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Abstract
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this macro measure of physiological aging to estimate the impact of deteriorating health on labor
force participation. Our three-dimensional panel framework, in which the unit of observation is a
cohort in a given country at a given age, allows us to control for a range of unobserved factors. Our
identification strategy further exploits a compensating law of physiological aging to account for
reverse causality. We find a negative effect of physiological aging on labor market participation: a
one percent increase in the frailty index leads to a reduction of labor force participation of about 0.6
percentage points. Since health deficits (in the frailty index) are accumulated at a rate of about 3
percent per year of life, almost all of the age-related decline in labor force participation can be
motivated by deteriorating health.
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Abstract. We construct a cohort-based frailty index for 181 countries over the period

1990-2019. We use this macro measure of physiological aging to estimate the impact of

deteriorating health on labor force participation. Our three-dimensional panel framework,

in which the unit of observation is a cohort in a given country at a given age, allows us

to control for a range of unobserved factors. Our identification strategy further exploits a

compensating law of physiological aging to account for reverse causality. We find a negative

effect of physiological aging on labor market participation: a one percent increase in the

frailty index leads to a reduction of labor force participation of about 0.6 (±0.2) percentage

points. Since health deficits (in the frailty index) are accumulated at a rate of about 3

percent per year of life, almost all of the age-related decline in labor force participation

can be motivated by deteriorating health.
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1. Introduction

The world is aging. This fact is an inevitable consequence of the demographic transition

that has been sweeping most countries in the world since the 19th century and continuing

throughout the 20th century with falling fertility and mortality rates (Reher, 2004). The process

of population aging has later been fueled by a longevity transition in which mortality rates at

later ages have been falling as well (e.g., Eggleston and Fuchs, 2012). Population aging is argued

to be a key factor in shaping the current and future development of societies, often through its

first order impact on labor markets (e.g, Gordon, 2016). The idea is that labor force participation

rates follow a hump-shaped path over the life cycle, typically peaking in the 40s, and so if more

people reach later ages, aging is mechanically reducing the aggregate size of the labor force.

This line of reasoning, however, implicitly assumes that labor force participation depends on

chronological age and is not influenced by factors of physiologically aging that are naturally

embedded in population aging, such as declining functionality of the human body. For example,

according to the popular Mincer (1974)-wage equation, log-wages increase linearly with age and

decline linearly with age-squared. The squared term eventually becomes dominating and causes

individuals to retire. The quadratic term is thought to represent both the effect of experience and

the effect of declining physiological health, which at some point overtakes the positive effect of

experience. This simplification, however, has important policy implications, since chronological

aging inevitably advances by one year each year, while physiological age (the state of health) is

malleable. A refined Mincer equation that explicitly accounts for health can capture the feature

that individuals of a given age change their labor supply as their health improves or deteriorates.

A distinction between chronological age and physiological age is particularly relevant when

there is a trend towards improving health for a given age, such that physiological aging is

slowed down and possibly eventually abandoned (Abeliansky and Strulik, 2018; Abeliansky et

al., 2020; Jones and Vaupel, 2017; Lopez-Ot́ın et al., 2013). Physiological aging can be explained

by increasing loss of redundancy in the human body and therewith deteriorating reliability and

increasing frailty (see Arking, 2006; Gavrilov and Gavrilova, 1991). According to this view,

the increasing withdrawal of workers from the labor market is caused by declining productivity

due to deteriorating muscle strength and motor skills, musculoskeletal pain, and decreasing

cognitive abilities (Schaie, 1994; Nair, 2005; Skirbekk, 2004; Hedden and Gabrieli 2004; Strulik

and Werner, 2016).
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There exists a microeconomic literature that estimates the impact of health on labor supply

using individual data. Depending on empirical approach and health measurements, results

differ from study to study (see French and Jones, 2017, for a review). The recent study by

Blundell et al. (2021) use alternative health measures, controls for individual fixed effects and

initial conditions, and estimates that deteriorating health explains up to 15% of the decline in

employment between ages 50 and 70 in England and the US. Vandenberghe (2021) estimates the

association between health and employment at age 50 (and other labor market indicators) for 20

European countries and uses the estimates for counterfactual predictions of employment at age

70. He finds that deteriorating health explains at most 35 percent of the observed reduction in

employment. Another literature uses calibrated models of the individual life cycle to asses how

health shocks affect labor supply and other life cycle choices (e.g., French and Jones, 2011, Haan

and Prowse, 2014, Capatina, 2015). This approach allows to identify several channels, aside

from declining productivity, through which health could affect labor supply, such as utility gains

from leisure, indirect effects through the impact of increasing life expectancy on savings and

education decisions; disability benefits, the pension- and health-insurance system, and medical

expenses. Capatina (2015) estimates that the removal of health shocks leads to an increase of

labor supply of non-college educated individuals of 10.8 percent and that the largest part (7.4

percent) operates through changing labor productivity.1

In this paper, we propose an alternative approach to study at the aggregate level of countries

how physiological aging influences age-specific labor force participation rates. In order to do

this, we draw on research in the fields of biology and medicine to compute an empirical measure

of physiological aging for most countries in the world from 1990 to 2019. This micro-founded

variable, known at the frailty index, aggregates age-specific prevalence rates of 32 age-related

diseases to a cohort-, age-, country-, and gender-specific measure of aging. The frailty index has

been developed by Mitnitski et al. (2001, 2002) and is an established method to assess human

aging, used by hundreds of studies in gerontology and medical science. The index simply records

the fraction of a large set of aging-related health conditions that is present in an individual. It

has been shown that it does not matter which particular health deficits are included in the index

1A related literature uses life cycle models to explain how technological progress and perpetual wage growth
contributed to the continuous rise of the length of the retirement period over the last century (see e.g. Bloom et
al., 2014, and, in the context of the health deficit model, Dalgaard and Strulik, 2017). An extensive literature
discusses how health affects the retirement decision through life expectancy and mortality (e.g. Kalemli-Ozcan
and Weil, 2011; d’Albis et al., 2012; Kuhn et al., 2015, and, in the context of endogenous education, Hazan, 2009;
Cervellati and Sunde, 2013; Hansen and Loenstrup, 2012; and Strulik and Werner, 2016).
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as long as there are sufficiently many (Searle et al., 2008). The intuition for this remarkable

feature is that health deficits are connected to other health deficits. For example, hypertension

is associated with the risk of stroke, heart diseases, kidney diseases, and dementia. The index

thus captures in one number the biological aging process defined as the intrinsic, cumulative,

progressive, and deleterious loss of function (Arking, 2006; Masoro, 2006).

