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1 Introduction

Economic relations can change over time for a variety of reasons, such as technological

progress, institutional changes, major policy interventions, but also wars, terrorist attacks,

stock market crashes and pandemics. Standard econometric models, such as linear single

and multivariate regressions assume instead stability of the parameters characterizing

the conditional first and second moments of the dependent variables. When stability is

formally tested, it is often rejected (see, e.g., Stock and Watson, 1996). This has led to the

development of a variety of methods to handle structural change in econometric models.

Parameter evolution is assumed to be either observable (i.e., driven by the behavior

of observable economic variables) or unobservable, and either discrete and abrupt or

continuous and smooth. Examples include threshold and smooth transition models (see,

e.g., Tong, 1990; Teräsvirta, 1994), Markov switching models (see, e.g., Hamilton, 1989),

and double stochastic models (see, e.g., Nyblom, 1989). In all these models, a specific and

fully parametrized type of parameter evolution is assumed, and then linear or non-linear

filters are used for estimation in a classical context or Markov chain Monte Carlo (MCMC)

methods in a Bayesian framework. Examples of economic applications of all these methods

include Koop and Korobilis (2013), Aastveit, et al. (2017), Aastveit, Natvik, and Sola

(2017), Caggiano, Castelnuovo, and Pellegrino (2017), Alessandri and Mumtaz (2019),

and Caggiano, Castelnuovo, and Pellegrino (2021).1

Assuming a specific type of parameter evolution increases estimation efficiency but

can lead to mis-specification. A more flexible alternative allows for a smooth evolution of

parameters without specifying the form of parameter time variation. In a classical con-

text, the evolution can be either deterministic (see, e.g., Robinson, 1991; Chen and Hong,

2012), or stochastic (see, e.g., Giraitis, Kapetanios, and Yates, 2014, 2018; Kapetanios,

Marcellino, and Venditti, 2019, for the specific case of (possibly large) vector autore-

gressive models (VARs)). Kernel estimators are the main tool used in this literature.

Alternative approaches, which can also capture non-linear relationships between the tar-

get and explanatory variables, are, e.g., based on using functional-coefficient regressions

(Cai, Fan, and Yao, 2000; Kowal, Matteson, and Ruppert, 2017), regression trees (Chip-

man, George, and McCulloch, 2010; Huber, et al., 2020; Coulombe, 2020), neural networks

1A special mention is due to Primiceri (2005) who popularized the use of time-varying parameters and
stochastic volatility in macroeconometrics.
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(Hornik, Stinchcombe, and White, 1989; Gu, Kelly, and Xiu, 2021; Coulombe, 2022) or

infinite mixtures (Hirano, 2002; Bassetti, Casarin, and Leisen, 2014; Kalli and Griffin,

2018; Billio, Casarin, and Rossini, 2019; Jin, Maheu, and Yang, 2022). Most of these

approaches, however, are fairly different from the VAR models that are the workhorse

of modern time series econometrics, making interpretation of the estimation results and

computation of quantities such as impulse response functions difficult. In addition, they

typically focus on extending the specification of the conditional mean, while assuming a

constant conditional variance, which can be restrictive for macroeconomic and financial

data. Finally, some of the methods do not scale well into high dimensions and are thus

not particularly suited for large datasets nowadays used in macroeconomics.

In this paper, we propose a new model that belongs to the non-parametric class

and is capable of capturing, in a very flexible way, not only parameter evolution but also

general non-linear relationships. Our model can be applied in a large data context while

keeping the flexibility and ease of use of VARs, and allowing for time-varying conditional

variances. Specifically, we combine the statistical literature on Gaussian process (GP)

regressions (see, e.g., Crawford, et al., 2019), with that on VARs to obtain a GP-VAR

model. Borrowing ideas from the literature on Bayesian Minnesota-type VARs, the model

assumes, for each endogenous variable, a different non-linear relationship with its own

lags and with the lags of all the other variables (and possibly of additional exogenous

regressors). Gaussian processes are used to model non-linearities in a flexible but efficient

way. They can be viewed as a non-parametric alternative to the adaptive Minnesota-

type shrinkage proposed in Chan (2021). They are also similar to neural networks, in

the sense that they are universal approximators based on infinite mixtures of Gaussian

distributions.2

We develop an efficient (Bayesian) estimation procedure, based on the structural

form of the GP-VAR, which has the additional benefit that its complexity is linear in

the number of endogenous variables and does not depend on the number of lags. Hence,

estimation can be parallelized and, in addition, the conjugate structure of the model we

use allows for pre-computing various matrix multiplications and kernel operations, which

further speeds up computation. As a result, estimation is feasible also for very large

models.

2In fact, specific choices of the kernels underlying Gaussian processes can produce a variety of neural
network models, see Novak, et al. (2018) for details.
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As in all Bayesian procedures, an assumption on the distribution of the errors is

required. As is common in the Bayesian VAR literature, we assume that the errors are

Gaussian. Yet, we also permit the variance of the errors to change over time, adopting a

stochastic volatility (SV) specification. Already in linear BVARs, the use of SV permits

to have time variation in the conditional distribution of the variables, so much so that

BVAR-SV are empirically a good alternative to quantile regressions (see Carriero, Clark,

and Marcellino, 2022). Moreover, multi-step predictive densities, used to produce forecasts

and generalized impulse responses, are non-Gaussian. The use of SV in the GP-VAR adds

flexibility, and prevents overfitting in the sense of avoiding that large realizations of the

shocks are interpreted as changes in the conditional mean.

We illustrate the GP-VAR with synthetic data generated from a highly non-linear

multivariate data generating process (DGP) that have both Gaussian and non-Gaussian

shocks. This DGP assumes that some equations feature parameters that exhibit structural

breaks while others depend non-linearily on the lags of the endogenous variables. To

assess whether the GP-VAR is also capable of recovering linear relations, one equation

is a standard linear regression model. In all these cases, our approach works reasonably

well in terms of detecting the nature of non-linearities.

Our GP-based model has a vast range of applicability, for both reduced form and

structural analysis. This mirrors the possible applications of standard VARs but allows

for much more general dynamic relationships across the variables. Besides the evaluation

with synthetic data, we consider a forecasting application and a more structural economic

analysis. In the forecasting application, we compare the performance of the GP-VAR with

other linear and non-linear competitors that allow for parameter change, and with the

BVAR with SV. Predicting US output, inflation and interest rates, we show that the GP-

VAR improves upon all competing models, with gains that are particularly pronounced

at the four-quarter-ahead horizon.

As an example of a structural economic analysis, and to gather new insights on a

topic that has recently attracted considerable attention (see, e.g., Bloom, 2014), we use the

GP-VAR to investigate the effects of exogenous uncertainty shocks on US macroeconomic

and financial time series. Comparing the responses of the GP-VAR with the ones of a

standard linear BVAR reveals that our model produces sensible responses for real activity

and stock markets. Differences between the responses relate to the shape and magnitudes,
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with the GP-VAR producing stronger reactions of uncertainty, real GDP growth, and

stock markets returns while yielding similar reactions of employment growth. Considering

models of differing sizes shows that the impulse responses do not differ markedly across

model sizes.

Our proposed framework naturally allows for analyzing potential asymmetries in

transmission channels. The responses to a positive uncertainty shock (higher unexpected

uncertainty) are typically much stronger than the ones to a negative shock. Interestingly,

the shape of the IRFs also differ, with positive shocks leading to responses that peak

later. In addition, our findings suggest that the relationship between real activity and un-

certainty becomes proportionally slightly smaller for large shocks, while financial markets

react relatively more strongly to larger increases in uncertainty. Finally, our framework

also allows us to investigate whether transmission mechanisms have changed over time.

Doing so reveals that the effects of uncertainty have been smaller in the great inflation

period (1970Q1 to 1984Q4), more pronounced through the great moderation (1985Q1

to 2006Q4) before again turning more muted during the post great moderation phase

(2007Q1 to 2019Q4).

The paper is structured as follows. Section 2 provides an introduction to Gaussian

process regression. In Section 3 we develop the GP-VAR model. This section also provides

necessary details on the prior setup and posterior computation. We then analyze model

performance using synthetic data in Section 4. Sections 5 and 6 include our empirical

work. In the former section we briefly discuss the dataset and provide some in- and out-

of-sample model evidence. In the latter, we focus on the macroeconomic implications

of an uncertainty shock. The final section briefly summarizes and concludes the paper.

The Online Appendix contains additional empirical results and technical details on the

specification, estimation and use of the GP-VAR model.

2 A brief introduction to Gaussian processes

In this section we briefly discuss Gaussian process (GP) regressions with a focus on time

series data.3 GP regressions are a non-parametric technique to establish a flexible rela-

tionship between a scalar time series yt and a set of K predictors xt in period t. The

3For a textbook treatment, see Williams and Rasmussen (2006).
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key advantage of this approach is that it does not rely on parametric assumptions on the

precise functional relationship between yt and xt.

In general, a non-parametric regression is given by:

yt = f(xt) + εt, εt ∼ N (0, σ2),

with f being some unknown regression function f : RK → R and εt denoting an indepen-

dent Gaussian shock with zero mean and constant variance σ2. We relax this assumption

in Sub-section 3.1 to allow for heteroskedastic shocks. An assumption on the error distri-

bution is needed in a Bayesian context and Gaussianity is the most common one, though

different distributions can be easily accommodated by exploiting a scale-location mixture

of Gaussians representation (see, e.g., Escobar and West, 1995).

In standard regression models, the function f is assumed to be linear with f(xt) =

β′xt where β is a K × 1 vector of linear coefficients. If mean relations are non-linear,

this assumption might be too restrictive. To gain more flexibility one can embed the co-

variates in xt into a higher dimensional space such as the space of powers xt → ψ(xt) =

(x′t, (x
2
t )
′, . . . , (xRt )′)′, with x2

t = (xt � xt) and higher orders defined recursively. Condi-

tional on choosing a sufficiently large integer R, this would provide substantial flexibility

to approximate any smooth function f . However, adequately selecting R is key and the

mapping, moreover, is ad-hoc in the sense that there exist infinitely many non-linear

mappings ψ.

Standard Bayesian methods place a prior on the coefficients associated with the

covariates (and possible non-linear transformations thereof) and thus control for uncer-

tainty with respect to these basis functions but at the cost of remaining within a class

of functions (such as linear, polynomial or trigonometric functions). By contrast, in GP

regressions we treat the function f as an unknown quantity and let the data decide about

the appropriate form (and degree) of non-linearities.

2.1 Estimating unknown functions: the function space view

The key inferential goal in GP regression is to infer the function f from the data under

relatively mild assumptions. This is achieved by specifying a prior on f(xt). A typical
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assumption is to assume that f(xt) follows a Gaussian process prior:

f(xt) ∼ GP (µ(xt), kϑ(xt,xt)) ,

with µ(xt) = E[f(xt)] being the mean function and

kϑ(xt,xτ ) = E[(f(xt)− µ(xt))(f(xτ )− µ(xτ ))]

denoting a kernel (or covariance) function that determines the relationship between f(xt)

and f(xτ ) for periods t and τ . The kernel is typically parameterized by a low dimensional

vector of hyperparameters ϑ and controls the behavior of the function f . This kernel

needs to be positive semidefinite and symmetric.

In what follows, we will set the function µ(xt) = 0 for all t. This is without loss

of generality, since any explicit basis function for µ(xt) can be used to model the mean

process. If the focus is on modeling stationary data, µ(xt) = 0 implies that a priori

the process is centered around a white noise process. In case one would like to model

persistent or non-stationary data it would be straightforward to implement a prior that

forces the system towards a set of random walk processes. This can be achieved by setting

µ(yt−1) = ρyt−1, where ρ denotes a persistence parameter with prior mean E[ρ] = 1.

Alternatively, one could specify the prior on f to imply persistence in yt. This possibility

is discussed in much more detail in Section A.1 of the Online Appendix.

A common choice in GP regressions is the Gaussian (or squared exponential) kernel

function:

kϑ(xt,xτ ) = ξ × exp
(
−κ

2
‖xt − xτ‖2

)
,

with ξ denoting a scaling parameter and κ the (inverse) length scale and thus ϑ = (ξ, κ)′.

Larger values of κ lead to a GP which displays more high frequency variation whereas

lower values imply a slowly varying mean function. The parameter ξ controls the prior

variance of the function f . To see this, note that if xt = xτ , we obtain Var[f(xt)] = ξ.

This specification is quite flexible and fulfills several convenient conditions. For in-

stance, Williams and Rasmussen (2006) show that the use of the Gaussian kernel implies

that f(xt) is mean square continuous and differentiable. Moreover, this kernel function
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represents a positive semidefinite and symmetric covariance function. Furthermore, Mer-

cer’s theorem (Mercer, 1909), under this kernel, states that the GP regression can be

written in terms of an infinite number of basis functions. These basis functions are Gaus-

sians with different means and variances. This suggests a connection to the literature

on Bayesian non-parametrics (Escobar and West, 1995; Neal, 2000; Kalli and Griffin,

2018; Frühwirth-Schnatter and Malsiner-Walli, 2019) that relies on infinite mixtures of

Gaussians to estimate unknown densities. The link between GPs and infinite mixtures of

Gaussians shows that the Gaussian assumption on εt is not too restrictive as the model

allows to recover non-Gaussian features in the data.

The GP prior represents an infinite dimensional prior over the space of functions.

This implies that the estimation problem is infinite dimensional as well. However, since

we sample data in a discrete manner, the GP prior becomes a multivariate Gaussian prior

on f = (f(x1), . . . , f(xT ))′:

f ∼ N (0T , Kϑ(X,X)),

with 0T being a T×1 vector of zeros, Kϑ(X,X) a T×T kernel matrix with typical element

kϑ(xt,xτ ) and X = (x1, . . . ,xT )′. This implies that, in terms of full data matrices, the

GP regression is given by:

y = f + ε, f ∼ N (0T , Kϑ(X,X)), ε ∼ N (0T , σ
2IT ),

where IT denotes a T × T identity matrix.

