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1. INTRODUCTION

In recent years, considerable progress have been made towards credibly establishing the presence of dis-
crimination, that is, the act of treating individuals differently on the sole basis of the groups they belong,
or are perceived to belong, to. Examples of such groups include but are not limited to women and men,
blacks and whites, juniors and seniors. Field experiments (of both the audit and correspondence variety)
have been particularly instrumental in evidencing discrimination, as they allow the researcher to finely
control the observables. However, as Bertrand and Duflo (2017) observe in their survey of the litera-
ture: “while field experiments have been overall successful at documenting that discrimination exists, they
have (with a few exceptions) struggled with linking the patterns of discrimination to a specific theory.” The
two most prominent theories of discrimination are statistical discrimination (outcomes differ because
of differences in information) and taste-based discrimination (bias or animus towards one group drives
outcome differences); establishing which of these is at work is important both for accountability and to
devise corrective policies.

In this paper, wepropose a general non-parametricmodel of statistical discrimination in the labormarket,
and derive a test for statistical discrimination that only requires cross-sectional data onwages. Themodel
is in the spirit of Phelps (1972). There are two groups whose productivity distributions have identical
means, but can otherwise be different.1 The group identity is observable to employers, but productivities
are not. Instead, there are group-dependent “statistical experiments” that generate signals about the un-
derlying productivity. As an example, signals could be the information that employers receive from the
job screening process that includes interviews, tests, curricula vitae etc. Signals induce posterior produc-
tivity distributions (via Bayes’ rule) and, in particular, these can be used to compute posterior estimates
(the mean of the productivity conditional on the signal) of the unobserved productivity. Therefore,
each group’s statistical experiment generates a distribution over posterior productivity estimates. Wages
are then determined via a strictly increasing, continuous function of the posterior productivity estimate
that, importantly, does not depend on the group. The model is reduced form in that we do not micro-
found the statistical experiments or thewage function (although foundations can easily be provided), but
very general in that both are completely unrestricted (as long as the wage function is strictly increasing
and continuous). We say that two wage distributions – one for each of the two groups – are consistent
with statistical discrimination if they can be rationalized by this model.

We show that two wage distributions are consistent with statistical discrimination if, and only if, nei-
ther wage distribution first-order stochastically dominates the other (Theorem 1). In addition, we show
that a rejection of this test can only be attributed to taste-based discrimination (Theorem 2). In other
words, whenever one wage distribution first-order stochastically dominates another, the only explana-

1We discuss below how to accommodate different mean productivities.
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tion is taste-based discrimination. We stress that our test exploits the information contained in the entire
wage distributions, and not just their averages. This is in sharp contrast with the common practice of
reporting wage gaps (differences in average wages), which have been, and continue to be, the subject of
much public debate.

First-order stochastic dominancemight seem like a demanding condition, but there is abundant evidence
that the wages of whites are higher than those of blacks and Hispanics not just in average but also at all
quantiles; the latter is an equivalent way of stating first-order stochastic dominance. As an example, see
Table 1 (taken from the Economic Policy Institute report “State of Working America Wages 2019” by
Elise Gould) where the entries are the shares of the hourly wages earned by black and Hispanic workers
relative to white workers at the same quantile of the wage distribution; note that every cell is strictly less
than a 100%. Bayer and Charles (2018) also document a similar gap in the wages of blacks and whites at
the median and 90th percentile of the wage distributions.

Quantiles
Year 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th

Wages of blacks as a share of whites
2000 93.80% 88.40% 84.80% 82.60% 79.20% 79.30% 77.60% 76.90% 74.70% 72.00%
2007 91.30% 86.40% 84.40% 79.70% 77.70% 75.80% 74.90% 72.80% 74.00% 71.70%
2018 90.80% 83.70% 80.00% 77.30% 73.30% 70.80% 69.20% 70.60% 70.70% 68.20%
2019 91.00% 85.00% 83.70% 82.10% 75.60% 74.00% 71.80% 70.10% 69.20% 65.30%

Wages of Hispanics as a share of whites
2000 90.20% 81.10% 75.20% 72.70% 69.70% 66.90% 66.60% 66.90% 67.40% 69.00%
2007 90.20% 81.00% 76.80% 72.20% 71.90% 68.40% 66.90% 68.40% 67.50% 68.70%
2018 97.20% 87.80% 80.20% 76.50% 73.10% 69.50% 67.60% 67.10% 67.20% 62.90%
2019 94.10% 90.70% 83.50% 79.60% 74.60% 71.60% 67.50% 65.30% 67.10% 63.10%

Table 1: Shares of US hourly wages for the years 2000–2019 taken from the Economic Policy Institute
report “State ofWorking AmericaWages 2019” by Elise Gould. These are aggregate nationally represen-
tative wage shares computed from the Current Population Survey prepared by the U.S. Census Bureau.

The identical pattern has also been documented for the wages of women and men. See, for instance, Ta-
ble 2 where entries are the difference between log wages of men and women (positive values imply men’s
wages are higher). This table is taken from Arulampalam, Booth, and Bryan (2007) (Table 4 in their
paper). They analyze data from several European countries and, unlike Table 1, they use quantile regres-
sions with a battery of control variables.2 Recently, Maasoumi andWang (2019) also find this pattern in
most years in US data (1976-2013), even after correcting for selection into employment. Ourmain result
says that such wage distributions are precisely the type of distributions that cannot arise from statistical
discrimination on groups with identical mean productivities. If we believe the latter assumption to be
reasonable, this provides suggestive evidence of biased employment practices. Conversely, in the absence

2Similar evidence of wage gaps across the distribution in Europe is also found by De la Rica, Dolado, and Llorens (2008) and
Christofides, Polycarpou, and Vrachimis (2013).
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of first-order stochastic dominance, one cannot rule out that wage gaps, however large, are simply the
result of rational unbiased employers responding to the information at their disposal from two groups
with identical productivity distributions.3

Quantiles
Country Mean 10th 25th 50th 75th 90th

Public Sector
Austria 0.227 0.191 0.163 0.191 0.221 0.266
Belgium 0.09 0.046 0.05 0.07 0.109 0.169
Britain 0.134 0.091 0.116 0.135 0.144 0.205
Denmark 0.07 0.058 0.051 0.059 0.086 0.136
Finland 0.216 0.115 0.14 0.203 0.269 0.319
France 0.096 0.092 0.077 0.078 0.108 0.167
Germany 0.122 0.111 0.11 0.118 0.14 0.147
Ireland 0.184 0.186 0.169 0.177 0.165 0.181
Italy 0.097 0.041 0.047 0.081 0.138 0.169
Netherlands 0.121 0.039 0.07 0.112 0.16 0.218
Spain 0.083 0.09 0.079 0.095 0.069 0.076

Quantiles
Mean 10th 25th 50th 75th 90th

Private Sector
0.214 0.182 0.177 0.188 0.21 0.247
0.132 0.1 0.121 0.131 0.148 0.185
0.19 0.155 0.172 0.188 0.213 0.227
0.088 0.032 0.065 0.088 0.123 0.161
0.151 0.068 0.112 0.154 0.188 0.205
0.163 0.146 0.126 0.132 0.152 0.19
0.143 0.088 0.109 0.137 0.166 0.213
0.163 0.081 0.143 0.184 0.195 0.206
0.173 0.148 0.135 0.152 0.179 0.22
0.131 0.059 0.091 0.123 0.168 0.222
0.181 0.173 0.178 0.184 0.189 0.176

Table 2: Estimated wage gap (in log wages) between men and women using data from 1995-2001 (Aru-
lampalam et al., 2007). All estimates are statistically significant at the 1% level. Models include dummies
forwhether trainingwas received in the last year, age, education, tenure, marital status, health status, con-
tracts, private sector firm size, any experience of unemployment since 1989, part-time status, fixed term
and casual size, region (where possible), year, industry and occupation.