The frailty index has a microfoundation in reliability theory (Gavrilov and Gavrilova, 1991),

and in a network theory of human aging (Rutenberg et al., 2018). The quality of the frailty

index has been demonstrated by its predictive power for death at the individual level and for

mortality at the group level, as well as for other adverse health outcomes such as the risk of

institutionalization in nursing homes and becoming a disability insurance recipient (Rockwood

et al., 2006; Blodgett et al., 2016; Hosseini et al., 2021). Dalgaard and Strulik (2014) integrated

the frailty index into an economic life cycle theory of health, aging, and death and provided a

biologically founded framework to discuss health behavior and health outcomes.2

Most of the literature on the frailty index considers aging of individuals. Here, we built on

the study of Dalgaard et al. (2022) who computed a frailty index for nations, constructed with

data from the Global Burden of Disease (GBD) study (Vos et al., 2020). In a panel analysis,

controlling for country- and time fixed effects, Dalgaard et al. (2022) showed that the frailty

index at the population level replicates a number of regularities that were previously found at

the level of individuals. Specifically, it was shown that the frailty index increases with age in

exponential fashion, at a rate of 2.8 to 3.0 percent per year of age. This speed of aging was found

to be very similar across continents and income groups. Moreover, for a subset of countries, for

which mortality data was available, the study showed a strong association of health deficits and

mortality. A one percent increase in the frailty index was found to be associated with an increase

of the mortality rate by about 3 percent.

We extend this research by constructing the frailty index for cohorts. We then combine the

frailty index with cohort-, age-, country-, and gender-specific labor force participation rates to

estimate a cohort-based life-cycle model of labor supply for 181 countries over the period 1990-

2019. The comparison of cohorts within the same country over the life cycle allows us to exploit

2Applications consider, for example, the gender gap in mortality (Schuenemann et al., 2017b) the health gain
from marriage (Schuenemann et al., 2019a), fetal origins of late-life health (Dalgaard et al., 2019), and particular
health behavior such as addiction (Strulik, 2018), self-control problems (Strulik, 2019), and adaptation to poor
health (Schuenemann et al., 2017a).
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interaction fixed effects to control for a range of unobserved factors (e.g., cohort-gender-country

fixed effects).

While our higher dimensional panel model allow us to hold a range of unobserved factors

constant, the problem of reverse causality makes it difficult to estimate the effects of physiological

aging on labor market participation. In a series of studies, Marmot argues that work affects

health due to occupational stress, social position, and sense of being in control of one’s life

(e.g. Marmot et al., 1991, 1997). Another strand of literature argues that health status is

negatively affected by blue collar and physical job burden (e.g. Fletcher et al., 2011; Morefield

et al., 2011; Ravesteijn et al., 2016). Specifically, in the context of the frailty index, it has

been shown that the exposure to physical or psychosocial job burden as well as employment

in blue collar occupations is associated with a faster accumulation of health deficits during the

work life (Abeliansky and Strulik, 2021). In order to address the issue of reverse causality,

our identification strategy leverages a compensating regularity of the frailty index, implying

that there exists a strong negative relationship between initial health deficits, measured at the

beginning of working life, and the rate of health deficit accumulation. This pattern in the frailty

index has been documented in previous research for samples of individuals (Mitnitski et al.,

2002; Abeliansky and Strulik, 2018, Abeliansky et al., 2020) and it is also present in our global

country study. In other words, this means that the level of deficits at beginning of worklife is

predictive of the (log) change in deficits at each age.

We find that physiological aging has a negative effect on labor force participation rates. Our

baseline estimate suggests that, if the frailty index increases by one percent, the labor force

participation rate decreases by 0.25 percentage points. In 2SLS estimations, the point estimates

increases in absolute value to more than 0.6 percentage points. Noticing that the frailty index

increases, on average, by 2.6 to 3.0 percent per year over the life cycle, these estimates indicate

that there is a substantial drag on labor supply of deteriorating health due to physiological

aging.

Our results provide an empirical reason as to why the relationship between age and labor force

participation eventually becomes negative. When health deficits are missing in regressions of

labor markets participation, the age coefficients suggest that the positive effect of chronological

age (experience) on labor supply is reverted around age 35–39. When we control for health

deficits, chronological age exerts a positive impact until age 55 and chronological age alone would

4



not be able to explain deteriorating participation rates. The decline by almost 30 percentage

points from ages 30-40 to ages 60-64 is almost fully accounted for by deteriorating health.

The paper proceeds as follows. In the next section, we introduce the frailty index and its

measurement at the macro level, explain the compensation law of morbidity, and set up a simple

life cycle model to derive the implications of physiological aging on labor force participation. In

Section 3, we introduce our data and in Section 4 we explain our estimation strategy. In Section

5 we present the results. Section 6 discusses implications and concludes.

