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1 Introduction

Oil and gas production in the state of New Mexico generates a tremendous amount of revenue.

Home to one of the most productive oil basins in the US, New Mexico received $4.1 billion in

oil and gas tax revenue in the fiscal year 2022.1 Rights to drill on state lands are auctioned

off each month by the New Mexico State Land Office (NMSLO), but the prices paid in these

auctions are difficult to reconcile with the massive value provided to leaseholders. Though

only one of eight leases are drilled, we find that the average profit from obtaining a lease is

still well over eight times the price paid in the lease sale. Such a dramatic difference between

price paid and value is cause to suspect collusive behavior on the part of bidders in these

sales. This paper examines features of the New Mexico oil and gas lease sales that would

facilitate collusion and proposes a series of statistical tests to rule out the possibility of BNE

bidding under a wide range of equilibria.

Methods to detect collusion in first-price auctions (e.g., Porter and Zona (1993, 1999);

Bajari and Ye (2003); Chassang and Ortner (2019); Chassang et al. (2022); Kawai et al.

(2022); Kawai and Nakabayashi (2022)) focus on detecting bidding anomalies inconsistent

with BNE bidding. These methods provide antitrust authorities with a set of statistical

screening devices which are aimed at settings where collusive bid patterns are not suffi-

ciently sophisticated to disguise their intentions. We complement the existing methods by

incorporating ex post returns to construct direct tests for BNE bidding and minimum rev-

enue. Information on ex post returns is available in many auction settings. Ex post returns

are naturally available in oil and gas lease sales as lease values are measurable using publicly

available production records, but can also be used more broadly in settings in which resale

or secondary markets can be used to assess object value.

We consider the sale of oil and gas leases in first-price, sealed bid auctions by the NMSLO

over a twenty-two-year period from 1994 to 2015. For each auction we observe each bid
1Reported by the New Mexico Taxation and Revenue Department: https://www.tax.newmexico.gov/all-

nm-taxes/oil-natural-gas-mineral-extraction-taxes/
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submitted, along with the identity of the bidder, as well as a land survey description of

the tract. By connecting publicly available data on oil and gas production to geographic

descriptions of leased tracts, we construct estimates of the profit generated by each lease.

Examining the winners across the sample period, we find that the bidding market is highly

concentrated, with the largest four bidders holding a market share of more than 50%. Since

lease sales are held in person each month, these dominant bidders had ample experience with

each other and many opportunities to interact.

First, we find that bidder participation decisions are correlated across bidder pairs, con-

ditional on ex post tract value. We can reject the null of zero correlation in participation

decisions for approximately one-third of bidder pairs conditional on a positive return and

one-half of bidder pairs conditional on a non-positive return. We extend this test using a

biprobit model to control for ex post value and bidder-sale fixed effects and find a similar

result, rejecting the null hypothesis of zero correlation at the 5% significance level for 21 of

48 bidder pairs. Since the conditional independence of bid distributions is an implication of

the common values auction with independent conditional signal distributions, we reject the

null hypothesis that the observed bids were generated by this BNE. We relax the assumption

of independent signal distributions for our subsequent tests.

Second, we utilize the return data to test for the existence of profitable strategic devi-

ations. For strategies to constitute an equilibrium they must maximize ex ante expected

payoffs regardless of the information available to bidders at the time of the auction. We

propose an underbidding test based on the Nash equilibrium condition that unilateral devia-

tions cannot be profitable. Our test builds on the bid-scaling (winner’s curse) test proposed

in Hendricks et al. (1987) and is robust to the information structure available to bidders.

We find that auction participants substantially underbid relative to the maximally profitable

unilateral deviation. We find that when all bids of a bidder are multiplied by a factor of 3.2

holding rival bids constant, then the expected bidder payoff doubles, which is a violation of

BNE bidding.
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Finally, we compute the theoretical lower bound on expected auction revenue derived

by Bergemann et al. (2017) and find that the average winning bid is considerably below

this bound. Winning bids in a first-price auction are bounded away from zero; if rival bids

are too low, upward deviation strategies (such as the ones considered in our previous test)

will be profitable because the value of winning outweighs the cost of raising one’s own bid.

Bergemann et al. (2017) show that the lowest distribution of bids that can sustain a BNE

corresponds to a particular “worst-case” equilibrium where the information structure is such

that it minimizes auctioneer revenue. We compute the distribution of winning bids under

this “worst-case” equilibrium using data on the number of bidders and the distribution of ex

post values and compare it to the observed winning bid distribution. We find that auctioneer

revenues could be more than tripled by moving from the status quo to even the worst possible

BNE.

While the test results we obtain are suggestive of the presence of collusion, it is important

to note that none of the tests we propose prove its existence. Section 8 discusses practical

steps the auctioneer can take when facing bidders who seem likely to conspire to rig their

bids.

Related literature

Our paper contributes primarily to the literature on statistical cartel detection in first-

price auctions, see Porter (2005) for a survey. Porter and Zona (1993, 1999) find evidence

that cartel bids are statistically different from non-cartel firms. Bajari and Ye (2003) devise

an exchangeability test, which stipulates that under competition a bidder’s own private

information should be the only determinant of bids, while the identities of rival firms should

not matter. Schurter (2017) and Chassang and Ortner (2019) propose tests for collusion

using exogenous variations in reserve price levels. Kawai and Nakabayashi (2022) examine

multi-round bidding and devise a test for correlation between the initial and subsequent

bid. Kawai et al. (2022) propose a regression discontinuity approach by comparing marginal

winning and marginal losing bids using bidders’ incumbency or backlog status. Chassang
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et al. (2022) propose a test for missing mass in the bid distribution close to marginal losing

and winning bids. We applied this test but could not find evidence of missing mass close to

losing bids in our data.

Tests for collusion have also been applied for other auction settings. Conley and Decarolis

(2016) propose tests to examine coordination in average-price auctions. Kaplan et al. (2016)

provide tests for partial cartels in English auctions. Internal workings of cartels have been

studied by Pesendorfer (2000) and Asker (2010). Caoui (2022) estimates damages from bid

rigging.

Incentives to collude are studied more broadly in the face of antitrust authorities in

Harrington (2005) and measured in the context of mergers in Miller et al. (2021) and Igami

and Sugaya (2021). These papers exploit predictions obtained by the theory of repeated

games (Green and Porter (1984); Rotemberg and Saloner (1986)).

Our paper also contributes to the literature on oil and gas lease auctions, see Porter

(1995) for a survey on offshore auctions. Hendricks et al. (2003) test for winner’s curse

effects and confirm that bidders bid rationally in offshore sales. Kellogg (2014) studies the

effect of price expectations on the decision to drill onshore. Kong (2020, 2021), Bhattacharya

et al. (2022) and Ordin (2019) study the same NMSLO data as we do. Kong (2020, 2021)

studies the relationship between first-price and English auctions. Bhattacharya et al. (2022)

endogenize the drilling decision and study the optimal royalty rate design in contingent

payment auctions. Ordin (2019) studies the role of tax policies in oil and gas lease sales.

Hodgson (2019) studies information externalities in UK offshore drilling decisions. Kong

et al. (2022) study a two-dimensional bidding system in Louisiana where bidders submit a

bonus bid and a royalty rate.

The paper is organized as follows: Section 2 describes our framework. We describe the

auction model and discuss the assumptions. Section 3 devises statistical testing procedures

aimed at detecting collusion. Section 4 describes the market and highlights features that

may facilitate collusion. Section 5 argues that bidders coordinate their bidding strategies.
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Section 6 shows that bidders underbid. Bids are too low to maximize ex ante bidder profit.

