DISCUSSION PAPER SERIES

DP17743

EXTENDING THE DEMAND SYSTEM
APPROACH TO ASSET PRICING

Thomas Gehrig and Leopold Ségner

ASSET PRICING




ISSN 0265-8003

EXTENDING THE DEMAND SYSTEM APPROACH TO
ASSET PRICING

Thomas Gehrig and Leopold Ségner

Discussion Paper DP17743
Published 12 December 2022
Submitted 03 December 2022

Centre for Economic Policy Research
33 Great Sutton Street, London EC1V 0DX, UK
Tel: +44 (0)20 7183 8801
www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research programmes:
* Asset Pricing

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on policy, but the Centre
itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage

discussion and comment. Citation and use of such a paper should take account of its provisional
character.

Copyright: Thomas Gehrig and Leopold Ségner



EXTENDING THE DEMAND SYSTEM APPROACH TO
ASSET PRICING

Abstract

We extend the demand systems approach of Koijen and Yogo (2019) to more general classes of
preferences. Specifically we analyse constant absolute and constant relative risk aversion, provide
conditions for the existence of equilibrium, and evaluate equilibrium prices at US-data. We find that
constant absolute risk aversion works particularly well at moderate levels of risk aversion. In the
case of relative risk aversion, optimal interior portfolio solutions may not even exist. In both
preference classes especially out-of-sample predictions are rather volatile. In order to improve out-
of-sample performance we augment the optimal strategies by a shrinkage device. As a side
product we establish that the characteristics-based parametric portfolio approach of Brandt, Santa
Clara and Valkanov (2009) can only be justified as optimal investments under exceedingly strong
assumptions. In empirical data the shrinkage approach outperforms the parametric approach and
the naive 1/N-strategy over quite a wide range of levels of absolute and relative risk aversion.

JEL Classification: C51, G11, G12
Keywords: parametric portfolio approach, Expected utility, Risk aversion, Machine learnings

Thomas Gehrig - thomas.gehrig@univie.ac.at
University of Vienna and CEPR

Leopold Ségner - soegner@ihs.ac.at
IHS Vienna

Acknowledgements

Gehrig gratefully acknowledges the hospitality of the Financial Markets Group at LSE. Without implicating them we are grateful for
the comments of Suleyman Basak, Jonathan Berk, Thomas Dangl, Richard Franz, Jens Jackwerth, Christian Julliard, lan Martin,
Roland Mestel, Otto Randl, Andrea Tarelli, Rossen Volkanov and Josef Zechner and the participants of the AWG in Graz, ESSFM
in Gerzensee as well as the Finance Brown Bag Seminar at WU.



Extending the Demand System Approach to Asset Pricing

Thomas Gehrig* Leopold Sognerf Arne Westerkamp*

December 3, 20225

Abstract

We extend the demand systems approach of Koijen and Yogo (2019) to more general classes of prefer-
ences. Specifically we analyse constant absolute and constant relative risk aversion, provide conditions
for the existence of equilibrium, and evaluate equilibrium prices at US-data. We find that constant
absolute risk aversion works particularly well at moderate levels of risk aversion. In the case of rela-
tive risk aversion, optimal interior portfolio solutions may not even exist. In both preference classes
especially out-of-sample predictions are rather volatile. In order to improve out-of-sample performance
we augment the optimal strategies by a shrinkage device. As a side product we establish that the
characteristics-based parametric portfolio approach of Brandt, Santa Clara and Valkanov (RFS 2009)
can only be justified as optimal investments under exceedingly strong assumptions. In empirical data
the shrinkage approach outperforms the parametric approach and the naive 1/N-strategy over quite a

wide range of levels of absolute and relative risk aversion.

Keywords: parametric portfolio policy, expected utility, risk aversion.

JEL: C51, G11, G12.

*Thomas Gehrig (thomas.gehrig@univie.ac.at), Tel. +43 1 4277 38071, Faculty of Business, Economics, and Statistics,
University of Vienna Oskar- Morgenstern-Platz 1 A-1090 Vienna, Austria.

TLeopold Ségner (soegner@ihs.ac.at), Tel. 443 1 59991 182, Department of Economics and Finance, Institute for Advanced
Studies, Josefstadter Strale 39, A-1080 Vienna, Austria. T. Gehrig and L. Ségner have a further affiliation with the Vienna
Graduate School of Finance (VGSF).

¥Arne Westerkamp (arne.westerkamp@iqam.com), Tel. +43 1 31336 5070, IQAM Research Center, Wollzeile 36-38, 1010
Wien. The views expressed herein are solely those of the authors and do not necessarily represent the views of IQAM Invest.

$Gehrig gratefully acknowledges the hospitality of the Financial Markets Groupt at LSE. Without implicating them we
are grateful for the comments of Suleyman Basak, Jonathan Berk, Thomas Dangl, Richard Franz, Jens Jackwerth, Christian
Julliard, Tan Martin, Roland Mestel, Otto Randl, Andrea Tarelli, Rossen Volkanov and Josef Zechner and the participants of
the AWG in Graz, ESSFM in Gerzensee as well as the Finance Brown Bag Seminar at WU.



1 Introduction

In their widely acclaimed contribution Koijen and Yogo (2019) develop an asset pricing model with flexible
heterogeneity in asset demand across investors. Their framework is especially useful in modelling non-
atomic investors such as large institutions and pension funds. In their framework, with log-utility and
short-selling constraints in place, optimal portfolio choice reduces to characteristics-based demand, when
returns exhibit a factor structure, which allows them to construct and apply an instrumental variable
estimator in order to deal with the endogeneity of demand and asset prices. Finally, these authors
illustrate the power of their approach on US stock market data and investor holding data from 1980-2017.

We extend the approach of Koijen and Yogo (2019) in various dimensions. First, we allow for general
constant relative risk aversion (relative risk aversion parameter v € R~ () rather than imposing log-linear
utility (v = 1). Second, we extend the analysis to the case of constant absolute risk aversion. Doing
so allows us to connect the demand system approach directly to the parametric portfolio approach of
Brandt et al. (2009). Third, we add the analysis in absence of short-selling constraints in order to analyse
and evaluate the empirical relevance of this restriction. Fourth, we show how a shrinkage device can be
included in a simple way to “stabilize” the investment strategies and to improve performance in empirical
data. Fifth, we show the existence of equilibrium in an economy with heterogeneous agents specifically
for the cases of constant absolute risk aversion (CARA), and constant relative risk aversion (CRRA)
preferences. This result still holds if a — not-necessarily proper — subset of the agents apply the shrinkage
device proposed in this article. Finally, we illustrate the performance of those extensions at the hand of
US stock market data on asset prices.!

The basic insights from extending the demand systems approach to asset pricing are the following:

e We find that parametric portfolio policies (see Brandt et al., 2009) can be derived as optimal
portfolio policies only under very restrictive assumptions. Typically, optimal portfolio investments

differ from solutions to the characteristics-based approach.

e The case of constant absolute risk aversion generates relatively simple solutions because of the

'In the absence of individual holdings data, in contrast to Koijen and Yogo (2019) our empirical analysis focuses on asset
pricing only since we cannot identify demand.



absence of wealth effects. We demonstrate that our optimal strategies with shrinkage outperform

parametric portfolio policies and a simple 1/N investment strategy.

e In the case of constant relative risk aversion, technical pitfalls have to be avoided by imposing
restrictions on domains or adapting objective functions for the region of large losses. The necessity
of such restrictions is demonstrated empirically at the example of S&P 500 stocks for the US in the
period from 1995-2013 especially for low levels of relative risk aversion. Overall we find that the
performance of the “constant relative risk aversion-adaptions” are relatively poor for low levels of
relative risk aversion . However, the performance is improving for higher levels, both in-sample
as well as out-of-sample. We observe that for moderate and higher v our optimal strategies with
shrinkage outperform parametric portfolio policies and a simple 1/N investment strategy. For large

~ the differences in the performance become small.

The demand systems approach can be interpreted as a reduction technique to explain asset prices as
a function of a few exogenous characteristics. Such a reduction technique is expected to reduce numerical
complexity and to enhance robustness. Obviously the validity of such a procedure depends on the true
underlying economic structure.

Our insights are particularly useful for popular machine learning algorithms (see, e.g., Nagel, 2021),
since they allow to fuse prior economic knowledge with big data on asset prices and further underlying
information sources. Our analysis identifies potential, and empirically relevant pitfalls, and provides
solutions to such challenges for algorithmic portfolio optimization. In particular, and in contrast to Nagel
(2021), where ridge regression is used to predict returns, we propose an algorithm that allows to shrink
towards some specific portfolio weights such as the 1/N-portfolio.

The paper is organized as follows: Section 2 provides a literature review. Section 3 presents the basic
model. Section 4 presents asset demand based on constant absolute risk-aversion (CARA-preferences)
and develops the conditions for the parametric portfolio policy as an optimal solution to the portfolio
investment problem. Section 5 analyses CRRA-preferences. Section 6 presents asset prices derived in
general asset market equilibrium for both, the CARA as well as the CRRA-preferences discussed in the

sections before. Section 7 presents an empirical evaluation of the pricing theories at a sample of one-



hundred S&P 500 stocks. This chapter also provides robust empirical evidence of potential pitfalls for the
unchecked parametric portfolio approach. Section 8 concludes. The Appendix contains a section on the

properties of the empirical data and a detailed derivation of the CARA model in Section 4.

2 Literature and Relations to Machine Learning

As already stated in the Introduction in our approach we obtain optimal portfolio weights given some
characteristics (abbreviated x;; in the later parts of this article). In the following sections we also inves-
tigate whether these optimal rules are equal to or at least approximately correspond to the parametric
portfolio approach of Brandt et al. (2009). In addition, we observe that the optimal rules show poor
out-of-sample performance, at least in the empirical data set considered in this article. To improve on
this issue a quadratic penalty function will be included.

Our paper is not the first to discuss issues related to the missing micro-foundations of the parametric
portfolio policy approach. Ammann et al. (2016) show that the parametric portfolio policy approach
implies unrealistically large amounts of implied short sales and provide conditions to render the approach
more empirically appealing, and more in line with the empirical findings of Medeiros et al. (2014). Our
contribution complements these earlier studies by providing a micro-foundation for the parametric portfolio
policy approach in a factor setting. We adopt this approach to a S&P 500 sub-sample of 100 assets for the
period of 1979-2013 and compare it to the optimal solution implied by the micro-founded model. Other
closely related work is Hjalmarsson and Manchev (2012), who consider the special case of mean-variance
preferences. We also compare the results with the ad-hoc heuristics of the 1/N-rule (see, e.g., DeMiguel
et al., 2009).2

Further reduction techniques and methods to stabilize and improve estimates and /or forecasts are tools
recently provided in machine learning literature (for an overview, see e.g., Nagel, 2021). For example, in
Nagel (2021)[Chapter 4] ridge regression is applied to improve the forecasting performance of a predictive
regression model, where a quite large set of exploratory variables is used to predict asset returns. Then

these forecasts are used for portfolio allocation. Also Kelly et al. (2021) use ridge regression techniques

2An overview on reduction techniques is e.g. provided in Thés (2019).



to forecast asset returns by using a large set of predictors. The authors also connect ridge regression to
the Moore-Penrose pseudo inverse (which corresponds to the case where the shrinkage parameter becomes
small). In addition, the authors consider the case where the number of regression parameters becomes
large and use random matrix theory to obtain asymptotic results (further theoretical results are provided
in Hastie et al., 2022). In their empirical analysis CRSP-data was used. The authors show that using
a bulk of “plausibly relevant predictors” in combination with “rich non-linear models”, improves return
forecasting and portfolio returns. Non-parametric regression in combination with shrinkage is applied to
portfolio allocation in Freyberger et al. (2020).

Alternatively, neural networks — in particular reinforcement learning — can be used to directly optimize
the objective function of an investor (see, e.g., Cong et al., 2020). The parametric portfolio approach
of Brandt and Santa-Clara (2006) can be seen as special case of this machine learning approach (by
considering a small number of predictors as well as a linear dependence structure).

In this article we augment our objective function (that is, either CARA or CRRA expected utility) by a
quadratic penalty term. In contrast to Kelly et al. (2021), Nagel (2021), and a lot of other 'machine learning
in finance papers’ cited there, the number of predictors remains small in our analysis. We show that for
CARA utility our optimization problem exactly corresponds to the optimization problem observed in the
case of ridge regression. For constant relative risk aversion we show that by using a second order Taylor
series approximation of the utility function the optimization problem corresponds to a ridge regression
problem. Our approach allows to shrink the portfolio weights towards weights chosen by the investor
(such as the equally weighted portfolio). We observe that in our empirical data the implementation of the
characteristics-based approach of Koijen and Yogo (2019) requires the application of shrinkage methods
to stabilize and improve out-of-sample performance.

As well known to literature (see, e.g., James et al., 2017, p. 226), the ridge regression estimator
corresponds to the posterior mean of the vector of regression parameters in a Bayesian regression model
with normally distributed noise and a normal prior on the regression parameters (e.g., W, and covariance
1pIn in Section 5). In our analysis the vector of regression parameters corresponds to our portfolio

matrix =

weights. The ridge regression methodology easily allows to integrate a-priori information on portfolio



weights. The stronger the prior on these weights the more we shrink towards the a-priori weights chosen
by the investor. One prominent example is the equally weighted portfolio discussed in DeMiguel et al.
(2009). Hence, in contrast to the machine learning approaches discussed above, our approach directly

allows to integrate a-priori information on investment weights.

3 Model and Assumptions

We follow Koijen and Yogo (2019) and consider an economy with discrete time ¢. Denote the one-period
return (or yield) of security ¢ from period ¢ to t+1 as 741, and the gross-returns as R;; 41 := 1+7r41. The
index set of traded risky securities (e.g. stocks) in period t is abbreviated by I;.> Ny, 1 < Ny < N < oo,
is the number of risky elements in I;. In the case a risk-free asset is traded we apply the index ¢ = f, its
return is ry4q, and the total number of assets is n; = N; + 1 in [;; in sums the summation index 0 is
used for the risk-free asset. Denote the share price of asset 7 in period ¢t by P;; and the number of traded
shares by S;;. Accordingly, the market value of equity of asset ¢ is given y P;:.S;; and aggregate market
).

capitalization reads > .y P;Si. Denote the vector of share prices by Py := (Pyy, ..., Pt

i€l
If the number of securities is constant, then Ny = N (and n; = n) for all t = 1,...,T. For a given set

of weights w;; € R, the portfolio return is rpi1 := >, o, WitTit+1, With Ry := 1 + rpi41 denoting the

i€l
portfolio’s gross return.?

We collect observed characteristics in x;; € R¥, i = 1,...,n;, where x; could contain endogenous,
predetermined and or exogenous variables. 5 In particular, we assume that market equity (in the empirical

data a stationary transformation of market equity) of asset 7, that is P;;.S;, is contained in x;;. Following

Koijen and Yogo (2019), let x;; contain these observed variables as well as unobserved variables. We

3For example, the set I; contains S&P 500 or CRSP-identifiers.

4For vectors and matrices we apply boldface notation. That is x € R® denotes an a-dimensional column vector, while
X € R**® denotes a matrix with a rows and b columns. x;; ; = [x;+] abbreviates the jth coordinate of the vector x;;. 1nx1
(for short 1nx1) and Onx1 =nx1 denote N-dimensional column vectors of ones and zeros, respectively. vech(A) transforms
the lower triangular part of an n X n matrix A into a n(n + 1)/2-dimensional column vector. 1(4) denotes an indicator
function. u’(z) and v'(x) denote the first derivatives of the functions u(-) and v(-) evaluated at = € R.

Given a filtered probability space with filtration (]—'t)teNO, the random variables observed in the periods 1,...,s < t are
Fi-measurable. The Fi-conditional expectation is abbreviated by E; (R¢+1), the Fi-conditional (co-)variance is Vi (Ri41).

5For definitions see, e.g., Davidson and MacKinnon (1993).



explicitly assume that prior investment weights or amounts invested are not contained in x;. Let

¥}

Xit
Yit == | wvech (}“{Zti;) € R

collect terms obtained from raising the elements of x;; by 7 = 1,2,.... Then we assume that returns
follow from

Ry ao1t Ay 0 O Vit E1t

= + +
Rntt A0n.t 0 0 Antt Yn: Engt
~ —_———

R aopt Ay ytER"t’“ I

Aji, j=1,...,n, are 1 x ky-dimensional matrices. In the case a risk-free asset is traded Ay = 014,

Xt = Opx1, €7t = 0, and Ry = agypi. The vector of noise terms €;, contains the Ny-dimensional subvector
g affecting the risky assets. Its expectation is zero and covariance matrix X;. To slightly simplify the
analysis and in contrast to Koijen and Yogo (2019) we did not impose a factor structure on the covariance
matrix ¥;, however this simplifying assumption can be relaxed in a straightforward way. [The above
paragraphs imply that Assumption 1 of Koijen and Yogo (2019) holds by our model assumptions.| Koijen
and Yogo (2019) as well as this article allows for investor dependent A;;, a;; and y;;. However to simplify

the notation an additional index for an investor is only included if necessary. Next we impose

Assumption 1. (i) Ry, y;, and &; are jointly stationary and ergodic.5 The first and the second moments
exist. (ii) y¢ has full rank covariance matrix. (iii) The noise term process (€;) follows a martingale
difference sequence, such that the conditional expectation of the return of asset i is a; + Ayt The

covariance matrix X, is finite, symmetric and positive semi-definite.

By (ii) we exclude constant characteristics and colinearities between y;. That is, no characteristic is

redundant. The stronger assumption of a positive definite (conditional) covariance matrix of risky returns

5For definitions see, e.g., Klenke (2008), Chapter 20.



is imposed in Section 4 only to obtain a unique optimal investment strategy. Part (i) is important for the
empirical implementation of the model, since it avoids technical problems with possibly non-stationary

regressors. By (iii) the conditional expectation is affine in y;;.

Consider a sequence of myopic investment problems. There are no trading costs. In each period t,
t=1,2,..., an investor is endowed with wealth e; > 0. This wealth can be invested into IV; alternatives,
in addition, a risk-free asset can but need not be traded. Portfolio optimization traditionally involves the
optimal determination of those weights w;; (or amounts invested into asset i, ¢;;,) with respect to a utility
function, potential endowment and trading constraints. ¢;; = ejw;; is the amount invested in monetary
units in asset ¢, while wy := (wyy, .. ., th,t)T € RY and ¢; := (41, . ., ngt’t)T € Rt are the investments
(investment weights) into the risky assets in the following. Let YV C R™ and Wy C R™ denote the sets of
feasible strategies. Hence, (wys, wi)' € W or equivalently (¢r, ¢1)" € Wy [if no risk-free asset is traded
the W and W, are such that ws, = 0 and ¢ = 0]. Preferences of a typical (or representative) investor are
specified by the expected utility (conditional on the information in period t) over gross portfolio returns

Ryit1 = ZZ‘; (No—ne)+1 wit Ryt 41, resulting in the optimization problem

max_ E; (u(eiRpit1)) = max E: (u(Ey1)) = max E, (u (et (1 + Z wiﬂ"it+1> )) , (1)

(wre,we) TW (wye,we)TEW (wge,we) T EW py=r
¢

where u(-) is a strictly monotone increasing Bernoulli utility function defined on the domain D C R and
e: the wealth invested in period t. We assume that e;, t = 1,2,..., are already given or fixed before
any portfolio optimization is performed. Hence, in the optimization problem (1), the e; invested are

deterministic. Let us define an investment rule as characteristics based if w;; or the amounts invested are

affine in y;, i = 1,..., N;. That is, for investment weights we have”
wir = T + Iy, foralli=1,...,N; . (2)
Given a vector of investment weights w; := (w1, . . ., tht)T € RM into the risky assets, the t+1 period

wealth is Fpy1 = e,gwtT Ry if no risk-free asset is traded. If a risk-free asset is traded (or depositions

"This definition is different from Koijen and Yogo (2019)[see equation (10) there] where In (w;:/wy¢) [in our notation] are
affine in the firm’s characteristics y;;, while in our case the strategy is allowed to depend in all y;+, ¢ = 1..., N;. Since a
risk-free asset need not be traded we proceed with the definition provided in (2).

To reduce the notational burden we simply write w{ instead of w} (¥:), etc.



and lending in cash are allowed), its gross return will be R¢;11 > 0; wyy is the corresponding proportion
of the wealth invested into the risk-free asset at period t. In the case a risk-free asset is traded Eyi1 =
etw;r Riy1 +eqwypiRpry1. To jointly consider both cases we write Eyq = etw;r Riy1 +ewp Rpryq, and
assume that wy; = 0 if no risk-free asset is traded. As already stated above, note that the next period’s
amount invested, e;y1, need not be equal to the realization of Fy;1. By contrast, e;41 > 0 is some
non-random real number.

