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1 Introduction

Agents seldom search in isolation: others’ choices and experiences are readily
available via observation, communication, and social networks. The theoretical
and empirical literature on social learning (see, e.g., Mobius and Rosenblat, 2014;
Golub and Sadler, 2016; Bikhchandani, Hirshleifer, Tamuz and Welch, 2022, for
surveys) documents how agents heavily rely on the information of others in shaping
their behavior. Survey evidence documents that referrals on social media influence
agents’ purchases (Forbes, 2012, 2022). However, empirical search models typically
assume that agents search in isolation, ignoring their social information (i.e., the
information in their peers’ decisions).

We theoretically investigate how social information affects agents’ search be-
havior and the resulting observable outcomes that identify search models. We
generalize the canonical empirical search model by allowing a share of agents in
the population to observe the choice of some peers. First, we show that neglecting
social information leads to non-identification of search cost distributions. Next,
we propose approaches that restore identification.

We consider a stylized version of Weitzman (1979) sequential search model. An
agent must choose between two alternatives whose high or low utilities are i.i.d.
draws. Before searching, the agent knows the utility distribution but not the realized
utilities. Searching an alternative reveals its utility to the agent. After searching the
first alternative for free, the agent decides whether to search the second alternative at
a cost, high or low. Before searching, with some probability, the agent observes the
choice of one of her peers, but neither the peer’s search behavior nor the peer’s search
cost. The peer acts in isolation and faces the same utility realizations as the agent.
Thus, the agent draws inferences about realized utilities from the peer’s choice.

The optimal decisions of an agent with social information differ from those
of an isolated agent in two ways. First, an agent with social information is not
indifferent about which alternative to search first. Since the peer searches both
alternatives with positive probability, the utility distribution of the alternative
chosen by the peer first-order stochastically dominates that of the other alternative.
Thus, an agent with social information searches first the alternative chosen by her
peer. Second, the expected gain from the second search for an agent with social
information is lower than that of an isolated agent. The reason is that a Bayesian
agent discounts the value of the second search by the probability that the peer
searched only once, as only in this case the second search is valuable to the agent.
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Thus, social information reduces the incentive to search.
These differences imply that an agent with social information obtains a higher

utility and searches less than an isolated agent. Since social information changes the
distributions of observable outcomes that identify search models, neglecting social
information leads to non-identification of search cost distributions. Whether search
costs are under or overestimated depends on the dataset. Below, we illustrate these
insights with three datasets commonly available to researchers (see Honka, Hortaçsu
and Wildenbeest, 2019, for a survey of the empirical search literature). Each dataset
is also collectible by tracking agents’ online (Ursu, Seiler and Honka, 2022).

Example 1 (Data on Choice). Suppose agents search online bookstores for the
best price to buy a certain book. The researcher observes the price at which each
agent buys the book at various bookstores. Some agents pay a low price, whereas
others pay a high price for the book. If the researcher assumes agents search
in isolation, she infers low search costs for all agents paying a low price. Before
searching, however, some agents observe the bookstore where one of their peers
has purchased the book. Since the peer has likely searched other bookstores, they
infer that that specific bookstore offers a good bargain. Therefore, they buy at
a low price because they exploit social information and not because of low search
costs. Hence, search costs are underestimated.

Example 2 (Data on Optimal Stopping). Suppose agents search for the best
price to buy a certain camera. The researcher observes the search history of each
agent and the price they pay at the store. Some agents conduct a single search and
pay a high price for the camera. If the researcher assumes agents search in isolation,
she infers high search costs for all agents who discontinue search after searching
only one store selling the camera at a high price. Before searching, however, some
agents observe one of their peers buying the camera from a specific store. Since the
peer has possibly searched both stores, they infer that the camera is not available
at the other store at a lower price. Therefore, they discontinue search despite the
high price because they exploit social information and not because of high search
costs. Hence, search costs are overestimated.

Example 3 (Data on the Number of Searches). Suppose agents search for
restaurants online. The researcher observes the number of searches each agent
conducts before choosing a restaurant. Some agents search twice, whereas others
search only once. If the researcher assumes agents search in isolation, she infers
high search costs for all agents searching only once. Before searching, however,
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some agents observe an online referral of a specific restaurant by one of their peers.
Since the peer has possibly searched both restaurants before posting the referral,
they infer that the referred restaurant offers high-quality meals. Therefore, they
search only once because they exploit social information and not because of high
search costs. Hence, search costs are overestimated.

Search costs are a key determinant of agents’ choice, pricing behavior, and mar-
ket outcomes. Quantifying search frictions is crucial for computing price elasticities,
assessing market competitiveness, and performing counterfactuals in regulated
markets. To help fix misguided conclusions that may arise when neglecting social
information, we present remedies that restore identification.

We begin with three methods that restore point identification of the search
cost distribution. First, identification obtains by using agent-level data on social
information, distinguishing isolated agents from agents with social information.
Such data, however, are hardly available. Second, identification can obtain by
estimating offline the share of agents with social information. For instance, the
researcher can acquire detailed network data on the agents with access to social
media or survey evidence on agents’ reliance on peers’ choices to make their pur-
chases. Third, identification can obtain by exploiting variations in observables, like
the utility distribution. For instance, the researcher can exploit the changes in
observed search decisions due to a product upgrade shifting the utility distribution.

The three remedies above require additional information or exogenous variations
and may be sensitive to the details of the search model. We next present partial
identification approaches that allow the researcher to recover bounds on search cost
distributions under weak assumptions on the environment. First, we show how to
construct bounds with no information on the share of agents who observe a peer’s
choice. Second, we consider a general structure for social information, allowing the
social information available to agents to vary and go beyond the simple observation
of one isolated peer. This approach does not require specifying: the agents’ amount
of social information (e.g., how many peers they interact with); the agents’ type
of social information (e.g., whether it comes from observational or communication
learning, advertising, ratings, or reviews); the search procedure (sequential or
simultaneous). As a result, the researcher can recover robust bounds on search cost
distributions when agents’ amount and type of social information are unobserved,
and so is the search procedure. Such bounds can be constructed by estimating the
search cost distribution under two opposite assumptions: each agent acts in isolation;
each agent’s social information is such that the agent chooses the alternative with
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the highest utility at the first search. How far apart these bounds are is a measure
of how misguided conclusions can be when neglecting social information.

We conclude by generalizing the model to provide additional guidance on how
to account for social information in alternative empirically relevant contexts fo-
cusing, in particular, on continuous search cost distributions and Stigler (1961)
simultaneous search.

Related Literature. Recovering economic primitives from observable behavior
has a longstanding tradition (see, e.g., the revealed preference literature, Chambers
and Echenique, 2016). Our approach draws inspiration from recent theoretical
work on identification, such as: Heidhues and Strack (2021) for the identification of
present bias from the timing of choices; Bergemann, Brooks and Morris (2022) for
counterfactual predictions with latent information; Liu and Netzer (2021) for the
identification of happiness measures from ordered response data; Libgober (2021)
for the identification of information structures from posterior beliefs; Shmaya and
Yariv (2016); Deb and Renou (2021); De Oliveira and Lamba (2022) for the testable
implications of learning on observed choices; Heumann (2019) for informationally
robust comparative statics. None of these papers studies identification in search
models or the role of social information.

Our approach to partial identification and general social information is close in
spirit to the theoretical literature on robust predictions in incomplete information
or extensive form games (Bergemann and Morris, 2016; Doval and Ely, 2020), and
to Barseghyan, Coughlin, Molinari and Teitelbaum (2021), who propose a robust
method of discrete choice to partially identify preferences under heterogeneous
choice sets. Recent work uses the Bayes correlated equilibrium notion of Bergemann
and Morris (2016) to develop informationally robust identification and estima-
tion strategies. Examples are: Magnolfi and Roncoroni (2022) for entry games;
Syrgkanis, Tamer and Ziani (2021) for auctions; Gualdani and Sinha (2020) for
single-agent models of voting; Canen and Song (2022) for counterfactual analyses.

Recent work analyzes how social learning affects individual search behavior
(see, e.g., Kircher and Postlewaite, 2008; Galeotti, 2010; Hendricks, Sorensen and
Wiseman, 2012; Mueller-Frank and Pai, 2016; Garcia and Shelegia, 2018; Lomys,
2020). We use the results in this literature to motivate the importance of social
information in shaping the search process. However, our goals are distinct, as none
of these papers studies identification in search models.
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2 Model

Basic Setting. Consider (a stylized version of) the canonical sequential search
model by Weitzman (1979) as developed by the empirical search literature (see
Honka et al., 2019). There are countably many search problems, n = 1, 2, . . . . In
search problem n, the Bayesian agent n must select an alternative from the set
X := {0, 1}. We denote by x an alternative in X and by ¬x the alternative in X

other than x. Let uxn ∈ {u, u}, where 0 ≤ u < u, denote agent n’s (indirect) utility
from alternative x. Utilities are i.i.d. across alternatives within search problems
and across search problems. Let α := P(uxn = u) ∈ (0, 1) and ∆u := u− u.

