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We extend the demand systems approach of Koijen and Yogo (2019) to more general classes of prefer-

ences. Specifically we analyse constant absolute and constant relative risk aversion, provide conditions
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absolute risk aversion works particularly well at moderate levels of risk aversion. In the case of rela-

tive risk aversion, optimal interior portfolio solutions may not even exist. In both preference classes

especially out-of-sample predictions are rather volatile. In order to improve out-of-sample performance

we augment the optimal strategies by a shrinkage device. As a side product we establish that the

characteristics-based parametric portfolio approach of Brandt, Santa Clara and Valkanov (RFS 2009)
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1 Introduction

In their widely acclaimed contribution Koijen and Yogo (2019) develop an asset pricing model with flexible

heterogeneity in asset demand across investors. Their framework is especially useful in modelling non-

atomic investors such as large institutions and pension funds. In their framework, with log-utility and

short-selling constraints in place, optimal portfolio choice reduces to characteristics-based demand, when

returns exhibit a factor structure, which allows them to construct and apply an instrumental variable

estimator in order to deal with the endogeneity of demand and asset prices. Finally, these authors

illustrate the power of their approach on US stock market data and investor holding data from 1980-2017.

We extend the approach of Koijen and Yogo (2019) in various dimensions. First, we allow for general

constant relative risk aversion (relative risk aversion parameter γ ∈ R>0) rather than imposing log-linear

utility (γ = 1). Second, we extend the analysis to the case of constant absolute risk aversion. Doing

so allows us to connect the demand system approach directly to the parametric portfolio approach of

Brandt et al. (2009). Third, we add the analysis in absence of short-selling constraints in order to analyse

and evaluate the empirical relevance of this restriction. Fourth, we show how a shrinkage device can be

included in a simple way to “stabilize” the investment strategies and to improve performance in empirical

data. Fifth, we show the existence of equilibrium in an economy with heterogeneous agents specifically

for the cases of constant absolute risk aversion (CARA), and constant relative risk aversion (CRRA)

preferences. This result still holds if a – not-necessarily proper – subset of the agents apply the shrinkage

device proposed in this article. Finally, we illustrate the performance of those extensions at the hand of

US stock market data on asset prices.1

The basic insights from extending the demand systems approach to asset pricing are the following:

• We find that parametric portfolio policies (see Brandt et al., 2009) can be derived as optimal

portfolio policies only under very restrictive assumptions. Typically, optimal portfolio investments

differ from solutions to the characteristics-based approach.

• The case of constant absolute risk aversion generates relatively simple solutions because of the

1In the absence of individual holdings data, in contrast to Koijen and Yogo (2019) our empirical analysis focuses on asset
pricing only since we cannot identify demand.
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absence of wealth effects. We demonstrate that our optimal strategies with shrinkage outperform

parametric portfolio policies and a simple 1/N investment strategy.

• In the case of constant relative risk aversion, technical pitfalls have to be avoided by imposing

restrictions on domains or adapting objective functions for the region of large losses. The necessity

of such restrictions is demonstrated empirically at the example of S&P 500 stocks for the US in the

period from 1995-2013 especially for low levels of relative risk aversion. Overall we find that the

performance of the “constant relative risk aversion-adaptions” are relatively poor for low levels of

relative risk aversion γ. However, the performance is improving for higher levels, both in-sample

as well as out-of-sample. We observe that for moderate and higher γ our optimal strategies with

shrinkage outperform parametric portfolio policies and a simple 1/N investment strategy. For large

γ the differences in the performance become small.

The demand systems approach can be interpreted as a reduction technique to explain asset prices as

a function of a few exogenous characteristics. Such a reduction technique is expected to reduce numerical

complexity and to enhance robustness. Obviously the validity of such a procedure depends on the true

underlying economic structure.

Our insights are particularly useful for popular machine learning algorithms (see, e.g., Nagel, 2021),

since they allow to fuse prior economic knowledge with big data on asset prices and further underlying

information sources. Our analysis identifies potential, and empirically relevant pitfalls, and provides

solutions to such challenges for algorithmic portfolio optimization. In particular, and in contrast to Nagel

(2021), where ridge regression is used to predict returns, we propose an algorithm that allows to shrink

towards some specific portfolio weights such as the 1/N -portfolio.

The paper is organized as follows: Section 2 provides a literature review. Section 3 presents the basic

model. Section 4 presents asset demand based on constant absolute risk-aversion (CARA-preferences)

and develops the conditions for the parametric portfolio policy as an optimal solution to the portfolio

investment problem. Section 5 analyses CRRA-preferences. Section 6 presents asset prices derived in

general asset market equilibrium for both, the CARA as well as the CRRA-preferences discussed in the

sections before. Section 7 presents an empirical evaluation of the pricing theories at a sample of one-
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hundred S&P 500 stocks. This chapter also provides robust empirical evidence of potential pitfalls for the

unchecked parametric portfolio approach. Section 8 concludes. The Appendix contains a section on the

properties of the empirical data and a detailed derivation of the CARA model in Section 4.

2 Literature and Relations to Machine Learning

As already stated in the Introduction in our approach we obtain optimal portfolio weights given some

characteristics (abbreviated xit in the later parts of this article). In the following sections we also inves-

tigate whether these optimal rules are equal to or at least approximately correspond to the parametric

portfolio approach of Brandt et al. (2009). In addition, we observe that the optimal rules show poor

out-of-sample performance, at least in the empirical data set considered in this article. To improve on

this issue a quadratic penalty function will be included.

Our paper is not the first to discuss issues related to the missing micro-foundations of the parametric

portfolio policy approach. Ammann et al. (2016) show that the parametric portfolio policy approach

implies unrealistically large amounts of implied short sales and provide conditions to render the approach

more empirically appealing, and more in line with the empirical findings of Medeiros et al. (2014). Our

contribution complements these earlier studies by providing a micro-foundation for the parametric portfolio

policy approach in a factor setting. We adopt this approach to a S&P 500 sub-sample of 100 assets for the

period of 1979-2013 and compare it to the optimal solution implied by the micro-founded model. Other

closely related work is Hjalmarsson and Manchev (2012), who consider the special case of mean-variance

preferences. We also compare the results with the ad-hoc heuristics of the 1/N -rule (see, e.g., DeMiguel

et al., 2009).2

Further reduction techniques and methods to stabilize and improve estimates and/or forecasts are tools

recently provided in machine learning literature (for an overview, see e.g., Nagel, 2021). For example, in

Nagel (2021)[Chapter 4] ridge regression is applied to improve the forecasting performance of a predictive

regression model, where a quite large set of exploratory variables is used to predict asset returns. Then

these forecasts are used for portfolio allocation. Also Kelly et al. (2021) use ridge regression techniques

2An overview on reduction techniques is e.g. provided in Thös (2019).
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to forecast asset returns by using a large set of predictors. The authors also connect ridge regression to

the Moore-Penrose pseudo inverse (which corresponds to the case where the shrinkage parameter becomes

small). In addition, the authors consider the case where the number of regression parameters becomes

large and use random matrix theory to obtain asymptotic results (further theoretical results are provided

in Hastie et al., 2022). In their empirical analysis CRSP-data was used. The authors show that using

a bulk of “plausibly relevant predictors” in combination with “rich non-linear models”, improves return

forecasting and portfolio returns. Non-parametric regression in combination with shrinkage is applied to

portfolio allocation in Freyberger et al. (2020).

Alternatively, neural networks – in particular reinforcement learning – can be used to directly optimize

the objective function of an investor (see, e.g., Cong et al., 2020). The parametric portfolio approach

of Brandt and Santa-Clara (2006) can be seen as special case of this machine learning approach (by

considering a small number of predictors as well as a linear dependence structure).

In this article we augment our objective function (that is, either CARA or CRRA expected utility) by a

quadratic penalty term. In contrast to Kelly et al. (2021), Nagel (2021), and a lot of other ’machine learning

in finance papers’ cited there, the number of predictors remains small in our analysis. We show that for

CARA utility our optimization problem exactly corresponds to the optimization problem observed in the

case of ridge regression. For constant relative risk aversion we show that by using a second order Taylor

series approximation of the utility function the optimization problem corresponds to a ridge regression

problem. Our approach allows to shrink the portfolio weights towards weights chosen by the investor

(such as the equally weighted portfolio). We observe that in our empirical data the implementation of the

characteristics-based approach of Koijen and Yogo (2019) requires the application of shrinkage methods

to stabilize and improve out-of-sample performance.

As well known to literature (see, e.g., James et al., 2017, p. 226), the ridge regression estimator

corresponds to the posterior mean of the vector of regression parameters in a Bayesian regression model

with normally distributed noise and a normal prior on the regression parameters (e.g., w̆t and covariance

matrix 1
cp

In in Section 5). In our analysis the vector of regression parameters corresponds to our portfolio

weights. The ridge regression methodology easily allows to integrate a-priori information on portfolio
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weights. The stronger the prior on these weights the more we shrink towards the a-priori weights chosen

by the investor. One prominent example is the equally weighted portfolio discussed in DeMiguel et al.

(2009). Hence, in contrast to the machine learning approaches discussed above, our approach directly

allows to integrate a-priori information on investment weights.

3 Model and Assumptions

We follow Koijen and Yogo (2019) and consider an economy with discrete time t. Denote the one-period

return (or yield) of security i from period t to t+1 as rit+1, and the gross-returns as Rit+1 := 1+rit+1. The

index set of traded risky securities (e.g. stocks) in period t is abbreviated by It.3 Nt, 1 ≤ Nt ≤ N < ∞,

is the number of risky elements in It. In the case a risk-free asset is traded we apply the index i = f , its

return is rft+1, and the total number of assets is nt = Nt + 1 in It; in sums the summation index 0 is

used for the risk-free asset. Denote the share price of asset i in period t by Pit and the number of traded

shares by Sit. Accordingly, the market value of equity of asset i is given y PitSit and aggregate market

capitalization reads
∑

i∈It PitSit. Denote the vector of share prices by Pt := (P1t, . . . , PNtt)
>.

If the number of securities is constant, then Nt = N (and nt = n) for all t = 1, . . . , T . For a given set

of weights wit ∈ R, the portfolio return is rpt+1 :=
∑

i∈It witrit+1, with Rpt+1 := 1 + rpt+1 denoting the

portfolio’s gross return.4

We collect observed characteristics in xit ∈ Rk, i = 1, . . . , nt, where xit could contain endogenous,

predetermined and or exogenous variables. 5 In particular, we assume that market equity (in the empirical

data a stationary transformation of market equity) of asset i, that is PitSit, is contained in xit. Following

Koijen and Yogo (2019), let x̆it contain these observed variables as well as unobserved variables. We

3For example, the set It contains S&P 500 or CRSP-identifiers.
4For vectors and matrices we apply boldface notation. That is x ∈ Ra denotes an a-dimensional column vector, while

X ∈ Ra×b denotes a matrix with a rows and b columns. xit,j = [xit] abbreviates the jth coordinate of the vector xit. 1N×1

(for short 1N×1) and 0N×1 =N×1 denote N -dimensional column vectors of ones and zeros, respectively. vech(A) transforms
the lower triangular part of an n × n matrix A into a n(n + 1)/2-dimensional column vector. 1(A) denotes an indicator
function. u′(x) and v′(x) denote the first derivatives of the functions u(·) and v(·) evaluated at x ∈ R.

Given a filtered probability space with filtration (Ft)t∈N0
, the random variables observed in the periods 1, . . . , s ≤ t are

Ft-measurable. The Ft-conditional expectation is abbreviated by Et (Rt+1), the Ft-conditional (co-)variance is Vt (Rt+1).
5For definitions see, e.g., Davidson and MacKinnon (1993).
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explicitly assume that prior investment weights or amounts invested are not contained in x̆it. Let

yit :=


x̆it

vech
(
x̆itx̆

>
it

)
...

 ∈ Rky

collect terms obtained from raising the elements of x̆it by j = 1, 2, . . . . Then we assume that returns

follow from 
R1t

...

Rntt


︸ ︷︷ ︸

Rt

=


a01t

...

a0ntt


︸ ︷︷ ︸

a0t

+


A1t 0 0

. . .

0 0 Antt


︸ ︷︷ ︸

At


y1t

...

ynt


︸ ︷︷ ︸

yt∈Rntk

+


ε1t

...

εntt


︸ ︷︷ ︸

ε̃t

.

Ajt, j = 1, . . . , nt, are 1 × ky-dimensional matrices. In the case a risk-free asset is traded Af = 01×ky ,

xft = 0k×1, εft = 0, and Rft = a0ft. The vector of noise terms ε̃t, contains the Nt-dimensional subvector

εt affecting the risky assets. Its expectation is zero and covariance matrix Σt. To slightly simplify the

analysis and in contrast to Koijen and Yogo (2019) we did not impose a factor structure on the covariance

matrix Σt, however this simplifying assumption can be relaxed in a straightforward way. [The above

paragraphs imply that Assumption 1 of Koijen and Yogo (2019) holds by our model assumptions.] Koijen

and Yogo (2019) as well as this article allows for investor dependent Ait, ait and yit. However to simplify

the notation an additional index for an investor is only included if necessary. Next we impose

Assumption 1. (i) Rt, yt, and εt are jointly stationary and ergodic.6 The first and the second moments

exist. (ii) yt has full rank covariance matrix. (iii) The noise term process (εt) follows a martingale

difference sequence, such that the conditional expectation of the return of asset i is ait + Aityit. The

covariance matrix Σt is finite, symmetric and positive semi-definite.

By (ii) we exclude constant characteristics and colinearities between yt. That is, no characteristic is

redundant. The stronger assumption of a positive definite (conditional) covariance matrix of risky returns

6For definitions see, e.g., Klenke (2008), Chapter 20.
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is imposed in Section 4 only to obtain a unique optimal investment strategy. Part (i) is important for the

empirical implementation of the model, since it avoids technical problems with possibly non-stationary

regressors. By (iii) the conditional expectation is affine in yit.

Consider a sequence of myopic investment problems. There are no trading costs. In each period t,

t = 1, 2, . . . , an investor is endowed with wealth et > 0. This wealth can be invested into Nt alternatives,

in addition, a risk-free asset can but need not be traded. Portfolio optimization traditionally involves the

optimal determination of those weights wit (or amounts invested into asset i, φit,) with respect to a utility

function, potential endowment and trading constraints. φit = etwit is the amount invested in monetary

units in asset i, while wt := (w1t, . . . , wNt,t)
> ∈ RN and φt := (φ1t, . . . , φNt,t)

> ∈ RNt are the investments

(investment weights) into the risky assets in the following. Let W ⊂ Rnt and Wφ ⊂ Rnt denote the sets of

feasible strategies. Hence, (wft,wt)
> ∈ W or equivalently (φft,φt)

> ∈ Wφ [if no risk-free asset is traded

theW andWφ are such that wft = 0 and φft = 0]. Preferences of a typical (or representative) investor are

specified by the expected utility (conditional on the information in period t) over gross portfolio returns

Rpt+1 =
∑nt

i=(Nt−nt)+1witRit+1, resulting in the optimization problem

max
(wft,wt)>W

Et (u (etRpt+1)) = max
(wft,wt)>∈W

Et (u (Et+1)) = max
(wft,wt)>∈W

Et

(
u

(
et

(
1 +

∑
i∈It

witrit+1

)))
, (1)

where u(·) is a strictly monotone increasing Bernoulli utility function defined on the domain D ⊂ R and

et the wealth invested in period t. We assume that et, t = 1, 2, . . . , are already given or fixed before

any portfolio optimization is performed. Hence, in the optimization problem (1), the et invested are

deterministic. Let us define an investment rule as characteristics based if wit or the amounts invested are

affine in yit, i = 1, . . . , Nt. That is, for investment weights we have7

wit = πit + Πityt , for all i = 1, . . . , Nt . (2)

Given a vector of investment weights wt := (w1t, . . . , wNtt)
> ∈ RNt into the risky assets, the t+1 period

wealth is Et+1 = etw
>
t Rt+1 if no risk-free asset is traded. If a risk-free asset is traded (or depositions

7This definition is different from Koijen and Yogo (2019)[see equation (10) there] where ln (wit/wft) [in our notation] are
affine in the firm’s characteristics yit, while in our case the strategy is allowed to depend in all yit, i = 1 . . . , Nt. Since a
risk-free asset need not be traded we proceed with the definition provided in (2).

To reduce the notational burden we simply write w∗t instead of w∗t (ỹt), etc.
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and lending in cash are allowed), its gross return will be Rft+1 ≥ 0; wft is the corresponding proportion

of the wealth invested into the risk-free asset at period t. In the case a risk-free asset is traded Et+1 =

etw
>
t Rt+1 + etwftRfT+1. To jointly consider both cases we write Et+1 = etw

>
t Rt+1 + etwftRfT+1, and

assume that wft = 0 if no risk-free asset is traded. As already stated above, note that the next period’s

amount invested, et+1, need not be equal to the realization of Et+1. By contrast, et+1 > 0 is some

non-random real number.

In contrast to the standard Markowitz (1952) approach, where optimal portfolio weights typically

depend on a large number of first and second moments of the return distribution, the parametric portfolio

policy of Brandt et al. (2009) reduces the dimensionality of the optimization problem by modelling a

small number of drivers of the portfolio weights directly.8 Often the dimensionality of the drivers x̃it is

very low (e.g. 3 in our empirical setting below) and only investments into risky assets are considered

(wft = 0). Specifically, the weights are modelled as functions wit = fi(Nt, x̃it;θ). Typically, x̃it is a vector

of standardized variables. That is, for observed variables χt ∈ Rkχ ,

x̃it :=

diag
 1

Nt−1 − 1

∑
i∈It

(
χit −

1

Nt

∑
i∈It

χit

)2
−0.5(

χit −
1

Nt

∑
i∈It

χit

)
. (3)

θ = (θ1, . . . , θkχ)> is a kχ-dimensional parameter vector in the parameter space Θ ⊂ Rkχ ; if not otherwise

stated Θ = Rkχ . θ is assumed to be constant over time and is chosen such that expression (1) is maximized.

Following Brandt et al. (2009) we also focus our attention on the linear function

wit = w̄it +
1

Nt
θ>x̃it , for all i = 1, . . . , Nt . (4)

Equation (4) results in the parametric portfolio strategy φ]it := etwit such that φ]t := (etwit, . . . , etwNt,t)
>.

In all applications we work with w̄it = 1/Nt, where w̄t := (w1t, . . . , wNtt)
>. Some further results on

parametric portfolio policies are provided in Appendix A.

Finally, the vector x̃it used for parametric portfolio policies and the observed characteristics driving

8For the estimation of the covariance matrix and related problems necessary to empirically implement a Markowitz (1952)-
type approach see, e.g., Ledoit and Wolf (2004, 2017).
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expected returns need not to be the same. To simplify notation and to provide a fair comparison between

parametric strategies and some (approximately) optimal strategies obtained later we set x̃it = xit (hence

also k = kχ), where the standardized characteristics x̃it = xit are assumed to be stationary.

Remark 1. Ferson and Siegel (2001) investigate unconditional minimum-variance portfolios. In their

work the corresponding moments are obtained by conditioning on random variables, similar to our variables

xt. In addition, Hjalmarsson and Manchev (2012) show that if the return generating process is linear in

the lagged, de-meaned predictor variables (xit in our notation), the optimal parametric portfolio weighting

policy (i.e., the θs) can be derived analytically but only for the case of mean-variance preferences. [Compare

also to discussion about in optimal θ in the Appendix F.4].

Next we develop asset demand for the cases of constant absolute risk aversion (Section 4) and then

for constant relative risk aversion (Section 5).

4 Parametric Portfolio Policies with Constant Absolute Risk Aversion

In this section we explore constant absolute risk aversion by applying a Bernoulli utility function u(x) =

− exp(−ρx), x ∈ R, where the parameter ρ > 0 expresses constant relative risk aversion, defined by

u′′(x)
u′(x) = ρ. The domain D of this function is the real axis.9 The number of risky assets is Nt = N .

For the CARA case it is easier to work with the amounts invested φt. The weights of investments

into the risky assets follow from φt and et, that is wt = 1
1>Nφt

φt. In addition to N risky assets we also

consider the case where a risk-free asset is traded [the risk-free asset has cross-sectional index i = f , in

the case n = N + 1]. The portfolio vector of risky-assets is φt = (φ1t, . . . , φNt)
> ∈ RN , where φit is

the money amount invested into risky asset i at period t. The amount invested in the risk-free asset

is φft = et − φ>t 1N if a risk-free asset is traded, and φft = 0, ∀t, otherwise. Hence, the value of

the portfolio in period t + 1 is a random variable and given by Et+1 = et

(
wftRft +

∑N
i=1witRit+1

)
=

φftRft+1 +
∑N

i=1 φitRit+1 =
∑N

i=1 φitRit+1 +
(
et −

∑N
i=1 φit

)
Rft+1= φ>t Rt+1 +

(
et −

∑N
i=1φ

>
t 1N

)
Rft,

where Rt+1 denotes the vector of risky returns and φt ∈ Θ = RN . In this section we impose:

9Problems considered in Observation 6(b) do not show up. For example, in companion work (Gehrig et al., 2018) we have
explored behavioural utility functions.
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Assumption 2. Rt+1 conditional on yt (or the observed variables xit, i = 1, . . . , N) is multivariate normal

with mean parameter Et (Rt+1) and conditional covariance Σt = Vt (Rt+1) satisfies 0 < Vt (Rt+1) < ∞

[i.e. the conditional covariance matrix is finite and regular].

We first analyse optimal investment strategies and then apply a shrinkage procedure.

4.1 Optimal Strategy

Using the assumption of normally distributed innovations in the absence of transactions costs we can

derive conditional expected utility

Et(− exp(−ρEt+1)) = − exp

[
−ρet − ρφ>t (Et (Rt+1)− 1NRft+1) +

ρ2

2
φ>t Vt(Rt+1)φt

]
. (5)

Maximizing (5) yields the vector of optimal amounts invested into the risky assets

φ∗t (xt) =

1

ρ
(Vt (Rt+1))−1︸ ︷︷ ︸

Bt


−1

(Et (Rt+1)−Rft1N )︸ ︷︷ ︸
bt

. (6)

The remaining wealth φft = et − 1>Nφ
∗
t ∈ R is invested into the risk-free asset. In case when a risk-free

asset is not available, we can establish the following result:10

φ+
t (xt) =

1

ρ
Vt (Rt+1)−1

Et (Rt+1)−
ρ
(

1
ρ1
>
NVt (Rt+1)−1 Et (Rt+1)− et

)
1>NVt (Rt+1)−1 1N

1N

 . (7)

From (6) and (7) we conclude:

Observation 1. (i) The optimal strategies φ∗t and φ+
t exist and are unique. The optimal φ∗t does not

depend on the initial wealth et. The total amount invested into risky assets φ∗>t 1N depends on yt ∈ RNky

(or xt ∈ RNk). The amount invested into the risk-free asset follows from φft = et − φ∗>t 1N . Given that

φ∗>t 1N ≥ et, for the problem without risk-free asset we get φft = 0 and φ+>
t 1N = et.

