parcel size per unit of labor as follows:

Pi

Li
=

(
αi(s,z)

1 − αi(s,z)

)σs

(κi(s,z))
σs−1

(
pz
wz

)−σs

+
P s

Li
. (5)

Observe that Pi/Li is independent of Li if land has no fixed-cost component (i.e., if
P s = 0). We have seen in our empirical analysis that this is clearly not the case: Pi/Li

decreases with Li, which suggests that P s > 0.

5.2 Determinants of Pi/Li

Our framework highlights three main types of determinants of firm-level parcel size
per worker: (i) the relative price of land; (ii) technological/productivity parameters;
and (iii) an additional term that depends on firm size and the importance of land as a
fixed production factor.

Relative price of land. Conditional on technological parameters, productivity pa-
rameters, and firm size, the firm-level parcel size per worker is a decreasing function
of its relative price, its sensitivity being determined by the elasticity of substitution σs

between production factors.

Technological/productivity parameters. Parcel size per worker also depends on tech-
nological parameters and, due to the spatial sorting of plants, these are probably cor-
related in the data with the local relative price of production factors. For example, the
land-intensity of the firm-level production function, as determined by the technological
parameter αi(s,z), matters for the relative quantity of land used by firms. For a given
relative price of land, firms with low αi(s,z) use relatively less land. We should then ob-
serve that firms with low αi(s,z) sort into places where land is relatively expensive. The
discussion is more involved for the land-augmenting productivity parameter κi(s,z).
Whether high or low κi(s,z) firms sort into zones where land is expensive depends on
the value of σs. Indeed, equation (5) above requires us to distinguish three cases:

(i) When σs = 1, any variation in factor-augmenting productivity κi(s,z) leaves the
relative demand Pi/Li unaffected. There is no obvious spatial sorting of firms based
on land-augmenting productivity in this case.
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(ii) When σs < 1, firms cannot easily substitute labor for land. For a given relative
price of land, firms with a high κi(s,z) will then use less land per worker. Put differently,
it is optimal for firms with a high land-augmenting productivity to tilt their demand
towards non-land inputs when production factors are not easily substitutable. In this
case, we should observe that firms with a high land-augmenting productivity sort into
places where land is relatively expensive.

(iii) When σs > 1, firms can easily substitute labor for land. For a given relative price
of land, firms with a high κi(s,z) will then use more land per worker. Put differently,
it is optimal for firms with a high land-augmenting productivity to tilt their demand
towards the land input when production factors are easily substitutable. In this case,
we should see firms with a relatively low land-augmenting productivity sort into places
where land is relatively expensive.

Before proceeding, it is worth noting that high-Ai establishments are more likely to
locate in zones with high factor costs (parcel prices pz and wages wz) since only they
can afford the high production costs there. However, as equation (5) reveals, the parcel
size per worker Pi/Li used by establishments does not depend on their total factor
productivity Ai, since the latter is a Hicks-neutral productivity shifter.19

Fixed land requirements. Last, for a given relative price of land and technological
parameters, firms in sectors with larger fixed requirements mechanically use more
land per worker.

5.3 Implications for empirical estimation

Because of the presence of the fixed land requirements P s, we cannot readily log-
linearize equation (5). However, we can proceed as follows. We first rewrite equa-
tion (5) as:

Pi

Li
=

(
αi(s,z)

1 − αi(s,z)

)σs

(κi(s,z))
σs−1

(
pz
wz

)−σs

︸ ︷︷ ︸
≡ξi(s,z)

+
P s

Li

=

(
αi(s,z)

1 − αi(s,z)

)σs

(κi(s,z))
σs−1

(
pz
wz

)−σs
(

1 +
P s

ξi(s,z)Li

)
. (6)

We then log-linearize (6), introducing a constant term β0 and a reduced-form error
term ϵ̃i, and obtain

ln
(
Pi

Li

)
= β0 + β1 ln

(
pz
wz

)
+ ϵi (7)

19Hence, external returns to scale that may be subsumed in the Hicks-neutral productivity shifter also
do not affect firms’ parcel size per worker. This vindicates the fact that we do not attempt to control for
agglomeration effects in our empirical analysis.
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where

ϵi = σs ln

(
αi(s,z)

1 − αi(s,z)

)
+ (σs − 1) lnκi(s,z) + ln

(
1 +

P s

ξi(s,z)Li

)
+ ϵ̃i (8)

is a structural error term. In the previous section, we estimated the elasticity of parcel
size per worker to city population and the semi-elasticity of parcel size per worker to
the weighted distance to city centers. Through the lens of the model, β1 = −σs so that:

∂ ln
(
Pi
Li

)
∂ ln Popz

= −σs
∂ ln

(
pz
wz

)
∂ ln Popz

and
∂ ln

(
Pi
Li

)
∂Disti

= −σs
∂ ln

(
pz
wz

)
∂Disti

.