Assuming for the moment that σ2 is known, the posterior of f follows a multivariate

Gaussian distribution:

f |y ∼ N (f ,V f ),

with variance-covariance matrix V f and posterior mean vector f :

V f = Kϑ(X,X)−Kϑ(X,X)
(
Kϑ(X,X) + σ2IT

)−1
Kϑ(X,X),

f = Kϑ(X,X)
(
Kϑ(X,X) + σ2IT

)−1
y.

The mean function f can be interpreted as a weighted average of the values of the en-
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dogenous variable:

f =
T∑
t=1

αtKϑ(X,xt),

where α = (α1, . . . , αT )′ = (Kϑ(X,X) + σ2IT )−1y. This (finite dimensional) representa-

tion shows how one moves from an infinite dimensional problem to a finite dimensional

one.

The expression for the variance-covariance matrix V f also has an intuitive inter-

pretation. The first term is the prior variance (i.e., the kernel matrix). The second term

measures how much of the variance is expressed through the covariates in X and thus

the posterior covariance indicates how much the model learns from X.

The predictive distribution of f(xT+h) can be easily derived by exploiting basic

properties of the multivariate Gaussian:

f(xT+h)|y ∼ N (fT+h, V T+h), (1)

whereby

V T+h = kϑ(xT+h,xT+h)−Kϑ(xT+h,X)
(
Kϑ(X,X) + σ2IT

)−1
Kϑ(X,xT+h),

fT+h = Kϑ(xT+h,X)
(
Kϑ(X,X) + σ2IT

)−1
y.

Similar to the posterior mean f , the predictive mean fT+h is a weighted average of the

values of the endogenous variables y with the weights depending on the relationship

between X and a realization of the vector of covariates xT+h related to the h-step-ahead

horizon. The predictive variance V T+h, again, depends on a term that is purely driven

by the prior evaluated at xT+h minus a term that measures the informational content in

the covariates.

Before proceeding to the discussion on how to set the kernel it is worth noting that

what we have discussed above is often labeled the function-space view of the GP. This is

because the prior is elicited directly on f . Another way of analyzing GPs is based on the

weight-space view. Under the weight-space view one can rewrite the GP regression as a
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standard regression model as follows:

y = Wϑη + ε, η ∼ N (0T , IT ),

with Wϑ denoting the lower Cholesky factor of Kϑ(X,X) = WϑW
′
ϑ and η is a Gaussian

shock vector with zero mean and unit variance. This is a standard regression model

with T regressors, a coefficient vector η and a Gaussian prior on η. Standard textbook

formulas for the Bayesian linear regression model (see, e.g., Koop, 2003, Chapter 4) can

be used to carry out posterior inference.

This also shows that if we set Kϑ(X,X) = XVϑX
′, we obtain a linear regres-

sion model that features a Gaussian prior with zero mean and a typical prior variance-

covariance matrix Vϑ. This kernel implies many more parameters than the parsimony

inducing Gaussian kernel. Hence, the resulting fit and forecasts can be expected to have

posterior distributions with larger variances than those associated with the Gaussian ker-

nel, though bias would be lower if the true model is linear and features stable parameters.

2.2 Choosing a kernel and the role of the hyperparameters

In the previous sub-section the quantities for the posterior of f and the predictive density

for future values of f(xT+h) suggest that the kernel and its hyperparameters play an

important role. In this sub-section, we discuss this issue in more detail.

One of the key advantages of GPs is that by constructing suitable kernels, one

can determine the space of possible functions. This gives rise to substantial flexibility

and allows for capturing a large range of competing models within a single econometric

model. For instance, Williams and Rasmussen (2006, Chapter 6) discuss how kernels can

be constructed to mimic the behavior of neural networks, regression splines, polynomial

and linear regressions. Tree-based techniques such as Bayesian additive regression trees

(BART, Chipman, George, and McCulloch, 2010) can be cast in this framework by ex-

ploiting the ANOVA-representation of the model and then the weight-space view of the

GP. In principle, and we will build on this feature later, summing over the corresponding

kernels gives rise to another kernel and suitable weights could be constructed to select, in

a data-driven way, which model summarizes the data best.

As stated in the previous sub-section, our focus will be on the Gaussian kernel due
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to its excellent empirical properties and analytical tractability. The two hyperparameters

κ and ξ control the curvature and the marginal variance of the function, respectively. We

illustrate the effect of κ on the prior and posterior of f in Figures 1 and 2 by means

of two simple univariate examples. The first example models quarterly US inflation (in

year-on-year terms) and sets xt = t for periods ranging from 2005Q1 to 2015Q4. The

second example models US GDP growth as a function of the first lag of a macroeconomic

uncertainty measure for the same sub-sample.4 The figures then show (for both the prior

and posterior) the value of the function f(xt) on the y-axis and xt on the x-axis. Both

figures display in the left (right) panel the 5th and 95th prior (posterior) percentiles (with

the area, the 90% credible set, in between shaded in light red) as well as three random

draws from the prior (dashed red lines) in the left panel, and the posterior median (solid

red lines) in the right panel.

Figure 1 reveals that if yt is a (possibly non-linear) function of time and the inverse

length scale parameter is set small, the model generates functions that track the trend

in inflation rather well. This is similar to the unobserved components model of Stock

and Watson (2007), which features a persistent stochastic trend in inflation. Once we

increase κ we observe that the draws from the prior display more high frequency variation

with shorter cycles between peaks and troughs. Once this prior is combined with the

data, the estimated mean functions display much more curvature and fit the actual data

increasingly well.

Once κ is set too high, the functions arising from the prior vary substantially and

are likely to capture also very small deviations of inflation from its trend. This translates

into a close-to-perfect fit of the posterior mean of the functions and gives rise to serious

overfitting concerns.

To see how a GP regression captures a possibly non-linear relationship between yt

and xt, Figure 2 shows the functional relationship between output growth and lagged

macroeconomic uncertainty. If κ = 0.01, the regression relationship is almost linear

and suggests that high levels of (lagged) macroeconomic uncertainty are accompanied by

negative output growth rates.

4Throughout the paper, we use the macroeconomic uncertainty measure of Jurado, Ludvigson, and
Ng (2015) provided (and regularly updated) on the web page of Sydney C. Ludvigson (available online
via sydneyludvigson.com/macro-and-financial-uncertainty-indexes). Detailed information on this index
and the econometric techniques used to obtain this measure can be found in Jurado, Ludvigson, and Ng
(2015).
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Figure 1: Effect of different values of κ on the prior of f and the posterior f |y

Inflation and a linear time trend
f f |y
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Notes: In this figure, we showcase the GP regression with US inflation data using a linear time trend as the only regressor.
The left panels report, for different values of κ, the 5th and 95th prior percentiles (with the area in between shaded in light
red), three draws from the prior (dashed red lines), and the actual values of inflation (black dots). The right panels report
the 90% posterior credible sets (shaded in light red), the posterior medians (solid red lines), and actual inflation (black
dots).

When we set κ = 0.1 we observe much more curvature (both in the prior and the

posterior) in the relationship, indicating that if uncertainty is between 0 and around 1.7,

GDP growth is between 2.3 and 2.5 percent. However, once a certain threshold in the first

lag of uncertainty is reached, the relationship becomes strongly negative until it becomes

essentially flat for very high levels of uncertainty. A similar finding, but slightly more

pronounced, arises if we set κ = 4. In this case GDP growth does not change much as

long as lagged uncertainty is between 0 and 1.7 and then the relationship becomes, again,

strongly negative.

As is clear from these stylized examples, the role of the kernel and its hyperparame-

ters crucially impacts the posterior estimates of the function f . Setting κ too small leads

to a model which might miss important (higher frequency) information whereas a κ set

too large translates into an overfitting model which might yield a very strong in-sample

fit but poor ouf-of-sample predictions. Setting κ is thus of crucial importance and in all
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Figure 2: Effect of different values of κ on the prior of f and the posterior f |y

GDP growth and the first lag of macroeconomic uncertainty
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−5

0

5

10

−1 0 1 2 3 4

(a) Linear kernel: XX′

−5

0

5

10

−1 0 1 2 3 4

−5

0

5

10

−1 0 1 2 3 4

(b) Gaussian kernel: κ = 0.01
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Notes: In this figure, we showcase the GP regression with US GDP growth data using the first lag of macroeconomic
uncertainty as the only regressor. The left panels report, for different values of κ, the 5th and 95th prior percentiles (with
the area in between shaded in light red), three draws from the prior (dashed red lines), and the actual values of GDP growth
(black dots). The right panels report the 90% posterior credible sets (shaded in light red), the posterior medians (solid red
lines), and actual GDP growth (black dots).

our empirical work we will infer it through Bayesian updating.

Another key question is whether the estimated function converges to the true un-

derlying function. The literature deals with this question using several assumptions on

the error distributions (mostly setting σ2 = 0) or how the GP regression behaves if the

underlying function f differs in terms of smoothness from the GP prior controlled by the

kernel (see, e.g., Stone, 1982; van der Vaart and van Zanten, 2008; Yang, Bhattacharya,

and Pati, 2017; Teckentrup, 2020). Stone (1982), by focusing on iid data, shows that the

optimal rate of estimation of a ζ−smooth function is T−ζ/(2ζ+K) and thus decreases in

K while it increases in the smoothness of the true function. Building on this finding,

Teckentrup (2020) analyzes the contraction properties of a Gaussian process regression

under a general Matérn kernel function and provides error bounds that also depend on

the relationship of the smoothness of the true and estimated functions. If these agree,

one can achieve a convergence rate of T−ζ/K .
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After having provided the necessary foundations on Gaussian process regression, we

will now focus on developing a model that is suitable for macroeconomic analysis.

3 Large-dimensional Gaussian process VARs

In this section, we first develop the GP-VAR in Sub-section 3.1. Next, Sub-sections 3.2

to 3.4 are devoted to the development of efficient MCMC schemes to carry out posterior

and structural inference. Finally, Sub-section 3.5 details how to compute forecasts and

(generalized) impulse response functions for the GP-VAR.

3.1 The Gaussian process VAR

In the following discussion, let yt = (y1t, . . . , yMt)
′ denote an M × 1 vector of macroe-

conomic and financial variables.5 Moreover, xt = (x′1t, . . . ,x
′
Mt)

′ denotes an Mp × 1

vector with xjt = (yjt−1, . . . , yjt−p)
′ storing the “own” lags of the jth endogenous vari-

able and zt = (z′1t, . . . ,z
′
Mt)

′ an (M − 1)Mp × 1 vector of “other” lags. Hence, zjt =

(y′−jt−1, . . . ,y
′
−jt−p)

′, where y−jt denotes the vector yt with the jth element excluded.

We discriminate between own and other lags of yt because we assume that lags of

other endogenous variables impact a given endogenous variable differently from its own

lags. The literature on Bayesian VARs (see Bańbura, Giannone, and Reichlin, 2010; Koop,

2013; Huber and Feldkircher, 2019; Chan, 2021) has captured this through shrinkage priors

that treat coefficients on own and other lags differently. We wish to capture this equation-

specific asymmetry by specifying our GP-VAR to depend on two latent processes: one

driven by xt and one by zt. The structural form of the resulting GP-VAR is then given

by:

yt = F (xt) +G(zt) +Qyt + εt, εt ∼ N (0M ,Ht), (2)

with F (xt) = (f1(x1t), . . . , fM(xMt))
′ and G(zt) = (g1(z1t), . . . , gM(zMt))

′ and fj and gj

being equation-specific functions. The function fj controls how yjt depends on its own

lags while gj encodes the relationship between yjt and the lags of the other endogenous

variables. The functions fj and gj, and hence F and G, differ because we construct differ-

5We assume that the elements in yt are demeaned. In our empirical application we include a constant
term with an uninformative prior.
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ent kernels with distinct hyperparameters.6 The matrix Q is an M ×M lower triangular

matrix with zeros along its main diagonal. This matrix defines the contemporaneous

relations across the elements in yt.

Finally, εt is an M × 1 vector of Gaussian shocks with zero mean and an M ×M

time-varying variance-covariance matrix Ht = diag(ω1t, . . . , ωMt). We will assume that

ωjt follows a flexible stochastic volatility (SV) model:

hjt = logωjt = ρhjhjt−1 + νh,jt, νh,jt ∼ N (0, σ2
hj), hj0 ∼ N

(
0,

σ2
hj

1− ρ2
hj

)
, (3)

with the logarithm of hjt = logωjt being assumed to evolve according to a stationary

AR(1) state equation. We let ρhj denote the persistence parameter, σ2
hj the error variance,

and hj0 the initial state of the log-volatility process.

Allowing for time variation in the shock variances provides additional flexibility and

enables us to capture non-Gaussian features in the shocks (not only, but also due to the

fact that hjt enters the model non-linearly).7 In principle, we could also allow for un-

known functional relations between the contemporaneous terms of the preceding j − 1

equations and the response of equation j. However, this would lead to a complicated

non-linear covariance structure. Since we are interested in carrying out structural identi-

fication based on zero impact restrictions we opt for choosing this simpler approach which

implies multivariate Gaussian reduced form shocks, but with a time-varying covariance

matrix. Given that the literature on GPs typically assumes the shocks to be Gaussian

and homoskedastic, this is already a substantial increase in flexibility.8

The model in Eq. (2) assumes that the shocks in εt are, conditional on Qyt, orthog-

onal and hence estimation can be carried out equation-by-equation. We will exploit this

representation for simplicity and computational tractability. The jth equation, in terms

of full-data matrices, is given by:

Yj = fj + gj +

j−1∑
k=1

qjkYk + εj, εj ∼ N (0T ,Ωj) ,

6It is worth stressing that one could also think of our decomposition in terms of a new function with
a kernel that is given by the sum of the kernels of the functions fj and gj .

7One could also introduce additional scaling factors that arise from inverse Gamma distributions to
obtain a model with t-distributed shocks.

8A rare exception is Jylänki, Vanhatalo, and Vehtari (2011), who propose a GP regression with heavy
tailed errors and mainly focus on fast and robust approximate inference of a posterior that is analytically
intractable due to a t-distributed likelihood.
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with Yj = (yj1, . . . , yjT )′,fj = (fj(xj1), . . . , fj(xjT ))′, gj = (gj(zj1), . . . , gj(zjT ))′, Ωj =

diag(ωj1, . . . , ωjT ), εj = (εj1, . . . , εjT )′ and qjk denoting the (j, k)th element of Q. We will

use this form to carry out inference about the unknown functions fj and gj as well as the

remaining parameters and latent states of the model.