2. Measurement and Theory

2.1. The Frailty Index. A widely used empirical measure for human aging has been developed

by Mitnitski and Rockwood and various coauthors in a series of articles in the form of the frailty

index (Mitnitski et al., 2002; Mitnitski et al., 2013; Mitnitski et al., 2016; Rockwood and

Mitnitski, 2007). As humans age, they develop an increasing number of health deficits. Some

of these deficits may be viewed as relatively mild nuisances while others are more serious in

nature. The notion is that when the number of deficits rises the body becomes more frail. A

frailty index can then be constructed for an individual as the proportion of the total potential

deficits (ailments) a = 1, ..., A that an individual has. That is, the frailty index of individual j

with gender g living in country i is:

djgi =
1

A

A∑
a=1

1jgi (a) , (1)

where 1ji (a) is an indicator function that takes on the value 1 if individual j suffers from deficit

a. The criteria for the selection of health deficits are outlined in Searle et al. (2008): they need

to be aging-related (prevalence increasing in age), associated with health status, not saturate

too early, and cover a broad range of deficits. No specific deficit is required to enter into the

index, since results appear to be unaffected by the specific list of deficits as long as a sufficient

number of deficits – 30 to 40 – are included (Rockwood and Mitnitski, 2007; Searle et al., 2008).

As explained in the Introduction, the intuition for the remarkable feature that the appearance

of specific deficits is not decisive lies in the micro-foundation of the frailty index in reliability

theory (Gavrilov and Gavrilova, 1991) and in a network theory of human aging (Rutenberg et

al., 2018); theories that emphasize that health deficits are connected.3

3The large literature of micro studies using the frailty index typically uses an unweighted index because the
weighting of the items limits generalizability across populations and studies. Studies comparing weighted and
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In light of its simplicity and intuitive nature, it is perhaps unsurprising that the frailty index

has been applied in hundreds of studies until now. However, in most of these studies the index

is computed for samples of individuals. Here, we follow the methodology developed in Dalgaard

et al. (2022) and compute the frailty index for populations. Specifically, given the measurement

of the frailty index at the individual level in equation (1), the average frailty index of cohort c,

gender g, in country i is:

Dcgi =
1

Pcgi

Pcgi∑
j

djgi, (2)

where Pcgi is the number of individuals belonging to cohort c, gender g, living in country i.

Inserting equation (1) and rearranging, allows us to write equation (2) as:

Dcgi =
1

A

A∑
a=1

Pacgi
Pcgi

, (3)

where Pacgi/Pcgi is the prevalence rate of age-related (disease) condition a in cohort c, gender

g, country i. Therefore, in order to work out the aggregate frailty index for this particular

age cohort, we simply need to calculate the average of A prevalence rates, Pacgi/Pcgi. These

prevalence rates are available for most countries in the world in the GBD database (Vos et al.,

2020).

2.2. Compensation Law of Deficit Accumulation. Research on the dynamics of health

deficits accumulation has established that health deficits grow, on average, at a constant rate

with advancing age (Mitnitski et al., 2002a; Mitnitski and Rockwood, 2016; Abeliansky and

Strulik, 2018) such that a person j at age t displays Dj(t) health deficits:

Dj(t) = Dj(0)eµjt ⇔ logDj(t) = logDj(0) + µjt. (4)

This research has also shown that there exists a strong negative relationship between initial

health deficits and the rate of health deficit accumulation (Mitnitski et al., 2002a, Abeliansky

and Strulik, 2018). The relationship is akin to the compensation law in mortality, also known

as Strehler-Mildvan correlation (Strehler and Mildvan, 1960; Gavrilov and Gavrilova, 1991). It

implies that there exists an age t = T at which all individuals from a population are predicted

to display the same frailty index, Dj(T ) = D(T ) for all j.

unweighted indices found that weighting improves prediction quality (for mortality) slightly, but that these gains
are not large enough to give up generalizability (e.g. Theou et al., 2013).
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Figure 2 displays the compensation law for two individuals j = 1, 2. Individual 1 starts with

less health deficits but ages faster such that at age T both individuals display the same frailty

index. Formally the compensation law states that

logDj(0) = λ− µjT. (5)

The parameters T and λ ≡ logD(T ) have been estimated with great precision and the es-

timates suggest that T is about 95 to 105 years, depending on the population investigated

(Mitnitski et al, 2002; Abeliansky and Strulik, 2018; Abeliansky et al., 2019). Since T is inde-

pendent from j, it is considered a population-specific constant and it has been associated with

the life span of a population (Gavrilov and Gavrilova, 1991). Substituting Dj(0) in (4) by (5),

we obtain:

logDj(t) = λ− µj(T − t). (6)

Recall, that due to (4), initially healthier individuals (with less health deficits) display a higher

rate of aging µj such that, for any t < T , they display less health deficits Dj(t) than initially

less healthy individuals, see Figure 1.

Figure 1. Compensation Law of Health Deficits

logD1(0)

logD

logD2(0)

tT

We will exploit the compensation law in our empirical strategy. In particular, taking age

differences of (4), we obtain ∆ logDj = µj and inserting (5) we obtain the association between

the growth rate of deficits and the initial level of deficits, ∆ logDj ≡ logDj(t)− logDj(t− 1) =

(λ/T ) − (1/T ) logDj(0). Considering individuals j drawn from different countries i, cohorts c,
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and gender g, and allowing for country- cohort, and gender-fixed-effect FE, we obtain:

∆ logDcgi = α logDcgi(0) + FE, (7)

in which α = −1/T , ∆ logDcgi = µcgi is the growth rate of health deficits and Dcgi(0) are initial

health deficits of an individual from cohort c, gender g, and country i. Equation (7) is our

theoretical motivation for the first-stage regression given in equation (14) below.

2.3. Labor Force Participation. In this section, we integrate health deficits in a standard

model of optimal labor force participation and derive the structural model for the regression

analysis. Consider an individual j experiencing instantaneous utility u(cj) − φj`j , in which

cj is consumption, `j is labor supply and φj is disutility from work. The utility function u

exhibits positive and declining marginal utility u′ > 0, u′′ < 0. Here we focus on labor supply

at the extensive margin such that `j ∈ {0, 1}, i.e. individuals are in or out of the labor force.

Individuals maximizes lifetime utility:∫ T

0
[u(cj(t))− φj`j(t)] e−ρtdt, (8)

with time preference rate ρ, subject to the budget constraint k̇j(t) = rkj(t)+1`j(t)=1wj(t)−cj(t),

in which t is age, kj are assets, r is the interest rate, wj is the wage rate and 1`j=1 is an indicator

function that assumes the value of one if the individual is in the labor force (and zero otherwise).