From the literature, ∂ ln (pz/wz)/∂ ln Popz > 0 and ∂ ln (pz/wz)/∂Disti < 0, and our
regressions show ∂ ln (Pi/Li)/∂ ln Popz < 0 and ∂ ln (Pi/Li)/∂Disti > 0. Hence, our
estimates imply a positive value for σs, which is reassuring. Quantitatively, considering
for now that the elasticities ∂ ln (pz/wz)/∂ ln Popz and ∂ ln (pz/wz)/∂Disti are given,
we can infer the value of σs as:

σs = −
∂ ln

(
Pi
Li

)
∂ ln Popz

/ ∂ ln
(

pz
wz

)
∂ ln Popz

= −
∂ ln

(
Pi
Li

)
∂Disti

/ ∂ ln
(

pz
wz

)
∂Disti

(9)

However, the theoretical discussion in Section 5.2 shows that, before we can structurally
interpret our estimated elasticities, we need to discuss the endogeneity issues arising
from the presence of αi(s,z), κi(s,z), and ln

(
1 + P s

ξi(s,z)Li

)
in the structural error term (8).

Spatial sorting of firms and endogeneity. The type of bias arising from the firm-
specific requirements in terms of land and labor is straightforward: low αi(s,z) firms
sort into high pz/wz zones and—in the absence of controls or valid instruments—the
OLS estimate of ∂ ln (Pi/Li)/∂ ln Popz is likely to be biased downward and the one of
∂ ln (Pi/Li)/∂Disti is likely to be biased upward. The spatial sorting of firms based
on κi(s,z) induces the same type of biases, but this is less straightforward to establish.
Indeed, as discussed before, three cases need to be distinguished:

(i) When σs = 1, spatial sorting of firms based on land-augmenting productivity is
not an issue and there is no endogeneity bias.

(ii) When σs < 1, firms with high κi(s,z) sort into places where the relative price of

land is high. In this case, the naive estimates of ∂ ln
(
Pi
Li

)
/∂ ln Popz and ∂ ln

(
Pi
Li

)
/∂Disti

suffer from a downward and an upward bias repsectively.

(iii) When σs > 1, firms with a low land-augmenting productivity sort into places
where land is relatively expensive, meaning that again the naive estimates of the coef-
ficients suffer from the same biases.
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To summarize, the direction of the bias related to the spatial sorting of firms based
on their technological and productivity parameters is always the same: in the absence
of adequate controls or valid instruments, ∂ ln (Pi/Li)/∂ ln Popz is likely to be under-
estimated and ∂ ln (Pi/Li)/∂Disti over-estimated. In both cases, we thus obtain an
upper bound for σs.

Fixed costs and firm size. The second type of bias arises if land has a fixed-cost
component. More productive and thus larger firms are more likely to be found in high
pz/wz zones. Since they also have a smaller parcel size per worker—because the fixed
requirements are distributed over a larger workforce—not controlling for this leads to
a downward biased estimate of ∂ ln (Pi/Li)/∂ ln Popz and an upward biased estimate
of ∂ ln (Pi/Li)/∂Disti.

5.4 Inferring σs

Following the above discussion, the possible fixed-cost components of land as well as
the technological and productivity parameters need to be controlled for to infer mean-
ingful values of σs from the estimation of ∂ ln (Pi/Li)/∂ ln Popz and ∂ ln (Pi/Li)/∂Disti.
The former is relatively straightforward to do: this is the reason why we included firm
size as an additional explanatory variable into our econometric analysis. As we have
shown, the elasticity of Pi/Li with respect to Li is negative, highly significant, and very
stable across specifications. Thus, land has a fixed component and we control for it.

Let us now discuss the technological and productivity parameters, which are less
straightforward to control for. We neither directly observe firms’ relative land require-
ments αi(s,z) nor their land-augmenting productivity parameters κi(s,z). However, the
various controls we use in our regressions in Section 4 are likely correlated with these
parameters and thus should be reasonable proxies for them.

Firm-level relative land requirements are certainly partly determined by some sec-
toral parameters of the production function. These are controlled for by the NAICS
4-digit industry fixed effects in our regressions. Still, the part of αi(s,z) that is specific
to establishments and κi(s,z) are not controlled for by such fixed effects. However, we
believe that four sets of our controls partly deal with this. First, land requirements
vary with the functions that the establishment carries out and with its international ex-
posure. We actually showed that headquarters occupy less land per worker while the
opposite is true for exporters. Second, local governments have various zoning policies
that affect the quantity of land available for production. In particular, zones that are
specifically dedicated to a commercial or industrial use are probably more attractive to
firms that require a lot of land per worker, while the opposite should be true for resi-
dential zones where land suitable for production is likely to be scarce. This is why we
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also included zoning type fixed effects. Third, the proximity of transport infrastructure
could affect the quantity of land available for production or attract firms that are spe-
cific in terms of their needs for land (e.g., the exporters we mentioned above). This is
why we control for the distance to the closest major airport, major seaport, train freight
station, and highway junction, even though these variables do not appear to be major
determinants of parcel size per worker in the end. Finally, establishments involved in
a large number of activities in terms of products or sectors may require different types
of facilities (multi-floor buildings for example to separate the various product lines),
which could imply specific technological and productivity parameters regarding their
land inputs. This is why we added controls for the number of products, 4-digit NAICS
industries, and broad sectors covered by the plants’ operations to our regressions.