10For details see Appendix F.1.
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(ii) Suppose that Assumption 1 holds, then φ∗it is affine in yt and the strategy is a characteristics based

strategy. If the conditional expectation of the returns remains affine also for a subvector of yit, for example

the observed characteristics xit, then this strategy is also characteristics based.

(iii) Since the weights depend on yit, i = 1, . . . , N , the investment weights are – in general – not of

the structure described in (4). Hence, the optimal strategy is in general not a parametric strategy.

In Appendix A.3 we introduce linear and quadratic cost. In Appendix F.2 we observe that optimal

strategies are path dependent and therefore not parametric as defined in the main text.

4.2 CARA Utility and Shrinkage

Let us now analyse the general case with or without short-selling and apply a shrinkage procedure. By

maximizing expected utility (5), we get:

Observation 2. (i) In-sample, good performance in terms of the certainty equivalent (see equation (18)

presented later) and the Sharpe ratio for our empirical data set (see Section C) is observed. (ii) The out-

of-sample performance is quite poor. The reason for this is that especially without short-selling constraints

the optimal strategy φ∗t = B−1
t bt is very risky (see also Table D.2 in Appendix D.2).

Figure 1 plots realized returns Rpt+1 for φ∗t , the parametric strategy φ]t and the 1/N -strategy φ
1/N
t

[since et = 1, φ]t = w]
t and φ

1/N
t = w

1/N
t ; w]ft = w

1/N
ft = 0]. Note that the vertical axes have different

scales and the variation of the returns becomes very large with φ∗t . In our empirical data set this results

in poor out-of-sample performance. To circumvent this problem we augment the optimization problem

by a shrinkage device. In terms of econometrics we consider a ridge regression problem11, while in terms

of finance we add an object close to a quadratic cost term. Although also a cost function as described in

Section A.3 can be used as some kind of punishment function, we want to exclude path-dependence [as

discussed in Appendix F.2] and shrink φt or the weights wt towards some specific values φ̆t or weights

11Ridge regression was proposed to consider multi-colinearity in regression problems and has become more prominent as
a shrinkage device in more recent machine learning literature (see, e.g., Hastie et al., 2009, Chapter 3.4) or Nagel (2021)
for applications in asset pricing models. We applied a quadratic punishment term because of its trace-ability. “Linear
punishment” can be included by working with `1-distance. This corresponds to the LASSO, where optimal weights can be
obtained by applying least angle regression (see Hastie et al., 2009). A mixture of linear and quadratic punishment terms
results in the elastic net, see Zou and Hastie (2005) and Chapter 3.4 in Hastie et al. (2009). To obtain closed form solutions
we proceed with the ridge-regression.
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w̆t, respectively. Hence, we consider a positive definite N × N matrix Ct and the punishment term

−1
2

(
φt − φ̌t

)>
Ct

(
φt − φ̌t

)
. With φ̌t = w̌t = 0N×1 we shrink to zero, while with φ̌t = et

1
N 1N×1

shrink towards the 1/N -portfolio. By using transformed expected utility (5), the (possible) short-selling

constraints φit ≥ 0, and the shrinkage device, we get b0t := ρet, bt := ρ (Et (Rt+1)− 1NRft+1)>, Bt :=

ρ2

2 Vt(Rt+1 − 1NRft+1) = ρ2

2 Vt(Rt+1), and the Lagrangian

L(φt, λ1t, . . . , λnt) = b0t + btφt −
1

2
φ>t Btφt +

n∑
i=1

λitφit −
1

2

(
φt − φ̌t

)>
Ct

(
φt − φ̌t

)
.

Let λt := (λ1t, . . . , λNt)
>. Taking first partial derivatives with respect to φt and λt, we get the Kuhn-

Tucker conditions

∂L(φt,λt)

∂φ>t
= bt −Btφt + λt −Ct

(
φt − φ̌t

)
= 0N , (8)

∂L(φt,λt)

∂λit
= φit = 0 , i = 1, . . . , N , and the complementary slackness conditions

0 = λit
∂L(φt,λt)

∂λit
= λitφit , i = 1, . . . , N . (9)

φft = et −
∑N

i=1 φit in the case a risk-free asset is traded. The second order conditions are satisfied by

the quadratic structure of the optimization problem (see, e.g., Simon and Blume, 1994, Chapter 19.3). If

no short-selling constraints are binding or if we consider an optimization problem without short-selling

constraints we obtain λt = 0N and

φ∗t = (Bt + Ct)
−1 (bt + Ctφ̌t

)
. (10)

Let Ct be equal to cpIN , then (10) yields

φ[t :=
1

ρ

(
Vt
(

(Rt+1 −Rft+11n) (Rt+1 −Rft+11n)>
)

+ cpIn

)−1 (
Et (Rt+1 −Rft+11n) + ρcpφ̌t

)
.(11)

Observe that the optimal investments φ[t ∈ RN do not depend on the wealth level et, φ
[
ft = et−

∑N
i=1 φ

[
it.

For cp = 0 we arrive at an optimization problem problem without shrinkage (where φ[t = φ∗t ), while the
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larger cp the more we shrink towards φ̌t = etw̌t. To see this, for large cp, the terms multiplied by cp

become the dominating terms. Hence, for large cp, φ
[
t ≈ 1

ρ (cpIn)−1 (ρcpφ̌t) = φ̌t. Summing up, we get

Proposition 1 (Asset Demand with CARA-Preferences). Suppose that the Assumptions 1 and 2 hold.

Consider an investor with CARA preferences and cp ≥ 0. Then, if no short selling constraints are

present or if the short selling constraints are not binding, the optimal shrinkage strategy provided in

(11) is a characteristics based strategy. If the conditional expectation of the returns remains affine also

for a subvector of yit, for example the observed characteristics xit, then the optimal strategy is also

characteristics based.

Panel (b) of Figure 1 plots the realized returns when applying φ[t with cp = 0.2 and shrinkage to

the 1/N -portfolio; since et = 1 we get φ̆t = 1
N et1N = 1

N 1N . When looking at the scale of the ordinate

we observe that the variation of the returns Rpt decreases a lot. In the case of binding short-selling

constraints the system of inequalities (8) can be transformed to a linear programming problem. However,

we observed that due to a high number of assets the optimal weights under short-selling constraints can

hardly be obtained by applying standard linear programming methods. Hence, we applied numerical tools

to obtain the optimal investments φ[,≥0
it described by (8). Here the Matlab function fminsearch is used,

where we start the optimisation routine from max{0, φ[it}, i = 1, . . . , N .

5 Constant Relative Risk Aversion

Let us now focus on constant relative risk aversion (CRRA). This case demonstrates potential pitfalls

arising from parametric portfolio policies and a Bernoulli utility function defined in R>0. For CRRA

the Bernoulli utility function is v(x) := x1−γ

1−γ for γ > 0, γ 6= 1 and lnx for γ = 1. The domain D of

v(x) is the positive half-line R>0. Given Assumption 1 and the second order condition [see (22) in the

Appendix], expected utility is strictly concave in θ. However, for CRRA preferences in a simple binary

model, examples can be constructed where the portfolio returns Rpt do not remain in the domain D = R>0

or where for a concave utility function, the first derivative always stays positive (or negative), such that

only a supremum exists. Hence, no optimal θ ∈ Rk exists in these cases [see equation (22) and Gehrig
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et al. (2018)]. Therefore, we obtain

Observation 3. For an investor with CRRA preferences an optimal θ ∈ Rk solving the parametric

portfolio optimization problem (21) need not exist.

In the next steps we investigate whether Observation 3 is also relevant for real world data. To do

this, let us now apply the parametric portfolio policy approach in its original version of Brandt et al.

(2009) to US stocks that are particularly relevant for institutional investors, namely S&P 500 stocks;

[see Section 7.1 and Appendix C]. Our observations cover the time span from 04/1979 to 12/2013, which

amounts to T = 415 and N = 100.

Consider for example the strategy defined in (4). Since relative risk aversion is only defined on the

domain of positive gross returns we need to check the underlying data, and potentially develop a strategy

of how to deal with negative gross returns. In order to analyze whether negative portfolio returns are

observed in the underlying empirical data we pick some θ ∈ R3 and check whether Rpt+1 becomes negative.

And indeed, it turns out that in all the cases considered we observe negative Rpt+1 for large θ (in absolute

terms), one large coordinate of θ turned out to be sufficient for negative gross returns. Hence, (i) and (ii)

of Observation 6 [see Appendix A.1] become relevant in real world data. As demonstrated and discussed

in more detail in Appendix E we extend the domain to the real line by applying the utility function

v[ (etRpt+1) :=


v (etRpt+1) , for Rpt+1 ≥ ψR,

(v (etψR)− δv′ (etψR)) + δv′ (etψR) etRpt+1 , for Rpt+1 < ψR,

(12)

where ψR > 0. With (12) we apply v (etRpt+1) for all Rpt+1 ≥ ψR. At Rpt+1 = ψR we get v[ (etψR) =

v (etψR) = (v (etψR)− δv′ (etψR)) + δv′ (etψR) etψR. For δ = 1, we observe that v′[ (etψR)= v′ (etψR) is

equal to the slope of the line described by (etv (ψR)− 1 · v′ (etψR)) + 1 · v′ (etψR)Rpt+1.

Using these insights, we consider the optimization problem (1), where preferences are described by the

approximate CRRA utility function v[. We assume that a risk-free asset and N risky assets are traded,

the portfolio weights are wt = φt/et for the investments in the risky securities and wft = φft/et for the

risk-free asset. Hence, n = N + 1. By a Taylor series approximation of expected utility at wft=1 and
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wt = (w1t, . . . , wnt)
> = 0N we obtain

Et (v[(Et+1)) = Et (v[(etRpt+1)) = Et (v[(et (Rft+1 + wt (Rt+1 −Rft+11N ))))

≈ v[ (et+1Rft+1)︸ ︷︷ ︸
=:α0t

+ etv
′
[(etRft+1)Et (Rt+1 −Rft+11N )︸ ︷︷ ︸

=:αt

wt

−1

2
w>t

(
−v′′[ (et+1Rft+1) e2

tEt
(

(Rt+1 −Rft+11N ) (Rt+1 −Rft+11N )>
))

︸ ︷︷ ︸
:=At

wt . (13)

In the following optimization problem we also allow for short-selling constraints, that is wit ≥ 0. (see, also

Koijen and Yogo, 2019, for a model with log-utility). Especially, the out-of-sample performance is very

poor and the approximately optimal strategy wt = A−1
t αt is very risky. Hence, similar to Section 4 we

proceed with a shrinkage device. We consider a positive definite N × N matrix Ct and the punishment

term −1
2 (wt − w̌t)

>Ct (wt − w̌t), where with w̌t = 0N×1 we shrink to zero, while with w̌t = 1
N 1N×1

shrink towards the 1/N portfolio.12 By using the expected utility approximation (13), the short-selling

constraints and the shrinkage device we get the Lagrangian

L(wt, λ1t, . . . , λNt) = α0 +αtwt −
1

2
w>t Atwt +

N∑
i=1

λitwit −
1

2
(wt − w̌t)

>Ct (wt − w̌t) .

Taking first partial derivatives with respect to wt and λt, we get the Kuhn-Tucker conditions

∂L(wt,λt)

∂w>t
= αt −Atwt + λt −Ct (wt − w̌t) = 0N , (14)

∂L(wt,λt)

∂λit
= wit = 0 , i = 1, . . . , N , and the complementary slackness conditions

0 = λit
∂L(wt,λt)

∂λit
= λitwit , i = 1, . . . , N . (15)

The second order conditions are satisfied by the quadratic structure of the optimization problem. If

no short-selling constraints are binding or if we consider an optimization problem without short-selling

12 Stabilizing conditions on the weights on wit, i = 1, . . . , N , can be included. That is w ≤
∑N
i=1 wit ≤ w̄. This, results on

two further inequality constraints which can be included in a straightforward way. This is also implemented in our Matlab

code. By using these constraints only the out-of-sample performance remains poor [without shrinkage].
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constraints we obtain λt = 0N and

wt = (At + Ct)
−1 (αt + Ctw̌t)

= (At + Ct)
−1

(
αt +

etRft+1v
′
[(etRft+1)

etRft+1v
′
[(etRft+1)

Ctw̌t

)
. (16)

Let MAPR(et+1Rft+1) denote the relative Arrow-Pratt measure evaluated at et+1Rft+1. Since Rft+1 ≥ 1

and usually close to one, we get
Rft+1

MAPR(et+1Rft+1) ≈
1

MAPR(etRft+1) . In realistic scenarios ΨR can be

chosen such that et+1Rft+1 > ΨR > 0. In this case we Taylor expand at the classical CRRA branch of

the Bernoulli utility function v[, that is x1−γ

1−γ . In the following, let Ct be a diagonal matrix such that

Ct =
(
−v′′[ (et+1Rft+1) e2

t

)
cpIN , where IN denotes the N -dimensional identity matrix and cp ≥ 0. Recall

that v′′[ ≤ 0 and v′′[ (x) < 0 for x > Ψ. Then the approximation
Rft+1

MAPR(et+1Rft+1) ≈
1

MAPR(et+1Rft+1) and

(16) result in

1

γ

(
Et
(

(Rt+1 −Rft+11N ) (Rt+1 −Rft+11N )>
)

+ cpIN
)−1

(
Et (Rt+1 −Rft+11N ) +

1

etRft+1v′[(etRft+1)
Ctw̌t

)
=

1

γ

(
Et
(

(Rt+1 −Rft+11N ) (Rt+1 −Rft+11N )>
)

+ cpIN
)−1

(
Et (Rt+1 −Rft+11N ) +

(
−v′′[ (et+1Rft+1) e2

t

)
etRft+1v′[(etRft+1)

cpINw̌t

)

≈ 1

γ

Et
(

(Rt+1 −Rft+11N ) (Rt+1 −Rft+11N )>
)

+ cpIN︸ ︷︷ ︸
Bt


−1

(Et (Rt+1 −Rft+11N ) + γcpw̌t) =: w[
t . (17)

Hence, we get

Proposition 2 (Asset Demand with CRRA-Preferences). (i) Suppose that Assumption 1 holds, cp ≥ 0

and either Σt is positive definite or cp > 0. Consider an investor maximizing expected utility with Bernoulli

utility function v[(·). Then, if no short selling constraints are present or if the short selling constraints

are not binding, the optimal shrinkage strategy (17) is a characteristics based strategy.

(ii) If the conditional expectation of the returns remains affine also for a subvector of yit, for example

the observed characteristics xit, then the optimal strategy is also characteristics based. (iii) If the term Bt

is diagonal the weights only dependent on yit. A parametric strategy of the form described by (4) can be

optimal, in which case w[it = w̄it + θ>xit has to hold.

Note that a diagonal Bt and the equality w[it = w̄it + θ>xit are still a strong requirements. Having

derived demand functions under different preference specifications, we will next analyse the implications
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for equilibrium asset pricing.

6 Equilibrium

Koijen and Yogo (2019) prove the existence of a (unique) equilibrium price vector in the economy they

consider. Recall, in Koijen and Yogo (2019) all agents are log-utility investors, where heterogeneity in

the characteristics as well as in the parameters related to these characteristics can be present. Short

selling constraints are given for all agents, the main results relate to cases where these constraints are not

binding. Related to this issue we consider J > 0 agents either with CARA or CRRA preferences (also the

risk-aversion parameters can be different). Asset demand for agent j is given φ[[,jt , where φ[[,jt = w[,j
t E

j
t

for CRRA preferences and φ[[,jt = φ[,jt for CARA preferences. In contrast to Koijen and Yogo (2019) we

assume that yit only contains endogenous variables which are affine in Pit. No higher order terms such as

(PitSit)
v, v > 1, are included. Market clearing demands for PitSit =

∑J
j=1 φ

[[,j
it , i = 1, . . . , N . Since φ[[,jt

is affine in Pt if no short selling constraints are present or binding, we determine a unique equilibrium

price vector.13 Hence, we get

Proposition 3 (Market Equilibrium). Consider an economy with J > 0 investors. Each investor j is

either a CARA or CRRA (in more detail, v[ is applied) expected utility maximizer. Suppose that the

Assumption 1 holds and cjp ≥ 0. Suppose that either no short selling constraints are present or no short

selling constraint is binding.

For each CRRA utility maximizer, either Σt is positive definite or cp > 0. For each CARA utility

maximizer Assumption 2 holds.

Suppose that yjit (or observable subvector xjit) only contains endogenous variables which are affine

functions of Pit. Then a unique equilibrium price vector exits.

Equipped with this theoretical foundations we can now evaluate the empirical performance of the

demand systems approach for both preference classes in the next section.

13Since market clearing conditions are affine linear in the prices, finding an equilibrium price vector corresponds to solving
N linear equation. By contrast, Koijen and Yogo (2019) allow for higher order terms (PitSit)

v, v > 1. Due to short-selling
constraints lower and upper bounds for the strategies can be obtained in a straightforward way which also allows to apply
Brouwer’s fixed point theorem on a compact strategy space. Since we also consider the case without short selling constraints,
we do not obtain a compact set which would allow us to proceed with standard fixed point arguments.
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7 Empirical Results

7.1 Comparison of Strategies for the CARA-Case

Let us now compare investment strategies at the hand of US stock prices. Specifically, we consider the

following strategies:

Abbreviation Investment Strategy

φ[t optimal strategy with naive covariance estimator with shrinkage

φ[t,LW optimal strategy with Ledoit and Wolf (2004) covariance estimator with shrinkage

φ[,≥0
t optimal strategy with naive covariance estimator, without short-selling,

with shrinkage

φ[,≥0
t,LW optimal strategy with Ledoit and Wolf (2004) covariance estimator,

without short-selling, with shrinkage

φ
1/N
t 1/N -portfolio as e.g. considered in DeMiguel et al. (2009)

φ]t parametric portfolio strategy

φ],≥0
t parametric portfolio strategy without short-selling

Table 1: CARA Investment Strategies

While the optimal strategies exploit second moments, the parametric portfolio strategies estimate

optimal portfolio weights directly as a function of the characteristics without estimating variances and

covariances. The 1
N -estimator corresponds to a simple investment heuristic that abstracts from any infor-

mation about second moments or any other characteristics. Appendix D.2 describes how the conditional

expectations Et (Rit+1) [including the characteristics xit] and variances Vt (Rit+1) are estimated. In con-

trast to Koijen and Yogo (2019) (but following a large finance literature), we run predictive regressions to

estimate Et (Rit+1).

Our sample consists of N = 100 S&P stocks with monthly data from April 1979 to December 2013

(for more details on the data see Appendix C). The 100 firms considered were traded continuously during

this time span. We decided to work with these 100 firms to avoid further problems and effects arising

from missing data. The wealth invested per period is et = 1. Since our main focus is on the risky assets

and to exclude impacts arising from changes in the risk-free rate, we assume a constant risk-free rate of

Rft = 1.001.

The k = 3 macro-variables χit of the parametric policy are:
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• χit,1 is the natural logarithm (ln) of one plus the firm’s book-to-market ratio,

• χit,2 is the natural logarithm of the firm’s market equity,

• χit,3 is a momentum variable obtained from the compound returns from the periods t− 13 to t− 2.

As already stated in Section 3 we assume that the standardized χit provides us with a stationary process

of observed characteristics xit. In particular, xit is the subvector of yit used to obtained the amounts

invested φ[t. In addition, in the empirical implementation we work with constant, i.e. not time-varying,

model parameters. This of course simplifies the econometric analysis. In addition, by this assumption we

investigate whether our relatively simple shrinkage strategies can already improve over 1/N or parametric

strategies when working with constant model parameters. The observations from t = 1, . . . , 200 are used

to estimate the model parameters (training sample). For in-sample and out-of-sample comparisons, we

use the observations t = 1, . . . , 200 and t = 201, . . . , 415, respectively.14

In addition, we consider the 1/N -portfolio as e.g. considered in DeMiguel et al. (2009), this portfolio

is denoted φ
1/N
t . In the case short-selling constraints we apply the notation φ[,≥0

t for the optimal strategy

(including shrinkage) and φ],≥0
t for the parametric strategy.

We are particularly interested in the performance of the optimal investment strategy relative to the

characteristics-based portfolio choice. For the exponential utility function u(x) = −eρx the certainty

equivalent CI is the (smallest) value x where E (u(Et+1)) = u(x). We estimate the certainty equivalent

by means of

ĈI = u−1
(
Ê (u(Et+1))

)
= u−1

 1

TJ

∑
t∈TJ

u(Et+1)

 , (18)

where TJ is the set of time points used for the evaluation of the strategy and TJ is the number of time

points contained in this set.15 In addition to estimates of the certainty equivalent we calculated (estimates

of) the Sharpe ratio by the average excess returns over the sample standard deviation of the excess returns

(when using the corresponding evaluation sample).

14It is insightful to compare both, simulated and empirical data; results with simulated data are provided in Appendix D.
15In Tables 2 and 3 the set TJ = {1, . . . , 200} (in-sample) or TJ = {201, . . . , 415} (out-of-sample), were t = 1, . . . , 200 is

used for parameter estimation.
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Tables 2 and 3 present the results for the CARA utility case for different levels of constant absolute

risk aversion, spanning the ranges from 0.25, 0.5, 1,2 to 5.16

These tables show estimates of the certainty equivalent ĈI and its standard deviation, the average

wealth obtained, mean(Et), and its standard deviation, the Sharpe Ratio, and the proportions of weights

< 0 and < −1. The average gross return, in formal term mean(Rpt)=
mean(Et+1)

et
. Since et = 1 we get

mean(Rpt) = mean(Et) and mean(rpt) = mean(Et)− 1. Hence, only mean(Et) is presented.

In-sample results: By considering the estimates of the certainty equivalents ĈI, we observe that the

optimal strategies φ[t show the best performance. Due to short-selling constraints we obtained φ[,≥0
t < φ[t.

The difference caused by working with different estimation methods of the covariance matrix are small.

The performance of the parametric strategy φ]t is poor for low degrees of risk aversion, but becomes closer

to the performance of the optimal strategy for ρ ≥ 1. By imposing short-selling constraints φ],≥0
t is almost

equal to the results with 1/N -portfolio (our optimization routine is started with w̄i = 1/N and θ = 0;

differences in the numbers between φ],≥0
t and φ

1/N
t are only observable when looking at further digits

after the comma). Appendix D provides results for simulated data, where we observe that in the case the

true parameter values are known the optimal strategies shows superior performance.