Our test for statistical discrimination has a number of important and attractive features. First, to the best
of our knowledge, this is the first non-parametric test of statistical discrimination in wages. In particular,
this implies that we do not require productivities or signal noise to be normally distributed or wages to
be an affine function of expected productivity.

Second, the condition of our test (first-order stochastic dominance) can be visualized by simply plotting
the cumulative wage distributions (and checking if one distribution lies below the other). We view this
feature to be important as it makes our test accessible to non-experts (like administrators, journalists and
policy makers) who often incorrectly interpret a wage gap (which can be the result of statistical discrimi-
nation) to be evidence of bias.

Third, our test can be taken directly to data (without having to separately estimate wage gaps at different
quantiles) because there are well known non-parametric statistical tests of stochastic dominance between
two distributions. Recent important econometric developments include (but are not limited to) Bar-
rett and Donald (2003), Linton, Maasoumi, and Whang (2005), Linton, Song, and Whang (2010) and
Davidson and Duclos (2013).4 In fact, the aforementioned paperMaasoumi andWang (2019) conducts

3Part iii of Theorem 1 shows that the testable implications of our model do not change if, instead of identical mean produc-
tivities, one assumes that both groups have the same productivity distributions.
4Our insight also uncovers a connection between the literature on discrimination and other empirical literatures that apply
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precisely such an analysis and concludes that “beyond the early 1990s (except for 2010), men’s earnings
first-order dominatewomen’s in themajority of the cases to a high degree of statistical confidence.” Their
aim is to credibly establish this empirical fact, whereas our work is complementary in that we provide a
theoretical interpretation of this result as evidence of bias.

The key assumption of our model is that the average productivity is the same in both groups. For this
assumption to be plausible, at the very least, we should compare wage distributions that are conditioned
on rich control variables (as in Table 2). But of course, this may not be sufficient because there might
be unobserved mean productivity differences across groups. This is the focus of the literature on sta-
tistical discrimination (following Arrow, 1973) which studies how perceived differences in beliefs (or
stereotypes) of employers affect unobserved investments in productivity (in equilibrium) and, therefore,
outcomes. There are some settings where this might be less of an issue: for instance, it seems reasonable
to assume that black lawyers, professors or doctors have the same average productivity as observation-
ally equivalent white people doing those jobs. In other settings, the classic work of Coate and Loury
(1993) shows how such stereotypes can lead to less unobserved investment by the disadvantaged group
and, therefore, lower average productivity (which in turn justifies the stereotype).

We, therefore, generalize ourmain result to accommodate for differentmean productivities (Theorem3).
Here, we assume that the null hypothesis is a joint statement that the wage distributions are generated by
statistical discrimination alone and the difference inmean productivities is less than an exogenously given
bound.5 In this case, a rejection should be interpreted as either evidence of bias or that the difference in
mean productivities is larger than the bound (or both). Of course, if we are convinced that the bound
is sufficiently generous, then a rejection is just evidence of bias. Once again, the test takes a simple form:
the null is rejected if, and only if, onewage distribution first-order stochastically dominates the other and
the wage gap is greater than the bound. This shows that the wage gap can be a useful statistic to uncover
bias but onlywhen wage distributions are ordered by first-order stochastic dominance.

While we frame our model in the context of the labor market, it can be applied directly or adapted to
analyze other contexts such as housing and financial markets, policing or the criminal justice system.
Consequently, we view the general reduced form framework we propose to be one of our main concep-
tual innovations. We demonstrate this flexibility in two ways. First, in Section 4.1, we examine how our
methodology can be applied to settings where, unlike wages, outcomes are binary. Binary outcomes,
such as whether or not a job candidate is invited for an interview, are typical in audit and correspondence
studies. Echoing Heckman and Siegelman (1993), we demonstrate (in Theorem 4) that it is practically

tests of stochastic dominance (of first and higher orders). Examples are the literature that compares income distributions to
inferwhether poverty, inequality, or socialwelfare is greater in one distribution than in another (seeAnderson, 1996,Davidson
and Duclos, 2000) and the literature on efficient portfolio choice (see Post, 2003, Kuosmanen, 2004).
5The bound is expressed in the following normalized units of productivity: a one unit increase in productivity can lead to at
most a one dollar increase in wages.
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impossible to distinguish between statistical and taste-based discrimination with binary outcomes. Fi-
nally, we adapt our framework (Theorem 5) to settings with richer data where outcome tests à la Becker
(1957, 1993) are typically employed.

RELATION TO THE LITERATURE

As alluded to above, our test for statistical discrimination leverages the fact that the outcome variable we
study—the wage—is not binary and we show that a similar test has no empirical bite for binary outcome
variables. This result is related to a critique of audit and correspondence studies first made in Heckman
and Siegelman (1993) and recently revisited byNeumark (2012). For intuition, consider correspondence
studies that send fictitious curricula vitae to employers and measure whether or not the candidate gets
invited for an interview; a difference in the call back rates by group status is interpreted as evidence of
discrimination. Now suppose that the employer believes that the two groups have the same mean pro-
ductivity but that the variance of the advantaged group is higher (a feature that our model allows). If
employers only call back for interviews those candidates whose productivities they think are above a cer-
tain threshold, the differential variance can lead to higher call back rate for the advantaged group. Of
course, this could also be the result of taste-based discrimination, but this cannot be differentiated using
this binary outcome.

Partly motivated by this difficulty, tests for statistical discrimination in the literature are developed for
settings in which the researcher has access to richer data. A classic example is Altonji and Pierret (2001)
who test for statistical discrimination in wages on the basis of race. They develop a parametric model
which requires panel data and their test is based on the assumption that the researcher has access to in-
formation about workers (their AFQT scores) that employers do not. Their insight is that, in a wage
regression, the coefficients on variables that employers observe should fall over time but the coefficients
on variables that they do not (but the econometrician does) should rise as they learn about the worker.
More recently, there is a nascent experimental literature that exploits dynamics (see, for instance Bohren,
Imas, and Rosenberg, 2019b) to tease out the sources of discrimination. The key observation is that
dynamics help because beliefs respond to information, whereas preferences do not.

We have already briefly mentioned the alternate strand of the literature that develops outcome tests (in
the spirit of Becker, 1957, 1993). Papers in this strand consider settings where the researcher has access
not just to the decision (whether or not a loan is granted, a driver is searched by a police officer, etc)
but also the post-decision result (whether or not the loan is repaid, contraband is found on the driver,
etc). Analogous data in our setting would correspond to the researcher observing the productivity of the
worker in addition to their wage. The key insight is that even though the rates at which decisions are
made may differ due to group differences, the post-decision results of the marginal case should be the
same if the decision maker is unbiased. This requires devising empirical strategies to identify the post-
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decision results of marginal cases or models that provide a systematic relationship between the average
andmarginal post-decision result.6 A strength of our framework is that it allows us to derive an outcome
test for statistical discrimination which does not require having to identify the marginal case.

We reiterate that, relative to the abovementioned papers, our main insights are that (i) statistical discrim-
ination can be tested on cross-sectional wage data, (ii) our model allows us to to interpret a rejection of
our test as evidence of taste-based discrimination and (iii) our test is easy to state and implement so can
be used by non-experts.

Before proceeding to our model, it is worth acknowledging that, in addition to the papers already cited,
there are large insightful literatures in economics, psychology and sociology studying discrimination and
we will not attempt to provide a comprehensive description here. Instead, we refer the reader to several
excellent recent surveys in economics—Fang andMoro (2011), Lang andLehmann (2012), Bertrand and
Duflo (2017), Lang and Spitzer (2020), Onuchic (2022)—that cover both the theory and the empirical
evidence in a variety of different settings.