Notice that our estimation strategy is not invariant with respect to reordering the

elements in yt, a common problem if this orthogonalization strategy is used. In Sub-

section C.2 of the Online Appendix, we show that different orderings have only a small

impact on the estimated impulse responses.

3.2 Conjugate Gaussian process priors

In this sub-section, our focus will be on the priors on fj and gj. The priors on the

remaining, linear quantities are standard and thus not discussed in depth. We use a

Horseshoe prior (Carvalho, Polson, and Scott, 2010) on the free elements in Q, a Beta

prior on the (transformed) persistence parameter (ρhj + 1)/2 ∼ B(25, 5), and an inverse

Gamma prior on the state innovation variances σ2
hj. This prior is specified to have mean

0.1 and variance 0.01.

For equation-specific functions fj and gj, we specify two GPs with one conditional

on Xj = (xj1, . . . ,xjT )′ and one conditional on Zj = (zj1, . . . ,zjT )′:

fj ∼ N
(
0T ,
√

ΩjKϑj1
(Xj,Xj)

√
Ωj

)
, gj ∼ N

(
0T ,
√

ΩjKϑj2
(Zj,Zj)

√
Ωj

)
. (4)

We let
√

Ωj = diag(
√
ωj1, . . . ,

√
ωjT ) while Kϑj1

(Xj,Xj) and Kϑj2
(Zj,Zj) denote two

suitable kernels with typical elements given by:

kϑj1
(xjt,xjτ ) = ξj1 × exp

(
−κj1

2
(xjt − xjτ )′D−1

Xj
(xjt − xjτ )

)
, ϑj1 = (ξj1, κj1)′,

kϑj2
(zjt, zjτ ) = ξj2 × exp

(
−κj2

2
(zjt − zjτ )′D−1

Zj
(zjt − zjτ )

)
, ϑj2 = (ξj2, κj2)′.

For j = 1, . . . ,M , ϑj1 and ϑj2 are equation and kernel-specific hyperparameters and

the matrices DXj
,DZj

are diagonal matrices with typical ith element σ̂2
Xji

, σ̂2
Zji

. These

are set equal to the empirical variances of the ith column of Xj and Zj, respectively.

Inclusion of the diagonal scaling matrices DXj
and DZj

serves to control for differences

in the scaling of the explanatory variables. Notice that since the hyperparameters are

allowed to differ, we essentially treat own and other lags asymmetrically through different
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functional approximations fj and gj.

The kernel is scaled with the error variances in Ωj. A typical diagonal element

of the corresponding re-scaled kernel is given by ωjt × kϑj1
(xjt,xjt) = ωjtξj1 and ωjt ×

kϑj2
(zjt, zjt) = ωjtξj2. Typical off-diagonal elements are given by

√
ωjt
√
ωjτ×kϑj1

(xjt,xjτ )

and
√
ωjt
√
ωjτ ×kϑj2

(zjt, zjτ ). The interaction between the kernel and the error variances

gives rise to convenient statistical and computational properties.

First, note that if ωjt is large, the corresponding prior on the unknown functions is

more spread out. In macroeconomic data, ωjt is typically large in crisis periods when the

xjt and zjt are far away from their previous values. Since the diagonal elements of the

kernels are effectively determined by ξj = (ξj1, ξj2)′ the presence of ωjt allows for larger

values in the marginal prior variance and thus makes large shifts in the unknown functions

more likely. Second, the interaction between ωjt and ωjt−1 implies that the covariances are

scaled down if ωjt � ωjt−1, suggesting that the informational content decreases if increases

in uncertainty are substantial (i.e., ∆ωjt is large). If ωjt ≈ ωjτ and both are large, the

corresponding covariance will be scaled upwards. This implies that our model learns from

previous crisis episodes as well. Third, as we will show in Sub-section 3.4, interacting

the kernel with the error variances leads to a conjugate Gaussian process structure which

implies that we can factor out the error volatilities and do not need to update several

quantities during MCMC sampling. This speeds up computation enormously and allows

for estimating large models.

Before discussing how we select the hyperparameters, it is worth highlighting a

possible identification problem of our model. In our baseline specification we center fj

and gj around zero a priori. If we introduce an additional intercept term (or a simpler

mean function) no identification issues arise. However, if we believe that fj and gj are

centered on non-zero values, we can not separately identify them. In our empirical work,

we normalize the grand mean of gj to be equal to zero.9

It is worth stressing, however, that if interest is on predictions or impulse responses,

this does not cause any additional issues since the conditional mean function (which is the

sum over fj and gj) is identified. Exploiting basic properties of the Gaussian distribution

one can easily show that the sum of fj and gj in Eq. (4) gives rise to a new latent process

9Notice that this only concerns the posterior distribution since, under the prior, this condition is
automatically fulfilled.
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mj which is, again, Gaussian:

mj ∼ N
(
0T ,
√

Ωj

(
Kϑj1

(Xj,Xj) +Kϑj2
(Zj,Zj)

)√
Ωj

)
.

Hence, our model can be also viewed as a standard Gaussian process that combines

information in Xj and Zj by summing over two different kernels. This immediately

implies that if we are interested in sampling from the posterior predictive distribution of

yt+h (and related functions such as impulse responses) it is sufficient to estimate mj.

3.3 Selecting the hyperparameters associated with the kernel

So far, we always conditioned on the hyperparameters that determine the shape of the

Gaussian kernel. A simple way of specifying ϑj1 and ϑj2 is the median heuristic approach

stipulated in Chaudhuri, et al. (2017). This choice works well in a wide range of applica-

tions featuring many covariates (see, e.g., Crawford, et al., 2019). The median heuristic

fixes ξj1 = ξj2 = 1 and defines the inverse of the bandwidth parameter as:

κj1 = κ̄j1 = mediantτ

(
1

‖xjt − xjτ‖

)
, κj2 = κ̄j2 = mediantτ

(
1

‖zjt − zjτ‖

)
,

for j = 1, . . . ,M . This simple approach has the convenient property that it automatically

selects a bandwidth which is consistent with the time series behavior of the elements in yt.

To illustrate this, suppose that yjt is a highly persistent process (e.g., inflation or short-

term interest rates). In this case, for τ = t− 1, the Euclidean distance ‖xjt−xjτ‖ will be

quite small and, hence, the mean function fj smoothly adjusts. If yjt is less persistent and

displays large fluctuations (e.g., stock market or exchange rate returns), the Euclidean

distance ‖xjt − xjτ‖ will be large and, thus, fj allows for capturing this behavior. The

dispersion in zjt might have important implications for yjt if the aim is to model a trend

in yjt that depends on other covariates. This could arise in a situation where the prior

on fj is set very tight (i.e., the posterior of fj will be centered on zero) and information

not coming from xjt would then determine the behavior of yjt. This discussion highlights

how the median heuristic allows for flexibly discriminating between signal and noise and

thus acts as a non-linear filter which purges the time series from high frequency variation,

if necessary.

Given that we work with potentially large panels of time series, it is questionable
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that the median heuristic works equally well for all elements in yt. As a solution, we

propose to use the median heuristic to set up a discrete grid for both ξj1 (ξj2) and κj1

(κj2). For each element in this grid we specify a hyperprior. We use Gamma priors on all

elements. For j = 1, . . . ,M , that is

ξj1 ∼ G
(

1

2
,

1

2cξ1

)
and ξj2 ∼ G

(
1

2
,

1

2cξ2

)
,

for the linear shrinkage hyperparameters and

κj1 ∼ G
(

1

2
,

1

2cκ1

)
and κj2 ∼ G

(
1

2
,

1

2cκ2

)
,

for the bandwidth parameters. Here, cξ1, cξ2, cκ1 and cκ2 are scalars that define the

tightness of the hyperprior. In the empirical application, we set cξ1 = cξ2 = cξ and

cκ1 = cκ2 = cκ. These parameters strongly influence the shape of the conditional mean

and are crucial modeling choices and we set them through cross-validation. In our em-

pirical application, we find that small values of cκ work reasonably well, yielding an

informative prior that forces κj1 and κj2 towards zero.

Based on this set of priors we can derive the conditional posterior distribution. Since

ξj1 (ξj2) and κj1 (κj2) are placed on a grid, we can pre-compute several quantities related

to the kernel (such as inverses and Cholesky factors) while at the same time infer them

from the data with sufficient accuracy, which is crucial for precise inference. In what

follows, we center these grids around the median heuristic and additionally take into

account the considerations of the informative Gamma priors:

κjk ∈ [0.1κ̄jk, 2κ̄jk] and ξjk ∈ [0.04, 4], for j = 1, . . . ,M and k = 1, 2.

Here, the intervals indicate the minimum (maximum) value supported for each hyperpa-

rameter. Within this two dimensional range, we define a discrete grid of around 1000

combinations with equally sized increments along each dimension.10 The corresponding

posterior is discrete and we can use inverse transform sampling to carry out posterior

inference. Further details are provided in Sub-section 3.4.

10Implicitly, this two dimensional grid results in a prior view in which any hyperparameter combination
not included in the grid has zero support.
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3.4 Posterior computation

Posterior inference for the GP-VAR is carried out using a novel yet conceptually simple

MCMC algorithm which cycles between several steps. In this section we will focus on how

to sample from the posterior of fj, p(fj|•), with • denoting conditioning on everything

else, and ϑj1. Sampling from p(gj|•) and p(ϑj2|•) works analogously with some adjust-

ments. These relate to the fact that we introduce a linear restriction that (ι′ι)−1ι′gj = 0,

with ι denoting a T × 1 vector of ones. The corresponding conditional posterior distribu-

tion is a hyperplane truncated Gaussian where efficient sampling algorithms are available

(see Cong, Chen, and Zhou, 2017). Further details can be found in Sub-section A.2 of

the Online Appendix. It is worth stressing that we sample fj and gj separately. This in-

creases the computational burden slightly but allows us to consider both latent processes

separately from each other. In case our focus is purely on prediction or impulse response

analysis, one can also simulate the process mj defined in Sub-section 3.2 without any

additional restriction. Both procedures yield exactly the same results.

Generalizing the results in Section 2, it can be shown that the posterior of fj is

Gaussian for all j:

fj|• ∼ N (f j,V fj
),

with posterior moments given by:

V fj
=
√

Ωj

(
Kϑj1

(Xj,Xj)−Kϑj1
(Xj,Xj)

(
Kϑj1

(Xj,Xj) + IT
)−1

Kϑj1
(Xj,Xj)

)√
Ωj,

f j =
√

ΩjKϑj1
(Xj,Xj)

(
Kϑj1

(Xj,Xj) + IT
)−1√

Ωj
−1

(
Yj − gj −

j−1∑
k=1

qjkYk

)
,

where for j = 1, the term
∑j−1

k=1 qjkYk is excluded.

In principle, computing the inverse and the Cholesky factor of V
−1

fj
constitutes the

main bottleneck when it comes to sampling from p(fj|•). This is especially so if T is large.

But, in common macroeconomic applications which use quarterly US data, T is moderate

and thus computation is feasible. In our case, even if interest centers on using monthly

data or even higher frequencies, we can exploit the convenient fact that, conditional on
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the hyperparameters ξj1 and κj1,

Bfj
B′fj

=
(
Kϑj1

(Xj,Xj)−Kϑj1
(Xj,Xj)

(
Kϑj1

(Xj,Xj) + IT
)−1

Kϑj1
(Xj,Xj)

)
as well as its Cholesky factor Bfj

can be pre-computed. In addition, notice that

V fj
= Cfj

C ′fj
=
(√

ΩjBfj

)(√
ΩjBfj

)′
.

These practical properties (due to the conjugate structure) substantially speed up com-

putation in terms of sampling from p(fj|•).

These results are conditional on the hyperparameters. As outlined in the previous

sub-section, we will estimate them by defining a discrete two dimensional grid of 1000

combinations. For each hyperparameter combination on this grid, we compute the corre-

sponding kernel Kϑj1
(Xj,Xj) as well as all relevant quantities (i.e., Cfj

). Based on these

values we jointly evaluate the conditional posterior ordinate by applying Bayes theorem.

The exact form of the conditional likelihood is given by:

p(fj|ϑj1,Ωj) =(2π)−
T
2 × det

(√
ΩjKϑj1

(Xj,Xj)
√

Ωj

)− 1
2

× exp

{
−1

2

(
f ′j

(√
ΩjKϑj1

(Xj,Xj)
√

Ωj

)−1

fj

)}
.

Note that the shape of Kϑj1
(Xj,Xj) depends on the hyperparameters ϑj1 = (ξj1, κj1)′,

which we want to update. For each pair of values ϑ
(s)
j1 on our two dimensional grid (with s

denoting a specific combination), we compute the corresponding kernel K
ϑj1=ϑ

(s)
j1

(Xj,Xj)

as well as det
(
K

ϑj1=ϑ
(s)
j1

(Xj,Xj)
)

and
(
K

ϑj1=ϑ
(s)
j1

(Xj,Xj)
)−1

prior to MCMC sampling.

Hence, within our sampler evaluating the likelihood is straightforward and computation-

ally efficient. All that remains is to multiply the likelihood with the prior. The corre-

sponding posterior ordinates for each ϑ
(s)
j1 are used to compute probabilities to perform

inverse transform sampling to sample from p(ϑj1|•).

Conditional on fj and gj, the remaining parameters (i.e., the free elements in Q, the

log-volatilities and the associated coefficients in the corresponding state equations) can

be sampled through (mostly) standard steps. One modification relates to how we sample

the volatilities in Ωj. The main difference stems from the fact that the volatilities in Ωj

also show up in the prior on fj and gj. To circumvent this issue we integrate out the
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latent processes fj and gj. This calls for a minor adjustment of the original sampler by

integrating out the latent processes fj and gj first and then sampling the log-volatilities

using an independent Metropolis Hastings update similar to the one proposed in Chan

(2017). We provide additional details and the full posterior simulator in Section C of the

Online Appendix.