Parameters depend potentially on gender-, cohort-, and country-specific characteristics. When

possible without loss of information, the respective indices are suppressed to avoid notational

clutter.

The wage at age t is a function of age and health. Let initial age, i.e. the age at which

individuals enter the workforce be normalized to zero. The wage-per-age function is then given

by:

wj(t) = ωjej(t)g(Dj(t)), (9)

in which the initial wage ωj summarizes education and other parameters given at the point of

entry in the workforce. Allowing for pension income, the left-hand side of (9) would be rewritten

as wj(t)(1 − ξ(t)), in which ξ(t) is the replacement rate. The structure of the problem would

be preserved. The term ej(t) captures experience, which grows with increasing age (duration

of stay in the workforce). As discussed in the Introduction, according to the original Mincer

(1974)-wage equation, a negative term of “experience squared” causes wages to decline in old age
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such that individuals withdraw from the labor force. Here, we consider instead that productivity

is reduced by the presence of health deficits, g(D). The function g is declining in deficits and

concave such that g′ < 0 and g′′ ≤ 0. Experience is assumed to be a positive and concave

function of age with e′j > 0 and limt→∞ e
′
j = 0. This means that, eventually, with increasing

age, health deficits become the dominating force on productivity, which causes individuals to

exit the labor force.

Individuals maximize (8) subject to (9) and (10), the asset accumulation function and po-

tentially other dynamic constraints. Irrespective of the complexity of the underlying dynamic

problem, the first order condition for labor supply is straightforward since it does not reflect

intertemporal trade-offs but the intra-temporal trade-off between working and not working.

Specifically, the first order condition for labor supply reads:

φj ≤ u′(cj(t))ωjej(t)g(Dj(t)), (10)

which requires that the marginal disutility from work is not larger than the marginal utility from

work, consisting of earned income evaluated at the marginal utility u′(c) that a unit of income can

buy. At the point of optimal retirement, (10) holds with equality. Inspection of (10) shows that,

ceteris paribus, i.e. for given parameters and functional forms, individuals who have accumulated

more health deficits withdraw earlier (at smaller t) from labor force participation.4 The top panel

of Figure 3 illustrates the participation constraint for labor supply. In the benchmark case, only

individuals with less than D1 health deficits supply labor.

In order to make inferences from individual choice on the labor force participation rate

of a cohort at a given age, we exploit the result from Rockwood et al. (2004) that health

deficits at any age are approximately Gamma-distributed with cumulative distribution function

F (D) = 1/Γ(κ)γ(κ,D/θ). Rockwood et al. (2004) show that the distribution function is age

specific and that the shape parameter κ increases with age while the scale parameter θ declines.

Diagrammatically this means that F (D) is strictly concave at young ages and becomes s-shaped

for the elderly, as shown in the center- and bottom-panel of Figure 3. This feature expresses the

fact that most young individuals display a small frailty index while among the elderly only few

individuals exhibit a small frailty index and many display a health deficits in the intermediate

4We could arrive at a condition isomorph to (10) via an alternative pathway. To see this, assume that health
deficits leave productivity unaffected but increase the disutility from work, such that φj is replaced by φjf(D)
with f ′ > 0, f ′′ ≥ 0. In reality both mechanisms are likely operative and we can imagine that one function g(D)
captures their joint effect in reduced-form.
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Figure 2. Health Deficits and Labor Force Participation

D

g(D)

D3 D1 D2

LFPR1

φj
u′(cj)ωjej

D

F young(D)

F old(D)

D

LFPR1

D1D1D3 D2

The upper panel shows the association between health deficits and productivity and the optimal
deficit level at entry into retirement (the threshold). The center (bottom) panel shows the
distribution of health deficits in the young (old) population and the implied rate of labor force
participation.

range. The labor force participation rate (LFPR) can be read off directly from Figure 1 since

only individuals with deficits below the F (D)–curve supply labor. Notice that a variation in

individual characteristics, i.e. a movement of the φj/[ωju
′(c(t))e(t)], elicits a greater variation

of the LFPR for the elderly than for young workers. This feature simply expresses the fact

that among elderly workers there are more individuals with health deficits in the vicinity of the

LFPR threshold. Figure 3 illustrates this feature for a given variation of the threshold indicated

by dashed lines. Ceteris paribus, the model thus predicts that labor force participation of older
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cohort depends more strongly (with greater elasticity) on health deficits than that of young

cohorts.

The threshold also moves with advancing chronological age. As individuals gather more expe-

rience, ej(t) rises, and the threshold moves down. This feature reflects the fact that withdrawing

from the labor force causes larger income losses due to experience as individuals grow older. In

particular, for young and middle-aged workers this effect could be the dominating force such

that labor supply increases with age. For the elderly, however, it is likely that the gains from ex-

perience have asymptotically reached its limit such that the physiological aging effect (strongly)

dominates. In summary, the theory predicts a strong negative impact of health deficits on LFPR

for the elderly while the effect is smaller for the young and middle aged. The reason is that, on

average, elderly workers have developed more health deficits such that a greater share of them

has frailty index in the range where workers consider retirement.

Finally, we can use the theory to discuss the evolution of the LFPR of cohorts over time.

The F (D)–curve of later-born cohorts is first order stochastically dominated by F (D) of earlier

cohorts if later-born cohorts are healthier at any age (as the studies for European countries

and the U.S., suggest; Abeliansky and Strulik, 2018; Abeliansky et al., 2020). Furthermore,

the LFPR may shift over time due to changing education or changing preferences for LFP

(of, for example, women) as well as due to technological progress and income growth. With

growing income, ωj increases, shifting the threshold upwards. However, consumption increases

as well, implying that u′(c) goes down and that the movement of the LFPR is ambiguous. For

the special case of log-utility and a constant savings rate, the threshold stays constant under

technological progress and income growth. Generally, however, the LFPR may shift for various

non-health-related reasons from one cohort to the next, a feature that highlights the importance

of a cohort-based analysis.