2. THE MODEL

To streamline the exposition, we present the model in the context of discrimination in the labor market.
However, as mentioned in the introduction, other applications, such as discrimination in policing or in
the justice system, also fit our model.

There are two groups—1 and 2—of workers; examples include female and male, black and white, junior
and senior, or disabled and able bodied. We do not take a stand on which of these two groups is advan-
taged/disadvantaged, if any. We observe two wage distributionsG1 andG2, withGi(w) ∈ [0, 1] being
the fraction of workers in group i ∈ {1, 2} who are paid a (hourly) wage of w ≥ 0 or less.7 We assume
that the wage distributions are bounded, i.e.,Gi(w) = 1 for somew > 0 , i = 1, 2.

The question we address is: when are the observed wage distributions rationalized by a reduced-form
model of statistical discrimination? The model is simple, non-parametric, and general. In a nutshell, the
model assumes that workers’ productivity distributions differ, but that there are no significant differ-
ences between the two groups; that is, the average productivity is the same in both groups. Employers do
not perfectly observe the productivity of workers. Instead, they acquire some information (for instance,
through tests, interviews, or referrals), and then payworkers accordingly. We only require that, the higher
the expected productivity, the higher the wage.

6See, for instance, Knowles, Persico, and Todd (2001), Anwar and Fang (2006), Arnold, Dobbie, and Yang (2018) andCanay,
Mogstad, andMountjoy (2020).
7Throughout, all distributions are right-continuous and have limits on the left.
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We stress that the only source of discrimination is information. Hiring tools such as personality and
aptitude tests or algorithmic resume screeners are all examples of techniques, which may advantage one
group over another in signaling their productivity.8

We now present the model in detail, starting with the productivity distributions.

Productivity distributions: Workers differ in their productivities, with θi ∈ [0, θ] =: Θ denoting the
productivity of a worker in group i ∈ {1, 2}, and Hi its (cumulative) distribution. We assume that∫ θ

0
θ1dH1(θ1) =

∫ θ

0
θ2dH2(θ2) or, in words, that the average productivity is the same in the two groups.

A case of particular interest is when the two distributions are identical, i.e.,H1 = H2. As we will show,
there are no testable differences between a model that assumes identical distributions and another that
assumes different distributions, but with identical means. Wemake no additional restrictions, so that we
can accommodate discrete distributions, continuous distributions, or mixtures of the two.

Information: Employers do not directly observe the productivity of workers, but receive informative
signals (from curricula vitae, reference letters, interviews, tests etc.). Employers then form an expectation
of the productivity of workers and pay them accordingly: wages are strictly increasing in expected pro-
ductivity. Since wages only depend on the expected productivity, it is without loss to restrict attention
to unbiased statistical experiments.

An unbiased statistical experiment (Si, πi) for group i ∈ {1, 2} consists of a set of signals Si = Θ and
a joint distribution πi overΘ × Si, whose marginal distribution overΘ isHi. We denote the marginal
distribution of πi over Si by Fi. Moreover, to reflect the “unbiased” terminology, we require that the
posterior estimate Eπi

[θi | si] of the productivity satisfy

si = Eπi
[θi | si],

for all si in the support ofFi; that is, si is an unbiased estimate of the true productivity θi. This is without
loss of generality, as we can always relabel signals to guarantee that they are unbiased in the above sense.
Accordingly, we will write θi for the posterior estimate (the signal) in what follows.

It is well known thatFi is a distribution of posterior estimates arising from some statistical experiment if,
and only if, the prior distributionHi is amean-preserving spread of the posterior distribution Fi, which
we denote byHi ≽2 Fi. Formally, the mean-preserving spread condition requires that∫ θ

0

Hi(θi)dθi ≥
∫ θ

0

Fi(θi)dθi for all θ ∈ [0, θ], with equality at θ = θ.

8In the context of college admission, academic tests, such as SAT and ACT, have been found to discriminate against low-
income, minority and female students. See https://www.forbes.com/sites/markkantrowitz/2021/05/21/how-admissions-
tests-discriminate-against-low-income-and-minority-student-admissions-at-selective-colleges/.
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Note that the requirement of equality at θi = θ is the same as ensuring that Hi and Fi have the same
mean.9 If this inequality is strict for any θ ∈ (0, θ), we say Hi is a strict mean-preserving spread of Fi,
which we denote byHi �2 Fi.

We stress that the above formulation subsumes all possible signaling technologies. In particular, this
includes the standard way (as in Phelps, 1972; Aigner and Cain, 1977) of modeling (biased) signals as
si = θi + εi, where εi is a noise term whose distribution can depend on the productivity θi.

Wage function: If an employer estimates the productivity of a worker to be θ, the employer pays the
workerW (θ), where the wage functionW : [0, θ] → R+ is continuous and strictly increasing. Observe
that this wage function does not depend on the group identity and, in this sense, there is no bias. In
addition, we normalize the wage function to be Lipschitz with constant 1; that is, we assume

|W (θ)−W (θ′)| ≤ |θ − θ′| for all θ, θ′.

This restriction implies that the slope of the wage function (wherever differentiable) satisfiesW ′(θ) ≤ 1

for all θ.10 This assumption affects none of our results (relative to a wage function that is just continuous
and strictly increasing), but allows us to interpret the productivity parameter in terms of dollars: a one
unit increase in productivity has at most a value of one dollar in terms of wages.11 We maintain the
assumptions of strictly increasing and 1-Lipschitz continuous wage functions throughout the paper.

Induced wage distributions: The distributionFi over posterior estimates induces thewage distribution
Gi via thewage functionW . Formally, for both i ∈ {1, 2},Gi(w) is themeasure of the set {θ : W (θ) ≤
w} according to Fi, that is,Gi(w) = Fi(W

−1(w)) forw ∈ [W (0),W (θ)],Gi(w) = 0 forw < W (0)

andGi(w) = 1 forw > W (θ).12 Note that, even though the wage function does not depend on group
identity, thewage distributionsG1 andG2may differ across groups because the distributions of posterior
estimatesF1 andF2may differ. Moreover, becauseW is an arbitrary increasing function,G1 andG2may
not have the samemean. In other words, themodel is consistent with the existence of a wage gap between
the two groups.

Consistency with statistical discrimination: We say that the observed wage distributionsG1 andG2

are consistent with statistical discrimination if there exist productivity distributionsHi that have identi-

9Integration by parts implies that the mean satisfies
∫ θ

0
θidFi(θi) = θiFi(θi)|θ0 −

∫ θ

0
Fi(θi)dθi = θ −

∫ θ

0
Fi(θi)dθi.

10Assuming Lipschitz continuity, as opposed to differentiability with a bounded slope, has the advantage that it allows us to
model piecewise linear wage functions. The latter is a natural way to model how productivities affect wages across different
ranks or professions.
11Apart from the interpretation of the productivity parameter, nothing changes if we assumeW is Lipschitz with arbitrary
constant k > 0.
12We defineW−1 as the inverse ofW on the domain [W (0),W (θ)]. None of our results depend on the continuity ofW . It
would be enough to consider left-continuous and strictly increasingwage functionswith generalized inverse sup{θ : W (θ) ≤
w} atw.
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cal means, distributions of posterior estimates Fi that satisfy Hi ≽2 Fi for i ∈ {1, 2}, and a strictly
increasing, 1-Lipschitz wage functionW , such that these jointly induce the observed wage distributions.
Put differently, wage distributionsG1 andG2 are consistent with statistical discrimination if they can be
rationalized by our model.