Out-of-sample results are then presented in Table 3. In this case, our optimal shrinkage strategies still

have in almost all cases a slightly higher (estimate of the) certainty equivalent. For ρ = 5 we observe the

highest certainty equivalent for the 1/N -strategy. For ρ ≥ 2 the performance of the strategies considered

are quite similar. Finally both Tables present the proportion of the portfolio weights smaller than zero

and the proportion of weights smaller than −1. Note that especially for parametric portfolio policies with

ρ < 1, the proportion of weights smaller than minus one is very high. Summing up, we get

Observation 4. (i) In-sample: Not surprisingly, the optimal strategy shows the best performance,

followed by the 1/N -strategy and the parametric strategy. For larger ρ the performances of the

alternative strategies as measured by the certainty equivalent perform quite similarly.

(ii) Out-of-sample: The optimal shrinkage strategies show the best performance followed by the 1/N -

16We span the range of parameters that have been applied in different research environments in the experimental lab such
as Goeree et al. (2002), Harrison and Rutström (2008), in the field experiments Tanaka et al. (2010) or in macroeconomic
studies such as Hansen (1982).
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strategy. Only for a large degree of absolute risk aversion the performances of the strategies consid-

ered are roughly the same across strategies.

(iii) For small values of absolute risk aversion parametric portfolio policies imply a large amount of

short-selling in- and out-of-sample.

(iv) In sample, the informational content contained in the variance-covariance matrix relative to the 1
N -

portfolio, as measured by the certainty equivalent, is decreasing the in level of absolute risk aversion.

It is particularly high for risk aversion below 1. It is always negative for parametric portfolio policies.
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(a) (b)

(c) (d)

Figure 1: Returns Rpt+1 against t, calibration period t = 1, . . . , 200, T = 416, N = 100 and n = 101.
γ = 0.5 and CARA utility. Subfigure (a) applies φ∗t [that is φ[t with cp = 0] where the Ledoit and
Wolf (2004) estimator is used to obtain an estimate of the covariance matrix, That is, φ[t obtained in
(11) where the shrinkage parameter cp = 0. Scaling of vertical axis [−400, 800], (b) applies φ∗t obtained
in (1) where the Ledoit and Wolf (2004) estimator is used to obtain the covariance matrix, shrinkage
parameter cp = 0.2. Scaling of vertical axis [−10, 15], (c) parametric portfolio policy, scaling of vertical
axis [−100, 200], (d) 1/N -strategy, scaling of vertical axis [0.75, 1.2].
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ρ = 0.25 φ[t φ[t,LW φ[,≥0
t φ[,≥0

t,LW φ
1/N
t φ]t φ],≥0

t

ĈI 1.3997 1.4014 1.3137 1.3148 1.0153 -34.2976 1.0153

ŝd
(
ĈI
)

0.0380 0.0382 0.0356 0.0349 0.0023 2.11E+04 0.0023

mean(Et) 1.4657 1.4683 1.3728 1.3724 1.0156 3.0080 1.0156
sd(Et) 0.7234 0.7286 0.6926 0.6845 0.0420 11.5086 0.0420
Sharpe Ratio 0.6424 0.6414 0.5368 0.5426 0.3465 0.1744 0.3466
mean(wit < 0) 0.1888 0.1888 0.0000 0.0000 0.0000 0.4837 0.0000
sd (wit < 0) 0.0477 0.0479 0.0000 0.0000 0.0000 0.0290 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.4443 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0262 0.0000

ρ = 0.5 φ[t φ[t,LW φ[,≥0
t φ[,≥0

t,LW φ
1/N
t φ]t φ],≥0

t

ĈI 1.2023 1.2031 1.1350 1.1410 1.0151 0.3416 1.0151

ŝd
(
ĈI
)

0.0153 0.0153 0.0133 0.0129 0.0018 0.3325 0.0018

mean(Et) 1.2373 1.2386 1.1601 1.1655 1.0156 1.3093 1.0156
sd(Et) 0.3722 0.3748 0.3148 0.3128 0.0420 1.6562 0.0420
Sharpe Ratio 0.6350 0.6339 0.5259 0.5055 0.3465 0.1861 0.3466
mean(wit < 0) 0.1832 0.1816 0.0000 0.0000 0.0000 0.4806 0.0000
sd (wit < 0) 0.0478 0.0479 0.0000 0.0000 0.0000 0.0291 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.2514 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0190 0.0000

ρ = 1 φ[t φ[t,LW φ[,≥0
t φ[,≥0

t,LW φ
1/N
t φ]t φ],≥0

t

ĈI 1.1035 1.1039 1.0725 1.0702 1.0147 1.0016 1.0147

ŝd
(
ĈI
)

0.0049 0.0049 0.0041 0.0042 0.0011 0.0143 0.0011

mean(Et) 1.1231 1.1238 1.0860 1.0839 1.0156 1.1076 1.0156
sd(Et) 0.1966 0.1980 0.1643 0.1655 0.0420 0.4494 0.0420
Sharpe Ratio 0.6211 0.6201 0.5013 0.5176 0.3465 0.2371 0.3466
mean(wit < 0) 0.1687 0.1693 0.0000 0.0000 0.0000 0.4799 0.0000
sd (wit < 0) 0.0477 0.0476 0.0000 0.0000 0.0000 0.0339 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0325 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0071 0.0000

ρ = 2 φ[t φ[t,LW φ[,≥0
t φ[,≥0

t,LW φ
1/N
t φ]t φ],≥0

t

ĈI 1.0539 1.0541 1.0342 1.0350 1.0138 1.0213 1.0138

ŝd
(
ĈI
)

0.0010 0.0010 0.0008 0.0008 0.0004 0.0015 0.0004

mean(Et) 1.0660 1.0663 1.0419 1.0428 1.0156 1.0459 1.0156
sd(Et) 0.1089 0.1096 0.0870 0.0878 0.0420 0.1548 0.0420
Sharpe Ratio 0.5970 0.5961 0.4767 0.4695 0.3465 0.2899 0.3465
mean(wit < 0) 0.1469 0.1463 0.0000 0.0000 0.0000 0.4558 0.0000
sd (wit < 0) 0.0442 0.0445 0.0000 0.0000 0.0000 0.0378 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ρ = 5 φ[t φ[t,LW φ[,≥0
t φ[,≥0

t,LW φ
1/N
t φ]t φ],≥0

t

ĈI 1.0234 1.0235 1.0149 1.0143 1.0109 1.0036 1.0109

ŝd
(
ĈI
)

2.80E-5 2.81E-5 2.16E-5 2.13E-5 2.17E-5 2.80E-5 2.17E-5

mean(Et) 1.0318 1.0319 1.0199 1.0191 1.0156 1.0130 1.0156
sd(Et) 0.0564 0.0567 0.0440 0.0429 0.0420 0.0630 0.0420
Sharpe Ratio 0.5453 0.5444 0.4210 0.4299 0.3465 0.1903 0.3465
mean(wit < 0) 0.0973 0.0990 0.0000 0.0000 0.0000 0.3755 0.0000
sd (wit < 0) 0.0376 0.0362 0.0000 0.0000 0.0000 0.0459 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2: CARA Utility (In-Sample): Investment strategies defined in Table 1. Empirical data. Training
sample t = 1, . . . , 200, Evaluation in-sample; t = 1, . . . , 200. Shrinkage parameter cp = 0.2.24



ρ = 0.25 φ[t φ[t,LW φ[,≥0
t φ[,≥0

t,LW φ
1/N
t φ]t φ],≥0

t

ĈI 1.1418 1.1376 0.9996 0.9925 1.0107 -28.7653 1.0107

ŝd
(
ĈI
)

0.0724 0.0743 0.1278 0.1308 0.0024 4.61E+03 0.0024

mean(Et) 1.3547 1.3588 1.4290 1.4325 1.0109 4.4794 1.0109
sd(Et) 1.3359 1.3624 1.8231 1.8443 0.0445 20.0580 0.0445
Sharpe Ratio 0.2648 0.2626 0.2348 0.2340 0.2231 0.1734 0.2232
mean(wit < 0) 0.3300 0.3284 0.0000 0.0000 0.0000 0.4534 0.0000
sd (wit < 0) 0.0474 0.0482 0.0000 0.0000 0.0000 0.0280 0.0000
mean (wit < −1) 0.0268 0.0268 0.0000 0.0000 0.0000 0.4232 0.0000
sd (wit < −1) 0.0174 0.0172 0.0000 0.0000 0.0000 0.0271 0.0000

ρ = 0.5 φ[t φ[t,LW φ[,≥0
t φ[,≥0

t,LW φ
1/N
t φ]t φ],≥0

t

ĈI 1.0706 1.0683 1.0125 1.0332 1.0104 0.0316 1.0104

ŝd
(
ĈI
)

0.0288 0.0295 0.0436 0.0322 0.0018 0.2771 0.0018

mean(Et) 1.1805 1.1825 1.1571 1.1469 1.0109 1.5106 1.0109
sd(Et) 0.6779 0.6911 0.7165 0.6544 0.0445 2.8799 0.0445
Sharpe Ratio 0.2648 0.2627 0.2229 0.2179 0.2231 0.1770 0.2232
mean(wit < 0) 0.3253 0.3234 0.0000 0.0000 0.0000 0.4501 0.0000
sd (wit < 0) 0.0477 0.0478 0.0000 0.0000 0.0000 0.0276 0.0000
mean (wit < −1) 0.0029 0.0030 0.0000 0.0000 0.0000 0.2669 0.0000
sd (wit < −1) 0.0046 0.0046 0.0000 0.0000 0.0000 0.0220 0.0000

ρ = 1 φ[t φ[t,LW φ[,≥0
t φ[,≥0

t,LW φ
1/N
t φ]t φ],≥0

t

ĈI 1.0348 1.0336 1.0165 1.0274 1.0099 0.9376 1.0099

ŝd
(
ĈI
)

0.0091 0.0094 0.0104 0.0093 0.0011 0.0185 0.0011

mean(Et) 1.0934 1.0944 1.0786 1.0830 1.0109 1.1399 1.0109
sd(Et) 0.3489 0.3556 0.3471 0.3332 0.0445 0.7083 0.0445
Sharpe Ratio 0.2649 0.2628 0.2460 0.2236 0.2231 0.1961 0.2232
mean(wit < 0) 0.3156 0.3133 0.0000 0.0000 0.0000 0.4412 0.0000
sd (wit < 0) 0.0479 0.0470 0.0000 0.0000 0.0000 0.0198 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0349 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0091 0.0000

ρ = 2 φ[t φ[t,LW φ[,≥0
t φ[,≥0

t,LW φ
1/N
t φ]t φ],≥0

t

ĈI 1.0167 1.0160 1.0087 1.0099 1.0089 1.0027 1.0089

ŝd
(
ĈI
)

0.0018 0.0019 0.0019 0.0019 0.0004 0.0021 0.0004

mean(Et) 1.0499 1.0504 1.0404 1.0411 1.0109 1.0527 1.0109
sd(Et) 0.1846 0.1879 0.1739 0.1732 0.0445 0.2432 0.0445
Sharpe Ratio 0.2648 0.2627 0.2313 0.2267 0.2231 0.2124 0.2231
mean(wit < 0) 0.2963 0.2932 0.0000 0.0000 0.0000 0.4240 0.0000
sd (wit < 0) 0.0476 0.0470 0.0000 0.0000 0.0000 0.0227 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ρ = 5 φ[t φ[t,LW φ[,≥0
t φ[,≥0

t,LW φ
1/N
t φ]t φ],≥0

t

ĈI 1.0049 1.0045 1.0039 1.0040 1.0057 0.9933 1.0057

ŝd
(
ĈI
)

4.67E-5 4.79E-5 4.17E-5 4.13E-5 2.22E-5 4.86E-5 2.22E-5

mean(Et) 1.0238 1.0239 1.0196 1.0188 1.0109 1.0169 1.0109
sd(Et) 0.0863 0.0877 0.0787 0.0744 0.0445 0.1070 0.0445
Sharpe Ratio 0.2636 0.2616 0.2389 0.2363 0.2231 0.1483 0.2231
mean(wit < 0) 0.2418 0.2426 0.0000 0.0000 0.0000 0.3809 0.0000
sd (wit < 0) 0.0478 0.0479 0.0000 0.0000 0.0000 0.0520 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3: CARA Utility (Out-of-Sample): Investment strategies defined in Table 1. Empirical data.
Training sample t = 1, . . . , 200, Evaluation out-of-sample; t = 201, . . . , 415. Shrinkage parameter cp = 0.2.25



7.2 Comparison of Strategies for the CRRA-Case

The approximately optimal investment weights w[
t ∈ RN do not depend on the wealth level et, wft = 1−∑N

i=1wit. For cp = 0 we arrive at an optimization problem without shrinkage, while the larger cp the more

we shrink towards w̌t. To implement (17), Et (Rt+1 −Rft+11N ) and Et
(

(Rt+1 −Rft+11N ) (Rt+1 −Rft+11N )>
)

can be estimated in the same way as we did it in the CARA case. Numerical tools are used to obtain

the optimal weights w[,≥0
t in the case of short-selling constraints. The certainty equivalent for v[(x), is

obtained by replacing the Bernoulli utility function u(x) by v[(x) in (18).

For cp = 0, in our empirical data αt and At result in w[it of large absolute value, where (17) results

in poor performance. This problem can be expected, since the weights obtained in (17) are derived in a

similar way as the investments φ∗t . A second driver of larger portfolio weights is the parameter of relative

risk aversion γ. The smaller γ, the larger the weights w[
t in absolute value for any cp ≥ 0. Note that in

contrast to the CARA case, our solutions for the CRRA case (with or without short-selling constraints)

are based on the Taylor series approximation (13) around w = 0N×1. If the weights obtained w[it are quite

far away from the approximation point of the Taylor series, the approximation quality can become poor.

Our shrinkage device also dampens this effect. Table 4 presents the investment strategies to be compared

in the following.

Abbreviation Investment Strategy

w[
t approximately optimal strategy with naive covariance estimator with shrinkage

w[
t,LW approximately optimal strategy with Ledoit and Wolf (2004) covariance estimator

with shrinkage

w[,≥0
t approximately optimal strategy with naive covariance estimator, without short-selling,

with shrinkage

w[,≥0
t,LW approximately optimal strategy with Ledoit and Wolf (2004) covariance estimator,

without short-selling, with shrinkage

w
1/N
t 1/N -portfolio as e.g. considered in DeMiguel et al. (2009)

w]
t parametric portfolio strategy

w],≥0
t parametric portfolio strategy without short-selling

Table 4: CRRA Investment Strategies

In the following Tables 5 and 6 we observe that for small γ the weights following from (17) become

quite large and the performance measured in terms of the certainty equivalent becomes poor (not only
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out-of-sample but also in-sample). Surprisingly, this effect is stronger for γ = 0.5 than for 0.25. Some

certainty equivalent samples become quite negative and the sample standard deviation of the certainty

equivalents becomes high.

By contrast, when finding an optimal θ in the case of parametric portfolio policies, no approxima-

tion of the expected utility function is used. Hence, also for small γ the performance of the parametric

portfolio approach is quite satisfactory. By comparing the estimates of the certainty equivalents with

the parametric approach to the approximately optimal strategy described in (17), we observe that the

parametric approach outperforms the approximately optimal approach for γ = 0.5. This holds for an in-

and an out-of-sample comparisons without short-selling constraints. By imposing short-selling constraints

the optimal approach slighly dominates the 1/N and the parametric strategy. Using the Sharpe ratio also

verifies this result. We observe that when increasing the degree of risk aversion (γ ≥ 1) optimal strategies

based on (17) in terms of the points estimate of the certainty equivalent dominate the other strategies.

In this case the results without constraints are slightly above the results with constraints. The results for

w],≥0 are very close the results for the 1/N -strategy.

Observation 5.

(i) In-sample: Similar to the CARA case, the optimal strategy shows the best performance for γ ≥ 1. The

performances of the alternative strategies as measured by the certainty equivalent perform quite similarly.

(ii) Out-of-sample: The 1/N -strategy shows the best performance for γ ≤ 0.5. For a very small γ the best

performance with the parametric strategy is observed. For γ ≥ 1 the best performance is achieved with

the optimal strategy, however the performances for the strategies considered are roughly the same across

strategies.

(iii) Similar to the CARA case, for small values of risk aversion parametric portfolio policies imply a large

amount of short-selling in- and out-of-sample.
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γ = 0.25 w[
t w[

t,LW w[,≥0
t w[,≥0

t,LW w
1/N
t w]

t w],≥0
t

ĈI 1.1656 1.1668 1.0340 1.0227 1.0153 1.0519 1.0153

ŝd
(
ĈI
)

0.1335 0.1332 0.0031 0.0020 0.0022 0.0128 0.0022

mean(Et) 1.4138 1.4160 1.0344 1.0229 1.0156 1.0594 1.0156
sd(Et) 0.6464 0.6509 0.0584 0.0385 0.0420 0.2329 0.0420
Sharpe Ratio 0.6387 0.6376 0.5717 0.5694 0.3465 0.2507 0.3465
mean(wit < 0) 0.1882 0.1881 0.0000 0.4546 0.0000 0.4546 0.0000
sd (wit < 0) 0.0478 0.0479 0.0000 0.0297 0.0000 0.0297 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ = 0.5 w[
t w[

t,LW w[,≥0
t w[,≥0

t,LW w
1/N
t w]

t w],≥0
t

ĈI 0.6065 0.6131 1.0157 1.0320 1.0151 1.0434 1.0151

ŝd
(
ĈI
)

0.2460 0.2443 0.0012 0.0020 0.0015 0.0091 0.0015

mean(Et) 1.2110 1.2120 1.0160 1.0328 1.0156 1.0592 1.0156
sd(Et) 0.3331 0.3354 0.0324 0.0561 0.0420 0.2321 0.0420
Sharpe Ratio 0.6303 0.6293 0.4622 0.5673 0.3465 0.2510 0.3465
mean(wit < 0) 0.1813 0.1799 0.0000 0.0000 0.0000 0.4552 0.0000
sd (wit < 0) 0.0478 0.0481 0.0000 0.0000 0.0000 0.0297 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ = 1 w[
t w[

t,LW w[,≥0
t w[,≥0

t,LW w
1/N
t w]

t w],≥0
t

ĈI 1.0934 1.0937 1.0130 1.0287 1.0147 1.0341 1.0147

ŝd
(
ĈI
)

0.0142 0.0142 0.0017 0.0036 0.0030 0.0193 0.0030

mean(Et) 1.1095 1.1101 1.0132 1.0300 1.0156 1.0650 1.0156
sd(Et) 0.1765 0.1776 0.0236 0.0509 0.0420 0.2354 0.0420
Sharpe Ratio 0.6150 0.6140 0.5186 0.5698 0.3465 0.2720 0.3465
mean(wit < 0) 0.1653 0.1652 0.0000 0.0000 0.0000 0.4575 0.0000
sd (wit < 0) 0.0476 0.0466 0.0000 0.0000 0.0000 0.0351 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ = 2 w[
t w[

t,LW w[,≥0
t w[,≥0

t,LW w
1/N
t w]

t w],≥0
t

ĈI 1.0490 1.0491 1.0082 1.0216 1.0138 1.0233 1.0138

ŝd
(
ĈI
)

0.0078 0.0078 0.0011 0.0029 0.0031 0.0113 0.0031

mean(Et) 1.0588 1.0591 1.0084 1.0232 1.0156 1.0447 1.0156
sd(Et) 0.0982 0.0988 0.0163 0.0404 0.0420 0.1430 0.0420
Sharpe Ratio 0.5885 0.5876 0.4574 0.5499 0.3465 0.3059 0.3465
mean(wit < 0) 0.1416 0.1418 0.0000 0.0000 0.0000 0.4377 0.0000
sd (wit < 0) 0.0428 0.0438 0.0000 0.0000 0.0000 0.0334 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0022 0.0000 0.0000

γ = 5 w[
t w[

t,LW w[,≥0
t w[,≥0

t,LW w
1/N
t w]

t w],≥0
t

ĈI 1.0214 1.0214 1.0056 1.0109 1.0108 1.0031 1.0108

ŝd
(
ĈI
)

0.0173 0.0173 0.0028 0.0084 0.0139 0.0171 0.0139

mean(Et) 1.0284 1.0285 1.0059 1.0128 1.0156 1.0124 1.0156
sd(Et) 0.0514 0.0517 0.0104 0.0277 0.0420 0.0631 0.0420
Sharpe Ratio 0.5325 0.5316 0.4668 0.4275 0.3465 0.1801 0.3465
mean(wit < 0) 0.0870 0.0875 0.0000 0.0000 0.0000 0.3777 0.0000
sd (wit < 0) 0.0346 0.0341 0.0000 0.0000 0.0000 0.0454 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5: Approximate CRRA Utility (In-Sample): Strategies defined in Table 4. Empirical data. Training
sample t = 1, . . . , 200. Evaluation in-sample; t = 1, . . . , 200. Shrinkage parameter cp = 0.2.
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8 Conclusions

The demand systems approach to asset pricing introduced by Koijen and Yogo (2019) lends itself to

numerous applications, such as the intermediary asset pricing theory of He and Krishnamurthy (2013) or

asset pricing with frictions more generally. In this article we have augmented this approach to CARA and

CRRA expected utility. We consider the cases with and without short selling constraints and show the

existence of equilibrium.

Another aspect of the demand system approach is its relation to the characteristics-based parametric

portfolio approach (see Brandt et al., 2009), that has received a lot of interest from empirical researchers

because it provides an attractive reduction technique to an otherwise complex optimization problem. From

the results obtained in this article, we observe that characteristics-based parametric portfolio strategies

can be optimal under rather strong assumptions.

Moreover, theory-guided reduction techniques prove particularly helpful for machine learning applica-

tions as forcefully argued by Nagel (2021).17 In this article we introduce a shrinkage facility, with the goal

to make the strategies less risky and thereby improve their performance in empirical data. We provide

empirical evidence for S&P 500 data.18 For the feasible case where parameters are estimated, we observe

that the simple optimal shrinkage strategy proposed in this article outperforms the parametric portfolio

approach of Brandt et al. (2009), and the 1/N -strategy, for most levels of absolute and relative risk aver-

sion. Only for CRRA preferences with very low levels of risk aversion the other strategies are superior.

For higher degrees of risk aversion the performances of the strategies considered are quite similar.

While our work, as a first step, has focused on a quasi-static analysis and evaluation a promising

route for future research would seem as the next step to consist in a dynamic implementation of optimal

shrinkage strategies, tuning of the shrinkage parameter, etc. In the current implementation the model

parameters are estimated in the training sample and not adapted in the evaluation sample. It is tempting

to experiment with rolling windows or more sophisticated dynamic models in order to improve out-of-

sample performance.