Section 7 estimates the lower revenue bound and shows that observed revenues fall short by

a third of the bound induced by competitive bidding. Section 8 concludes.

2 Framework

Our framework is the pure common values mineral rights model as described in Bergemann

et al. (2017), which contains the classic mineral rights model proposed in Wilson (1977) as

a special case.

A seller has one tract for sale. Bidders i = 1, . . . , N are risk-neutral and bid for the tract.

The tract has a common value v contained in a compact interval V = [v, v] ⊂ R. The value

v is drawn from the cumulative distribution function (cdf) G with support V . The value

distribution is common knowledge among bidders. Bidder i additionally receives private

information about the value beyond knowing the prior distribution. This information comes

from a signal xi ∈ [x, x] ⊂ R that is correlated with the value v. We denote X = (X1, . . . , XN)

the random variables and x = (x1, . . . , xN) the realizations. The joint distribution of signals

and ex post tract value is F (x, v). The seller announces a minimum bid, or reserve price,

r ∈ R+.

Denote the set of high bidders with W (b) = {i |bi ≥ bj, for all j = 1, .., N and bi ≥ r},

where b = (b1, . . . , bN)∈ BN = [0, v]N denotes the vector of bids. Let the probability that

bidder i receives the good be qi(b) = 1/|W (b)| if bidder i is among the high bidders, and

= 0 otherwise.

A bidding strategy for player i is a mapping βi : [x, x] −→ B from signals to bids. Let

Σi denote the set of strategies for bidder i and let β ∈ Σ = ×N
i=1Σi denote a strategy profile.

Bidder i’s ex ante payoff from the first-price auction is given by

Ui(β) =

∫
v∈V

∫
x∈[x,x]N

[v − βi(xi)] qi(β(x)) dF (dx, dv). (1)
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The profile β is a Bayesian Nash Equilibrium (BNE) if and only if Ui(β) ≥ Ui(β
′
i, β−i)

for all β ′
i ∈ Σi.

Discussion of the assumptions.

Wilson (1977) and most of the subsequent empirical literature on common value auctions

require stronger assumptions than stated above. Wilson assumes that the signal Xi is iid

with continuous conditional cdf F (.|v). The joint distribution of signals and ex post tract

value is then F (x, v) =
∏

i F (xi|v)G(v).2

Our data do not include information on bidders’ signals. Proposition 4 in Laffont and

Vuong (1996) establishes that the signal distribution F (.|v) cannot be identified from bid

data and ex post values alone. For example, monotone rescaling of signals results in observa-

tionally equivalent signal distributions. See also Somaini (2020) for identification results with

interdependent signals. While signals are not identified, we can explore statistical properties

of signals by examining bids instead. Bids are observed and are a strict monotone function

of signals. If signals are independently distributed, then bids must be as well. We shall

consider tests of this assumption using bids instead of signals in Section 5.

Prior empirical work on common value auctions typically adopts the Wilson BNE and

imposes additional assumptions on the information structure to guarantee identification from

observables. Bhattacharya et al. (2022) assume that bidder receive noisy signals of the quan-

tity of oil in a tract. Hendricks et al. (2003) assume that the signal is an unbiased estimate

of the ex post return conditional on winning. We shall consider tests of the null hypothesis

that bids satisfy the conditional independence assumption in Section 5. A rejection of these

tests may be indicative of bidder coordination prior to the auction, but could also suggest
2Based on the iid signal assumption Wilson (1977) and Milgrom and Weber (1982) characterize the

symmetric BNE. Let Yi = maxj 6=i Xj and FYi|Xi
(.|.) be the conditional distribution of Yi given Xi. Let

u(xi) = E[v|Xi = xi, Yi = xi] be the expected value conditional on the own signal being xi and the
high rival signal being at most xi. The equilibrium strategy satisfies the first-order differential equation
b′(x) = [u(x)− b(x)] · fYi|Xi

(x|x)
FYi|Xi

(x|x) with boundary condition b(x) = u(x). The solution is

βi(xi) = u(xi)−
∫ xi

x

L(y|xi)du(y) where L(y|xi) = exp[−
∫ xi

y

f(x|x)
F (x|x)

dx.
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that the iid signal assumption of Wilson is not satisfied (if, e.g., signals are correlated with

elements other than the ex post return). With this caveat in mind, our main statistical

analysis will be based on the weaker set of assumptions described above which are robust to

alternative information structures.

To summarize, our statistical analysis departs from the prior literature by using a weaker

set of assumptions that is robust to all information structures, including the one proposed by

Wilson. Our approach is robust to the specification of the signals and details of the Bayesian

Nash equilibrium.

3 Testable Implications

This section describes testable implications of BNE bidding. We will formulate suitable

statistical tests of these implications using the publicly available data on oil and gas lease

sales from the New Mexico State Land Office (NMSLO).

The sealed-bid first-price auction has bidders submitting sealed bids and awards the item

to the high bidder at his bid price. The identities of potential bidders are publicly known

before every auction. On the day of the auction, the sealed bids are publicly revealed, and

the high bidder wins. We let bt denote the vector (bt1, ..., btN) and adopt the convention that

bti = 0 when potential bidder i refrained from bidding for lot t. We denote with zt any

information that is publicly available at time t, such as the oil and gas spot (and future)

prices, that may affect bidders’ signals xt and thus bids bt. The variable vt denotes the ex

post return, which we calculate from the publicly observed drilling and production data.

We make the following assumption on the data generating process (DGP).

Assumption 1. The observed data are (bt, vt, zt)Tt=1 where (bt, vt) are identically and inde-

pendently distributed conditional on exogenous covariates zt ∈ Z.

The assumption is commonly imposed in market games, see Tamer (2003).
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We shall focus on three central implications of the mineral rights model, each requiring

a decreasing amount of structure. First, we consider the classic Wilson model in which the

submitted bids are independently distributed conditional on ex post returns and publicly

available information at the time of the auction. Second, we relax the independence assump-

tion and examine the null hypothesis that bidding strategies maximize ex ante expected

returns, that is, that no bidder can systematically deviate from the equilibrium and receive

strictly larger expected profits. Third, the distribution of winning bids must satisfy the

robust lower revenue bound described in Bergemann et al. (2017). The last two properties

hold regardless of bidders’ information and the Bayesian Nash equilibrium. We shall describe

these hypotheses in turn.

3.1 Independence

The data include detailed information on ex post drilling outcomes which allow us to calculate

ex post returns for bidders, which we use as a control variable. Evidence of correlation in

bids conditional on ex post returns is indicative of pre-play communication, which would be

a violation of the Bayesian Nash equilibrium condition in Wilson’s mineral rights model.

Implication 1. Consider the assumption of Wilson (1977). The bids (signals) Bi and

Bj are independently distributed for all i, j ∈ N conditional on the ex post value realization

v.

The null hypothesis of conditional independence is

H
B|X
0 : Bi ⊥ Bj|v for all i, j∈ N, (2)

with the alternative its negation. The null can be tested for individual bidders or for bidder

pairs. A violation of the null hypothesis suggests that the data were not generated from the

BNE in the Wilson model. This result could indicate that the data were not generated from

a BNE (e.g. because of collusion among a subset of bidders) or that the data were generated
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by a BNE in a game with a different information structure (e.g. if value signals are truly

correlated even after conditioning on ex post values).

3.2 Best Response Test

Next, we relax the assumption on the information structure and go beyond the Wilson model.