Before stating our main result, we comment on the model. While our model is general in the sense that
we allow any statistical experiments and wage functions, we make two key assumptions: (i) the produc-
tivity distributions for both groups have identical means and (ii) the wages are a function of the posterior
estimate alone.

In the introduction, we discussed the first of these. To reiterate, we are implicitly assuming that the
wage distributionsG1 andG2 are estimated controlling for enough observables (and/or with additional
corrections for selection) to make identical mean productivity a reasonable assumption. In Section 3.3,
we relax this assumption and devise a test for statistical discrimination that allowsmean productivities to
differ. We focus on the case of identical mean productivities because this is the simplest demonstration of
our theoretical insight and it yields a test with a clear interpretation that is simple enough for non-experts
to employ.

We end this sectionwith a brief discussion of the second assumption. Ourmodel is in the spirit of Phelps
(1972). Phelps considers two populations, whose productivities are drawn from a normal distribution.
Signals are also normally distributed, differ across groups, and the wage function is linear in the posterior
mean. If themeans of the productivity distributions for both groups are the same, then thePhelps’model
implies that the average wage for both groups is the same (because the posterior distribution must have
the samemean as the prior, and the wage function is linear). In this case, there is no discrimination at the
group level even though the wage distributions differ (so there is individual level discrimination). Aigner
and Cain (1977) observe it is possible to generate discrimination at the group level via more general wage
functions even when the productivity distributions for both groups are identical. In their model, wages
depend both on the mean and the variance of the posterior belief. In the normal learning environment,
the variance is the same for all signal realizations so theymodel the wage as just the difference between the
posterior mean and some multiple of the (signal independent) variance of the posterior belief. Hence,
different normally distributed signals can generate distinct mean wages.

We could, in principle, further generalize our wage function by allowing it to depend on not only the
mean but also higher moments of the posterior productivity distribution. We have chosen not to do so
because we felt that our model strikes the right balance between generality and having testable implica-
tions that can plausibly be rejected in wage data (as in Tables 1 and 2).
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3. TESTING FOR DISCRIMINATION

This section is organized as follows. In Section 3.1, we present our main result (Theorem 1) that char-
acterizes wage distributions that are consistent with statistical discrimination. In Section 3.2, we then
show (in Theorem 2) that taste-based discrimination can also be modeled within our framework. The
key observation of that sub-section is that every pair of wage distributions are consistent with taste-based
discrimination. This observation is important because it allows us to interpret a rejection of the test for
consistency with statistical discrimination as evidence of bias. Finally, in Section 3.3, we generalize our
test (Theorem 3) to allow for different mean productivities.

3.1. STATISTICAL DISCRIMINATION

Given the generality of ourmodel, the first natural question to ask is: are thereanywage distributions that
are not consistent with statistical discrimination? To this point, note that our model allows the posterior
estimate distribution of group 1 to be a strict mean-preserving spread of group 2 (or F1 �2 F2 in our
notation), in which case a strictly convex wage functionW will generate higher mean wages for group
1. In other words, differences in mean wages (a wage gap) can arise purely via statistical discrimination,
even though the productivity distributions have the same mean. So, to find inconsistent distributions,
we need to consider higher moments. In fact, as we now argue, we need to consider allmoments.

The wage distributionGi strictly first-order stochastically dominates the wage distributionGj , which we
denoteGi �1 Gj , ifGi(w) ≤ Gj(w) for allw ∈ R+, with the inequality strict for somew.

Suppose that the wage distribution of group i strictly first-order stochastically dominates that of group
j. We now argue that these distributions are not consistent with statistical discrimination. For contra-
diction, assume that these distributions are consistent. This implies that there exist posterior estimate
distributions Fi and Fj , and a wage functionW , such that

Fi(θ) = Gi(W (θ)) ≤ Gj(W (θ)) = Fj(θ) for all θ ∈ [0, θ],

with the inequality strict for some θ, that is, Fi �1 Fj . It follows that Fi has a strictly higher mean
thanFj , which is a contradiction sinceFi andFj aremean-preserving contractions of some productivity
distributionsHi andHj , which both have the same mean.

The above argument shows that a necessary condition for a pair of wage distributions to be consistent
with statistical discrimination is that neither strictly first-order stochastically dominates the other. Our
main result shows that this condition is also sufficient. In fact, we show a stronger result.

First, we show that if the wage distributions are consistent with statistical discrimination, then they are
consistent with statistical discrimination and identical productivity distributions, that is, H1 = H2.
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Second, we show that statistical discrimination and the absence of discrimination – be it statistical or
taste-based – have the same testable implications. To state this equivalence, we need to define the latter.

Two wage distributions G1 and G2 are consistent with the absence of discrimination if there exist pro-
ductivity distributionsH1 andH2 that have identical means and a strictly increasing, 1-Lipschtiz wage
functionW such that these jointly yield the observed wage distributions; i.e., Gi(w) = Hi(W

−1(w))

for allw ∈ [W (0),W (θ)],Gi(w) = 0 for allw < W (0) andGi(w) = 1 for allw > W (θ).

Wedefine discrimination to be absentwhen the employers perfectly observe productivities anddetermine
wageswithout factoring in group identity. Note that itwouldbe equally natural to assume that employers
do not perfectly observe productivities, but learn about them via a single group-independent statistical
experiment π. As we now demonstrate, such generality is unnecessary.

THEOREM 1. The following statements are equivalent.

(i) The wage distributionsG1 andG2 are consistent with statistical discrimination.

(ii) NeitherG1 norG2 strictly first-order stochastically dominates the other.

(iii) The wage distributionsG1 andG2 are consistent with statistical discrimination and identical pro-
ductivity distributions.

(iv) The wage distributionsG1 andG2 are consistent with the absence of discrimination.

Before presenting a sketch of the proof, it is worth discussing a few implications of this result. It has
been argued that, for the distributions of certain traits, men and women have the same mean, but the
former have a higher variance. This is sometimes referred to as the “variability hypothesis.” The third
statement of Theorem 1 implies that any two wage distributions that are not ordered by strict first-order
stochastic dominance, no matter how different, could have resulted from statistical discrimination on
identical populations. In other words, allowing for different variances of the productivity distributions
leads to no additional explanatory power of statistical discrimination.

Conversely, the fourth statement says that, when condition (ii) holds, we cannot conclude that discrimi-
nation of any form is present. In other words, it is possible that the differences in wages arise from statis-
tical discrimination on identical populations or, simply, from heterogeneous populations (with identical
mean productivities) in the absence of discrimination. This result therefore shows that, irrespective of
the size of the wage gap, one cannot conclude that there is a cause for concern. However, when condition
(ii) is rejected in the data, this not only shows discrimination is present, it says that discrimination cannot
be statistical alone! As we will show in the next section (see Theorem 2), we can always interpret this as
evidence of taste-based discrimination (possibly, in addition, to statistical discrimination) since every pair
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of wage distributions is consistent with taste-based discrimination.

Finally, note that the above result does not require employers to have accurate beliefs about either the
productivity distributions or about the signal. Employers may believe that the productivity distribution
of the advantaged group has higher variance or that the signals for this group are more accurate. The
only assumption we require is that these beliefs (whether accurate or inaccurate) satisfy the assumption
that they assign the same mean productivity to both groups. Thus, a rejection of the test in Theorem 1
is robust evidence of bias in that it rules out statistical discrimination arising from either accurate or
inaccurate information that differs across groups (this feature differentiates our setting from that Bohren,
Haggag, Imas, and Pope, 2019a). Of course, employers may have inaccurate beliefs that assign a lower
mean productivity to the disadvantaged group. We interpret this to be taste-based discrimination.