In order to eliminate the non-linearities, we approximate the F (D)–curve by a logarithmic

function. Allowing the parameters of the labor supply model to be country -, gender-, age-, and

cohort-specific, the theory predicts that

LFPRcgit = β logDcgit + FE, (11)

in which subindex c, g, i, and t identifies the cohort, gender, country, and age of the considered

individuals and FE are group-specific fixed effects. This provides the structural model for our
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regression analysis. The theory predicts that β < 0, which our analysis outlined below will be

empirically testing.

3. Data and Sampling

3.1. Disease Prevalence Data. Data on disease prevalence rates are taken from the GBD

database (Vos et al., 2020), which covers the period 1990 to 2019. The prevalence rates are

available for men and women by five year age-groups. Keeping with conventions in the literature

on health deficits, the youngest cohort included in our analysis is age 20 to 24 when sampled.

In the construction of the frailty index, we abide by the criteria listed in Searle et al. (2008) and

we strictly follow O’Donovan et al. (2020) and Dalgaard et al. (2020) in the selection of disease

items. This leaves us with 32 aging-related health conditions, which are listed in the Appendix.

The prevalence rates of these diseases are aggregated into the frailty index as suggested by

equation (3).

Figure 3 provides empirical evidence for the compensating effect of deficits across countries.

We split our sample of cohorts into above and below median initial deficits (measured at age

20-24) and and display average deficits of these two groups over the life cycle by gender. The

estimates are reported for women in Panel A and men in Panel B. This shows clearly that the

compensating law of deficits is also present in our sample in that cohorts with different levels

of initial deficits are converging in terms of deficits over the life cycle. The initial log level of

deficits is inversely related to the growth rate of deficits, reflecting the compensation law of

health deficit accumulation (see Section 2.2).

3.2. Labor Supply Data. This subsection presents our data on life-cycle labor supply. Data

on life-cycle labor market participation rates are drawn from the International Labour Orga-

nization’s (ILO) database (ILO, 2021). Labor force participation rates (LFPRs) by gender,

age, and country are, in principle, available annually at five-year age intervals. As our base-

line sample consists of birth cohorts of five-year intervals observed from 1990 to 2029, we only

need data on LFPRs (by gender, age, and country) every fifth year (1990, 1995,.., 2019).5 The

age groups available from the ILO database are: 20-24, 25-29, .., 60-64 and 65+, but since we

use five-year birth cohorts, the latter age-group (65+) cannot be used in our analysis and is

accordingly dropped. Figure 4 shows binned scatter plots of the LFPR over the life cycle by

5The latter age interval is only four years as we do not have data on deficits nor labor force participation from
2020.
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Figure 3. Compensation Law of Health Deficits
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Notes: This figure shows the development of the average frailty index over the life cycle from age 20-24 to
50-54 by splitting the sample into above and below median initial health deficits, measured at age 20-24.
Panel A reports estimates for females, while Panel B reports estimates for males. We can only report these
developments until age 50-54 since initial deficits (at age 20-24) are only observed for a sub-sample of our
cohorts. See also Section 3.3.

gender for our cohorts, while controlling for country fixed effects. For both men and women, we

observe the well-known hump-shaped pattern of LFPRs in age. In addition, we see an upward

movement of the labor supply curve for women (Panel A). After being merged together with

our health deficits data, our dataset ends up consisting of 120 age-cohort-gender observations

for 181 countries amounting to 22,806 in total.

3.3. Cohort Sample Structure. We consider five-year (birth) cohorts, which in our baseline

sample, includes cohorts born: 1925-1929, 1930-1934, .., 1995-1998. As the Lexis diagram in

Figure 5 illustrates, our data allow us to observe both physiological aging and labor participation

for these cohorts from 1990 to 2019 up to the age category 60-64, corresponding to the so-

called diagonal “life lines”. The yellow stars indicate when initial deficits are measured for the

different cohorts. Because of data availability on deficits, we are not able to measure deficits

at the beginning of the life cycle (age 20-24) for cohorts born before 1965, so initial deficits are
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Figure 4. Labor Force Participation by Gender and Cohort
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Notes: This figure shows the binned scatter plot of LFPRs from age 20 to 64 by gender and cohort. Before
showing the LFPRs, we control for country fixed effects in the full sample. The sample here includes 15
different cohorts in 181 countries observed from 1990 to 2019. The numbers in the legend indicate birth
years for the different cohorts; the oldest cohort being born from 1925 to 1929 (25-29), for example.

measured at older ages for these cohorts. We account for this problem empirically by additionally

controlling for age-cohort and age-country fixed effects in the 2SLS regressions. In addition, we

cannot use the youngest cohort born 1995-1998 in the regressions, as we do not observe any age

changes in deficits and labor force participation for this cohort.

4. Estimation Strategy

This section explains how we estimate the effect of physiological aging on labor supply. Mo-

tivated by our theoretical model for health deficits and labor supply, the structural equation

takes on the following form:

LFPRcgit = β logDcgit + θgt + δcgi + εcgit, (12)

where LFPRcgit is the labor force participation rate of birth cohort c with gender g, living in

country i, observed at age t. The corresponding frailty index (in natural logarithm) is given by

logDcgit. We include gender-age fixed effects (θgt) and cohort-gender-country fixed effects (δcgi)
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Figure 5. Lexis Diagram for Sampled Cohorts from 1990 to 2019
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Notes: This figure shows the structure of our cohort sample across. The yellow stars indicate
when initial deficits are measured for the different cohort. It is evident that our limited sample
window prevents us from measuring initial deficits for all cohorts at age 20-24 and for these
cohorts we instead measure them when entering the sample window in 1990.

in the baseline, but in 2SLS estimation, we also control for country-age fixed effects (θct) and

cohort-age (θct) fixed effects in order to take into account that initial deficits are measured later

in life for older cohorts, as explained above.