Using the relationships in equation (9) and the results in column (4) of Table 1, we
now back out the value of σs. We start with ∂ ln (Pi/Li)/∂ ln Popz, which we estimate
to equal −0.227. To back out σs, we need a value for ∂ ln (pz/wz)/∂ ln Popz. Data on
commerical land prices are notoriously difficult to find, and we do not have them for
Canada. In other words, we do not observe the relative price pz/wz. We thus rely on
estimates available in the existing literature. Based on French data, Combes et al. (2019)
find that the elasticity of the price of parcels (per square metre) to city population is
roughly equal to 0.6, while using French data too, Combes et al. (2008) find an elasticity
of individual wages to population density of 0.03.20 In France, the elasticity of relative
land prices to city size/city population density is thus equal to 0.57. Taking this as a
reference value for Canada, equation (9) implies a value of σs = 0.227/0.57 = 0.4.

We repeat the same exercise for the estimate of ∂ ln (Pi/Li)/∂Disti, equal to 0.033.
Again, we are not aware of clean estimates of land price gradients for Canadian cities.
However, Albouy et al. (2018) provide estimates of the ratio of land values per acre in
the city center (0.5 miles from downtown) and 10 miles away from it for more than 300
urban areas in the US. The weighted average ratio equals 6.5 (using urban area popula-
tion as weights). This corresponds to a semi-log gradient of 0.197.21 Since urban areas
are delineated following commuting patterns, the average wage should not vary too
much within them. Then, taking −0.197 as the reference value for ∂ ln (pz/wz)/∂Disti
for Canada and using equation (9), it follows that σs = 0.033/0.197 = 0.17.

20These two elasticities are not estimated for the same period and at the exact same spatial scale,
but they are cleanly estimated with very detailed data. We are not aware of better estimates in the
literature to obtain a measure of ∂ ln

(
pz
wz

)
/∂ ln Popz . Moreover, the two regressions from which these

estimates derive both contain the surface area of the unit over which population and population density
are computed. In such an empirical framework, the elasticity to population and to population density
are equivalent.

21Assuming that the log of land price linearly depends on the distance to the city center, and since
Albouy et al. (2018) estimate the ratio of land values at 0.5 and 10 mile from downtown to equal 6.5 on
average, the gradient is given by −ln(6.5)/9.5 = −0.197.
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The two values of σs implied by the quantification exercises we propose, 0.17 and
0.4, are quite far from the ubiquitous Cobb-Douglas specification that has been used
in the existing literature (and which implies that σs = 1). They suggest that labor and
land, as measured by parcel size, are complements rather than substitutes in the pro-
duction function of manufacturing establishments. As already mentioned throughout
the paper, some substitutability exists because conditional no their number of employ-
ees, establishments can partly give up on outdoor space or occupy taller buildings.
However, the results based on the Montréal sample in section 4 show that floor space
per worker is not significantly related to the average distance to city centers. This
suggests that the relationship between floor space (instead of parcel size) and labor is
Leontieff, i.e. they are perfect complements (once the fixed cost dimension is taken
into account).

In our conceptual framework, we assumed σs is sector specific since there is no
reason a priori to believe that land and labor are equally substitutable in all sectors.
To see whether the average σs masks heterogeneity, we investigate the cross-sectoral
heterogeneity in the two elasticities we can estimate from our data.

Figure 5: Heterogeneity of coefficients by sector and by parcel size per worker

(a) ln CMA population (b) Weighted distance to city centers
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Notes: The graphs shows the point estimate and the 90% confidence intervals of the associated coefficients with the explanatory

variable indicated in the heading. Regressions are run separately for the different sectors using the benchmark specification in

column (4) of Table 1.

Figure 5 reports the sectoral estimates for the two covariates of interest, city pop-
ulation and weighted distance to city centers. In line with the pooled results, the
coefficients we obtain are most of the time negative (but not always significant due to
noisy estimates sometimes) for city population, and they are always positive (and most
of the time significant) for weighted distance to city centers. However, once standard
errors are accounted for, it is hard to see any significant heterogeneity across sectors.
This suggests that σs is low in every sector, so that most of the heterogeneity across
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sectors highlighted in Section 3 comes from productivity or sectoral parameters.

6 Conclusion

Using a uniquely detailed dataset on the quantity of land used by manufacturing estab-
lishments in Canada, we provide what we believe is the first evidence on the individual
and local determinants of the amount of land used for manufacturing production. Big
establishments occupy less land per worker. Establishments located in big cities and
close to city centers occupy their parcels more densely too, both in terms of employ-
ment and building footprint. Land thus has a strong fixed cost component, and a
quantification of our regression results suggests that for the variable part of land con-
sumption, land and labor are not easily substitutable. Since Canadian manufacturing
is likely representative of manufacturing in other developed countries, our data and
results are potentially interesting for other researchers, e.g., to calibrate models or for
structural estimation exercises. Furthermore, the increasing availability of big open-
source data on parcel and building polygons provides ample opportunities to replicate
and extend our analysis to other countries in the future. In a rapidly urbanizing world
where the structure of cities and the density of economic activity become increasingly
important—e.g., to mitigate climate change—this seems like a worthwhile endeavour.
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Appendix material

A. Data Appendix

Geocoding. Geocoding consists in providing an address to a geocoder—a particular
Application Programming Interface (API) used to recover geographic coordinates of
addresses–which returns the latitude and longitude of the corresponding address. The
geocoder also provides the address related to the coordinates of the points it returns
so that we can verify if the input address and the return address match.