We now sketch the proof of the statement [(ii) =⇒ (iii)], with the help of a simple example. This
proof sketch will also provide intuition for why [(ii) =⇒ (iv)]. (Recall that we have already argued
that [(i) =⇒ (ii)], and both [(iii) =⇒ (i)] and [(iv) =⇒ (i)] are trivially true.) In Table 3,
we have two wage distributionsG1 andG2, with neither first-order stochastically dominating the other
(sinceG1($10) > G2($10), whileG1($15) < G2($15)).

Table 3: Sketch of proof

wage/hour $10 $15 $20
G1 1/3 5/12 1
G2 1/6 1/2 1

The idea of the proof is to construct a wage function W such that the two distributions F1 and F2,
defined by Fi(θ) := Gi(W (θ)) for all θ, i ∈ {1, 2}, have the same mean. This also proves [(ii) =⇒
(iv)] since we can choose the prior productivity distributionsHi to be equal toFi, thusmaking the wage
distributions consistent with the absence of discrimination.

In this simple example, it suffices to find three points 0 ≤ θ1 < θ2 < θ3 ≤ 1 (on which F1 and F2 are
supported) such thatW (θ1) = $10,W (θ2) = $15,W (θ3) = $20, and

θ1
(
1

3
− 1

6

)
︸ ︷︷ ︸

>0

+θ2
(

1

12
− 1

3

)
︸ ︷︷ ︸

<0

+θ3
(

7

12
− 1

2

)
︸ ︷︷ ︸

>0

= 0,

which, in words, ensures that F1 and F2 have the same mean. The wage functionW is then the piece-
wise linear interpolation of these three points on the domain [0, 1]. A solution is θ1 = 0, θ2 = 1/3 and
θ3 = 1. Notice that a solution exists precisely because neitherG1 norG2 strictly first-order dominates
the other, which is reflected in the alternating signs in the above expression.
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To complete the argument, we need to construct a distributionH such thatH ≽2 Fi, i ∈ {1, 2}. We
now argue that the distributionH , defined byH(θ) = 7/18 for all θ < 1 andH(1) = 1, is one such
distribution. Note thatH is supported on {0, 1} with a probability of 11/18 on [θ = 1]. The mean of
H is 11/18, as is the mean of F1 and F2. Moreover,

∫ θ

0

H(x)dx−
∫ θ

0

F1(x)dx =


(

7
18

− 1
3

)
θ if 0 ≤ θ ≤ 1/3(

7
18

− 1
3

)
1
3
+
(

7
18

− 5
12

) (
θ − 1

3

)
if 1/3 < θ ≤ 1

.

It is easy to check that this is indeed positive for all θ, henceH ≽2 F1. Intuitively, to generate F1 from
H , we construct an experiment with three signals, which generate the posterior beliefs about the event
[θ = 1] of 0, 1/3 and 1 with probability 1/3, 1/12, 7/12, respectively. Since the expectation of the
posterior beliefs is equal to the prior belief (11/18), such a construction is possible. A similar argument
shows thatH ≽2 F2.

Finally, observe that since thewage functionW , constructed above, is piece-wise linearwith finitelymany
pieces, it is Lipschitz. If its modulus of continuity is larger than one, we can “stretch” the wage function
and rescale the distributions, accordingly, to guarantee amodulus of continuity of one. Formally, let θ >

1 and construct productivity distributions and distributions of posterior estimates: H̃i(θ) := Hi(θ/θ)

and F̃i(θ) := Fi(θ/θ) for all θ ∈ [0, θ], for all i ∈ {1, 2}. Similarly, construct the wage function
W̃ (θ) := W (θ/θ) for all θ ∈ [0, θ]. It is routine to verify that these newly constructed model primi-
tives also rationalize the wage distributionsG1 andG2, but now the slope of the piece-wise linear wage
function W̃ is smaller – we have rescaled the slope ofW by a factor 1/θ. By choosing θ appropriately,
we guarantee a modulus of continuity of one.

While the general construction for arbitrary distributions G1 and G2 is more elaborate, the same idea
works. We first construct a piece-linear function W such that F1 := G1 ◦ W has the same mean as
F2 := G2 ◦ W by “transporting mass” from the region {w : G1(w) ≥ G2(w)} to the region {w :

G1(w) < G2(w)}. We then construct a common distributionH as the right derivative of the convex
function

θ 7→ max
(∫ θ

0

F1(x)dx,

∫ θ

0

F2(x)dx

)
.

The proof is in Appendix A.

3.2. TASTE-BASED DISCRIMINATION

In this section, wemodel taste-based discriminationwithin our framework. Webeginwith the definition.

Wage distributions G1 and G2 are consistent with taste-based discrimination if there exist productivity
distributions H1 and H2 that have identical means and strictly increasing, 1-Lipschitz wage functions
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W1 andW2 such that these jointly yield the observed wage distributions; i.e., Gi(w) = Hi(W
−1
i (w))

for allw ∈ [Wi(0),Wi(θ)],Gi(w) = 0 for allw < Wi(0) andGi(w) = 1 for allw > Wi(θ).

Note the differences of this notion with that of statistical discrimination. We have now removed the
noisy signal (the source of statistical discrimination) and instead discrimination is directly introduced via
the different wage functions. Discrimination is “taste-based” because two workers from different groups
with the same expected productivity can be offered different wages.

THEOREM 2. Every pair of wage distributionsG1 andG2 is consistent with taste-based discrimination.

Theorem 2 shows that, if we allow productivity distributions of both groups to differ (whilemaintaining
the assumption of identical means), then all wage distributions could be the result of taste-based discrim-
ination. This is unsurprising since allowing for different wage functions in addition to distinct produc-
tivity distributions introduces a lot of freedom into the model. Importantly, this implies that a rejection
of the first-order stochastic dominance condition of Theorem 1 can be in fact interpreted as evidence of
bias or animus. This interpretation would not always be correct if there existed wage distributions that
were consistent with neither statistical nor taste-based discrimination.

Lastly, Theorem 2 also implies that all wage distributions can be explained with a combination of statis-
tical and taste-based discrimination even if the productivity distributions are identical. This is because
the statistical experiments can first introduce heterogeneity into the posterior estimate distributions and
then we can apply Theorem 2.

3.3. STATISTICAL DISCRIMINATION WITH DIFFERENT MEAN PRODUCTIVITIES

As we highlighted earlier, the key assumption driving our main result (Theorem 1) is that mean produc-
tivities of both groups are the same. Aswe discussed in the introduction, for certain categories ofworkers,
this is an eminently reasonable assumption aroundwhich to base a study onwage discrimination. But of
course, this may be less true in other settings.

We say that wage distributions G1 and G2 are consistent with statistical discrimination and productiv-
ity difference d ≥ 0 if there exist productivity distributions Hi whose means differ by less than d (i.e.,
|EH1 [θ] − EH2 [θ]| ≤ d), distributions of posterior estimates Fi that satisfyHi ≽2 Fi for i ∈ {1, 2},
and a wage functionW , such that these jointly induce the observed wage distributions.

The next result generalizesTheorem1 (which is the special case ofd = 0) and develops a test for statistical
discrimination that allows for different mean productivities.

THEOREM 3.Wage distributionsG1 andG2 are consistent with statistical discrimination and productiv-
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ity difference d if, and only if, either

1. the wage gap is less than d, i.e. |EG1 [w]− EG2 [w]| ≤ d, or

2. neitherG1 norG2 strictly first-order stochastically dominates the other.