In contrast to the standard Markowitz (1952) approach, where optimal portfolio weights typically
depend on a large number of first and second moments of the return distribution, the parametric portfolio
policy of Brandt et al. (2009) reduces the dimensionality of the optimization problem by modelling a
small number of drivers of the portfolio weights directly.® Often the dimensionality of the drivers & is
very low (e.g. 3 in our empirical setting below) and only investments into risky assets are considered
(wge = 0). Specifically, the weights are modelled as functions w;i; = fi(IN¢, Zi1; 0). Typically, & is a vector

of standardized variables. That is, for observed variables x; € RFx,

9 —0.5
- . 1 1 1
xit := | diag m Z (Xit - ﬁt Z Xit) (Xit - ﬁt Z Xit) . (3)
i€l i€l i€l
0= (64,... ,HkX)T is a k,-dimensional parameter vector in the parameter space © C R*x: if not otherwise

stated © = R¥x. @ is assumed to be constant over time and is chosen such that expression (1) is maximized.

Following Brandt et al. (2009) we also focus our attention on the linear function

1
Wit = Wit + 70T)~(it s for all 7 = 1, ceey Nt . (4)

Ny
Equation (4) results in the parametric portfolio strategy (bgt 1= e;w; such that ¢§ = (eqwi, - . ., ew Nt,t)T
In all applications we work with w;; = 1/N;, where w; := (wiy, ... ,tht)T. Some further results on

parametric portfolio policies are provided in Appendix A.

Finally, the vector Z;; used for parametric portfolio policies and the observed characteristics driving

8For the estimation of the covariance matrix and related problems necessary to empirically implement a Markowitz (1952)-
type approach see, e.g., Ledoit and Wolf (2004, 2017).



expected returns need not to be the same. To simplify notation and to provide a fair comparison between
parametric strategies and some (approximately) optimal strategies obtained later we set X;; = x;; (hence

also k = k), where the standardized characteristics X;; = x;; are assumed to be stationary.

Remark 1. Ferson and Siegel (2001) investigate unconditional minimum-variance portfolios. In their
work the corresponding moments are obtained by conditioning on random variables, similar to our variables
x¢.  In addition, Hjalmarsson and Manchev (2012) show that if the return generating process is linear in
the lagged, de-meaned predictor variables (Xit in our notation), the optimal parametric portfolio weighting
policy (i.e., the @s) can be derived analytically but only for the case of mean-variance preferences. [Compare

also to discussion about in optimal 0 in the Appendiz F.4].

Next we develop asset demand for the cases of constant absolute risk aversion (Section 4) and then

for constant relative risk aversion (Section 5).

4 Parametric Portfolio Policies with Constant Absolute Risk Aversion

In this section we explore constant absolute risk aversion by applying a Bernoulli utility function u(x) =

—exp(—pz), x € R, where the parameter p > 0 expresses constant relative risk aversion, defined by

Z/,/((;)) = p. The domain D of this function is the real axis.” The number of risky assets is Ny = N.

For the CARA case it is easier to work with the amounts invested ¢;. The weights of investments
into the risky assets follow from ¢; and e;, that is w; = ﬁqf)t. In addition to NV risky assets we also
consider the case where a risk-free asset is traded [the risk-free asset has cross-sectional index i = f, in
the case n = N + 1]. The portfolio vector of risky-assets is ¢, = (d1y, - - - ,QSN,:)T e RV, where Oir is
the money amount invested into risky asset ¢ at period ¢t. The amount invested in the risk-free asset
is ¢ = e — ¢/ 1 if a risk-free asset is traded, and ¢pe = 0, Vt, otherwise. Hence, the value of
the portfolio in period t 4+ 1 is a random variable and given by F;+1 = ¢; (wftth + Zf\il witRitH) =
GrRp1 + SN birRir1 =D GitRir1 + (6t -y, ¢it> Rp1= ¢/ Rip1 + (et -y ¢tTlN) Ry,

where R;y1 denotes the vector of risky returns and ¢, € © = RY. In this section we impose:

9Problems considered in Observation 6(b) do not show up. For example, in companion work (Gehrig et al., 2018) we have
explored behavioural utility functions.

10



Assumption 2. Ry, conditional on y; (or the observed variables x;;, ¢ = 1, ..., N) is multivariate normal
with mean parameter E; (R¢41) and conditional covariance ¥; = V; (Ry11) satisfies 0 < V; (Ry41) < o0

[i.e. the conditional covariance matrix is finite and regular].

We first analyse optimal investment strategies and then apply a shrinkage procedure.

4.1 Optimal Strategy

Using the assumption of normally distributed innovations in the absence of transactions costs we can

derive conditional expected utility

2
Eo(—exp(—pEis1) = —exp |—per = p (Ee(Revr) = InBpivn) + 50 ViR, | - (5)

Maximizing (5) yields the vector of optimal amounts invested into the risky assets

-1

& (%) = ;wt(Rm))—l (B (Rep1) — Rpl) - (6)

by

B

The remaining wealth ¢ = e; — 15,¢; € R is invested into the risk-free asset. In case when a risk-free

asset is not available, we can establish the following result:'°

p (%IJTVVt (Ris1) "By (Regr) — et)
10V (Resr) 1y

b (xi) = ;Vt(RtJrl)_l E: (Ret1) — iy | . (7)

From (6) and (7) we conclude:

Observation 1. (i) The optimal strategies ¢} and ¢; exist and are unique. The optimal ¢} does not
depend on the initial wealth e;. The total amount invested into risky assets d);“TlN depends on y; € RNk
(or x; € RVK). The amount invested into the risk-free asset follows from Gpt = et — o "1n. Given that

@ "1x > ey, for the problem without risk-free asset we get ¢pt =0 and (;SjTlN = e;.

0For details see Appendix F.1.

11



(i1) Suppose that Assumption 1 holds, then ¢, is affine in y, and the strategy is a characteristics based
strategy. If the conditional expectation of the returns remains affine also for a subvector of y;:, for example
the observed characteristics X, then this strategy is also characteristics based.

(iii) Since the weights depend on y;, i« = 1,..., N, the investment weights are — in general — not of

the structure described in (4). Hence, the optimal strategy is in general not a parametric strategy.

In Appendix A.3 we introduce linear and quadratic cost. In Appendix F.2 we observe that optimal

strategies are path dependent and therefore not parametric as defined in the main text.

4.2 CARA Utility and Shrinkage

Let us now analyse the general case with or without short-selling and apply a shrinkage procedure. By

maximizing expected utility (5), we get:

Observation 2. (i) In-sample, good performance in terms of the certainty equivalent (see equation (18)
presented later) and the Sharpe ratio for our empirical data set (see Section C) is observed. (ii) The out-
of-sample performance is quite poor. The reason for this is that especially without short-selling constraints
the optimal strategy ¢f = B;lbt is very risky (see also Table D.2 in Appendiz D.2).

Figure 1 plots realized returns R,;41 for ¢;, the parametric strategy gbf and the 1/N-strategy q.’)%/ N
[since e; = 1, 4)5 = wtﬁ and qf)g N = wt1 / N w?ct = w}{N = 0]. Note that the vertical axes have different
scales and the variation of the returns becomes very large with ¢}. In our empirical data set this results
in poor out-of-sample performance. To circumvent this problem we augment the optimization problem
by a shrinkage device. In terms of econometrics we consider a ridge regression problem'!, while in terms
of finance we add an object close to a quadratic cost term. Although also a cost function as described in
Section A.3 can be used as some kind of punishment function, we want to exclude path-dependence [as

discussed in Appendix F.2] and shrink ¢, or the weights w; towards some specific values J)t or weights

1Ridge regression was proposed to consider multi-colinearity in regression problems and has become more prominent as
a shrinkage device in more recent machine learning literature (see, e.g., Hastie et al., 2009, Chapter 3.4) or Nagel (2021)
for applications in asset pricing models. We applied a quadratic punishment term because of its trace-ability. “Linear
punishment” can be included by working with ¢;-distance. This corresponds to the LASSO, where optimal weights can be
obtained by applying least angle regression (see Hastie et al., 2009). A mixture of linear and quadratic punishment terms
results in the elastic net, see Zou and Hastie (2005) and Chapter 3.4 in Hastie et al. (2009). To obtain closed form solutions
we proceed with the ridge-regression.
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w,, respectively. Hence, we consider a positive definite N x N matrix C; and the punishment term
~L(¢— 1) Ci(d—pi). With ¢, = W, = Onyq we shrink to zero, while with ¢ = €51y
shrink towards the 1/N-portfolio. By using transformed expected utility (5), the (possible) short-selling
constraints ¢, > 0, and the shrinkage device, we get by := pey, by := p (Ey (Ryy1) — lNthH)T, B; =

p2 P2 .
EVi(Riy1 — INnRpiy1) = 5 Vi(Riq1), and the Lagrangian

L(pt, M - -, Ant) = bor + brpy — %¢:Bt¢t + Z it @it — % (¢ — (13t)T Ci (o0 — ) -

1=1

Let Ay := (A1, - - ,)\Nt)T. Taking first partial derivatives with respect to ¢ and A, we get the Kuhn-

Tucker conditions

OL(¢, A b
(af;—rt) = bt—Bt¢t+}\t—Ct(¢t_¢t):0N’ ®)

¢
oL A
(ad);t) ¢it =0, i=1,...,N , and the complementary slackness conditions

it

OL(t, A
0 = Ait(;;tt):)\it@t,izla“w]v‘ ®)

Gpt = ep — Zf\i 1 @it in the case a risk-free asset is traded. The second order conditions are satisfied by
the quadratic structure of the optimization problem (see, e.g., Simon and Blume, 1994, Chapter 19.3). If
no short-selling constraints are binding or if we consider an optimization problem without short-selling

constraints we obtain Ay = Oy and
#; = (Bi+Cy) ' (b +Ciy) . (10)
Let C; be equal to ¢,Iy, then (10) yields
1 1

¢, = g (Vt ((Rt+1 — Rpry11n) (Reqr — th+11n)T> + Cp1n> (Et (Re1 — Rps11n) + pepdy) - (11)

Observe that the optimal investments qb? € RY do not depend on the wealth level e, d)gct =e— Zf\; 1 qﬁgt.

For ¢, = 0 we arrive at an optimization problem problem without shrinkage (where ¢ = ¢}), while the

13



larger ¢, the more we shrink towards ¢: = eywy. To see this, for large c,, the terms multiplied by ¢,

1

become the dominating terms. Hence, for large cp, (j)?e x5 (cpIn)_1 (pcp(ﬁt) = ¢;. Summing up, we get

Proposition 1 (Asset Demand with CARA-Preferences). Suppose that the Assumptions 1 and 2 hold.
Consider an investor with CARA preferences and ¢, > 0. Then, if no short selling constraints are
present or if the short selling constraints are not binding, the optimal shrinkage strategy provided in
(11) is a characteristics based strategy. If the conditional expectation of the returns remains affine also
for a subvector of y;:, for example the observed characteristics X;:, then the optimal strategy is also

characteristics based.

Panel (b) of Figure 1 plots the realized returns when applying ¢? with ¢, = 0.2 and shrinkage to
the 1/N-portfolio; since e; = 1 we get J)t = %etl N = %1 ~- When looking at the scale of the ordinate
we observe that the variation of the returns R, decreases a lot. In the case of binding short-selling
constraints the system of inequalities (8) can be transformed to a linear programming problem. However,
we observed that due to a high number of assets the optimal weights under short-selling constraints can
hardly be obtained by applying standard linear programming methods. Hence, we applied numerical tools
to obtain the optimal investments qbgfo described by (8). Here the Matlab function fminsearch is used,

where we start the optimisation routine from max{0, gbzt}, i=1,...,N.

5 Constant Relative Risk Aversion

Let us now focus on constant relative risk aversion (CRRA). This case demonstrates potential pitfalls

arising from parametric portfolio policies and a Bernoulli utility function defined in R<g. For CRRA

the Bernoulli utility function is v(x) := 111__; for v > 0, v # 1 and Inx for v = 1. The domain D of

v(x) is the positive half-line R-g. Given Assumption 1 and the second order condition [see (22) in the
Appendix], expected utility is strictly concave in 8. However, for CRRA preferences in a simple binary
model, examples can be constructed where the portfolio returns R,; do not remain in the domain D = R+
or where for a concave utility function, the first derivative always stays positive (or negative), such that

only a supremum exists. Hence, no optimal @ € R¥ exists in these cases [see equation (22) and Gehrig
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et al. (2018)]. Therefore, we obtain

Observation 3. For an investor with CRRA preferences an optimal @ € RF solving the parametric

portfolio optimization problem (21) need not exist.

In the next steps we investigate whether Observation 3 is also relevant for real world data. To do
this, let us now apply the parametric portfolio policy approach in its original version of Brandt et al.
(2009) to US stocks that are particularly relevant for institutional investors, namely S&P 500 stocks;
[see Section 7.1 and Appendix C]. Our observations cover the time span from 04/1979 to 12/2013, which
amounts to T' = 415 and N = 100.

Consider for example the strategy defined in (4). Since relative risk aversion is only defined on the
domain of positive gross returns we need to check the underlying data, and potentially develop a strategy
of how to deal with negative gross returns. In order to analyze whether negative portfolio returns are
observed in the underlying empirical data we pick some @ € R? and check whether Ryt+1 becomes negative.
And indeed, it turns out that in all the cases considered we observe negative R,y for large @ (in absolute
terms), one large coordinate of @ turned out to be sufficient for negative gross returns. Hence, (i) and (ii)
of Observation 6 [see Appendix A.1] become relevant in real world data. As demonstrated and discussed

in more detail in Appendix E we extend the domain to the real line by applying the utility function

v (et Rptt1) , for Ryi1 > g,
(% (etRpt+1) = (12)

(v (ewpr) — 6V (erhRr)) + 00’ (e1r) €1 Rpi+1 , for Rpp1 < Y,

where ¥ > 0. With (12) we apply v (e;Rpi+1) for all Ryp1 > p. At Rprp1 = YR we get v, (eR) =
v(eppr) = (v (err) — 0V (eshRr)) + 6V’ (e1Rr) esbgr. For 0 = 1, we observe that v/ (e;r)= v’ (e1¥r) is
equal to the slope of the line described by (e;v (Yr) — 1 -0 (e¢r)) + 1 -0 (etR) Rpt41-

Using these insights, we consider the optimization problem (1), where preferences are described by the
approximate CRRA wutility function v,. We assume that a risk-free asset and N risky assets are traded,
the portfolio weights are w; = ¢;/e; for the investments in the risky securities and wys = ¢/e; for the

risk-free asset. Hence, n = N + 1. By a Taylor series approximation of expected utility at ws—; and
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w = (Wi, - - ,wm)T = 0y we obtain

Ei (0y(Ee1)) = Ei(v(erRpts1)) = Ee (v5(er (Rprg1 + We (R — Rypiga1n))))

~ v, (erp1Rp41) + vy (e Rpg1)Er (Req1 — Ryppr11n) wy

=:qp¢ =

1
_§WtT (—vé’ (et41Rypes1) €7 By ((Rt+1 — Rpr11n) (Regr — th+11N)T)> w, . (13)

=Ay

In the following optimization problem we also allow for short-selling constraints, that is w;; > 0. (see, also
Koijen and Yogo, 2019, for a model with log-utility). Especially, the out-of-sample performance is very
poor and the approximately optimal strategy w; = A, Loy is very risky. Hence, similar to Section 4 we
proceed with a shrinkage device. We consider a positive definite N x N matrix C; and the punishment
term —% (wy — v'vt)—r C; (wy — Wy), where with w; = Onx1 we shrink to zero, while with w; = %1N><1
shrink towards the 1/N portfolio.'? By using the expected utility approximation (13), the short-selling

constraints and the shrinkage device we get the Lagrangian
1 al 1
L(wg, A1ty .- ANe) = o + opwy — QW:Atwt + Z it Wit — 3 (wi — W) | Cy (W —Wy) .

=1

Taking first partial derivatives with respect to w; and A;, we get the Kuhn-Tucker conditions

OL(wy, A .
L—I—t) oy — Atwt + At — Ct (Wt — Wt) = ON 5 (14)
ow,
L A
8((;:\'5’75) = wiyp=0,t=1,..., N, and the complementary slackness conditions
it
L A
0 = AitW:Aitwit,izL...,N. (15)
it

The second order conditions are satisfied by the quadratic structure of the optimization problem. If

no short-selling constraints are binding or if we consider an optimization problem without short-selling

12 Stabilizing conditions on the weights on ws, i = 1,..., N, can be included. That is w < Zf\;l w;+ < w. This, results on
two further inequality constraints which can be included in a straightforward way. This is also implemented in our Matlab
code. By using these constraints only the out-of-sample performance remains poor [without shrinkage].
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constraints we obtain A\; = Oy and

W = (.At -+ Ct)_l (at + CtVVVt)

_ etRlevé(etth_;_l) - >
= (A +CH ! <a + Civy | . 16
( t t) t etth+1”Ué (etth+1) tWt ( )

Let My PR(€t+1th+1) denote the relative Arrow-Pratt measure evaluated at e;41Rpi41. Since Ry > 1

Ry ~ 1
Mapr(et+1Rfiq1) Mapr(etRyfiq41)”

chosen such that e; 1Ry 1 > W > 0. In this case we Taylor expand at the classical CRRA branch of

and usually close to one, we get In realistic scenarios ¥ can be

the Bernoulli utility function wv,, that is 9”11_? In the following, let C; be a diagonal matrix such that

C; = (—vlg/ (et+1th+1) e%) cpln, where Iy denotes the N-dimensional identity matrix and ¢, > 0. Recall
Rpry 1

" " i ' ~
that v’ < 0 and v, (z) <0 for z > V. Then the approximation Mapr(et+1Rfi11) — Mapr(et+1Rypi11) and
(16) result in
1 (Ez ((Rt+1 — Rpt1ln) (Regr — th+11N)T) + C;DIN)_1 (Et (Rt — Ry ln) + ’1 CtWt)
p etRpir1v)(etRyit1)
) 1 —v] (ery1Rype41) €7 .
= 3 (]Et ((Rt+1 — Rpr11n) (Riyr — th+11N)T> + CpIN) <Et (Reg1 — Rpealn) + (etth_‘_l’UI;(etRfH—l)) eI
1
L y
~ v E, ((Rt+1 — Ryt111n) (Riy1 — th+11N)T) +cpln (B¢ (Res1 — Rppaln) +yepWi) =t wy (17)

Bt

Hence, we get

Proposition 2 (Asset Demand with CRRA-Preferences). (i) Suppose that Assumption 1 holds, ¢, > 0
and either 3 is positive definite or ¢, > 0. Consider an investor mazimizing expected utility with Bernoulli
utility function vy (). Then, if no short selling constraints are present or if the short selling constraints
are not binding, the optimal shrinkage strategy (17) is a characteristics based strategy.

(ii) If the conditional expectation of the returns remains affine also for a subvector of yit, for example
the observed characteristics X, then the optimal strategy is also characteristics based. (iii) If the term By
is diagonal the weights only dependent on y;:. A parametric strategy of the form described by (4) can be

optimal, in which case wi?t = Wit + 0 xi; has to hold.

Note that a diagonal B; and the equality w?t = wy + 0 x; are still a strong requirements. Having

derived demand functions under different preference specifications, we will next analyse the implications
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for equilibrium asset pricing.

6 Equilibrium

Koijen and Yogo (2019) prove the existence of a (unique) equilibrium price vector in the economy they
consider. Recall, in Koijen and Yogo (2019) all agents are log-utility investors, where heterogeneity in
the characteristics as well as in the parameters related to these characteristics can be present. Short
selling constraints are given for all agents, the main results relate to cases where these constraints are not
binding. Related to this issue we consider J > 0 agents either with CARA or CRRA preferences (also the
risk-aversion parameters can be different). Asset demand for agent j is given q&ib’j , where qbib’j = wi’j E{
for CRRA preferences and (bzb’j = q’)?’j for CARA preferences. In contrast to Koijen and Yogo (2019) we
assume that y;, only contains endogenous variables which are affine in P;;. No higher order terms such as
(PiSit)?, v > 1, are included. Market clearing demands for Py S;; = 23]21 gb?’j ,i=1,...,N. Since qbib’j
is affine in P; if no short selling constraints are present or binding, we determine a unique equilibrium

price vector.!® Hence, we get

Proposition 3 (Market Equilibrium). Consider an economy with J > 0 investors. Each investor j is
either a CARA or CRRA (in more detail, v, is applied) expected utility maximizer. Suppose that the
Assumption 1 holds and c; > 0. Suppose that either no short selling constraints are present or no short
selling constraint is binding.

For each CRRA utility maximizer, either 3; is positive definite or ¢, > 0. For each CARA utility
maximizer Assumption 2 holds.

Suppose that ygt (or observable subvector th) only contains endogenous variables which are affine

functions of Piz. Then a unique equilibrium price vector exits.

Equipped with this theoretical foundations we can now evaluate the empirical performance of the

demand systems approach for both preference classes in the next section.