For the sake of precision, we use three different options to perform the geocoding.
The first option uses the commercial API of the Google Map server to geocode each
plant based on the address recorded in the Scotts database. The second option uses
the same API but combines the company’s name with the address as the input for the
geocoder. In doing so, small errors in the address reported in the Scotts data can be
corrected and the accuracy of the geocoding improved. The third option uses the point
coordinates provided in the DMTI database, which is an extensive database containing
more than 15 million feature points representing Canadian addresses and their related
geographic coordinates with ‘rooftop’ precision. We merge the Scotts addresses with
the DMTI address using the API of ArcGIS, a commercial Geographic Information
Systems (GIS) software.

Once we have geocoded the addresses, we compare the coordinates (latitude, lon-
gitude) returned by the three options and assign to each plant the coordinates that
are most likely the accurate ones. Accuracy is based on two criteria: (i) the distances
between the point coordinates yielded by the three options (so as to identify probable
errors, i.e., points that are very far away from the other return values); and (ii) the
match between the postal codes recorded in the Scotts database and the postal codes
returned by the geocoder for each option (so as to keep only the points for which the
postal code corresponds to the one recorded in the Scotts database). If several different
points are returned for the same establishment, the coordinates retrieved from Google
Maps based on the company name and the address are preferred to the coordinates
obtained via Google Map using the address only, which are themselves preferred to
the DMTI coordinates.

Finally, we construct a variable with three categories to grade the accuracy of the
geocoding process for each plant based on how convergent the three options are in
terms of establishment location. We retain only observations that are either ‘rooftop’
(i.e., exactly coded) or ‘range interpolated’ (i.e., interpolated based on a range of ad-
dress numbers); we do not consider the rest (e.g., postal-code level) as being accurate
enough to assign plants to polygons.
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Data sources. We extensively explored existing open-access data sources on various
websites and got in touch with several institutions to obtain information on parcel- and
buildings polygons and footprints in Canada. The main relevant data sources for our
work are the following:

• Statistics Canada, via the official website of the Canadian Government, provides
several datasets including data on buildings that are open for public use.

• Some Assessment Rolls of different municipalities—which are in charge of com-
puting the value of the tenure taxes based on the nature, the location, and the
scope of the properties—provide open-access data.

• Cadastral information: Some provinces and cities in Canada do have information
on the parcels where buildings are located.

• GIS databases of cities: The websites of some cities provide GIS data which record
parcels polygons and/or footprints of buildings of their localities.

• Open source data on building footprints in Canada released by Microsoft: These
datasets contain 12,663,475 building footprints covering all provinces and territo-
ries.22

The table below provides the complete list of polygon datasets that we collected
along with the links where they can be accessed.

Polygon dataset quality. We collected polygon datasets from the above sources. These
datasets come in different data formats (KML, shapefile, geodataset, etc) and are for
different reference years. During their processing, we identified and solved the follow-
ing challenges linked to the quality of the data:

• Quality of the collected files: The polygon datasets we collected are not homoge-
neous. The formats of the files are not always the same and the reference units
of the polygon datasets are different in some cases (feet, meters, etc.) and some-
times not indicated at all in the files. To solve this problem we converted all the
files into shapefile format (.shp), harmonized the units to meters, and projected
each dataset into a suitable coordinate system according to the position of the
locality it refers to. We consider as a suitable coordinate system one which does
not alter distances. In most cases, the ‘Albers conic conformal system’ is used, as
generally recommended for Canada. We also construct for each polygon dataset
the following key variables: a unique identifier, the surface area, and the number

22For additional information, see https://blogs.bing.com/maps/2019-03/microsoft-releases-12-
million-canadian-building-footprints-as-open-data.
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of neighbors of each polygon recorded in the dataset. The latter variable is useful
to check for the quality of the area assignation process for each plant. The LI-
DAR dataset source gives the building footprints along with an estimation of the
height of the building. These files report the minimum and the maximum height
detected by the signal used to scan the space.

• Matching buildings to parcels: The polygon datasets we collected have two dif-
ferent features. The first one is the parcel-polygon that represents the amount of
land used by a plant to host its main building and possibly some other spaces
(auxiliary buildings, parking, storage, etc.). The second polygon type is the
building-polygon that represents only the building of the plant. Theoretically,
the building footprint should be included in the parcel outline. Yet, in some
cases the building overlaps with more than one parcel. As a result, the surface
of the building footprint is greater than the surface of the parcel to which its is
related. We solve this issue by aggregating up all the parcels that overlap with
the building.