3.5 Forecasts and generalized impulse responses

In non-parametric models such as the GP regression described in Section 2, the effect

of the covariates on yt are typically analyzed through so-called partial dependence plots

(Friedman, 2001). Our large dimensional setting and the fact that we have a VAR-type

structure in the conditional mean, imply that partial dependence plots are difficult to

compute and visualize since they would require integration over a large number of covari-

ates. Moreover, VARs are dynamic models and partial dependence plots are difficult to

employ in dynamic settings. To capture non-linear model dynamics and possible relations

across variables, impulse responses are used to investigate the effects of structural shocks

on yt. In this paper, we will follow this route as well. Because the model is highly non-

linear, we need to resort to generalized impulse responses (GIRFs) originally proposed in

Koop, Pesaran, and Potter (1996). As GIRFs are based on (multi-step-ahead) forecasts,

and since forecasting with the GP-VAR is of interest by itself, we start with a discussion

on forecast computation.

We begin by computing the predictive distribution of the one-step-ahead forecasts

p(yt+1|It), with It denoting all available information up to time t. The one-step-ahead

predictive distribution is obtained by simulating from the predictive distribution of mt+1,

p(mt+1|It), and sampling from the marginal distribution of the shocks εt+1 ∼ N (0,Ht+1).

The draw from the one-step-ahead predictive density is used to set up xt+2 and zt+2.

Based on these, we can compute the corresponding kernels and obtain a draw mt+2 from

the density p(mt+2|It). Again, a draw from yt+2 ∼ p(yt+2|It) is obtained by sampling

from the marginal shock distribution εt+2 ∼ N (0,Ht+2) and adding this draw to mt+2.

Higher order forecasts are obtained analogously. The resulting predictive distribution of

yt+h will be highly non-Gaussian and might feature heavy tails and/or asymmetries. This

forms the baseline.

The GIRFs are computed as follows. To analyze the effects of a structural distur-
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bance (such as an uncertainty shock) we assume that the uncertainty indicator is (without

loss of generality) in the jth position in yt. A corresponding shock of size ς in time t to

the uncertainty indicator shifts all elements in yt by ς qj, i.e., the jth column of (I−Q)−1

scaled by a scalar that reflects the shock size ς. The other shocks are sampled, again,

from their marginal distributions, i.e., for all i 6= j we have that εit ∼ N (0, ωit). Based

on this we draw from the predictive distribution conditional on the uncertainty shock

ŷt+1 ∼ p(yt+1|It, εjt = ς) and use this draw to compute x̂t+2 and ẑt+2. For higher order

conditional forecasts we proceed as in the case of the unconditional forecast distribution

by simulating from the marginal distribution of the structural shocks which are added to

the conditional mean forecasts m̂t+h.

The corresponding dynamic responses are then obtained by subtracting the mean of

the unconditional predictive distribution from the conditional (on the uncertainty shock)

predictive density. This yields:

δht = E(yt+h|It, εjt = ς)− E(yt+h|It).

Notice that δht is state-dependent and, due to the non-linear nature of the conditional

mean function, allows for asymmetries in how yt reacts to shocks.11 This gives rise to

two inferential opportunities. First, one can assess how a given shock has impacted the

economy in a given point in time. This allows us to investigate whether transmission mech-

anisms depend on the underlying state of the economy. Second, the non-linear mean func-

tion directly implies that shock transmission can be asymmetric, so that positive shocks

might feed through the economy differently than negative shocks, and non-proportional,

so that larger shocks can have proportionally different effects than smaller shocks. In

all our empirical work we will exploit both dimensions and focus on asymmetries in the

sign, and non-proportionality in the size, of the shock as well as explicitly consider state

dependencies by computing δht over time. Finally, we also integrate out uncertainty with

respect to the state of the economy by averaging over all values of t.

11The full details on computing generalized impulse response functions can be found in Section A.5 of
the Online Appendix.
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4 Illustration using synthetic data

In this section, we illustrate the computational merits of our approach and evaluate

whether it successfully recovers different features of a highly non-linear DGP.

To illustrate our methods, we simulate T = 200 observations from a highly non-linear

small-scale VAR with M = 3 equations. The three equations differ in terms of whether

they are linear or non-linear in the parameters but also with respect to the distribution

of the shocks. Non-linearities are captured in two ways. First, we assume a break point

and second we assume non-linear relations between the response variable and the lags of

the other variables. In all these equations, we assume that the functions fj and gj differ

to assess whether our approach is capable of discriminating between the two. The precise

form of our DGP is given by:

yt = F (xt) +G(zt) +Qyt + εt, εt ∼ N (0M ,Ht),

with

F (xt) =


f1(x1t)

f2(x2t)

f3(x3t)

 =


∑p

k=1 φ11,ky1t−k∑p
k=1 φ22,ky2t−k × I(t ≤ 100) + φ22,1y2t−1 × I(t > 100)

1
12 sin(π2 y3t−1y3t−2) + 1

3(y3t−3 − 1)2 + 1
12y3t−4 + 1

12y3t−5

 ,

G(zt) =


g1(z1t)

g2(z2t)

g3(z3t)

 =


0

0× I(t ≤ 100) +
∑p

k=1

∑
j∈{1,3} φ2j,kyjt−k × I(t > 100)

1
18 sin(π2 y1t−1y2t−1) + 2

9(y1t−2 − 1)2 + 1
18y1t−3 + 1

18y2t−5

 ,

where Ht = diag(ω1t, ω2t, ω3t), φ11,1 = 0.8, φ22,1 = 0.65, φij,k ∼ N
(

0,
(

0.3
k

)2
)

for i 6= j

and k = 1, . . . p, and I(•) denotes the indicator function that equals one if its argument

is true and zero otherwise. The free elements in Q, are also simulated from a Gaussian

distribution with qjk ∼ N (0, 0.12). Moreover, we introduce an SV specification with

heavy tails for the structural error variances ωjt = λjtω̃jt with each h̃jt = log ω̃jt following

an independent random walk law of motion: h̃jt = h̃jt−1 + σh̃juh̃t, with uh̃t ∼ N (0, 1).

For each equation, we set the initial state ω̃j0 = exp h̃j0 = 0.01 and the state innovation

variance σh̃j = 0.01. We consider (conditionally) t3-distributed errors with three degrees

of freedom in the first equation by simulating λ1t ∼ G−1(3/2, 3/2) and (conditionally)

Gaussian-distributed errors for the second and third equation by setting λ2t = λ3t = 1 for
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all t.

Figure 3: Posterior distributions of fj, gj,mj(= fj+gj) and yj versus actual realizations
for each of the three equations in the DGP.
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Notes: Results are obtained from simulating a single realization from the proposed DGP. Horizontal panels refer to each
equation of the DGP. The solid black lines denote the actual outcomes of the respective functions, while the red solid lines
represent the posterior medians and the red shaded areas the 90% posterior credible sets of the respective fitted values.

Figure 3 shows results obtained from simulating a single realization from the DGP.

Horizontal panels refer to each equation of the DGP while vertical panels show the different

components. The red shaded areas represent the 90% posterior credible set of fj, gj,mj(=

fj + gj) and yj, while the solid black line denotes the actual outcome of these quantities.

The figure suggests that our approach is capable of detecting different functional relations

between yt, xt and zt. Across all three equations, we find that the estimated conditional

mean function mj tracks the actual value rather well. It is also worth stressing that

if the DGP features non-Gaussian shocks, the model recovers the true mean function

particularly well (see the first row of Figure 3). Zooming into the estimates for the different

25



Table 1: Correlations between the posterior median of mj(= fj + gj) and the actual
realization for each of the three equations in the DGP.

m1 m2 m3

Avg. 0.945 0.929 0.754
SD 0.012 0.020 0.045

Notes: Results are obtained from simulating 100 realizations from the proposed DGP. Avg. refers to the average correlation,
while SD to the standard deviation of correlations across realizations.

latent components reveals that most of this strong fit is driven by accurate estimates of

fj. Considering the estimates for gj suggests that, if the actual relationship between zt

and yt is non-existent, our approach accurately detects this behavior. However, there are

some cases where fj soaks up variation in gj. This, however, does not impact the mean

estimate mj.

Since this discussion has been based on a single draw from the DGP, one might

ask whether the strong performance of the GP-VAR is due to a particularly favorable

realization from the DGP. To briefly investigate whether this is the case we show, in the

first row of Table 1, the average correlations between the true and posterior median of

the functions for 100 draws from the DGP. Numerical standard errors (across these 100

repetitions) are shown in the second row. The first row indicates that correlations are

high, reaching 0.95 for the first, 0.93 for the second and 0.75 for the third equation. The

fact that mean correlations slightly decrease are mainly driven by the fact that equations

two and three feature substantial high frequency movements which, in our framework, is

mostly picked up by the stochastic volatility component.

One key advantage of the GP-VAR is that we can remain agnostic on the form of

non-linearities the conditional mean function might take. This is confirmed for synthetic

data where, irrespective of the non-linear nature of the model, the estimated sum of fj

and gj (i.e., mj) closely tracks the dynamics of the actual outcome. This finding holds

both for the linear case (i.e., the first equation), even with fat-tailed errors, and for highly

non-linear situations (i.e., the second and third equations).

We have stressed that our approach is computationally efficient and scalable to large

datasets. To investigate this claim more carefully, Figure 4 shows the time required to

generate 1000 draws from the joint posterior for a given equation across different values

of K and for T = 200. We show the computation times for our GP-VAR and a VAR

with SV. Since our approach is embarrassingly parallel the actual times for generating a
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Figure 4: Computation time for 1000 draws from the joint posterior distribution.
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Notes: Computation time for 1000 draws from the joint posterior distribution of a standard BVAR (black) and the GP-VAR
(orange). Since our approach can be parallelized, the actual times for generating 1000 draws from the joint posterior of
the full system is approximately M times the runtimes reported in this figure. Computation times are based on a desktop
machine with an AMD Ryzen 7 5800X 8-Core processor.

draw from the joint posterior of the full system are approximately M times the runtimes

reported in the figure.12

The most striking take away from the figure is that the computation time of the

GP-VAR does not depend on K. This implies that increasing the number of lags and/or

endogenous variables does not impact estimation times considerably. By contrast, the

time necessary to generate a draw from the joint posterior of the VAR rises rapidly in K.

This shows that our approach scales well in high dimensions and, in fact, is much faster

than competing approaches to non-linear VAR models such as TVP-VARs or regime-

switching VARs.

To provide a rough gauge on actual estimation times for practitioners, MCMC es-

timation of the GP-VAR with eight endogenous variables and five lags takes around 30.5

minutes on a standard desktop computer (for 10,000 MCMC draws). These are gross

estimation times and thus include pre-computation of matrices used during MCMC sim-

ulation and are not based on parallel computation of the individual equations (which is

possible due to the structural form). Estimating larger models (such as the 64 variable

GP-VAR) takes around four hours.

12Since we need to augment the jth equation with the contemporaneous values of the preceding j − 1
equations, this statement is only approximately valid.
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5 Modeling the US economy using GP-VARs

In this section, we apply our GP-VAR to US macroeconomic data. Sub-section 5.1 pro-

vides details on the data and Sub-section 5.2 discusses whether the GP-VAR fits the data

well, shows some of its key in-sample features, and investigates its forecast performance.

5.1 Data overview

We use the quarterly version of the dataset proposed in McCracken and Ng (2016) and

consider time series that range from 1960Q1 to 2019Q4. We exclude the years of the

Covid-19 pandemic to make the comparison with a linear VAR similar to that used in

Jurado, Ludvigson, and Ng (2015) (JLN) sensible. In the following, we consider four

different specifications that differ in the number of endogenous variables used. These

specifications are:

• GP-VAR-8: This dataset is patterned after the original JLN dataset. It includes the

JLN macroeconomic uncertainty index (labeled as UNC), real GDP (RGDP), civilian

employment (EMP), average weekly working hours in manufacturing (AWH), consumer

price index (CPI), average hourly earnings in manufacturing (AHE), Fed funds rate

(FFR), and the S&P 500 (SP500).

• GP-VAR-16: In addition to the variables in the VAR with M = 8 endogenous

variables, we also include the components of GDP (such as real personal consump-

tion and real private fixed investment), additional labour market variables (such

as unemployment, initial claims, average weekly working hours and average hourly

earnings across all sectors), housing starts, as well as the real M2 money stock.

• GP-VAR-32: On top of the variables of the VAR with M = 16 variables, we include

important financial variables, further data on housing and data on loans.

• GP-VAR-64: The largest model we consider features M = 64 endogenous variables.

The set of endogenous variables is obtained by taking the variables with M = 32

and including additional financial variables and data on manufacturing.

All variables are transformed to be approximately stationary and we include five lags of

the endogenous variables. The precise variables included (and transformations applied to
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each variable) are shown in Table B.1 in the Online Appendix. We consider these different

model sizes for several reasons. First, we would like to assess how adding additional

information impacts the forecasting performance and the responses of key variables to an

uncertainty shock. Second, we are interested in the relationship between non-linearities

and the size of the model.

5.2 Predictive evidence and in-sample features

In this section, we start by providing some predictive evidence of our GP-VAR and investi-

gate how the role of the parameters associated with the kernel impact predictive accuracy.

To this end, we employ a recursive forecasting design. Our initial training period goes

from 1960Q1 to 1999Q4. After computing the one- and four-step-ahead predictive distri-

butions, we add an additional observation, recompute all models and simulate from the

corresponding predictive densities. This procedure is repeated until the end of the sample

(2019Q4) is reached.

We consider three ways of specifying the equation-specific (j = 1, . . . ,M) and kernel-

specific (k = {1, 2}) hyperparameters. The first one is a semi-automatic approach that

is based on putting the (inverse) length scale and the linear scaling parameter on a two

dimensional grid κjk ∈ [0.1κ̄jk, 2κ̄jk] and ξjk ∈ [0.04, 4]. Notice that the median heuristic

is used to determine the lower and upper bound of the grid. The second approach (labeled

“semi-automatic w/o linear scaling” in Table 2) puts κjk ∈ [0.1κ̄jk, 2κ̄jk] on a grid and

sets ξjk = 1. Finally, we also consider a specification that does not rely on the median

heuristic (labeled “naive” in the table). The grid is κjk ∈ [0.1, 2] and ξjk is again set equal

to 1.