13Since market clearing conditions are affine linear in the prices, finding an equilibrium price vector corresponds to solving
N linear equation. By contrast, Koijen and Yogo (2019) allow for higher order terms (P;+Si¢)", v > 1. Due to short-selling
constraints lower and upper bounds for the strategies can be obtained in a straightforward way which also allows to apply
Brouwer’s fixed point theorem on a compact strategy space. Since we also consider the case without short selling constraints,
we do not obtain a compact set which would allow us to proceed with standard fixed point arguments.
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7 Empirical Results

7.1 Comparison of Strategies for the CARA-Case

Let us now compare investment strategies at the hand of US stock prices. Specifically, we consider the

following strategies:

Abbreviation Investment Strategy

¢>§ optimal strategy with naive covariance estimator with shrinkage
¢?7 LW optimal strategy with Ledoit and Wolf (2004) covariance estimator with shrinkage
?’20 optimal strategy with naive covariance estimator, without short-selling,

with shrinkage
(,‘b:%g[, optimal strategy with Ledoit and Wolf (2004) covariance estimator,
without short-selling, with shrinkage

%/N 1/N-portfolio as e.g. considered in DeMiguel et al. (2009)
(,i)g parametric portfolio strategy
5’20 parametric portfolio strategy without short-selling

Table 1: CARA Investment Strategies

While the optimal strategies exploit second moments, the parametric portfolio strategies estimate
optimal portfolio weights directly as a function of the characteristics without estimating variances and
covariances. The %—estimator corresponds to a simple investment heuristic that abstracts from any infor-
mation about second moments or any other characteristics. Appendix D.2 describes how the conditional
expectations E; (R;;+1) [including the characteristics x;;] and variances V; (R;+1) are estimated. In con-
trast to Koijen and Yogo (2019) (but following a large finance literature), we run predictive regressions to
estimate Ey (Ri41).

Our sample consists of N = 100 S&P stocks with monthly data from April 1979 to December 2013
(for more details on the data see Appendix C). The 100 firms considered were traded continuously during
this time span. We decided to work with these 100 firms to avoid further problems and effects arising
from missing data. The wealth invested per period is e; = 1. Since our main focus is on the risky assets
and to exclude impacts arising from changes in the risk-free rate, we assume a constant risk-free rate of
Ry = 1.001.

The k& = 3 macro-variables x;; of the parametric policy are:
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® Xt is the natural logarithm (In) of one plus the firm’s book-to-market ratio,
® Xit2 is the natural logarithm of the firm’s market equity,

® Xit,3 is a momentum variable obtained from the compound returns from the periods ¢t — 13 to t — 2.

As already stated in Section 3 we assume that the standardized x;; provides us with a stationary process
of observed characteristics x;;. In particular, x;; is the subvector of y;; used to obtained the amounts
invested (ﬂ. In addition, in the empirical implementation we work with constant, i.e. not time-varying,
model parameters. This of course simplifies the econometric analysis. In addition, by this assumption we
investigate whether our relatively simple shrinkage strategies can already improve over 1/N or parametric
strategies when working with constant model parameters. The observations from ¢t = 1,...,200 are used
to estimate the model parameters (training sample). For in-sample and out-of-sample comparisons, we
use the observations t = 1,...,200 and ¢t = 201, ...,415, respectively.'*

In addition, we consider the 1/N-portfolio as e.g. considered in DeMiguel et al. (2009), this portfolio
is denoted (1)% N 1n the case short-selling constraints we apply the notation (bi’zo for the optimal strategy
(including shrinkage) and ¢§’20 for the parametric strategy.

We are particularly interested in the performance of the optimal investment strategy relative to the
characteristics-based portfolio choice. For the exponential utility function u(z) = —e* the certainty
equivalent CT is the (smallest) value x where E (u(Fy11)) = u(x). We estimate the certainty equivalent

by means of

CT = (Bu(Ba)) = v | 7 S ulBi) | (18)
teTy

where Ty is the set of time points used for the evaluation of the strategy and Ty is the number of time

t.1° In addition to estimates of the certainty equivalent we calculated (estimates

points contained in this se
of) the Sharpe ratio by the average excess returns over the sample standard deviation of the excess returns

(when using the corresponding evaluation sample).

141t is insightful to compare both, simulated and empirical data; results with simulated data are provided in Appendix D.
'5In Tables 2 and 3 the set Ty = {1,...,200} (in-sample) or Ty = {201,...,415} (out-of-sample), were t = 1,...,200 is
used for parameter estimation.
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Tables 2 and 3 present the results for the CARA utility case for different levels of constant absolute
risk aversion, spanning the ranges from 0.25, 0.5, 1,2 to 5.16
These tables show estimates of the certainty equivalent CT and its standard deviation, the average

wealth obtained, mean(FE}), and its standard deviation, the Sharpe Ratio, and the proportions of weights

__mean(FEry1)

< 0 and < —1. The average gross return, in formal term mean(R) o

Since e; = 1 we get
mean(Ry) = mean(E;) and mean(ry) = mean(E;) — 1. Hence, only mean(E}) is presented.

In-sample results: By considering the estimates of the certainty equivalents o1 , we observe that the
optimal strategies (b*z show the best performance. Due to short-selling constraints we obtained ¢Z’ZO < (,‘b?.
The difference caused by working with different estimation methods of the covariance matrix are small.
The performance of the parametric strategy ¢§ is poor for low degrees of risk aversion, but becomes closer
to the performance of the optimal strategy for p > 1. By imposing short-selling constraints ¢§’20 is almost
equal to the results with 1/N-portfolio (our optimization routine is started with w; = 1/N and 6 = 0;
differences in the numbers between ¢t,20 and ¢t1 N are only observable when looking at further digits
after the comma). Appendix D provides results for simulated data, where we observe that in the case the
true parameter values are known the optimal strategies shows superior performance.

Out-of-sample results are then presented in Table 3. In this case, our optimal shrinkage strategies still
have in almost all cases a slightly higher (estimate of the) certainty equivalent. For p = 5 we observe the
highest certainty equivalent for the 1/N-strategy. For p > 2 the performance of the strategies considered
are quite similar. Finally both Tables present the proportion of the portfolio weights smaller than zero
and the proportion of weights smaller than —1. Note that especially for parametric portfolio policies with

p < 1, the proportion of weights smaller than minus one is very high. Summing up, we get

Observation 4. (i) In-sample: Not surprisingly, the optimal strategy shows the best performance,
followed by the 1/N-strategy and the parametric strategy. For larger p the performances of the

alternative strategies as measured by the certainty equivalent perform quite similarly.

(ii) Out-of-sample: The optimal shrinkage strategies show the best performance followed by the 1/N-

16We span the range of parameters that have been applied in different research environments in the experimental lab such
as Goeree et al. (2002), Harrison and Rutstrom (2008), in the field experiments Tanaka et al. (2010) or in macroeconomic
studies such as Hansen (1982).
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strategy. Only for a large degree of absolute risk aversion the performances of the strategies consid-

ered are roughly the same across strategies.

For small values of absolute risk aversion parametric portfolio policies imply a large amount of

short-selling in- and out-of-sample.

In sample, the informational content contained in the variance-covariance matrix relative to the %—
portfolio, as measured by the certainty equivalent, is decreasing the in level of absolute risk aversion.

It is particularly high for risk aversion below 1. It is always negative for parametric portfolio policies.
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Figure 1: Returns R, ;1 against ¢, calibration period ¢ = 1,...,200, T' = 416, N = 100 and n = 101.

= 0.5 and CARA utility. Subfigure (a) applies ¢; [that is ¢ with ¢, = 0] where the Ledoit and
Wolf (2004) estimator is used to obtain an estimate of the covariance matrix, That is, ¢§ obtained in
(11) where the shrinkage parameter ¢, = 0. Scaling of vertical axis [-400, 800], (b) applies ¢; obtained
in (1) where the Ledoit and Wolf (2004) estimator is used to obtain the covariance matrix, shrinkage
parameter ¢, = 0.2. Scaling of vertical axis [—10,15], (c¢) parametric portfolio policy, scaling of vertical
axis [—100,200], (d) 1/N-strategy, scaling of vertical axis [0.75,1.2].

23



b b b,>0 b,>0 1/N ,>0
p =025 b: ¢t,LW t t,LW b, ¢’§ ¢§

ci 1.3997  1.4014  1.3137  1.3148  1.0153  -34.2976  1.0153
sd (&) 0.0380  0.0382  0.0356  0.0349  0.0023 2.11E+04  0.0023
mean(Ex) 14657  1.4683 1.3728  1.3724  1.0156 3.0080  1.0156
sd(Ey) 07234  0.7286  0.6926  0.6845  0.0420  11.5086  0.0420
Sharpe Ratio 0.6424  0.6414 05368  0.5426  0.3465 0.1744  0.3466
mean(wit < 0) 0.1888  0.1888  0.0000  0.0000  0.0000 0.4837  0.0000
sd (wir < 0) 0.0477  0.0479  0.0000  0.0000  0.0000 0.0290  0.0000
mean (wie < —1)  0.0000  0.0000  0.0000  0.0000  0.0000 0.4443  0.0000
sd (wie < —1) 0.0000  0.0000  0.0000  0.0000  0.0000 0.0262  0.0000
p=05 b blw b btw B o B
= U , t t,LW t t t
ci 1.2023  1.2031  1.1350  1.1410  1.0151 0.3416  1.0151
sd (CAI) 0.0153  0.0153  0.0133  0.0129  0.0018 0.3325  0.0018
mean(Ex) 12373 1.2386  1.1601  1.1655  1.0156 1.3093  1.0156
sd(Ey) 0.3722  0.3748  0.3148  0.3128  0.0420 1.6562  0.0420
Sharpe Ratio 0.6350  0.6339  0.5259  0.5055  0.3465 0.1861  0.3466
mean(ws < 0) 0.1832  0.1816  0.0000  0.0000  0.0000 0.4806  0.0000
sd (wie < 0) 0.0478  0.0479  0.0000  0.0000  0.0000 0.0291  0.0000
mean (wie < —1)  0.0000  0.0000  0.0000  0.0000  0.0000 0.2514  0.0000
sd (wir < —1) 0.0000  0.0000  0.0000  0.0000  0.0000 0.0190  0.0000
p=1 ¢ dlw & diow b i =
ci 11035 1.1039  1.0725  1.0702  1.0147 1.0016  1.0147
sd ((/J\I) 0.0049  0.0049  0.0041  0.0042  0.0011 0.0143  0.0011
mean(E;) 11231 11238 1.0860  1.0839  1.0156 1.1076  1.0156
sd(Ey) 0.1966  0.1980  0.1643  0.1655  0.0420 0.4494  0.0420
Sharpe Ratio 0.6211  0.6201 05013  0.5176  0.3465 0.2371  0.3466
mean(ws < 0) 0.1687  0.1693  0.0000  0.0000  0.0000 0.4799  0.0000
sd (wir < 0) 0.0477  0.0476  0.0000  0.0000  0.0000 0.0339  0.0000
mean (wie < —1)  0.0000  0.0000  0.0000  0.0000  0.0000 0.0325  0.0000
sd (wiy < —1) 0.0000  0.0000  0.0000  0.0000  0.0000 0.0071  0.0000
p=2 ¢ Slw 6w b ¢ B
= , t t, LW t t t
ci 10539  1.0541  1.0342  1.0350  1.0138 10213 1.0138
sd (&) 0.0010  0.0010  0.0008  0.0008  0.0004 0.0015  0.0004
mean(Ey) 1.0660  1.0663  1.0419  1.0428  1.0156 1.0459  1.0156
sd(Er) 0.1089  0.1096  0.0870  0.0878  0.0420 0.1548  0.0420
Sharpe Ratio 05970  0.5961  0.4767  0.4695  0.3465 0.2899  0.3465
mean(wi < 0) 0.1469  0.1463  0.0000  0.0000  0.0000 0.4558  0.0000
sd (wiz < 0) 0.0442  0.0445  0.0000  0.0000  0.0000 0.0378  0.0000
mean (wie < —1)  0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000
sd (wir < —1) 0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000
p=5 b, diow ST dliw b o ¢’
_ , t t, LW t t t
ci 10234 1.0235  1.0149  1.0143  1.0109 1.0036  1.0109
sd (&) 2.80E-5 2.81E-5 2.16E-5 2.13E-5 2.17E-5  2.80E-5 2.17E-5
mean(Ey) 1.0318  1.0319  1.0199  1.0191  1.0156 1.0130  1.0156
sd(Er) 0.0564  0.0567  0.0440  0.0429  0.0420 0.0630  0.0420
Sharpe Ratio 0.5453  0.5444 04210  0.4299  0.3465 0.1903  0.3465
mean(wit < 0) 0.0973  0.0990  0.0000  0.0000  0.0000 0.3755  0.0000
sd (wir < 0) 0.0376  0.0362  0.0000  0.0000  0.0000 0.0459  0.0000
mean (wir < —1)  0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000
sd (wie < —1) 0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000

Table 2: CARA Utility (In-Sample): Investment strategies defined in Table 1. Empirical data. Training
sample t = 1,...,200, Evaluation in-sample; t = 1, %, 200. Shrinkage parameter c, = 0.2.



b b b,>0 b,>0 1/N ,>0
p =025 b: ¢t,LW t t,LW b, ¢’§ ¢§

CI 11418 1.1376  0.9996  0.9925  1.0107  -28.7653  1.0107
sd (&) 00724 00743 01278  0.1308  0.0024 4.61E+03  0.0024
mean(Ey) 1.3547  1.3588  1.4290  1.4325  1.0109 44794 1.0109
sd(Er) 1.3359  1.3624  1.8231  1.8443  0.0445  20.0580  0.0445
Sharpe Ratio 02648  0.2626  0.2348  0.2340  0.2231 01734  0.2232
mean(wi; < 0) 0.3300  0.3284  0.0000  0.0000  0.0000 0.4534  0.0000
sd (wie < 0) 0.0474  0.0482  0.0000  0.0000  0.0000 0.0280  0.0000
mean (wi < —1)  0.0268  0.0268  0.0000  0.0000  0.0000 0.4232  0.0000
sd (wir < —1) 0.0174  0.0172  0.0000  0.0000  0.0000 0.0271  0.0000
p=05 ®  Piiw = vtw & #} P=r
CI 1.0706  1.0683  1.0125  1.0332  1.0104 0.0316  1.0104
sd (CAI) 0.0288  0.0295 0.0436  0.0322  0.0018 02771  0.0018
mean(Ey) 11805  1.1825  1.1571  1.1469  1.0109 1.5106  1.0109
sd(Ey) 0.6779  0.6911  0.7165  0.6544  0.0445 2.8799  0.0445
Sharpe Ratio 02648  0.2627  0.2229  0.2179  0.2231 0.1770  0.2232
mean(wit < 0) 0.3253  0.3234  0.0000  0.0000  0.0000 0.4501  0.0000
sd (wy < 0) 0.0477  0.0478  0.0000  0.0000  0.0000 0.0276  0.0000
mean (wir < —1)  0.0029  0.0030  0.0000  0.0000  0.0000 0.2669  0.0000
sd (wie < —1) 0.0046  0.0046  0.0000  0.0000  0.0000 0.0220  0.0000
p=1 ¢ dlw & diow b i =
Cl 1.0348  1.0336  1.0165 1.0274  1.0099 0.9376  1.0099
sd ((/J\I) 0.0091  0.0094 0.0104  0.0093  0.0011 0.0185  0.0011
mean(Ex) 1.0934  1.0944  1.0786  1.0830  1.0109 11399  1.0109
sd(Er) 0.3489  0.3556  0.3471  0.3332  0.0445 0.7083  0.0445
Sharpe Ratio 02649  0.2628  0.2460  0.2236  0.2231 01961  0.2232
mean(wir < 0) 03156 0.3133  0.0000  0.0000  0.0000 0.4412  0.0000
sd (wir < 0) 0.0479  0.0470  0.0000  0.0000  0.0000 0.0198  0.0000
mean (wir < —1)  0.0000  0.0000  0.0000  0.0000  0.0000 0.0349  0.0000
sd (wi < —1) 0.0000  0.0000  0.0000  0.0000  0.0000 0.0091  0.0000
p=2 b dow ST dliw b o ¢’
ci 1.0167  1.0160  1.0087  1.0099  1.0089 1.0027  1.0089
sd (C/‘\I) 0.0018  0.0019  0.0019  0.0019  0.0004 0.0021  0.0004
mean(Ey) 1.0499  1.0504  1.0404  1.0411  1.0109 1.0527  1.0109
sd(Ey) 0.1846  0.1879  0.1739  0.1732  0.0445 02432 0.0445
Sharpe Ratio 02648 02627 02313 02267  0.2231 02124  0.2231
mean(ws; < 0) 02963  0.2932  0.0000  0.0000  0.0000 0.4240  0.0000
sd (wir < 0) 0.0476  0.0470  0.0000  0.0000  0.0000 0.0227  0.0000
mean (wir < —1)  0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000
sd (wir < —1) 0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000
P= 5 #; ¢Z,LW 70 Z%‘(/)V " #} =0
Cl 1.0049  1.0045  1.0039  1.0040  1.0057 0.9933  1.0057
sd (&) A6TE-5 A479E-5 4.17E-5 4.13E-5 2.22E-5  4.86E-5 2.22E-5
mean(Ex) 1.0238  1.0239  1.0196  1.0188  1.0109 1.0169  1.0109
sd(Ey) 0.0863  0.0877  0.0787  0.0744  0.0445 0.1070  0.0445
Sharpe Ratio 02636 0.2616 0.2389  0.2363  0.2231 01483  0.2231
mean(ws < 0) 02418  0.2426  0.0000  0.0000  0.0000 0.3809  0.0000
sd (wiz < 0) 0.0478  0.0479  0.0000  0.0000  0.0000 0.0520  0.0000
mean (wiy < —1)  0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000
sd (wir < —1) 0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000

Table 3: CARA Utility (Out-of-Sample): Investment strategies defined in Table 1. Empirical data.
Training sample t = 1, ..., 200, Evaluation out—of—sa%‘?ple; t =201,...,415. Shrinkage parameter c, = 0.2.



7.2 Comparison of Strategies for the CRRA-Case

The approximately optimal investment weights W? € RY do not depend on the wealth level e;, w pp=1-
Ef\; 1 wit. For ¢, = 0 we arrive at an optimization problem without shrinkage, while the larger ¢, the more
we shrink towards w;. To implement (17), E; (Ri41 — Rp411n) and E; ((Rt+1 — Rp11n) (Rey1 — Ry 1N)T>
can be estimated in the same way as we did it in the CARA case. Numerical tools are used to obtain
the optimal weights wz’zo in the case of short-selling constraints. The certainty equivalent for v,(z), is
obtained by replacing the Bernoulli utility function u(x) by v,(z) in (18).

For ¢, = 0, in our empirical data c; and A; result in wll?t of large absolute value, where (17) results
in poor performance. This problem can be expected, since the weights obtained in (17) are derived in a
similar way as the investments ¢;. A second driver of larger portfolio weights is the parameter of relative
risk aversion . The smaller v, the larger the weights WE in absolute value for any ¢, > 0. Note that in
contrast to the CARA case, our solutions for the CRRA case (with or without short-selling constraints)
are based on the Taylor series approximation (13) around w = Ox 1. If the weights obtained w,?t are quite
far away from the approximation point of the Taylor series, the approximation quality can become poor.
Our shrinkage device also dampens this effect. Table 4 presents the investment strategies to be compared

in the following.

Abbreviation Investment Strategy

WE approximately optimal strategy with naive covariance estimator with shrinkage

Wz LW approximately optimal strategy with Ledoit and Wolf (2004) covariance estimator
with shrinkage

wi’zo approximately optimal strategy with naive covariance estimator, without short-selling,
with shrinkage

Wi%tgv approximately optimal strategy with Ledoit and Wolf (2004) covariance estimator,
without short-selling, with shrinkage

wi/N 1/N-portfolio as e.g. considered in DeMiguel et al. (2009)

Wg parametric portfolio strategy

Wtu’20 parametric portfolio strategy without short-selling

Table 4: CRRA Investment Strategies

In the following Tables 5 and 6 we observe that for small v the weights following from (17) become

quite large and the performance measured in terms of the certainty equivalent becomes poor (not only
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out-of-sample but also in-sample). Surprisingly, this effect is stronger for v = 0.5 than for 0.25. Some
certainty equivalent samples become quite negative and the sample standard deviation of the certainty
equivalents becomes high.

By contrast, when finding an optimal € in the case of parametric portfolio policies, no approxima-
tion of the expected utility function is used. Hence, also for small v the performance of the parametric
portfolio approach is quite satisfactory. By comparing the estimates of the certainty equivalents with
the parametric approach to the approximately optimal strategy described in (17), we observe that the
parametric approach outperforms the approximately optimal approach for v = 0.5. This holds for an in-
and an out-of-sample comparisons without short-selling constraints. By imposing short-selling constraints
the optimal approach slighly dominates the 1/N and the parametric strategy. Using the Sharpe ratio also
verifies this result. We observe that when increasing the degree of risk aversion (v > 1) optimal strategies
based on (17) in terms of the points estimate of the certainty equivalent dominate the other strategies.
In this case the results without constraints are slightly above the results with constraints. The results for

w20 are very close the results for the 1/N-strategy.