A simple yet powerful test examines the BNE condition ex ante using equation (1).

Bidder i’s payoff realization from an auction is given by

Ui(b, v) = [v − bi] qi(bi, b−i).

Consider a unilateral deviation φ : B −→ B which results in the modified payoff realiza-

tion

Ui(b, v|φ) = [v − φ(bi)] qi(φ(bi), b−i). (3)

The BNE condition requires that a unilateral deviation cannot be profitable on average.

Consider the ex ante payoff under the deviation strategy:

Ui(β|φ) =
∫
v∈V

∫
x∈[x,x]N

[v − φ (βi(xi))] qi(φ (βi(xi)) , β−i(x)) dF (dx, dv). (4)

This leads us to the following implication of BNE bidding.

Implication 2. In any BNE under any information structure and for any bidder i, the

function φ that maximizes the ex ante expected payoff in equation (4) must be the identity

mapping.

This property can be used to detect any deviation from BNE bidding. Our goal is

to detect whether bidders systematically underbid. We follow Hendricks et al. (1987) in

considering linear deviations, that is, deviation strategies that multiply all bids by a scalar

α > 0 such that φ(b) = α · b. Letting α∗ = argmaxα Ui(β, α), Implication 2 of BNE bidding

leads to the following null hypothesis:
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H0 : α
∗ = 1.

Originally, this type of best response test was aimed at testing for the presence of the

winner’s curse (systematic overbidding, or α∗ < 1). We expand this test to check optimality

of bidding more generally.

3.3 Lower Bound on Revenues

Our third test of BNE bidding utilizes the distributional bound on winning bids character-

ized in Bergemann et al. (2017). This bound is a useful tool for empirical analysis as it

depends only on the ex post return distribution, which we can recover from the data. Prior

empirical work specifies the information distribution of bidders or the details of the Bayesian

equilibrium. Our approach departs from the prior literature and is robust to the specification

of the information structure, signals, and other details of the Bayesian equilibrium. We test

whether observed returns exceed the lower bound in expectations.

The lower bound is tight in the sense that it emerges in the bidding equilibrium with

the “worst-case” information structure in the sense that expected revenues to the seller are

lowest. Bergemann et al. (2017) establish that signals xi drawn from G(Xi)
1/N (recall that

G is the cdf of the distribution of values) and correlated with the value so that maxxi = v

achieve this bound.

Winning bids in such an equilibrium are given by3

β(v; r) =


1

G(v)(N−1)/N

[
r ·G(v̂)(N−1)/N +

∫ v

v̂
N−1
N

· x
G(x)1/N

dG(x)
]
, v > v̂;

0, v ≤ v̂,

3It is useful to observe that the minimum bid is a solution to the differential equation

N − 1

N
· v − β(v)

G(v)
dG(v)− β′(v) = 0

with boundary condition β(v̂) = r.
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where the threshold value v̂ solves

∫ v̂

v
x dG(x)∫ v̂

v
dG(x)

= r.

The minimum ex ante expected revenue is

Rmin(r,G,N) =

∫ v

v̂(r)

β(x; r) dG(x).

Implication 3. In any BNE under any information structure, the expected revenue

from the auction must exceed the minimum revenue bound Rmin(r,G,N).

Under the null of competitive bidding, we assume that the observed bids were generated

by a profile of BNE bidding strategies and denote the expected winning bid, conditional on

tract value v and reserve price r, as βw(v; r). We test Implication 3 using the null hypothesis

H0 :

∫
v∈V

[
βw(x; r)− β(x; r)

]
dG(x) ≥ 0. (5)

The lower bound used in this test is robust to details of the Bayesian game being played

and the information available to bidders. The bound remains valid if bidders are asymmetri-

cally informed, completely uninformed, or completely informed about the tract values. The

bound also applies when there is unobserved auction heterogeneity, that is, when bidders

publicly observe a part of the common value that is not recorded in the data. The bound is

also robust to risk aversion – if bidders were risk averse, we would expect more aggressive

bidding, pushing revenues even higher above the bound.

Next, we shall describe the market and data.
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4 Data

We study oil and gas lease sales held monthly by the New Mexico State Land Office (NMSLO)

on the third Tuesday of each month between 1994 until 2015.4 Every month the NMSLO

distributes a list of leases which are sold at auction next month. Bidders can nominate an

area for auction. Leases typically cover a land area of 320 acres.

Lease Sale Procedure

It is a legal requirement that the NMSLO awards leases by one of two types of auction

formats5: (i) sealed-bid first-price auction and (ii) open-outcry English auction. For most of

the sample period both formats were used in each monthly sale.6 The assignment of auction

format is mostly random, although conversations with the leading auctioneer during the

sample period suggest that, in the case of split tracts (a tract larger than 320 acres that is

split into two separate lots for the sale), the first price auction is used for the larger of the

two halves or for the part closest to an existing lease owned by the bidder that nominated

the tract. The monthly lease sale proceeds in two stages: First, the sealed bids for the first

set of leases are unsealed and announced publicly. Every lease is awarded to the high bidder.

Second, the set of English auction leases are awarded in sequence by means of an open

outcry auction where all eligible bidders are present in the room. Every month the same set

of bidders interact. We do not include auctions taking place after 2015 in our sample as the

post-award production record is incomplete.

The lease duration is five years, during which time the winning bidder can drill a well.

If oil or gas is found, then the lease can be extended until all minerals have been extracted.

Any revenues arising from the well are subject to various revenue taxes and royalty payments

at a rate depending on the type of lease. Additionally, leaseholders are charged a negligible
4Data from NMSLO have been studied in the prior literature. Kong (2020, 2021) studies the relationship

between first-price and English auctions. Bhattacharya et al. (2022) study the effect of post auction drilling
decisions on the optimal auction design in terms of the royalty rate.

5The legal setting is described in New Mexico Statues, Chapter 19, Article 10, Section 19-10-17:
https://law.justia.com/codes/new-mexico/2019/chapter-19/article-10/section-19-10-17/

6During the summer of 2016 the auctions moved online. Starting in 2019 most of the sales were conducted
in first-price format only.
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rental rate, typically $0.50 or $1.00 per acre. The winning bidder pays corporate taxes on

profits, which is a proportional deduction and thus neutral to the bidding calculus. The

winning bidder pays the bid bonus immediately after the auction and receives the net return

on future and uncertain minerals extracted.7

Our data contain detailed information on ex post drilling outcomes and production until

2021 which enables us to calculate the future return following the prior literature. After

the auction, the winner of the tract obtains the tract lease and the subsequent oil and

gas extraction is publicly observed. Bhattacharya et al. (2022) and Hendricks et al. (2003)

construct the value measure using the realized value of minerals extracted from ex post

drilling activity. We follow this definition of the common value and construct our value

estimates by matching publicly available production data to leases. We obtain a list of all

oil and gas wells in New Mexico from the New Mexico Oil Conservation Division (OCD)

describing the location of each well. We then match these well locations to the geographic

descriptions of leased tracts provided by the NMSLO in the letting announcements. For each

lease we aggregate the monthly oil and gas production of each well (collected from monthly

production reports submitted to the OCD) and weigh them with deflated crude oil and gas

prices. To account for production delays, we discount all returns to the date of the auction

using a five percent annual interest rate. We account for the royalty rate, which varies by

the type of lease, and deduct a revenue tax of 7.1%8. Our final gross revenue measure equals

the realization of the discounted ex post value of the oil field net of royalties and taxes. Our
7If during future production it is found that the well can be used to extract minerals for multiple leases,

then bidders are by law required to enter a pooling agreement. While the share of leases with pooling
agreements is relatively small in our data (less than four percent), it forces bidders to engage and cooperate
with each other on those leases.