As competing models, we include the standard Minnesota BVAR with SV, a TVP-

VAR-SV similar to the one used in Primiceri (2005) and the BART-VAR with SV pro-

posed in Huber and Rossini (2022). All models are estimated for different model sizes

and benchmarked to a small-scale Minnesota BVAR with SV for the three variables we

focus on: real GDP growth (RGDP), CPI inflation (CPI), and the Fed funds rate (FFR).

For the three focus variables, we compute log predictive Bayes factors (LPBFs) relative

to the small-scale BVAR with SV, so that positive numbers indicate that a given model

works better than the benchmark while negative values suggest a weaker forecasting per-

formance. The LPBFs do not only take into account how well a given model predicts the
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Table 2: Log predictive Bayes factors (LPBFs) relative to a small-scale BVAR with
stochastic volatility (SV).

Specification One-step-ahead Four-step-ahead

M Grid for kernel hyperparameters Joint RGDP CPI FFR Joint RGDP CPI FFR

GP-VAR homoskedastic

64 semi-automatic –90.310 –7.769 –12.312 –59.702 –52.285 1.021 –9.443 –31.713
semi-automatic w/o linear scaling –78.323 –1.832 –14.770 –49.583 –45.304 5.940 –10.795 –22.169
naive –84.216 –4.953 –23.869 –53.582 –38.794 3.785 –4.312 –24.104

32 semi-automatic –82.036 –8.549 –11.667 –58.767 –45.526 1.816 –6.588 –30.567
semi-automatic w/o linear scaling –72.908 –2.449 –16.077 –48.757 –53.405 4.485 –22.694 –17.920
naive –71.102 –3.640 –16.168 –51.738 –46.112 2.980 –14.723 –20.679

16 semi-automatic –80.595 –7.388 –11.332 –58.063 –45.852 1.234 –6.506 –30.582
semi-automatic w/o linear scaling –83.747 –0.300 –18.696 –45.319 –51.862 2.849 –20.447 –18.794
naive –81.852 0.088 –15.936 –47.053 –42.958 2.051 –10.318 –20.849

8 semi-automatic –75.047 –7.007 –11.688 –52.163 –43.450 3.441 –6.034 –27.388
semi-automatic w/o linear scaling –78.854 –1.254 –21.087 –46.306 –46.022 4.743 –15.341 –19.580
naive –73.726 –2.155 –16.128 –46.877 –43.949 4.520 –12.480 –22.536

GP-VAR SV

64 semi-automatic –7.995 –5.423 –0.426 –2.106 6.370 –6.907 11.058 9.543
semi-automatic w/o linear scaling –15.400 –6.154 –4.971 –1.117 –0.077 –14.521 7.616 8.992
naive –4.490 –5.829 3.954 0.186 –4.247 –9.763 9.384 8.585

32 semi-automatic –3.673 –4.881 –0.672 3.699 10.102 –4.945 12.764 7.434
semi-automatic w/o linear scaling –5.219 –5.661 –0.629 2.134 –0.016 –12.096 11.029 4.948
naive –5.751 –5.225 –0.902 3.905 3.513 –12.650 11.346 5.793

16 semi-automatic 10.206 –4.387 7.387 7.222 17.899 –7.682 15.316 10.967
semi-automatic w/o linear scaling 4.986 –4.640 6.485 6.010 7.336 –14.249 18.058 9.332
naive 7.444 –2.179 6.436 9.980 6.735 –13.909 15.195 8.764

8 semi-automatic 4.459 –7.142 10.887 3.285 7.989 –9.383 16.009 8.377
semi-automatic w/o linear scaling 7.496 –7.652 12.122 7.648 13.661 –10.402 14.084 9.753
naive 8.994 –7.158 11.004 11.154 8.808 –11.680 14.594 9.055

BART-VAR SV

64 –41.432 –5.128 –12.146 –18.671 –10.984 2.714 1.216 –11.179
32 –39.967 –5.513 –4.017 –26.650 –17.564 –3.351 5.918 –15.872
16 –32.691 –2.987 –2.448 –22.042 –17.153 0.580 1.398 –17.512
8 –33.579 –5.345 –3.765 –20.196 –13.522 5.349 0.769 –21.598

Minnesota TVP-VAR SV

8 1.648 –1.531 2.220 –2.268 –3.543 –1.877 0.948 –0.359

Minnesota BVAR SV

64 –0.220 –0.347 –8.011 8.268 –23.563 –3.944 –18.503 –2.696
32 –7.983 2.592 –9.862 0.911 –12.071 –4.846 –6.127 2.137
16 3.426 2.296 1.746 –0.003 –5.153 –1.373 –2.152 0.137

8 Benchmark –223.987 –73.554 –138.633 –11.961 –278.520 –91.359 –151.355 –41.429

Notes: The table shows joint and marginal LPBFs relative to a small-scale BVAR with SV for the one- and four-step-ahead
horizons. The first column indicates model size, the second column provides information on how the hyperparameters are
treated. We consider three cases: “semi-automatic” refers to a two-dimensional grid for both the (inverse) length scale and the
linear scaling parameter which is scaled using the median heuristic, “semi-automatic w/o linear scaling” to a grid only for the
(inverse) length scale and sets ξjk = 1 while “naive” refers to a grid only for the (inverse) length scale without scaling the grid
using the median heuristic and ξjk = 1 (j = 1, . . . ,M ; k = {1, 2}). Positive values imply that a particular model improves
upon the small-scale BVAR with SV, while negative values suggest that the benchmark is preferred. The best specification for
each variable and horizon combination is shown in bold. The red shaded entries associated with the benchmark give the actual
log predictive likelihoods (LPLs).

realization of a given variable but also factor in forecasting performance for higher order

features of the predictive distribution (for a discussion, see Geweke and Amisano, 2010).

To investigate whether controlling for heteroskedasticity pays off in the GP-VAR, we also

consider homoskedastic variants of the GP-VAR in the upper part of the table.

Table 2 shows the results of our forecasting exercise across different model sizes.

The columns “Joint” show the joint LPBF for the three focus variables and thus provide
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a comparable (across model sizes) metric of overall predictive accuracy. Considering joint

LBPFs reveals that GP-VAR SV with M = 16 and a semi-automatic approach for hyper-

parameter elicitation improves upon all competing models for both forecast horizons. The

smallest model (M = 8) also yields competitive predictions. Once we further increase the

size of the dataset, predictive accuracy slightly deteriorates. Interestingly, and consistent

with findings in Clark, et al. (2021), we find that the gains in predictive accuracy increase

when we focus on higher forecast horizons. Comparing the models with SV to their ho-

moskedastic counterparts paints a very consistent picture. Models which do not control

for time variation in the error variances perform consistently worse than the models that

have SV in the error terms.

To drill deeper into which variables drive the overall forecasting performance, we now

focus on the marginal LPBFs for the three focus variables. Starting with one-quarter-

ahead predictions of GDP growth, we observe that the GP-VARs with SV are beaten

by the BVAR-SV with M = 32. When we turn off SV, predictive accuracy sometimes

increases by small margins. This result, however, changes if we focus on higher order

forecasts. For one-year-ahead predictions of GDP growth, the single best performing

model is the largest (M = 64) homoskedastic GP-VAR with the semi-automatic approach

that fixes the linear scaling parameter to one. Strikingly, at that horizon and for this

specific variable, using a homoskedastic specification is almost uniformly better than the

corresponding SV setup. For inflation and the Fed funds rate, the smaller-sized GP-VARs

again yield the best density forecasting performance, outperforming all competing models.

Finally, focusing on interest rate forecasts shows that GP-VARs with SV do well (for all

model sizes) but once we turn off SV forecasts become highly imprecise. This is driven

by the fact that during the zero lower bound, the conditional variance of the interest rate

equation approaches zero and a model which assumes homoskedasticity fails to take that

into account.

After having established that the different GP-VARs with SV do well when used to

forecast US macroeconomic quantities, we focus on some in-sample features for the GP-

VAR with eight endogenous variables. To get an impression on how the linear shrinkage

parameter evolves over time, Figure 5 plots the product of the error variances times the

linear shrinkage parameter that determines the kernel of fj and gj. Two interesting

features emerge. First, less shrinkage (larger parameter values) is applied to the own lags
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Figure 5: Linear shrinkage parameters of equation-specific kernels for the GP-VAR-8.
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Notes: This figure reports the posterior means of the product of the error variances ωjt and the linear scaling parameters
for own lags (ξj1) and for other lags (ξj2), respectively. These two quantities correspond to the diagonal elements of the
re-scaled kernels ωjt × kϑj1

(xt,xt) = ωjtξj1 and ωjt × kϑj2
(zt,zt) = ωjtξj2.

than to the lags of the other variables. This holds for most variables under scrutiny (except

for CPI inflation and S&P 500 returns). Second, less shrinkage is typically applied during

recessionary times. In particular, we introduce little shrinkage during the recessions in the

early 1980s and the financial crisis. Notice, however, that there are also some exceptions

from this pattern (such as stock market returns, hours worked or hours employed). This

finding is, again, in line with results from the forecasting literature showing that more

information is particularly useful during problematic times (see, e.g., Koop, 2013).

Finally, we investigate differences in κj1 and κj2 across equations (j = 1, . . .M)

and variable types. Boxplots that show the posterior distribution of the inverse of the

length scale parameters for own and other lags are in Figure 6. Recall that large values

of κjk (k = 1, 2) imply more variation in the latent processes whereas values of κjk close

to zero imply less variation in fj and gj. A general pattern is that for all variables the

hyperparameters associated with the kernel on own lags are considerably larger than the

ones for the kernel related to the other lags. This indicates that the own lags of a given

endogenous variable require more flexibility (i.e., functions that allow for much more
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Figure 6: Inverse length scale parameters of equation-specific kernels for the GP-VAR-8.
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Notes: This figure reports the posterior summaries in the form of simplified boxplots of the inverse length scale parameters
for own lags (κj1) and other lags (κj2), respectively. The solid black lines denote the posterior medians, while the blue
(green) shaded areas represent the 50% posterior credible sets (i.e., the posterior interquartile ranges).

variation) whereas the effect of other lags appears to be more linear. For the majority of

variables (except for hours worked, CPI inflation and the Fed funds rate), the posterior

distribution of the hyperparameter looks similar. For the three exceptions, κj1 is much

smaller and more precisely estimated.

6 The macroeconomic effects of uncertainty shocks

We now analyze the effects of uncertainty shocks using our GP-VAR and focus on assessing

how macroeconomic uncertainty feeds through the economy. In Sub-section 6.1, as a

benchmark exercise, we compare our impulse responses to those obtained from a model

similar to that used by JLN. In Sub-section 6.2 we leverage the non-linear nature of the

GP-VAR and analyze how the effects of uncertainty shocks change according to the sign

or size of the shocks, and over time.

6.1 Comparison with standard BVAR analysis

We benchmark the IRFs of our GP-VAR-8 to the ones of a BVAR with SV that is closely

related to the original JLN specification.13 In what follows, our focus will be on the

variables discussed in JLN: year-on-year growth rates of output (measured through real

GDP) and employment. We also show the responses of the uncertainty indicator and the

quarter-on-quarter returns of the S&P 500 and include the responses of the other variables

in Section C of the Online Appendix.

13While they use a classical homoskedastic VAR estimated on monthly data, we work with a quarterly
BVAR with SV.
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Figure 7: Impulse responses of focus variables in the GP-VAR-8 relative to a small-scale
BVAR.
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Notes: Average generalized impulse responses (GIRFs, outlined in Sub-section 3.5) to a positive one standard deviation
shock in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to the 68%
posterior credible sets. GP-VAR-8 refers to the smallest variant of our non-parametric model and BVAR-8 refers to a
small-scale BVAR with SV, which is closely related to the specification used in Jurado, Ludvigson, and Ng (2015).

In Figure 7 we report the (average over time in the case of the GP-VAR) posterior

quantiles (16th, 50th and 84th) of the responses to a macroeconomic uncertainty shock in

the JLN model (in gray) and in the corresponding GP-VAR (in orange) with eight endoge-

nous variables and uncertainty ordered second after stock market returns. Uncertainty

responses to its own shock differ slightly between the GP-VAR and the linear model.

These differences relate to responses within the first five quarters after the shock hit the

system. The BVAR yields uncertainty reactions that peak after one quarter, declining

steadily afterwards. As opposed to this swift reaction in uncertainty, the GP-VAR gen-

erates endogenous uncertainty reactions which peak after five quarters, declining sharply

afterwards. After around eight quarters, both IRFs (almost) coincide.

This uncertainty reaction has direct implications on how the other variables in the

model react. Real GDP growth reacts in an hump-shaped manner under both models.

However, driven by the somewhat later peak in uncertainty, the GP-VAR produces much

stronger output growth reactions that peak slightly later (after around five quarters).

When we focus on employment growth the IRFs differ less. In principle, both models

suggest a peak decline of around 0.8 percentage points, with the GP-VAR generating a

somewhat slower response, reaching its trough after about six to seven quarters. But

in principle, responses between the linear and non-parametric model tell a similar story.

Finally, financial market reactions measured through the S&P500 suggest a much stronger

decline in stock prices under the GP-VAR. Interestingly, the shape of the IRFs suggests

that the linear model generates the strongest reaction after around two quarters. In the

GP-VAR, we find that stock markets react faster and stronger to uncertainty shocks, with
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substantial reactions within the first year after the shock hit the system.

To conclude, in Figure 8 we report the GIRFs to the uncertainty shock for the same

four variables displayed in Figure 7 but obtained from GP-VARs of different dimensions

(with 8, 16, 32, and 64 variables). Differences across model sizes are small (or non-existent)

for most variables. Small differences arise for employment growth, with the magnitude of

the responses increasing with the model size. Stock market reactions also differ slightly

across datasets, with no clear-cut pattern. Since the GIRFs are very similar across model

size and given its excellent forecasting properties, we will focus on asymmetries generated

by the GP-VAR-8 model in the following sections. Results for the larger models are

provided in the Online Appendix.

Figure 8: Impulse responses of focus variables across different information sets.