A few comments about this result are worth making. First, as with Theorem 1, the condition in Theo-
rem 3 is also a necessary and sufficient condition for two distributions to be consistent with the absence
of discrimination when mean productivities can differ by at most d.13 Second, a statistical test of the
conditions in the above result can be implemented using standard methods. Third, since this notion of
consistency is a joint hypothesis of both the nature of discrimination and the difference in mean produc-
tivities, a rejection of the conditions in Theorem 3 must be interpreted accordingly. So, in other words,
a rejection is not automatically evidence of bias as it is possible that mean productivities of both groups
differ bymore than d. But, as with Theorem 1, if we are willing to take a stand on the extent ofmean pro-
ductivity differences, then a rejection indicates bias. To summarize, the wage gap can be a useful statistic
to test for the presence of bias, but onlywhen the wage distributions are ordered by first-order stochastic
dominance. When they are not, a wage gap irrespective of how large is not even conclusive evidence that
discrimination of any variety is occurring.

Finally, one can interpret the result in Theorem 3 in a different way. Suppose the researcher is convinced
that the setting they are studying is one where only statistical discrimination is at work and bias is ab-
sent. Then, the wage gap provides the smallest difference in the mean productivities required to explain
two wage distributions ordered by first-order stochastic dominance; otherwise this smallest difference is
zero. In other words, the wage gap is a useful statistic to measure differences in productivities, if we are
convinced that there is no bias.

We end this section by noting that we do not need to do a similar analysis for taste-based discrimination
since we have already shown that every pair of wage distributions are consistent with taste-based discrim-
ination (with the additional restriction to identical mean productivities).

4. DISCUSSION

The purpose of this section is to show that the nonparametric methodology we propose can be adapted
to revisit classic approaches to testing for discrimination. First, in Section 4.1, we consider the version
of our model where the outcome is binary and we show that statistical discrimination has almost no
empirical bite. Then, in Section 4.2, we illustrate the versatility of our approach by revisiting outcome
tests à la Becker. Throughout, we will assume that the prior distributionsHi for both groups have the
same mean.

13To avoid an additional definition, we chose not to include this as a formal statement in the theorem.
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4.1. BINARY OUTCOMES

In the introduction, we noted that research studies frequently rely on the differences in binary outcomes
to document discrimination. For instance, call-back rates from correspondence studies are often used to
document discrimination in the labor market. Other instances include mortgage approval rates, credit
card approval rates, job promotion and university admission. Dovetailing on the insight in Heckman
and Siegelman (1993); Heckman (1998), we stated that statistical discrimination has little bite in such
binary settings. We now formalize this statement in the context of our model. Throughout, we use the
same notation as in the previous section, but replace the term “wage” with the term “outcome.”

There are two outcomes, labeled w = 0 and w = 1. The distributionGi is thus a binary distribution,
withGi(0) the probability of outcomew = 0. We say that the binary distributionsG1 andG2 are con-
sistent with statistical discrimination if there exist productivity distributions H1 and H2, distributions
of posterior estimates F1 and F2 that satisfy Hi ≽2 Fi, and a cutoff θ such that Fi(θ) = Gi(0) for
i ∈ {1, 2}.

In words, the only difference between this binary outcome setting and the model in Section 2 is that
instead of a strictly increasing wage function, there is a group-independent cutoff θ ∈ [0, 1] such that
outcome w = 1 occurs only if the posterior estimate is strictly above it. In the context of the labor
market, this says that an employer calls back a job candidate only if the candidate’s expected productivity
is sufficiently high.

The next result characterizes binary outcome distributions that are consistent with statistical discrimina-
tion.

THEOREM 4. Binary outcome distributions G1 and G2 are consistent with statistical discrimination if,
and only if, it is not the case that eitherG1(0) = 1 andG2(0) = 0 orG1(0) = 0 andG2(0) = 1.

In words, any pair of binary distributions is consistent with statistical discrimination unless the outcome
for one group is 0 with probability 1, while it is 1 with probability 1 for the other. Again in the context
of the labor market, this says that either all job candidates from group 1 are called back and none from
group 2 are, or vice versa. Needless to say, such extreme discrimination is never observed and therefore,
in practice, statistical discrimination cannot be disentangled from bias or animus in a setting with binary
outcomes.

In light of our main result (Theorem 1), it might seem surprising to some readers that Theorem 4 allows
two outcome distributions ordered by first-order stochastic dominance to be consistent with statistical
discrimination. This difference is driven by the fact that, with binary outcomes, many different posterior
estimates are grouped together and assigned a single outcome (depending on whether they are above or
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below the cutoff). This is explicitly ruled out in Section 2 because we require the wage function to be
strictly increasing and consequently, no two workers with distinct productivity estimates are assigned
the same wage.

We end the section by providing a simple argument for this result. By contradiction, suppose that dis-
tributionsG1(0) = 1 andG2(0) = 0 are consistent with statistical discrimination. Then, the mean of
F1 must be less than or equal to θ (since F1(θ) = 1), whereas the mean of F2 must be strictly greater
(since F2(θ) = 0). This is, of course, not possible since both distributions must have the same mean. A
symmetric argument applies whenG1(0) = 0 andG2(0) = 1.

Conversely, suppose that 0 < G1(0) < G2(0) < 1. (It is easy to adapt the arguments to treat the other
cases.) Let F1 have binary support {0, 1} and assign probability G1(0) to 0 and, therefore, 1 − G1(0)

to 1. Note that F1 has mean 1 × (1 − G1(0)) + 0 × G(0) = 1 − G1(0). Let F2 have binary support{
1−G1(0)− ε

G2(0)
, 1−G1(0) +

ε
1−G2(0)

}
, where ε > 0 is sufficiently small to ensure both points

of the support lie in [0,1]. Assign probability G2(0) to 1 − G1(0) − ε
G2(0)

and, therefore, 1 − G2(0)

to 1 − G1(0) +
ε

1−G2(0)
. Note that F2 has mean G2(0) ×

(
1−G1(0)− ε

G2(0)

)
+ (1 − G2(0)) ×(

1−G1(0) +
ε

1−G2(0)

)
= 1−G1(0). Thus, the two distributionsF1 andF2 have the samemean. The

second step in the proof of Theorem 1 then shows how to construct a priorH such thatH ≽2 Fi, as
required. The argument is completed by setting the threshold θ = 1−G1(0).

4.2. OUTCOME TESTS

The methodology we have introduced is versatile enough to study discrimination in a wide range of set-
tings. As a “proof of concept,” we now present one such application— the Becker outcome test — and
hope to examine others in future work. To ease the presentation, we frame the application in the con-
text of bail decisions and closely follow Arnold, Dobbie, and Hull (2022). See also Arnold, Dobbie, and
Yang (2018), Canay,Mogstad, andMountjoy (2020),Hull (2021) and Simoiu, Corbett-Davies, andGoel
(2017). Several other contexts such as police search decisions and loan decisions also fit the model.

In the context of bail decisions, judges have to decide whether or not to release defendants prior to trials,
with w = 1 denoting the decision to release a defendant. Upon being released, the defendant may
subsequently fail to appear in court or commit another crime, which we model with a binary variable
Y ∈ {0, 1}; Y = 1 indicates a pre-trial misconduct. We–the analyst–observe the fraction ri ∈ (0, 1) of
defendants from group i released by a judge, and qi ∈ (0, 1) the fraction of the released defendants, who
committed a pre-trial misconduct.

Unlike the analysis in Section 4.1, where only a single piece of informationwas observed, we–the analyst–
now observe two pieces of information: the release decision along with the post-decision result, that is,
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whether the released defendant committed pre-trial misconduct. Now, suppose that the judge releases a
defendant if, and only if, the information she possesses signals that the likelihood of pre-trial misconduct
is smaller than a given threshold. The Becker outcome test is based on the observation that if the cutoff
is the same across groups, the rate of misconduct of themarginal defendant of each group should be the
same (and equal to the cutoff). Of course, the problemwith implementing this test in practice is that the
analyst does not observe the identity of the marginal defendant.