17In the words of Nagel (2021) we provide “an analytical framework that allows to inject a limited amount of economic
reasoning when we set up ML [machine learning] tools to tackle asset pricing problems.” Nagel (2021)[p. 63].

18In related work Gehrig et al. (2018) similar evidence extends to CRSP-data for low enough risk aversion.
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γ = 0.25 w[
t w[

t,LW w[,≥0
t w[,≥0

t,LW w
1/N
t w]

t w],≥0
t

ĈI 0.7703 0.7563 1.0177 1.0127 1.0107 1.0582 1.0107

ŝd
(
ĈI
)

0.1521 0.1560 0.0036 0.0025 0.0023 0.0208 0.0023

mean(Et) 1.2135 1.2152 1.0183 1.0130 1.0109 1.0797 1.0109
sd(Et) 0.7643 0.7751 0.0701 0.0495 0.0445 0.4032 0.0445
Sharpe Ratio 0.2780 0.2764 0.2462 0.2433 0.2231 0.1952 0.2231
mean(wit < 0) 0.3265 0.3249 0.0000 0.4350 0.0000 0.4350 0.0000
sd (wit < 0) 0.0461 0.0465 0.0000 0.0240 0.0000 0.0240 0.0000
mean (wit < −1) 0.0045 0.0045 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0050 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000

γ = 0.5 w[
t w[

t,LW w[,≥0
t w[,≥0

t,LW w
1/N
t w]

t w],≥0
t

ĈI 0.3829 0.3223 1.0112 1.0165 1.0104 0.9783 1.0104

ŝd
(
ĈI
)

0.1698 0.1701 0.0014 0.0023 0.0015 0.0385 0.0015

mean(Et) 1.1097 1.1105 1.0117 1.0176 1.0109 1.0794 1.0109
sd(Et) 0.3912 0.3966 0.0412 0.0678 0.0445 0.4012 0.0445
Sharpe Ratio 0.2777 0.2761 0.2590 0.2455 0.2231 0.1954 0.2231
mean(wit < 0) 0.3190 0.3166 0.0000 0.0000 0.0000 0.4353 0.0000
sd (wit < 0) 0.0461 0.0458 0.0000 0.0000 0.0000 0.0238 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ = 1 w[
t w[

t,LW w[,≥0
t w[,≥0

t,LW w
1/N
t w]

t w],≥0
t

ĈI 1.0365 1.0363 1.0068 1.0151 1.0099 1.0035 1.0099

ŝd
(
ĈI
)

0.0149 0.0152 0.0020 0.0043 0.0031 0.0315 0.0031

mean(Et) 1.0577 1.0581 1.0072 1.0170 1.0109 1.0777 1.0109
sd(Et) 0.2048 0.2075 0.0298 0.0632 0.0445 0.3727 0.0445
Sharpe Ratio 0.2771 0.2754 0.2088 0.2532 0.2231 0.2058 0.2232
mean(wit < 0) 0.3024 0.2993 0.0000 0.0000 0.0000 0.4318 0.0000
sd (wit < 0) 0.0444 0.0439 0.0000 0.0000 0.0000 0.0223 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ = 2 w[
t w[

t,LW w[,≥0
t w[,≥0

t,LW w
1/N
t w]

t w],≥0
t

ĈI 1.0194 1.0192 1.0062 1.0122 1.0089 1.0033 1.0089

ŝd
(
ĈI
)

0.0080 0.0081 0.0014 0.0038 0.0031 0.0162 0.0032

mean(Et) 1.0318 1.0320 1.0066 1.0152 1.0109 1.0500 1.0109
sd(Et) 0.1118 0.1131 0.0208 0.0556 0.0445 0.2277 0.0445
Sharpe Ratio 0.2753 0.2737 0.2682 0.2553 0.2231 0.2152 0.2232
mean(wit < 0) 0.2688 0.2680 0.0000 0.0000 0.0000 0.4222 0.0000
sd (wit < 0) 0.0409 0.0398 0.0000 0.0000 0.0000 0.0214 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0073 0.0000 0.0000

γ = 5 w[
t w[

t,LW w[,≥0
t w[,≥0

t,LW w
1/N
t w]

t w],≥0
t

ĈI 1.0081 1.0080 1.0032 1.0068 1.0057 0.9921 1.0057

ŝd
(
ĈI
)

0.0169 0.0171 0.0033 0.0103 0.0137 0.0292 0.0137

mean(Et) 1.0162 1.0162 1.0035 1.0101 1.0109 1.0162 1.0109
sd(Et) 0.0564 0.0569 0.0116 0.0359 0.0445 0.1064 0.0445
Sharpe Ratio 0.2694 0.2679 0.2164 0.2524 0.2231 0.1432 0.2231
mean(wit < 0) 0.1882 0.1907 0.0000 0.0000 0.0000 0.3807 0.0000
sd (wit < 0) 0.0358 0.0359 0.0000 0.0000 0.0000 0.0522 0.0000
mean (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wit < −1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6: Approximate CRRA Utility (Out-of-Sample): Strategies defined in Table 4. Empirical data.
Training sample t = 1, . . . , 200. Evaluation out-of-sample; t = 201, . . . , 415. Shrinkage parameter cp = 0.2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2: Expected utility E (v (Rpt+1)) against θ1 ∈ [−500, 500], θ2 = 0 and θ3 = 0 in the first column;
θ2 ∈ [−500, 500], θ1 = 0 and θ3 = 0 in the second column; and θ3 ∈ [−500, 500], θ1 = 0 and θ2 = 0 in the
third column. CRRA type utility with γ = 0.25. Grid with step-width 0.25. g(θ>x̃it) = θ>x̃it, Subfigures
(a-c) augmented CRRA utility v+(·) with parameter γ, ψR = 0.0001 and u = v(ψR). Subfigures (d-f)
augmented CRRA utility v−(·), Subfigures (g-i) augmented CRRA utility v[(·), with δ = 1. Subfigures
(j-l) summary, where the dotted lines denotes v+(·), the solid red lines v−(·) and the solid blue lines v[(·).
No trading cost. S&P 500 data; T = 416 and N = 100.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3: Expected utility E (v (Rpt+1)) against θ1 ∈ [−500, 500], θ2 = 0 and θ3 = 0 in the first column;
θ2 ∈ [−500, 500], θ1 = 0 and θ3 = 0 in the second column; and θ3 ∈ [−500, 500], θ1 = 0 and θ2 = 0 in the
third column. CRRA type utility with γ = 2. Grid with step-width 0.25. g(θ>x̃it) = θ>x̃it, Subfigures
(a-c) augmented CRRA utility v+(·) with parameter γ, ψR = 0.0001 and u = v(ψR). Subfigures (d-f)
augmented CRRA utility v−(·), Subfigures (g-i) augmented CRRA utility v[(·), with δ = 1. Subfigures
(j-l) summary, where the dotted lines denotes v+(·), the solid red lines v−(·) and the solid blue lines v[(·).
No trading cost. S&P-500 data; T = 416 and N = 100.
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A A Micro-Foundation of Characteristics-Based Portfolio Choice

As already stated in the main text, we consider a myopic investor who maximizes conditionally expected

utility with Bernoulli utility function u : D→ R. To simplify the notation Nt = N . We assume that u(·)

is strictly increasing. To reduce the mathematical burden u (·) is at least twice continuously differentiable.

This results in a constrained portfolio optimization problem

max
wt,wft∈Rnt

Et (u (Et+1))

s.t. Et+1 = etw
>
t Rt+1 + etwftRfT+1 ,

N∑
i=(N−n)+1

wit = 1 . (19)

Optimization problem (19) results in the optimal investment weights w∗it, i = (N − n) + 1, . . . , N (for w∗ft

the summation index 0 is used if a risk-free asset is considered).

Suppose that Et (u (Et+1)) exists (for all wt ∈ RN ) and that differentiation and integration can be ex-

changed. The constraint optimization problem (19) results in the Lagrangian L (wt, µt) = Et (u (Et+1))−

µt

(∑N
i=1wit − 1

)
. By taking partial derivatives with respect to wt and µt we obtain the first order con-

ditions

∂

∂w>t
L (wt, µt) = Et

(
u′
(
etw

>
t Rt+1

)
Rt+1

)
− µt1N×1 = 0N×1 and

∂

∂µt
L (wt, zt, µt) = 1−

N∑
i=(N−n)+1

wit = 0 . (20)

The second order condition for a constraint maximization problem is e.g. discussed in Simon and Blume

(1994)[Chapter 19.3]. A negative definite Hessian ∂
∂wt∂w>t

Et (u′′ (etRpt+1))= Et
(
u′′
(
etw

>
t Rt+1

)
Rt+1R

>
t+1

)
,

for any wt is sufficient to satisfy the second order condition. If a global optimum exists, we abbreviate

the optimal N + 1-vector by
(
w∗>t , µ∗t

)>
.
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By contrast a characteristics-based policy, or parametric portfolio policy solves19

max
θ∈Rk

E

(
u

(
et

N∑
i=1

(
w̄it + θ>x̃t

)>
Rt+1

))
, (21)

where the first and the second order conditions are

∂

∂θ>
Et

(
u

(
et

N∑
i=1

(
1

N
+

1

N
θ>x̃t

)>
Rt+1

))
= Et

(
u′ (Et+1)

1

N

N∑
i=1

Rit+1x̃it

)
= 0k×1 and

∂

∂θ>∂θ
Et

(
u

(
et

N∑
i=1

(
1

N
+ θ>x̃t

)>
Rt+1

))
= Et

u′′ (Et+1)

(
1

N

N∑
i=1

Rit+1x̃it

)(
1

N

N∑
i=1

Rit+1x̃it

)> . (22)

In the case an optimal θ, denoted θ∗, exists, the optimal parametric policy is provided by w]it(x̃it, et) :=

w̄it + (θ∗)> x̃it.
20

By contrast for a characteristics-based policy, or parametric portfolio policy, the strategy is restricted

to the affine rule wit = w̄it + θ>xt. By including this constraint in the optimization problem (19) we

obtain w]it(x̃it, et) := w̄it+(θ∗)> x̃it. Typically, the focus of a parametric portfolio policy is on risky assets

only. Hence, w∗ft = 0 for all t, if a the risk-free asset is traded.

Now suppose that both w∗it and w]it exist. How are they related to each other? One way of response

is a regression type approach (see also Brandt et al., 2009). That is to say, consider the panel regression

model 
w∗1t

...

w∗Nt


︸ ︷︷ ︸

w∗t

−


w̄1t

...

w̄Nt


︸ ︷︷ ︸

w̄t

=


x̃>1t
...

x̃>Nt

θ +


u1t

...

uNt

 . (23)

By using for example the least squares dummy variable estimator (see, e.g., Hsiao, 2015, Chapter 3),

we get θ̂ =
(∑T

t=1

(∑N
i=1 x̃itx̃

>
it

))−1 (∑T
t=1

(∑N
i=1 x̃it (w∗it − w̄it)

))
. By means of θ̂ the sum of squared

approximation errors is minimized. Note that, for large T a law of large numbers yields limT→∞ θ̂ − θ =

19An alternative to the approach presented here is to fix θ a-priori and choose the weights w̄it, i = 1, . . . , N , optimally.
For the maximization of the conditional expected see Appendix F.2.

20An alternative to the approach presented here is to fix θ a-priori and choose the weights w̄it, i = 1, . . . , N , optimally.
For the maximization of the conditional expected see Appendix F.2.
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(
E
(∑N

i=1 x̃itx̃
>
it

))−1
E
(∑N

i=1 x̃ituit

)
. The right hand side term need not be zero. To see this, consider

e.g. a w∗it depending on xt ∈ RkN [see e.g. the CARA case in Section 4]. In this case uit also contains xjt,

i 6= j, where xjt and xit need not be uncorrelated (in terms of econometrics, we are confronted with an

omitted variables problem). Since the main objective is to approximate w∗it and not to perform inference

about θ, this issue is of minor importance in the case considered here.

A.1 Some General Results on Parametric Portfolio Policies

Here we summarize our observations for the case of the affine rule:

Observation 6. Consider returns rit+1 ∈ R≥−1 and the portfolio gross-returnRpt+1 =
∑

i∈It wit (1 + rit+1).

Let u(·) denote a strictly monotone increasing Bernoulli utility function defined on D = R>0.

(a) Suppose that for at least one j the support of 1
Nt

∑
i∈It x̃it,jrit+1 is te real line. Then, for any fixed

θ with θj 6= 0, the probability P (Rpt+1 < 0) is strictly positive.

(b) Suppose that the joint probability

P

(
{| 1

Nt

∑
i∈It

x̃it,jrit+1| > εxr} ∧ {rpt+1 ≤ εr}

)
= δr > 0

for some j ∈ {1, . . . , k}, where εxr and εr > 0. There exists θ ∈ Rk such that P (Rpt+1 < 0) > 0.

Hence, for Θ = Rk there exists θ ∈ Θ where expected utility E (u (Rpt+1)) is not well-defined.

(c) Bounded Support of x̃ and rit+1: Suppose that 0 < r ≤ rit+1 ≤ r̄ < ∞ and x ≤ x̃it,j ≤ x̄, for all

i, t and j. The cost function satisfies 0 ≤ c(φ, ζ) ≤ c̄ < ∞. If 1 + r − c̄ > α, there exists a set

of parameters Θ′R of positive Lebesgue measure containing 0(k×1) where Rpt+1 > 0 for all θ ∈ Θ′R

(almost surely) and expected utility E (u (Rpt+1)) is well-defined.

(d) Non-negative investment weights: Suppose that fi(Nt, x̃it;θ) results in wit ≥ 0 for all i and t .

Let rit+1 ∈ R>−1. Then, at least one wit > 0 by the constraint
∑

i∈It wit = 1 and the portfolio

gross-return Rpt+1 =
∑

i∈It wit (1 + rit+1) is strictly positive.
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(e) Since a constraint is added to (19) in the case of parametric portfolio policies

Et

(
u

(
et

(
1 +

∑
i∈It

w∗itrit+1

)))
≥ Et

(
u

(
et

(
1 +

∑
i∈It

w]itrit+1

)))
.

This result also holds if (19) is augmented by trading cost and the investments in period t − 1 are

fixed at the same levels.21 In the case of a strictly concave optimization problem, in general a strict

inequality holds, while an equality can be maintained if the first order conditions arsing from (19)

are of the form −Awt + Bx̃t + ct = 0N for the N risk assets, where the following equalities hold:

w̄t = A−1ct and θ∗∗> = A−1B, resulting in w∗t = A−1ct + A−1Bx̃t= w̄t + θ∗∗>x̃t as well as

w]ft = w∗ft.

Proof. See Appendix A.2.

Note that if the returns rit+1 ∈ R≥−1 and portfolio weights w̄it ≥ 0 (for example w̄it = 1/Nt), then

θ = 0(k×1) implies Rpt ≥ 0 for θ = 0k. With rit+1 ∈ R>−1 and weights w̄it ≥ 0,
∑Nt

i=1 w̄it = 1, we obtain

a strictly positive return at θ = 0(k×1). Part (b) of Proposition 6 is for example fulfilled if the support of

the conditional distribution of x̃it conditional on rit+1 is Rk. Hence, strong assumptions on the stochastic

properties of the returns and the variables xit are necessary to obtain a well defined optimization problem

when the domain of the Bernoulli utility function, D, is a proper subset of the real line. In addition,

typically optimal portfolio investment differs from the characteristics based approach. The main issue to

be evaluated empirically below is the question of how good the approximation will be.

In our analysis, and in line with Brandt et al. (2009), the generalized method of moments is applied to

maximize expected utility. [That is, we implicitely assume that the GMM assumptions are satisfied.] In

particular, the GMM distance function is assumed to be strictly concave in the parameters. By using the

first order condition to construct the GMM distance function, we observe that a concave distance function

is associated with a concave expected utility in the parameters θ. To justify this assumption numerical

checks have to be performed in addition to running a GMM estimation routine. Then, standard asymptotic

21We also get Et
(
u
(
et
(

1 +
∑
i∈It w

∗
itrit+1

)))
≥ Et

(
u
(
et
(

1 +
∑
i∈It w

[
itrit+1

)))
≥ Et

(
u
(
et
(

1 +
∑
i∈It w

]
itrit+1

)))
,

where the terrm in the the middle will be obtained in next sections,
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theory can be used in a In the case of short-selling constraints we numerically choose θ by maximizing

expected utility under the constraint wit ≥ 0 in the training sample. By applying this approach already

for small θ, some wit become negative for some t in the training sample. Hence, the weights obtained

with this approach are very close to w̄it, which is the 1/N -portfolio, with weights denoted w
1/N
t , in our

examples (typically w
1/N
ft = 0 and w]ft = 0).22

A.2 Proof of Observation 6

Let c(θ, ζ) = c(ψ̆, ζ), where Ψ̆it = w̄it + 1
Nt
θ>x̃it.

Part (a): Considered some fixed θ ∈ Θ, where the j-th coordinate is non-zero. Then Rpt+1 > 0

demands for
∑

i∈It w̄itrit+1 + θ>
(

1
Nt

∑
i∈It x̃itrit+1

)
> c(θ, ζ)− 1. Given 1 + rit+1 ≥ 0 and

∑
i∈It w̄it = 1,

the term
∑

i∈It 1 + w̄itrit+1 ≥ 0 (almost surely). [Hence for θ = 0 the returns are non-negative.] Since

trading cost is non-negative
∑

i∈It w̄itrit+1 +θ>
(

1
Nt

∑
i∈It x̃itrit+1

)
=
∑

i∈It rit+1

(
w̄it + θ> 1

Nt
x̃it

)
< −1 is

sufficient for negative portfolio returns. Since, by assumption, the support of 1
Nt

∑
i∈It x̃it,jrit is the real

line for at least one j, j = 1, . . . , k, there always exists an event of strictly positive probability, where

1 +
∑

i∈It w̄itrit+1 + θ> 1
Nt

∑
i∈It x̃itrit+1 < 0. Since cost is non-negative this also implies that Rpt+1 < 0

with strictly positive probability.

Part (b): Suppose that rit ∈ R≥−1 and that the joint probability

P

(
{| 1

Nt

∑
i∈It

x̃it,jrit+1| > εxr} ∧ {
1

Nt

∑
i∈It

rit+1 ≤ εr}

)
= δr > 0

for some j ∈ {1, . . . , k}. εxr and εr > 0 are some (possibly small) numbers in R>0, while x̃it,j denotes the

j-th coordinate of the vector x̃it.

This assumption implies that the probability of the joint event “ 1
Nt

∑
i∈It x̃it,jrit+1 6= 0 and the

return 1
Nt

∑
i∈It rit+1 is smaller than εr” is strictly positive. To get Rpt+1 ≤ 0 it is sufficient that∑

i∈It

[
1
Nt

+ 1
Nt
θ>xit

]
rit+1 − c(θ, ζ) = 1

Nt

∑
i∈It rit+1 + 1

Nt

∑
i∈It θ1x̃it,1rit+1 + · · ·+ 1

Nt

∑
i∈It θj x̃it,jrit+1 +

· · · + 1
Nt

∑
i∈It θkx̃it,krit+1 − c(θ, ζ) < −1. With θl = 0 for l 6= j, we obtain Rpt+1 = 1

Nt

∑
i∈It rit+1 +

1
Nt

∑
i∈It θj x̃it,jrit+1 − c(θ, ζ).

22Another approach to implement short-selling constraints in a pragmatic way, is to set wit = 0 if w̄it + θ∗>x̃it < 0.
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Since −c(θ, ζ) ≤ 0, 1
Nt

∑
i∈It rit+1 +

(
1
Nt

∑
i∈It x̃it,jrit+1

)
θj < −1 is sufficient to result in Rpt+1 < −1.

Since the joint probability that 1
Nt

∑
i∈It rit+1 ≤ εr and | 1

Nt

∑
i∈It xit,jrit+1| > εxr is larger than zero, there

exists θj ∈ R where 1
Nt

∑
i∈It rit+1 +

(
1
Nt

∑
i∈It x̃it,jrit+1

)
θj < −1. Therefore, there exsits θ ∈ Θ, where

Rpt+1 < 0 with strictly positive probability.

Part (c): We assumed 0 < r ≤ rit+1 ≤ r̄ <∞, x ≤ x̃it,j ≤ x̄, for all i, t and j = 1, . . . , k, 0 ≤ c(θ, ζ) ≤ c̄

as well as 1 + r− c̄ > α > 0. These assumptions and the definition of the portfolio return Rpt+1 results in

Rpt+1 = 1+ 1
Nt

∑
i∈It rit+1+

∑
j=1k θj

1
Nt

∑
i∈It x̃it,jrit+1−c(θ, ζ)> 1+Nt

Nt
r+
∑k

j=1 θj
1
Nt

∑
i∈It x̃it,jrit+1r̄−c̄>

α +
∑k

j=1 θj
1
Nt

∑
i∈It x̃it,jrit+1. Note that | 1

Nt

∑
i∈It x̃it,jrit+1| ≤ max{x̄r̄, |xr̄|}. To obtain Rpt+1 > 0 it is

sufficient that α >
∑k

j=1 |θj | kmax{x̄r̄, |xr̄|} > 0. This yields |θj | < α
kmax{x̄r̄,|xr̄|} . By the properties of

real numbers there exist a set of θj fulfilling this inequality, the volume of the set where this inequality

is fulfilled is
(

α
kmax{x̄r̄,|xr̄|}

)k
> 0. Hence an open set Θ′R of positive Lebesgue measure exists where

Rpt+1 > 0. By construction 0(k×1) is contained in this set.

From the second order condition obtained in (22) we observe that the optimization problem is concave.

From optimization theory it is well known that (i) if E (u (Rpt+1)) is strictly concave in θ and a θ satisfying

the first order condition exists, we get a unique global maximum, (ii) if E (u (Rpt+1)) is concave in θ and

a θ satisfying the first order condition exists, we get a global maximum but this maximum need not be

unique, while (iii) if E (u (Rpt+1)) is concave in θ and a θ satisfying the first order condition does not exist,

then a maximum does not exist. In the case of an open parameter set Θ, the supremum of E (u (Rpt+1))

is attained for some θ in the closure of Θ. In this article we follow Brandt et al. (2009) and apply GMM.

The first order condition (22) is used to construct a GMM distance function. In addition, we investigate

E (u (Rpt+1)) by means of or graphical tools.