Observation 5.

(i) In-sample: Similar to the CARA case, the optimal strategy shows the best performance for v > 1. The

performances of the alternative strategies as measured by the certainty equivalent perform quite similarly.

(ii) Out-of-sample: The 1/N -strategy shows the best performance for v < 0.5. For a very small -y the best
performance with the parametric strategy is observed. For v > 1 the best performance is achieved with
the optimal strategy, however the performances for the strategies considered are roughly the same across

strategies.

(iii) Similar to the CARA case, for small values of risk aversion parametric portfolio policies imply a large

amount of short-selling in- and out-of-sample.
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v =0.25 w? o wP w20 w20 wl/N wih w20
T - t t,LW t t,LW t t t
CI 1.1656 1.1668  1.0340 1.0227 1.0153 1.0519 1.0153
sd (6‘7) 0.1335 0.1332  0.0031 0.0020 0.0022 0.0128 0.0022
mean(Ey) 1.4138 1.4160 1.0344 1.0229 1.0156 1.0594 1.0156
sd(Ey) 0.6464  0.6509 0.0584  0.0385 0.0420 0.2329 0.0420
Sharpe Ratio 0.6387 0.6376 0.5717  0.5694 0.3465 0.2507 0.3465
mean(w;t < 0) 0.1882 0.1881 0.0000  0.4546 0.0000 0.4546  0.0000
sd (wix < 0) 0.0478 0.0479  0.0000 0.0297  0.0000 0.0297 0.0000
mean (w;y < —1)  0.0000  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
sd (wix < —1) 0.0000  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
_ b b b,>0 b,>0 1/N # #,>0
7= 0.5 Wi Wiow Wi Wi LW Wy Wi Wi
CI 0.6065 0.6131 1.0157 1.0320 1.0151 1.0434 1.0151
sd (C/’\I> 0.2460  0.2443 0.0012 0.0020 0.0015 0.0091 0.0015
mean(Ey) 1.2110 1.2120 1.0160 1.0328 1.0156 1.0592 1.0156
sd(FEy) 0.3331 0.3354 0.0324  0.0561 0.0420 0.2321  0.0420
Sharpe Ratio 0.6303 0.6293  0.4622 0.5673 0.3465 0.2510 0.3465
mean(w;+ < 0) 0.1813 0.1799  0.0000 0.0000 0.0000 0.4552  0.0000
sd (wix < 0) 0.0478  0.0481 0.0000  0.0000 0.0000 0.0297 0.0000
mean (w;y < —1)  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wiy < —1) 0.0000  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
_ b b b,>0 b,>0 1/N # #,>20
7= 1 Wi Wirow Wi t,LW Wy Wi Wi
CI 1.0934 1.0937 1.0130 1.0287 1.0147 1.0341 1.0147
sd (C/’\I> 0.0142 0.0142 0.0017  0.0036 0.0030 0.0193 0.0030
mean(Ey) 1.1095 1.1101 1.0132 1.0300 1.0156  1.0650 1.0156
sd(E) 0.1765 0.1776  0.0236  0.0509 0.0420 0.2354  0.0420
Sharpe Ratio 0.6150  0.6140 0.5186  0.5698 0.3465 0.2720 0.3465
mean(w;; < 0) 0.1653 0.1652  0.0000  0.0000 0.0000 0.4575 0.0000
sd (wix < 0) 0.0476  0.0466 0.0000  0.0000 0.0000 0.0351 0.0000
mean (w;y < —1)  0.0000  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
sd (wie < —1) 0.0000  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
=2 w? o owP w20 w20 wl/N wih w20
N t t,LW t t, LW t t t
CI 1.0490 1.0491 1.0082 1.0216 1.0138 1.0233 1.0138
sd (6‘7) 0.0078  0.0078 0.0011 0.0029 0.0031 0.0113 0.0031
mean(Ey) 1.0588 1.0591 1.0084 1.0232 1.0156  1.0447 1.0156
sd(Ey) 0.0982 0.0988 0.0163  0.0404 0.0420 0.1430 0.0420
Sharpe Ratio 0.5885 0.5876  0.4574  0.5499 0.3465 0.3059 0.3465
mean(w;: < 0) 0.1416 0.1418 0.0000  0.0000 0.0000 0.4377  0.0000
sd (wix < 0) 0.0428 0.0438 0.0000  0.0000 0.0000 0.0334 0.0000
mean (w;y < —1)  0.0000  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
sd (wix < —1) 0.0000 0.0000  0.0000 0.0000 0.0022  0.0000  0.0000
_ b b b,>0 b,>0 1/N # #,>0
V= 5 Wi Wiow Wi Wi LW Wy Wi Wi
CI 1.0214 1.0214  1.0056 1.0109 1.0108 1.0031 1.0108
sd (6’7) 0.0173 0.0173 0.0028  0.0084 0.0139 0.0171 0.0139
mean(Ey) 1.0284 1.0285  1.0059 1.0128 1.0156 1.0124 1.0156
sd(FEy) 0.0514  0.0517 0.0104 0.0277 0.0420 0.0631 0.0420
Sharpe Ratio 0.5325 0.5316  0.4668  0.4275 0.3465 0.1801  0.3465
mean(w;t < 0) 0.0870 0.0875  0.0000 0.0000 0.0000 0.3777 0.0000
sd (wix < 0) 0.0346  0.0341 0.0000  0.0000 0.0000 0.0454 0.0000
mean (w;y < —1)  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wi < —1) 0.0000  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000

Table 5: Approximate CRRA Utility (In-Sample): Strategies defined in Table 4. Empirical data. Training
sample t = 1,...,200. Evaluation in-sample; ¢t = 1,...,200. Shrinkage parameter c, = 0.2.
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8 Conclusions

The demand systems approach to asset pricing introduced by Koijen and Yogo (2019) lends itself to
numerous applications, such as the intermediary asset pricing theory of He and Krishnamurthy (2013) or
asset pricing with frictions more generally. In this article we have augmented this approach to CARA and
CRRA expected utility. We consider the cases with and without short selling constraints and show the
existence of equilibrium.

Another aspect of the demand system approach is its relation to the characteristics-based parametric
portfolio approach (see Brandt et al., 2009), that has received a lot of interest from empirical researchers
because it provides an attractive reduction technique to an otherwise complex optimization problem. From
the results obtained in this article, we observe that characteristics-based parametric portfolio strategies
can be optimal under rather strong assumptions.

Moreover, theory-guided reduction techniques prove particularly helpful for machine learning applica-
tions as forcefully argued by Nagel (2021).17 In this article we introduce a shrinkage facility, with the goal
to make the strategies less risky and thereby improve their performance in empirical data. We provide
empirical evidence for S&P 500 data.'® For the feasible case where parameters are estimated, we observe
that the simple optimal shrinkage strategy proposed in this article outperforms the parametric portfolio
approach of Brandt et al. (2009), and the 1/N-strategy, for most levels of absolute and relative risk aver-
sion. Only for CRRA preferences with very low levels of risk aversion the other strategies are superior.
For higher degrees of risk aversion the performances of the strategies considered are quite similar.

While our work, as a first step, has focused on a quasi-static analysis and evaluation a promising
route for future research would seem as the next step to consist in a dynamic implementation of optimal
shrinkage strategies, tuning of the shrinkage parameter, etc. In the current implementation the model
parameters are estimated in the training sample and not adapted in the evaluation sample. It is tempting
to experiment with rolling windows or more sophisticated dynamic models in order to improve out-of-

sample performance.

"In the words of Nagel (2021) we provide “an analytical framework that allows to inject a limited amount of economic
reasoning when we set up ML [machine learning] tools to tackle asset pricing problems.” Nagel (2021)[p. 63].
8Tn related work Gehrig et al. (2018) similar evidence extends to CRSP-data for low enough risk aversion.
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v =0.25 w? o wP w20 w20 wl/N wih w20
T - t t,LW t t,LW t t t
CI 0.7703 0.7563  1.0177 1.0127 1.0107 1.0582 1.0107
sd (6‘7) 0.1521 0.1560 0.0036  0.0025 0.0023 0.0208 0.0023
mean(Ey) 1.2135 1.2152 1.0183 1.0130 1.0109 1.0797 1.0109
sd(Ey) 0.7643 0.7751  0.0701 0.0495 0.0445 0.4032 0.0445
Sharpe Ratio 0.2780 0.2764  0.2462 0.2433 0.2231 0.1952 0.2231
mean(w;t < 0) 0.3265 0.3249 0.0000  0.4350 0.0000 0.4350 0.0000
sd (wix < 0) 0.0461 0.0465  0.0000 0.0240 0.0000 0.0240 0.0000
mean (w;y < —1)  0.0045 0.0045 0.0000  0.0000 0.0000 0.0000 0.0000
sd (wix < —1) 0.0050  0.0050 0.0000  0.0000 0.0000 0.0000 0.0000
_ b b b,>0 b,>0 1/N # #,>0
7= 0.5 Wi Wiow Wi Wi LW Wy Wi Wi
CI 0.3829 0.3223 1.0112 1.0165 1.0104 0.9783 1.0104
sd (C/’\I> 0.1698  0.1701 0.0014  0.0023 0.0015 0.0385 0.0015
mean(Ey) 1.1097 1.1105 1.0117 1.0176 1.0109 1.0794 1.0109
sd(FEy) 0.3912 0.3966  0.0412 0.0678 0.0445 0.4012 0.0445
Sharpe Ratio 0.2777  0.2761 0.2590 0.2455 0.2231 0.1954 0.2231
mean(w;+ < 0) 0.3190 0.3166  0.0000 0.0000 0.0000 0.4353 0.0000
sd (wix < 0) 0.0461 0.0458 0.0000  0.0000 0.0000 0.0238 0.0000
mean (w;y < —1)  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wiy < —1) 0.0000  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
_ b b b,>0 b,>0 1/N # #,>20
7= 1 Wi Wirow Wi t,LW Wy Wi Wi
CI 1.0365 1.0363  1.0068 1.0151  1.0099 1.0035 1.0099
sd (C/’\I> 0.0149  0.0152 0.0020 0.0043 0.0031 0.0315 0.0031
mean(Ey) 1.0577 1.0581 1.0072 1.0170 1.0109 1.0777 1.0109
sd(E) 0.2048  0.2075 0.0298  0.0632 0.0445 0.3727 0.0445
Sharpe Ratio 0.2771 0.2754 0.2088  0.2532 0.2231 0.2058 0.2232
mean(w;; < 0) 0.3024  0.2993 0.0000  0.0000 0.0000 0.4318 0.0000
sd (wix < 0) 0.0444  0.0439 0.0000  0.0000 0.0000 0.0223 0.0000
mean (w;y < —1)  0.0000  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
sd (wie < —1) 0.0000  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
=2 w? o owP w20 w20 wl/N wih w20
N t t,LW t t, LW t t t
CI 1.0194 1.0192  1.0062 1.0122 1.0089 1.0033 1.0089
sd (6‘7) 0.0080 0.0081 0.0014 0.0038 0.0031 0.0162 0.0032
mean(Ey) 1.0318 1.0320 1.0066 1.0152 1.0109 1.0500 1.0109
sd(Ey) 0.1118 0.1131  0.0208 0.0556  0.0445 0.2277 0.0445
Sharpe Ratio 0.2753 0.2737  0.2682 0.2553  0.2231 0.2152 0.2232
mean(w;: < 0) 0.2688 0.2680 0.0000  0.0000 0.0000 0.4222 0.0000
sd (wix < 0) 0.0409  0.0398 0.0000  0.0000 0.0000 0.0214 0.0000
mean (w;y < —1)  0.0000  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
sd (wix < —1) 0.0000 0.0000  0.0000 0.0000 0.0073 0.0000 0.0000
_ b b b,>0 b,>0 1/N # #,>0
V= 5 Wi Wiow Wi Wi LW Wy Wi Wi
CI 1.0081 1.0080 1.0032 1.0068 1.0057 0.9921 1.0057
sd (6’7) 0.0169  0.0171 0.0033  0.0103 0.0137 0.0292 0.0137
mean(Ey) 1.0162 1.0162  1.0035 1.0101 1.0109 1.0162 1.0109
sd(FEy) 0.0564  0.0569 0.0116  0.0359 0.0445 0.1064 0.0445
Sharpe Ratio 0.2694 0.2679 0.2164 0.2524  0.2231 0.1432 0.2231
mean(w;t < 0) 0.1882 0.1907  0.0000 0.0000 0.0000 0.3807 0.0000
sd (wix < 0) 0.0358  0.0359 0.0000  0.0000 0.0000 0.0522 0.0000
mean (w;y < —1)  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sd (wi < —1) 0.0000  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000

Table 6: Approximate CRRA Utility (Out-of-Sample): Strategies defined in Table 4. Empirical data.
Training sample ¢t = 1,...,200. Evaluation out-of-sample; ¢ = 201, ...,415. Shrinkage parameter c, = 0.2.
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Figure 2: Expected utility E (v (Rp+1)) against 6; € [—500,500], #2 = 0 and 63 = 0 in the first column;
02 € [—500,500], #; = 0 and A3 = 0 in the second column; and 63 € [—500, 500], §; = 0 and 02 = 0 in the
third column. CRRA type utility with v = 0.25. Grid with step-width 0.25. g(@'%;;) = 67%;;, Subfigures
(a-c) augmented CRRA utility v (-) with parameter 7, ¥g = 0.0001 and u = v(¢g). Subfigures (d-f)
augmented CRRA utility v_(-), Subfigures (g-i) augmented CRRA utility v,(-), with § = 1. Subfigures
(j-1) summary, where the dotted lines denotes v, (+), the solid red lines v_(-) and the solid blue lines v ().
No trading cost. S&P 500 data; T'= 416 and N = 100.
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Figure 3: Expected utility E (v (Rp+1)) against 6; € [—500,500], #2 = 0 and 63 = 0 in the first column;
02 € [-500,500], #; = 0 and 03 = 0 in the second column; and 65 € [—500, 500], §; = 0 and f2 = 0 in the
third column. CRRA type utility with v = 2. Grid with step-width 0.25. g(@"%;;) = 6'%;;, Subfigures
(a-c) augmented CRRA utility v (-) with parameter 7, ¥g = 0.0001 and u = v(¢g). Subfigures (d-f)
augmented CRRA utility v_(-), Subfigures (g-i) augmented CRRA utility v,(-), with § = 1. Subfigures
(j-1) summary, where the dotted lines denotes v, (+), the solid red lines v_(-) and the solid blue lines v ().
No trading cost. S&P-500 data; T'= 416 and N = 100.
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A A Micro-Foundation of Characteristics-Based Portfolio Choice

As already stated in the main text, we consider a myopic investor who maximizes conditionally expected
utility with Bernoulli utility function u : D — R. To simplify the notation Ny = N. We assume that u(-)
is strictly increasing. To reduce the mathematical burden u (-) is at least twice continuously differentiable.

This results in a constrained portfolio optimization problem

max  E; (u(Ei1))

wi,w g ER™E
N
st. Ey1 = etthRtH + €tQUftRfT+1 , Z wi = 1. (19)

i=(N-n)+1
Optimization problem (19) results in the optimal investment weights wy, i = (N —n)+1,..., N (for w},
the summation index 0 is used if a risk-free asset is considered).
Suppose that E; (u (Esy1)) exists (for all w; € RYV) and that differentiation and integration can be ex-
changed. The constraint optimization problem (19) results in the Lagrangian & (wy, pt) = E¢ (u (Eig1)) —
e (Zf\; 1 Wit — 1). By taking partial derivatives with respect to w; and p; we obtain the first order con-

ditions

0
8WT$ (Wi, ) = E (U/ <6tWtTRt+1) Rt+1> — ptlyx1 = Onx1 and
t
5 N
aioiﬂ (Wt, Zy, /.Lt) = 1- Z Wit = 0. (20)
He i=(N—n)+1

The second order condition for a constraint maximization problem is e.g. discussed in Simon and Blume
(1994)[Chapter 19.3]. A negative definite Hessian WE& (W' (et Rpr+1))=E¢ (v (esw/ Riy1) Ry R ),

for any w; is sufficient to satisfy the second order condition. If a global optimum exists, we abbreviate

the optimal N + 1-vector by (w; ', ,u,;“)T.
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By contrast a characteristics-based policy, or parametric portfolio policy solves'?

N T
_ T~
(r}rggéE (u (et ; (wzt +6 Xt) Rt+1>> ) (21)

where the first and the second order conditions are
N

N T
0 1 1 - 1 _
WEt <u <€t E (N + NOTXt) Rt+1>> = E; (UI (Fi+1) ~ E Rit+lxit) = Okx1 and

i=1 i=1
0 /1 T 1 1< !
mEt (U <€t ; (ﬁ + OTit) Rt+1>> E¢ [ u” (Et+1) (N ; Rit+1)~(it> (N ; R¢t+15(¢t) . (22)

In the case an optimal 8, denoted 8%, exists, the optimal parametric policy is provided by w?t(fcit, er) ==

T 20

Wi + (0%) " X4
By contrast for a characteristics-based policy, or parametric portfolio policy, the strategy is restricted
to the affine rule w;y = Wy + 07 xy. By including this constraint in the optimization problem (19) we
obtain wgt(iit, et) = Wit + (0"‘)T X;+. Typically, the focus of a parametric portfolio policy is on risky assets
only. Hence, w}it = 0 for all ¢, if a the risk-free asset is traded.
Now suppose that both w}, and w?t exist. How are they related to each other? One way of response

is a regression type approach (see also Brandt et al., 2009). That is to say, consider the panel regression

model

* - ST
Wiy Wiy X1t (3
— = 0+ (23)
* — ST
Wy W XNt UNt
wy wy

By using for example the least squares dummy variable estimator (see, e.g., Hsiao, 2015, Chapter 3),

~ -1 ~
we get 6 = <Zf:1 (Zf\il iztith)) (23:1 (Zf\il Xt (W], — ﬂ)it)>>. By means of 8 the sum of squared

approximation errors is minimized. Note that, for large T" a law of large numbers yields lim7_, 0-0=

19 An alternative to the approach presented here is to fix @ a-priori and choose the weights @i, ¢ = 1,..., N, optimally.
For the maximization of the conditional expected see Appendix F.2.
20 An alternative to the approach presented here is to fix @ a-priori and choose the weights @i, i = 1,..., N, optimally.

For the maximization of the conditional expected see Appendix F.2.
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—1
(IE (Zfil ilti;>) E <ZZ]\L1 fcituit) The right hand side term need not be zero. To see this, consider
e.g. a w}, depending on x; € REN [see e.g. the CARA case in Section 4]. In this case u; also contains xjy,
i # j, where x;; and x;; need not be uncorrelated (in terms of econometrics, we are confronted with an

*

omitted variables problem). Since the main objective is to approximate w, and not to perform inference

about 0, this issue is of minor importance in the case considered here.

A.1 Some General Results on Parametric Portfolio Policies

Here we summarize our observations for the case of the affine rule:

Observation 6. Consider returns 7511 € R>_1 and the portfolio gross-return R,;11 = Zieﬂt wit (1 4+ 7j41)-

Let u(-) denote a strictly monotone increasing Bernoulli utility function defined on D = R+.

a) Suppose that for at least one j the support of - Zit.iri¢+1 s te real line. Then, for any fixed
Nt 5J +

i€l

0 with 6; # 0, the probability P (Rp+1 < 0) is strictly positive.

(b) Suppose that the joint probability

1 .

P (HN intvjritﬂ‘ > eart AMrpr1 < €r}> =06,>0
t i€l

for some j € {1,...,k}, where &, and &, > 0. There exists § € R* such that P (Ry+1 < 0) > 0.

Hence, for © = R* there exists @ € © where expected utility E (u (Rpt41)) is not well-defined.

(c) Bounded Support of X and rj11: Suppose that 0 < 7 < 71y <7 < 0o and z < X ; < &, for all
i,t and j. The cost function satisfies 0 < ¢(¢,() < ¢ < co. If 1 + 17 — ¢ > «, there exists a set
of parameters O’ of positive Lebesgue measure containing 01y where Ry 41 > 0 for all 8 € 6,

almost surely) and expected utility E (u (Rp,¢11)) is well-defined.
P

(d) Non-negative investment weights: Suppose that f;(N¢, X;;0) results in wy > 0 for all ¢ and ¢ .
Let rizy1 € Ro_1. Then, at least one w;; > 0 by the constraint Zz’eﬂt w;+ = 1 and the portfolio

gross-return Ryt1 = Y _;cq, Wit (1 + 1ie+1) is strictly positive.
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(e) Since a constraint is added to (19) in the case of parametric portfolio policies

oo o)) 2 (oo 2t )

This result also holds if (19) is augmented by trading cost and the investments in period ¢ — 1 are
fixed at the same levels.?! In the case of a strictly concave optimization problem, in general a strict
inequality holds, while an equality can be maintained if the first order conditions arsing from (19)
are of the form —Aw; + Bx; 4+ ¢; = Oy for the N risk assets, where the following equalities hold:
w; = A~ lc, and 07T = A~1B, resulting in w; = A-lc, + A7 1Bx= wy + 07 Tx, as well as

i _
(" —w}t.