8According to Chapter 2 of the “Decision-Makers Field Guide (2002),” (available online at
https://geoinfo.nmt.edu/publications/guides/decisionmakers/2002/dmfg2002_complete.pdf) there are six
taxes imposed directly on oil and gas extraction and processing: (i) severance tax which amounts to 1.875%
during the first 5-7 years of production and then increases to 3.75%; (ii) conservation tax of about 0.19%;
(iii) emergency school tax of 3.15% for oil and 4% for gas minus drilling credit which is given some times;
(iv) ad valorem production tax of about 0.39%; (v) natural gas processors tax of 0.45% and (vi) ad valorem
equipment tax of 0.07%. Totaling these taxes amounts to about 7.1%. The rate of 7.1% is also reported as
tax revenues obtained in the year 2000 on the value of oil and gas reported by the Taxation and Revenue
Department, see Figure 5 in Decision-Makers Field Guide (2002). Following Ordin (2019) we observe that
corporate profit taxes do not affect the bidding calculus as the tax rate applies proportionally.
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gross revenue measure is a lower bound on revenues, as it is based on observed production

and does not include potential future production beyond 20219. We define the common value

v as the net return, which equals the gross revenue measure minus the well cost.

Well costs are measured following the formula described in Kellogg (2014), which is based

on drilling rig rental costs predicted by oil future prices. Kellogg studies oil extraction in

the Texas region of the Permian Basin, while most of the wells we study fall in the New

Mexico region of the Permian Basin. Kellogg notes a significant positive correlation between

18-month-ahead oil prices and rig dayrates. He regresses daily drilling rig rental rates on 18-

month-ahead oil prices and obtains an R-squared of 0.64. This regression is used to predict

the daily rig rental rate, which is then multiplied by the expected number of drilling days to

get the expected rental cost, which is in turn multiplied by three to produce total expected

drilling costs.10 We update Kellogg’s estimate of 19.2 days to drill a well on average with a

more conservative 27.4 days, which emerged from a sample of 59 New Mexico drilling cost

records on pooling agreements which are publicly available11. Our well cost estimates are

about 40% higher than Kellogg’s.

To check the accuracy of our well cost estimates, we benchmark our cost estimates against

two data sources: (i) a sample of 313 publicly available New Mexico well cost estimates

obtained from pooling agreements and (ii) well cost estimates by the US Energy Informa-

tion Administration12. Our well cost estimates are marginally higher than the New Mexico

benchmark sample and in the range of the US Energy Information estimates. Our well cost
9An alternative measure of gross revenues uses the oil and gas future prices at the time of the auction

as weights to discounted quantities instead of the realization of the oil and gas prices at the time when
production takes place. The resulting gross revenue measure is very similar in magnitude but on average
slightly larger than the measure obtained using the realized prices.

10The scaling factor of three emerged from conversations with industry members who estimated that rig
rental costs constitute on average one third of total drilling costs.

11The New Mexico well cost sample is obtained from publicly available reports on pooling agreements.
Parties engaging in a pooling agreement are required by law to submit an Authorization for Expenditure
(AFE) that describes the anticipated cost of a proposed well to New Mexico’s Oil Conservation Division.
We parse AFEs filed between 2008 and 2021 and extract reported number of days drilled for 59 records. The
OCD website is https://wwwapps.emnrd.nm.gov/OCD/OCDPermitting/Data/Hearings/Cases.aspx

12We parse AFEs filed between 2008 and 2021 and extract total drilling and completion costs
from 313 records. The US Energy Information Administration reports well cost estimates in
https://www.eia.gov/analysis/studies/drilling/pdf/upstream.pdf.
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Table 1: Summary Statistics for Awarded Tracts

All First-Price English
Number of Auctions 9,717 4,535 5,182

Gross Revenue (minus royalty and tax payment) 626.1 702.1 559.7
(3,817) (4,362) (3,265)

Well Cost 192.8 195.6 190.3
(755.2) (794.9) (718.7)

Net Revenue v 433.3 506.4 369.4
(3,229) (3,711) (2,737)

Winning Bid 52.82 58.68 47.70
(113.5) (138.5) (85.0)

Reserve Price 4.71 4.53 4.87
(4,298) (4,302) (4,474)

Fraction Drilled 0.125 0.119 0.131
(0.331) (0.323) (0.337)

Well Cost of Drilled Tracts 1,541 1,649 1,455
(1,576) (1,713) (1,453)

Fraction Productive 0.110 0.106 0.114
(0.313) (0.308) (0.317)

Disc Revenue of Productive Tracts 5,681 6,606 4,924
(10,175) (11,842) (8,509 )

The data consist of all awarded auctions between 1994 and 2015. Dollar figures are
measured in thousand of 2000 US dollars. Standard deviations are in parentheses.

estimates do not take heterogeneity in well costs across bidders into account. We expect

drilling costs differences across leases to be small, owing to the relatively uniform geology

of the Permian Basin. While cost differences may exist across bidders, we follow Hendricks

et al. (2003) and Bhattacharya et al. (2022) in assuming that these differences are small in

magnitude or not known at the time of the auction.

Descriptive Summary Statistics

Table 1 shows that 4,535 sales were held using first-price auctions while 5,182 using an

English auction format. Table 1 considers only pre-2016 sales as the initial drilling decision

can occur at the end of the lease term, as shown in Bhattacharya et al. (2022). All dollar

magnitudes are deflated using 2000 dollars.

Strikingly, the bonus bid is very small relative to tract value. The bonus bid equals

$53,000 on average, which amounts to 12 percent of the average tract value. In comparison,
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the offshore lease sale literature has shown bids being much closer to the value of the tract.

Hendricks et al. (1987) report winning bids in offshore sales equal 76 percent of tract value

for wildcat sales and 49 percent for drainage sales.

A second surprising element is that only a small fraction of awarded tracts are drilled:

about 12.5 percent.13 Most drilled wells are productive (i.e. the well produced oil or gas).

The drilling rate and productivity rate are both low in comparison to that of offshore tracts,

which Porter (1995) finds to be 78 percent and 35 percent, respectively. We hypothesize that

the low initial drilling rate is a result of lease hoarding, which appears common for onshore

leases14. We shall provide further evidence on the number of undrilled leases hoarded by

individual bidders below.

Interestingly, the auctioneer’s revenues are higher for first-price auctions than for English

auctions, both in terms of royalty payments and bonus bids, see also Kong (2020). For

split tracts, in which both auction formats were used and the assignment (according to

conversations with the lead auctioneer) is essentially random, the first-price auction generates

23% higher cash bonus bid and also a 37% higher royalty return per acre. We can reject the

null of identical bonus bids across the two formats at the one percent significance level. Yet,

the null of identical royalty returns cannot be rejected. During the year 2019 the NMSLO

began awarding leases exclusively in the more favorable first-price format.