Agent n knows the utility distribution, but not the realized utilities, about
which she collects information via costly sequential search with recall:

1. Agent n decides which alternative to search first, s1
n ∈ {0, 1}. By searching

alternative s1
n, agent n perfectly learns its realized utility us1

n
n .

2. Agent n decides whether to search the remaining alternative, s2
n = ¬s1

n, and
perfectly learn its realized utility u¬s1

n
n , or to discontinue search, s2

n = d.

3. Agent n chooses an alternative an ∈ Sn, where Sn is the set of alternatives
agent n has searched.

The first search is free. The second search costs cn ∈ {c, c}. Search cost cn is
known to agent n. We assume 0 < c < α∆u < c. Absent this assumption, a search
problem of type I (see below) is trivial: an agent would always search either both
or only one alternative, irrespective of her search cost. Search costs are i.i.d. across
agents. Let β := P(cn = c) ∈ (0, 1).

Agent n maximizes the difference between the utility of the alternative she
chooses and the search cost she incurs: uan

n − cn(|Sn| − 1).

Social Information. Let θn ∈ {I, S} be the type of search problem n. Types θn
are i.i.d. across search problems. Let γ := P(θn = I) ∈ (0, 1].

• If θn = I, agent n is isolated. Her search problem is as described above.

• If θn = S, agent n has social information. Before engaging in sequential
search (as described above), agent n observes the alternative an0 chosen by
a fictitious Bayesian agent n0 who: (i) faces a sequential search problem
of type I, P(θn0 = I) = 1; (ii) has the same realized utilities as agent n,
(u0

n0 , u
1
n0) = (u0

n, u
1
n); (iii) has an idiosyncratic search cost cn0 drawn indepen-

dently of cn, but from the same distribution. Agent n, however, observes
neither agent n0’s search cost nor agent n0’s search decisions.
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Examples. If uxn := U − pxn, we have a price search model for homogeneous goods
with identical agents and ex-ante identical firms. If uxn := εxn, we have a match-value
search model with ex-ante identical agents and firms. Other search models can
be accommodated similarly.

3 Optimal Decisions

3.1 Search Problem of Type I

First Search. Since the utilities of the two alternatives are i.i.d., agent n decides
which alternative to search first uniformly at random: s1

n = 1
2 ◦ 0 + 1

2 ◦ 1, where∑
x ξ(x) ◦ x denotes the mixture assigning probability ξ(x) to alternative x.1

Since utilities are i.i.d.,

us
1
n
n =

u with probability α

u with probability 1− α
.

Second Search. Agent n searches the second alternative if and only if the ex-
pected gain from doing so is no less than her search cost. Given the utility of the
first alternative searched, us1

n
n , agent n’s expected gain from the second search is

VI
(
us

1
n
n

)
:= E

[
max

{
u− us1

n
n , 0

}]
=

0 if us1
n
n = u

α∆u if us1
n
n = u

. (1)

Since 0 < c < α∆u < c,

s2
n =


d if us1

n
n = u

d if us1
n
n = u and cn = c

¬s1
n if us1

n
n = u and cn = c

.

Choice. Agent n chooses the best alternative among those she sampled, random-
izing uniformly if indifferent:

an =


s1
n if s2

n = d

¬s1
n if s2

n = ¬s1
n and u¬s

1
n

n = u

1
2 ◦ 0 + 1

2 ◦ 1 if s2
n = ¬s1

n and u¬s
1
n

n = u

. (2)

1Breaking indifferences uniformly at random captures that labels do not convey information
about alternatives’ utilities or agents’ behavior.
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Decision Tree. Agent n’s decisions in a search problem of type I are in Figure 1.

Figure 1: Decision Tree for a Search Problem of Type I.

s1
n = 1

2 ◦ 0 + 1
2 ◦ 1�

�
�
�
�
��

u
s1

n
n = u

α

�
�
��
cn = c, s2

n = d
β

an = s1
n, uan

n = u1

@
@
@@
cn = c, s2

n = d
1− β

an = s1
n, uan

n = u1

@
@
@
@
@
@@

u
s1

n
n = u

1− α

�
�
��
cn = c, s2

n = d
β

an = s1
n, uan

n = u1

@
@
@@ cn = c, s2

n = ¬s1
n

1− β
u
¬s1

n
n = u, an = ¬s1

n, uan
n = u

α
@
@
@
@@u

¬s1
n

n = u, an = 1
2 ◦ 0 + 1

2 ◦ 1, uan
n = u

1− α

3.2 Search Problem of Type S

First Search. In a search problem of type S, agent n’s belief about the utilities
of the two alternatives depends on agent n0’s optimal choice in a search problem
of type I. There are two possibilities, each having positive probability:

1. Agent n0 did not search alternative ¬an0 . If so, agent n0’s choice is uninfor-
mative about the utility of alternative ¬an0 .

2. Agent n0 searched alternative ¬an0 . If so, since agent n0 chose alternative
an0 , it must be that uan0

n ≥ u
¬an0
n and, with positive probability, uan0

n > u
¬an0
n .

Agent n’s belief about the utility of alternative an0 strictly first-order stochastically
dominates her belief about the utility of alternative ¬an0 . Hence, by Weitzman
(1979)’s optimal search rule, agent n searches alternative an0 first: s1

n = an0 . This
is the first difference between search problems of types I and S.
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Therefore,

us
1
n
n = uan0

n0 =

u with probability α + α(1− α)(1− β)

u with probability αβ(1− α) + (1− α)2
,

where the probabilities are calculated from Figure 1.

Second Search. Agent n searches the second alternative if and only if the ex-
pected gain from doing so is no less than her search cost. The expected gain
from the second search depends on the probability that agent n0 did not search
alternative ¬s1

n given that an alternative with utility us1
n
n was chosen, denoted by

P
(
us

1
n
n

)
. With remaining probability, agent n0 searched alternative ¬s1

n but chose
alternative s1

n, in which case alternative s1
n is non-inferior by revealed preference.

Thus, agent n’s expected gain from the second search is

VS
(
us

1
n
n

)
:= P

(
us

1
n
n

)
E
[

max{u− us1
n
n , 0}

]
= P

(
us

1
n
n

)
VI
(
us

1
n
n

)
. (3)

From Bayes rule and Figure 1,

P (u) := P
(
s2
n0 = d | uan0

n0 = u
)

= β

β + (1− α)(1− β) ,

and so

VS
(
us

1
n
n

)
=

0 if us1
n
n = u

αβ∆u
β+(1−α)(1−β) if us1

n
n = u

. (4)

Thus:2

• If c < VS(u),

s2
n =


d if us1

n
n = u

d if us1
n
n = u and cn = c

¬s1
n if us1

n
n = u and cn = c

.

• If c > VS(u),
s2
n = d.

Conditional on the first searched alternative having utility u, the expected gain
from the second search for an agent with social information is lower than that for
an isolated agent (compare equations (1) and (4) for us1

n
n = u). This is the second

difference between search problems of types I and S.

Choice. Optimal choice is as in a search problem of type I (see equation (2)).
2Since non-generic in the parameter space, we ignore c = VS(u).
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Decision Tree. Agent n’s decisions in a search problem of type S are in Figure
2: Panel A if c < VS(u) and Panel B if c > VS(u).

3.3 Comparison of Optimal Decisions

The two differences between types of search problems have the following implica-
tions, which are key to understanding the identification results we present next.

Choice. The probability with which an agent with social information chooses an
alternative with utility u is smaller than that with which an isolated agent does
so if c < VS(u),

c < VS(u) =⇒ P(uan
n = u | θn = S) < P(uan

n = u | θn = I), (5)

and the same as that one if c > VS(u),

c > VS(u) =⇒ P(uan
n = u | θn = S) = P(uan

n = u | θn = I). (6)

Suppose θn = S. Then, agent n searches alternative an0 first: s1
n = an0 .

• If c < VS(u), agent n searches alternative ¬s1
n, s2

n = ¬s1
n, if us1

n
n = u and cn = c,

which occurs with positive probability. Moreover, with positive probability,
u¬s

1
n

n = u, in which case an = ¬s1
n, and so uan

n = u. Thus, P(uan
n = u | θn =

S) < P(uan0
n = u) = P(uan

n = u | θn = I). Implication (5) follows.

• If c > VS(u), agent n always discontinues search, s2
n = d, and so an = s1

n = an0 .
Thus, P(uan

n = u | θn = S) = P(uan0
n = u) = P(uan

n = u | θn = I). Implication
(6) follows.

Optimal Stopping. The probability with which an agent with social information
discontinues search after searching first an alternative with utility u is the same
as that with which an isolated agent does so if c < VS(u),

c < VS(u) =⇒ P
(
s2
n = d | us1

n
n = u, θn = S

)
= P

(
s2
n = d | us1

n
n = u, θn = I

)
, (7)

and larger than that one if c > VS(u),

c > VS(u) =⇒ P
(
s2
n = d | us1

n
n = u, θn = S

)
> P

(
s2
n = d | us1

n
n = u, θn = I

)
. (8)

Suppose the first searched alternative has utility u: us1
n
n = u.