Proof. See Appendix A.2. O

Note that if the returns r;+1 € R>_; and portfolio weights w;; > 0 (for example w;; = 1/N¢), then
0 = 01 implies Ry > 0 for 6 = 0. With r11 € Rs 1 and weights wy > 0, Zf\ﬁl w; = 1, we obtain
a strictly positive return at @ = 0(; ). Part (b) of Proposition 6 is for example fulfilled if the support of
the conditional distribution of x;; conditional on rj 41 is RF. Hence, strong assumptions on the stochastic
properties of the returns and the variables x;; are necessary to obtain a well defined optimization problem
when the domain of the Bernoulli utility function, D, is a proper subset of the real line. In addition,
typically optimal portfolio investment differs from the characteristics based approach. The main issue to
be evaluated empirically below is the question of how good the approximation will be.

In our analysis, and in line with Brandt et al. (2009), the generalized method of moments is applied to
maximize expected utility. [That is, we implicitely assume that the GMM assumptions are satisfied.] In
particular, the GMM distance function is assumed to be strictly concave in the parameters. By using the
first order condition to construct the GMM distance function, we observe that a concave distance function
is associated with a concave expected utility in the parameters 8. To justify this assumption numerical

checks have to be performed in addition to running a GMM estimation routine. Then, standard asymptotic

21We also get K¢ (u <€t (1 + Zieﬂt wftrit+1))> > E; (u (et (1 =+ Zieﬂt w?tmtﬂ))) > E (u (et (1 =+ Eieﬂt wftmtﬂ))),
where the terrm in the the middle will be obtained in next sections,
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theory can be used in a In the case of short-selling constraints we numerically choose 8 by maximizing
expected utility under the constraint w;; > 0 in the training sample. By applying this approach already
for small 8, some w;; become negative for some ¢ in the training sample. Hence, the weights obtained

/N

with this approach are very close to w;, which is the 1/N-portfolio, with weights denoted wi , in our

examples (typically w}{N =0 and wgct =0).22

A.2 Proof of Observation 6

Let ¢(0,¢) = c(zL, (), where Ui = Wi + N%HTi’(it.

Part (a): Considered some fixed 8 € ©, where the j-th coordinate is non-zero. Then Ry > 0
demands for Zie]lt WitTire1 + 67 (N% Zieﬂt i’it?"l’t+1) > ¢(0,¢) — 1. Given 1+ ry441 > 0 and Zieﬂt Wi = 1,
the term ),y 1+ Wyritr1 > 0 (almost surely). [Hence for @ = 0 the returns are non-negative.| Since
trading cost is non-negative Zieﬂt WitTite1 + 60" (N% Zz‘eﬂt .’iitrit+1) = Zieﬂt Tit+1 (w,-t + OTN%j’:Z-t) < —1lis

sufficient for negative portfolio returns. Since, by assumption, the support of N% > icr, Zit,jTie is the real

i€l
line for at least one j, j = 1,...,k, there always exists an event of strictly positive probability, where
1+ Zieﬂt WitTit4+1 + OTN% Zz’eﬂt Xitrit+1 < 0. Since cost is non-negative this also implies that Ry11 <0
with strictly positive probability.

Part (b): Suppose that r;; € R>_; and that the joint probability

1 - 1
P ({‘]\ft Z$it,jrit+l‘ > 83;7} A {Nt Zrit+1 S 87,.}> = 57, >0

i€l i€l

for some j € {1,...,k}. ez and e, > 0 are some (possibly small) numbers in R+, while Z;; ; denotes the
j-th coordinate of the vector x;;.
This assumption implies that the probability of the joint event “N% Zz‘eﬂt Zit,jrit+1 7 0 and the

return N%Zie]lt Tit+1 is smaller than e,” is strictly positive. To get R,11 < 0 it is sufficient that
1 1 1 1 ~ 1 ~

D il N T ﬁteTXit] rit+1 — ¢(6,¢) =N > ien, Tit+1 + N, >ier, M Tit it + -0 + N > ier, 95Tt jrit+1 +

R N% Zieﬂt OrZit krit+1 — c(0,¢) < —1. With 6, = 0 for [ # j, we obtain Ry = N% Zz’el[t Titr1 +

- Yier, 05t jric1 — ¢(0,C).

22 Another approach to implement short-selling constraints in a pragmatic way, is to set w;; = 0 if @i + 0% "%t < 0.
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Since —¢(6,¢) <0, N% > ier, Tit+1 + (N% D il i’it,jritH) 0; < —1 is sufficient to result in Rpeyq < —1.
Since the joint probability that N% Zie]lt rigr1 < & and |N% Zieﬂt Xit,jTit+1| > €qr is larger than zero, there
exists 0; € R where N% > el Tit+1 + (N% D il i:it,jriprl) §; < —1. Therefore, there exsits @ € O, where
Ry 11 < 0 with strictly positive probability.

Part (c): We assumed 0 < r <1y <7 <00, <Xy <7, foralli,tand j=1,...,k 0<¢(0,{)<c
as well as 1 4+7 —¢ > a > 0. These assumptions and the definition of the portfolio return R,;11 results in
Rpi1 = 1+N% dien, Tit+1 Dk ajN% > ier, LitjTit+1—c(0,()> 1+%E+Z§:1 9]‘1\/% > icl, TitjTit+1T—C>
o+ Z?:l GjN% Zz’eﬂt Tyt jrit+1. Note that |N% Zie]lt Tip jrit+1| < max{zr, |z7|}. To obtain Rp41 > 0 it is
sufficient that o > Z?:l |0;| k max{z7, |zF|} > 0. This yields |#;] < Tmax(srz(]: BY the properties of
real numbers there exist a set of ¢; fulfilling this inequality, the volume of the set where this inequality
is fulfilled is (m)k > 0. Hence an open set ©, of positive Lebesgue measure exists where
Rpi+1 > 0. By construction Oy 1) is contained in this set.

From the second order condition obtained in (22) we observe that the optimization problem is concave.
From optimization theory it is well known that (i) if E (u (Rps41)) is strictly concave in 6 and a 6 satisfying
the first order condition exists, we get a unique global maximum, (ii) if E (u (Rp+1)) is concave in € and
a 0 satisfying the first order condition exists, we get a global maximum but this maximum need not be
unique, while (iii) if E (u (Rp+1)) is concave in 8 and a 6 satisfying the first order condition does not exist,
then a maximum does not exist. In the case of an open parameter set O, the supremum of E (u (Rpi41))
is attained for some € in the closure of ©. In this article we follow Brandt et al. (2009) and apply GMM.
The first order condition (22) is used to construct a GMM distance function. In addition, we investigate
E (u (Rpi+1)) by means of or graphical tools.

It turns out that the number of parameters to be estimated and the of number observations are obvious
characteristics affecting the stability of the @ estimation. For example, Brandt et al. (2009) show that
conditioning the @s on the slope of the yield curve strongly improves portfolio performance. However, it
also doubles the effective number of parameters to be estimated (one set of Os for each macro-economic
condition). Moreover, by definition, the yield curve is more often “normal” than inverted. Hence, the

number of observations for estimating the set of 8s applied in times of an inverted yield curve is much lower.

41



A similar situation arises, when parametric portfolio policies are applied to assets or with characteristics
that do not have long time series available. In these cases, portfolio returns for a given @ are less diversified
than in our sample, and hence non-convergence can be more problematic even for higher levels of risk

aversion.
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A.3 Trading Cost

Following Brandt et al. (2009) we allow for the possibility of trading cost modelled by a trading cost
function c¢(¢, () with parameter ¢ > 0. If ( = 0, then ¢(¢,0) = 0 for all strategies, while ¢(¢,0) > 0
for all strategies and ¢ > 0. Note that trading costs also depend on prior and actual, ¢, 1 < s < t and
the parameter (. We apply the short hand ¢(¢, (). In particular, in the case of linear or quadratic cost
functions, we get ¢1 (¢, () := CZZJ-L |pit —pir—1| and (o, ) := Czij\il (¢t —ir—1)? for a constant N; = N.
Then, Ei11 = e <wftth+1 +3Y, witRit+1> —¢j(¢.¢) = ¢/ Rep1 + (et -, ¢tTlN) Ryi1—cj(@, (),
7 = 1,2. Finally, we assume that the risk-free asset can be traded at zero cost.

For general N; we get: We consider two examples for the cost function: c¢1(1, () := ¢ > ;cp, [wit—wit—1|
(see, e.g., Brandt et al., 2009) or c2(%, () := ¢ > ey, (wit —wyit—1)%, where wy — w1 Measures non-zero
trades in period t. Hence, in these expressions w4;—1 = w;—1 if asset ¢ € [, was also traded in ¢t — 1,
Wait—1 = w;s if 0 < s <t — 1 is the last point of time before ¢ where asset ¢ was traded, and wy;—1 = 0
if asset ¢ was not traded in some period 0 < s < t. If N = N, for all £, we get wi;—1 = wj—1 and the
cost functions defined in Section A.3 of the main text. To highlight that cost is related to a parametric
portfolio policy, we also use the notation ¢;(0,¢) = cj(':,bﬁ,C), where \Ilgt = wy + N%H—rfcit. Note that
¢;j(0,¢) are convex in 6. We also observe that ¢1(60,() and c2(0, () are convex in @. The Online-Appendix

in Gehrig et al. (2018) provides conditions for a strictly convex c2(80, ().
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B Determining Conditional Certainty Equivalents

In order to evaluate investment strategies we compare certainty equivalents. Consider an investment strat-
egy ¢ [either for the constrained or the unconstrained problem|, CARA utility with parameter p, wealth/or
endowment e;, variables driving returns x; and a cost function ¢; with parameter (. For any strategy ¢,
by means of (5) the (conditional) certainty equivalent, that is the value ¢ where E;(—exp(—pEit1)) =
—exp(—pc), is provided by

Gi(py ety Xe, By i, C) = et Rpvy1 + &) (B (Ris1) — InRpiq1) — g(ﬁjvt(RtH)(ﬁt - pej (¢,¢) - (24)

If trading costs are zero, 6;(p, es, X¢, $*,0,0) > e;Ryi41. To see this, for ¢y = 0, we get ¢9 = e; and the
certainty equivalent is e;Rsi41. Since ¢} is chosen optimally the inequality €;(p, e, x, $*,0,0) > e Rpeq1
has to hold. If ¢* #£ 0, by the strict concavity of the problem, we obtain a strict inequality. If no risk-free
asset is available and all wealth e; has to be spent, €;(p, e;, x, ", 0,0) > etRyi11 need not hold in general.
In addition, since %;(p, et, X¢, @5, ¢i, () obtained in (24) arises from utility maximization and expected

utility is strictly concave in ¢ [see equation (49) in Appendix F], we get for any strategy ¢,

0 S (gt(p7 et,Xt,(z);k,Cl,C) _Cgt(pa et7xt7¢t7617<) (25)

with equality if and only of ¢} = ¢.

The (unconditional) certainty equivalent & (p, e, X¢, 1, ¢;, ) is the value ¢ where E(— exp(—pE;4+1)) =

~

—exp(—pc). Given some data (x;,r;: t=1,...,T), it is estimated by means of € (p, es, X, ¢, ¢},

)
—%IE (e7PFt), where E (ePFt) = % Zz;l e PPt By the law of iterated expectations E(— exp(—pEiy1))
)

E (Ei(—exp(—pFEi+1))). Hence, by the law of iterated expectations and (25), also €(p, er, X¢, ¢¢, ¢i, () <
C (p, e, Xt, P}, i, ¢). This yields, the following large sample properties of the certainty equivalent.
Observation 7. (7’) %(p7 €t, X¢, d)ta Ciy C) S %(pa €, X¢, d);tkv Ci, C) fO’f’ any Stmtegy d)t; while

G (p, e, X, P, ci, C) <ECi(p, e, X, ), ¢i, C) if no risk-free asset is traded and the investor has to invest e;.

(7’7’) Cg(p’ €ty X¢, ¢t7 Ci, C) < Cg(pa €1, Xt ¢z<’ Ci,s C) fO’f‘ any stmtegy ¢t} while

E(p, et,Xt, Pt i, C) < E(p,er, Xe, @), i, C) if no risk-free asset is traded and the investor has to invest e;.
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Tit Tit1 Tit2 Tit,3
Tit 1.0000 0.0005 -0.0029 -0.0065
Zi,1 0.0005  1.0000 -0.4846 -0.4724
Zi2  -0.0029 -0.4846  1.0000 -0.4906
i3 -0.0065 -0.4724 -0.4906  1.0000

Table 7: Pearson correlation coefficients for S&P 500 data.

(i4i) The 1/N-strategy, ¢ = e;/N - 1, corresponds to a parametric strategy with @ = 0 and w; = 1/N.

Hence, € (p, e, X, (,‘[)%/N, ¢i, Q) < € (p, e, Xt, ¢§, ¢i, ), where wy = 1/N for the parametric strategy gbg.

For the CARA the (unconditional) certainty equivalent €(v,e:,x¢, Wy, i, () is the value ¢ where
E(u(Ei11)) = u(c). Given that E(u(Eiy1)) > u(¥), we get ¢ = v (E(u(Eiy1))) = vt (E(u(Ery1)))

as already described in the main text.

C Empirical Data

In the study we use the characteristics and returns of all 100 firms that are continuously a member of the
S&P 500 firms in the time span from 04/1979 to 12/2013. The three characteristics are closely based on
Brandt et al. (2009). Market equity, me;;, is the natural logarithm of the number of shares outstanding
(Compustat item cshoq for the primary issue - priusa) times the closing price (prceq). Book-to-Market,
btmg, is the natural logarithm of (1 + book equity / market equity), where book equity is measured as
Shareholders’ Equity (seq) and is used six months after the close of the fiscal year to ensure availability
of the data. Momentum, mom;, is the cumulative return over the time period t-13 to t-2, expressed as
monthly average. Hence, we get k = 3 and x;; = (mej, btmiy, momit)T. To be included in the estimation,
a firm must fulfill three conditions at the portfolio formation. It must be a continous constituent of the
S&P 500 (ticker i0003), must have data for all three characteristics and needs to have return data (trt1m)
over the following month. The number of included firms NV is always equal to 100. All characteristics Xt
are cross-sectionally standardized according to equation (3) resulting in X;;.

Table C provides correlation coefficients, the first order autocorrelations of the variables x;; ; are 0.9621,

0.9706 and 0.8638. To further investigate the relationship between the returns and the variables x;;, we
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estimated the pooled model

rit = a+b Xy +uip (26)

where the noise terms are — in a first step — assumed to be exogenous. The ordinary least squares estimates
are a = 0.1471, b= (0.0104, —0.0021, —0.1178)T, where the corresponding p-values for b are all < 0.01.
That is, the linear relationship between 71 and X;; is significant for Z;;; and Zj 2 on a 5% significance
level. Since, the variables X;; is at least partially jointly determined with the returns, the assumption of
exogenous regressors is a strong one. Therefore, we estimated the panel regression model (26) by means
of instrumental variables, where we assumed that the noise term w;; is uncorrelated with X;,, s < t. Based
on this assumption we estimate b by using X;;_1 as instruments and obtained the two stage least squares

estimates a7y = 0.1495 and by = (0.0111, —0.0020, —0.1214)T, all p-values are < 0.001.

D Simulated Data

It is insightful to compare both, simulated and empirical data. For this purpose we exploit an empirical
data set that comprises N = 100 assets contained in S&P for the time span April 1979 to December 2013.
Since N = 100 and T" = 416 for the empirical data set, we simulate data with T' = 420 and N = 100 with
k = 3 characteristics x;; and gross returns R;; = 1+ 1y, for i = 1,..., N = 100 assets. In every period we
assume that e; = 1 and zero trading cost. The observations from ¢t =1,...,T.s = 200 are used to estimate
the model parameters. Then ¢f is applied for t = Tpey + 1,...,T. Estimates of the certainty equivalent
and further descriptive statistics are obtained from this out-of-sample analysis. For simulated data, we
replicate this experiment for M = 50 times resulting in 50 x 220 = 11,000 samples. The empirical data
set of returns and x;; of N = 100 assets contained in the S&P is used to obtain the simulated data with
properties close to the empirical data. The simulated data has stochastic properties close to the empirical

data set. Further details on the exact simulation design are provided in Appendix D.1.
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D.1 Simulation Designs

To obtain simulated data we proceed as follows: We use monthly data of the N = 100 companies contained
in the S&P index — used in the main text and described in Appendix C — to simulate the variables x;;
and asset returns R;;. The time span is April 1979 to December 2013. First we use the empirical data set

to obtain the following estimates:

1. We obtain sample means of the returns and the variables. That is, R; = %Z?:l Ri € R and x; =
. = = = T _ _ _ _ _ T
%ZtT:N(it € RF fori = 1,...,N. Let R := (Rl,...,RN) GRN,X:: (xn,...,xlN,...,xkl,...,ka) S
RNk, Rit = Ry — Rl and X;; 1= X — X;.
2. The first order sample auto-covariance of the factors is 60\11(X,;t_1,xit) € RF*E The means of the

diagonal elements of @(Xit_l, X;¢) are abbreviated by ¢, € R¥.

3. We consider the observations of x; € RVF to estimate their Nk x Nk covariance matrix f)m by

applying the Ledoit and Wolf (2004)-covariance estimator.?3

4. We consider the panel regression model

Ry = X B+¢y orR=Xp3+¢, where

I T N

R X11 €11

r ST N

Ryr Xip eir

R = : eRNT X = : e RNT*k and ¢ = : e RNT | (27)

T N N

RN] XN1 EN1

r LT N
Ry XNT ENT

R -1 .
Then 3 can be estimated by pooled ordinary least. That is 5 = (Zf\i 1 23:1 xltxg ) sz\; 1 Zthl X Rit =

N N NN
(XTX) XTR. Due to possible endogenity we estimate 8 by means of an instrumental variable

23We applied the Matlab-code available at https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html9
with default values.
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estimator, where the lagged factors are used as instruments. Hence,

N N T . “I'N T . .
Brv = S xi—axg, ST ki1 Rit = (va_lFIV) Xry_1Rrv , where

i=1t=2

Ry = XpyB+2v, (28)
Ria Xy 1 €12
N LT LT N
Ry X\ Xir—1 1T

Ry = . cRNT-D | x . : cRN(T=Dxk x o : cRN(T=Dxk & : cRN(T-1)
Rya E3 x{1 EN2
B X *Nro1 ENT

5. By using BIV we obtain the residuals /é\l-t = Ry — XE;BIV, t=1,...,Nand t = 1,...,7T. By
applying the Ledoit and Wolf (2004)-covariance estimator, we obtain an estimate of the N x N

covariance matrix of the noise terms iéé. The elements on the main diagonal are abbreviated by

0%,i=1,...,N.
Then, to simulate factors and returns we use the following parameters:

1. The matrix X, = f)m is used to obtain the covariance of the simulated factors.

2. The factors x; are assumed to follow a first order autoregressive process. In particular, we use
rounded values of the mean first order autocorrelation coefficients of the factors x;; denoted ¢, in
the above paragraphs. For k = 3 we get ¢, = (0.96,0.97,0.86)" € R¥, C, = diag(c,) € RF*¥,
diag(-) transforms a vector to a diagonal matrix. Let C,, = Iy ® C, € RNF>*NF and D,, =

Iy ® diag(1yy; — c2) € RVFXNE where ® denotes the Kronecker product. Then,
xt = Cppxt—1 + D;;;/t22;;:/czvt y (29)

where v; follows a standard normal distribution with mean vector zero and covariance matrix Inyg.
Hence, the covariance matrix of x; is provided by X,.., given that x; is started from its stationary
distribution, which is a normal distribution with mean zero and covariance X,,. We also observe

that the sampling variation of first and second moments of the autoregressive process x; become
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high due to the high serial correlation.

By using (29), the conditional expectation of the characteristics is equal to

Et (Xt+1) = C;m;Xt . (30)

. The parameter a® = R for all . The matrices A7, j = 1,...,k, follow from the vector Bry =
(0.0111, —0.0020, —0.1214) ", which is based on a (rounded version) of by estimated in Section C.
In particular, we proceed with A! = 0.0111 - Iy, A' = —0.0020 - I, and A% = —0.1214 - Iy,
where Iy denotes the kNN-dimensional identity matrix. The risk-free rate ry; = 0.001 such that

R = 1.001. Then by using (29) and (30) we observe that

Xt = Cupz xe—1 + Dglcéz 251,;?(;2 vt o,
~— N~ = =~ =~
[Nkx1] [NkXNE] [Nkx1]  [NkxNk] [NkxNE] [Nkx1]
E, (Xt+1) = [E (Cxxxt + D}étZzalgéQVtJrl) = szxt 5
Ry = @’ + (AL A% x¢q +wy =R+ (IN®/@1Tv) X¢1 + Upgr
—— ~ (U~ =~
[Nx1] [N x1] [NxNq  [Nkx1] [Nx1]
E; (Rey1) = al+ (AL,... A% Cox; = R +(1N®,6,TV) C,. x ,and
[N x1] [V x1] W[kaNk] [Nkx1]
Vi (Rt+1) = A Di:é? Exr Dzlr/x2T AT + wa . (31)
—_—— ~ =~~~ =~~~ =~
[NxN] [NxNk] [NkxNk] [Nkx NE] [NkxNE] [NExN]  [NxN]

The noise term u; has diagonal covariance matrix 3, for all t. The elements on the main diagonal

of matrix 3, follow from 3821_, i=1,...,N.