The revenue ranking is surprising in the light of the classic theoretical work on symmetric

BNE bidding equilibria in standard auction formats. Milgrom and Weber (1982) derive that

English auctions generate more revenues than first-price auctions on average. One explana-

tion for the revenue superiority of the first-price auction format is that some coordination

or collusion arises in English auctions. Avery (1998) shows that bidders may use initial

jump bids to signal their intention to rivals, which gives rise to multiple equilibria in English
13The drilling rate estimate is almost identical to the onshore drilling rate reported in the prior literature,

see Bhattacharya et al. (2022).
14Accoding to a Wilderness Society’s article from December 15, 2015, hoarding is common in the oild

and gas industry. For instance, suspension of federal leases has affected 3.25 million acres in April
2015. See https://www.wilderness.org/articles/blog/land-hoarders-oil-and-gas-companies-are-stockpiling-
your-public-lands.
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auctions, some of which may have drastically reduced revenues. Indeed, we observe jump

bidding in English auctions conducted online, where the timestamp of each bid is recorded.15

Suspiciously low English auction bids arise also in split tract sales, where bidders should

arguably have the same value estimate for both halves. There are 335 occasions where a

bidder failed to win the English auction although the bidder submitted a bid in the first-

price auction that was (substantially) higher in per-acre terms than the selling price in the

English auction. On 194 of these occasions, the bidder failed to win both the first-price

auction and the English auction. On average the bidder’s losing first-price auction bid was

120 percentage points higher than the final English auction price. While these bid patterns

seem odd, they can in fact arise as a BNE when bidders have beliefs that they will be outbid

in the English auction. Since BNE bidding in English auctions may resemble coordination

or collusion, our subsequent analysis focuses on first-price auction sales.

Factors Facilitating Collusion

There are several factors in the lease sale market that may facilitate coordination or

collusion. We think of collusion as an implicit or explicit arrangement to limit competition

among market participants and to increase profits.

The market we study is concentrated, with three firms winning half of all leases sold at

auction. A small set of firms coordinating their actions can have a big impact on market

price. Table 2 reports summary statistics for bidders who won more than 100 leases between

1994 and 2021 and together account for two thirds of all bids submitted and 60% of auction

awards. The table also includes a “fringe” bidder accounting for all remaining bids. We

report dollar measures on average across all auctions won by the bidder. Yates Petroleum

Corp has a market share of about 38% in the number of leases with more than 1,000 active

(undrilled) leases (320,000 acres) held during any calendar year between 2000 and 2015. It
15The NMSLO online English format is similiar to eBay sales where the current standing winning price

is revealed to rival bidders and not the submitted bid. In the online English lease sale in January 2019,
Slash Exploration LP started the bidding with a bid substantially above the reserve, and two attempts by
rival bidders during the next sixteen hours to outbid Slash Exploration failed, resulting in Slash Exploration
winning the lease.
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Table 2: Bidding Returns for Top Bidders

Bidder No of No of Return v Bid b ROI
Bids Wins on average across

auctions won
YATES PETROLEUM CORP 5,810 4087 325.26 30.67 18.90

DANIEL E GONZALES 828 592 979.19 65.57 11.78
DOUG J SCHUTZ 838 587 353.30 64.21 2.22

CHASE OIL CORPORATION 348 249 50.79 39.96 0.21
FEDERAL ABSTRACT COMP. 381 205 312.75 12.87 2.13

SLASH EXPLORATION LP 683 164 11.31 6.33 5.95
FEATHERSTONE DEV. C. 376 149 326.37 22.40 6.44
MARBOB ENERGY CORP 278 130 1,271.33 78.40 12.85

BAR CANE INC 220 129 601.11 60.95 4.12
RONALD MILES 369 122 1,148.06 91.09 8.13

THE BLANCO COMP. 617 103 602.69 14.39 90.94
FRINGE N/A 4280 390.39 61.44 10.11

The data consist of all awarded auctions between 1994 and 2021. Dollar figures are
measured in thousand 2000 US dollars.

was acquired by EOG Resources in 2016 for $2.5 billion. Yates Petroleum operated beyond

the New Mexico region and held about 1.5 million acres in at least seven US states at the

time of acquisition. The next largest bidders are Daniel E Gonzales and Doug J Schutz,

both of whom have a 5% market share each, which amounts to more than 500 leases. These

two bidders held on average more than 130 active (undrilled) leases during the period 2000

to 2015.

The rate of return from winning an auction (ROI), measured by the profits (the tract

value minus the bonus bid) divided by the bonus bid, is substantial for all bidders, equaling

more than 1,400 percentage points on average across bidders. The high percentage arises as

the lease acquisition cost is very low relative to the return. We shall examine the null that

the bonus bid is too low to be consistent with competitive bidding in Sections 6 and 7.

Leases are homogenous products that can be resold in the future. Competition is only in

terms of price, so a cartel need only coordinate in the price dimension to collude. Sales occur

regularly at monthly intervals, with bidders gathering in person for each sale. Consequently,

bidders know the identity of other potential bidders before they bid. Bidders may have
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formed relationships with each other at prior sales or as a result of pooling agreements they

are required by law to enter into when a well spans multiple leases. Bidders participating

in the NMSLO’s auctions have faced allegations of illicit conduct in other states.16 Multiple

leases are awarded at each sale date, allowing bidders to divide the market without using side

payments. Additionally, leases can be resold at subsequent periods, providing a mechanism

for bidders to implement a suitable market division. The frequency of sales makes it costly

for firms to deviate from any agreement. To summarize, the market exhibits characteristics

that facilitate collusion. It is a concentrated market, a homogeneous product is sold, multiple

leases are sold at every sale date, and sales occur at regular monthly intervals.

Next, we shall conduct statistical tests to examine whether we can reject the null of

competitive bidding.

5 Conditional Independence Test

Competitive behavior requires that bidders submit their bids independently of each other

conditional on the information available to them. Bidding strategies cannot be coordinated

or correlated; a player’s strategy should be a function of their signal only. Coordination

among competing bidders or information sharing is not legal at auctions. In contrast, when

bidders coordinate or communicate prior to the auction, then we may expect bids to be

correlated beyond the information available to bidders individually. This section considers

tests aimed at distinguishing these two hypotheses based on the assumptions of Wilson

(1977).

Wilson’s mineral rights model assumes the signal xi is drawn independently from a con-

ditional cdf F (xi|v), where v denotes the common value of the oil field . We do not observe
16On March 15, 2012, the US Department of Justice filed a law suit alleging bid-rigging in Coler-

ado, see https://www.justice.gov/atr/case/us-v-sg-interests-i-ltd-et-al. Reuters reported on June 25, 2012,
that email exchanges between Chesapeake Energy Corp and a competitor apparently intended to avoid
bidding against each other in Michigan, see https://www.reuters.com/article/us-chesapeake-land-deals-
idUSBRE85O0EI20120625. On March 1, 2015, the US Department of Justice indicted the CEO of Chesa-
peake Energy Corp for bid rigging in Oklahoma, see https://www.bloomberg.com/news/articles/2016-03-
01/chesapeake-co-founder-mcclendon-indicted-over-lease-bid-rigging.
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the signal realizations x but do observe the bids b and the ex post outcome v. In Wilson’s

BNE a bid is a strict monotone function of a bidder’s signal, bi = b(xi). Since signals are

drawn independently from F (xi|v), and bids are a function of one signal only, bids will be

distributed independently after conditioning on ex post returns. These assumptions lead to

the following null hypothesis for competitive bidding:

H
B|X
0 : bi ⊥ bj|v for all i, j ∈ N , (6)

with the alternative hypothesis:

H
B|X
1 : bi 6⊥ bj|v for some i, j ∈ N.

As most bids in our data are equal to zero (the convention we adopt to represent that a bid

was not submitted), our test statistic aggregates bids into the binary bid submission variable

si = {1 if bi > 0; = 0 otherwise }.