So instead, is it possible todetect bias using the averages (r1, q1) and (r2, q2)? Since the shapes of the signal
distributionsmay differ, the release rates r1 and r2may not be the same even if the judge uses the identical
cutoff for both groups. This is the issuewith “benchmarking tests” thatwediscussed in Section4.1. What
ifwe consider the rates q1 and q2 atwhichmisconduct occurs conditional onbeing released onbail? These
too can depend on the shape of the signal distributions and a higher rate ofmisconduct for either group is
possible even if the judge uses a group-neutral cutoff. This is a well-known problemwith such “outcome
tests” (often referred to as the infra-marginality problem). In the remainder of this section, we show that
it is possible to derive a test for statistical discrimination that depends jointly on ri and qi, provided we
assume that, were all defendants to be released, both groups would commit pre-trial misconduct at the
same average rate.

We consider the following model. Assume that Yi is distributed with (unknown) probability θi ∈ [0, 1]

in group i, withHi the prior distribution of θi. Thus, the ex-ante probability of pre-trial misconduct is
EHi

[θi]. Prior to deciding whether to bail a defendant, the judge obtains some information about the
likelihood of pre-trial misconduct, and grants the bail only if the perceived probability of misconduct
is smaller than the group-independent threshold θ. As in previous sections, we assume that the judge
receives an unbiased signal about θi, with Fi being the distribution of the signal. The distribution Fi is
a mean-preserving contraction ofHi. Therefore, the release rate in group i is Fi(θ), while the pre-trial
misconduct rate conditional on release is EFi

[θi|θi ≤ θ].

Analogous to our previous definitions, we say that the outcomes (r1, q1) and (r2, q2) are consistent with
statistical discrimination if there exist prior distributionsH1 andH2, posterior distributions F1 and F2,
and a threshold θ such that (i) EH1 [θ1] = EH2 [θ2], (ii) Hi ≽2 Fi, and (iii) ri = Fi(θ) and qi =

EFi
[θi|θi ≤ θ] for i ∈ {1, 2}. With this definition in hand, we have the following characterization.

THEOREM 5. The outcomes (r1, q1) and (r2, q2) are consistent with statistical discrimination if, and only
if, q1 < r2q2 + (1− r2)1 and q2 < r1q1 + (1− r1)1.

The above result shows that, under the assumption that both groups commit pre-trial misconduct at the
same rate on average, we canprecisely identify the conditions underwhich the outcomes couldhave arisen
from statistical discrimination. As with the rest of this paper, this result requires no further assumptions
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on the prior distributions or the signals. It is fully non-parametric and easy to implement. It is worth not-
ing that the aforementioned Simoiu, Corbett-Davies, and Goel (2017) take a different approach. They
estimate a parametric model (all distributions lie in certain families parametrized by variables that they
estimate), but allow the means of the prior distributions to differ.

5. CONCLUDING REMARKS

In this paper, we introduced a newnon-parametricmethodology to test whether two distinct wage distri-
butions could have been generated by statistical discrimination alone. Ourmodel is a significantly gener-
alized version of Phelps (1972) andAigner andCain (1977): we only require the unobserved productivity
distributions to have identical means, the signals fromwhich employers get information about the work-
ers’ productivities are unrestricted and wages can be determined by any continuous, strictly increasing
function of the posterior productivity estimate. Our test takes a simple form—the wage distributions
are consistent with statistical discrimination if neither wage distribution first-order stochastically domi-
nates the other—and themodel allows us to interpret a rejection of this condition as evidence of bias. We
demonstrate how this test can be generalized to allow both groups to have different mean productivities.

To the best of our knowledge, this paper is the first to analyze the problem of testing for discrimination
without resorting to any functional form assumptions andwe view this to be one of ourmain conceptual
contributions. In casual discussions of wage gaps, the mean wages of two groups are typically compared
anddifferences are often interpreted (without justification) as evidence of bias. Our test ismicro-founded
and uses the entire wage distribution but importantly, is just as easy to visualize and implement by non-
specialists.

Finally, we hope one consequence of this paper is that the methodology is extended to study discrimina-
tion in other settings, possibly with richer data. We have already sketched some possible extensions such
as the Becker outcome test, and hope to study more in future work.
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A. PROOFS

Recall thatG1 andG2 have bounded support soGi(w) = 1 for somew > 0 , i = 1, 2.

PROOF OF THEOREM 1. We have already argued that the first statement implies the second statement.
We now argue that the second statement implies the third (the third obviously implies the first).

Proof of [(ii) =⇒ (iii)].

The proof consists of two steps. In the first, we show that there exists a strictly increasing and 1-Lipschtiz
piece-wise linear wage functionW such that the two distributions defined by Fi(θ) = Gi(W (θ)) for
i ∈ {1, 2}have the samemean. In the second step,we show that for any twodistributionswith a common
mean, there exists a common productivity distributionH such thatH ≽2 Fi for both i ∈ {1, 2}.

Step 1: There exists an θ > 0 and a strictly increasing, 1-Lipschitz functionW : [0, θ] → [0, w] such that
the two distributions defined by Fi(θ) = Gi(W (θ)) for θ ∈ [0, θ] and i ∈ {1, 2} satisfy

∫ θ

0
F1(θ)dθ =∫ θ

0
F2(θ)dθ.

First, observe that if ∫ w

0

G1(w)dw =

∫ w

0

G2(w)dw,

thenW (θ) = θ along with θ = w is trivially the requisite function.

So, without loss, suppose that ∫ w

0

G1(w)dw >

∫ w

0

G2(w)dw.

(A symmetric argument applies if we interchange 1 and 2.) Define the function

∆G(w) = G1(w)−G2(w),

and note the above inequality is simply
∫ w

0
∆G(w)dw > 0.

SinceG2 doesnot strictly first-order stochastically dominateG1, there exists anon-empty interval [w˜ , w̃] ⊂
(0, w) such that

∫ w̃

w˜ ∆G(w)dw < 0. (This follows from the right-continuity ofG1 andG2.) Therefore,
there must exist strictly positive constants γ+ > 0 and γ− > 0 such that

1

γ+

∫ w˜
0

∆G(w)dw +
1

γ−

∫ w̃

w˜
∆G(w)dw +

1

γ+

∫ w

w̃

∆G(w)dw = 0.
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Take any 0 < κ < min
{

1
γ+ ,

1
γ−

}
and define

θ˜ =
w˜
κγ+

,

θ̃ =
w̃ − w˜ + κγ−θ˜

κγ− ,

θ =
w − w̃ + κγ+θ̃

κγ+
.

Consider the following piece-wise linear wage function

W (θ) =


κγ+θ if 0 ≤ θ < θ˜,

κγ−θ + w˜ − κγ−θ˜ if θ˜ ≤ θ ≤ θ̃,

κγ+θ + w̃ − κγ+θ̃ if θ̃ < θ ≤ θ.

Few observations are worth making. First,W is continuous because

lim
θ↑θ˜ W (θ) = κγ+θ˜ = w˜ = κγ−θ˜+ w˜ − κγ−θ˜ = W (θ˜)

and
lim
θ↓θ̃

W (θ) = κγ+θ̃ + w̃ − κγ+θ̃ = w̃ = κγ−θ̃ + w˜ − κγ−θ˜ = W (θ̃),

where the equality w̃ = κγ−θ̃ + w˜ − κγ−θ˜ follows from the definition of θ̃.