We estimate the coefficient of interest, β, by taking first differences in age, which differences

out the cohort-gender-country fixed effect. This gives the following estimation equation:

∆LFPRcgit = β∆ logDcgit + ∆θgt + ∆εcgit, (13)

where ∆LFPRcgit is the change in the labor force participation rate from age t to t+1, ∆ logDcgit

is the change in log deficits (or the approximate growth rate), ∆θgt are gender-age fixed effects,

and ∆εcgit is the error term, which is clustered at the country level.

Compared to the “level model” in equation (12), this age-stacked, first-differences specification

is easier to connect with our 2SLS strategy, which is going to exploit differences in initial deficits

between cohorts as an instrumental variable for the growth rate in deficits as theoretically
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motivated by equation (7). Based on this compensation law, the first stage is constructed as:

∆ logDcgit = α logDInitial
cgi + ∆θ̃gt + ∆ε̃cgit, (14)

where logDInitial
cgi is deficits measured at the beginning of the work-life cycle (age 20-24), which

can only be measured for cohorts born later than 1965 given the GBD data on deficits. There-

fore, we measure initial deficits in 1990 for cohorts born before 1965 when they enter our sample

window (cf. Figure 5). In order not to compare older cohorts, where initial deficits are thus

measured later in life, we follow two related approaches. First, we restrict the sample only to

cohorts born after 1965, for which it is possible to measure initial deficit at age 20-24. Alter-

natively, we include all cohorts in the sample, but then control for cohort-age and country-age

fixed effects in order not to make any misleading comparisons. Finally, note that the excluded

instrument (initial deficits, logDInitial
cgi ) does not vary by age, and so our 2SLS estimation should

essentially be thought of a number of stacked first differences (in age), and motivated by the

law of compensating deficits, initial deficits are assumed to have the same impact on the change

in logged deficits from one age to the next. Our identifying assumption, in terms of solving the

inherent problem of reverse causality, is that labor market participation later in work life (e.g.,

at age 50-54) does not affect health deficits at beginning of the work life (age 20-24).

5. Results

Table 1 reports the results from estimating different variants of equation (13) by OLS. When

not including any fixed effects, in column 1, we find that β̂ = −1.5 with a standard error of

0.07, implying that if deficits increase by one percent, labor force participation decreases by

1.5 percentage points. In the subsequent columns, when age and gender FE are included, we

observed that the estimated effect reduces to about 0.25 to 0.28 percentage points.6 Noting that

health deficits increase, on average, by around 3 percent per year over the life cycle, even this

magnitude implies a substantial drag on labor supply of physiological aging. The point estimate

from specification (4) in Table 1 implies that a one-standard deviation of the health indicator

(the standard deviation of the logged frailty index is 0.49) is associated with a decline in labor

force participation by 12 percentage points. For comparison, using micro data, Vandenberghe

(2021) estimates for a sample of workers aged 50–54 from 20 European countries that a one

6Including gender fixed effects in equation (13) corresponds to controlling for gender-specific linear trends in
equation (12).
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standard deviation in health is associated with a decline of labor force participation between

12 and 30 percentage points. Our OLS estimates based on macro data are thus in line with

estimates from the lower bound of a recent study using micro data.

Table 1. OLS Estimates

(1) (2) (3) (4)
∆LFPR ∆LFPR ∆LFPR ∆LFPR

∆ logD -1.493*** -0.282*** -0.279*** -0.255***
(0.067) (0.049) (0.049) (0.056)

Observations 17,014 17,014 17,014 17,014
Age FE No Yes Yes Yes
Gender FE No No Yes Yes
Gender-Age FE No No No Yes

Notes: This table reports OLS estimates of equation (13). The dependent variable (∆LFPR) is the
change in labor force participation from one age to the next, while the main explanatory variable (∆ lnD)
is the change in logged deficits. Standard errors are robust and clustered at the country level. *** p<0.01,
** p<0.05, * p<0.1

While the estimates reported in Table 1 hold constant a host of unobserved country-, age-,

and cohort-factors, such as years of schooling, which is largely determined before entering work-

life, they are unlikely to yield the causal effect of physiological aging on labor supply, since

labor supply influences physiological aging (see the discussion of the related literature in the

Introduction). For this reason, we expect the OLS coefficient of health deficits to be downward

biased (in absolute value) and now turn our attention to the 2SLS strategy, which exploits the

compensating law of health deficits accumulation to construct an instrumental variable.

In Figure 6, we depict the first-stage relationship as a binned scatter plot for our full sample

of cohorts, while controlling for gender-age, county-age and cohort-age fixed effects. This first-

stage coefficient is estimated as α̂ = −0.09, which is statistically significant at the one percent

level. This magnitude implies that if initial deficits decrease by a one standard-deviation of a

natural log point (0.3), the growth rate of deficit increases by 3 percentage points. Given that

we took differences of five year intervals, it implies a change of the annual growth rate of deficits

by 0.6 percentage points. As can be seen from the bottom of Table 3, the Kleibergen-Paap F

statistics ranges from 72 to 172 in all 2SLS specifications, indicating that the first-stage fit is

strong, which reduces any concerns about weak-instrument biases.
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Figure 6. First-stage Relationship between Initial Deficits and Changes in Deficits

.14

.145

.15

.155
C

ha
ng

e 
in

 lo
g 

de
fic

its

-3.25 -3.2 -3.15 -3.1
Initial log deficits

Notes: The figure shows a binned scatter plot of the first-stage relationship, in which we include
all cohorts and control for gender-age fixed effects, country-age fixed effects, and cohort-age fixed
effects. α̂ = −0.09 and standard error = 0.01.

Table 2 reports the resulting 2SLS estimates. In Columns 1-4, we include only cohorts born

later than 1965, where (given our data on deficits) it is possible to measure initial deficits at the

beginning of the work-life cycle. In these models, with the same fixed effects as in Table 1, the

first-stage relationship is a little stronger compared to the model where all cohorts are included

along with additional interaction fixed effects, reported in Figure 6 and Column 5 of Table 2.