Wilson additionally assumes that the conditional cdf F is identical for all bidders. Asym-

metries in the distribution of bids could arise if, e.g., the variance in the signals differs across

bidders. We are not concerned with testing for the presence of such asymmetries; here we

only assume that bids are independently (not necessarily identically) distributed.

Our baseline independence test examines pairwise correlation in bid submission decisions

conditional on ex post returns using Pearson’s chi-squared test. We partition the ex post

outcome v into two sets depending on whether oil is found or not: (i) positive returns and

(ii) non-positive returns. We consider separate tests for both subsets. The first subset of

returns contains a range of potential outcomes, whereas the second is essentially a singleton

and thus well-suited for the independence test.

To construct bidder pairs we consider the set of “regular” bidders described in Table 2.

These bidders account for 65% of all bids submitted. We consider pairwise independence tests

of the null, si ⊥ sj|v for any pair i, j ∈ N where the ex post return variable v is partitioned
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Table 3: Correlation in Bid Decisions Conditional on Ex Post Value

Pairs H0 of Independence Sign of Correlation
Rejected Positive Negative

Positive Return: v > 0 15 6 9 6
Non-Positive Return: v ≤ 0 46 19 31 15

Test results of the null of pairwise independence in the bid submission decision are reported.
The significance level is 10 percent. The data consist of all pairs in which both bidders are
active on sales involving at least 100 auctions in case of positive returns, and at least 200
auctions in case of non-positive returns.

into two sets, non-positive {v : v ≤ 0} and positive {v : v > 0}. We conduct the test for

every bidder pair separately. For bidders who are inactive during part of the sample period,

we take sales into considerations only if both bidders where active and submitted at least

one bid during the sale. Finally, we consider bidder pairs that overlapped, or interacted,

on at least 100 auctions for the case of positive returns and 200 auctions for the case of

non-positive returns.

Table 3 indicates that the conditional independence test is rejected for 45% of bidder pairs

at the ten percent significance level. The test results conditional on non-positive returns has

a larger sample size and yields 50% of test results rejecting the null of independence. To

illustrate that the magnitude of the correlation coefficients is economically meaningful we

select two bidder pairs with significant correlation. In the case of positive ex post revenues,

bidder 4 was 2.5 times as likely to submit a bid (45.3% versus 17.6%) when bidder 3 bid as

well. With non-positive revenues bidder 2 was 2.1 times as likely to submit a bid (37.7%

versus 17.7%) when bidder 7 bid as well.

The test results in Table 3 suggest that bidders coordinate on the participation decision,

which is inconsistent with Nash equilibrium bidding in Wilson’s mineral rights model. It

could be argued that such patterns of coordination could also arise due to exogenous varia-

tions over time. For example, bidder pairs may be more active in certain seasons, or respond

in the same way to variation in oil prices or any other exogenous shock. For example, a

pattern of bid rotation would emerge when bidders are less likely to bid if a sizable number

of leases have been won in the preceding sale.
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Table 4: Biprobit Correlation Coefficients.

Pairs H0 of Zero Correlation Sign of Correlation Coefficient
rejected at

10% 5% 1% Positive Negative
48 22 21 12 33 15

Test results are reported for the null of a zero correlation coefficient in the bivariate
probit for bidder pairs. The data consist of all pairs in which both bidders are
active on sales involving at least 200 auctions. Explanatory variables include ex
post return, ex post return squared and bidder specific sale-date fixed effects.

To account for these alternative explanations, we exploit the timing of individual auctions.

Our data have multiple auctions taking place on the same date. A sale occurs once a month,

and all auctions within a sale have an identical bid submission deadline. In total our data

have 259 sales dates between 1994 and 2015 with an average 18 first price auctions taking

place per sale.

We augment the above independence test to additionally control for date fixed effects

z interacted with bidder-fixed effects. We test the null, si ⊥ sj|v, z for any pair i, j ∈ N

with a parametric bivariate probit framework. The biprobit controls for bidder-specific date

effects and ex post return values (linear and quadratic). The correlation coefficient in the

biprobit measures the bidder-pair correlation not accounted for by ex post return and date

fixed effects zt.

Table 4 indicates that a quarter to one half of bidder pairs have correlation coefficients

that are significantly different from zero, depending on which significance level is considered.

The majority of coefficients are positive. Consequently, we can reject the null of independence

in the mineral rights model. The evidence suggests that if the game played by bidders is

the same as in the mineral rights model, bid submission decisions are coordinated. This

coordination arises among a quarter to one half of bidder pairs mentioned in Table 2.

The evidence so far has been inconsistent with competitive bidding in the mineral rights

model, but could be produced by a different information structure. In the presence of un-

observed heterogeneity – characteristics of the tract that are (i) informative of its value, (ii)

observed by bidders, and (iii) not recorded in the data – some bidder pairs would exhibit
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Figure 1: Histogram of Biprobit Correlation Coefficient Estimates
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correlation in participation decisions driven by the unobserved heterogeneity. Because un-

observed heterogeneity affects the value signal in the same direction (either positively or

negatively) for all bidders, any correlation induced by it should be positive, see Krasnokut-

skaya (2011). To examine whether the correlation we observe could be explained by un-

observed heterogeneity, we examine the distribution of participation correlation coefficients

across bidder pairs.

Figure 1 plots the histogram of correlation coefficient estimates. Some bidder pairs appear

to refrain from bidding against each other, while the majority of bidder pairs complement

each other in bid submission. There are both sizable negative and positive correlation coef-

ficients, with surprisingly little mass at zero. The histogram differs from that of a normal

distribution in that it has a hump at -0.2 and another hump at 0.2. Such a bimodal distribu-

tion is inconsistent with the strictly positive correlation that would arise under unobserved

heterogeneity.

The empirical evidence considered so far cannot be reconciled with competitive bidding

under the mineral rights model. Having rejected the null of independent bid distributions,

we are left with two possibilities. First, the bidding strategies that generated the data could

be coordinated rather than competitive, e.g. some bidders refrain from bidding or submit

“phony” bids. Alternatively, the correlation in bids could be explained by the underlying
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information structure mediating ex post returns and bids. If signals are positively correlated

across some pairs and negatively correlated across others, the observed patterns of positive

and negative bid correlation could arise in a competitive equilibrium. The next two sec-

tions consider statistical tests of bidding in the common values BNE that are robust to the

underlying information structure.

6 Underbidding

This section examines whether bidders systematically under- or overbid.

If bidders coordinate in order to suppress bid payments, then such behavior will be

detectable by finding the existence of a profitable deviation in the bidder’s choice problem.

Since we observe all bids, as well as the ex post return, we can measure the observed average

payoff and use it to test the null that a systematic deviation cannot be profitable.

We develop a test procedure that is applicable regardless of the underlying information

structure. We examine deviations from observed bidding in which all bids of a bidder are

multiplied by a positive scalar, holding rival bids fixed. Of course, richer deviation strategies

can be permitted and the test augmented. Nevertheless, in our case, even a scalar deviation

results in a substantial profit increase.

Recall the null hypothesis

H0 : α
∗ ≡ argmax

α

∫
v∈V

∫
x∈[x,x]N

[v − α · βi(xi)] qi(α · βi(xi), β−i(x)) F (dx, dv) = 1.