Second, note that W is strictly increasing and 1-Lipschitz since κγ+ < 1 and κγ− < 1. Third, by
construction, observe thatW (θ) = w.

Using the constructedW , define Fi(θ) = Gi(W (θ)) for i ∈ {1, 2}. Let∆F (θ) = F1(θ)−F2(θ), and
observe that∫ θ

0

∆F (θ)dθ =

∫ θ˜
0

∆F (θ)dθ +

∫ θ̃

θ˜
∆F (θ)dθ +

∫ θ

θ̃

∆F (θ)dθ

=

∫ θ˜
0

∆G(W (θ))dθ +

∫ θ̃

θ˜
∆G(W (θ))dθ +

∫ θ

θ̃

∆G(W (θ))dθ

=
1

κγ+

∫ w˜
0

∆G(w)dw +
1

κγ−

∫ w̃

w˜
∆G(w)dw +

1

κγ+

∫ w

w̃

∆G(w)dw

=0,
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where the second last equality follows from the change of variables from θ to w. Therefore, the con-
structed distributionsF1 andF2 have the samemean as required, which completes the proof of this step.

Step 2: Suppose
∫ θ

0
F1(θ)dθ =

∫ θ

0
F2(θ)dθ. Then, there exists a prior distributionH such that

∫ θ

0

H(x)dx ≥ max
{∫ θ

0

F1(x)dx,

∫ θ

0

F2(x)dx

}
with equality at θ = θ.

Define the function

M(θ) = max
{∫ θ

0

F1(x)dx,

∫ θ

0

F2(x)dx

}
.

Observe thatM is an increasing, convex function since each
∫ θ

0
Fi(x)dx is increasing and convex (because

Fi is increasing). Also note that

M(θ) =

∫ θ

0

F1(x)dx =

∫ θ

0

F2(x)dx.

LetH be the right derivative ofM (the right derivative always exists and, moreover,M(θ) = M(0) +∫ θ

0
H(x)dx sinceM is convex, hence absolutely continuous). This function is increasing, satisfiesH(0) =

0,H(θ) = 1 and is, therefore, the requisite prior distribution. (Recall the the right derivative of a convex
function is right continuous and has limits on the left.)

This completes the proof of [(ii) =⇒ (iii)].

Step 1 above also shows that the second statement implies the fourth statement (the fourth obviously
implies the first). Replacing every instance of Fi byHi in the statement of Step 1 shows that two wage
distributions that are not ordered by first-order stochastic dominance are consistent with the absence of
discrimination. This completes the proof of the theorem.

■

PROOF OF THEOREM 2. Without loss, suppose the mean wage of group 1 is the highest; that is, there
exists α ≥ 1 such that

∫ w

0
wdG1(w) = α

∫ w

0
wdG2(w).

Construct the wage functionsW1 andW2 as:

W1(θ1) = θ1 andW2(θ2) = θ2/α,

and note that both are clearly strictly increasing and 1-Lipschtiz.
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Let θ = αw and construct the corresponding prior distributionsH1 andH2 as follows:

Hi(θi) = Gi(Wi(θi)) for i ∈ {1, 2}.

SinceG1(w) = 1,H1(w) = 1 and, therefore,H1 is supported on a subset of [0, θ]. Similarly,H2(αw) =

G2(w) = 1 and, therefore, is also supported on a subset of [0, θ].

It remains to verify that the distributionsH1 andH2 have the same mean. We have:∫ αw

0

θ1dH1(θ1) =

∫ w

0

θ1dH1(θ1) =

∫ w

0

w1dG1(w1) = α

∫ w

0

w2dG2(w2) =

∫ αw

0

θ2dH2(θ2).

This completes the proof. ■

PROOF OF THEOREM 3. (Only if.) Suppose the given wage distributionsG1 andG2 are induced by
model primitivesH1,H2, F1, F2 andW where |EHi

[θ]− EHj
[θ]| ≤ d.

Since the wage function is Lipschitz continuous, it is differentiable almost everywhere. Therefore, for
each group i ∈ {1, 2}, we can write

EGi
[w] = [wGi(w)]

w
0 −

∫ w

0

Gi(w)dw

= w −
∫ θ

0

W ′(θ)Fi(θ)dθ,

where the second equality follows by a change of variable fromw to θ.

In light of Theorem 1, we only need to consider the case whereGi �1 Gj for some i, j ∈ {1, 2}. In this
case, the above equation implies that

EGi
[w]− EGj

[w] =

∫ θ

0

W ′(θ)[Fj(θ)− Fi(θ)]dθ

≤
∫ θ

0

[Fj(θ)− Fi(θ)]dθ

= EFi
[θ]− EFj

[θ]

= EHi
[θ]− EHj

[θ]

≤ d,

where the first inequality follows from the fact thatW is 1-Lipschitz andFj(θ) ≥ Fi(θ) (sinceGj(θ) ≥
Gi(θ)). As required, this shows that twowage distributions (ordered by strict first-order stochastic dom-
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inance) are consistent with statistical discrimination and productivity difference d only if the wage gap is
less than d.

(If.) Once again, in light of Theorem 1, we only need to consider the case where Gi �1 Gj for some
i, j ∈ {1, 2} and the wage gap satisfies |EGi

[w]− EGj
[w]| ≤ d.

These wage distributions are induced by Hi = Fi = Gi along with W (θ) = θ and these chosen
productivity distributions satisfy |EHi

[θ]− EHj
[θ]| = |EGi

[w]− EGj
[w]| ≤ d as required. ■

PROOF OF THEOREM 5. (Only if.) Suppose that the outcomes are consistent with statistical discrim-
ination. Since EFi

[θi|θi ≤ θ] = qi, we must have θ ≥ qi. Therefore, the mean of Fi must be at least qi
since

EFi
[θi] = Fi(θ)EFi

[θi|θi ≤ θ] + (1− Fi(θ))EFi
[θi|θi > θ] > riqi + (1− ri)θ.

Similarly, themean ofFj , j 6= i, is at most rjqj+(1−rj)1. Finally, sinceFi andFj have the samemean,
it must be the case that

qi < rjqj + (1− rj)1,

for all (i, j), j 6= i.

(If.) The proof is constructive. Without loss of generality, assume that qi ≥ qj . It follows that riqi +
(1− ri)1 > qj is automatically satisfied (since ri < 1 and qi < 1). Assume that rjqj + (1− rj)1 > qi

is also satisfied.

Let θ = qi + δ for some δ > 0, and Fi a binary distribution which takes values qi and qi + ε with
probability ri and 1 − ri, respectively, where ε > δ. By construction, the mean of Fi is qi + (1 − ri)ε

and Fi(θ) = ri.

We now construct Fj such that its mean is the same as the mean of Fi. The second step in the proof of
Theorem 1 then shows how to construct a priorH such thatH ≽2 Fi andH ≽2 Fj . The distribution
Fj is again binary and takes values qj and

qi−rjqj+(1−ri)ε

1−rj
with probability rj and (1 − rj), respectively.

The mean of Fj is:

rjqj + (1− rj)
qi − rjqj + (1− ri)ε

1− rj
= qi + (1− ri)ε,

the same as the mean of Fi.

Finally, we need to choose δ and ε, with ε > δ, such that (i) qi + ε ≤ 1, (ii) qi−rjqj+(1−ri)ε

1−rj
≤ 1, and (iii)

qi−rjqj+(1−ri)ε

1−rj
> qi + δ. The conditions (i) and (ii) guarantee that Fi and Fj are supported on a subset

of [0, 1], while condition (iii) guarantees that Fj(θ) = rj . Since qi ≥ qj and
qi−rjqj
1−rj

< 1, it is routine to
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verify that we can indeed choose ε and δ as required. ■
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