However, in all the reported models, the 2SLS estimate is about -0.6 (standard error 0.2), which

is more than twice the numerical magnitude of the OLS estimates, reported in Columns 2-4

of Table 1. This pattern is consistent with the OLS estimate being downward biased due to

reverse causality.7 The estimate from specification (4) in Table 2 implies that a one-standard

deviation of the health indicator is associated with a decline in labor force participation by 30

7In a simple model of simultaneity, and assuming no omitted variable biases, the pattern of the estimates OLS
and 2SLS coefficients indicate that the effect of labor-market participation on deficits could be positive, but rather
small in magnitude. In fact, following the procedure in Brückner (2013), in which we use the 2SLS coefficient,
reported in column 5 of Table 2, to partial out the response of labor-market participation to deficits and use that
as an instrument for labor market participation, we estimate a 2SLS coefficient equal to 0.05 (standard error =
0.008). Thus, taken at face value, labor market participation increases deficits (i.e., physiological aging).
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percentage points. This estimate is in line with the upper bound of estimates from micro data

in the Vandenberghe (2021) study.

Table 2. 2SLS Estimates

(1) (2) (3) (4) (5)
∆LFPR ∆LFPR ∆LFPR ∆LFPR ∆LFPR

∆ logD -0.600*** -0.594** -0.630*** -0.615*** -0.636***
(0.230) (0.229) (0.190) (0.189) (0.243)

Observations 7,602 7,602 7,602 7,602 17,014
Age FE No Yes Yes Yes Yes
Gender FE No No Yes Yes Yes
Gender-Age FE No No No Yes Yes
Country-Age FE No No No No Yes
Cohort-Age FE No No No No Yes
Cohorts >1965 >1965 >1965 >1965 all
First-stage F stat. 110.6 110.4 171.7 172.3 71.74

Notes: This table reports 2LS estimates of Eq. 13, using Eq. 14 as the first stage. The dependent
variable (∆LFPR) is the change in labor force participation from one age to the next, while the main
explanatory variable (∆ lnD) is the change in logged deficits. In Columns 1-4 only cohorts born before
1965 are include, while in Column 5 all cohorts are included. Standard errors are robust and clustered at
the country level. *** p<0.01, ** p<0.05, * p<0.1

5.1. Age and Labor Force Participation: Simulations. In this section, we aim to assess

the explanatory power of physiological aging for labor force participation rates (LFPRs) by

way of simulation. The simulations are based on the level estimates shown in Table 3 and the

evolution of health deficits by age. We first consider labor supply of an average world citizen

in the panel on the left-hand side of Figure 7. The blue (solid) line shows the age-coefficients

when the LFPR is regressed on age fixed effects and gender-country-sex fixed effects (reported

in column 1 of Table 3). According to this view, increasing as well as declining LFPRs is

“explained” by chronological age. This model suggest that labor supply starts declining from

about age 40 because workers are getting older. It could have been derived from a standard

Mincer model, according to which worker productivity and wages decline with chronological age

as elderly workers grow older.

The red (dashed) line shows the predicted LFPR by age when logged deficits are added in

the regression and age-group-specific health deficit are fed into the model. Estimates are taken

from column 2 of Table 3. We assume that new health deficits are accumulated at a rate of
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Table 3. Level Estimates

(1) (2) (3) (4) (5) (6)
LFPR LFPR LFPR LFPR LFPR LFPR

logD -0.242*** -0.148** -0.357***
(0.051) (0.073) (0.071)

age 25-29 0.133*** 0.158*** 0.108*** 0.123*** 0.158*** 0.194***
(0.005) (0.008) (0.006) (0.010) (0.006) (0.010)

age 30-34 0.163*** 0.218*** 0.132*** 0.167*** 0.193*** 0.272***
(0.006) (0.014) (0.007) (0.019) (0.007) (0.018)

age 35-39 0.175*** 0.266*** 0.154*** 0.212*** 0.196*** 0.324***
(0.007) (0.020) (0.008) (0.029) (0.008) (0.028)

age 40-44 0.177*** 0.305*** 0.169*** 0.250*** 0.186*** 0.365***
(0.007) (0.028) (0.008) (0.041) (0.008) (0.038)

age 45-49 0.169*** 0.333*** 0.165*** 0.271*** 0.172*** 0.403***
(0.007) (0.035) (0.009) (0.052) (0.008) (0.048)

age 50-54 0.132*** 0.340*** 0.130*** 0.260*** 0.135*** 0.430***
(0.008) (0.044) (0.009) (0.065) (0.008) (0.061)

age 55-59 0.050*** 0.300*** 0.044*** 0.198*** 0.056*** 0.420***
(0.008) (0.052) (0.010) (0.076) (0.009) (0.074)

age 60-64 -0.102*** 0.187*** -0.076*** 0.099 -0.127*** 0.302***
(0.013) (0.061) (0.013) (0.086) (0.015) (0.087)

Observations 21,720 21,720 10,860 10,860 10,860 10,860
Cohort-Country-Sex FE Yes Yes Yes Yes Yes Yes
Sample All All Female Female Male Male

Notes: This table reports OLS estimates of Eq. 12. The dependent variable (LFPR) is the labor force
participation rate, while the explanatory variable (logD) is logged deficits. Age 20-24 is the reference age
group for the age dummies. columns 1 and 2 include only all cohorts, while Columns 3-6 split the sample
by gender, which means that these specifications only absorb country-cohort fixed effects. Standard errors
are robust and clustered at the country level. *** p<0.01, ** p<0.05, * p<0.1

2.9 percent per year of age. This average speed of physiological aging has been estimated by

Dalgaard et al. (2022) using the same data. It implies that the frailty index increases from

about 0.03 at age 20-24 to 0.09 at age 60-64 (see also Figure 3). The predicted LPFR by age

closely traces the age-specific LFPR but the explanation differs. Now, deteriorating health is the

main driver of declining LFPRs. This can be seen by the black (dash-dotted line), which reports

predicted LFP assuming constant health. Controlling for health status, labor force participation

is predicted to increase until age 50-54 and the LPFR at age 60-64 is as high as at age 25-29.