It turns out that the number of parameters to be estimated and the of number observations are obvious

characteristics affecting the stability of the θ estimation. For example, Brandt et al. (2009) show that

conditioning the θs on the slope of the yield curve strongly improves portfolio performance. However, it

also doubles the effective number of parameters to be estimated (one set of θs for each macro-economic

condition). Moreover, by definition, the yield curve is more often “normal” than inverted. Hence, the

number of observations for estimating the set of θs applied in times of an inverted yield curve is much lower.
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A similar situation arises, when parametric portfolio policies are applied to assets or with characteristics

that do not have long time series available. In these cases, portfolio returns for a given θ are less diversified

than in our sample, and hence non-convergence can be more problematic even for higher levels of risk

aversion.
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A.3 Trading Cost

Following Brandt et al. (2009) we allow for the possibility of trading cost modelled by a trading cost

function c(φ, ζ) with parameter ζ ≥ 0. If ζ = 0, then c(φ, 0) = 0 for all strategies, while c(φ, 0) ≥ 0

for all strategies and ζ ≥ 0. Note that trading costs also depend on prior and actual, φs, 1 ≤ s ≤ t and

the parameter ζ. We apply the short hand c(φ, ζ). In particular, in the case of linear or quadratic cost

functions, we get c1(φ, ζ) := ζ
∑N

i=1 |φit−φit−1| and c2(φ, ζ) := ζ
∑N

i=1(φit−φit−1)2 for a constant Nt = N .

Then, Et+1 = et

(
wftRft+1 +

∑N
i=1witRit+1

)
− cj(φ, ζ) = φ>t Rt+1 +

(
et −

∑N
i=1φ

>
t 1N

)
Rft+1− cj(φ, ζ),

j = 1, 2. Finally, we assume that the risk-free asset can be traded at zero cost.

For generalNt we get: We consider two examples for the cost function: c1(ψ, ζ) := ζ
∑

i∈It |wit−w+it−1|

(see, e.g., Brandt et al., 2009) or c2(ψ, ζ) := ζ
∑

i∈It(wit−w+it−1)2, where wit−w+it−1 measures non-zero

trades in period t. Hence, in these expressions w+it−1 = wit−1 if asset i ∈ It was also traded in t − 1,

w+it−1 = wis if 0 ≤ s < t − 1 is the last point of time before t where asset i was traded, and w+it−1 = 0

if asset i was not traded in some period 0 ≤ s < t. If N = Nt for all t, we get w+it−1 = wit−1 and the

cost functions defined in Section A.3 of the main text. To highlight that cost is related to a parametric

portfolio policy, we also use the notation cj(θ, ζ) = cj(ψ
], ζ), where Ψ]

it = w̄it + 1
Nt
θ>x̃it. Note that

cj(θ, ζ) are convex in θ. We also observe that c1(θ, ζ) and c2(θ, ζ) are convex in θ. The Online-Appendix

in Gehrig et al. (2018) provides conditions for a strictly convex c2(θ, ζ).
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B Determining Conditional Certainty Equivalents

In order to evaluate investment strategies we compare certainty equivalents. Consider an investment strat-

egy φt [either for the constrained or the unconstrained problem], CARA utility with parameter ρ, wealth/or

endowment et, variables driving returns xt and a cost function ci with parameter ζ. For any strategy φt,

by means of (5) the (conditional) certainty equivalent, that is the value c where Et(− exp(−ρEt+1)) =

−exp(−ρc), is provided by

Ct(ρ, et,xt,φt, ci, ζ) = etRft+1 + φ>t (Et (Rt+1)− 1NRft+1)− ρ

2
φ>t Vt(Rt+1)φt − ρζcj (φ, ζ) . (24)

If trading costs are zero, Ct(ρ, et,xt,φ∗, 0, 0) ≥ etRft+1. To see this, for φt = 0, we get φ0 = et and the

certainty equivalent is etRft+1. Since φ∗t is chosen optimally the inequality Ct(ρ, et,x,φ∗, 0, 0) ≥ etRft+1

has to hold. If φ∗ 6= 0, by the strict concavity of the problem, we obtain a strict inequality. If no risk-free

asset is available and all wealth et has to be spent, Ct(ρ, et,x,φ+, 0, 0) > etRft+1 need not hold in general.

In addition, since Ct(ρ, et,xt,φ∗t , ci, ζ) obtained in (24) arises from utility maximization and expected

utility is strictly concave in φ [see equation (49) in Appendix F], we get for any strategy φ,

0 ≤ Ct(ρ, et,xt,φ
∗
t , c1, ζ)− Ct(ρ, et,xt,φt, c1, ζ) (25)

with equality if and only of φ∗t = φt.

The (unconditional) certainty equivalent C (ρ, et,xt,φt, ci, ζ) is the value c where E(− exp(−ρEt+1)) =

−exp(−ρc). Given some data (xt, rt : t = 1, . . . , T ), it is estimated by means of Ĉ (ρ, et,xt,φt, cj , ζ) =

−1
ρ Ê
(
e−ρEt

)
, where Ê

(
e−ρEt

)
= 1

T

∑T
`=1 e

−ρEt . By the law of iterated expectations E(− exp(−ρEt+1)) =

E (Et(− exp(−ρEt+1))). Hence, by the law of iterated expectations and (25), also C (ρ, et,xt,φt, ci, ζ) ≤

C (ρ, et,xt,φ
∗
t , ci, ζ). This yields, the following large sample properties of the certainty equivalent.

Observation 7. (i) Ct(ρ, et,xt,φt, ci, ζ) ≤ Ct(ρ, et,xt,φ∗t , ci, ζ) for any strategy φt, while

Ct(ρ, et,xt,φt, ci, ζ) ≤Ct(ρ, et,xt,φ
+
t , ci, ζ) if no risk-free asset is traded and the investor has to invest et.

(ii) C (ρ, et,xt,φt, ci, ζ) ≤ C (ρ, et,xt,φ
∗
t , ci, ζ) for any strategy φt, while

C (ρ, et,xt,φt, ci, ζ) ≤ C (ρ, et,xt,φ
+
t , ci, ζ) if no risk-free asset is traded and the investor has to invest et.
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rit x̃it,1 x̃it,2 x̃it,3
rit 1.0000 0.0005 -0.0029 -0.0065
x̃it,1 0.0005 1.0000 -0.4846 -0.4724
x̃it,2 -0.0029 -0.4846 1.0000 -0.4906
x̃it,3 -0.0065 -0.4724 -0.4906 1.0000

Table 7: Pearson correlation coefficients for S&P 500 data.

(iii) The 1/N -strategy, φNt = et/N · 1N , corresponds to a parametric strategy with θ = 0 and w̄it = 1/N .

Hence, C (ρ, et,xt,φ
1/N
t , ci, ζ) ≤ C (ρ, et,xt,φ

]
t, ci, ζ), where w̄it = 1/N for the parametric strategy φ]t.

For the CARA the (unconditional) certainty equivalent C (γ, et,xt,wt, ci, ζ) is the value c where

E(u(Et+1)) = u(c). Given that E(u(Et+1)) ≥ u(Ψ), we get c = u−1 (E(u(Et+1))) = u−1 (E(u(Et+1)))

as already described in the main text.

C Empirical Data

In the study we use the characteristics and returns of all 100 firms that are continuously a member of the

S&P 500 firms in the time span from 04/1979 to 12/2013. The three characteristics are closely based on

Brandt et al. (2009). Market equity, meit, is the natural logarithm of the number of shares outstanding

(Compustat item cshoq for the primary issue - priusa) times the closing price (prccq). Book-to-Market,

btmit, is the natural logarithm of (1 + book equity / market equity), where book equity is measured as

Shareholders’ Equity (seq) and is used six months after the close of the fiscal year to ensure availability

of the data. Momentum, momit, is the cumulative return over the time period t-13 to t-2, expressed as

monthly average. Hence, we get k = 3 and xit = (meit, btmit,momit)
>. To be included in the estimation,

a firm must fulfill three conditions at the portfolio formation. It must be a continous constituent of the

S&P 500 (ticker i0003), must have data for all three characteristics and needs to have return data (trt1m)

over the following month. The number of included firms Nt is always equal to 100. All characteristics xit

are cross-sectionally standardized according to equation (3) resulting in x̃it.

Table C provides correlation coefficients, the first order autocorrelations of the variables xit,j are 0.9621,

0.9706 and 0.8638. To further investigate the relationship between the returns and the variables x̃it, we
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estimated the pooled model

rit = a+ b>x̃it + uit , (26)

where the noise terms are – in a first step – assumed to be exogenous. The ordinary least squares estimates

are â = 0.1471, b̂ = (0.0104,−0.0021,−0.1178)>, where the corresponding p-values for b are all < 0.01.

That is, the linear relationship between rit+1 and x̃it is significant for x̃it,1 and x̃it,2 on a 5% significance

level. Since, the variables x̃it is at least partially jointly determined with the returns, the assumption of

exogenous regressors is a strong one. Therefore, we estimated the panel regression model (26) by means

of instrumental variables, where we assumed that the noise term uit is uncorrelated with x̃is, s < t. Based

on this assumption we estimate b by using x̃it−1 as instruments and obtained the two stage least squares

estimates âIV = 0.1495 and b̂IV = (0.0111,−0.0020,−0.1214)>, all p-values are < 0.001.

D Simulated Data

It is insightful to compare both, simulated and empirical data. For this purpose we exploit an empirical

data set that comprises N = 100 assets contained in S&P for the time span April 1979 to December 2013.

Since N = 100 and T = 416 for the empirical data set, we simulate data with T = 420 and N = 100 with

k = 3 characteristics xit and gross returns Rit = 1 + rit, for i = 1, . . . , N = 100 assets. In every period we

assume that et = 1 and zero trading cost. The observations from t = 1, . . . , Test = 200 are used to estimate

the model parameters. Then φ+
t is applied for t = Test + 1, . . . , T . Estimates of the certainty equivalent

and further descriptive statistics are obtained from this out-of-sample analysis. For simulated data, we

replicate this experiment for M = 50 times resulting in 50 × 220 = 11, 000 samples. The empirical data

set of returns and xit of N = 100 assets contained in the S&P is used to obtain the simulated data with

properties close to the empirical data. The simulated data has stochastic properties close to the empirical

data set. Further details on the exact simulation design are provided in Appendix D.1.
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D.1 Simulation Designs

To obtain simulated data we proceed as follows: We use monthly data of the N = 100 companies contained

in the S&P index – used in the main text and described in Appendix C – to simulate the variables xit

and asset returns Rit. The time span is April 1979 to December 2013. First we use the empirical data set

to obtain the following estimates:

1. We obtain sample means of the returns and the variables. That is, R̄i = 1
T

∑T
t=1Rit ∈ R and x̄i =

1
T

∑T
t=1 xit ∈ Rk for i = 1, . . . , N . Let R̄ :=

(
R̄1, . . . , R̄N

)> ∈ RN , x̄ := (x̄11, . . . , x̄1N , . . . , x̄k1, . . . , x̄kN )> ∈

RNk, R̀it := Rit − R̄i and x̀it := xit − x̄i.

2. The first order sample auto-covariance of the factors is Ĉov(xit−1,xit) ∈ Rk×k. The means of the

diagonal elements of Ĉov(xit−1,xit) are abbreviated by ĉx ∈ Rk.

3. We consider the observations of xt ∈ RNk to estimate their Nk × Nk covariance matrix Σ̂xx by

applying the Ledoit and Wolf (2004)-covariance estimator.23

4. We consider the panel regression model

R̀it = x̀>itβ + ὲit or R̀ = X̀β + ὲ , where

R̀ =



R̀11

...

R̀1T

...

R̀N1

...

R̀NT



∈ RNT , X̀ =



x̀>11
...

x̀>1T
...

x̀>N1

...

x̀>NT



∈ RNT×k , and ὲ =



ὲ11
...

ὲ1T
...

ὲN1

...

ὲNT



∈ RNT . (27)

Then β can be estimated by pooled ordinary least. That is β̂ =
(∑N

i=1

∑T
t=1 x̀itx̀

>
it

)−1∑N
i=1

∑T
t=1 x̀itR̀it =(

X̀>X̀
)−1

X̀>R̀. Due to possible endogenity we estimate β by means of an instrumental variable

23We applied the Matlab-code available at https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html9

with default values.
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estimator, where the lagged factors are used as instruments. Hence,

β̂IV =

 N∑
i=1

T∑
t=2

x̀it−1x̀
>
it

−1 N∑
i=1

T∑
t=2

x̀it−1R̀it =
(
X̀
>
IV−1F̀IV

)−1
X̀
>
IV−1R̀IV , where

R̀IV = X̀IV β + ὲIV , (28)

R̀IV =



R̀12

.

.

.

R̀1T

.

.

.

R̀N2

.

.

.

R̀NT



∈ RN(T−1)
, X̀IV =



x̀>12
.
.
.

x̀>1T
.
.
.

x̀>N2

.

.

.

x̀>NT



∈ RN(T−1)×k
, X̀IV−1 =



x̀>11
.
.
.

x̀>1T−1

.

.

.

x̀>N1

.

.

.

x̀>NT−1



∈ RN(T−1)×k
, ὲIV =



ὲ12

.

.

.

ὲ1T

.

.

.

ὲN2

.

.

.

ε̃NT



∈ RN(T−1)
.

5. By using β̂IV we obtain the residuals ̂̀εit = R̃it − x̀>it β̂IV , i = 1, . . . , N and t = 1, . . . , T . By

applying the Ledoit and Wolf (2004)-covariance estimator, we obtain an estimate of the N × N

covariance matrix of the noise terms Σ̂ὲὲ. The elements on the main diagonal are abbreviated by

σ̂2
ε̃i

, i = 1, . . . , N .

Then, to simulate factors and returns we use the following parameters:

1. The matrix Σxx = Σ̂xx is used to obtain the covariance of the simulated factors.

2. The factors xt are assumed to follow a first order autoregressive process. In particular, we use

rounded values of the mean first order autocorrelation coefficients of the factors xit denoted ĉx in

the above paragraphs. For k = 3 we get cx = (0.96, 0.97, 0.86)> ∈ Rk, Cx = diag(cx) ∈ Rk×k,

diag(·) transforms a vector to a diagonal matrix. Let Cxx = IN ⊗ Cx ∈ RNk×Nk and Dxx =

IN ⊗ diag(1k×1 − c2
x) ∈ RNk×Nk, where ⊗ denotes the Kronecker product. Then,

xt = Cxxxt−1 + D1/2
xx Σ1/2

xx vt , (29)

where vt follows a standard normal distribution with mean vector zero and covariance matrix INk.

Hence, the covariance matrix of xt is provided by Σxx, given that xt is started from its stationary

distribution, which is a normal distribution with mean zero and covariance Σxx. We also observe

that the sampling variation of first and second moments of the autoregressive process xt become
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high due to the high serial correlation.

By using (29), the conditional expectation of the characteristics is equal to

Et (xt+1) = Cxxxt . (30)

3. The parameter a0 = R̄ for all t. The matrices Aj , j = 1, . . . , k, follow from the vector βIV =

(0.0111,−0.0020,−0.1214)>, which is based on a (rounded version) of b̂IV estimated in Section C.

In particular, we proceed with A1 = 0.0111 · INk, A1 = −0.0020 · INk and A3 = −0.1214 · INk,

where INk denotes the kN -dimensional identity matrix. The risk-free rate rft = 0.001 such that

Rft = 1.001. Then by using (29) and (30) we observe that

xt︸︷︷︸
[Nk×1]

= Cxx︸︷︷︸
[Nk×Nk]

xt−1︸︷︷︸
[Nk×1]

+ D1/2
xx︸ ︷︷ ︸

[Nk×Nk]

Σ1/2
xx︸︷︷︸

[Nk×Nk]

vt︸︷︷︸
[Nk×1]

,

Et (xt+1) = Et
(
Cxxxt + D

1/2
ff Σ1/2

xx vt+1

)
= Cxxxt ,

Rt+1︸ ︷︷ ︸
[N×1]

= a0︸︷︷︸
[N×1]

+
(
A1, . . . ,Aq

)︸ ︷︷ ︸
[N×Nq]

xt+1︸︷︷︸
[Nk×1]

+ ut+1︸︷︷︸
[N×1]

= R̄ +
(
IN ⊗ β>IV

)
xt+1 + ut+1 ,

Et (Rt+1)︸ ︷︷ ︸
[N×1]

= a0
t +

(
A1, . . . ,Aq

)
Cxxxt = R̄︸︷︷︸

[N×1]

+
(
IN ⊗ β>IV

)
︸ ︷︷ ︸

[N×Nk]

Cxx︸︷︷︸
[Nk×Nk]

xt︸︷︷︸
[Nk×1]

, and

Vt (Rt+1)︸ ︷︷ ︸
[N×N ]

= A︸︷︷︸
[N×Nk]

D1/2
xx︸ ︷︷ ︸

[Nk×Nk]

Σxx︸︷︷︸
[Nk×Nk]

D1/2>
xx︸ ︷︷ ︸

[Nk×Nk]

A>︸︷︷︸
[Nk×N ]

+ Σxx︸︷︷︸
[N×N ]

. (31)

The noise term ut has diagonal covariance matrix Σuu for all t. The elements on the main diagonal

of matrix Σuu follow from σ̂2
εi , i = 1, . . . , N .

D.2 Some Results

On the basis of the simulated and the empirical data we run the investment strategies φ+
t , φ]t, etc. to

obtain samples Et+`, ` = 1, . . . ,M(T − Test + 1), of wealth in the subsequent periods. For empirical data

these samples are obtained for the time span Test + 1 to T , while the observations from 1, . . . , Test are

used to estimate model parameters. We work with Test = 200 while T = 415. For simulated data we set
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T = 420 and proceed with Test = 200. The number of replications is M = 50; for empirical data we have

M = 1.

In both cases an ex-ante estimate of the certainty equivalent follows from Ĉ (ρ, et,xt,φt, cj , ζ) =

−1
ρ ln Ê

(
e−ρEt+1

)
, where Ê

(
e−%Et+1

)
= 1

(T−Test+1)
1
M

∑(T−Test)M
`=1 e−%E`,t+1 . The standard error of the esti-

mator Ĉ(ρ, et,xt,φt, cj , ζ) is obtained by means of the Delta-method (see, e.g., Ruud, 2000, Lemma 16.1).

On the basis of our simulations we compare the following hypothetical scenarios:

φ∗∗t Full information: All parameters are known such that the conditional expectation Et (Rt+1) and the

conditional variance Vt (Rt+1) are known. [For simulated data only.]

φ∗t Unknown parameters: The conditional expectation and Et (Rt+1) variance Vt (Rt+1) = Σ are not

known and have to be estimated. To do this we consider the predictive regression

Rit+1 = γ0 + γ>xit + uit

and obtain γ̂0 and γ̂ for each asset i = 1, . . . , N by means of the least-squares estimator. The

observations t = 1, . . . , Test are used to estimate these parameters. Then, Êt (Rit+1) = γ̂0 + γ̂>xit

and Vt (Rt+1) follows from the residuals ûit, i = 1, . . . , N .

φ∗t,LW Unknown parameters and reduction technique for estimating second moments: This strategy corre-

sponds to S.2 with the difference that the conditional covariance is estimated by applying the Ledoit

and Wolf (2004)-covariance estimator to ûit, i = 1, . . . , N .

φ
1/N
t Rule of the insufficient reason: Consider the 1/N -portfolio, where the amount invested into the risky

assets is et = 1.

φ]t Characteristics-based portfolio choice: Consider a parametric policy φ]t, where w̄it = 1/N and θ is

estimated by means of GMM using the observations t = 1, . . . , Test. The amount invested into the

risky assets is et = 1.

We run simulations for three different parameters of constant absolute risk aversion, ρ = .5, ρ = 1

and ρ = 2. In simulated data the known parameters and the optimal strategy (i.e. φ∗t ), not surprisingly,
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dominate all other strategies. However, if the parameters have to be estimated the certainty equivalents

for φ∗t and φ∗t,LW are below the values obtained for the 1/N-rule and parametric policies. Reduction based

(Ledoit-Wolf) estimation strategy φ∗t,LW dominates φ∗t . Higher Sharpe ratios can be obtained with φ∗t

and φ∗t,LW compared to φ]t and φ
1/N
t but at an expense of much higher risk. This higher risk reduces

the certainty equivalent of φ∗t and φ∗t,LW below those of φ]t and φ
1/N
t . Regarding this increase in risk

Erlwein-Sayer et al. (2020)[Proposion 3] show how in a mean-variance setting the risk aversion parameter

can be increased to account for this increase in risk due to estimation. Interestingly, in the simulated data

the parametric portfolio policy generates more short-selling than the optimal investment policies.

In addition, to the results we obtained out-of-sample, we also performed an in-sample analysis where

t = 201, . . . , T is used for parameter estimation and to obtain estimates of the certainty equivalent and

further statistics. Here we observe that the optimal strategy also with estimated parameters is superior

to the 1/N-strategy and φ]t, the best results are obtained when the Ledoit and Wolf (2004)-covariance

estimator is applied.