• If c < VS(u), agent n discontinues search if and only if cn = c independently
of whether θn = S or θn = I. Implication (7) follows.

• If c > VS(u), agent n always discontinues search when θn = S, but discontinues
search if and only if cn = c when θn = I. Implication (8) follows.
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Figure 2: Decision Trees for a Search Problem of Type S.
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Number of Searches. The probability with which an agent with social informa-
tion discontinues search is larger than that with which an isolated agent does so:

P
(
s2
n = d | θn = S

)
> P

(
s2
n = d | θn = I

)
. (9)

Suppose θn = S. Then, agent n searches alternative an0 first, s1
n = an0 , and so

P
(
us

1
n
n = u | θn = S

)
= P

(
u
an0
n0 = u

)
. Since the utility of the two alternatives is dif-

ferent with positive probability and agent n0 searches both alternatives with positive
probability, P

(
u
an0
n0 = u

)
> P

(
u
s1

n0
n0 = u

)
= P

(
us

1
n
n = u | θn = I

)
. Thus, P

(
us

1
n
n = u |

θn = S
)
> P

(
us

1
n
n = u | θn = I

)
. Moreover: agent n discontinues search if us1

n
n = u

independently of whether θn = S or θn = I; the probability with which agent n
discontinues search if us1

n
n = u when θn = S is at least as large that with which

agent n does so when θn = I (see implications (7) and (8)). Inequality (9) follows.

4 Identification and Social Information

Consider a researcher who knows (or can consistently estimate) the utility dis-
tribution and the support of the search cost distribution. The researcher wants
to identify the search cost distribution, i.e., β := P(cn = c). We consider three
standard datasets available to the researcher: choice, optimal stopping, and the
number of searches. Observations are i.i.d., and N denotes the sample size.3

For each dataset, we show how to identify the parameter β when all agents are
isolated. Next, we explain why identification fails if a positive share of agents has
social information. Depending on the dataset, neglecting social information may
lead to under or overestimation of search cost distributions.

4.1 Data on Choice

The researcher observes uaN , the share of agents who choose an alternative with
utility u:

uaN :=
∑N
n=1 1{uan

n =u}

N
. (10)

Data on choice are readily available for price search models: the researcher needs
the shares of transactions occurring at different prices. Data on choice, instead,
may be harder to obtain in match-value search models as match values may not
be observable.

3Given that types of search problems are i.i.d. across agents and the other model’s assumptions,
agents’ decisions in each dataset are i.i.d.
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Preliminary Observations for Identification. We characterize the probability
with which an agent chooses an alternative with utility u in the data generating
process. By the law of total probability,

P(uan
n = u) = P(uan

n = u | θn = I)γ + P(uan
n = u | θn = S)(1− γ). (11)

By Figures 1 and 2,

P(uan
n = u | θn = I) = αβ(1− α) + (1− α)2, (12)

and

P(uan
n = u | θn = S) =


[
αβ(1− α) + (1− α)2

]
[1− α(1− β)] if c < VS(u)

αβ(1− α) + (1− α)2 if c > VS(u)
. (13)

By equations (11)–(13),

P(uan
n = u) =


[
αβ(1− α) + (1− α)2

]
[1− (1− γ)α(1− β)] if c < VS(u)

αβ(1− α) + (1− α)2 if c > VS(u)
. (14)

By the strong law of large numbers,

uaN
a.s.−→ E[uaN ] = P(uan

n = u). (15)

All Agents Are Isolated. Suppose γ = 1. By equations (11) and (12), β is
identified by

P(uan
n = u) = P(uan

n = u | θn = I) = αβ(1− α) + (1− α)2. (16)

Replacing P(uan
n = u) with its sample analog uaN in equation (16), we obtain

β̂1
N = uaN

α(1− α) −
1− α
α

, (17)

which, by the convergence in (15), is a consistent estimator of β.

Social Information. The next proposition summarizes the identification of β
with data on choice when γ < 1, but the researcher assumes γ = 1.

Proposition 1. Let γ < 1. Suppose the researcher observes data on choice and
assumes γ = 1. Then:

(i) If c < VS(u), the parameter β is not identified by equation (16), the estimator
β̂1
N in equation (17) is inconsistent, and search costs are underestimated.

(ii) If c > VS(u), the parameter β is identified by equation (16), and the estimator
β̂1
N in equation (17) is consistent.
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Proof. [Part (i)] If c < VS(u), by equations (5) and (11), P(uan
n = u) < P(uan

n =
u | θn = I). Therefore, β is not identified by equation (16). To see that β̂1

N is
inconsistent, and search costs are underestimated, note that

β̂1
N

a.s.−→ E
[
β̂1
N

]
= β − (1− γ)(1− β)[1− α(1− β)] < β, (18)

where the equality holds by equation (14) for c < VS(u).
[Part (ii)] If c > VS(u), by equations (6) and (11), P(uan

n = u) = P(uan
n = u |

θn = I). �

If c < VS(u) and social information is neglected, β is not identified. The intu-
ition is as in Example 1 in the Introduction. By assuming all agents are isolated,
the researcher infers low search costs for all agents obtaining a high utility. Some of
these agents, however, obtain a high utility because they exploit social information.
Thus, search costs are underestimated.

4.2 Data on Optimal Stopping

The researcher observes duN , the share of agents who discontinue search after
searching first an alternative with utility u:

d
u
N :=

∑N
n=1 1{s2

n=d}1
{
u

s1
n

n =u
}

∑N
n=1 1

{
u

s1
n

n =u
} .

Data on optimal stopping are readily available for price search models. The re-
searcher needs the shares of agents who discontinue search when the price of the
first searched alternative is high. Data on optimal stopping, instead, may be harder
to obtain in match-value search models.

Preliminary Observations for Identification. We characterize the probability
with which an agent discontinues search after searching first an alternative with
utility u in the data generating process. By the law of total probability,

P
(
s2
n = d | us1

n
n = u

)
= P

(
s2
n = d | us1

n
n = u, θn = I

)
P
(
θn = I | us1

n
n = u

)
+ P

(
s2
n = d | us1

n
n = u, θn = S

)
P
(
θn = S | us1

n
n = u

)
.

(19)

By Figures 1 and 2,
P
(
s2
n = d | us1

n
n = u, θn = I

)
= β, (20)

P
(
s2
n = d | us1

n
n = u, θn = S

)
=

β if c < VS(u)

1 if c > VS(u)
, (21)
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P
(
θn = I | us1

n
n = u

)
= γ

1− α(1− β)(1− γ) , (22)

P
(
θn = S | us1

n
n = u

)
= (1− γ)[1− α(1− β)]

1− α(1− β)(1− γ) . (23)

By equations (19)–(23),

P
(
s2
n = d | us1

n
n = u

)
=

β if c < VS(u)

β + (1−β)(1−γ)[1−α(1−β)]
1−α(1−β)(1−γ) if c > VS(u)

. (24)

By the strong law of large numbers,

d
u
N

a.s.−→ E
[
d
u
N

]
= P

(
s2
n = d | us1

n
n = u

)
. (25)

All Agents Are Isolated. Suppose γ = 1. By equations (19), (20), and (23), β
is identified by

P
(
s2
n = d | us1

n
n = u

)
= P

(
s2
n = d | us1

n
n = u, θn = I

)
= β. (26)

Replacing P
(
s2
n = d | us1

n
n = u

)
with its sample analog duN in equation (26), we

obtain
β̂2
N = d

u
N , (27)

which, by the convergence in (25), is a consistent estimator of β.

Social Information. The next proposition summarizes the identification of β
with data on optimal stopping when γ < 1, but the researcher assumes γ = 1.

Proposition 2. Let γ < 1. Suppose the researcher observes data on optimal
stopping and assumes γ = 1. Then:

(i) If c < VS(u), the parameter β is identified by equation (26), and the estimator
β̂2 in equation (27) is consistent.

(ii) If c > VS(u), the parameter β is not identified by equation (26), the estimator
β̂2 in equation (27) is consistent, and search costs are overestimated.

Proof. [Part (i)] If c < VS(u), by equations (7) and (19), P
(
s2
n = d | us1

n
n = u

)
=

P
(
s2
n = d | us1

n
n = u, θn = I

)
.

[Part (ii)] If c > VS(u), by equations (8), (19), (22), and (23), P
(
s2
n = d | us1

n
n =

u
)
> P

(
s2
n = d | us1

n
n = u, θn = I

)
. Therefore, β is not identified by equation (26).

To see that β̂2
N is inconsistent, and search costs are overestimated, note that

β̂2
N

a.s.−→ E
[
β̂2
N

]
= β + (1− β)(1− γ)[1− α(1− β)]

1− α(1− β)(1− γ) > β, (28)
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where the equality holds by equation (24) for c > VS(u). �

If c > VS(u) and social information is neglected, β is not identified. The intuition
is as in Example 2 in the Introduction. By assuming all agents are isolated, the re-
searcher infers high search costs for all agents who discontinue search after searching
first an alternative with low utility. Some of these agents, however, stop searching
because they exploit social information. Thus, search costs are overestimated.