D.2 Some Results

On the basis of the simulated and the empirical data we run the investment strategies ¢zr , ¢§ , etc. to

obtain samples Eyig, ¢ =1,..., M(T — Test + 1), of wealth in the subsequent periods. For empirical data

these samples are obtained for the time span T,y + 1 to T, while the observations from 1,...,T.s are

used to estimate model parameters. We work with T, = 200 while T' = 415. For simulated data we set
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T = 420 and proceed with T, = 200. The number of replications is M = 50; for empirical data we have
M =1.

In both cases an ex-ante estimate of the certainty equivalent follows from € (p, e, x¢, @1, ¢5,() =

—% InE (e_pEt“), where E (e_gEtH) = 1L (I=Test)M —0Fy 41 The standard error of the esti-

(T—Test+1) M £t=1
mator Cg(p, et, Xt, ¢r, ¢j, () is obtained by means of the Delta-method (see, e.g., Ruud, 2000, Lemma 16.1).

On the basis of our simulations we compare the following hypothetical scenarios:

+* Full information: All parameters are known such that the conditional expectation E; (R¢41) and the

conditional variance V; (Ryy1) are known. [For simulated data only.]

¢; Unknown parameters: The conditional expectation and E; (R¢41) variance Vi (R¢y1) = X are not

known and have to be estimated. To do this we consider the predictive regression

Rity1 =0+ Xit + uit

and obtain 74y and 4 for each asset ¢ = 1,..., N by means of the least-squares estimator. The
observations t = 1,...,T,.s are used to estimate these parameters. Then, E, (Rits1) = Ao + 7 xuit
and V; (Ry41) follows from the residuals uy, ¢ =1,..., N.

@5 1w Unknown parameters and reduction technique for estimating second moments: This strategy corre-
sponds to S.2 with the difference that the conditional covariance is estimated by applying the Ledoit

and Wolf (2004)-covariance estimator to @, i =1,...,N.

tl /N Rule of the insufficient reason: Consider the 1 /N-portfolio, where the amount invested into the risky

assets is e; = 1.

¢§ Characteristics-based portfolio choice: Consider a parametric policy ¢§, where w;; = 1/N and 0 is
estimated by means of GMM using the observations ¢t = 1,...,Tes. The amount invested into the

risky assets is e; = 1.

We run simulations for three different parameters of constant absolute risk aversion, p = .5, p =1

and p = 2. In simulated data the known parameters and the optimal strategy (i.e. ¢j), not surprisingly,
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dominate all other strategies. However, if the parameters have to be estimated the certainty equivalents
for ¢f and @; 1, are below the values obtained for the 1 /N-rule and parametric policies. Reduction based
(Ledoit-Wolf) estimation strategy @; Ly dominates ¢;. Higher Sharpe ratios can be obtained with ¢;
and ¢y 1y, compared to ¢§ and qb;/ N but at an expense of much higher risk. This higher risk reduces
the certainty equivalent of ¢} and ¢y, below those of ¢§ and ¢%/ N Regarding this increase in risk
Erlwein-Sayer et al. (2020)[Proposion 3] show how in a mean-variance setting the risk aversion parameter
can be increased to account for this increase in risk due to estimation. Interestingly, in the simulated data
the parametric portfolio policy generates more short-selling than the optimal investment policies.

In addition, to the results we obtained out-of-sample, we also performed an in-sample analysis where
t = 201,...,T is used for parameter estimation and to obtain estimates of the certainty equivalent and
further statistics. Here we observe that the optimal strategy also with estimated parameters is superior
to the 1/N-strategy and ¢§, the best results are obtained when the Ledoit and Wolf (2004)-covariance
estimator is applied.

Summing up, we observe that the feasible optimal strategies, i.e. those where model parameters are
estimated, result in quite risky strategies. By comparing estimates of the certainty equivalent we observe
that in this case simple rules such as parametric portfolio policies or the 1/N-rule outperform ¢; and

@} - To reduce this negative effect on performance, a shrinkage device was proposed in the main text.
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1/N
p=105 f;* ¢ Siw b ¢

3 12199 -4.6420 0.8242 1.0071 0.9372
sa(CT) 0.0025 04395 0.0198 0.0005 0.0182
mean (Ety1) 1.3067 25221 1.7472 1.0085 1.1811
5d (Ers1) 0.5948 54372 1.9351 0.0688 0.9287
e 1.0000  1.0000 1.0000 1.0000 1.0000
mean(Return)=""Ee1) et 0.3067  1.5221 0.7472 0.0085 0.1811
Sharpe ratio = "rtUieim)rmentiin) 05139 0.2798 03856 01096  0.1939
mean(wi; < 0) 0.5037  0.4934 0.4942 0.0000 0.0794
sd (wir < 0) 0.0409  0.0327 0.0367 0.0000 0.0746
mean (wi; < —1) 0.0475  0.4338 0.3346 0.0000 0.0110
sd (wiy < —1) 0.0203  0.0351 0.0357 0.0000 0.0215
sk * * 1/N
P = 1 t @i ¢t,LW t/ ¢§
G 11197 -4.3849  0.9097 1.0052 0.9149
sa (CT) 0.0008 15.8949 0.0056 0.0004 0.0065
mean (Ery1) 11611 1.7647 1.3869 1.0086 1.0584
sd (Ers1) 0.2908  2.8270 0.9790 0.0689 0.5025
e 1.0000  1.0000 1.0000 1.0000 1.0000
mean(Return)=""Lrs1) et 0.1611  0.7647 0.3869 0.0086 0.0584
Sharpe ratio = Mttt mentiue) 05507 0.2701 03942 0.1108  0.1143
mean(wi; < 0) 0.4967 04923 0.4878 0.0000 0.0565
sd (wiy < 0) 0.0409  0.0325 0.0351 0.0000 0.0550
mean (wy; < —1) 0.0029 03780 0.2050 0.0000 0.0000
sd (wiy < —1) 0.0062  0.0367 0.0324 0.0000 0.0000
sk * * 1/N
&:2 t i ¢t,LW (oh ¢§
C1 1.0617 -0.6256 0.9673 0.9980 0.9804
sa (CT) 0.0002  0.8378 0.0008 0.0003 0.0008
mean(E;) 1.0828  1.3707 1.1830 1.0082 1.0117
sd(E;) 0.1461  1.3367 0.4704 0.0688 0.1545
e 1.0000  1.0000 1.0000 1.0000 1.0000
mean(Return)="c"Er)—et 0.0828  0.3707 0.1830 0.0082 0.0117
Sharpe ratio = " Uietm) memtien) 0 5505 0.2766 0.3869 01045 0.0690
mean(wi; < 0) 0.4797 04939 0.4899 0.0000 0.2808
sd (wi < 0) 0.0406  0.0352 0.0351 0.0000 0.0902
mean (wi; < —1) 0.0000 02704 0.0546 0.0000 0.0000
sd (wi < —1) 0.0003  0.0495 0.0237 0.0000 0.0000

Table 8: Comparison of investment strategies in simulated data. mean(Return) = mean (Epy1) — ex.
Sample means (mean) and sample standard deviations (sd) are obtained form 50 - (T'— Tes;) = 11,000
samples. T' = 420, Tpss = 200. mean(w;; < v) denotes the average proportion of weights smaller than v,
while sd(w;; < v) is the corresponding standard deviation.
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E Extending CRRA Uility

In the following we propose some simple ways, we to extend CRRA utility to the real line. Let Ng, >0
the number of (risky) assets where R;y1 > 0, for all t = 1,...,T, for some chosen 6. For § = 0 we have
NR;, 1>0 = N¢. From the above analysis we already know that some R 1 become negative if @ becomes
large in absolute terms. For § € R the number of assets with positive returns Ng,,,,~0 is monotone
decreasing in |f]. In particular, we observe that Ng,,, o is a step function.

In order to obtain a well defined model in mathematical terms, we can either augment the CRRA
Bernoulli utility function v(-) defined on the domain D = R or work directly with a different utility
function, which is defined on the whole real line (CARA utility or mean variance preferences were applied
e.g. in Ammann et al., 2016). This section follows the first suggestion and starts with the augmentation
approach by specifying simple and easily implementable rules for dealing with large negative returns (i.e.,
close to or below zero). In particular, we consider the following three alternatives to augment the CRRA
Bernoulli utility function: extending utility horizontally to the left, ignoring negative returns, or extending
utility in a linear way for low returns:

Augmentation I (extending utility horizontally to the left), v (Ey+1): Choose some ¥g > 0 and define

v(etRpt41) for Ryi11 > Vg,
vy (Bpg1) = (32)
u<v(etpr) for Rpyp1 < Y.

Recall that Eji11 = et Rpiq1.
Augmentation II (ignoring negative returns), v_ (Ep11): Consider Ng, >0 defined in the above
paragraphs [i.e., Ng, >0 is the number of assets where R;;;1 > 0]. The parametric portfolio weight

function (4) is now applied to those assets where Rj;y1 > 0. That is, N; is replaced by Ng,, >0 and

1

Wit = 77— in (4). This results in the portfolio return Rp;41 —. Then,
Rigp12
v (Ept41) = v(efpiir,-) - (33)
Since Ng,,,,>0 is known after Rj 1,4 =,1..., N, realizes, the calculation of Rp;11, only works in-sample.
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However, in-sample v_ (Rp41) can be used to find an optimal 6.
Augmentation III (linear continuation), v, (Ept+1): Another extension of v(z), similar to (32), but less

radical is a smooth linear extension for low returns:

v (et Rps1) for Ryi+1 > Yr,
vy (erRpry1) = (34)

(v (etpr) — OV (e4hRr)) + 0V’ (erR) €4 Rpi1 for Rpiy1 < ¢g,

where ¢ > 0. As already stated in the main text, with (12) we apply v (eRpty1) for all Ryey1 > ¥g.
At Rypy1 = YR we get v, (ei0r) = v (ebr) = (v(ewbr) — 0V’ (eshr)) + 0V’ (eshr) e For 6 = 1, we
observe that v/ (e;tog)= v’ (e4¥r) is equal to the slope of the line described by (e;v (¥r) — 1 -0’ (es¥R)) +
L' (esr) Rpty1-

The domain of vy (e;Rpi+1) and v, (e;Rpe+1) is the real line, while for v_(e;Rpi+1) non-positive returns
were excluded. These simple remedies avoid strong a-priory restrictions on the support of x;; and rjy1.
(32) can be seen as a special case of (12) when we set v" = 0. Note that by the flat segment, the function
V4 (Rpi41) is neither concave nor strictly concave on the domain R, while v,(e;Rpt+1) is at least concave.
The function v_(e;Rpi41) is locally strictly convex on those segments where Ny g, >0 stays constant.
Since N¢ g;, >0 does not stay constant in our data sets, this generates non-well behaved expected utility
as will be demonstrated in the following Figures.

In simulation runs not reported here and in the empirical data, for 8 in the neighborhood of 0 we
observe essentially no differences between the expected utilities obtained with v(+) and v (-), v—(+) or v, (-).
For different values of relative risk aversion, Figures 2 and 3 plot (numerical estimates of ) expected utility
E (v (etRpt+1)), where e, = 1 and vy (-), v_(-) or v,(-) are used, against 6, 62 or 03 (§; € [—100,100]),
the other coordinates are set to zero (note that 0 is the parameter associated with In of book-to-market
ratio, o with the In of the firm’s market equity and 03 with the momentum variable). So for illustration

purposes we only consider projections on one policy variable.?* Figures 2 and 3 are organized as follows:

24We proceeded in this way to highlight the result observed with (32) and illustrate it in graphical terms. Another practical
reason is that the performance of the numerical optimization routine is easier to investigate with a single parameter.

In addition, since E (u(Rp¢+1)) cannot be derived analytically in our examples, numerical estimates of E (u(Rpi4+1)) are
obtained by means of T S u(Rpisr) = E (w(Rpt+1)). To improve the readability E (u(Rpe+1)) will also be used also for
numerical estimates of expected utility.
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Subfigures (a,b,c) consider expected utilities with v (-), Subfigures (d,e,f) consider expected utilities with
v_(-), Subfigures (g,h,i) consider expected utilities with v,(-), while Subfigures (j,k,1) jointly plot expected
utilities with v (-) [dotted line|, v_(+) [solid red line| and v,(-) [solid blue line]. The first, the second and
the third column presents expected utility levels when 61, 6> and 65 is varied, respectively. Proceeding
this way we find a surprising result: expected utility may not attain a global maximum. Even a local
maximum may not be globally optimal.

For small values of relative risk aversion, e.g. v = 0.25 and in the absence of trading costs (i.e. { = 0),
we do not observe an interior maximum (see Figure 2) for vy (-) and v_(-) while for v,(-) we derive an
interior maximum for our empirical data set. Figure 3 shows the results with a higher risk aversion
parameter of v = 2. Here we observe interior maxima with v4(-) and v,(-). The lines for v (-) look less
smooth due to the fact that a constant utility level is used for returns < ¢)r. For v_(-) we observe some
downward spikes, which arise at those § where Ng,,~o changes.? In Appendix E.1 we show that adding
linear cost (see Figures 4 and 5) or quadratic cost (see Figures 6 and 7), the effects discussed without cost
become less pronounced. Hence, higher degrees of risk aversion and higher costs render the optimization
problems more concave, in which case unique maxima of expected utility result more often.?6 The above

analysis suggests that the augmentation v, (Rp¢+1) seems to work.

E.1 CRRA Utility with Transaction Costs

Figures 4 to 7 complement the analysis performed for Figures 2 and 3 with linear (Figures 4 and 5) and
quadratic (Figures 6 and 7) transaction costs. The augmentation strategies are described in the above

Appendix E.

25 In some of the aggregated Subfigures (j,k,1) these effects are very hard to observe due to the scaling used on the vertical
axis. This scaling follows from the scaling arsing with v, () and is the same as in the subfigures (g,h,i).

26Further results with S&P 500 as well as CRSP-data are provided in the main text and in the Online-Appendix in our
prior version of this paper (Gehrig et al., 2018).
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Figure 4: Expected utility E (v (Rp+1)) against 6; € [—500,500], #2 = 0 and 63 = 0 in the first column;
02 € [—500,500], #; = 0 and A3 = 0 in the second column; and 63 € [—500, 500], §; = 0 and 02 = 0 in the
third column. CRRA type utility with v = 0.25. Grid with step-width 0.25. g(@'%;;) = 67%;;, Subfigures
(a-c) augmented CRRA utility v (-) with parameter 7, ¥g = 0.0001 and u = v(¢g). Subfigures (d-f)
augmented CRRA utility v_(-), Subfigures (g-i) augmented CRRA utility v,(-), with § = 1. Subfigures
(j-1) summary, where the dotted lines denotes v, (+), the solid red lines v_(-) and the solid blue lines v ().
S&P 500 data; T'= 416 and N = 100.
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Figure 5: Expected utility E (v (Rpt+1)) against 6; € [—500,500], #2 = 0 and 63 = 0 in the first column;
02 € [-500,500], #; = 0 and 03 = 0 in the second column; and 65 € [—500, 500], §; = 0 and f2 = 0 in the
third column. CRRA type utility with v = 2. Grid with step-width 0.25. g(@"%;;) = 6'%;;, Subfigures
(a-c) augmented CRRA utility v (-) with parameter 7, ¥g = 0.0001 and u = v(¢g). Subfigures (d-f)
augmented CRRA utility v_(-), Subfigures (g-i) augmented CRRA utility v,(-), with § = 1. Subfigures
(j-1) summary, where the dotted lines denotes v, (+), the solid red lines v_(-) and the solid blue lines v ().
Cost function ¢;(+). S&P-500 data; T'= 416 and N = 100.
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Figure 6: Expected utility E (v (Rpt+1)) against 6; € [—500,500], #2 = 0 and 63 = 0 in the first column;
02 € [-500,500], #; = 0 and 03 = 0 in the second column; and 65 € [—500, 500], §; = 0 and f2 = 0 in the
third column. CRRA type utility with v = 0.25. Grid with step-width 0.25. g(@'%;;) = 67%;;, Subfigures
(a-c) augmented CRRA utility v (-) with parameter 7, ¥g = 0.0001 and u = v(¢g). Subfigures (d-f)
augmented CRRA utility v_(-), Subfigures (g-i) augmented CRRA utility v,(-), with § = 1. Subfigures
(j-1) summary, where the dotted lines denotes v, (+), the solid red lines v_(-) and the solid blue lines v ().
Cost function cy(+). S&P-500 data; T'= 416 and N = 100.
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Figure 7: Expected utility E (v (Rp+1)) against 6; € [—500,500], #2 = 0 and 63 = 0 in the first column;
02 € [-500,500], #; = 0 and 03 = 0 in the second column; and 65 € [—500, 500], §; = 0 and f2 = 0 in the
third column. CRRA type utility with v = 2. Grid with step-width 0.25. g(@"%;;) = 6'%;;, Subfigures
(a-c) augmented CRRA utility v (-) with parameter 7, ¥g = 0.0001 and u = v(¢g). Subfigures (d-f)
augmented CRRA utility v_(-), Subfigures (g-i) augmented CRRA utility v,(-), with § = 1. Subfigures
(j-1) summary, where the dotted lines denotes v, (+), the solid red lines v_(-) and the solid blue lines v ().
Cost function cy(+). S&P-500 data; T'= 416 and N = 100.
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F Parametric Portfolio Policies with Constant Absolute Risk Aversion

Consider constant absolute risk aversion, where the Bernoulli utility function is given by u(x) = — exp(—px)

and the parameter p > 0 expresses constant relative risk aversion (note that Z/,/((f)) = p). In addition to N

risky assets we also consider the case where a risk-free asset is traded [the risk-free asset has cross-sectional
index i = f]. The portfolio vector of risky-assets is ¢ = (¢, ... ,(bNt)T € RY, where ¢;; is the money
amount invested into risky asset ¢ at period ¢. The amount invested in the risk-free asset is ¢ sy = er— ) 1y
if a risk-free asset is traded, and ¢ = 0, V¢, otherwise. We analyse optimal investments strategies first

in the absence of any transactions costs and then by including linear or quadratic transactions costs.