Assignment to polygons. We have, on the one hand, a geocoded establishment-level
dataset and, on the other hand, different polygon datasets. To merge them, we use the
spatial join tools available in the open-source software Quantum GIS (QGIS) to map
each plant to a polygon. More precisely, we overlay the polygon datasets (parcels and
buildings) with the coordinate point layers representing the geocoded establishments.
Figure A1 shows an example of how the geocoded Scotts plants are overlaid on the
building polygon layer for the spatial join process.

As is well known, spatial join can be a somewhat noisy process. Hence, not all
plants fall exactly onto a polygon (neither parcels nor buildings). For each plant, we
thus perform three assignment options. The first option relates each plant to the poly-
gon onto which it falls; in that case, the distance between the plant and the polygon is
assumed to be 0. If the plant does not fall exactly onto a polygon, it has no associated
polygon. The second option then relates each plant to the polygon whose centroid is
the closest, and we compute the distance between the plant and that centroid. Finally,
the third option relates each plant to the polygon whose border is the closest; we again
compute the distance between the plant and that border. We then compare the three
(or two) distances obtained in the three option and we take as the final assignment the
polygon corresponding to the shortest distance. Obviously, when the plant falls onto
a polygon, it is that polygon which is assigned to the plant since the distance is zero.
When the shortest distance is greater than 75 meters we consider that the process is too
noisy and we do not assign that polygon to the plant. In addition, to avoid assigning
the surface of corridors to plants, we compute for each polygon its number of neigh-
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Figure A1: Polygon layer with geocoded establishments overlaid

bors. If an assigned polygon has more than 10 neighors, we consider that the polygon
is a corridor or a common space and we do not assign that polygon to the plant.

We then construct a variable corresponding to the combination of assignments
pointing in the direction of the polygon the establishment is assigned to. For exam-
ple if the options "Border" and "Center" assign the plant to the same polygon whereas
the "Within” option points to a different polygon for the same plant, then assignment
variable for that plant will be "Center-Border". Thus, the assignment variable has the
following 7 categories : (1) "Within-Center-Border"; (2) "Within-Center"; (3) "Within-
Border"; (4) "Center-Border" (5) "Within"; (6) "Center"; (7) "Border".

Based on this assignment variable, we construct a quality variable as follows: i)
we cross-tabulate the assignment variable with the dummy we could build for the
observations from Quebec and that identifies those establishments which are assigned
to the right polygon (described in section 2.2); ii) for all of our observations, we define
as "Excellent" those observations whose assignment category has a high probability of
being located on their actual polygon as measured based on observations from Quebec;
"Good" is for observations whose assignment category has an intermediate probability
of being located on their actual polygon; and "Poor" is for all the categories with a low
probability of being located on their actual polygon. Doing so, we implicitly assume
that the mapping between the assignment variable and the dummy identifying correct
observations in Quebec is representative of the entire country.
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For the Parcel-based measure, the process leads to grade as "Excellent" the plants
whose assignment category is "Within-Border-Center" or "Within". These plants with
an "Excellent" parcel-based measure have a 89% probability of being positioned on
their actual polygon. Plants graded as "Good" are those whose assignment category is
"Within-Border" or "Within-Center". The plants of "Good" quality have a 60% proba-
bility of being positioned on their actual polygon. Finally, "Poor” is the grade for ob-
servations whose assignment category is "Border"; "Center-Border" or "Center"; these
observations have a 16% probability of being located on their actual polygons.

For the Building-based measure, the category "Excellent" comprises the plants whose
assignment category is "Within-Border-Center", "Within-Center", "Within-Border" and
"Border-Center". The observations rated as "Excellent" for the Building-based measure
have a 78% probability of being positioned on their actual polygon. The quality "Good"
is for observations whose assignment category is "Within"; for them, the probability of
being positioned on their actual polygon is equal to 66%. The grade "Poor" encom-
passes observation whose assignment category is "Border" or "Center". These plants
have a 36% probability of being positioned on their actual polygon.

Summary: step-by-step data-construction procedure. Below is a summary of the
main workflow to construct our dataset.

Step 1. Creating a unique addresses. From the Scotts dataset, unique addresses are
identified since several plants can share the same location. We create a unique identifier
for each address. This step prepares the geocoding process, and will avoid to geocode
several times the same address. A dataset of unique addresses is then generated with
variables, the detailed address, and the address identifier.

Step 2. Geocoding unique addresses. We use the dataset of unique addresses as in-
put for the geocoding process described above. The output file contains geocoded
addresses, in addition to the inputs variables, the geographic coordinates of each ad-
dress, the detailed address as recorded in the database of the geocoder (Google or
DMTI) as well as a quality variable indicating the degree of accuracy of the returned
coordinates.

Step 3. Extracting polygon surfaces. Using a Geographic Information System, the
geocoded addresses are overlaid on the polygons featuring parcel or building foot-
prints. Then spatial join techniques are used to associate parcel and/or building poly-
gons to addresses. Three different spatial join approaches are used to associate polygon
areas to addresses. The output contains for each address, the associated polygon area
from each of the three spatial join approach, as well as the distance between each
associated polygon and the geographic coordinates of the address.