4.3 Data on the Number of Searches

The researcher observes dN , the share of agents who conducted only one search:

dN :=
∑N
n=1 1{s2

n=d}

N
.

Data on the number of searches are readily available for price search and match-
value search models. Information about prices or match values is not necessary.

Preliminary Observations for Identification. We characterize the probability
with which an agent discontinues search in the data generating process. By the
law of total probability,

P
(
s2
n = d

)
= P

(
s2
n = d | θn = I

)
γ + P

(
s2
n = d | θn = S

)
(1− γ). (29)

By Figures 1 and 2,

P
(
s2
n = d | θn = I

)
= α + (1− α)β (30)

and

P
(
s2
n = d | θn = S

)
=

α + (1− α)β + α(1− α)(1− β)2 if c < VS(u)

1 if c > VS(u)
. (31)

By equations (29)–(31),

P
(
s2
n = d

)
=

α + (1− α)β + (1− γ)α(1− α)(1− β)2 if c < VS(u)

γ[α + (1− α)β] + (1− γ) if c > VS(u)
. (32)

By the strong law of large numbers,

dN
a.s.−→ E[dN ] = P

(
s2
n = d

)
. (33)

All Agents Are Isolated. Suppose γ = 1. By equations (29) and (30), β is
identified by

P
(
s2
n = d

)
= P

(
s2
n = d | θn = I

)
= α + (1− α)β. (34)
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Replacing P
(
s2
n = d

)
with its sample analog dN in equation (34), we obtain

β̂3
N = dN

1− α −
α

1− α, (35)

which, by the convergence in (33), is a consistent estimator of β.

Social Information. The next proposition summarizes the identification of β
with data on the number of searches when γ < 1, but the researcher assumes γ = 1.

Proposition 3. Let γ < 1. Suppose the researcher observes data on the number
of searches and assumes γ = 1. Then, the parameter β is not identified by equation
(34), the estimator β̂3 in (35) is inconsistent, and search costs are overestimated.

Proof. By equations (9) and (29), P
(
s2
n = d

)
> P

(
s2
n = d | θn = I

)
= α+(1−α)β.

Therefore, β is not identified by equation (34). To see that β̂3
N is inconsistent, and

search costs are overestimated, note that

β̂3
N

a.s.−→ E
[
β̂3
N

]
=

β + (1− γ)α(1− β)2 > β if c < VS(u)

γβ + (1− γ) > β if c > VS(u)
, (36)

where the equality holds by equation (32). �

If social information is neglected, β is not identified. The intuition is as in
Example 3 in the Introduction. By assuming all agents are isolated, the researcher
infers high search costs for all agents searching only once. Some of these agents,
however, search once because they exploit social information. Thus, search costs
are overestimated.

5 Potential Remedies

Table 1 illustrates when neglecting social information leads to non-identification
of search cost distributions, whether search costs are under or overestimated, and
how this depends on the dataset.

Given prior knowledge of the environment, the researcher may make assump-
tions that restore identification. Many (theoretical) search models (e.g., Varian,
1980; Stahl, 1989; Ellison and Wolitzky, 2012) assume that a share of agents has
negligible search cost and knows the utilities of all alternatives, i.e., in our model,
c < VS(u). Under this assumption, identification of β obtains, even neglecting
social information, with data on optimal stopping. Similarly, the researcher may
assume search costs are “high” for all agents: c > VS(u). Under this assumption,
identification of β obtains, even neglecting social information, with data on choice.
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Table 1: Identification and Estimation.

Under- (< 0) or Over-Estimation (> 0)

Choice Optimal Stopping Number of Searches

c < VS(u) < 0 NO > 0
c > VS(u) NO > 0 > 0

In most circumstances, however, it may be implausible to assume c < VS(u) or
c > VS(u), or the required data may not be available. In this section, we present
alternative approaches that restore the identification of β. To keep the exposition
concise, we focus on data on choice.

5.1 Agent-Level Data on Social Information

Suppose the researcher can distinguish isolated agents from agents with social
information. Formally, the researcher observes

uaN(I) :=
∑N
n=1 1{uan

n =u}1{θn=I}∑N
n=1 1{θn=I}

.

In this case, identification and consistent estimation of β easily obtain.

Proposition 4. Suppose the researcher observes data on choice and agent-level
data on social information. Then, the parameter β is identified by

P(uan
n = u | θn = I) = αβ(1− α) + (1− α)2, (37)

and
β̂N = uaN(I)

α(1− α) −
1− α
α

(38)

is a consistent estimator of β.

Proof. By equation (12), β is identified by equation (37). Replacing P(uan
n = u |

θn = I) with its sample analog uaN (I) in equation (37), we obtain the estimator β̂N
in equation (38). Consistency of β̂N follows because, by the strong law of large
numbers, uaN(I) a.s.−→ E[uaN(I)] = P(uan

n = u | θn = I). �

Agent-level data on social information, however, are hardly available. Thus,
we consider the approaches below.
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5.2 Estimating γ Offline

Suppose the researcher can identify and consistently estimate γ offline, e.g., by
using detailed network data. By equation (14), if c > VS(u), β is identified by

P(uan
n = u) = αβ(1− α) + (1− α)2, (39)

and, if c < VS(u), β is identified by

P(uan
n = u) =

[
αβ(1− α) + (1− α)2

]
[1− (1− γ)α(1− β)]. (40)

Since VS(u) is not observable, the researcher must adopt a data-driven approach
to determine which equation identifies β. Let β be the solution for β to equation (39)
and β be the real solution for β in (0, 1) to equation (40). Let β

N
and βN be the sam-

ple analogs of β and β, that is, the solutions for β to equations (39) and (40) where
P(uan

n = u) is replaced by uaN . Finally, let VS
(
u; β

N

)
(resp., VS

(
u; βN

)
) be the value

of VS(u) in equation (4) evaluated at β
N

(resp., βN ). Then, we have the following.

Proposition 5. Suppose the researcher observes data on choice and estimates γ
offline. Then:

• If c > VS
(
u; βN

)
as N →∞, the parameter β is identified by equation (39),

and β
N

is a consistent estimator of β.

• If c < VS
(
u; β

N

)
as N →∞, the parameter β is identified by equation (40),

and βN is a consistent estimator of β.

Proof. By the analysis in Section 4.1, β < β. Since VS(u) is increasing in β,
VS
(
u; β

)
< VS

(
u; β

)
. Moreover, since β is identified by either equation (39) or

equation (40), either VS(u) = VS
(
u; β

)
< VS

(
u; β

)
or VS

(
u; β

)
< VS

(
u; β

)
= VS(u).

Thus: if c > VS
(
u; β

)
, then c > VS(u), and so β is identified by equation (39);

if c < VS
(
u; β

)
, then c < VS(u), and so β is identified by equation (40). By

the convergence in (15), β
N

(resp., βN) is a consistent estimator of β (resp., β).
Therefore, VS

(
u; β

N

)
(resp., VS

(
u; βN

)
) is a consistent estimator of VS

(
u; β

)
(resp.,

VS
(
u; β

)
). The desired result follows. �

If VS
(
u; β

N

)
< c < VS

(
u; βN

)
, the available data do not suffice to detect whether

β is identified by equation (39) or (40). Thus, another approach is required.

Example. Suppose α = 1
2 , ∆u = 5, γ = 1

2 , and uaN = 5
16 . Then, β

N
= 1

4 ,
βN =

√
6 − 2, VS

(
u; β

N

)
= 1, and VS

(
u; βN

)
= 4 −

√
6. If c < 1, the researcher

uses βN =
√

6− 2 as an estimate of β. If c > 4−
√

6, the researcher uses β
N

= 1
4

as an estimate of β.
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5.3 Shifts to the Utility Distribution

Suppose the researcher observes a shift in the value of the high utility from u to u′ >
u. For shifts in the value of low utility from u to u′ < u, analogous reasoning applies.

Let V ′S(u) be the value of VS(u) in equation (4) evaluated at u′. Since VS(u) is in-
creasing in u, VS(u) < V ′S(u). Moreover, let Pu(uan

n = u) (resp., Pu′(uan
n = u)) be the

population moment defined by equation (14) when the high utility is u (resp., u′).
Suppose VS(u) < c < V ′S(u). That is, before (resp., after) the shift, an agent

with social information and search cost c finds it optimal to discontinue search
(resp., search the second alternative) if the utility of the first searched alternative
is u. If so, Pu(uan

n = u) > Pu′(uan
n = u) and, by equation (14), β is identified by

Pu(uan
n = u) = αβ(1− α) + (1− α)2. (41)

Since VS(u) and V ′S(u) are not observable, the researcher must adopt a data-
driven approach to determine whether the utility shift is enough to identify β.
Let uaN (resp., uaN ′) be the sample moment in definition (10) calculated using the
dataset with u (resp., u′). Then, we have the following.

Proposition 6. Suppose the researcher observes data on choice. Then, if uaN > uaN
′

as N →∞, the parameter β is identified by equation (41), and

β̂N = uaN
α(1− α) −

1− α
α

, (42)

is a consistent estimator of β.