We estimate the expectation using the sample average to compute the following test statistic:

α̂∗ = argmax
α

1

T

∑
t

[
vt − α · bti

]
qi(α · bti, bt−i),

where the objective function is the average payoff realization when bid bti in all auctions is

multiplied with the scalar parameter α.
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Table 5: Best Response Test: Optimal Bid Scalar α̂∗

Overall Bidder
Top-5 Non-Top-5

Bid Scalar Estimate α̂∗ 3.18 3.19 3.72
10th and 90th Quantile [2.32,3.36] [3.07,3.66] [2.95,3.82]

The confidence region is estimated using 199 bootstrap samples by resampling
from the set of all auctions using the stratified bootstrap.

A slope estimate α̂∗ < 1 suggests evidence of the winner’s curse or risk aversion, see

Matthews (1983) and Maskin and Riley (1984). On the other hand, α̂∗ > 1 suggests that

bidder i underbid. Hendricks et al. (1987) propose a precursor bid scaling test and (weakly)

reject the winner’s curse in offshore sales. Kong (2020) develops an alternative approach

that does not rely on ex post returns and finds evidence of risk aversion.

We obtain the sampling distribution for the test statistic using a stratified bootstrap

to account for correlation due to the exogenous variables zt by resampling auctions inside

strata (sale dates). The approach is consistent by Assumption 1 as auction outcomes within

a sale date are iid with identical exogenous variable zt, see Efron and Tibshirani (1994). The

stratum size, which is the number of first price auctions per sale, is 18 on average and ranges

between 6 and 41.

Table 5 reports the scalar estimate overall and for two subgroups of bidders: those

belonging to the top five and all others. Bidders in all groups substantially underbid. That

is, holding rival bids constant, an individual bidder would optimize their expected payoff

across auctions by increasing their own bid by a factor of more than three. Clearly, we can

reject the null of BNE bidding in first-price auctions, suggesting that bidders coordinate to

keep prices substantially below market value. Note that the test does not establish that

tripling bids would result in BNE bidding as rival bids were held constant when computing

α∗; if one bidder were to triple her bid, a profitable deviation may still exist for rivals.

Figure 2 plots the estimated per-auction profit function varying the bid scalar α. The left

panel considers the top five, while the right panel considers all other bidders. The figures

report 10th and 90th profit quantiles across bootstrap samples. In both cases profits are
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Figure 2: Simulated Profit Varying the Bid Scalar α.
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increasing at α = 1, with the simulated optimal profit about twice as large as the observed

profit.

Empirical auction work typically imposes assumptions on the information structure avail-

able to bidders and the details of the BNE. A key advantage of the underbidding test is that

these details do not have to be specified. The test is robust to informational assumptions

and the details of the BNE because it utilizes observable ex post oil extraction returns and

bid data. Ex post returns are readily available in our setting and are available more broadly

in settings where the lots can be resold or there is an active secondary market for the good.

While the evidence of underbidding rejects the hypothesis of BNE bidding, it does not

address how far bonus bid payments are away from BNE bidding. The next section provides

an answer to this question.

7 Minimum Revenue Bound

This section examines whether the observed revenues satisfy the robust lower revenue bound.

The bound test is applicable regardless of the underlying information structure available to

bidders and regardless of the BNE played. Any BNE of the first-price auction under any

information structure must satisfy this bound.

The bound is obtained from the distribution of ex post returns and stems from the
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“worst-case” information structure and BNE that could arise. The intuition for the bound is

based on the observation that the BNE bidding calculus in first-price auctions requires that

bidders avoid losing the item to rival bidders.

An intuition for the bound can be developed by considering the asymmetric private values

case. In the complete information case, the bidder with the high value wins the good and

pays a price equal to the maximum of N−1 lowest values. The highest valuation of the losing

bidders places a lower bound on the revenue. Next, suppose there is incomplete information

such that bidders learn whether or not they have the high value and low value bidders do

not learn which value they have. Low-value bidders expect their value to be the average of

the N − 1 lowest draws. The losing bidders will be willing to bid up to their expected value.

Hence, the lower revenue is bounded based on the average of the N − 1 lowest draws.

Bergemann et al. (2017) characterize the bound and show that it is obtained as a BNE

when signals xi are drawn from G(Xi)
1/N and correlated with the value so that maxxi = v.

We do not postulate that the information structure in New Mexico oil sales takes this form

but use it to simulate winning bids in the lower-bound BNE.

Characterization of the revenue bound requires the cdf of ex post returns. We estimate

this cdf from our data on net returns v. Additionally, computation of the bound requires

the number of potential bidders, which we estimate as the maximum across all auctions of

the number of active bidders within an auction. While this is a commonly used approach in

the empirical auction literature, we check the robustness to alternative definitions, including

the minimally competitive case when the potential number of bidders equals 2. The third

element is the reserve price, which we observe in the data. The reserve price is essentially

linear in acreage until late in our sample period. For this reason, we normalize ex post

returns, reserve prices, and bids by acreage. Thus, all our dollar value estimates are measure

in per-acre terms.

The estimator proceeds in three stages: (i) estimate the potential number of bidders

N̂ = maxN t, (ii) estimate the cdf G using the empirical cdf Ĝ, and (iii) estimate pseudo
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minimum revenues using the worst-case equilibrium.

The worst-case equilibrium has pseudo minimum revenues β̂(vt) = 0 for values vt ≤ v̂.17

The threshold v̂ is estimated as the largest ex post return v such that

1

|V (v, v)|
∑

x∈V (v,v)

x ≤ rt,

where V (u,w) = {vt : u < vt ≤ w} denotes the set of ex post returns in the interval (u,w].

For vt > v̂ pseudo minimum revenues are estimated as:

β̂(vt; rt) = 1

Ĝ(vt)(N̂−1)/N̂

[
rt · Ĝ(v̂)(N̂−1)/N̂ + 1

|V (v̂,vt)|
∑

x∈V (v̂,vt)

(
N̂−1

N̂
· x

Ĝ(x)1/N̂

)]
.

Note that the estimator β̂(vt) is consistent when the data are iid. To see this, observe

that the potential number of bidders N̂ is a consistent and superefficient estimator. The

empirical cdf is a consistent estimator of G by the Glivenko–Cantelli theorem. The sample

average converges to the expected value by the law of large numbers. Hence, the threshold

estimate v̂ is consistent. Pseudo minimum bids β̂(vt) are consistently estimated as Ĝ, N̂ and

v̂ are consistent.

To test our null hypothesis

H0 :

∫
v∈V

[
βw(x; r)− β(x; r)

]
dG(x) ≥ 0,

we use as our test statistic the sample average of the difference between observed auction
17Bergemann et al. (2017) show that minimum revenues β(v) = 0 for v ≤ v̂ where the threshold v̂ solves∫ v̂

v
xdG(x)

G(v̂)
= r.

For values v > v̂ the minimum revenues equal

β̂(v) =
r ·G(v̂)(N−1)/N +

∫ v

v̂
N−1
N · x

G(x)1/N
dG(x)

G(v)(N−1)/N
.
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revenues and the inferred lower-bound auction revenues:

DT =
1

T

T∑
t=1

[
βt
w − β̂(vt; rt)

]
.

We obtain the sampling distribution for the test statistic using a stratified bootstrap

to account for correlation due to the exogenous variables zt by resampling auctions inside

strata (sale dates). Using a stratified bootstrap allows us to obtain a consistent measure of

the sampling distribution for DT by Assumption 1, see Efron and Tibshirani (1994). We use

199 bootstrap samples in the calculations.