UNC RGDP EMP SP500

0 1 4 8 12 16 0 1 4 8 12 16 0 1 4 8 12 16 0 1 4 8 12 16

−3

−2

−1

0

1

−1.2

−0.8

−0.4

0.0

−2.0

−1.5

−1.0

−0.5

0.0

0.0

0.5

1.0

1.5

GP−VAR−64 GP−VAR−32 GP−VAR−16 GP−VAR−8

Notes: Average generalized impulse responses (GIRFs, outlined in Sub-section 3.5) to a positive one standard deviation
shock in macroeconomic uncertainty across different information sets. Solid lines denote the posterior medians, while shaded
areas correspond to the 68% posterior credible sets.

6.2 Asymmetries in the transmission of uncertainty shocks

The non-linear and non-parametric nature of our models allows for asymmetries in the

impulse response functions. This implies that shocks propagate non-linearily through the

model, giving rise to differences in the GIRFs both over time but also for different shock

magnitudes or signs.

6.2.1 Asymmetries with respect to the sign of the shock

The first aspect we consider relates to whether positive and negative uncertainty shocks

trigger different responses of the economy. In Figure 9 we report the responses to negative

and positive uncertainty shocks from the GP-VAR-8, averaged over time. The figure thus

shows GIRFs to a positive (in orange), negative (in blue) and a negative shock multiplied
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Figure 9: Shock sign asymmetries in responses of focus variables for the GP-VAR-8.
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Notes: Average generalized impulse responses (GIRFs, outlined in Sub-section 3.5) to a negative (positive) one standard
deviation shock in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to
the 68% posterior credible sets. Here, negative ×(−1) denotes a negative one standard standard deviation shock with the
respective responses being mirrored across the x-axis.

by -1 (in gray, to ease comparison). From the figure we observe some differences. These

differences mostly relate to peak reactions as well as short-run (i.e. within two years)

responses. In general, we find that positive shocks (higher uncertainty) trigger a stronger

reaction of uncertainty, which in turn translates into more pronounced reactions of real

activity and stock market quantities.

More specifically, considering the endogenous reaction of the uncertainty indicator

shows that responses to a positive uncertainty shock peak after around a year and quickly

die out afterwards. However, if uncertainty unexpectedly declines, the peak happens on

impact and is much smaller as opposed to an adverse uncertainty shock.

Turning to real GDP and employment growth, we find that positive shocks trigger

stronger reactions for both variables. Interestingly, the timing of the peak responses is

similar for negative and positive shocks but reactions appear much more pronounced

for the latter. Stock market reactions also differ markedly across positive and negative

shocks. For positive shocks we, again, find that the peak effect happens after one year and

that it is more pronounced as compared to the negative shock. Overall, the picture that

emerges from the GP-VAR is that higher unexpected uncertainty has stronger effects on

the economy than lower uncertainty, a feature that is a priori ruled out in linear VARs.

6.2.2 Asymmetries with respect to the size of the shock

Our GP-VAR also allows for analyzing how shocks of different sizes impact the economy.

As opposed to a standard VAR which assumes that shocks enter linearly (and thus re-

sponses to shocks of different sizes are exactly proportional to each other) our GP-VAR is

more flexible and allows for investigating whether shocks of different magnitudes trigger
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different dynamics in the GIRFs.

In Figure 10 we consider two shock sizes: a one standard deviation and a two

standard deviation shock. To permit straightforward comparison of the shapes of the

responses to differently sized shocks, we also add impulses to a two standard deviation

shock which are then re-scaled to match the impact of the one standard deviation shock

(the gray shaded area in the figures).

Figure 10: Shock size asymmetries in responses of focus variables for the GP-VAR-8.

UNC RGDP EMP SP500

0 1 4 8 12 16 0 1 4 8 12 16 0 1 4 8 12 16 0 1 4 8 12 16

−4

−2

0

−1.5

−1.0

−0.5

0.0

−2

−1

0

0.0

0.5

1.0

1.5

2.0

Shock size 1 sd 2 sd 2 sd x (1/2)

Notes: Average generalized impulse responses (GIRFs, outlined in Sub-section 3.5) to a positive two (one) standard
deviation shock in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to
the 68% posterior credible sets. Here, 1 sd refers to a one standard deviation shock, 2 sd indicates a two standard deviation
shock, and 2 sd ×(1/2) denotes a two standard deviation shock with the respective responses divided by two.

This figure gives rise to at least two observations. First, when we compare the shape

of the responses to a one standard deviation to the ones of a two standard deviation

shock we find differences in the timing (and more generally in the shape) of the IRFs.

A stronger shock triggers a faster peak reaction of GDP and employment growth. Stock

market reactions display a somewhat different shape. After a sharp immediate reaction

(for both shock sizes) the peak effect happens to be on impact if the size of the shock is

large whereas it turns out to materialize after one year if the shock size is smaller.

Second, in terms of the magnitudes we find that a two standard deviation shock

triggers peak responses with magnitudes that are less than twice the magnitudes to a

one standard deviation shock. This is particularly visible for employment and output

reactions. For stock market responses, the impact reactions are (almost) proportional to

each other.

6.2.3 Asymmetries over time

After showing that the economy reacts asymmetrically with respect to the sign and size of

the uncertainty shock, this section asks whether the effect of uncertainty shocks changes
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over time (see Section 2.5 of Castelnuovo (2022), or Mumtaz and Theodoridis (2018) for

some evidence using TVP-VARs).

Figure 11: Impulse responses of focus variables in the GP-VAR-8 across different sub-
sample periods.
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one standard deviation shock in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded areas
correspond to the 68% posterior credible sets.

We start by considering impulse responses averaged over certain sub-periods in Fig-

ure 11. The classification into sub-periods is mostly taken from D’Agostino and Surico

(2012), and it is such that the main events in each sub-period include, respectively, the

great inflation (1970Q1 to 1984Q4), the great moderation (1985Q1 to 2006Q4), and the

post great moderation period (2007Q1 to 2019Q4). To also get a rough feeling about

whether asymmetries between positive and negative shocks have changed over time, all

figures include the IRFs to positive (in orange) and negative (in blue) shocks.

The main feature emerging from the figure is the different behavior of the response

of uncertainty across sub-samples. In the final two sub-samples, uncertainty responses

increase up to four quarters after the shock, with peak effects being strongest in the great
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moderation period and becoming slightly weaker in the final sub-sample. Moreover, sign

effects of uncertainty responses increase appreciably in the last two sub-samples.

These differences in the responses of uncertainty trigger differences in the IRFs of

the other quantities which relate not only to the magnitudes but also to the shapes of

the responses. We find that GDP growth, employment and the S&P 500 display the

strongest reactions in the great moderation regime, becoming slightly weaker in the post

great moderation period. The weaker reaction of real activity over time corroborates

findings in Mumtaz and Theodoridis (2018) who also report smaller responses of real

activity to uncertainty shocks. As opposed to their findings, we observe that stock market

reactions do not change much in magnitude but the shape differs (in accordance with

the different shape in the uncertainty reaction described above). We, moreover, observe

that asymmetries in terms of the sign of the shocks have decreased over time for GDP

and employment growth. Only for stock market reactions these sign asymmetries have

increased, with benign uncertainty shocks yielding a much weaker positive reaction of

stock markets during the post great moderation regime.

Finally, to conclude this section we raise the issue that considering GIRFs averaged

over sub-samples possibly still masks important differences over time within sub-samples.

To shed light on whether IRFs change within regimes, Figure 12 displays yearly averages

of posterior medians of the IRFs over time during each of the three periods. Yellow IRFs

refer to the beginning of the respective sub-sample and red ones denote IRFs computed

towards the end of the sub-sample. This figure suggests substantial heterogeneity in re-

sponses during the great inflation period. Especially towards the end of this sample,

reactions of GDP growth and employment point towards a substantial real activity over-

shoot. During the great moderation, the intra-period variation of the IRFs becomes much

smaller, yielding patterns more consistent with the common wisdom in the uncertainty

literature: real activity and stock markets decline in response to increases in economic

uncertainty. In the years from 2007 to 2019, we find that IRFs differ especially in the

beginning of the sample (from 2007 to 2009). For the remaining years, there is much less

variation in responses and these appear to be similar to those observed in the 1985 to

2006 period.

Overall, we can conclude that the effects of uncertainty change both during sub-

samples defined by economic considerations and sometimes also within each sub-sample.
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Figure 12: Period-specific impulse responses of focus variables in the GP-VAR-8 across
different sub-sample periods.
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This kind of time variation is a priori ruled out in linear VAR models, which can therefore

lead to biased estimates of the effects of uncertainty.

7 Conclusions

In this paper, we have developed a flexible multivariate model that uses Gaussian processes

to model the unknown relationship between a panel of macroeconomic time series and their

lagged values. Our GP-VAR is a very flexible model which remains agnostic on the precise

relations between the endogenous variables and the predictors. This model can be viewed

as a very flexible and general extension of the linear VAR commonly used in empirical

macroeconomics. We also control for changes in the error variances by introducing a

stochastic volatility specification. While a more flexible conditional mean can reduce the
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need of a time-varying conditional variance, empirically we find heteroskedasticity to be

relevant also for GP-VARs.

We develop efficient MCMC estimation algorithms for the GP-VAR, which are scal-

able to high dimensions, so much so that for large models estimation is even faster than

for the corresponding BVAR-SV. Scaling the covariance of the Gaussian process by the

latent volatility factors is particularly helpful to achieve computational gains, as it permits

to pre-compute several quantities before MCMC sampling. This speeds up computation

enormously.

To illustrate the practical working of the GP-VAR, we first test it on simulated data

from different linear and non-linear models, finding that it is capable of reproducing a

variety of non-linear patterns (but also a linear behavior). Then, we show in a forecasting

exercise that our model yields favorable density forecasts of US output, inflation and short-

term interest rates with respect to both linear and other non-parametric and time-varying

specifications.

In the main part of our empirical work we re-assess the effects of uncertainty shocks

by replicating and extending the analysis carried out by Jurado, Ludvigson, and Ng (2015)

based on linear VARs with the GP-VAR. Overall, our empirical results suggest that the

measurement of uncertainty and its effects with a simple linear VAR can lead to several

incorrect conclusions. Not only the effects of uncertainty can be over-stated, but they

can also be treated as stable over time, symmetric for positive and negative shocks, and

proportional to the shock size. Instead the GP-VAR model, which is preferred to the

linear VAR in terms of fit and forecasting performance, returns time variation in the

responses, asymmetry and non-proportionality. Hence, the empirical features we uncover

should be also replicated by theoretical models about uncertainty and its effects, which

instead at the moment typically assume stability and symmetry (see, e.g., the survey in

Bloom, 2014).
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A Technical Appendix

A.1 Capturing persistence through the kernel

In this sub-section, we discuss how to handle persistent time series with GPs. In principle,

appropriately choosing κ allows for capturing slowly evolving trends in yt. But one elegant

aspect of GPs is that stochastic trends in yt can also be modeled explicitly through the

kernel. This can be achieved as follows. Let B denote a T × T lower triangular matrix

with 1’s on the main and off-diagonal elements.

The corresponding weight-space representation is then given by:

y = Bη + ε, η ∼ N (0T , rIT ), ε ∼ N (0T , σ
2
εIT ),

where r is a prior scaling parameter that controls the average jump size of the shocks in

ηt. Notice that this equation can be represented in component form as follows:

yt =
t∑

s=1

ηs + εt, ηt ∼ N (0, r), εt ∼ N (0, σ2
ε),

which implies that yt is driven by a latent random walk factor with the matrixB capturing

the state evolution dynamics and r representing the state innovation variance. This is

a standard unobserved components model. Notice that the corresponding kernel matrix

can be derived as rBB′. Adding this to the Gaussian kernel discussed in the main text

yields a combination between a kernel that captures unknown relations between yt and

xt but also possible stochastic trends in yt.

The properties of this linear persistence kernel are illustrated in Figure A.1. This

figure again shows CPI inflation (again in year-on-year terms) but uses a longer sample

(1970Q1 to 2019Q4) and the prior on f (under the linear persistence kernel) and the

posterior of f . The figure reveals that if we set r close to zero, the corresponding estimate

will only capture low frequency movements in yt. The larger r gets, the larger the in-

sample fit effectively becomes. If we set r = 0.1, we observe that the model yields an

almost perfect in-sample fit.
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Figure A.1: Effect of different values of r on the prior of f and the posterior f |y
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Notes: In this figure we showcase the GP regression with US inflation data, setting the matrix of regressors, B, to be a
lower triangular matrix with 1’s as the diagonal and off-diagonal elements. The linear kernel is given by rBB′. The left
panels report, for different values of r, the 5th and 95th prior percentiles (with the area in between shaded in light red),
three draws from the prior (in dashed red), and the actual values of inflation (black dots). The right panels report the 90%
posterior credible sets (shaded in light red), the posterior medians (in solid red), and actual inflation (black dots).

A.2 Sampling the factors under linear restrictions

As stated in the main text, we identify the conditional mean of the process by introducing

the linear restriction that Ggj = 0 with G = (ι′ι)−1ι′. This can be efficiently achieved

through the sampler proposed in Cong, Chen, and Zhou (2017).

Suppose our goal is to simulate gj from NS(gj,V gj) with restriction S = {gj :

Ggj = 0} and moments given by:

V gj =
√

Ωj

(
Kϑj2

(Zj,Zj)−Kϑj2
(Zj,Zj)

(
Kϑj2

(Zj,Zj) + IT
)−1

Kϑj2
(Zj,Zj)

)√
Ωj,

gj =
√

ΩjKϑj2
(Zj,Zj)

(
Kϑj2

(Zj,Zj) + IT
)−1√

Ωj
−1

(
Yj − fj −

j−1∑
k=1

qjkYk

)
.

This can be achieved using Algorithm 2 of Cong, Chen, and Zhou (2017). This algorithm

consists of two steps. In the first step we sample g∗j from the unrestricted distribution

N (gj,V gj). In the second step, we obtain a draw from the restricted distribution by

setting:

gj = g∗j − V gjG
′(GV gjG

′)−1Gg∗j .
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All involved quantities are trivial to compute and this step does not introduce additional

computational hurdles. This normalization essentially subtracts a constant term from g∗j ,

the unrestricted draw of gj, so that the resulting grand mean will be equal to zero. This

leaves the conditional mean function mj unchanged.