F.1 Optimal Strategy in the Absence of Transaction Costs

The value of the portfolio in period t+1 is a random variable and given by Fy1 = e (w R + Zf\il witRitH) =
GptRyper1 + Zfil it Rit 11 :Zf\; QitRir11 + (et — ZZ]L ¢z’t) Rp= ¢/ Rip1 + <€t - sz\il ¢tTlN> Ryy,
where R;y1 denotes the vector of risky returns and ¢, € © = RY. We follow the notation from the main
text, and write Rj+1 € R and Ryy1 = (Rigs1,-- - RNtH)T € RV: x;; € R? and x; € RV denote a ran-
dom vectors of characteristics [as well as — we some abuse of notation — also their realizations|. Following

Sections 3 and 4 we obtain

Rit = aoit + (A,Ll, e ,A,’f) Xit +5it and
N— Y
1] lgx1]
Rt = ag: + (Al, ey Ak) Xy + & (35)
~— —~— —~ =~
[Nx1] [Nx1] (NxNE] [Nkx1] [Nx1]
where A7 are diagonal N x N matrices. A7, j =1,...,k, follows from A;, I =1,..., N. Consider some

strategy ¢; and suppose that a risk-free asset is traded. The total amount invested into risky assets is

ert ‘= 1]\—,@. Let ¢it = [¢¢];. Suppose that a risk-free asset is traded. Then strategy ¢, translates into
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investment weights as follows:

T N
Wi = Pi and Wot = wyy = e —1ne for weights such that Zﬁzit =1lor
et et i=0
N
wip = 1?2; , for weights in terms of the amount invested into risky assets 1% ¢ such that Z wig=1. (36)
NPt =1

Note that the weights w;; depend on e;, while the weights w; do not depend on e; but on the total
amount invested into risk assets 1%(1)1;. That is, even for a strategy ¢;; which is linear in x;;, the weights
w;+ need not be linear in x;+. By contrast if no risk-free asset is traded and the preferences of the investor

/ or the economic constraints are such that all wealth is invested into the risky assets we get

Git it (37)

T -
ee = 1y¢; and Wi = wir = =17 .
€ 1N ¢t

Suppose that ¢;+ can be written as ¢ = vo; +’le X;¢, where x;; is a standardized characteristic, voi: = Yo0s

for all ¢ and ~1;+ = 1 for all t,i. Then, e, := 1}(1’)75 = Zfil (’YOz‘ +71T>~<it) = Zz 17Y0i + '71 ZZ 1 Xit
= Z —170i and the total amount invested into the risky assets does not depend on X;;. Next, suppose

that E;(— exp(—pFE¢11)) exists, then conditional expect utility is given by

Ei(—exp(—pEii1)) = B <— exp (—P [(Bt — &/ IN)Ryis1 + P¢tTRt+1D) : (38)

To obtain the optimal ¢;; we take first partial derivatives in (38), resulting in:

0 = 8ZitEt(_ exp(—pEii1))
= E (eXp (—p [(et — ¢/ 1n) Ry + ¢:Rt+1]> p[Rit+1 — th+1])
= -E (eXp( pet) exp ( p [ é! INRyri1 + b, RMD p[Rit+1 — th+1])
= —exp(—per) Et (eXp ( p { ¢! InRyry1 + ¢, Rt+1D [Rit41 — th+1])
o (

(Re1 — Rypeqn 1N)]> p [Rits1 — th+1]> , (39)

= —exp(—per) Eq <exp (

fori =1,...,N. From (39) we cannot obtain a closed from solution. Hence, we require that the noise terms

are conditionally normal. Using Assumption 2 of normally distributed innovations we derive conditional
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expected utility

E¢(—exp(—pEii1)) = E (— exp (—P [(et — ¢/ 1N) Ry + ¢1§TRt+1:|>>

2
= —exp [_P(et — &/ 1N)Rprs1 — pop/ Br (Reg1) + l;(f);l—vt(Rt—H)(ﬁt]

5
= —exp |:_P6t — p#/ (Bt (Re1) — InRppp1) + p2¢tTVt(Rt+1)¢t:| . (40)

Maximizing (40) yields the vector of optimal amounts invested into the risky assets (see also, Ferson and
Siegel, 2001):

o

o; (x¢) = ; Vi (Re41)) " (Br (Res1) — Rpgly) - (41)

The remaining wealth ¢ = e; — 1%@[)2‘ € R is invested into the risk-free asset.
To account for the case where no risk-free asset is traded we include the constraint e; > 1;{,@ and —
to reduce the computational burden — we take the log of 'minus (40)’ and divide by p > 0. This results in

the Lagrangian (for a similar problem see also Campbell, 2017, Section 2.2.3)

L, N) = e+ @) (B (Ripr) — INRprs1) — g¢tTVt(Rt+1)¢t + At <6t - 1%@) : (42)

By taking first derivatives with respect to ¢, ¢ = 1,..., N, and A\; we obtain the first order conditions

0 2
W"% (pt, M) = |INEt (Reg1) —ININRpiq1 — §PVt (Re+1) ¢t] — A1y =Onx1
t
0 0
87)\{’% (P, \) = er—1yd >0, /\tai)\tft (P, \) =0 (43)

If the constraint e; — 1¢; is not binding, then )\; = 0 and the optimal strategy is given by (41). By
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contrast, suppose that e; — 11 ¢ < 0, then the constraint becomes binding and
NPt

1 _ 1 _
o (xi) = ;(Vt (Re1) ™" (Be (Reyr) — Rpedw) — A?; (Ve (Reg1)) ' 1y
By plugging in ¢; (x;) into e; = 1,¢;", we get
1 _ 1 _
e, = 1% [p (Vi (Ri11)) ™" (B (Riyr) — Rpuly) — )\;r; (Ve (Riy1)) ™! 1N} :
such that
+  _ P LT -1 _
M= 1—1\r/Vt (Rt+1)71 1N {plNVt Repr) ™ (B (Bevr) = Ryel) et]
14 T 1%
= - 1y¢; (x¢) —ei| >0 and
T R 1y N |
1 _
o (xi) = & (xi) - Af;(Vt (Re1) ™' 1y
* 14 T g% 1 —1
= ¢; (x¢) — — 1o (x¢) —er| — (Vi (R 1
¢ (xt) 1TV, (Rery) 1w 1y e; (%) — €] p( t (Reg1)) 1y
1 _
= Vi) " (E; (Rey1) — Rpulw)
S0 YUY S Ty pu—— (1;1% (Rog1) " By (Ripr) —et>
P 1,V (Rit1) 1y P
1 -1 P T1 -1
12V, (R 1LV, (R 1vR
0 t( t+1) <1;Vt (Rt+1) 1 1N Np t( t+1) ft

p (%1;% (Rit1) ' E (Regr) — et)
1,V (Res1) 1y

1 _
= ;Vt(Rt-‘rl) " E(Risr) — 1y | . (44)

Note that the Lagrange multiplier A; is proportional to the difference between the optimal investments
into the risky assets if a risk-free asset would be traded, lxqﬁf (x¢), and the initial wealth e;.?

Note that we have to distinguish between an investment strategy linear in x;, that is to say qgit =
QEOit + qﬁﬂxt, an investment strategy linear in x;;, that is to say g?)ft = égoz't + cﬂ;xit and investment weights
w; which are linear in x; or X;;. By means of (36) we observe that even for an investment strategy affine

linear in x; or X;;, the weights need not be affine linear. From (41) and (44) we observe:

e The optimal ¢} does not depend on the initial wealth e;. The total amount invested into risky assets

o3 (xt)*T 1y depends on x;. The amount invested into the risk-free asset follows from ¢ = e; —

2"By means of the Hessian obtained later in (49), we observe that also the second order condition is satisfied. To consider
the case without trading cost set ¢ = 0 in (49). For the constraint problem the strictly concave value function is also sufficient
to obtain a constraint maximum (see, e.g., Simon and Blume, 1994).
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b; (xt)—r 1y. Given that ¢ (xt)>kT 1y > ey, for the constraint problem ¢y, = 0 and qbz“ (Xt)T 1y = e

e Suppose that V; (Ry41) = X is diagonal and does not depend on ¢, while E; (R41) is affine-linear.

Then, the conditional expectations are E; (x;41) are affine linear in x;, such that

E¢(x¢11) = Y + T x; , and
N — ~— ~—— =
[Ngx1] [Ngx1] [NgxNgq] [Ngx1]
E:(Rip1) = & +(A'... A7) (v +Tx) . (45)
—_—— ~— ~—
[Nx1] [Nx1] [NXNg] [Ngx1]

Then, by (41) and (45) the optimal strategy is affine linear in the full vector of characters x; [but,

in general, not in x;].

If the conditional variance V; (R¢41) depends on x; or the conditional mean E; (Ry+1) depends on

X in a non-linear way, then the optimal strategy is neither linear in x; nor in X;.

e Suppose that (45) holds. Let Riy1 = voir + ’leixit + uj, where x;; and wu;; are independent for all ¢

and t. Then,
o1t diag(yy;) 0
E; (x¢41) = : + Xt
YoNt . 0 diag(v,y)
~)eRNg =:T'; eRNaxNg

[E: (Ret1)]; = 7oit + Y1:%it and the optimal strategy ¢ is of the form ¢}, = ¢ + ¢{;xit, for

i=1,...,N; ¢p1;, = [¢1]i,1;qu where ¢, is obtained by the following equation (46). That is,

Pl
* . 1 —1 0 1 -1 1 q
& = : :;2 (a; +7°t_th“1N)+EE (AY .. AN T x; . (46)
¢7Vt (].’)():GFRN ¢1€HQJFVXN(1

e If ¥ is diagonal [and does not depend on ¢] and [E; (R¢41)]; is affine linear in x;, i.e. [Ey (Ryq1)]; =

Yoit + V1;Xit, then the optimal strategy ¢ is of the form [¢*],, = &%, = doit + ¢, Xir. Note that if the
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asset returns and the variables x; are jointly normally distributed, by the properties of the normal
distribution x;; and x;; have to be independent for all 4, j, i # j (see, e.g., Ruud, 2000, Lemma 10.4).
If, in addition, x;; is standardized we still get ¢} = doit + @ Xi= doit + g?)ﬂ (f]gffcit — ﬁm>:
boit + H1; %1, where according to (3) fizi = + SN X, e = ey SO (it = Fai) (it — fai) |

and ﬁm is a diagonal matrix with the same main diagonal as ﬁm An optimal strategy where

b1i = 6 € R* requires V; (Ryt1) $1i3. = 0 € R foralli = 1,..., N and t.

e For the constrained problem we observe that the Lagrange multiplier )\;“ in general depends on all
Xit, © = 1,...,N. Hence, even if [E; (Ry41)]; is an affine linear function in x;, the optimal qb;r
still depends on all x;, i« = 1,...,N. By considering the last term in (44) we observe that the
term V; (Rt+1)_1Et (R¢+1) has to become independent of x;, which is by the way a very strong

assumption.

F.2 Optimal Policies with Transaction Costs

Next we allow for trading cost. Suppose that at all ¢, exactly the same N assets are observed. In this

case the linear and quadratic cost functions introduced in Section A.3 result in ¢1(¢, () := ¢ Zf\i 1 it —
dir—1] and ca(, C) := ¢ SN | (dir — pir—1)?, such that Eryq = e <wftth+1 +3, witRitJrl) —¢j(0,¢) =
o/ Ry + <et — Zf\il ¢:1N> Rppq — cj(#,¢), 7 = 1,2. By augmenting expected utility (43) by these

cost terms we obtain

Ei(—exp(—pEit1)) = Ei (— exp (—P [(et — ¢ IN)Rpey1 + @) Res1 — c(, C)]))

2
= —exp [—p<et — & 1N)Rpis1 — pd! Ee (Ruy1) + %@T Vi(Ris1) s + pe(d, 4)]

— exp [—petth — p#! (Bt (Reg1) — InRpeq1) + %¢>Z Vi(Rig1): + pe(d, <>} . (47

Note that the cost function ¢1(¢,() = ¢ Z,fil |pit — Pir—1] is continuous but only differentiable on the
(sub-)set ©, := O \ ¢_1. Hence, all the following expressions including first or second partial derivatives
only hold for ¢; € ©, and not for all ¢, € © = R? for the linear cost case. By contrast for ca(¢, () first

and second partial derivatives exist for all ¢; € ©.

Let us start with the unconstrained case in the following. Taking first derivatives with respect to ¢,
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i1=1,..., N, we obtain the first order conditions

2
%Et(—eXp(—pEtH)) = —exp [—p(ez — ¢ IN)Rjes1 — popd Ee (Res1) + %(ﬁtTVt(RHl(X))@ + pCllpe — ¢t—1||1]
t
. [pInlNth.H — pINE: (Rig1) + p2Vt (Res1) @t + plsgn (e — ¢t—1)] =0nx1,

for linear cost, ¢; € ©,, and
a 2
W&(* exp(—pFi41)) = —exp |:+P(€t — @/ In)Ryei1 — pdf By (Resr) + %d)tTVt(RtH(X))@ + pCllde — ¢t71||§]
t
2
. |:pIN1Nth+1 — pINE; (Riy1) + §PQVt (Rrtt1 (xt)) 1 + 2pC (e — ¢t—1)} =0nx1 ,

for quadratic cost . (48)

|-|li and ||-||2 denote the I; and the Euclidean norm. That is, for any v € RY, |v|j; = ZZ]\LI |v;| and
[vlla = /32N, v2. sgn(v) applies the signum function to each coordinate of v. The N x N Hessian

(matrix of second order partial derivatives) is provided by

ﬁm(—exp(—p&“)) = —exp {—p(et — & 1n)Ryer1 — p Ee (Resr) + %2¢>Z Ve(Rer1(x) s + pClle — ¢>th}
Vi (Rysa (x¢))
—exp [ plec — 6T 1) Ryren — p8T B (Resn) + B 6T Vi(Res () + ol — 111
[PINRyi1 — pE¢ (Req1) + pVi (Req1) @i + pCsgn (Pr — di—1)]
[PINRsp1 — pEe (Ret1) + pVi (Res) e + pCsgn (e — de—1)]
for linear cost c¢1, ¢ € ©,, and
ﬁm(—exp(—p&m) = —exp {—p(et — & 1n)Ryer1 — p Ee (Resr) + §¢th(Rt+1(x>)¢t +pCll e — dmll\%}

~(P*Ve(Reg1 (x)) + 2p¢In)

—exp [ plec — 6T L) Ryren — pT B (Resn) + B 6T Vi(Res () + ol — 1]
“[PINRfeq1 — pE¢ (Re1) + pVe (Res1) o + 2pC (e — r1)]
[pPInRpis1 — pEe (Reg1) + pVie (Reg) bt + 20C (dr — 1)) T,

for quadratic cost co . (49)

The Hessian matrix for the quadratic cost case in (49) are negative definite. To see this, V; (Ryy1)

is positive definite by Assumption 2, which implies that Ei(—exp(—pEi+1)), which the sum of a

_9 _
010
negative and a negative semidefinite matrix, is negative definite. With quadratic cost also the assumption
that ¢ > 0 is sufficient for a negative definite Hessian also if Vi (Ry4+1) is only positive semidefinite.

Hence, for the quadratic cost case Ei(— exp(—pFEi11)) is positive definite and E;(— exp(—pEy+1)) is strictly
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concave in ¢,. For the linear cost case the above statement only holds for ¢ € ©,. However, by considering

E¢(—exp(—pE;+1)) in we observe that

2
[_Petth—H — po{ (E¢ (Rys1) — InRy) + %fi)tTVt(RtH)(ﬁt + pei (@, C)] (50)

is strictly convex. To see this, the first terms are strictly convex and the cost function ¢1(¢, () is con-

vex. Since the sum of a strictly convex function and a convex function is strictly convex, the term
2 . .

—petRpii1 — pod) (Ei (Rys1) — 1nRy) + %(ﬁ:Vt(RtH)qSt + pci (o, C)] is strictly convex. Next, the ex-

ponential function is strictly monotone and strictly convex, such that

2
exp [—petthH — p(,‘th (Et (Ri1) = INRypi1) + %¢tTvt(Rt+1)¢t + pei (o, C)} (51)

is strictly convex and

2
—exp [_Petth+1 — poy (Bt (Re1) — InRyern) + %¢2—Vt(Rt+l)¢t + pc1(@, C)] (52)

is strictly concave. Therefore, also for the linear cost case we obtain a strictly concave E;(—exp(—pEi41))
in ¢;.

Note that for linear cost in the case of a maximum sgn (¢ — ¢ir—1) > 0 if the new optimal coordinate
¢it > ¢i—1 and vice versa. In this case, to obtain an (almost) closed form solution for the optimal
strategy let hy := sgn (qb;" - (b:f_l). By means of (48) we obtain the at 2V candidates [where ¢; € O] for

a maximum

. +(- ]19”75911571
;Vt(Rt+1(X>) Et (Ret1) — Rpr1ln — : : (53)

+¢ - ]I9Nt759Nz—1

Suppose that at ¢} the first order condition for linear or the quadratic cost case described in (48) holds
[for the linear case ¢ € O, and sgn (d)ft — ;‘t_l) > 0 if ¢}, > ¢7,_, and vice versa has to hold]. Since

also for linear cost CARA expected utility is strictly concave in ¢, we obtain a global interior maximum.
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%Vt (RtH(xt))*l (Bt (Rt+1) — Rr411n — Chy) , for linear cost when ¢; € ©, and (54)
¢ = 54
% (Vt(Rt+1(Xt)) + 2CIN)71 (Et (Rt+1) — th+11N — 2((}5:,1) 5 for quadratic cost .

Also if ¢ ¢ O, then a maximum exists. To see this consider e.g. ¢+ = ¢;—1. By the strict concavity of
Ei(—exp(—pEi+1)) in ¢y we can find a compact and convex upper contour set where E;(—exp(—pEi1))
evaluated at elements of this set is larger or equal to Ei(— exp(—pF;41)) evaluated at ¢y = ¢py—1. This set
is non-empty since ¢ = ¢,_1 is always an element of this set. Since E;(— exp(—pE;41)) is continuous the
extreme value theorem (see, e.g., Munkres (2000), Theorem 27.4) guarantees the existence of a maximum
in this compact upper contour set. By strict concavity this maximum is unique. Also in this case the
optimal ¢; is also abbreviated ¢;.2® In any case for the linear and the quadratic cost case we get an
interior global maximum with ¢* € ©. For the regular cases [no cost, linear cost and ¢; € O, or quadratic
cost], by Assumption 2 the conditional moments in (54) exist and Vy(Ry41(x¢)) is invertible. In addition,
we assumed no trading cost for the risk-free asset shows up. To account for trading cost assume e.g. that
Ry 41 is trading cost adjusted. We observe that the optimal strategy provided in (54) is path dependent
in the presence of cost. That is to say, it depends on the histories ¢, ..., ¢ ;. If no trading cost shows
up we get ¢f = %Vt(RtH(Xt))*l (E¢ (R¢41) — Rpi+11y) already obtained in (41), the optimal ¢} does
not depend on any ¢, s # t. Due to the history dependence of the optimal strategy for the cases with

cost we obtain:

Lemma 1. Consider an economy with trading cost, i.e. ¢ > 0. Then a unique optimal strategy ¢; exists.

In general, ¢} depends on @7, s < t.

For the constrained case we get the Lagrangian

Zi (e M) = er+ @) (Br (Req1) — InRypey1) — g¢75TVt(Rt+1)¢t —c(¢,¢) + M (er — 15¢) . (55)

Consider the linear cost case: By taking first derivatives with respect to ¢, ¢ = 1,..., N, and A\ we

ZTor a maximum where ¢; ¢ ©,, the function E.(— exp(—pFi4+1)) can have a kink at the point of a maximum. Such a
case is relatively easy to construct with only one risk asset and a maximum at ¢ = ¢¢—1.
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obtain the first order conditions

0 2
Wﬁ (D1, Ae) = |INE; (Riy1) —ININRpiq1 — ith (Rev1) @1 | — Csgn (fy, — 1) — Mly =Onx1
t
0 0
87)\,50% ((bt,)\) = €t — 11—\5(7515 >0, )\tai)\tﬁ (¢t7>\) =0. (56)

Again, if the constraint e; — 15¢; is not binding, then \; = 0 and (54) provides us with the optimal

solution. By contrast, suppose that e; — 1}@* > 0 hold, that the constraint becomes binding and

1 _ 1 _
of (x1) = ;(Vt (Ri41)) " (Be (Reg1) — Ryl — Csgn (o — o)) — )\;r; (Ve (Rey1)) "1y
By plugging in ¢;" (x;) into e, = 1 ¢;", we get
1 _ 1 _
e = 1y L} (Vi (Reg1)) ™" (B¢ (Regr) — Ryl — Csgn (@) — ¢y1)) — /\;r; (Vi (Res1)) 1N} )
such that
+ P LT -1 ot
AS = 1}Vt (Rt+1)71 ™ [plNVt (Rt+1) (]Et (Rt+1) — Ry ly — (sgn (¢t - d)t—l)) - et}
14 T 4%
= - 1y¢; (x¢) —er| >0 and
1LV (Regn) 1y [ () =]
1 _
df (x1) = o (x4) — )\f; (Ve (Rey1)) 1y
= (%) - P (1067 (%) — o] © (Vi (Res1) Ly
lNVt (Rt+1) 1y P

- %Vt (Ri) ™" (Ex (Resr) — Rysly — Csgn (&7 — 67 1))

1 -1 p Tl -1 _ + At )) = )
ot (Ret) <1LVt(Rt+1>‘11N <1Nth(Rt“) (Ex (Resa) = Cogn (67— ¢11)) et)

p
1LV, (Ris1) 1y

1% (%I—I\F,Vt (Rt+1)71 (]Et (Rt+1) - ngn ((bj - qull)) - et) )
x| . (57)

1 _ 1 _
—&-;Vt (Riy1) 1( 1};% (Rey1) 1]—Nth>

1 -1
= Vi (Riy1) E¢ (Rey1) — —
p 1J—|\—th (Rt+1) ! ]_N

¢F* (x¢) need not be equal to ¢y (x;) since the former contains sgn (qbzr — (bttl) while the latter contains

the term sgn (qb;k — (b;‘_l). For quadratic cost we get

0 2
W‘Z (P, ) = [INEt (Riv1) —INInRyfeq1 — §sz (Rit1) ¢t] =20 (s — p¢—1) — MdIn = Onx1 s
t
O Zi(@)) = -1k 20, M2 (90 X) =0. (58)
Ot ’ - Ot ’
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Once again, if the constraint e; — 1}@51’[ is not binding, then A\; = 0 and (54) provide us with the optimal

solution. For e; — 1}@52‘ < 0 we get

&) (xt)

€t

&/ (xt)

1 _ 1 _
5 (Ve (Ret1) +2¢In) 7! (Et (Rey1) — Rpedy + QCdﬁ,l) - Af; (Ve Re+1) +2¢In) 1y
By plugging in qﬁj (x¢) into e; = 1}(15:, we get

1 _ 1 _
1} ;(Vt (Re41) + 2¢Iy) 1(Et (Rt+1)—th1N+g¢j_1)_Aj;(vt (Ryt1) + 2CIy) 11N} 7
such that
14 1+ -1 +
- —1n (Ve (Reg1) +2¢In) 7 (Ee (Rer) — Rl + () _Et:|
1LV (Regr +2¢In) ' 1y |:p N ¢ ( t ft t 1)
P

1507 (x¢) —er| >0 and
15 (Ve (Reg1) +2¢Iy) M1y [ N () ]

br (xt) — A:% (Ve (Ryg1) + 2¢In) T 1y

oF (xt) — P [1?\105? (xt) — et} (Ve (Reg1)) +2¢In) 1y

1
10 (Ve (Req1) +2¢In) 1y p

1
» (Ve (Reg1) +2¢In) (Et (Re41) — Rpedn + Cd’f,tl)

1 -1 p ( T1 —1 + )
— (V; (R 2¢I 1 1y— (Vi (R 2¢I E: (R —
p( t (Re1) +2¢Iy)" " 1N <1; Vi (Reer) 7 20I0) T 1,y Np( t (Ret1) + 2¢IN) ( ¢ ( t+1)+C¢t_1> et )

P
1;, (Vt (Rt+1) + 2CIN)71 1n

P (llﬁ (Ve (Req1) +2¢In) ! (Et (Rey1) + C¢ZZ1) - et)
L iv | -
10 (Ve (Reg1) +2¢Iy) "1y

1 _ 1 _
+;(Vt (Ret+1) +2¢In) 1( 1%;% (Rit1) llNth>

(59)

% (Ve (Req1) + 2¢In) 7t (Et (Reg1) —

Lemma 2. Consider an economy with trading cost, i.e. ¢ > 0. Then for the constraint problem a unique

optimal strategy ¢, exists. In general, ¢, is history dependent, that is, it depends on ¢, s < t.