Summing up, we observe that the feasible optimal strategies, i.e. those where model parameters are

estimated, result in quite risky strategies. By comparing estimates of the certainty equivalent we observe

that in this case simple rules such as parametric portfolio policies or the 1/N -rule outperform φ∗t and

φ∗t,LW . To reduce this negative effect on performance, a shrinkage device was proposed in the main text.
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ρ = 0.5 φ∗∗t φ∗t φ∗t,LW φ
1/N
t φ]t

Ĉt 1.2199 -4.6420 0.8242 1.0071 0.9372

ŝd
(
ĈI
)

0.0025 0.4395 0.0198 0.0005 0.0182

mean (Et+1) 1.3067 2.5221 1.7472 1.0085 1.1811
sd (Et+1) 0.5948 5.4372 1.9351 0.0688 0.9287
et 1.0000 1.0000 1.0000 1.0000 1.0000

mean(Return)=mean(Et+1)−et
et

0.3067 1.5221 0.7472 0.0085 0.1811

Sharpe ratio =
mean(Return)−mean(rft+1)

sd(Return) 0.5139 0.2798 0.3856 0.1096 0.1939

mean(wit < 0) 0.5037 0.4934 0.4942 0.0000 0.0794
sd (wit < 0) 0.0409 0.0327 0.0367 0.0000 0.0746
mean (wit < −1) 0.0475 0.4338 0.3346 0.0000 0.0110
sd (wit < −1) 0.0293 0.0351 0.0357 0.0000 0.0215

ρ = 1 φ∗∗t φ∗t φ∗t,LW φ
1/N
t φ]t

Ĉt 1.1197 -4.3849 0.9097 1.0052 0.9149

ŝd
(
ĈI
)

0.0008 15.8949 0.0056 0.0004 0.0065

mean (Et+1) 1.1611 1.7647 1.3869 1.0086 1.0584
sd (Et+1) 0.2908 2.8270 0.9790 0.0689 0.5025
et 1.0000 1.0000 1.0000 1.0000 1.0000

mean(Return)=mean(Et+1)−et
et

0.1611 0.7647 0.3869 0.0086 0.0584

Sharpe ratio =
mean(Return)−mean(rft+1)

sd(Return) 0.5507 0.2701 0.3942 0.1108 0.1143

mean(wit < 0) 0.4967 0.4923 0.4878 0.0000 0.0565
sd (wit < 0) 0.0409 0.0325 0.0351 0.0000 0.0550
mean (wit < −1) 0.0029 0.3780 0.2050 0.0000 0.0000
sd (wit < −1) 0.0062 0.0367 0.0324 0.0000 0.0000

ρ = 2 φ∗∗t φ∗t φ∗t,LW φ
1/N
t φ]t

ĈI 1.0617 -0.6256 0.9673 0.9980 0.9804

ŝd
(
ĈI
)

0.0002 0.8378 0.0008 0.0003 0.0008

mean(Et) 1.0828 1.3707 1.1830 1.0082 1.0117
sd(Et) 0.1461 1.3367 0.4704 0.0688 0.1545
et 1.0000 1.0000 1.0000 1.0000 1.0000

mean(Return)=mean(Et+1)−et
et

0.0828 0.3707 0.1830 0.0082 0.0117

Sharpe ratio =
mean(Return)−mean(rft+1)

sd(Return) 0.5595 0.2766 0.3869 0.1045 0.0690

mean(wit < 0) 0.4797 0.4939 0.4899 0.0000 0.2808
sd (wit < 0) 0.0406 0.0352 0.0351 0.0000 0.0902
mean (wit < −1) 0.0000 0.2704 0.0546 0.0000 0.0000
sd (wit < −1) 0.0003 0.0495 0.0237 0.0000 0.0000

Table 8: Comparison of investment strategies in simulated data. mean(Return) = mean (Et+1) − et.
Sample means (mean) and sample standard deviations (sd) are obtained form 50 · (T − Test) = 11, 000
samples. T = 420, Test = 200. mean(wit < ν) denotes the average proportion of weights smaller than ν,
while sd(wit < ν) is the corresponding standard deviation.
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E Extending CRRA Uility

In the following we propose some simple ways, we to extend CRRA utility to the real line. Let NRit+1>0

the number of (risky) assets where Rit+1 > 0, for all t = 1, . . . , T , for some chosen θ. For θ = 0 we have

NRit+1>0 = Nt. From the above analysis we already know that some Rpt+1 become negative if θ becomes

large in absolute terms. For θ ∈ R the number of assets with positive returns NRit+1>0 is monotone

decreasing in |θ|. In particular, we observe that NRit+1>0 is a step function.

In order to obtain a well defined model in mathematical terms, we can either augment the CRRA

Bernoulli utility function v(·) defined on the domain D = R or work directly with a different utility

function, which is defined on the whole real line (CARA utility or mean variance preferences were applied

e.g. in Ammann et al., 2016). This section follows the first suggestion and starts with the augmentation

approach by specifying simple and easily implementable rules for dealing with large negative returns (i.e.,

close to or below zero). In particular, we consider the following three alternatives to augment the CRRA

Bernoulli utility function: extending utility horizontally to the left, ignoring negative returns, or extending

utility in a linear way for low returns:

Augmentation I (extending utility horizontally to the left), v+ (Et+1): Choose some ψR > 0 and define

v+ (Et+1) :=


v (etRpt+1) for Rpt+1 ≥ ΨR,

u ≤ v (etψR) for Rpt+1 < ΨR.

(32)

Recall that Ept+1 = etRpt+1.

Augmentation II (ignoring negative returns), v− (Ept+1): Consider NRit+1>0 defined in the above

paragraphs [i.e., NRit+1>0 is the number of assets where Rit+1 > 0]. The parametric portfolio weight

function (4) is now applied to those assets where Rit+1 > 0. That is, Nt is replaced by NRit+1>0 and

w̄it = 1
Nt,Rit+1≥0

in (4). This results in the portfolio return Rpt+1,−. Then,

v− (Ept+1) := v (etRpt+1,−) . (33)

Since NRit+1>0 is known after Rit+1, i =, 1 . . . , N , realizes, the calculation of Rpt+1,− only works in-sample.
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However, in-sample v− (Rpt+1) can be used to find an optimal θ.

Augmentation III (linear continuation), v[ (Ept+1): Another extension of v(x), similar to (32), but less

radical is a smooth linear extension for low returns:

v[ (etRpt+1) :=


v (etRpt+1) for Rpt+1 ≥ ψR,

(v (etψR)− δv′ (etψR)) + δv′ (etψR) etRpt+1 for Rpt+1 < ψR,

(34)

where ψR > 0. As already stated in the main text, with (12) we apply v (etRpt+1) for all Rpt+1 ≥ ψR.

At Rpt+1 = ψR we get v[ (etψR) = v (etψR) = (v (etψR)− δv′ (etψR)) + δv′ (etψR) etψR. For δ = 1, we

observe that v′[ (etψR)= v′ (etψR) is equal to the slope of the line described by (etv (ψR)− 1 · v′ (etψR)) +

1 · v′ (etψR)Rpt+1.

The domain of v+(etRpt+1) and v[(etRpt+1) is the real line, while for v−(etRpt+1) non-positive returns

were excluded. These simple remedies avoid strong a-priory restrictions on the support of xit and rit+1.

(32) can be seen as a special case of (12) when we set v′ = 0. Note that by the flat segment, the function

v+(Rpt+1) is neither concave nor strictly concave on the domain R, while v[(etRpt+1) is at least concave.

The function v−(etRpt+1) is locally strictly convex on those segments where Nt,Rit+1≥0 stays constant.

Since Nt,Rit+1≥0 does not stay constant in our data sets, this generates non-well behaved expected utility

as will be demonstrated in the following Figures.

In simulation runs not reported here and in the empirical data, for θ in the neighborhood of 0 we

observe essentially no differences between the expected utilities obtained with v(·) and v+(·), v−(·) or v[(·).

For different values of relative risk aversion, Figures 2 and 3 plot (numerical estimates of) expected utility

E (v (etRpt+1)), where et = 1 and v+(·), v−(·) or v[(·) are used, against θ1, θ2 or θ3 (θi ∈ [−100, 100]),

the other coordinates are set to zero (note that θ1 is the parameter associated with ln of book-to-market

ratio, θ2 with the ln of the firm’s market equity and θ3 with the momentum variable). So for illustration

purposes we only consider projections on one policy variable.24 Figures 2 and 3 are organized as follows:

24We proceeded in this way to highlight the result observed with (32) and illustrate it in graphical terms. Another practical
reason is that the performance of the numerical optimization routine is easier to investigate with a single parameter.

In addition, since E (u(Rpt+1)) cannot be derived analytically in our examples, numerical estimates of E (u(Rpt+1)) are

obtained by means of 1
T

∑T
t=1 u(Rpt+1) =: Ê (u(Rpt+1)). To improve the readability E (u(Rpt+1)) will also be used also for

numerical estimates of expected utility.
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Subfigures (a,b,c) consider expected utilities with v+(·), Subfigures (d,e,f) consider expected utilities with

v−(·), Subfigures (g,h,i) consider expected utilities with v[(·), while Subfigures (j,k,l) jointly plot expected

utilities with v+(·) [dotted line], v−(·) [solid red line] and v[(·) [solid blue line]. The first, the second and

the third column presents expected utility levels when θ1, θ2 and θ3 is varied, respectively. Proceeding

this way we find a surprising result: expected utility may not attain a global maximum. Even a local

maximum may not be globally optimal.

For small values of relative risk aversion, e.g. γ = 0.25 and in the absence of trading costs (i.e. ζ = 0),

we do not observe an interior maximum (see Figure 2) for v+(·) and v−(·) while for v[(·) we derive an

interior maximum for our empirical data set. Figure 3 shows the results with a higher risk aversion

parameter of γ = 2. Here we observe interior maxima with v+(·) and v[(·). The lines for v+(·) look less

smooth due to the fact that a constant utility level is used for returns ≤ ψR. For v−(·) we observe some

downward spikes, which arise at those θ where NRit>0 changes.25 In Appendix E.1 we show that adding

linear cost (see Figures 4 and 5) or quadratic cost (see Figures 6 and 7), the effects discussed without cost

become less pronounced. Hence, higher degrees of risk aversion and higher costs render the optimization

problems more concave, in which case unique maxima of expected utility result more often.26 The above

analysis suggests that the augmentation v[ (Rpt+1) seems to work.

E.1 CRRA Utility with Transaction Costs

Figures 4 to 7 complement the analysis performed for Figures 2 and 3 with linear (Figures 4 and 5) and

quadratic (Figures 6 and 7) transaction costs. The augmentation strategies are described in the above

Appendix E.

25 In some of the aggregated Subfigures (j,k,l) these effects are very hard to observe due to the scaling used on the vertical
axis. This scaling follows from the scaling arsing with v[(·) and is the same as in the subfigures (g,h,i).

26Further results with S&P 500 as well as CRSP-data are provided in the main text and in the Online-Appendix in our
prior version of this paper (Gehrig et al., 2018).

55



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4: Expected utility E (v (Rpt+1)) against θ1 ∈ [−500, 500], θ2 = 0 and θ3 = 0 in the first column;
θ2 ∈ [−500, 500], θ1 = 0 and θ3 = 0 in the second column; and θ3 ∈ [−500, 500], θ1 = 0 and θ2 = 0 in the
third column. CRRA type utility with γ = 0.25. Grid with step-width 0.25. g(θ>x̃it) = θ>x̃it, Subfigures
(a-c) augmented CRRA utility v+(·) with parameter γ, ψR = 0.0001 and u = v(ψR). Subfigures (d-f)
augmented CRRA utility v−(·), Subfigures (g-i) augmented CRRA utility v[(·), with δ = 1. Subfigures
(j-l) summary, where the dotted lines denotes v+(·), the solid red lines v−(·) and the solid blue lines v[(·).
S&P 500 data; T = 416 and N = 100.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5: Expected utility E (v (Rpt+1)) against θ1 ∈ [−500, 500], θ2 = 0 and θ3 = 0 in the first column;
θ2 ∈ [−500, 500], θ1 = 0 and θ3 = 0 in the second column; and θ3 ∈ [−500, 500], θ1 = 0 and θ2 = 0 in the
third column. CRRA type utility with γ = 2. Grid with step-width 0.25. g(θ>x̃it) = θ>x̃it, Subfigures
(a-c) augmented CRRA utility v+(·) with parameter γ, ψR = 0.0001 and u = v(ψR). Subfigures (d-f)
augmented CRRA utility v−(·), Subfigures (g-i) augmented CRRA utility v[(·), with δ = 1. Subfigures
(j-l) summary, where the dotted lines denotes v+(·), the solid red lines v−(·) and the solid blue lines v[(·).
Cost function c1(·). S&P-500 data; T = 416 and N = 100.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6: Expected utility E (v (Rpt+1)) against θ1 ∈ [−500, 500], θ2 = 0 and θ3 = 0 in the first column;
θ2 ∈ [−500, 500], θ1 = 0 and θ3 = 0 in the second column; and θ3 ∈ [−500, 500], θ1 = 0 and θ2 = 0 in the
third column. CRRA type utility with γ = 0.25. Grid with step-width 0.25. g(θ>x̃it) = θ>x̃it, Subfigures
(a-c) augmented CRRA utility v+(·) with parameter γ, ψR = 0.0001 and u = v(ψR). Subfigures (d-f)
augmented CRRA utility v−(·), Subfigures (g-i) augmented CRRA utility v[(·), with δ = 1. Subfigures
(j-l) summary, where the dotted lines denotes v+(·), the solid red lines v−(·) and the solid blue lines v[(·).
Cost function c2(·). S&P-500 data; T = 416 and N = 100.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7: Expected utility E (v (Rpt+1)) against θ1 ∈ [−500, 500], θ2 = 0 and θ3 = 0 in the first column;
θ2 ∈ [−500, 500], θ1 = 0 and θ3 = 0 in the second column; and θ3 ∈ [−500, 500], θ1 = 0 and θ2 = 0 in the
third column. CRRA type utility with γ = 2. Grid with step-width 0.25. g(θ>x̃it) = θ>x̃it, Subfigures
(a-c) augmented CRRA utility v+(·) with parameter γ, ψR = 0.0001 and u = v(ψR). Subfigures (d-f)
augmented CRRA utility v−(·), Subfigures (g-i) augmented CRRA utility v[(·), with δ = 1. Subfigures
(j-l) summary, where the dotted lines denotes v+(·), the solid red lines v−(·) and the solid blue lines v[(·).
Cost function c2(·). S&P-500 data; T = 416 and N = 100.
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F Parametric Portfolio Policies with Constant Absolute Risk Aversion

Consider constant absolute risk aversion, where the Bernoulli utility function is given by u(x) = − exp(−ρx)

and the parameter ρ > 0 expresses constant relative risk aversion (note that u′′(x)
u′(x) = ρ). In addition to N

risky assets we also consider the case where a risk-free asset is traded [the risk-free asset has cross-sectional

index i = f ]. The portfolio vector of risky-assets is φt = (φ1t, . . . , φNt)
> ∈ RN , where φit is the money

amount invested into risky asset i at period t. The amount invested in the risk-free asset is φft = et−φ>t 1N

if a risk-free asset is traded, and φft = 0, ∀t, otherwise. We analyse optimal investments strategies first

in the absence of any transactions costs and then by including linear or quadratic transactions costs.

F.1 Optimal Strategy in the Absence of Transaction Costs

The value of the portfolio in period t+1 is a random variable and given by Et+1 = et

(
wftRft +

∑N
i=1witRit+1

)
=

φftRft+1 +
∑N

i=1 φitRit+1 =
∑N

i=1 φitRit+1 +
(
et −

∑N
i=1 φit

)
Rft+1= φ>t Rt+1 +

(
et −

∑N
i=1φ

>
t 1N

)
Rft,

where Rt+1 denotes the vector of risky returns and φt ∈ Θ = RN . We follow the notation from the main

text, and write Rit+1 ∈ R and Rt+1 = (R1t+1, . . . , RNt+1)> ∈ RN ; xit ∈ Rq and xt ∈ RNq denote a ran-

dom vectors of characteristics [as well as – we some abuse of notation – also their realizations]. Following

Sections 3 and 4 we obtain

Rit = a0it +
(
A1
i , . . . , A

k
i

)
︸ ︷︷ ︸

[1×q]

xit︸︷︷︸
[q×1]

+εit and

Rt︸︷︷︸
[N×1]

= a0t︸︷︷︸
[N×1]

+
(
A1, . . . ,Ak

)
︸ ︷︷ ︸

[N×Nk]

xt︸︷︷︸
[Nk×1]

+ εt︸︷︷︸
[N×1]

, (35)

where Aj are diagonal N ×N matrices. Aj , j = 1, . . . , k, follows from Al, l = 1, . . . , N . Consider some

strategy φt and suppose that a risk-free asset is traded. The total amount invested into risky assets is

ert := 1>Nφt. Let φit = [φt]i. Suppose that a risk-free asset is traded. Then strategy φt translates into
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investment weights as follows:

w̃it =
φit
et

and w̃0t = wft =
et − 1>Nφt

et
for weights such that

N∑
i=0

w̃it = 1 or

wit =
φit

1>Nφt
, for weights in terms of the amount invested into risky assets 1>Nφt such that

N∑
i=1

wit = 1 . (36)

Note that the weights w̃it depend on et, while the weights wit do not depend on et but on the total

amount invested into risk assets 1>Nφt. That is, even for a strategy φit which is linear in xit, the weights

wit need not be linear in xit. By contrast if no risk-free asset is traded and the preferences of the investor

/ or the economic constraints are such that all wealth is invested into the risky assets we get

et = 1>Nφt and w̃it = wit =
φit
et

=
φit

1>Nφt
. (37)

Suppose that φit can be written as φit = γ0i+γ
>
1 x̃it, where x̃it is a standardized characteristic, γ0it = γ0i

for all t and γ1it = γ1 for all t, i. Then, ert := 1>Nφt =
∑N

i=1

(
γ0i + γ>1 x̃it

)
=
∑N

i=1 γ0i + γ>1
∑N

i=1 x̃it

=
∑N

i=1 γ0i and the total amount invested into the risky assets does not depend on x̃it. Next, suppose

that Et(− exp(−ρEt+1)) exists, then conditional expect utility is given by

Et(− exp(−ρEt+1)) = Et
(
− exp

(
−ρ
[
(et − φ>t 1N )Rft+1 + ρφ>t Rt+1

]))
. (38)

To obtain the optimal φit we take first partial derivatives in (38), resulting in:

0 =
∂

∂φit
Et(− exp(−ρEt+1))

= Et
(

exp
(
−ρ
[
(et − φ>t 1N )Rft+1 + φ>t Rt+1

])
ρ [Rit+1 −Rft+1]

)
= −Et

(
exp (−ρet) exp

(
−ρ
[
−φ>t 1NRft+1 + φ>t Rt+1

])
ρ [Rit+1 −Rft+1]

)
= − exp (−ρet)Et

(
exp

(
−ρ
[
−φ>t 1NRft+1 + φ>t Rt+1

])
ρ [Rit+1 −Rft+1]

)
= − exp (−ρet)Et

(
exp

(
−ρ
[
φ>t (Rt+1 −Rft+11N )

])
ρ [Rit+1 −Rft+1]

)
, (39)

for i = 1, . . . , N . From (39) we cannot obtain a closed from solution. Hence, we require that the noise terms

are conditionally normal. Using Assumption 2 of normally distributed innovations we derive conditional
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expected utility

Et(− exp(−ρEt+1)) = Et
(
− exp

(
−ρ
[
(et − φ>t 1N )Rft+1 + φ>t Rt+1

]))
= − exp

[
−ρ(et − φ>t 1N )Rft+1 − ρφ>t Et (Rt+1) +

ρ2

2
φ>t Vt(Rt+1)φt

]
= − exp

[
−ρet − ρφ>t (Et (Rt+1)− 1NRft+1) +

ρ2

2
φ>t Vt(Rt+1)φt

]
. (40)

Maximizing (40) yields the vector of optimal amounts invested into the risky assets (see also, Ferson and

Siegel, 2001):

φ∗t (xt) =
1

ρ
(Vt (Rt+1))−1 (Et (Rt+1)−Rft1N ) . (41)

The remaining wealth φft = et − 1>Nφ
∗
t ∈ R is invested into the risk-free asset.

To account for the case where no risk-free asset is traded we include the constraint et ≥ 1>Nφt and –

to reduce the computational burden – we take the log of ’minus (40)’ and divide by ρ > 0. This results in

the Lagrangian (for a similar problem see also Campbell, 2017, Section 2.2.3)

Lt (φt, λt) = et + φ>t (Et (Rt+1)− 1NRft+1)− ρ

2
φ>t Vt(Rt+1)φt + λt

(
et − 1>Nφt

)
. (42)

By taking first derivatives with respect to φit, i = 1, . . . , N , and λt we obtain the first order conditions

∂

∂φ>t
Lt (φt, λt) =

[
INEt (Rt+1)− IN1NRft+1 −

2

2
ρVt (Rt+1)φt

]
− λt1N = 0N×1 ,

∂

∂λt
Lt (φt, λ) = et − 1>Nφt ≥ 0 , λt

∂

∂λt
Lt (φt, λ) = 0 . (43)

If the constraint et − 1>Nφt is not binding, then λt = 0 and the optimal strategy is given by (41). By
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contrast, suppose that et − 1>Nφ
∗
t < 0, then the constraint becomes binding and

φ+
t (xt) =

1

ρ
(Vt (Rt+1))

−1
(Et (Rt+1)−Rft1N )− λ+t

1

ρ
(Vt (Rt+1))

−1
1N .

By plugging in φ+
t (xt) into et = 1>Nφ

+
t , we get

et = 1>N

[
1

ρ
(Vt (Rt+1))

−1
(Et (Rt+1)−Rft1N )− λ+t

1

ρ
(Vt (Rt+1))

−1
1N

]
,

such that

λ+t =
ρ

1>NVt (Rt+1)
−1

1N

[
1

ρ
1>NVt (Rt+1)

−1
(Et (Rt+1)−Rft1N )− et

]
=

ρ

1>NVt (Rt+1)
−1

1N

[
1>Nφ

∗
t (xt)− et

]
≥ 0 and

φ+
t (xt) = φ∗t (xt)− λ+t

1

ρ
(Vt (Rt+1))

−1
1N

= φ∗t (xt)−
ρ

1>NVt (Rt+1)
−1

1N

[
1>Nφ

∗
t (xt)− et

] 1

ρ
(Vt (Rt+1))

−1
1N

=
1

ρ
Vt (Rt+1)

−1
(Et (Rt+1)−Rft1N )

−1

ρ
Vt (Rt+1)

−1
1N

(
ρ

1>NVt (Rt+1)
−1

1N

(
1>N

1

ρ
Vt (Rt+1)

−1 Et (Rt+1)− et
))

+
1

ρ
Vt (Rt+1)

−1

(
ρ

1>NVt (Rt+1)
−1

1N
1>N

1

ρ
Vt (Rt+1)

−1
1NRft

)

=
1

ρ
Vt (Rt+1)

−1

Et (Rt+1)−
ρ
(

1
ρ1>NVt (Rt+1)

−1 Et (Rt+1)− et
)

1>NVt (Rt+1)
−1

1N
1N

 . (44)

Note that the Lagrange multiplier λt is proportional to the difference between the optimal investments

into the risky assets if a risk-free asset would be traded, 1>Nφ
∗
t (xt), and the initial wealth et.

27

Note that we have to distinguish between an investment strategy linear in xt, that is to say φ̃it =

φ̃0it + φ̃>1ixt, an investment strategy linear in xit, that is to say φ̃∗it = φ̃0it + φ̃>1ixit and investment weights

wt which are linear in xt or x̃it. By means of (36) we observe that even for an investment strategy affine

linear in xt or x̃it, the weights need not be affine linear. From (41) and (44) we observe:

• The optimal φ∗t does not depend on the initial wealth et. The total amount invested into risky assets

φt (xt)
∗> 1N depends on xt. The amount invested into the risk-free asset follows from φft = et −

27By means of the Hessian obtained later in (49), we observe that also the second order condition is satisfied. To consider
the case without trading cost set ζ = 0 in (49). For the constraint problem the strictly concave value function is also sufficient
to obtain a constraint maximum (see, e.g., Simon and Blume, 1994).
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φ∗t (xt)
> 1N . Given that φt (xt)

∗> 1N ≥ et, for the constraint problem φft = 0 and φ+
t (xt)

> 1N = et.