A.3 Sampling the log-volatilities

We sample the log-volatilities marginally of the factors. This is achieved by exploiting

the weight-space view of the GP. Integrating out fj and gj allows us to rewrite the jth

equation as

Ỹj =

(
Yj −

j−1∑
k=1

qjkYk

)
=
√

ΩjW̃j ε̃j, ε̃j ∼ N (0, IT ), (A.1)

where W̃j denotes the lower Cholesky factor of
(
Kϑj1

(Xj,Xj) +Kϑj2
(Zj,Zj) + IT

)
and

Ωj = diag(ωj) with ωj = (ωj1, . . . , ωjT )′. Our goal is to sample the log-volatilities

hj = logωj from its conditional posterior distribution p(hj|Ỹj, W̃j,θhj), with θhj =

(ρhj, σ
2
hj, hj0)′ collecting the parameters associated with the state equation of the log-

volatility process, which evolves according to a stationary AR(1).

The corresponding T -dimensional full conditional posterior distribution can be ex-

pressed as:

p(hj|Ỹj, W̃j,θhj) ∝ p(Ỹj|hj, W̃j)× p(hj|θhj), (A.2)

where p(Ỹj|hj, W̃j) refers to the likelihood and p(hj|θhj) to the prior. While the prior is

Gaussian and defined by the state equation in Eq. (3), the likelihood takes a multivariate

Gaussian form only when conditioned on the log-volatilities hj (and thus Ωj):

p(Ỹj|hj, W̃j) = (2π)−
T
2 × det

(√
ΩjW̃jW̃

′
j

√
Ωj

)− 1
2

× exp

{
−1

2

(
Ỹ ′j

(√
ΩjW̃jW̃

′
j

√
Ωj

)−1

Ỹj

)}
,

(A.3)

where
√

ΩjW̃jW̃
′
j

√
Ωj refers to the variance-covariance matrix of Ỹj. At this point it

proves convenient to use the fact that Ωj is a diagonal matrix. The main challenge is that

hj enters Eq. (A.3) non-linearly and is never observed directly (but evolves according to
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a latent process), which complicates the evaluation of the likelihood.

Moreover, the conjugate nature of our GP regression complicates likelihood eval-

uation further. The algorithm proposed by Kim, Shephard, and Chib (1998) based on

auxiliary mixture indicators cannot be used because Ωj – and thus hj – are serially cor-

related and are not independent from each other, as the full symmetric kernel matrices

Kϑj1
(Xj,Xj) and Kϑj2

(Zj,Zj) enter the Cholesky factor W̃j.
1

As a remedy, we follow Chan (2017) who proposes computationally efficient sam-

pling techniques. Our algorithm is a variant of the independence Metropolis-Hastings

(MH) which can be readily applied in the present setting.2 As noted by Chan (2017),

this algorithm is fast and exhibits good mixing properties for several reasons. The inde-

pendent MH step samples the log-volatilities jointly from their full conditional posterior

distribution, the proposal distribution is constructed such that the acceptance rate of the

MH step is sufficiently high, and in addition, we resort to sparse matrix methods to speed

up computation.

In the following, we provide a detailed discussion on our independence MH step.

We use a second-order Taylor approximation with respect to hj and then employ the

Newton-Raphson optimization algorithm to represent the non-trivial conditional posterior

in Eq. (A.2) in the form of a multivariate Gaussian distribution. This approximation

is centered on the mode of p(hj|Ỹj, W̃j,θhj) and the variance-covariance is given by

the inverse of the negative Hessian of log p(hj|Ỹj, W̃j,θhj) evaluated at the obtained

mode. This Gaussian distribution provides a sufficiently accurate approximation to the

full conditional posterior of hj and thus ensures a high acceptance rate when used as the

proposal density in our MH step, leading to favorable mixing properties.

To construct our Gaussian proposal density thus requires evaluating the gradient and

Hessian of the logarithm of the full conditional posterior of hj. According to Eq. (A.2), the

log-posterior distribution is the sum of the log-likelihood and log-prior distribution, imply-

ing that the gradient/Hessian of the log-posterior is also the sum of the gradient/Hessian

of these two components.

We first focus on the gradient and the Hessian of the log-prior distribution, since

1In particular, this implies that the measurement errors log(ε̃2j ) of the linearized observation equation
(which is obtained by squaring and taking the logarithm of Eq. (A.1)) are no longer independently
log(χ2

1) distributed and cannot readily approximated by a known mixture of Gaussian distribution to
render the likelihood Gaussian conditional on the mixture indicators.

2For a textbook treatment, see Chan, et al. (2019).
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these quantities are mostly standard (see, e.g., Chan, et al., 2019). For the tth element of

hj, the prior is defined by Eq. (3) and depends on the additional state equation hyperpa-

rameters θhj. For hj, Eq. (3) can be written more compactly as:

Dhjhj =µ̃hj + ũhj, ũhj ∼ N (0T , σ
2
hjIT ),

hj =µhj + uhj, uhj ∼ N (0T , σ
2
hj

(
D′hjDhj)

−1
)
,

(A.4)

with

Dhj =



1 0 0 . . . 0 0

−ρhj 1 0 . . . 0 0

0 −ρhj 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −ρhj 1


denoting a T ×T - matrix, µ̃hj = (ρhjhj0, 0, . . . , 0)′ being T ×1-vector, and µhj = D−1

hj µ̃hj.

Then the log-prior distribution of hj is given by:

log p(hj|θhj) = −T
2

log 2π − T

2
log σ2

hj −
1

2σ2
hj

(hj − µhj)′D′hjDhj(hj − µhj), (A.5)

by noting that det(D′hjDhj) = 1.

In the following, let rP (h̃j) denote the first derivative (gradient) and RP (h̃j) the

second derivative (Hessian) of the log-prior distribution with respect to hj evaluated at

h̃j:

rP (h̃j) =
∂ log p(hj|θhj)

∂hj

∣∣∣∣
hj=h̃j

=− 1

2σ2
hj

D′hjDhj(hj − µhj),

RP (h̃j) = −∂
2 log p(hj|θhj)
∂hj∂h′j

∣∣∣∣
hj=h̃j

=− 1

2σ2
hj

D′hjDhj.

While rP (h̃j) is a T × 1 vector, RP (h̃j) is a tridiagonal matrix of dimension T , with

non-zero elements on the main diagonal and the two diagonals below and above the main

one.
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Next, we focus on the log-likelihood, which has the following form:

log p(Ỹj|hj, W̃j) =− T

2
log 2π − 1

2

(
T∑
t=1

hjt

)
− 1

2
log
(

det
(
W̃jW̃

′
j

))
− 1

2

(
Ŷ ′j

(
W̃jW̃

′
j

)−1

Ŷj

)
,

(A.6)

where all the quantities involving W̃j can be pre-computed and Ŷj =
(
Ỹj � exp

{
−hj

2

})
with � denoting the component-wise multiplication. Now, let a T × 1 vector rL(h̃j)

denote the gradient and a T × T -matrix RL(h̃j), the Hessian of the log-likelihood again

with respect to hj evaluated at h̃j:

rL(h̃j) =
∂ log p(Ỹj|hj, W̃j)

∂hj

∣∣∣∣
hj=h̃j

=− 1

2
ιT +

1

2

((
W̃jW̃

′
j

)−1

Ŷj

)
� Ŷj,

RL(h̃j) = −∂
2 log p(Ỹj|hj, W̃j)

∂hj∂h′j

∣∣∣∣
hj=h̃j

=
1

4
diag

(
Ŷj

)(
W̃jW̃

′
j

)−1

diag
(
Ŷj

)
+

1

4
diag

(((
W̃jW̃

′
j

)−1

Ŷj

)
� Ŷj

)
.

It is easy to see that the presence of
(
W̃jW̃

′
j

)−1

might lead to a fairly dense T × T

Hessian, which makes the use of band sparse matrix algorithms impractical and leads to

non-negligible computational costs for matrix calculations involving the Hessian.3

In what follows, we exploit the special structure of
(
W̃jW̃

′
j

)−1

. Elements of the

two kernels Kϑj1
(Xj,Xj) and Kϑj2

(Zj,Zj) are defined by a squared exponential function

that per construction imposes a view that periods close to each other (usually this is the

case for t − 1, t, and t + 1) feature relatively large covariances, while dissimilar periods

have very small covariances. This structure implies that the elements of
(
W̃jW̃

′
j

)−1

on

the tridiagonal main band carry most of the information, while entries far away from this

main band are typically close to zero. Hence, we approximate RL(h̃j) by a T × T matrix

R̂L(h̃j) that keeps only the elements of RL(h̃j) on the tridiagonal main band and sets all

other entries to zero. This approximation has the convenient feature that both R̂L(h̃j)

and RP (h̃j) have the same band sparse structure. Consequently, the Hessian of the log-

posterior distribution is also a tridiagonal matrix, which greatly facilitates computation

through the use of band sparse matrix algorithms.

3A band sparse matrix is symmetric and contains only non-zero entries along the main diagonal band.
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Combining the gradient (the approximated Hessian) of the log-likelihood with that

of the log-prior distribution, we obtain the gradient (the approximated Hessian) of the

log-posterior distribution for hj evaluated at h̃j:

r(h̃j) =
∂ log p(hj|Ỹj, W̃j,θhj)

∂hj

∣∣∣∣
hj=h̃j

=rL(h̃j) + rP (h̃j),

R(h̃j) = −∂
2p(hj|Ỹj, W̃j,θhj)

∂hj∂h′j

∣∣∣∣
hj=h̃j

=RL(h̃j) +RP (h̃j) and

R(h̃j) ≈ R̂(h̃j) =R̂L(h̃j) +RP (h̃j).

Finally, to define the moments of our Gaussian proposal density for our independence

MH step, we employ the Newton-Raphson optimization method. To obtain the mode ĥj

of the log-posterior distribution of hj, we initialize the algorithm with a suitable starting

value hj = h̃
(1)
j and iterate through

h̃
(s+1)
j = h̃

(s)
j −

(
R̂(h̃

(s)
j )
)−1

r(h̃
(s)
j )

until ‖h̃(s+1)
j − h̃(s)

j ‖ < ε, with ε = 10−4 being sufficiently close to zero and acting as

convergence criterion for the numerical maximization algorithm. While ĥj is used as the

mean of the Gaussian proposal density, the variance-covariance is set to the inverse of

the (approximated) negative Hessian evaluated at ĥj. Hence, the proposal is given by:

N
(
ĥj,
(
−R̂(ĥj)

)−1
)

.

This proposal has good empirical properties. In all our empirical work it leads to

acceptance rates between 35 and 50 percent.

A.4 A sketch of the posterior simulator

Our posterior simulator is comprised of several steps that involve the full conditional

distributions of the corresponding latent quantities and parameters of the model. Since

we use a collapsed sampler the ordering of the steps is crucial for sampling from the

correct joint posterior distribution.

The joint posterior distribution associated with the jth equation is given by:

p(fj, gj, qj1, . . . , qjj−1,Ωj,ϑj1,ϑj2,dj,νj,$j|Data), (A.7)
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where dj denotes the mixture indicators used in the Gaussian approximation to the log-χ2
1

distribution, νj are the coefficients associated with the SV state equation and $j are the

hyperparameters associated with the Horseshoe prior. Let qj• = (qj1, . . . , qjj−1)′ denote

the jth row of Q.

Conditional on adequately chosen starting values, our MCMC algorithm draws from

the joint posterior of equation jth coefficients and states by iterating through the following

steps.

Step 1: Sample a value of qj• from p(qj•|fj, gj,Ωj,$j, Data) ∼ N (qj•,V qj) if j > 1.4 The

moments V qj and qj• take a standard form.

Step 2: Simulate the full history of the (log) volatilities from p(Ωj|qj•,ϑj1,ϑj2,dj,νj, Data)

using the independent MH algorithm outlined in Sub-section A.3. Notice that this

step is marginally of fj and gj

Step 3: The factor fj is obtained from the multivariate Gaussian conditional posterior

p(fj|gj, qj•,ϑj1,Ωj, Data) as described in Sub-section 3.4.

Step 4: The factor gj is obtained from the multivariate Gaussian conditional posterior

p(gj|fj, qj•,ϑj2,Ωj, Data) as described in Sub-section A.2.

Step 5: ϑj1 is obtained from its discrete posterior distribution using multinomial sampling.

Step 6: Similarly, ϑj2 is also obtained through multinomial sampling.

Step 7: Sample the parameters of state equation associated with the log-volatilities. The

corresponding conditional distributions all take standard forms.

Step 8: Sample the hyperparameters of the Horseshoe prior in $. We use the Gibbs updat-

ing step described in Makalic and Schmidt (2015) which only samples from inverse

Gamma distributions.

The precise ordering of the steps in our algorithm is crucial for obtaining draws from the

correct stationary distribution since we rely on marginalizing out some of the states/parameters

in some steps of the MCMC algorithm.5 Notice that fj and gj are sampled conditionally

4If j = 1, ignore this step and proceed to step 2.
5Van Dyk and Park (2008) discuss a general approach on how to construct collapsed Gibbs samplers

in order to maintain the correct stationary distribution.
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on Ωj while Ωj is sampled marginally from fj and gj. This implies that we again sample

Ωj marginally from the factors and the factors conditionally on the volatilities, leading

to a joint update from p(Ωj,fj, gj|•).

A.5 Computing generalized impulse response functions

Computing the GIRFs is achieved as follows. We proceed in an equation-by-equation

basis using the structural representation of the GP-VAR in Eq. (2). In this case, the

one-step-ahead predictive distribution of m1t is:

m1t+1 ∼ N (m1t+1, V 1t+1),

with predictive moments given by:

V 1t+1 = σ1t+1

(
k∗ϑ1

(W1t+1,W1t+1)−K∗ϑ1
(W1t+1,W1)(K∗ϑ1

(W1,W1) + IT )−1K∗ϑ1
(W1W1t+1)

)
,

m1t+1 = σ1t+1K
∗
ϑ1

(W1t+1,W1)(K∗ϑ1
(W1,W1) + IT )−1

√
Ω1

−1
Y1.