S )

For any ¢} where ¢; # ¢;_;, we observe that the optimal strategy cannot be of the form ¢, = ¢o;t + @1, %

or @5, = oit + qb;'—ixit, for i =1,..., N, where ¢o;; and ¢; only follow from the conditional moments of

the returns, the risk-free rate and the degree of risk aversion (as observed in (46) for case where ( = 0).

The same argument also holds for ¢; .
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F.3 Deriving Certainty Equivalents

By using the optimal strategy ¢; we obtain by means of (40) the value function (conditional on x;)

%(pv €t, Xt, Cv Cl) = ]Et(_ EXp(—pEt+1))|¢>:¢*

= E(-ep (-p[(e — 07 TN Rper + 67 TRes — Cll — dialln])) (60)

for the linear cost case. If in addition, ¢} € ©,, then

7/’5(/)7 €t,Xt, <7 cl) = ]Et(_ exp(—pEt+1))|¢.:¢*

2
= —exp [—petRfm +p¢i "INRpis1 — ppr  Ei (Rig1) + %¢>I TVi(Res1) 5 + pCllor — o7 s M

.
1 _ *
= —exp|—pe:Rp1+p <;Vt(Rt+1) "Bt (Re1) — Rperaln — Cht)) InRyit1

1 _ A\
—p (;Vt(RH-l) Y(Ee (Riq1) — Rpepaly — Cht)> E; (Re+1)

2

+2"? (Vi(Rog1) ™ (By (Res1) — Ryeprdn — ChY)) | Vi(Reyt)Ve(Repa (x0)) L (Be (Rit1) — Ryopaln — Chy)

+oClldr — di-illr

= —exp [_P@tth+1 — (Ve(Rag1) ™ (Be (Req1) — Rprpaly — Ch%)) '

1 *
. (Et (Rit1) = Rprp1ln — 3 (Bt (Re41) — Rpe1ln — Cht)>

+pCllpr — di_alls

= —exp |:—P€tth+1 - % (Et (Re41) — Rper1ly — Chy) T Vi(Reg1) " (Be (Reg1) — Rpeq1ln + Chy)

-exp [pCldy — di-alla] (61)
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for the linear cost case, while

%(pa €t, Xt, C) C2) = Et(_ eXp(_pEt-‘rl))‘(#’:qs*
= Ei(—exp(—p[(er — @f "In)Rpes1 + &7 ' Rusr — Cllof — ¢e-1]3]))

2
* * p * * * *
= —exp {—Petthﬂ +pd; TINRyi1 — poy By (Ryg1) + 5@ TV (Rey1) oy + pClldf — ¢t1||§:|

.
1 - .
= —exp|—petRf1 +p (p (Ve(Regr) +2¢In) " (Be (Reg1) — Rppyrly — 2C¢t—1)> INRfit1

.
-p <; (Ve(Reg1) +2¢In) ™ (Bt (Ret1) — Rpeqaly — 2C¢I—1)> E; (Re+1)

2
+2% ((Vt(Rt+1) +2CIy) " (Be (Reg1) — Rpealn — 2g¢;1))Tvt(RtH(x))
(Vi(Resr) = CIN) 7 (Be (Reqr) — Ry 1y — 20974 ) + pCllod; — o7 413 ] ; (62)

for the quadratic cost case. For zero trading cost the above expressions yield
1 _
Yelpr et xt,0,0) = —exp | —perRpep1 + 5 (Be (Reqr) — Rprpaln) " Vi(Rogr) ™ (Rpaly — Ey (Rt+1))] - (63)

In addition, if the investor does not invest into risky assets, such that ¢; = Oy, for all ¢, and ¢g =
O, expected utility is E¢(—exp(—pFEiy1))|p=0y = —exp(—perRysi41). Also the constrained case can be

investigated in a similar way by considering the Lagrangian (42) augmented by cost.

Next consider an investment strategy q?)t [either for the constrained or the unconstrained problem)],
CARA utility with parameter p, wealth/or endowment e;, variables driving returns x; and a cost function
¢; with parameter (. The conditional certainty equivalent, denoted %(p, e, X¢, o, ¢j, ¢) in the following,

is provided by

Ci(p, e, Xt, Pry i, C) = et Ryt + @) (By (Rip1) — InRpii1) — g&:vt(Rt—H)&t — pGey ((lg’C) . (64)
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For the optimal strategy ¢y this yields

Ci(poer,xe, d1,1,0) = eRpsr+ @ (Er (Rir) — InRpeg1) — §¢>§ "Vi(Res1)d; — Clldi — br_1lx

for the linear cost case, and

Cgt(p7 €t,Xt,¢:,C27€)

etRyes1 + @7 | (Er (Reg1) — InRpeq1) — g@k "Vi(Res1)d; — Cllr — di_1 3

for the quadratic cost case . (65)

If trading cost is zero, €;(p, s, x¢, ®*,0,0) > e, Rpyq. To see this, for ¢, = 0, we get ¢9 = e; and
the conditional certainty equivalent is e; Ry, 1. Since ¢ is chosen optimally the inequality has to hold
Ci(p, e, x,¢*,0,0) > e Rppp1. If ¢* # 0 by the strict concavity of the problem we obtain a strict
inequality. If no risk-free asset is available, €(p, e, %, ¢7,0,0) > e;Rfi41 need not hold in general. The

unconditional certainty equivalent is provided in Section B of the main text.

F.4 Optimal Parametric Portfolio Policies

Next we consider parametric portfolio policies proposed in (4). Hence, consider investment weights w;; =
Wi + %HTiit for i = 1,...,N; here 8 € © = R*¥ and N is fixed. By (36), the amounts invested are
¢§t = eqqw;y € R. With parametric portfolio policies usually the weights are obtained by an optimization
problem based on the risky assets only. Hence, to obtain the weights invested into risky assets only
the case where the investor invests some fixed amount e; has to be considered [therefore, we are closer
to the constrained case considered above.]. Often e; = 1. Since some of the following calculations
are more straightforward when working with amounts invested, we proceed to work with qf)g. Then,
wi = (wiy, ..., wxe) | is an N x 1 column vector collecting the investment weights following from (36). In

addition,
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is an N x k matrix [a reordering the elements of 3 provides us with %Xt, the same works with non-
standardized values] and w; is an N x 1 column vector collecting w;;. Suppose that w; € RY can be
chosen optimally every period t and any asset i, following (48) yields e;w; = ¢} and 8 = Ogx1. To obtain
a non-trivial solution with parametric portfolio policies we use (54) and proceed with some w; = éqﬁgt.

For example ¢gt = e, 51y € RY (“1/N-portfolio”) or

_— %V(Rt+1)_1 (]E (Ri+1) — Rpr11n — (sgn ((j)i1 — qbgfl)) , for linear cost and
b0 = (66)
% (V(Reg1) — CIn) ! (E (Ri41) — Rppp1ln — 2((1)5_1) , for quadratic cost ,
where E¢ (Ry+1) and V(Ry41) denote the (unconditional) expectation and variance, respectively.
By plugging in ¢gt we obtain the the optimal 8. This yields
Bi(=exp(=pBer)l syt Lo o
- E (_ exp (—p [(et - (¢gt + et %,G)T 1N) Rppr1 + (¢,gt + et %'te)T Ryjq
~Cll (@8, + et F18) — (0h,_, +er1 Z0_10)11]))
= —exp <7p Ket — (b + e %te)T 1N) Rprpr+ (b, + et 35,,9)7 E¢ (Rig1) — é (#h, + et 3&,19)T Ve (Roga) (05, + 0 Z10)
—Cll(bh, + e Z:6) = (¢h, 1 +er1Z1-16)11])
for the linear cost case, and
Bi(=oxp(=pBer)l gt Lo o
- E (_ exp (—p [(et - (¢gt + et %‘,o)T 1N) Rppi1 + (¢gt + et %',,e)T Ryiq
—cll(#h, + et Z10) — (b, _y +ei1 Z1-10)113]))
= —exp <7p Ket — (b + e 58,,9)T 1N) Rprgr + (o, + e,,.zgf,e)T E (Rig1) — § (oh, + e,,%’,,e)TVt (Reg1) (@, + et Z16)
—Cll(bh, + e Z:6) — (¢h, 1 +er1Z110)13])
for the quadratic cost case . (67)

First, suppose that @ can be chosen every period ¢, yielding ;. Taking partial derivatives in (67) with
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respect to 6; yields the first order condition

0
ﬁEt(_ eXp(_PEt+1)) |¢E:¢gt+et 2,0,
= E¢(—exp(—pEi11))

- - 252 - -
' [Pet%TlNthH — pee 2, By (Req1) + %et%TVt (Rit1) (¢gt + et%tat)
~ ~ T ~ ~
+p¢ (et% — e %—1H(et=9t,1)) sgn (((ﬁ%t + et%Gt) - (¢gt71 + €t1%19t1))] = Ok x1
for the linear cost case and 0 such ¢, € ©,, and

0
WEt(_ exp(—pEit1)) |¢§=¢gt+et Z,0,
= Ei(—exp(—pEiy1))

- - 202 - -
: [Pet%TlNthH — pee 2, By (Req1) + %et«%TVt (Rit1) (¢gt + et,%at)

+2p¢ (et% - etflrjm:ftfl]l(etzet_l)>T ((d%t + €t5ﬁ}t9t) - (¢>2‘3H + €t1«%}t19t1>)] = 0px1

for the quadratic cost case . (68)

Here all the terms in the last [] of (68) are Fi-measurable; the indicator function Iig,—g, ,) was added to
consider the case 0 = 0; = 0;_1 later.
By taking second partial derivatives we observe that ﬁlﬁjt(— exp(—pEii1))| Sl erTi0, < 0 for

zero or quadratic cost. That is, we consider a strictly concave function. To show that
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E¢(— exp(—pEt+1))|¢§ = qbgt + €,2,;0; is strictly concave in 8y, from (68) we obtain

_9
06, 08,

= Ei(—exp(—pBi1)) 022 2, Vi (Rest) 2

E(=exp(=pE))lyi gt 1e, 7:0,

+E; (—exp(—pEii1))
: [Pet%TlNthH — per 2y By (Ryy1) + p2er 2, Vi (Ryt) (¢€t + et%&t)
. 3 T _ _ 1
+Cp (et% — €1 %—ﬂwt:et,l)) sgn ((qb%t + Gt%ﬁt) - (¢gt,1 +ep1 %—1975—1))

' [pet'%;tTlNth-l-l — per 2y By (Rys) + pPer 2y Vi (Riga) (¢%t + etggtet)

+Cp (et% — €1 %—1H(0t:0t,1)>T sgn ((Qﬁgt + etgfifat) - (¢gt,1 + e 3&:—1975—1))

for the linear cost case and 6 such that ¢; € ©,, and

0
mﬂzt(— exp(—pEi41)) ‘¢§:¢3t+et£}9t

= E(—exp(—pEi) |p%e} 2, Vi (Rerr) 7]
5 5 T, 5
+E; (— exp(—pEit1)) [/)C (Et% —e1 %71]1(9,5:9%1)) (et% —er1 %J(otetl))}
+E; (— exp(—pEit1))
. [pete%;tTlNth—i-l pet% E; (Rt-i-l) +p Ct% Vt Rt+1 ¢0t + et%0t>

: [pete%;tTlNthH — per 2y By (Rys1) + pPer 2y Vi (Ryg1)

)

+2(p (Q%& - €t—1«%;t—11[(9t:0t,1)) ((ﬁ%t + et%Ot) (¢ 0t—1 T €t—1%—19t—1)>}
( + €t%9t>
(

+2(p (%eggt - €t—135;z:—11[(0t=9t,1)) <<¢0t + etf%et) ¢0t L ei1 216, 1))} !

for the quadratic cost case .

By Assumption 2 the Hessian matrices obtained in (69) are negative definite. The case with linear

cost and @ such that ¢, € ©, can be considered in the same way as ¢; ¢ O, case in the derivation of

the optimal strategy described above (see (50) to (52) where ¢ is replaced by (j)g) This implies that

E; (—exp (—pEi41)) is strictly concave in 6y, for linear and quadratic cost respectively. In the case of zero
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trading cost, we observe by setting ( = 0 in (69) that also without trading cost the Hessian is negative

definite. Then the optimal 8, follows from (68). To obtain 8 = 6, V¢, we impose

Assumption 3. The stochastic properties of R; and x; are such that E (— exp(—pFE¢;+1)) exists and that

taking partial derivatives and expectations can be interchanged.

Hence, E (—exp(—pEi+1)) = E (Ei(—exp(—pFEit+1))) (see, e.g., Klenke, 2008, “tower rule” (Theo-
rem 6.28)) and taking partial derivatives and expectations can be interchanged (see, e.g., Klenke, 2008,

“Differentiation Lemma” (Theorem 6.28)). This yields

0
7o7 L Et(=exp(=pBi1))) gs_yt 1., o7,

- - 202 . -
= K (—Et (exp(—pEt+1)) . [—pet%TlNRfH,l + petﬂi’tT]Et (Rt+1) — %et%TVt (Rt+1 (Xt)) (¢?)t + 6,5:%0)]
—C (— exp(—pEi+1)sgn ((¢>€t + et%ﬁ) - (qbﬁt,l + et—1357t—10)) (ezﬂgt - ez—1<%~”t-1))) = Okx1 ,
for the linear cost case 8 such that ¢ € ©,, and

0
707 L Et(=exp(=pBe1))) syt 1., o7,

= E(E:(—exp(—pFEi+1))

: [,Oet %TlNthJrl — peét %TEt (Rt+1) + p2€t %Tvt (Rt+l) (¢gt + ex 3&01&)

+2pC (et% — t31571=%;t71>-r ((d%t + etﬁ;tet) — ((17?”,1 + 6#1%4@4))}) = Okx1

for the quadratic cost case . (70)

In contrast to (68), where we were able to solve for 8, now the stochastic matrix Z; remains within
the expectation operator. Although the moment generating function can be computed for some terms
separately (normal and non-centered Wishart distribution if 2 is normal as well), up to our knowledge

a closed from expression for E (—exp(—pE;41)) (if e.g. x; follows a normal distribution) is not available.

To show that an optimal @ exists [given ¢, and the existence of E (—exp(—pE41))], note that by
(69) [and the arguments for ¢, ¢ ©, in the linear case|, the conditional expectation E;(— exp(—pE;+1))
is strictly concave in (= 0; = 0;_1) (without cost, with linear cost as well as with quadratic cost). This
holds for any 2; (almost surely). To see this, for no cost or quadratic cost ﬁE (—exp(—pEiy1))=
E (ﬁEt(—exp(—pEtH))): E (Et(ﬁ — exp(—pEi41))), such that E(—exp(—pEi41)) is strictly
concave in 6. For linear cost where the Hessian does not exist for all ¢, € O, we follow (50) to (52)
where ¢, is replaced by ¢)§) and use the convexity of the function inside the exponential and the fact that

e” is strictly montone and strictly convex. This shows that E (E; (— exp(—pFy+1))) is strictly concave in
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0 also for the linear cost case. Note that, © = R¥. If at least one coordinate of @ goes to 400 or —oo, the
quadratic form 87 .2;"V; (R¢y1) 2360 becomes the dominating term in (67) and E; (— exp(—pFEi11)) goes
to —oo for (almost) all x;, which implies that also E (—exp(—pE;+1)) goes to minus infinity. Note that
without cost and with linear cost, the term GT%TVt (Res1) 5@0 dominates the other terms, while in the
case of quadratic cost the cost term amplifies the effects of 87 2;"V; (Ry41) 2:0. Next we consider (70).
The first derivative either (i) becomes minus infinity if at least one coordinate of 6 becomes small, while
the first derivative becomes plus infinity if at least one coordinate of 8 becomes large [% has full column
rank almost surely] or (ii) becomes plus infinity if at least one coordinate of @ becomes small, while the
first derivative becomes minus infinity if at least one coordinate of 8 becomes large [depending on Z;; the
argument with the derivative also holds for the linear cost case for ¢ € 0,]. E (—exp(—pFE:11)) is also
continuous in @. By the above arguments, a supremum cannot be attained at any boarder of © = R*
and a maximum must be in the interior of @ = R¥. Since E (—exp(—pFE;11)) is strictly concave in
this maximum is global and unique. Hence, we observe that an optimal 8 € © exists and the strategy
qf)g = ¢gt + ;2,0 is well-defined for CARA utility (given some weak regularity conditions). Note that
this result holds without cost, with linear cost or with quadratic cost respectively. Finally we derive

conditional expected utility when applying q&g = (t)gt + €, 2:0. That is,

v

Yi(p, et xt, ¢, c1) i= By (— eXP(—PEt+1))|¢t:¢g
= E: (— exp (—P [(et — ¢ "In)Rpi1 + @) T Ruga — Cllopf - ¢§71|\1D)
2
= —exp {—petRfm +pdi "IN Ry = b} Ee (Ree) + 561 TV (R ()] + ¢ — 0 M
" ~ T
= —exp {*PetthJrl —p (¢Ot + et%9> (Et (Re41) — InRyes1)

+%2 (¢’gt + et%O)T Vi(Riq1) (d’gt + etg&o) + pC|l (¢’gt + €t357t9) - (¢gt_1 + et—le%;t—lo) Hl} ,

for the linear cost case, and

“

%(pv et7xtaC7CQ) = Et(_exp(_pEt-‘rl))'qbt:(ps
= [E (— exp (—P [(et — ¢! TIN)Rpepr + @ TRuy1 — €|} — ¢§71H3D)
2
= —exp {—petRfm + pdf "INRyei1 — pd} B¢ (Regr) + %qs% TVi(Req1(x)) o} + pClldf — ¢>§,1\|§}

~ T
= —exp {*PetthJrl -p (qbﬁt + et%9> (Bt (Ret1) — INRfit1)

+%2 (qsgt + ete%;tO)T Vi(Riy1) (d)gt + EteA@?te) | ((ngt + Ete%;tg) - (¢gt_1 + et_lﬁa_la) H%:l ,

for the quadratic cost case . (71)
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Then, for the strategy qbg = ¢gt + €20 the conditional certainty equivalent is provided by

%&(M €t, Xt, ¢§7 C1, C)

(gt(p7 €t, Xt, ¢§> C2, C)

_NT
= eRp + (¢gt + et«%te) (Et (Rev1) — InRypiy1)
_\T _
_g (¢gt + 6t'/‘a'}ft‘s’) Vi(Riy1) ((ﬁ%t + €t%9)
~Cll(he + 1 Zi6) = (@hys + i1 Zi18) 1
for the linear cost case, and
i o NT
= eRyp1 + (¢0t + et%G) (E¢ (Re+1) — InRypey1)
_\T _
2 (gh +ei?i6) ViRer) (@, +er2:0)
_CH <¢(ﬁ)t + et%e) - (d)(ﬁ)t—l + et—lﬁ;t—le) H% )

for the quadratic cost case . (72)

Since 6;(p, et, X¢, @}, ¢;, () obtained in (64) arises from utility maximization and expected utility is strictly

concave in ¢ [see equation (49)], we get

with equality if and only of ¢} =

Gi(p, e, %1, $7,¢1,C) — Cilp, ev. xe, 5, 1, C)
(61 - )" (B (Ret) ~ 1nRpn)

=2 (61 TV R0 — 0T Vi(Res1) @)
¢ (167 = diall = 116 — il ) -

for the linear cost case, and

Ci(p, e, %1, $7,02,C) — Cilp, v, xt, 95, €2, C)
(1~ 9)" (B (Rurr) — 1wRpesa)

—g (d’? TVi(Res1)$] — b TVt(Rt+1)¢§)
~¢ (g7 = #i-al3 — i — #1413)

for the quadratic cost case , (73)

¢}
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