• Suppose that Vt (Rt+1) = Σ is diagonal and does not depend on t, while Et (Rt+1) is affine-linear.

Then, the conditional expectations are Et (xt+1) are affine linear in xt, such that

Et (xt+1)︸ ︷︷ ︸
[Nq×1]

= γ0
t︸︷︷︸

[Nq×1]

+ Γ︸︷︷︸
[Nq×Nq]

xt︸︷︷︸
[Nq×1]

, and

Et (Rt+1)︸ ︷︷ ︸
[N×1]

= a0
t︸︷︷︸

[N×1]

+
(
A1, . . . ,Aq

)︸ ︷︷ ︸
[N×Nq]

(
γ0
t + Γxt

)︸ ︷︷ ︸
[Nq×1]

. (45)

Then, by (41) and (45) the optimal strategy is affine linear in the full vector of characters xt [but,

in general, not in xit].

If the conditional variance Vt (Rt+1) depends on xt or the conditional mean Et (Rt+1) depends on

xt in a non-linear way, then the optimal strategy is neither linear in xt nor in x̃it.

• Suppose that (45) holds. Let Rit+1 = γ0it + γ>1ixit + uit, where xit and uit are independent for all i

and t. Then,

Et (xt+1) =


γ01t

...

γ0Nt


︸ ︷︷ ︸
γ0
t ∈RNq

+


diag(γ11) 0 . . .

. . .

. . . 0 diag(γ1N )


︸ ︷︷ ︸

=:Γ1∈RNq×Nq

xt ,

[Et (Rt+1)]i = γ0it + γ>1ixit and the optimal strategy φ∗t is of the form φ∗it = φ0it + φ>1ixit, for

i = 1, . . . , N ; φ1i = [φ1]i,1:Nq, where φ1 is obtained by the following equation (46). That is,

φ∗t =


φ∗1t
...

φ∗Nt

 =
1

ρ
Σ−1

(
a0
t + γ0t −Rft+11N

)
︸ ︷︷ ︸

φ0t∈RN

+
1

ρ
Σ−1

(
A1, . . . ,Aq

)
Γ1︸ ︷︷ ︸

φ1∈RN×Nq

xt . (46)

• If Σ is diagonal [and does not depend on t] and [Et (Rt+1)]i is affine linear in xit, i.e. [Et (Rt+1)]i =

γ0it + γ>1ixit, then the optimal strategy φ∗t is of the form [φ∗]it = φ∗it = φ0it +φ>1ixit. Note that if the
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asset returns and the variables xt are jointly normally distributed, by the properties of the normal

distribution xit and xjt have to be independent for all i, j, i 6= j (see, e.g., Ruud, 2000, Lemma 10.4).

If, in addition, xit is standardized we still get φ∗it = φ0it + φ>1ixit= φ0it + φ̃>1i

(
Σ̂0.5
xi x̃it − µ̂xi

)
=

φ̃0it + φ̃>1ix̃it, where according to (3) µ̂xi = 1
N

∑N
i=1 xit, Σ̂xx = 1

N−1

∑N
i=1 (xit − µ̂xi) (xit − µ̂xi)>

and Σ̂xi is a diagonal matrix with the same main diagonal as Σ̂xx. An optimal strategy where

φ̃1i = θ ∈ Rk requires Vt (Rt+1)φ1iΣ̂xi = θ ∈ Rk, for all i = 1, . . . , N and t.

• For the constrained problem we observe that the Lagrange multiplier λ+
t in general depends on all

xit, i = 1, . . . , N . Hence, even if [Et (Rt+1)]i is an affine linear function in xit, the optimal φ+
i

still depends on all xit, i = 1, . . . , N . By considering the last term in (44) we observe that the

term Vt (Rt+1)−1 Et (Rt+1) has to become independent of xt, which is by the way a very strong

assumption.

F.2 Optimal Policies with Transaction Costs

Next we allow for trading cost. Suppose that at all t, exactly the same N assets are observed. In this

case the linear and quadratic cost functions introduced in Section A.3 result in c1(φ, ζ) := ζ
∑N

i=1 |φit −
φit−1| and c2(φ, ζ) := ζ

∑N
i=1(φit − φit−1)2, such that Et+1 = et

(
wftRft+1 +

∑N
i=1witRit+1

)
− cj(θ, ζ) =

φ>t Rt+1 +
(
et −

∑N
i=1φ

>
t 1N

)
Rft+1 − cj(φ, ζ), j = 1, 2. By augmenting expected utility (43) by these

cost terms we obtain

Et(− exp(−ρEt+1)) = Et
(
− exp

(
−ρ
[
(et − φ>t 1N )Rft+1 + φ>t Rt+1 − c(φ, ζ)

]))
= − exp

[
−ρ(et − φ>t 1N )Rft+1 − ρφ>t Et (Rt+1) +

ρ2

2
φ>t Vt(Rt+1)φt + ρc(φ, ζ)

]
= − exp

[
−ρetRft − ρφ>t (Et (Rt+1)− 1NRft+1) +

ρ2

2
φ>t Vt(Rt+1)φt + ρc(φ, ζ)

]
. (47)

Note that the cost function c1(φ, ζ) := ζ
∑N

i=1 |φit − φit−1| is continuous but only differentiable on the

(sub-)set Θt := Θ \ φt−1. Hence, all the following expressions including first or second partial derivatives

only hold for φt ∈ Θt and not for all φt ∈ Θ = Rq for the linear cost case. By contrast for c2(φ, ζ) first

and second partial derivatives exist for all φt ∈ Θ.

Let us start with the unconstrained case in the following. Taking first derivatives with respect to φt,
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i = 1, . . . , N , we obtain the first order conditions

∂

∂φ>t
Et(− exp(−ρEt+1)) = − exp

[
−ρ(et − φ>t 1N )Rft+1 − ρφ>t Et (Rt+1) +

ρ2

2
φ>t Vt(Rt+1(x))φt + ρζ‖φt − φt−1‖1

]
·
[
ρIn1NRft+1 − ρINEt (Rt+1) + ρ2Vt (Rt+1)φt + ρζsgn (φt − φt−1)

]
= 0N×1 ,

for linear cost, φt ∈ Θt, and

∂

∂φ>t
Et(− exp(−ρEt+1)) = − exp

[
+ρ(et − φ>t 1N )Rft+1 − ρφ>t Et (Rt+1) +

ρ2

2
φ>t Vt(Rt+1(x))φt + ρζ‖φt − φt−1‖22

]
·
[
ρIN1NRft+1 − ρINEt (Rt+1) +

2

2
ρ2Vt (Rrt+1 (xt))φt + 2ρζ (φt − φt−1)

]
= 0N×1 ,

for quadratic cost . (48)

‖·‖1 and ‖·‖2 denote the l1 and the Euclidean norm. That is, for any v ∈ RN , ‖v‖1 =
∑N

i=1 |vi| and

‖v‖2 =
√∑N

i=1 v
2
i . sgn (v) applies the signum function to each coordinate of v. The N × N Hessian

(matrix of second order partial derivatives) is provided by

∂

∂φ>t ∂φt
Et(− exp(−ρEt+1)) = − exp

[
−ρ(et − φ>t 1N )Rft+1 − ρφ>t Et (Rt+1) +

ρ2

2
φ>t Vt(Rt+1(x))φt + ρζ‖φt − φt−1‖1

]
·ρ2Vt (Rrt+1 (xt))

− exp

[
−ρ(et − φ>t 1N )Rft+1 − ρφ>t Et (Rt+1) +

ρ2

2
φ>t Vt(Rt+1(x))φt + ρζ‖φt − φt−1‖1

]
· [ρ1NRft+1 − ρEt (Rt+1) + ρVt (Rt+1)φt + ρζsgn (φt − φt−1)]

· [ρ1NRft+1 − ρEt (Rt+1) + ρVt (Rt+1)φt + ρζsgn (φt − φt−1)]> ,

for linear cost c1, φt ∈ Θt, and

∂

∂φ>t ∂φt
Et(− exp(−ρEt+1)) = − exp

[
−ρ(et − φ>t 1N )Rft+1 − ρφ>t Et (Rt+1) +

ρ2

2
φ>t Vt(Rt+1(x))φt + ρζ‖φt − φt−1‖22

]
·
(
ρ2Vt(Rt+1(x)) + 2ρζIN

)
− exp

[
−ρ(et − φ>t 1N )Rft+1 − ρφ>t Et (Rt+1) +

ρ2

2
φ>t Vt(Rt+1(x))φt + ρζ‖φt − φt−1‖22

]
· [ρ1NRft+1 − ρEt (Rt+1) + ρVt (Rt+1)φt + 2ρζ (φt − φt−1)]

· [ρ1NRft+1 − ρEt (Rt+1) + ρVt (Rt+1)φt + 2ρζ (φt − φt−1)]> ,

for quadratic cost c2 . (49)

The Hessian matrix for the quadratic cost case in (49) are negative definite. To see this, Vt (Rt+1)

is positive definite by Assumption 2, which implies that ∂
∂φt∂φ>t

Et(− exp(−ρEt+1)), which the sum of a

negative and a negative semidefinite matrix, is negative definite. With quadratic cost also the assumption

that ζ > 0 is sufficient for a negative definite Hessian also if Vt (Rt+1) is only positive semidefinite.

Hence, for the quadratic cost case Et(− exp(−ρEt+1)) is positive definite and Et(− exp(−ρEt+1)) is strictly
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concave in φt. For the linear cost case the above statement only holds for φt ∈ Θt. However, by considering

Et(− exp(−ρEt+1)) in we observe that

[
−ρetRft+1 − ρφ>t (Et (Rt+1)− 1NRf ) +

ρ2

2
φ>t Vt(Rt+1)φt + ρc1(φ, ζ)

]
(50)

is strictly convex. To see this, the first terms are strictly convex and the cost function c1(φ, ζ) is con-

vex. Since the sum of a strictly convex function and a convex function is strictly convex, the term[
−ρetRft+1 − ρφ>t (Et (Rt+1)− 1NRf ) + ρ2

2 φ
>
t Vt(Rt+1)φt + ρc1(φ, ζ)

]
is strictly convex. Next, the ex-

ponential function is strictly monotone and strictly convex, such that

exp

[
−ρetRft+1 − ρφ>t (Et (Rt+1)− 1NRft+1) +

ρ2

2
φ>t Vt(Rt+1)φt + ρc1(φ, ζ)

]
(51)

is strictly convex and

− exp

[
−ρetRft+1 − ρφ>t (Et (Rt+1)− 1NRft+1) +

ρ2

2
φ>t Vt(Rt+1)φt + ρc1(φ, ζ)

]
(52)

is strictly concave. Therefore, also for the linear cost case we obtain a strictly concave Et(− exp(−ρEt+1))

in φt.

Note that for linear cost in the case of a maximum sgn (φit − φit−1) > 0 if the new optimal coordinate

φit > φit−1 and vice versa. In this case, to obtain an (almost) closed form solution for the optimal

strategy let h∗t := sgn
(
φ∗t − φ∗t−1

)
. By means of (48) we obtain the at 2N candidates [where φt ∈ Θ] for

a maximum

1

ρ
Vt(Rt+1(x))

Et (Rt+1)−Rft+11N −


±ζ · Iθ1t 6=θ1t−1

...

±ζ · IθNt 6=θNt−1


 . (53)

Suppose that at φ∗t the first order condition for linear or the quadratic cost case described in (48) holds

[for the linear case φt ∈ Θt and sgn
(
φ∗it − φ∗it−1

)
≥ 0 if φ∗it ≥ φ∗it−1 and vice versa has to hold]. Since

also for linear cost CARA expected utility is strictly concave in φt, we obtain a global interior maximum.
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Then,

φ∗t =


1
ρ
Vt(Rt+1(xt))

−1 (Et (Rt+1)−Rft+11N − ζh∗t ) , for linear cost when φt ∈ Θt and

1
ρ

(Vt(Rt+1(xt)) + 2ζIN )−1 (Et (Rt+1)−Rft+11N − 2ζφ∗t−1) , for quadratic cost .

(54)

Also if φt 6∈ Θt then a maximum exists. To see this consider e.g. φt = φt−1. By the strict concavity of

Et(− exp(−ρEt+1)) in φt we can find a compact and convex upper contour set where Et(− exp(−ρEt+1))

evaluated at elements of this set is larger or equal to Et(− exp(−ρEt+1)) evaluated at φt = φt−1. This set

is non-empty since φt = φt−1 is always an element of this set. Since Et(− exp(−ρEt+1)) is continuous the

extreme value theorem (see, e.g., Munkres (2000), Theorem 27.4) guarantees the existence of a maximum

in this compact upper contour set. By strict concavity this maximum is unique. Also in this case the

optimal φt is also abbreviated φ∗t .
28 In any case for the linear and the quadratic cost case we get an

interior global maximum with φ∗ ∈ Θ. For the regular cases [no cost, linear cost and φt ∈ Θt or quadratic

cost], by Assumption 2 the conditional moments in (54) exist and Vt(Rt+1(xt)) is invertible. In addition,

we assumed no trading cost for the risk-free asset shows up. To account for trading cost assume e.g. that

Rft+1 is trading cost adjusted. We observe that the optimal strategy provided in (54) is path dependent

in the presence of cost. That is to say, it depends on the histories φ∗0, . . . ,φ
∗
t−1. If no trading cost shows

up we get φ∗t = 1
ρVt(Rt+1(xt))

−1 (Et (Rt+1)−Rft+11N ) already obtained in (41), the optimal φ∗t does

not depend on any φ∗s, s 6= t. Due to the history dependence of the optimal strategy for the cases with

cost we obtain:

Lemma 1. Consider an economy with trading cost, i.e. ζ > 0. Then a unique optimal strategy φ∗t exists.

In general, φ∗t depends on φ∗s, s < t.

For the constrained case we get the Lagrangian

Lt (φt, λt) = et + φ>t (Et (Rt+1)− 1NRft+1)− ρ

2
φ>t Vt(Rt+1)φt − c (φ, ζ) + λt

(
et − 1>Nφt

)
. (55)

Consider the linear cost case: By taking first derivatives with respect to φit, i = 1, . . . , N , and λt we

28For a maximum where φt 6∈ Θt, the function Et(− exp(−ρEt+1)) can have a kink at the point of a maximum. Such a
case is relatively easy to construct with only one risk asset and a maximum at φt = φt−1.
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obtain the first order conditions

∂

∂φ>t
Lt (φt, λt) =

[
INEt (Rt+1)− IN1NRft+1 −

2

2
ρVt (Rt+1)φt

]
− ζsgn

(
φt − φt−1

)
− λt1N = 0N×1 ,

∂

∂λt
Lt (φt, λ) = et − 1>Nφt ≥ 0 , λt

∂

∂λt
Lt (φt, λ) = 0 . (56)

Again, if the constraint et − 1>Nφt is not binding, then λt = 0 and (54) provides us with the optimal

solution. By contrast, suppose that et − 1>Nφt∗ ≥ 0 hold, that the constraint becomes binding and

φ+
t (xt) =

1

ρ
(Vt (Rt+1))

−1 (Et (Rt+1)−Rft1N − ζsgn
(
φ+
t − φ+

t−1
))
− λ+t

1

ρ
(Vt (Rt+1))

−1
1N .

By plugging in φ+
t (xt) into et = 1>Nφ

+
t , we get

et = 1>N

[
1

ρ
(Vt (Rt+1))

−1 (Et (Rt+1)−Rft1N − ζsgn
(
φ+
t − φ+

t−1
))
− λ+t

1

ρ
(Vt (Rt+1))

−1
1N

]
,

such that

λ+t =
ρ

1>NVt (Rt+1)
−1

1N

[
1

ρ
1>NVt (Rt+1)

−1 (Et (Rt+1)−Rft1N − ζsgn
(
φ+
t − φ+

t−1
))
− et

]
=

ρ

1>NVt (Rt+1)
−1

1N

[
1>Nφ

∗
t (xt)− et

]
≥ 0 and

φ+
t (xt) = φ∗∗t (xt)− λ+t

1

ρ
(Vt (Rt+1))

−1
1N

= φ∗∗t (xt)−
ρ

1>NVt (Rt+1)
−1

1N

[
1>Nφ

∗
t (xt)− et

] 1

ρ
(Vt (Rt+1))

−1
1N

=
1

ρ
Vt (Rt+1)

−1 (Et (Rt+1)−Rft1N − ζsgn
(
φ+
t − φ+

t−1
))

−1

ρ
Vt (Rt+1)

−1
1N

(
ρ

1>NVt (Rt+1)
−1

1N

(
1>N

1

ρ
Vt (Rt+1)

−1 (Et (Rt+1)− ζsgn
(
φ+
t − φ+

t−1
))
− et

))

+
1

ρ
Vt (Rt+1)

−1

(
ρ

1>NVt (Rt+1)
−1

1N
1>N

1

ρ
Vt (Rt+1)

−1
1NRft

)

=
1

ρ
Vt (Rt+1)

−1

Et (Rt+1)−
ρ
(

1
ρ1>NVt (Rt+1)

−1 (Et (Rt+1)− ζsgn
(
φ+
t − φ+

t−1
))
− et

)
1>NVt (Rt+1)

−1
1N

1N

 . (57)

φ∗∗t (xt) need not be equal to φ∗t (xt) since the former contains sgn
(
φ+
t − φ

+
t−1

)
while the latter contains

the term sgn
(
φ∗t − φ∗t−1

)
. For quadratic cost we get

∂

∂φ>t
Lt (φt, λt) =

[
INEt (Rt+1)− IN1NRft+1 −

2

2
ρVt (Rt+1)φt

]
− 2ζ (φt − φt−1)− λt1N = 0N×1 ,

∂

∂λt
Lt (φt, λ) = et − 1>Nφt ≥ 0 , λt

∂

∂λt
Lt (φt, λ) = 0 . (58)

69



Once again, if the constraint et − 1>Nφ
∗
t is not binding, then λt = 0 and (54) provide us with the optimal

solution. For et − 1>Nφ
∗
t ≤ 0 we get

φ+
t (xt) =

1

ρ
(Vt (Rt+1) + 2ζIN )−1

(
Et (Rt+1)−Rft1N + 2ζφ+

t−1

)
− λ+

t

1

ρ
(Vt (Rt+1) + 2ζIN )−1 1N .

By plugging in φ+
t (xt) into et = 1>Nφ

+
t , we get

et = 1>N

[
1

ρ
(Vt (Rt+1) + 2ζIN )−1

(
Et (Rt+1)−Rft1N + ζφ+

t−1

)
− λ+

t

1

ρ
(Vt (Rt+1) + 2ζIN )−1 1N

]
,

such that

λ+
t =

ρ

1>NVt (Rt+1 + 2ζIN )−1 1N

[
1

ρ
1>N (Vt (Rt+1) + 2ζIN )−1

(
Et (Rt+1)−Rft1N + ζφ+

t−1

)
− et

]
=

ρ

1>N (Vt (Rt+1) + 2ζIN )−1 1N

[
1>Nφ

∗
t (xt)− et

]
≥ 0 and

φ+
t (xt) = φ∗t (xt)− λ+

t

1

ρ
(Vt (Rt+1) + 2ζIN )−1 1N

= φ∗t (xt)−
ρ

1>N (Vt (Rt+1) + 2ζIN )−1 1N

[
1>Nφ

∗
t (xt)− et

] 1

ρ
((Vt (Rt+1)) + 2ζIN )−1 1N

=
1

ρ
(Vt (Rt+1) + 2ζIN )−1

(
Et (Rt+1)−Rft1N + ζφ+

t−1

)
−

1

ρ
(Vt (Rt+1) + 2ζIN )−1 1N

(
ρ

1>N (Vt (Rt+1) + 2ζIN )−1 1N

(
1>N

1

ρ
(Vt (Rt+1) + 2ζIN )−1

(
Et (Rt+1) + ζφ+

t−1

)
− et

))

+
1

ρ
(Vt (Rt+1) + 2ζIN )−1

(
ρ

1>N (Vt (Rt+1) + 2ζIN )−1 1N
1>N

1

ρ
Vt (Rt+1)−1 1NRft

)

=
1

ρ
(Vt (Rt+1) + 2ζIN )−1

Et (Rt+1)−
ρ
(

1
ρ
1>N (Vt (Rt+1) + 2ζIN )−1

(
Et (Rt+1) + ζφ+

t−1

)
− et

)
1>N (Vt (Rt+1) + 2ζIN )−1 1N

1N

 . (59)

Lemma 2. Consider an economy with trading cost, i.e. ζ > 0. Then for the constraint problem a unique

optimal strategy φ+
t exists. In general, φ+

t is history dependent, that is, it depends on φ+
s , s < t.

For any φ∗t where φ∗t 6= φ∗t−1, we observe that the optimal strategy cannot be of the form φ∗it = φ0it+φ
>
1ixt

or φ∗it = φ0it + φ>1ixit, for i = 1, . . . , N , where φ0it and φ1i only follow from the conditional moments of

the returns, the risk-free rate and the degree of risk aversion (as observed in (46) for case where ζ = 0).