Proof. By equation (14), VS(u) < c < V ′S(u) ⇐⇒ Pu(uan
n = u) > Pu′(uan

n = u).
By the strong law of large numbers,

uaN
a.s.−→ Pu(uan

n = u) and uaN
′ a.s.−→ Pu′(uan

n = u). (43)

Thus, VS(u) < c < V ′S(u) ⇐⇒ Pu(uan
n = u) > Pu′(uan

n = u) ⇐⇒ uaN > uaN
′ a.s. as

N →∞. Identification follows. Replacing Pu(uan
n = u) with its sample analog uaN

in equation (41), we obtain the estimator β̂N in equation (42), which is consistent
by the convergence in (43). �

If c < VS(u) < V ′S(u) or VS(u) < V ′S(u) < c, the population moments are the
same before and after the shift: Pu(uan

n = u) = Pu′(uan
n = u). Thus, the available

data do not suffice to detect whether β is identified by equation (41), and another
approach is required.

Example. Suppose α = 1
2 , u = 2, u = 8, u′ = 14, uaN = 3

8 , and uaN
′ = 9

64 . Since
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uaN−uaN ′ = 15
64 > 0, by equation (42) evaluated at α = 1

2 and uaN = 3
8 , the researcher

obtains β̂1 = 1
2 as an estimate of β.

5.4 Partial Identification

The previous remedies may not work either because of data limitations or because
the conditions for their implementation are not satisfied. If so, the researcher can
adopt a partial identification approach.

Suppose the researcher knows nothing about the level of social information
beyond that γ ∈ (0, 1]. Let p : (0, 1)× (0, 1)× (0, 1]→ [0, 1] be defined pointwise as

p(α, β, γ) :=
[
αβ(1− α) + (1− α)2

]
[1− (1− γ)α(1− β)].

The identified set for β, denoted by Bβ, consists of all β̃ ∈ (0, 1) compatible
with P(uan

n = u) as a model prediction for some γ ∈ (0, 1].

Definition 1. With data on choice and no assumptions on γ, the identified set
for β is

Bβ :=
{
β̃ ∈ (0, 1) : p

(
α, β̃, γ

)
= P(uan

n = u) for some γ ∈ (0, 1]
}
. (44)

The joint identified set for (β, γ), denoted by Bβ,γ, consists of all
(
β̃, γ̃

)
∈

(0, 1)× (0, 1] compatible with P(uan
n = u) as a model prediction.

Definition 2. With data on choice, the joint identified set for (β, γ) is

Bβ,γ :=
{(
β̃, γ̃

)
∈ (0, 1)× (0, 1] : p

(
α, β̃, γ̃

)
= P(uan

n = u)
}
. (45)

Replacing P(uan
n = u) with its sample analog uaN in definitions (44) and (45),

we obtain the set estimators B̂β
N and B̂β,γ

N . The next proposition follows from the
convergence in (15).

Proposition 7. As N →∞, β ∈ B̂β
N a.s. and (β, γ) ∈ B̂β,γ

N a.s.

Example. Suppose α = 1
2 and uaN = 5

16 . Then, B̂β
N =

[
1
4 ,

1
2

(√
10 − 2

))
, and

B̂β,γ
N =

{(
β̃, γ̃

)
∈ (0, 1)× (0, 1] : β̃ ∈

[
1
4 ,

1
2

(√
10− 2

))
and γ̃ = 3−2β̃(2+β̃)

2(1−β̃2)

}
.

5.5 General Social Information

So far, we assumed agents are either isolated or observe an isolated agent. Real social
networks are complex, and so are communication channels and informational exter-
nalities among agents. Hence, it is hard to specify the content and type of agents’
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social information. If so, the researcher may want to develop a robust approach to
identify search cost distributions under weak assumptions on agents’ information.

Let θn now denote the “amount” of agent n’s social information. Such an
amount can be bounded by the minimal and the maximal social information.

Agent n’s social information is minimal, θn = θ, if agent n is isolated. By
equation (12),

P(uan
n = u | θn = θ) = αβ(1− α) + (1− α)2.

Agent n’s social information is maximal, θn = θ, if agent n chooses the alter-
native with the highest realized utility at the first search by exploiting her social
information. If so, agent n chooses an alternative with utility u if and only if
u0
n = u1

n = u, which occurs with probability (1− α)2:

P
(
uan
n = u | θn = θ

)
= (1− α)2.

Without assumptions on social information, the identified set for β, denoted
by Gβ, consists of all β̃ ∈ (0, 1) compatible with P(uan

n = u) as a model prediction
for some level of social information between the minimal and the maximal ones.

Definition 3. With data on choice and general social information, the identified
set for β is

Gβ :=
{
β̃ ∈ (0, 1) : (1− α)2 ≤ P(uan

n = u) ≤ αβ(1− α) + (1− α)2
}
. (46)

Replacing P(uan
n = u) with its sample analog uaN in definition (46), we obtain

the set estimator Ĝβ
N . The next proposition follows from the convergence in (15).

Proposition 8. As N →∞, β ∈ Ĝβ
N a.s.

As discussed in the introduction, this approach requires specifying neither the
agents’ amount and type of social information nor the search procedure. Therefore,
estimating β under the two opposite assumptions—all agents’ social information
is minimal and all agents’ social information is maximal—allows the construction
of robust bounds on β when agents’ amount and type of social information are
unobserved, and so is the search procedure.

Example. Suppose α = 1
2 and uaN = 5

16 . Then, Ĝβ
N =

[
1
4 , 1

)
.

6 Generalizations

Throughout the paper, we presented our results with a portable model illustrat-
ing our insights in a coherent framework. In the appendices, we generalize the
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framework to allow for continuous distributions (Appendix A) and simultaneous
search (Appendix B), the other workhorse search model. All qualitative insights
remain valid. However, the analysis provides additional guidance on how to account
for social information in other empirically relevant settings, study its impact on
identification, and tailor remedies to the model specification.

Similar insights hold for other generalizations: more than two alternatives, non-
binary utility distributions, non-perfectly correlated utilities across agents n and
n0, ex-ante differentiated alternatives, alternative-specific search costs, correlated
utilities and search costs of agents n and n0. Depending on the specification, the
analysis may become algebraically, but not conceptually, more complex. However,
our findings remain valid.

Our insights also apply to the identification of utility distributions. Consider
a researcher who knows the search cost distribution and the support of the utility
distribution, and wants to identify α := P(uxn = u). A similar analysis to that in
Section 4 shows that neglecting social information leads to the non-identification
of α. Similar observations apply to the joint identification of (α, β).
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A Online Appendix: Continuous Search Cost
Distribution

In this appendix, we assume that agents’ search costs are i.i.d. draws from a
continuous distribution with full support, cn ∼ F ([0, v]). Otherwise, the model
is as in Section 2. We summarize our findings below. We refer to the rest of the
appendix for the formal analysis, which we keep short when the formalities mimic
those in Sections 3–5.

Summary of Results. With a binary utility distribution, if all agents are isolated,
the researcher can identify and estimate F (VI(u)).4 Table C.1 summarizes our find-
ings. For each dataset, the table illustrates: when neglecting social information leads
to non-identification of F (VI(u)); whether search costs are under or overestimated.
In short, if cn ∼ F ([0, v]), neglecting social information leads to non-identification
of F (VI(u)) independently of the dataset. Whether search costs are under or
overestimated depends on the dataset and is consistent with our previous analysis.

Table C.1: Identification and Estimation if cn ∼ F ([0, v]).

Under- (< 0) or Over-Estimation (> 0)

Choice Optimal Stopping Number of Searches

cn ∼ F ([0, v]) < 0 > 0 > 0

We also consider potential remedies. Whereas shifts to the utility distribution
become mute for identification purposes in this setting, the other remedies remain
effective. With agent-level data on social information, it is possible to point iden-
tify both F (VI(u)) and F (VS(u)). If γ is estimated offline, point identification of
F (VI(u)) is lost, but it is possible to partially identify F (VI(u)) and/or F (VS(u)),
and so is the case without knowing γ.

A.1 Optimal Decisions

A.1.1 Search Problem of Type I

First Search. The optimal first search decision is as in Section 3.1.
4If U := {u1, u2, . . . , uK}, where K > 2, the researcher can identify and estimate F (VI(uk))

for all 1 ≤ k ≤ K. To keep the exposition concise, we continue to assume that |U | = 2.
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Second Search. Agent n’s expected gain from the second search is given by
equation (1). Thus,

s2
n =


d if us1

n
n = u

d if us1
n
n = u and cn ≥ VI(u)

¬s1
n if us1

n
n = u and cn < VI(u)

.

Choice. Optimal choice is as in Section 3.1.

Decision Tree. Agent n’s decisions in a search problem of type I are in Figure C.1.