Table 6 reports the test results. Our baseline specification, column “Pooled”, assumes

values vt are iid, in which case bidders do not anticipate systematic variations in lease values

over time. Our data indicate that this case is plausible as a regression of realized lease

values vt on a set of year fixed effects explains very little with an R-squared of 0.013. The

null hypothesis that year fixed effects are jointly zero has a p-value of 0.024 and cannot

be rejected at the 1 percent level. This case is also robust in the sense that it imposes

minimal assumptions on the bidders’ information structure, allowing them to range from

fully informed to fully uninformed about tract values.

Columns “Annual” and “Monthly” in Table 6 report two alternative specifications in

which we postulate a refinement of bidders’ information structure by conditioning the dis-

tribution G on exogenous observables. Our data include on average 206 auctions per year

and 18 auctions per month. We additionally estimate Gτ and β̂
τ

for each year (or month)

τ separately and report minimum revenue estimates by aggregating annual and monthly

bound estimates. Since auctions within a month have an identical bid submission deadline,

the monthly specification removes lease value uncertainty common to bidders. Note that if

common uncertainty exists at the time of the auction, then the refined minimum revenue

bound may be overstated.

Table 6 reports that on average across auctions the observed revenue equals 237 dollars
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Table 6: Testing Revenues: H0 : DT ≥ 0.

Period Length for G Pooled Annual Monthly
Baseline Estimates Realized Revenue 237.8 237.8 237.8

(8.3) (8.3) (8.3)
Minimum Revenue 783.6 878.1 1236.1

(76.7) (122.6) (169.2)
Test Statistic DT -545.9 -732.9 -998.3

(76.5) (122.0) (169.6)
P-Value 0.000 0.000 0.000

Robustness Checks
(i) N̂ = 2 Minimum Revenue 409.1 459.3 648.9

(40.1) (64.0) (88.4)
Test Statistic DT -171.3 -221.5 -411.1

(40.3) (64.0) (87.9)
P-Value 0.000 0.000 0.000

(ii) Using Future Prices Minimum Revenue 943.2 1105.1 1572.1
(87.0) (137.9) (197.9)

Test Statistic DT -705.4 -867.3 -1334.3
(86.4) (137.6) (198.1)

P-Value 0.000 0.000 0.000
(iii) Doubling Well Costs Minimum Revenue 600.7 672.9 963.4

(93.2) (121.9) (143.4)
Test Statistic DT -362.9 -435.1 -725.6

(93.3) (122.2) (143.3)
P-Value 0.000 0.000 0.000

(iv) Values v Divided by 3 Minimum Revenue 262.6 297.6 415.9
(26.1) (41.76) (56.5)

Test Statistic DT -24.8 -59.8 -178.1
(27.4) (42.1) (56.6)

P-Value 0.1507 0.1507 0.000
Standard deviations are reported in parenthesis. The standard deviations of variables and

the p-value of the null hypothesis are estimated using 199 bootstrap samples by resampling
using the stratified bootstrap.
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per acre measured in constant 2000 dollars. In contrast, the minimum revenue per auction

ranges equals 783 dollars. The test statistic DT is negative. We can reject the null of BNE

bidding at all confidence levels. Revenues are less than one third of minimum revenues

predicted by auction theory.

If value distributions are estimated separately every year and month, then the revenue

bound increases to 878 and 1,236 dollars. The test statistic DT remains negative in all

cases. We can reject the null of BNE bidding at all confidence levels. If value distributions

are estimated every month separately, then revenues are one fifth of predicted minimum

revenues.

Robustness Checks

How robust is the test result? Table 6 reports robustness checks which relax one or more

assumptions used to calculate the test statistic.

First, we consider reducing the potential number of bidders by replacing the consistent

estimator N̂ = maxN t with N̂ = 2. This is the least competitive scenario in which there

are only two firms competing for oil and gas leases. The minimum revenue bound falls but

remains above the realized revenue. The test statistic DT rejects the null of BNE bidding

at all confidence levels. Even with only two bidders, the state of New Mexico should expect

at least a 70 percent higher auction revenue.

Our second robustness check examined what happens if bidders did not form expectations

about future prices correctly and instead evaluated future quantities with the currently

expected future price, see Hendricks et al. (1987). Then the minimum revenue bound per

auction increases to 943 dollars per acre in the baseline pooled test. Again, the null of BNE

bidding is rejected at all confidence levels.

Third, we artificially double well cost estimates. Doing so results in minimum revenue

bound per auction of at least 600 dollars per acre. Revenues remain less than one half of

minimum revenues predicted by auction theory and the null of BNE bidding is rejected at

all confidence levels.
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Our fourth exercise examines what level of uniformly lower value estimates is required to

rationalize the observed bids as a BNE. Table 6 shows that dividing all value realizations by

3 results in minimum revenue bound per auction of 262 dollars per acre in the pooled case.

The test-statistic DT rejects the null of BNE bidding at the 15 percent significance level.

Lowering value estimates further results in a lowering of the test statistic DT and we can no

longer reject the null in the pooled and annual specification. We can conclude that dividing

all values by three is required to rationalize the observed bids as a BNE in the pooled and

annual specifications.

8 Conclusion

This paper documents evidence of systematic underbidding in oil and gas lease sales in New

Mexico. Features of this market are favorable towards bidder collusion. Leases cover small

homogeneous units of land and are awarded at regular time intervals at in-person auctions.

The buyer’s side is highly concentrated, with half of all leases won by only four bidders who

know each other well and interact regularly.

Using the ex post value of leased tracts, we test for the presence of non-competitive

bidding in three ways. First, we test whether bidder participation decisions are uncorrelated

conditional on ex post returns and find statistically significant evidence of both positive

and negative pairwise correlation. Second, we test whether bidders maximize their expected

profit (holding rival strategies constant) and find that bidders could approximately double

their expected profit by more than tripling each submitted bid. Finally, we test whether

the average auction revenue are below the theoretical lower bound and find that the state’s

revenue from bonus bidding on oil and gas leases are less than one-third of the lower bound.

In the best-case BNE, which arises when bidders are fully informed (or not informed at

all) about the ex post value of a lease, a standard Bertrand argument establishes that bids

equal the expected value and extract all the rent. In this best-case scenario, bonus bidding
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achieves revenues of 1,753 dollars per acre - a seven-fold increase in revenues relative to the

status quo.

We propose several steps NMSLO can take, some of which it has already taken, to combat

low auction revenues and to move toward the best-case outcome. First, the NMSLO could

raise the reserve price, which has occurred in recent years. Using information from prior

production outcomes of neighboring tracts, the reserve price could be raised much further

to a level close to the predicted lease value. Second, information about lease values, from

geological studies and historic production data on neighboring tracts can be made available

to bidders along with the lease sale announcement, which would reduce informational asym-

metries between bidders and encourage competition. Third, NMSLO has made changes in

regulation that make it more difficult for firms to acquire leases and renew them without

drilling for oil. This makes the practice of hoarding land to protect any information rent a

bidding ring may have more expensive, as it necessitates the drilling of wells. Fourth, barriers

to entry could be reduced by attracting new bidders, which was encouraged with the shift to

online auctions in 2016. Fifth, the identities of bidders could be concealed, making it more

difficult to detect deviations from the collusive agreement. NMSLO introduced this practice

when it moved to online auctions. Sixth, packages of tract can be offered at auctions instead

of individual tracts and lease sales could take place at less frequent time intervals. Doing so

will increase the benefits from deviation from a collusive agreement making collusion more

difficult to sustain. Taken together, these steps may limit the potential for collusion which

is a primary concern for the NMSLO if it is to meet its objective of “optimizing revenues

while protecting [New Mexico’s] heritage and [its] future.”
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