Step 4. Extracting location characteristics. Using a Geographic Information Sys-
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tem, the geocoded addresses are overlaid on shapefiles of dissemination areas, Census
Metropolitan Areas (CMAs), zoning restrictions, highways, seaports and airports to
compute various location variables : population and surface area of dissemination ar-
eas and CMA, distance to closest seaport, freight station, airport and highway junction
as well as dummies for zoning categories.

Step 5. Creating a raw land variable. This process compares the results of the three
different spatial join approaches and finally assign to each address the ‘best’ result.
Quality variables are constructed.

Step 6. Creating the final dataset. The Scotts dataset is merged with location charac-
teristics and land measures to obtain the final dataset used in the paper.

B. Quality assessment.

Beyond the measurement challenges mentioned in the previous subsection, geocoding
data and assigning them to polygons retrieved from satellite data inherently bring
issues regarding the quality of the data and the methodology employed to assign plants
to polygons.

First, there can be errors in the polygon datasets. Representing a parcel or a building
by a polygon is subject to minor errors. For example, the algorithm used to convert
satellite building images into polygon building outlines may fail in some cases to fit
exactly the building into its representative polygon. The level of such errors—known as
the matching precision—is estimated at 1.3% by the data provider.23 This type of error
only affects the building polygons. Parcel polygons are derived from administrative
data and should, therefore, not be subject to measurement error of the type inherent to
satellite data.

Second, there can be errors in the plant-to-polygon assignments. Geocoding mi-
crodata is an inherently noisy process. Even minor errors in the geocoding of plants
can lead to their mis-assignment to polygons. To gauge the scope of false assignments
in our dataset, we make use of the subset of data for the province of Quebec (QC).
The reason is that the polygon identifiers in the QC dataset are the same as the official
identifiers of the polygons as recorded on the governmental website of the land regis-
ter “Infolot”.24 We can, therefore, randomly draw a set of addresses of plants in QC
from our dataset and compare the parcel identifiers from “Infolot” to those obtained
by our assignment procedure. Using a sample of 1,667 addresses, we find 1,320 correct

23See https://github.com/Microsoft/CanadianBuildingFootprints on the GitHub website where
the data are released.

24On that website, it is possible to recover the identifier of a parcel by providing the address of a
location. See https://appli.mern.gouv.qc.ca/infolot/.
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assignments. Put differently, the probability for a plant in QC to be located exactly on
its actual polygon is 79.16%.

Table A2: Assignment quality

Assignment quality
Parcel (PB) Building (BB)

N % N %

Excellent 8,782 78.83 22,978 96.43

Good 720 6.46 487 2.04

Poor 1,639 14.71 363 1.52

Total 11,141 100.0 23,828 100.0

Notes: Distribution of geocoded establishments in 2017 by
quality categories. The classification includes the quality
of the geocoding and the quality of the polygon assign-
ment process. Concerning the geocoding quality, all ob-
servations with a less than excellent quality are removed,
and the remaining are used to construct the three groups:
excellent, good, and poor. The final sample we use is of
excellent quality and missing values of covariates used in
the regression analysis are removed. We have a sample of
8,708 parcels.

As explained in the part “Assignment to polygons” of the Appendix, the assign-
ment of plants to polygons is based on three options that can potentially point to
different polygons. Among the 1,667 addresses that we use for validation, if we restrict
ourselves to the subset of observations for which the three options in the assignment
procedure point to the same polygon, the share of correct assignments increases to
91.3%. In other words, plants for which the three assignment options point to the same
polygons are very likely to be correctly assigned. Making use of that observation, we
finally construct a ‘quality’ variable based on: (i) how accurate the geocoding of the
establishment is; and (ii) how likely a correct assignment to a polygon is. This quality
variable—which we construct for the whole dataset, not just Quebec—has three cat-
egories: excellent, good, and poor (see the part “Assignment to polygons” for more
details). Table A2 summarizes the distribution of observations across data-quality cat-
egories for parcels and building footprint. In the remainder of the paper, unless noted
otherwise, we only keep observations of ‘excellent’ quality.

C. Identifying city centers

To identify city centers, we identify clusters of densely populated dissemination areas
(DAs, equivalent to ‘census blocks’) within each Canadian Census Metropolitan Areas
(CMA) or Census Agglomerations (henceforth we use CMAs to mean either Census
Metropolitan Areas or Census Agglomerations). To do so, we follow the procedure of
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Behrens et al. (2020), who suggest an algorithm to construct clusters of manufactur-
ing plants based on their spatial concentration. We simply replace plants by densely
populated DAs.

Formally, for each CMA, we identify the clusters of densely populated DAs as
follows:

• we flag all DAs with population density greater than the third quartile of the
population density distribution of the CMA;

• we draw a circle with 500 meters radius around each flagged DA and compute the
hypergeometric probability of having the number of flagged DAs in that circle,
given the overall number of flagged DAs in the CMA. We also compare the total
population of the flagged DAs within the circle to the total population of the
flagged DAs in the CMA;

• A DA is considered a focal point of population concentration if the hypergeomet-
ric probability we computed is below 1% and if the ratio of the total population
of the flagged DAs in the circle compared to the total population of the flagged
DAs in the CMA is greater than the median observed in the CMA;

• we finally construct population clusters by drawing a buffer of 1 kilometer around
each DA identified as a focal point and merging together all the overlapping
buffers

City centers are the geographic centers of the population clusters identified following
this procedure. Based on this method, we identify 223 city centers across Canada.
There are six centers in the Toronto CMA, three centers in the Montréal CMA, and one
in the Vancouver CMA.