Here, we let Wj = (Xj,Zj) with tth row Wjt and K∗ϑj
(Wj,Wj) = Kϑj1

(Xj,Xj) +

Kϑj2
(Zj,Zj). A draw from the one-step-ahead predictive distribution of y1t+1 is obtained

from:

y1t+1 ∼ N (m1t+1, ω1t).

Draws from the forecast distribution of y1t+1 are used to form the predictive dis-

tribution for m2t (and thus y2t+1 and so on). In general, the predictive density for the

conditional mean of equation j > 2 is given by:

mjt+1 ∼ N (mjt+1, V jt+1),

with

mjt+1 = σjt+1K
∗
ϑj

(Wjt+1,Wj)(K
∗
ϑj

(Wj,Wj)+IT )−1
√

Ωj
−1

(
Yj −

j−1∑
k=1

qjk(mkt+1 + εkt+1)

)
,

and the predictive variance defined as in the case of j = 1. A draw from the predictive
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distribution of yjt+1 is obtained by drawing εjt+1 ∼ N (0, ωjt+1) and adding this to mjt+1.

Drawing from the posterior of the forecasts for all M elements in yt yields the one-

step-ahead forecast distribution p(yt+1|It). Higher order forecast distributions are then

obtained by using yt+1 ∼ p(yt+1|It) to construct W jt+2 and then compute mjt+2, for

j = 1, . . . ,M , and drawing from the marginal distribution of the structural shocks. In

general, h-step-ahead predictions yt+h are obtained similarly by drawing from p(yt+h|It).

As described in the text, we focus on an uncertainty shock with the uncertainty

index being located in the jth position in yt. Let εjt denote the structural innovation in

time t and we assume that εjt = ς. This implies that yt changes by qj. Again, we can

compute point forecasts but instead of using Wjt+1 (which comprises of yt and its p− 1

lags), Ŵjt+1 is constructed based on ŷt = yt + q1 + ε̃t. The shock ε̃t is obtained from

the marginal distribution of the shocks but its jth element equals zero. Using Ŵjt+1, we

can compute the predictive distributions of yt+1 given a shock of size ς in εjt. As an

intermediate step, we need to compute the mean forecast based on εjt = ς:

m̂jt+1 ∼ N (m†jt+1, V
†
jt+1)

with mean and variance given by:

m†jt+1 = σjt+1K
∗
ϑj

(Ŵjt+1,Wj)(K
∗
ϑj

(Wj,Wj) + IT )−1
√

Ωj
−1

(Yj −
j−1∑
k=1

qjk(m̂kt+1 + εkt+1)),

V
†
jt+1 = σjt+1

(
k∗ϑj

(Ŵ1t+1, Ŵ1t+1)−K∗ϑj
(Ŵ1t+1,Wj)(K

∗
ϑj

(Wj,Wj) + IT )−1K∗ϑj
(WjŴ1t+1)

)
These one-step-ahead forecasts can again be used to construct iterative higher order pre-

dictions conditional on a unit structural shock to the first variable. Doing so for each of

the M variables yields a draw from yt+h ∼ p(yt+h|It, εjt = ς).
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B Data Appendix

Table B.1: Data description.

Mnemonic Description Trans. VAR-8 VAR-16 VAR-32 VAR-64

UNC Macroeconomic Uncertainty Index of Jurado, Ludvigson, and Ng (2015) 1 x x x x

GDPC1 (RGDP) Real Gross Domestic Product 2 x x x x
CE16OV (EMP) Civilian Employment (Thousands of Persons) 2 x x x x
AWHMAN (AWH) Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing 1 x x x x
CPIAUCSL (CPI) Consumer Price Index for All Urban Consumers: All Items 2 x x x x
CES3000000008x (AHE) Real Average Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing 2 x x x x
FEDFUNDS (FFR) Effective Federal Funds Rate (Percent) 1 x x x x
S.P.500 (SP500) S&P’s Common Stock Price Index: Composite 3 x x x x

PCECC96 Real Personal Consumption Expenditures 2 x x x
FPIx Real private fixed investment 2 x x x
UNRATE Civilian Unemployment Rate (Percent) 1 x x x
CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing 1 x x x
CLAIMSx Initial Claims 2 x x x
HOUST Housing Starts: Total: New Privately Owned Housing Units Started 2 x x x
CES0600000008 Average Hourly Earnings of Production and Nonsupervisory Employees: 2 x x x
M2REAL Real M2 Money Stock 2 x x x

GCEC1 Real Government Consumption Expenditures and Gross Investment 2 x x
INDPRO IP:Total index Industrial Production Index (Index 2012=100) 2 x x
CUMFNS Capacity Utilization: Manufacturing (SIC) (Percent of Capacity) 1 x x
PAYEMS Emp:Nonfarm All Employees: Total nonfarm (Thousands of Persons) 2 x x
PERMIT New Private Housing Units Authorized by Building Permits 2 x x
PCECTPI Personal Consumption Expenditures: Chain-type Price Index 2 x x
GDPCTPI Gross Domestic Product: Chain-type Price Index 2 x x
CES2000000008x Real Average Hourly Earnings of Production and Nonsupervisory Employees: Construction 2 x x
BAA10YM Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury 1 x x
GS10TB3Mx 10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market 1 x x
TB3SMFFM 3-Month Treasury Constant Maturity Minus Federal Funds Rate 1 x x
AAAFFM Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate 1 x x
BUSLOANSx Real Commercial and Industrial Loans, All Commercial Banks 2 x x
CONSUMERx Real Consumer Loans at All Commercial Banks 2 x x
NONREVSLx Total Real Nonrevolving Credit Owned and Securitized, Outstanding 2 x x
NONBORRES Reserves Of Depository Institutions, Nonborrowed 4 x x

GPDIC1 Real Gross Private Domestic Investment 2 x
PNFIx Real private fixed investment: Nonresidential 2 x
PRFIx Real private fixed investment: Residential 2 x
EXPGSC1 Real Exports of Goods and Services 2 x
IMPGSC1 Real Imports of Goods and Services 2 x
IPCONGD IP:Consumer goods Industrial Production: Consumer Goods (Index 2012=100) 2 x
UNRATELTx Unemployment Rate for more than 27 weeks (Percent) 1 x
AWOTMAN Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing 1 x
AMDMNOx Real Manufacturers’ New Orders: Durable Goods (Millions of 2012 Dollars) 2 x
GPDICTPI Gross Private Domestic Investment: Chain-type Price Index 2 x
DGDSRG3Q086SBEA Personal consumption expenditures: Goods 2 x
DDURRG3Q086SBEA Personal consumption expenditures: Durable goods 2 x
DSERRG3Q086SBEA Personal consumption expenditures: Services 2 x
DNDGRG3Q086SBEA Personal consumption expenditures: Nondurable goods 2 x
CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Energy 2 x
OILPRICEx Real Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma 2 x
COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour (Index 2012=100) 2 x
RCPHBS Business Sector: Real Compensation Per Hour (Index 2012=100) 2 x
TB3MS 3-Month Treasury Bill: Secondary Market Rate (Percent) 1 x
TB6MS 6-Month Treasury Bill: Secondary Market Rate (Percent) 1 x
GS1 1-Year Treasury Constant Maturity Rate (Percent) 1 x
GS10 10-Year Treasury Constant Maturity Rate (Percent) 1 x
AAA Moody’s Seasoned Aaa Corporate Bond Yield (Percent) 1 x
BAA Moody’s Seasoned Baa Corporate Bond Yield (Percent) 1 x
TB6M3Mx 6-Month Treasury Bill Minus 3-Month Treasury Bill, secondary market (Percent) 1 x
GS1TB3Mx 1-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market 1 x
CPF3MTB3Mx 3-Month Commercial Paper Minus 3-Month Treasury Bill, secondary market 1 x
M1REAL Real M1 Money Stock 2 x
REALLNx Real Real Estate Loans, All Commercial Banks 2 x
EXUSUKx U.S. / U.K. Foreign Exchange Rate 2 x
S.P..indust S&P’s Common Stock Price Index: Industrials 3 x
S.P.div.yield S&P’s Composite Common Stock: Dividend Yield 1 x

Notes: We use the macroeconomic uncertainty measure of Jurado, Ludvigson, and Ng (2015) provided (and regularly updated) on the
web page of Sydney C. Ludvigson (available online via sydneyludvigson.com/macro-and-financial-uncertainty-indexes). Otherwise, we
rely on the quarterly version of the dataset proposed in McCracken and Ng (2016). Trans indicates the transformation applied to each
variable with (1) implying no transformation, (2) denoting year-on-year growth rates, (3) denoting quarter-on-quarter growth rates,
and (4) refers to quarter-on-quarter percentage changes.
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C Empirical Appendix

C.1 In-sample results for non-focus variables in the GP-VAR-8

Figure C.1: Linear shrinkage parameters of equation-specific kernels for the GP-VAR-64.
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Notes: This figure reports the posterior means of the product of the error variances ωjt and the linear scaling parameters
for own lags (ξj1) and for other lags (ξj2), respectively. These two quantities correspond to the diagonal elements of the
re-scaled kernels ωjt × kϑj1

(xt,xt) = ωjtξj1 and ωjt × kϑj2
(zt,zt) = ωjtξj2.

Figure C.2: Inverse length scale parameters of equation-specific kernels for the GP-
VAR-64.
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Notes: This figure reports the posterior summaries in the form of simplified boxplots of the inverse length scale parameters
for own lags (κj1) and other lags (κj2), respectively. The solid black lines denote the posterior medians, while the blue
(green) shaded areas represent the 50% posterior credible sets (i.e., the posterior interquartile ranges).
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C.2 Robustness with respect to different orderings

This figure shows heatmaps of the correlations between the posterior median of the GIRFs

for 25 different variable orderings (chosen at random). To ensure that the identification

does not impact the results, we fix the ordering of the first two elements in yt (the S&P 500

is ordered first and the uncertainty index second). The heatmaps show that for our focus

variables, the correlations are (almost) always above 0.9. This indicates that the ordering

does not play a particular role for the estimation of the IRFs. The only responses that

display slightly stronger changes are the ones of the S&P 500. In this case, the differences

in IRFs are, however, mostly related to higher order IRFs which are insignificant. Short-

term reactions are almost identical and thus do not change much if we alter the orderings.

Figure C.3: Correlation of GIRFs across different orderings in the estimation of the
GP-VAR-8.
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Notes: The figure shows, for each focus variable, the correlation of the median of the average GIRF for 25 different variable
orderings in the estimation. The macroeconomic uncertainty index is always ordered second and the S&P 500 is always
ordered first. The reference model specification used is the GP-VAR-8.

13



C.3 Impulse responses of non-focus variables in the GP-VAR-8

Figure C.4: Impulse responses of non-focus variables in the GP-VAR-8 relative to a
small-scale BVAR.
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Notes: Average generalized impulse responses (GIRFs, outlined in Sub-section 3.5) to a positive one standard deviation
shock in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to the 68%
posterior credible sets. GP-VAR-8 refers to the smallest variant of our non-parametric model and BVAR-8 refers to a
small-scale BVAR with SV, which is closely related to the specification used in Jurado, Ludvigson, and Ng (2015).

Figure C.5: Impulse responses of non-focus variables in the GP-VAR-8 for three different
sub-sample periods.
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Notes: Period-specific average generalized impulse responses (GIRFs, outlined in Sub-section 3.5) to a positive (negative)
one standard deviation shock in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded areas
correspond to the 68% posterior credible sets.
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Figure C.6: Impulse responses of focus variables in the GP-VAR-8 in recessions and
expansions.
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Notes: Period-specific generalized impulse responses (GIRFs, outlined in Sub-section 3.5) to a positive (orange) and negative
(blue) one standard deviation shock in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded
areas correspond to the 68% posterior credible sets. We consider economic recessions and expansions according to the
NBER Business Cycle Dating Committee.
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Figure C.7: Period-specfic impulse responses of non-focus variables in the GP-VAR-8
across different sub-sample periods.
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Notes: Impulse response functions to a positive one standard deviation shock in macroeconomic uncertainty in the GP-
VAR-8 across sub-sample periods. Solid lines denote the yearly averaged posterior medians, with colors ranging from yellow
(start of the sample) to red (end of the sample).
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C.4 Additional results on model size and asymmetries

Figure C.8: Impulse responses of non-focus variables across different information sets.
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Notes: Average generalized impulse responses (GIRFs, outlined in Sub-section 3.5) to a positive one standard deviation
shock in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to the 68%
posterior credible sets.

Figure C.9: Shock sign asymmetries in responses of non-focus variables for the GP-
VAR-8.
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Notes: Average generalized impulse responses (GIRFs, outlined in Sub-section 3.5) to a negative (positive) one standard
deviation shock in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to
the 68% posterior credible sets. Here, negative ×(−1) denotes a negative one standard standard deviation shock with the
respective responses being mirrored across the x-axis.

Figure C.10: Shock size asymmetries in responses of non-focus variables for the GP-
VAR-8.
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Notes: Average generalized impulse responses (GIRFs, outlined in Sub-section 3.5) to a positive two (one) standard
deviation shock in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to
the 68% posterior credible sets. Here, 1 sd refers to a one standard deviation shock, 2 sd indicates a two standard deviation
shock, and 2 sd ×(1/2) denotes a two standard deviation shock with the respective responses divided by two.
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Figure C.11: Shock sign asymmetries in impulse responses of focus variables for the
GP-VAR-64.
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Notes: Average generalized impulse responses (GIRFs, outlined in Sub-section 3.5) to a negative (positive) one standard
deviation shock in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to
the 68% posterior credible sets. Here, negative x (−1) denotes a negative one standard standard deviation shock with the
respective responses being mirrored across the x-axis.

Figure C.12: Shock size asymmetries in impulse responses of focus variables for the
GP-VAR-64.
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Notes: Average generalized impulse responses (GIRFs, outlined in Sub-section 3.5) to a positive two (one) standard
deviation shock in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to
the 68% posterior credible sets. Here, 1 sd refers to a one standard deviation shock, 2 sd indicates a two standard deviation
shock, and 2 sd x (1/2) denotes a two standard deviation shock with the respective responses divided by two.
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