The area between the red and the black line provides an estimate of the increase in LFPR that

could be achieved by abolishing physiological aging. The estimates suggest a gain in LFPR of

more than 15 percent at age 44-49 and of about 25 percent at age 60-64.
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Figure 7. Age and Labor Force Participation: Simulations
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Blue (solid) lines: predictions when health deficits are omitted as explanatory variable. Red (dashed) lines:
predictions when log deficits are included as regressor and deficits increase by 2.9 percent per year. Black
(dash-dotted) line: predictions when log deficits are included as regressor but deficits are held constant for
prediction.

The middle panel of Figure 7 shows results when the simulation exercise is repeated in a

sample restricted to men (estimates from columns 3 and 4 of Table 3). The predictions with

and without consideration of physiological aging (the red and blue line) trace the actual LFP

quite well, as a comparison with Figure 4 show. The black (dash-dotted) line, showing LFP

with constant health, reveals that the potential LFP gain from slowing down physiological aging

is even greater than in the full sample. Of course, an LFPR above 1 makes no sense. Assuming

an upper boundary of potential LFP at or below 1, the estimates thus suggest that there is no

reduction in LFPR due to chronological aging.

The panel on the right-hand side of Figure 7 shows the estimated and simulated results for

women. Again, the predictions trace the actual LFPR quite well (cf. Figure 4). The estimated

coefficient of log deficits is less than half in absolute size for women (0.15 vs. 0.36) and thus

the impact of deteriorating health on labor supply is smaller. The potential gain in LFP from

abolishing physiological aging, however, is still substantial. It is about 10 percentage points at

age 44-49 and almost 20 percentage points at age 60-64. If we assume an upper bound for LFP

at or below 0.7, for example because of pregnancy and child rearing, we would arrive at the

same conclusion as for men: advancing chronological age does not contribute to declining LFPR

when physiological aging is held constant.
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6. Conclusion

In this paper, we contributed to the literature on the labor-market participation effects of

health with a novel approach using macro data. Instead of using individuals as subjects of

investigation, we considered cohorts born between 1925 and 1995 from 181 countries and esti-

mated the impact of deteriorating health on labor force participation. Drawing on research in

the fields of biology and medicine and aging-related health data on prevalence rates of health

deficits from the GBD study, we computed the frailty index as a measure of physiological aging

over the life cycle. The panel structure of the data over 1990-2020 allowed us to follow cohorts

over time and to control for a host of potential confounders by country, gender, age, and cohort

fixed effects. We exploited the association between initial health deficits and the growth rate of

health deficits (the compensation law of morbidity) as an instrumental variable to reduce the

problem of reverse causality.

The results suggest a strong negative effect of physiological aging on labor market participa-

tion. According to the OLS estimates, a one standard deviation increase of deficits is associated

with a decline in labor force participation by about 12 percentage points, an estimate that aligns

with the lower bound of recent estimates from European micro data. In 2SLS regressions, we

find a substantially larger effect, according to which a one percent increase in the frailty index

is associated with an 0.6 percentage point decline of the labor force participation rate. This

means that an increase of deficits by one standard deviation leads to a decrease of labor force

participation by 30 percentage points, an estimate that aligns with the upper bound of recent

micro estimates. Simulations, in which we feed the actual (average) increase of health deficits

into an estimated model of life cycle labor supply, we find that almost all decline in labor supply

of the elderly can be motivated by deteriorating health and that advancing chronological age

(i.e. experience) exerts a positive impact on labor supply until age 55.

The main policy conclusion is thus that, if health of the workforce could be improved, popu-

lation aging would much less of a concern for labor force participation rates of the population

below age 65. Historical studies by Costa (2000, 2002) show that the deterioration of the human

body slowed down since the beginning of the 20th century such that later born cohorts of el-

derly US American men (50-64 years old) experience less impairments of bodily function. Costa

shows that a host of health conditions improved quite strongly, some, such as joint problems,

back problems, and heart and circulatory conditions, improved at a rate more than twice as fast
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as the improvement of life expectancy. In a sample of European countries as well as in the US,

average health deficits at any age above 50 declined by 1.0-1.4 percent per year of later birth

(Abeliansky and Strulik, 2019; Abeliansky et al., 2019). These observations suggest that pro-

ductivity and labor force participation, in particular of elderly individuals, could be stimulated

by improving health.

These trends, however, are not yet visible at the global level. Inspection of our GBD-based

data reveals that that younger cohorts in non-western and poor countries are less healthy at

all working ages (see also Dalgaard et al., 2022). Physiological aging thus operate against the

“demographic dividend”, that could be derived from the relatively young work force in these

countries (Bloom et al., 2003). Later born workers in western and rich countries, in contrast, do

not experience these negative trends and benefit from (mildly) improved health, in particular

at later working ages, in line with the results from the micro studies cited above. These trends,

however, are not (yet) sufficiently strong to offset the deleterious effects of population aging on

labor supply.
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7. Appendix

A. Items in the Frailty Index

The frailty index is based on prevalence rates for the following diseases (32 in total):

Diarrheal diseases; Protein-energy malnutrition; Neoplasms; Ischemic heart disease; Stroke;

Non-rheumatic valvular heart disease; Cardiomyopathy and myocarditis; Atrial fibrillation and

flutter; Peripheral artery disease; Other cardiovascular and circulatory diseases; Chronic res-

piratory diseases; Peptic ulcer disease; Gallbladder and biliary diseases; Alzheimer’s disease

and other dementias; Parkinson’s disease; Depressive disorders; Diabetes mellitus; Chronic kid-

ney disease; Skin and subcutaneous diseases; Other sense organ diseases; Rheumatoid arthritis;

Osteoarthritis; Low back pain; Gout; Urinary diseases and male infertility; Genital prolapse;

Endocrine, metabolic, blood, and immune disorders; Oral disorders; Falls; Hearing loss; Heart

failure; Blindness and vision loss.
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