Using these city centers, for each plant, we compute the average of the distance
between the plant and the centers of its CMA using as weights the population in a 500

meters radius around each center.

D. Additional tables and results
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Table A3: Distribution of plants across industries in the final dataset

Parcel Building Scotts Data
N % N % N %

311 Food mfg 745 8.6 590 8.1 2,875 8.9
312 Beverage and tobacco product mfg 77 0.9 52 0.7 340 1.0
313 Textile mills 32 0.4 22 0.3 96 0.3
314 Textile product mills 227 2.6 178 2.5 743 2.3
315 Clothing mfg 307 3.5 212 2.9 712 2.2
316 Leather, allied product mfg 40 0.5 35 0.5 127 0.4
321 Wood product mfg 353 4.1 316 4.4 1,884 5.8
322 Paper mfg 149 1.7 126 1.7 501 1.5
323 Printing, support activities 726 8.3 555 7.6 2,270 7.0
324 Petrol, coal product mfg 20 0.2 15 0.2 134 0.4
325 Chemical mfg 433 5.0 381 5.3 1,539 4.7
326 Plastics, rubber products mfg 545 6.3 481 6.6 1,907 5.9
327 Non-metallic mineral product mfg 387 4.4 341 4.7 1,951 6.0
331 Primary metal mfg 125 1.4 103 1.4 537 1.7
332 Fabricated metal product mfg 1,301 14.9 1,129 15.6 5,226 16.1
333 Machinery mfg 1,061 12.2 955 13.2 4,542 14.0
334 Computer, electronic product mfg 300 3.4 262 3.6 1,032 3.2
335 Electrical, appliance mfg 256 2.9 228 3.1 784 2.4
336 Transportation equipment mfg 297 3.4 254 3.5 1,099 3.4
337 Furniture, related product mfg 421 4.8 351 4.8 1,392 4.3
339 Miscellaneous mfg 906 10.4 670 9.2 2,726 8.4
Total 8,708 100.0 20,443 100.0 32,417 100.0

Notes: This table reports the distributions of the Scottâs database along with our final sample
for the two measures in 2017 across the different industries at the NAICS 3-digit level.
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Table A4: Distribution of plants across provinces in the final dataset

Parcel Building Scotts Data
N % N % N %

Alberta 0 0.0 0 0.0 2,735 8.4
British Columbia 2,211 25.4 1,793 24.7 3,812 11.8
Manitoba 419 4.8 366 5.0 983 3.0
New Brunswick 214 2.5 193 2.7 708 2.2
Newfoundland 0 0.0 0 0.0 272 0.8
Nova Scotia 0 0.0 0 0.0 765 2.4
North West Territories 0 0.0 0 0.0 6 0.0
Nunanvut 0 0.0 0 0.0 6 0.0
Ontario 1,881 21.6 1,578 21.7 13,735 42.4
Prince Edward Island 0 0.0 0 0.0 144 0.4
Quebec 3,709 42.6 3,083 42.5 8,430 26.0
Saskatchewan 274 3.1 243 3.3 799 2.5
Yukon 0 0.0 0 0.0 22 0.1
Total 8,708 100.0 7,256 100.0 32,417 100.0

Notes: This table reports the distributions of the Scottâs database along with our
final sample for the two measures in 2017 across the Canadian provinces. The three
Territories NorthWestTerritories,Y ukon, andNunavut have been removed because
they contain few observations.
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Table A5: Testing for selection on observable plant characteristics

Dep. var.: 1 in sample

(1) (2) (3) (4)

Ln Employment -0.009 0.005

(0.014) (0.018)
Headquarter 0.046 -0.014

(0.031) (0.033)
Exporter 0.003 -0.011

(0.053) (0.041)
1 Residential zoning -0.152

a -0.156
a -0.114

a

(0.057) (0.058) (0.042

1 Recreational zoning -0.605
a -0.605

a -0.329
a

(0.091) (0.092) (0.079)
Ln City population 0.253

a

(0.058)
Ln Population density 500m 0.085

(0.053)
Ln Distance to closest major airport 0.025

(0.076)
Ln Distance to closest major seaport -0.043

(0.093)
Ln Distance to closest freight station 0.071

(0.058)
Ln Distance to closest highway junction -0.035

a

(0.021)

Fixed effects:

4-digit industry Yes Yes Yes Yes
Province No Yes Yes Yes

Observations 24,457 24,457 24,457 24,457

Pseudo R2
0.016 0.272 0.272 0.326

Notes: This table reports the estimates of a probit model where the dependent
variable equals 1 if the establishment is in the estimation sample. 1 denotes {0, 1}
dummy variables. Standard errors clustered at the city-level in parentheses. c

p < 0.10, b p < 0.05, a p < 0.01.
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Table A6: Plant-level parcel size by industry