The same argument also holds for φ+
t .
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F.3 Deriving Certainty Equivalents

By using the optimal strategy φ∗t we obtain by means of (40) the value function (conditional on xt)

Vt(ρ, et,xt, ζ, c1) := Et(− exp(−ρEt+1))|φ=φ∗

= E
(
− exp

(
−ρ
[
(et − φ∗>t 1N )Rft+1 + φ∗>t Rt+1 − ζ‖φ∗t − φt−1‖1

]))
, (60)

for the linear cost case. If in addition, φ∗t ∈ Θt, then

Vt(ρ, et,xt, ζ, c1) := Et(− exp(−ρEt+1))|φ=φ∗

= − exp

[
−ρetRft+1 + ρφ∗>t 1NRft+1 − ρφ∗>t Et (Rt+1) +

ρ2

2
φ∗>t Vt(Rt+1)φ∗t + ρζ‖φ∗t − φ∗t−1‖1

]
= − exp

[
−ρetRft+1 + ρ

(
1

ρ
Vt(Rt+1)−1 (Et (Rt+1)−Rft+11N − ζh∗t )

)>
1NRft+1

−ρ
(

1

ρ
Vt(Rt+1)−1 (Et (Rt+1)−Rft+11N − ζh∗t )

)>
Et (Rt+1)

+
ρ2

2ρ2

(
Vt(Rt+1)−1 (Et (Rt+1)−Rft+11N − ζh∗t )

)> Vt(Rt+1)Vt(Rt+1(xt))
−1 (Et (Rt+1)−Rft+11N − ζh∗t )

+ρζ‖φ∗t − φ∗t−1‖1

]
= − exp

[
−ρetRft+1 −

(
Vt(Rt+1)−1 (Et (Rt+1)−Rft+11N − ζh∗)

)>
·
(
Et (Rt+1)−Rft+11N −

1

2
(Et (Rt+1)−Rft+11N − ζh∗t )

)
+ρζ‖φ∗t − φ∗t−1‖1

]

= − exp

[
−ρetRft+1 −

1

2
(Et (Rt+1)−Rft+11N − ζh∗t )

> Vt(Rt+1)−1 (Et (Rt+1)−Rft+11N + ζh∗t )

]
· exp [ρζ‖φ∗t − φ∗t−1‖1] , (61)
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for the linear cost case, while

Vt(ρ, et,xt, ζ, c2) := Et(− exp(−ρEt+1))|φ=φ∗

= Et
(
− exp

(
−ρ
[
(et − φ∗>t 1N )Rft+1 + φ∗>t Rt+1 − ζ‖φ∗t − φt−1‖22

]))
= − exp

[
−ρetRft+1 + ρφ∗>t 1NRft+1 − ρφ∗>t Et (Rt+1) +

ρ2

2
φ∗>t Vt(Rt+1)φ∗t + ρζ‖φ∗t − φ∗t−1‖22

]
= − exp

[
−ρetRft+1 + ρ

(
1

ρ
(Vt(Rt+1) + 2ζIN )

−1 (Et (Rt+1)−Rft+11N − 2ζφ∗t−1
))>

1NRft+1

−ρ
(

1

ρ
(Vt(Rt+1) + 2ζIN )

−1 (Et (Rt+1)−Rft+11N − 2ζφ∗t−1
))>

Et (Rt+1)

+
ρ2

2ρ2

(
(Vt(Rt+1) + 2ζIN )

−1 (Et (Rt+1)−Rft+11N − 2ζφ∗t−1
))>

Vt(Rt+1(x))

· (Vt(Rt+1)− ζIN )
−1 (Et (Rt+1)−Rft+11N − 2ζφ∗t−1

)
+ ρζ‖φ∗t − φ∗t−1‖22

]
, (62)

for the quadratic cost case. For zero trading cost the above expressions yield

Vt(ρ, et,xt, 0, 0) = − exp

[
−ρetRft+1 +

1

2
(Et (Rt+1)−Rft+11N )

> Vt(Rt+1)−1 (Rft+11N − Et (Rt+1))

]
. (63)

In addition, if the investor does not invest into risky assets, such that φt = 0N , for all t, and φ0 =

0N , expected utility is Et(− exp(−ρEt+1))|φ=0N = − exp(−ρetRft+1). Also the constrained case can be

investigated in a similar way by considering the Lagrangian (42) augmented by cost.

Next consider an investment strategy φ̃t [either for the constrained or the unconstrained problem],

CARA utility with parameter ρ, wealth/or endowment et, variables driving returns xt and a cost function

ci with parameter ζ. The conditional certainty equivalent, denoted Ct(ρ, et,xt, φ̃t, cj , ζ) in the following,

is provided by

Ct(ρ, et,xt, φ̃t, ci, ζ) = etRft+1 + φ̃>t (Et (Rt+1)− 1NRft+1)− ρ

2
φ̃>t Vt(Rt+1)φ̃t − ρζcj

(
φ̃, ζ

)
. (64)
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For the optimal strategy φ∗t this yields

Ct(ρ, et,xt,φ
∗
t , c1, ζ) = etRft+1 + φ∗>t (Et (Rt+1)− 1NRft+1)− ρ

2
φ∗>t Vt(Rt+1)φ∗t − ζ‖φ∗t − φ∗t−1‖1

for the linear cost case, and

Ct(ρ, et,xt,φ
∗
t , c2, ζ) = etRft+1 + φ∗>t (Et (Rt+1)− 1NRft+1)− ρ

2
φ∗>t Vt(Rt+1)φ∗t − ζ‖φ∗t − φ∗t−1‖22

for the quadratic cost case . (65)

If trading cost is zero, Ct(ρ, et,xt,φ∗, 0, 0) ≥ etRft+1. To see this, for φt = 0, we get φ0 = et and

the conditional certainty equivalent is etRft+1. Since φ∗t is chosen optimally the inequality has to hold

Ct(ρ, et,x,φ∗, 0, 0) ≥ etRft+1. If φ∗ 6= 0 by the strict concavity of the problem we obtain a strict

inequality. If no risk-free asset is available, Ct(ρ, et,x,φ+, 0, 0) > etRft+1 need not hold in general. The

unconditional certainty equivalent is provided in Section B of the main text.

F.4 Optimal Parametric Portfolio Policies

Next we consider parametric portfolio policies proposed in (4). Hence, consider investment weights wit =

w̄it + 1
N θ
>x̃it for i = 1, . . . , N ; here θ ∈ Θ = Rk and N is fixed. By (36), the amounts invested are

φ]it = etwit ∈ R. With parametric portfolio policies usually the weights are obtained by an optimization

problem based on the risky assets only. Hence, to obtain the weights invested into risky assets only

the case where the investor invests some fixed amount et has to be considered [therefore, we are closer

to the constrained case considered above.]. Often et = 1. Since some of the following calculations

are more straightforward when working with amounts invested, we proceed to work with φ]t. Then,

wt = (w1t, . . . , wNt)
> is an N × 1 column vector collecting the investment weights following from (36). In

addition,

X̃t :=
1

N
·



x̃>1t

x̃>2t
...

x̃>Nt
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is an N × k matrix [a reordering the elements of t̃ provides us with 1
N X̃t, the same works with non-

standardized values] and w̄t is an N × 1 column vector collecting w̄it. Suppose that w̄t ∈ RN can be

chosen optimally every period t and any asset i, following (48) yields etw̄t = φ∗t and θ = 0k×1. To obtain

a non-trivial solution with parametric portfolio policies we use (54) and proceed with some w̄t = 1
et
φ]0t.

For example φ]0t = et
1
N 1N ∈ RN (“1/N -portfolio”) or

φ]0t =


1
ρV(Rt+1)−1

(
E (Rt+1)−Rft+11N − ζsgn

(
φ]t − φ

]
t−1

))
, for linear cost and

1
ρ (V(Rt+1)− ζIN )−1

(
E (Rt+1)−Rft+11N − 2ζφ]t−1

)
, for quadratic cost ,

(66)

where Et (Rt+1) and V(Rt+1) denote the (unconditional) expectation and variance, respectively.

By plugging in φ]0t we obtain the the optimal θ. This yields

Et(− exp(−ρEt+1))|
φ
]
t=φ

]
0t+etX̃tθ

= E
(
− exp

(
−ρ
[(
et −

(
φ

]
0t + etX̃tθ

)>
1N

)
Rft+1 +

(
φ

]
0t + etX̃tθ

)>
Rt+1

−ζ‖
(
φ

]
0t + etX̃tθ

)
−
(
φ

]
0t−1 + et−1X̃t−1θ

)
‖1
]))

= − exp

(
−ρ
[(
et −

(
φ

]
0t + etX̃tθ

)>
1N

)
Rft+1 +

(
φ

]
0t + etX̃tθ

)>
Et
(
Rt+1

)
−
ρ2

2

(
φ

]
0t + etX̃tθ

)>
Vt
(
Rt+1

) (
φ

]
0t + etX̃tθ

)
−ζ‖

(
φ

]
0t + etX̃tθ

)
−
(
φ

]
0t−1 + et−1X̃t−1θ

)
‖1
])

for the linear cost case, and

Et(− exp(−ρEt+1))|
φ
]
t=φ

]
0t+etX̃tθ

= E
(
− exp

(
−ρ
[(
et −

(
φ

]
0t + etX̃tθ

)>
1N

)
Rft+1 +

(
φ

]
0t + etX̃tθ

)>
Rt+1

−ζ‖
(
φ

]
0t + etX̃tθ

)
−
(
φ

]
0t−1 + et−1X̃t−1θ

)
‖22
]))

= − exp

(
−ρ
[(
et −

(
φ

]
0t + etX̃tθ

)>
1N

)
Rft+1 +

(
φ

]
0t + etX̃tθ

)>
Et
(
Rt+1

)
−
ρ2

2

(
φ

]
0t + etX̃tθ

)>
Vt
(
Rt+1

) (
φ

]
0t + etX̃tθ

)
−ζ‖

(
φ

]
0t + etX̃tθ

)
−
(
φ

]
0t−1 + et−1X̃t−1θ

)
‖22
])

for the quadratic cost case . (67)

First, suppose that θ can be chosen every period t, yielding θt. Taking partial derivatives in (67) with
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respect to θt yields the first order condition

∂

∂θ>t
Et(− exp(−ρEt+1))|φ]

t=φ]
0t+etX̃tθt

= Et (− exp(−ρEt+1))

·
[
ρetX̃

>
t 1NRft+1 − ρetX̃ >

t Et (Rt+1) +
2ρ2

2
etX̃

>
t Vt (Rt+1)

(
φ]0t + etX̃tθt

)
+ρζ

(
etX̃t − et−1X̃t−1I(θt=θt−1)

)>
sgn

((
φ]0t + etX̃tθt

)
−
(
φ]0t−1 + et−1X̃t−1θt−1

))]
= 0k×1

for the linear cost case and θ such φt ∈ Θt, and

∂

∂θ>t
Et(− exp(−ρEt+1))|φ]

t=φ]
0t+etX̃tθt

= Et (− exp(−ρEt+1))

·
[
ρetX̃

>
t 1NRft+1 − ρetX̃ >

t Et (Rt+1) +
2ρ2

2
etX̃

>
t Vt (Rt+1)

(
φ]0t + etX̃tθt

)
+2ρζ

(
etX̃t − et−1X̃t−1I(θt=θt−1)

)> ((
φ]0t + etX̃tθt

)
−
(
φ]0t−1 + et−1X̃t−1θt−1

))]
= 0k×1

for the quadratic cost case . (68)

Here all the terms in the last [·] of (68) are Ft-measurable; the indicator function I(θt=θt−1) was added to

consider the case θ = θt = θt−1 later.

By taking second partial derivatives we observe that ∂
∂θ>t ∂θt

Et(− exp(−ρEt+1))|
φ]t=φ

]
0t+etX̃tθt

< 0 for

zero or quadratic cost. That is, we consider a strictly concave function. To show that
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Et(− exp(−ρEt+1))|
φ]t

= φ]0t + etX̃tθt is strictly concave in θt, from (68) we obtain

∂

∂θ>t ∂θt
Et(− exp(−ρEt+1))|

φ]t=φ
]
0t+etX̃tθt

= Et (− exp(−ρEt+1))
[
ρ2e2

t X̃
>
t Vt (Rt+1) X̃t

]
+Et (− exp(−ρEt+1))

·
[
ρetX̃

>
t 1NRft+1 − ρetX̃ >

t Et (Rt+1) + ρ2etX̃
>
t Vt (Rt+1)

(
φ]0t + etX̃tθt

)
+ζρ

(
etX̃t − et−1X̃t−1I(θt=θt−1)

)>
sgn

((
φ]0t + etX̃tθt

)
−
(
φ]0t−1 + et−1X̃t−1θt−1

))]
·
[
ρetX̃

>
t 1NRft+1 − ρetX̃ >

t Et (Rt+1) + ρ2etX̃
>
t Vt (Rt+1)

(
φ]0t + etX̃tθt

)
+ζρ

(
etX̃t − et−1X̃t−1I(θt=θt−1)

)>
sgn

((
φ]0t + etX̃tθt

)
−
(
φ]0t−1 + et−1X̃t−1θt−1

))]>
for the linear cost case and θ such that φt ∈ Θt, and

∂

∂θ>t ∂θt
Et(− exp(−ρEt+1))|

φ]t=φ
]
0t+etX̃tθt

= Et (− exp(−ρEt+1))
[
ρ2e2

t X̃
>
t Vt (Rt+1) X̃t

]
+Et (− exp(−ρEt+1))

[
ρζ
(
etX̃t − et−1X̃t−1I(θt=θt−1)

)> (
etX̃t − et−1X̃t−1I(θt=θt−1)

)]
+Et (− exp(−ρEt+1))

·
[
ρetX̃

>
t 1NRft+1 − ρetX̃ >

t Et (Rt+1) + ρ2etX̃
>
t Vt (Rt+1)

(
φ]0t + etX̃tθt

)
+2ζρ

(
etX̃t − et−1X̃t−1I(θt=θt−1)

)> ((
φ]0t + etX̃tθt

)
−
(
φ]0t−1 + et−1X̃t−1θt−1

))]
·
[
ρetX̃

>
t 1NRft+1 − ρetX̃ >

t Et (Rt+1) + ρ2etX̃
>
t Vt (Rt+1)

(
φ]0t + etX̃tθt

)
+2ζρ

(
etX̃t − et−1X̃t−1I(θt=θt−1)

)> ((
φ]0t + etX̃tθt

)
−
(
φ]0t−1 + et−1X̃t−1θt−1

))]>
for the quadratic cost case . (69)

By Assumption 2 the Hessian matrices obtained in (69) are negative definite. The case with linear

cost and θ such that φt 6∈ Θt can be considered in the same way as φt 6∈ Θt case in the derivation of

the optimal strategy described above (see (50) to (52) where φt is replaced by φ]t). This implies that

Et (− exp (−ρEt+1)) is strictly concave in θt, for linear and quadratic cost respectively. In the case of zero
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trading cost, we observe by setting ζ = 0 in (69) that also without trading cost the Hessian is negative

definite. Then the optimal θt follows from (68). To obtain θ = θt, ∀t, we impose

Assumption 3. The stochastic properties of Rt and xt are such that E (− exp(−ρEt+1)) exists and that

taking partial derivatives and expectations can be interchanged.

Hence, E (− exp(−ρEt+1)) = E (Et(− exp(−ρEt+1))) (see, e.g., Klenke, 2008, “tower rule” (Theo-

rem 6.28)) and taking partial derivatives and expectations can be interchanged (see, e.g., Klenke, 2008,

“Differentiation Lemma” (Theorem 6.28)). This yields

∂

∂θ>
E (Et(− exp(−ρEt+1))) |

φ
]
t=φ

]
0t+etX̃tθt

= E
(
−Et (exp(−ρEt+1)) ·

[
−ρetX̃ >

t 1NRft+1 + ρetX̃
>
t Et (Rt+1)− 2ρ2

2
etX̃

>
t Vt (Rt+1 (xt))

(
φ]0t + etX̃tθ

)]
−ζ
(
− exp(−ρEt+1)sgn

((
φ]0t + etX̃tθ

)
−
(
φ]0t−1 + et−1X̃t−1θ

))(
etX̃t − et−1X̃t−1

)))
= 0k×1 ,

for the linear cost case θ such that φt ∈ Θt, and

∂

∂θ>
E (Et(− exp(−ρEt+1))) |

φ
]
t=φ

]
0t+etX̃tθt

= E (Et (− exp(−ρEt+1))

·
[
ρetX̃

>
t 1NRft+1 − ρetX̃ >

t Et (Rt+1) + ρ2etX̃
>
t Vt (Rt+1)

(
φ]0t + etX̃tθt

)
+2ρζ

(
etX̃t − et−1X̃t−1

)> ((
φ]0t + etX̃tθt

)
−
(
φ]0t−1 + et−1X̃t−1θt−1

))])
= 0k×1

for the quadratic cost case . (70)

In contrast to (68), where we were able to solve for θt, now the stochastic matrix X̃t remains within

the expectation operator. Although the moment generating function can be computed for some terms

separately (normal and non-centered Wishart distribution if X̃ is normal as well), up to our knowledge

a closed from expression for E (− exp(−ρEt+1)) (if e.g. xt follows a normal distribution) is not available.

To show that an optimal θ exists [given φ̆0t and the existence of E (− exp(−ρEt+1))], note that by

(69) [and the arguments for φt 6∈ Θt in the linear case], the conditional expectation Et(− exp(−ρEt+1))

is strictly concave in θ(= θt = θt−1) (without cost, with linear cost as well as with quadratic cost). This

holds for any X̃t (almost surely). To see this, for no cost or quadratic cost ∂
∂θ>∂θ

E (− exp(−ρEt+1))=

E
(

∂
∂θ>∂θ

Et(− exp(−ρEt+1))
)
= E

(
Et( ∂

∂θ>∂θ
− exp(−ρEt+1))

)
, such that E (− exp(−ρEt+1)) is strictly

concave in θ. For linear cost where the Hessian does not exist for all φt ∈ Θ, we follow (50) to (52)

where φt is replaced by φ]t) and use the convexity of the function inside the exponential and the fact that

ex is strictly montone and strictly convex. This shows that E (Et (− exp(−ρEt+1))) is strictly concave in
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θ also for the linear cost case. Note that, Θ = Rk. If at least one coordinate of θ goes to +∞ or −∞, the

quadratic form θ>X̃ >
t Vt (Rt+1) X̃tθ becomes the dominating term in (67) and Et (− exp(−ρEt+1)) goes

to −∞ for (almost) all xt, which implies that also E (− exp(−ρEt+1)) goes to minus infinity. Note that

without cost and with linear cost, the term θ>X̃ >
t Vt (Rt+1) X̃tθ dominates the other terms, while in the

case of quadratic cost the cost term amplifies the effects of θ>X̃ >
t Vt (Rt+1) X̃tθ. Next we consider (70).

The first derivative either (i) becomes minus infinity if at least one coordinate of θ becomes small, while

the first derivative becomes plus infinity if at least one coordinate of θ becomes large [X̃t has full column

rank almost surely] or (ii) becomes plus infinity if at least one coordinate of θ becomes small, while the

first derivative becomes minus infinity if at least one coordinate of θ becomes large [depending on X̃t; the

argument with the derivative also holds for the linear cost case for φt ∈ Θt]. E (− exp(−ρEt+1)) is also

continuous in θ. By the above arguments, a supremum cannot be attained at any boarder of Θ = Rk

and a maximum must be in the interior of Θ = Rk. Since E (− exp(−ρEt+1)) is strictly concave in θ

this maximum is global and unique. Hence, we observe that an optimal θ ∈ Θ exists and the strategy

φ]t = φ]0t + etX̃tθ is well-defined for CARA utility (given some weak regularity conditions). Note that

this result holds without cost, with linear cost or with quadratic cost respectively. Finally we derive

conditional expected utility when applying φ]t = φ]0t + etX̃tθ. That is,

V̆t(ρ, et,xt, ζ, c1) := Et(− exp(−ρEt+1))|
φt=φ

]
t

= Et
(
− exp

(
−ρ
[
(et − φ]>t 1N )Rft+1 + φ]>t Rt+1 − ζ‖φ]t − φ]t−1‖1

]))
= − exp

[
−ρetRft+1 + ρφ]>t 1NRft+1 − ρφ]>t Et (Rt+1) +

ρ2

2
φ]>t Vt(Rt+1(x))φ]t + ρζ‖φ]t − φ]t−1‖1

]
= − exp

[
−ρetRft+1 − ρ

(
φ]0t + etX̃tθ

)>
(Et (Rt+1)− 1NRft+1)

+
ρ2

2

(
φ]0t + etX̃tθ

)>
Vt(Rt+1)

(
φ]0t + etX̃tθ

)
+ ρζ‖

(
φ]0t + etX̃tθ

)
−
(
φ]0t−1 + et−1X̃t−1θ

)
‖1
]
,

for the linear cost case, and

V̆t(ρ, et,xt, ζ, c2) := Et(− exp(−ρEt+1))|
φt=φ

]
t

= Et
(
− exp

(
−ρ
[
(et − φ]>t 1N )Rft+1 + φ]>t Rt+1 − ζ‖φ]t − φ]t−1‖

2
2

]))
= − exp

[
−ρetRft+1 + ρφ]>t 1NRft+1 − ρφ]>t Et (Rt+1) +

ρ2

2
φ]>t Vt(Rt+1(x))φ]t + ρζ‖φ]t − φ]t−1‖

2
2

]
= − exp

[
−ρetRft+1 − ρ

(
φ]0t + etX̃tθ

)>
(Et (Rt+1)− 1NRft+1)

+
ρ2

2

(
φ]0t + etX̃tθ

)>
Vt(Rt+1)

(
φ]0t + etX̃tθ

)
+ ρζ‖

(
φ]0t + etX̃tθ

)
−
(
φ]0t−1 + et−1X̃t−1θ

)
‖22
]
,

for the quadratic cost case . (71)
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Then, for the strategy φ]t = φ]0t + etX̃tθ the conditional certainty equivalent is provided by

Ct(ρ, et,xt,φ
]
t, c1, ζ) = etRft+1 +

(
φ]0t + etX̃tθ

)>
(Et (Rt+1)− 1NRft+1)

−ρ
2

(
φ]0t + etX̃tθ

)>
Vt(Rt+1)

(
φ]0t + etX̃tθ

)
−ζ‖

(
φ]0t + etX̃tθ

)
−
(
φ]0t−1 + et−1X̃t−1θ

)
‖1 ,

for the linear cost case, and

Ct(ρ, et,xt,φ
]
t, c2, ζ) = etRft+1 +

(
φ]0t + etX̃tθ

)>
(Et (Rt+1)− 1NRft+1)

−ρ
2

(
φ]0t + etX̃tθ

)>
Vt(Rt+1)

(
φ]0t + etX̃tθ

)
−ζ‖

(
φ]0t + etX̃tθ

)
−
(
φ]0t−1 + et−1X̃t−1θ

)
‖22 ,

for the quadratic cost case . (72)

Since Ct(ρ, et,xt,φ∗t , ci, ζ) obtained in (64) arises from utility maximization and expected utility is strictly

concave in φ [see equation (49)], we get

0 ≤ Ct(ρ, et,xt,φ
∗
t , c1, ζ)− Ct(ρ, et,xt,φ

]
t, c1, ζ)

=
(
φ∗t − φ

]
t

)∗>
(Et (Rt+1)− 1NRft+1)

−ρ
2

(
φ∗>t Vt(Rt+1)φ∗t − φ

]>
t Vt(Rt+1)φ]t

)
−ζ
(
‖φ∗t − φ∗t−1‖1 − ‖φ

]
t − φ

]
t−1‖1

)
,

for the linear cost case, and

0 ≤ Ct(ρ, et,xt,φ
∗
t , c2, ζ)− Ct(ρ, et,xt,φ

]
t, c2, ζ)

=
(
φ∗t − φ

]
t

)∗>
(Et (Rt+1)− 1NRft+1)

−ρ
2

(
φ∗>t Vt(Rt+1)φ∗t − φ

]>
t Vt(Rt+1)φ]t

)
−ζ
(
‖φ∗t − φ∗t−1‖22 − ‖φ

]
t − φ

]
t−1‖

2
2

)
,

for the quadratic cost case , (73)

with equality if and only of φ∗t = φ]t.
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