Figure C.1: Decision Tree for a Search Problem of Type I if cn ∼ F ([0, v]).
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A.1.2 Search Problem of Type S

First Search. The optimal first search decision is as in Section 3.2. Therefore,

us
1
n
n = uan0

n0 =

u with probability α + α(1− α)F (VI(u))

u with probability 1− α− α(1− α)F (VI(u))
,

where the probabilities are calculated from Figure C.1.
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Second Search. Agent n’s expected gain from the second search is given by
equation (3). In this setting, from Figure C.1,

P (u) := P
(
s2
n0 = d | uan0

n0 = u
)

= 1− F (VI(u))
1− F (VI(u)) + (1− α)F (VI(u)) ,

and so

VS
(
us

1
n
n

)
=

0 if us1
n
n = u

(1−F (VI(u)))α∆u
1−F (VI(u))+(1−α)F (VI(u)) if us1

n
n = u

.

Thus,

s2
n =


d if us1

n
n = u

d if us1
n
n = u and cn ≥ VS(u)

¬s1
n if us1

n
n = u and cn < VS(u)

.

Choice. Optimal choice is as in Section 3.2.

Decision Tree. Agent n’s decisions in a search problem of type S are in Figure C.2.

Figure C.2: Decision Tree for a Search Problem of Type S if cn ∼ F ([0, v]).
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A.1.3 Comparison of Optimal Decisions

The differences between types of search problems have the following implications.

Choice. The probability with which an agent with social information chooses an
alternative with utility u is smaller than that with which an isolated agent does so:

P(uan
n = u | θn = S) < P(uan

n = u | θn = I). (C.1)

Suppose θn = S. Then, agent n searches alternative an0 first: s1
n = an0 . Since

F (VS(u)) > 0, if us1
n
n = u, agent n searches alternative ¬s1

n with positive probability.
Moreover, with positive probability, u¬s1

n
n = u, in which case an = ¬s1

n, and so
uan
n = u. Thus, P(uan

n = u | θn = S) < P(uan0
n = u) = P(uan

n = u | θn = I).
Inequality (C.1) follows.

Optimal Stopping. The probability with which an agent with social information
discontinues search after searching first an alternative with utility u is larger than
that with which an isolated agent does so:

P
(
s2
n = d | us1

n
n = u, θn = S

)
> P

(
s2
n = d | us1

n
n = u, θn = I

)
. (C.2)

Suppose the first searched alternative has utility u: us
1
n
n = u. If θn = S

(resp., θn = I), agent n discontinues search if and only if cn ≥ VS(u) (resp.,
cn ≥ VI(u)), which occurs with probability 1 − F (VS(u)) (resp., 1 − F (VI(u))).
Since VS(u) < VI(u) and F (·) is increasing, we have F (VS(u)) < F (VI(u)). There-
fore, 1− F (VS(u)) > 1− F (VI(u)). Inequality (C.2) follows.

Number of Searches. The probability with which an agent with social informa-
tion discontinues search is larger than that with which an isolated agent does so:

P
(
s2
n = d | θn = S

)
> P

(
s2
n = d | θn = I

)
. (C.3)

Suppose θn = S. Then, agent n searches alternative an0 first, s1
n = an0 , and so

P
(
us

1
n
n = u | θn = S

)
= P

(
u
an0
n0 = u

)
. Since the utility of the two alternatives is dif-

ferent with positive probability and agent n0 searches both alternatives with positive
probability, P

(
u
an0
n0 = u

)
> P

(
u
s1

n0
n0 = u

)
= P

(
us

1
n
n = u | θn = I

)
. Thus, P

(
us

1
n
n = u |

θn = S
)
> P

(
us

1
n
n = u | θn = I

)
. Moreover, note that: agent n discontinues search

if us1
n
n = u independently of whether θn = S or θn = I; the probability with which

agent n discontinues search if us1
n
n = u when θn = S is at least as large that with

which agent n does so when θn = I (see inequality (C.2)). Inequality (C.3) follows.
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A.2 Identification and Social Information

Consider a researcher who wants to identify F (VI(u)). By inequalities (C.1)–(C.3)
and the same ideas as in Section 4, neglecting social information leads to non-
identification of F (VI(u)), independently of the dataset. We formalize below the
argument for data on choice. With different datasets, analogous reasoning applies.

Preliminary Observations for Identification. We characterize the probability
with which an agent chooses an alternative with utility u in the data generating
process. By Figures C.1 and C.2,

P(uan
n = u | θn = I) = 1− α− α(1− α)F (VI(u)) (C.4)

and

P(uan
n = u | θn = S) = [1− α− α(1− α)F (VI(u))][1− αF (VS(u))]. (C.5)

By equations (11), (C.4), and (C.5),

P(uan
n = u) = [1− α− α(1− α)F (VI(u))][1− (1− γ)αF (VS(u))]. (C.6)

All Agents Are Isolated. Suppose γ = 1. By equations (11) and (C.4), F (VI(u))
is identified by

P(uan
n = u) = P(uan

n = u | θn = I) = 1− α− α(1− α)F (VI(u)). (C.7)

Replacing P(uan
n = u) with its sample analog uaN in equation (C.7), we obtain

̂F (VI(u))N = 1
α
− uaN
α(1− α) , (C.8)

which, by the convergence in (15), is a consistent estimator of F (VI(u)).

Social Information. The next proposition summarizes the identification of
F (VI(u)) with data on choice when γ < 1, but the researcher assumes γ = 1.

Proposition C.1. Let γ < 1. Suppose the researcher observes data on choice and
assumes γ = 1. Then, F (VI(u)) is not identified by equation (C.7), the estimator
̂F (VI(u))N in equation (C.8) is inconsistent, and search costs are underestimated.

Proof. By equations (11) and (C.1), P(uan
n = u) < P(uan

n = u | θn = I). Therefore,
F (VI(u)) is not identified by equation (C.7). To see that ̂F (VI(u))N is inconsistent,
and search costs are underestimated, note that

̂F (VI(u))N
a.s.−→ E

[
̂F (VI(u))N

]
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= F (VI(u)) + (1− γ)(1− αF (VI(u)))F (VS(u)) > F (VI(u)),

where the equality holds by equation (C.6). �

A.3 Potential Remedies

A.3.1 Agent-Level Data on Social Information

Suppose the researcher observes

uaN(I) :=
∑N
n=1 1{uan

n =u}1{θn=I}∑N
n=1 1{θn=I}

and uaN(S) :=
∑N
n=1 1{uan

n =u}1{θn=S}∑N
n=1 1{θn=S}

.

In this case, the researcher can implement a two-step procedure to identify and
consistently estimate both F (VI(u)) and F (VS(u)).

Proposition C.2. Suppose the researcher observes data on choice and agent-level
data on social information. Then, F (VI(u)) and F (VS(u)) can be identified and
consistently estimated.

Proof. By the strong law of large numbers,

uaN(I) a.s.−→ E[uaN(I)] = P(uan
n = u | θn = I). (C.9)

By equation (C.4), F (VI(u)) is identified by

P(uan
n = u | θn = I) = 1− α− α(1− α)F (VI(u)). (C.10)

Replacing P(uan
n = u | θn = I) with its sample analog uaN (I) in equation (C.10), we

obtain
̂F (VI(u))N = 1

α
− uaN(I)
α(1− α) ,

which, by the convergence in (C.9), is a consistent estimator of F (VI(u)).
Once F (VI(u)) is identified and consistently estimated, it is possible to identify

and consistently estimate F (VS(u)). By the strong law of large numbers,

uaN(S) a.s.−→ E[uaN(S)] = P(uan
n = u | θn = S). (C.11)

By equation (C.5), F (VS(u)) is identified by

P(uan
n = u | θn = S) = [1− α− α(1− α)F (VI(u))][1− αF (VS(u))]. (C.12)

Replacing P(uan
n = u | θn = S) with its sample analog uaN(S) and F (VI(u)) with
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its estimator ̂F (VI(u))N in equation (C.12), we obtain

̂F (VS(u))N = 1
α
− uaN(S)

α
[
1− α− α(1− α) ̂F (VI(u))N

] ,
which, by the convergences in (C.9) and (C.11), is a consistent estimator of
F (VS(u)). �

A.3.2 Partial Identification Estimating γ Offline

Suppose the researcher can identify and consistently estimate γ offline. By
equation (C.6), it is clear that neither F (VI(u)) nor F (VS(u)) can be point-
identified. However, the researcher can rely on a partial identification approach.
Let p : (0, 1)× (0, 1)× (0, 1)× (0, 1]→ [0, 1] be defined pointwise as

p(α, F (VI(u)), F (VS(u)), γ) := [1− α− α(1− α)F (VI(u))][1− (1− γ)αF (VS(u))].

The joint identified set for (F (VI(u)), F (VS(u))) given γ, denoted by BF I,FS(γ),
consists of all

(
˜F (VI(u)), ˜F (VS(u)))

)
∈ (0, 1)× (0, 1) compatible with P(uan

n = u)
as a model prediction for the given γ.

Definition C.1. Suppose the researcher observes data on choice and estimates γ
offline. The joint identified set for (F (VI(u)), F (VS(u))) given γ is

BF I,FS(γ) :=
{(

˜F (VI(u)), ˜F (VS(u)))
)
∈ (0, 1)× (0, 1) : (C.13)

p
(
α, ˜F (VI(u)), ˜F (VS(u)), γ

)
= P(uan

n = u) and F (VS(u)) ≤ F (VI(u))
}
.