Parcel size
N Mean Median CV

311 Food mfg 745 14,906.3 5,711.1 2.6
312 Beverage and tobacco product mfg 77 29,819.0 8,312.4 2.9
313 Textile mills 32 11,587.3 3,524.2 1.9
314 Textile product mills 227 7,509.2 4,045.0 1.4
315 Clothing mfg 307 6,649.3 3,853.6 1.3
316 Leather, allied product mfg 40 6,261.0 2,615.9 1.4
321 Wood product mfg 353 20,172.9 6,918.5 5.0
322 Paper mfg 149 23,797.7 13,359.4 1.9
323 Printing, support activities 726 7,996.7 3,486.8 2.1
324 Petrol, coal product mfg 20 22,928.1 9,315.0 1.5
325 Chemical mfg 433 18,558.6 8,213.5 2.7
326 Plastics, rubber products mfg 545 13,352.8 7,914.5 1.6
327 Non-metallic mineral product mfg 387 16,901.6 8,058.6 2.5
331 Primary metal mfg 125 39,747.3 6,253.9 5.3
332 Fabricated metal product mfg 1,301 11,494.9 5,565.2 3.1
333 Machinery mfg 1,061 12,131.6 6,599.6 2.1
334 Computer, electronic product mfg 300 10,580.8 6,467.8 1.5
335 Electrical, appliance mfg 256 13,318.3 8,416.8 1.4
336 Transportation equipment mfg 297 28,172.2 6,806.6 4.1
337 Furniture, related product mfg 421 9,238.9 4,546.8 2.9
339 Miscellaneous manufacturing 906 8,939.5 2,710.3 3.3
Total 8,708 13,354.2 5,757.6 2.7

Notes: This table reports descriptive statistics for parcel sizes across 3-digit
industries for our final dataset.
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Table A7: Plant-level parcel size per worker by industry

Parcel size per worker
N Mean Median CV

311 Food mfg 745 1,120.9 172.0 7.2
312 Beverage and tobacco product mfg 77 3,598.2 208.4 3.2
313 Textile mills 32 2,602.3 313.3 4.0
314 Textile product mills 227 1,503.2 351.6 2.2
315 Clothing mfg 307 661.5 218.8 1.8
316 Leather, allied product mfg 40 1,109.2 232.7 2.1
321 Wood product mfg 353 1,297.0 387.9 2.4
322 Paper mfg 149 967.9 389.4 2.0
323 Printing, support activities 726 1,512.4 333.2 3.6
324 Petrol, coal product mfg 20 1,249.1 693.3 1.3
325 Chemical mfg 433 1,204.2 368.4 3.3
326 Plastics, rubber products mfg 545 990.3 297.2 4.6
327 Non-metallic mineral product mfg 387 1,951.0 390.4 8.4
331 Primary metal mfg 125 787.7 295.3 2.0
332 Fabricated metal product mfg 1,301 1,134.9 316.7 3.9
333 Machinery mfg 1,061 1,063.1 327.1 2.9
334 Computer, electronic product mfg 300 1,060.5 302.9 3.3
335 Electrical, appliance mfg 256 955.8 297.7 2.2
336 Transportation equipment mfg 297 2,145.5 300.1 8.8
337 Furniture, related product mfg 421 1,564.4 316.4 7.8
339 Miscellaneous mfg 906 1,399.3 352.1 3.4
Total 8,708 1,281.0 310.3 4.3

Notes: This table reports descriptive statistics for parcel size per worker for our
two land measures across 3-digit industrie. The sample is our final dataset.
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Table A8: Building-to-parcel ratio by industry

Building-to-parcel ratio
N Mean Median CV

311 Food mfg 590 0.37 0.37 0.61

312 Beverage and tobacco product mfg 52 0.29 0.29 0.77

313 Textile mills 22 0.50 0.49 0.37

314 Textile product mills 178 0.35 0.35 0.60

315 Clothing mfg 212 0.43 0.42 0.51

316 Leather, allied product mfg 35 0.37 0.37 0.59

321 Wood product mfg 316 0.26 0.22 0.79

322 Paper mfg 126 0.38 0.38 0.52

323 Printing, support activities 555 0.40 0.38 0.54

324 Petrol, coal product mfg 15 0.09 0.07 0.77

325 Chemical mfg 381 0.32 0.31 0.63

326 Plastics, rubber products mfg 481 0.35 0.36 0.57

327 Non-metallic mineral product mfg 341 0.27 0.25 0.74

331 Primary metal mfg 103 0.30 0.31 0.60

332 Fabricated metal product mfg 1,129 0.34 0.33 0.59

333 Machinery mfg 955 0.31 0.28 0.60

334 Computer, electronic product mfg 262 0.34 0.31 0.62

335 Electrical, appliance mfg 228 0.34 0.34 0.52

336 Transportation equipment mfg 254 0.31 0.29 0.66

337 Furniture, related product mfg 351 0.37 0.37 0.55

339 Miscellaneous mfg 670 0.37 0.34 0.59

Total 7,256 0.34 0.33 0.60

Notes: This table reports descriptive statistics for the building-to-parcel-ratio
across 3-digit industry. We have constrained the sample such that the parcel
size exceeds the building footprint.
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