The restriction F (VS(u)) ≤ F (VI(u)) in definition (C.13) captures that, con-
ditional on the first searched alternative having utility u, the expected gain from
the second search for an agent with social information is lower than that for an
isolated agent.

The identified set for F (VI(u)) (resp., F (VS(u))) given γ, denoted by BF I(γ)
(resp., BFS(γ)), consists of all ˜F (VI(u)) ∈ (0, 1) (resp., ˜F (VS(u)) ∈ (0, 1)) compat-
ible with P(uan

n = u) as a model prediction for the given γ and some ˜F (VS(u))) ≤
˜F (VI(u))) (resp., ˜F (VI(u))) ≥ ˜F (VS(u)))).

Definition C.2. Suppose the researcher observes data on choice and estimates
γ offline. The identified set for F (VI(u)) (resp., F (VS(u))) given γ, denoted by
BF I(γ) (resp., BFS(γ)), is the projection of BF I,FS(γ) along its first (resp., second)
dimension.
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Replacing P(uan
n = u) with its sample analog uaN in the definitions of BF I,FS(γ),

BF I(γ), and BFS(γ), we obtain the set estimators B̂F I,FS

N (γ), B̂F I
N (γ), and B̂FS

N (γ).
The next proposition follows from the convergence in (15).

Proposition C.3. As N →∞, (F (VI(u)), F (VS(u))) ∈ BF I,FS(γ) a.s., F (VI(u)) ∈
BF I(γ) a.s., and F (VS(u)) ∈ BFS(γ) a.s.

A.3.3 Partial Identification without Knowing γ

Suppose the researcher only knows that γ ∈ (0, 1]. The joint identified set for
(F (VI(u)), F (VS(u))), denoted byBF I,FS , consists of all

(
˜F (VI(u)), ˜F (VS(u)))

)
∈

(0, 1)× (0, 1) compatible with P(uan
n = u) as a model prediction for some γ ∈ (0, 1].

Definition C.3. With data on choice and no assumptions on γ, the joint identified
set for (F (VI(u)), F (VS(u))) is

BF I,FS :=
⋃

γ∈(0,1]
BF I,FS(γ). (C.14)

The identified set for F (VI(u)) (resp., F (VS(u))) given γ, denoted by BF I (resp.,
BFS), consists of all ˜F (VI(u)) ∈ (0, 1) (resp., ˜F (VS(u)) ∈ (0, 1)) compatible with
P(uan

n = u) as a model prediction for γ ∈ (0, 1] and some ˜F (VS(u))) ≤ ˜F (VI(u)))
(resp., ˜F (VI(u))) ≥ ˜F (VS(u)))).

Definition C.4. With data on choice and no assumptions on γ, the identified set
for F (VI(u)) (resp., F (VS(u))), denoted by BF I (resp., BFS), is the projection of
BF I,FS along its first (resp., second) dimension.

Replacing P(uan
n = u) with its sample analog uaN in the definitions of BF I,FS ,

BF I , and BFS , we obtain the set estimators B̂F I,FS

N , B̂F I
N , and B̂FS

N . The next
proposition follows from the convergence in (15).

Proposition C.4. As N → ∞, (F (VI(u)), F (VS(u))) ∈ B̂F I,FS

N a.s., F (VI(u)) ∈
B̂F I
N a.s., and F (VS(u)) ∈ B̂FS

N a.s.

The analysis for the joint partial identification of (F (VI(u)), F (VS(u), γ) mimics
that above and in Section 5.4.

B Online Appendix: Simultaneous Search

In this section, we replace sequential search with simultaneous search. Otherwise,
the model is as in Section 2. We summarize our findings below. We refer to the
rest of Appendix B for the formal analysis.
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Summary of Results. Table D.1 illustrates when neglecting social information
leads to non-identification of search cost distributions, whether search costs are
under or overestimated, and how this depends on the dataset.5

Table D.1: Identification and Estimation in a Simultaneous Search Model.

Under- (< 0) or Over-Estimation (> 0)

Choice Number of Searches

c < ∆(VS) < 0 NO
c > ∆(VS) NO > 0

The main insights are consistent with our previous analysis, with only one
difference worth noting. In a simultaneous search model, if c < ∆(VS), β is iden-
tified with data on the number of searches, even neglecting social information. In
contrast, in a sequential search model, with data on the number of searches, β is
never identified with social information.

The remedies that we discuss in Section 5 for a sequential search model also
apply to a simultaneous search model, with the obvious changes.

B.1 Model

Basic Setting. Consider (a stylized version of) the canonical simultaneous search
model by Stigler (1961) as developed by the empirical search literature (see Honka
et al., 2019). The basic setting is as in Section 2, but now agent n collects
information about the realized utilities via costly simultaneous search:

1. Agent n commits to searching a fixed set of alternatives Sn ∈ 2X \{∅}, where
2X denotes the power set of the set X. By searching alternative x, agent n
perfectly learns its realized utility uxn.

2. After searching the alternatives in Sn, agent n chooses an alternative an ∈ Sn.
Searching one alternative is free. Searching both alternatives costs cn ∈ {c, c},
where 0 < c < α(1− α)∆u < c. Absent this assumption, a search problem of type
I is trivial: an agent would always commit to searching either both or only one
alternative, irrespective of her search cost.

Social Information. Social information is as in Section 2, with one exception:
all search problems, including that of agent n0, are simultaneous search problems.

5As optimal stopping is not defined for simultaneous search, we do not consider such data.
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If θn = S, agent n observes neither agent n0’s search cost nor agent n0’s decisions
of how many and which alternatives to search.

B.2 Optimal Decisions

B.2.1 Simultaneous Search Problem of Type I

Search. Agent n commits to searching a fixed set of alternatives Sn ∈ 2X \{∅} that
maximizes her expected utility from searching that set net of search costs. That is,

Sn ∈ arg max
S∈2X\{∅}

[VI(S)− cn(|S| − 1)],

where, for all S ∈ 2X \ {∅},

VI(S) := E
[

max
x∈S
{uxn}

]
.

Clearly,

VI(S) =

u+ α∆u if S = {0} or S = {1}

u− (1− α)2∆u if S = X
. (D.1)

For all x ∈ X, VI(X) − cn > VI({x}) ⇐⇒ cn < α(1 − α)∆u. Thus, since
0 < c < α(1− α)∆u < c,

Sn =


1
2 ◦ {0}+ 1

2 ◦ {1} if cn = c

X if cn = c
,

where ∑x ξ(x) ◦ {x} denotes the mixture that assigns probability ξ(x) to set {x}.
Hereafter, we denote by sn the alternative in Sn whenever |Sn| = 1.

Since utilities are i.i.d.:
• If Sn = 1

2 ◦ {0}+ 1
2 ◦ {1},

usn
n =

u with probability α

u with probability 1− α
.

• If Sn = X, 
u0
n = u1

n = u with probability α2

uxn = u > u = u¬xn with probability 2α(1− α)

u0
n = u1

n = u with probability (1− α)2

.
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Choice. Agent n chooses the best alternative among those she sampled, random-
izing uniformly if indifferent:

an =


sn if Sn = 1

2 ◦ {0}+ 1
2 ◦ {1}

x if Sn = X and uxn > u¬xn
1
2 ◦ 0 + 1

2 ◦ 1 if Sn = X and uxn = u¬xn

.

Decision Tree. Agent n’s decisions in a simultaneous search problem of type
I are in Figure D.1.

Figure D.1: Decision Tree for a Simultaneous Search Problem of Type I.
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usn
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1− α

@
@
@
@
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@@

cn = c, Sn = X

1− β
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�
��
u0
n = u1

n = u, an = 1
2 ◦ 0 + 1

2 ◦ 1, uan
n = u

α2

uxn = u > u = u¬xn , an = x, uan
n = u2α(1− α)

@
@
@@u0

n = u1
n = u, an = 1

2 ◦ 0 + 1
2 ◦ 1, uan

n = u
(1− α)2

B.2.2 Simultaneous Search Problem of Type S

Search. Agent n commits to searching a fixed set of alternatives Sn ∈ 2X \{∅} that
maximizes her expected utility from searching that set net of search costs. That is,

Sn ∈ arg max
S∈2X\{∅}

[VS(S)− cn(|S| − 1)],
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where, for all S ∈ 2X \ {∅},

VS(S) := E
[

max
x∈S
{uxn} | an0

]
. (D.2)

In a simultaneous search problem of type S, there are two possibilities, each
having positive probability:

1. Agent n0 searched only one alternative. If so, agent n0’s choice is uninfor-
mative about the utility of alternative ¬an0 .

2. Agent n0 searched both alternative. If so, since agent n0 chose alternative
an0 , it must be that uan0

n ≥ u
¬an0
n and, with positive probability uan0

n > u
¬an0
n .

Agent n’s belief about the utility of alternative an0 strictly first-order stochastically
dominates her belief about the utility of alternative ¬an0 , and so, E

[
u
an0
n | an0

]
>

E
[
u
¬an0
n | an0

]
. Thus, if agent n commits to searching only one alternative, she

will search alternative an0 : Sn = {an0}. This is the first difference between types
of simultaneous search problems.

Since

uan0
n0 =

u with probability α + α(1− α)(1− β)

u with probability αβ(1− α) + (1− α)2
,

where the probabilities are calculated from Figure D.1, in a simultaneous search
problem of type S, we have

VS(S) =

β[u+ α∆u] + (1− β)
[
u− (1− α)2∆u

]
if S = {an0}

u− (1− α)2∆u if S = X
. (D.3)

The value of committing to search only one alternative (namely, alternative
an0) for an agent with social information is larger than that for an isolated agent:
VS({an0}) > VI({x}) for all x ∈ X (compare equations (D.1) and (D.3) for |S| = 1).
This is the second difference between types of simultaneous search problems.

Since VS(X) − cn > VS({an0}) ⇐⇒ cn < VS(X) − VS({an0}) = α(1 − α)β∆u,
by defining ∆(VS) := VS(X)− VS({an0}):6

• If c < ∆(VS),

Sn =

{an0} if cn = c

X if cn = c
,

• If c > ∆(VS),
Sn = {an0}.

6Since non-generic in the parameter space, we ignore c = ∆(VS).
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Now we have:
• If Sn = {an0},

usn
n = uan0

n0 .

• If Sn = X, 
u0
n = u1

n = u with probability α2

uxn = u > u = u¬xn with probability 2α(1− α)

u0
n = u1

n = u with probability (1− α)2

.

Choice. Optimal choice is as in a simultaneous search problem of type I.

Decision Tree. Agent n’s decisions in a simultaneous search problem of type S
are in Figure D.2: Panel A if c < ∆(VS) and Panel B if c > ∆(VS).

B.2.3 Comparison of Optimal Decisions

The differences between types of search problems have the following implications.

Choice. The probability with which an agent with social information chooses an
alternative with utility u is smaller than that with which an isolated agent does
so if c < ∆(VS),

c < ∆(VS) =⇒ P(uan
n = u | θn = S) < P(uan

n = u | θn = I), (D.4)

and the same as that one if c > ∆(VS),

c > ∆(VS) =⇒ P(uan
n = u | θn = S) = P(uan

n = u | θn = I). (D.5)

Suppose θn = S.
• If c < ∆(VS), there are two cases:

(i) If cn = c, agent n commits to searching only alternative an0 , and so
P(uan

n = u | θn = S) = P(uan0
n0 = u) = P(uan

n = u | θn = I).
(ii) If cn = c, agent n commits to searching both alternatives; with positive

probability, u¬an0
n = u > u = u

an0
n , in which case agent n chooses

alternative an = ¬an0 , so that uan
n = u. Thus, P(uan

n = u | θn = S) <
P(uan0

n = u) = P(uan
n = u | θn = I).

Since (i) and (ii) occur with positive probability, implication (D.4) follows.

• If c > ∆(VS), agent n always commits to searching only alternative an0 , and
so P(uan

n = u | θn = S) = P(uan0
n0 = u) = P(uan

n = u | θn = I). Implication
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Figure D.2: Decision Trees for a Simultaneous Search Problem of Type S.
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Panel B: c > ∆(VS).
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(D.5) follows.

Number of Searches. The probability with which an agent with social informa-
tion commits to searching only one alternative is the same as that with which an
isolated agent does so if c < ∆(VS),

c < ∆(VS) =⇒ P(|Sn| = 1 | θn = S) = P(|Sn| = 1 | θn = I), (D.6)

and larger than that one if c > ∆(VS),

c > ∆(VS) =⇒ P(|Sn| = 1 | θn = S) > P(|Sn| = 1 | θn = I). (D.7)

Note the following.
• If c < ∆(VS), agent n commits to searching only one alternative if and only if
cn = c independently of whether θn = S or θn = I. Implication (D.6) follows.

• If c > ∆(VS), agent n always commits to searching only one alternative when
θn = S, but commits to searching only one alternative if and only if cn = c

when θn = I. Implication (D.7) follows.

B.3 Identification and Social Information

B.3.1 Data on Choice

Data on choice are the same as in Section 4.

Preliminary Observations for Identification. We characterize the probability
with which an agent chooses an alternative with utility u in the data generating
process. By the law of total probability,

P(uan
n = u) = P(uan

n = u | θn = I)γ + P(uan
n = u | θn = S)(1− γ). (D.8)

By Figures D.1 and D.2,

P(uan
n = u | θn = I) = αβ(1− α) + (1− α)2 (D.9)

and

P(uan
n = u | θn = S) =

αβ
2(1− α) + (1− α)2 if c < ∆(VS)

αβ(1− α) + (1− α)2 if c > ∆(VS)
. (D.10)

By equations (D.8)–(D.10),

P(uan
n = u) =

αβ(1− α)[γ + (1− γ)β] + (1− α)2 if c < ∆(VS)

αβ(1− α) + (1− α)2 if c > ∆(VS)
. (D.11)
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By the strong law of large numbers,

uaN
a.s.−→ E[uaN ] = P(uan

n = u). (D.12)

All Agents Are Isolated. Suppose γ = 1. By equations (D.8) and (D.9), β is
identified by

P(uan
n = u) = P(uan

n = u | θn = I) = αβ(1− α) + (1− α)2. (D.13)

Replacing P(uan
n = u) with its sample analog uaN in equation (D.13), we obtain

β̂1
N = uaN

α(1− α) −
1− α
α

, (D.14)

which, by the convergence in (D.12), is a consistent estimator of β.

Social Information. The next proposition summarizes the identification of β
with data on choice when γ < 1, but the researcher assumes γ = 1.

Proposition D.1. Let γ < 1. Suppose the researcher observes data on choice and
assumes γ = 1. Then:

(i) If c < VS(u), the parameter β is not identified by equation (D.13), the estima-
tor β̂1

N in equation (D.14) is inconsistent, and search costs are underestimated.

(ii) If c > VS(u), the parameter β is identified by equation (D.13), and the
estimator β̂1

N in equation (D.14) is consistent.

Proof. [Part(i)] If c < ∆(VS), by equations (D.4) and (D.8), P(uan
n = u) < P(uan

n =
u | θn = I). Therefore, β is not identified by equation (D.13). To see that β̂1

N is
inconsistent, and search costs are underestimated, note that

β̂1
N

a.s.−→ E
[
β̂1
N

]
= γβ + (1− γ)β2 < β,

where the equality holds by equation (D.11) for c < ∆(VS).
[Part(ii)] If c > ∆(VS), by equations (D.5) and (D.8), P(uan

n = u) = P(uan
n =

u | θn = I). �

B.3.2 Data on the Number of Searches

Data on the number of searches are the same as in Section 4. Formally, the
researcher now observes

dN :=
∑N
n=1 1{|Sn|=1}

N
.

Preliminary Observations for Identification. We characterize the probability
with which an agent commits to search only one alternative in the data generating
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process. By the law of total probability,

P(|Sn|= 1) =P(|Sn|= 1 | θn = I)γ+P(|Sn|= 1 | θn = S)(1− γ). (D.15)

By Figures D.1 and D.2,

P(|Sn| = 1 | θn = I) = β (D.16)

and

P(|Sn| = 1 | θn = S) =

β if c < ∆(VS)

1 if c > ∆(VS)
. (D.17)

By equations (D.15)–(D.17),

P(|Sn| = 1) =

β if c < ∆(VS)

γβ + (1− γ) if c > ∆(VS)
. (D.18)

By the strong law of large numbers,

dN
a.s.−→ E[dN ] = P(|Sn| = 1). (D.19)

All Agents Are Isolated. Suppose γ = 1. By equations (D.15) and (D.16), β
is identified by

P(|Sn| = 1) = P(|Sn| = 1 | θn = I) = β. (D.20)

Replacing P
(
s2
n = d | us1

n
n = u

)
with its sample analog duN in equation (D.20),

we obtain
β̂2
N := dN (D.21)

which, by the convergence in (D.19), is a consistent estimator of β.

Social Information. The next proposition summarizes the identification of β
with data on optimal stopping when γ < 1 but the researcher assumes γ = 1.

Proposition D.2. Let γ < 1. Suppose the researcher observes data on the number
of searches and assumes γ = 1. Then:

(i) If c < VS(u), the parameter β is identified by equation (D.20), and the
estimator β̂2

N in equation (D.21) is consistent.

(ii) If c > VS(u), the parameter β is not identified by equation (D.20), the estima-
tor β̂2

N in equation (D.21) is inconsistent, and search costs are overestimated.

Proof. [Part(i)] If c < ∆(VS), by equations (D.6) and (D.15), P(|Sn| = 1) =
P(|Sn| = 1 | θn = I).

41



[Part(ii)] If c > ∆(VS), by equations (D.7) and (D.15), P(|Sn| = 1) > P(|Sn| =
1 | θn = I). Therefore, the parameter β is not identified by equation (D.20). To
see that β̂2

N is inconsistent, and search costs are overestimated, note that

β̂2
N

a.s.−→ E
[
β̂2
N

]
= γβ + (1− γ) > β,

where the equality holds by equation (D.18) for c > ∆(VS). �
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