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Abstract

We propose a blended approach which combines identification via heteroskedasticity

with the widely used methods of sign restrictions, narrative restrictions, and external in-

struments. Since heteroskedasticity in the reduced form can be exploited to point identify

a set of orthogonal shocks, its use results in a sharp reduction of the potentially large iden-

tified sets stemming from the typical approaches. Conversely, the identifying information

in the form of sign and narrative restrictions or external instruments can prove necessary

when the conditions for point identification through heteroskedasticity are not met and of-

fers a natural solution to the labeling problem inherent in purely statistical identification

strategies. As a result, we argue that blending these methods together resolves their re-

spective key issues and leverages their advantages, which allows to sharpen identification

at virtually no cost. We illustrate the blending approach using several examples taken from

recent and influential literature. Specifically, we consider labour market shocks, oil market

shocks, monetary and fiscal policy shocks, and find that their effects can be rather different

from what previously obtained with simpler identification strategies.
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1 Introduction

Since the seminal contribution of Sims (1980), the empirical analysis of shocks propagation is

most often carried out using Vector Autoregressive (VAR) models. VARs can offer a very good

description of the dynamics of macroeconomic and financial data, and - when coupled with an

appropriate prior - have shown a remarkably good performance in out of sample forecasting.1

If one wants to use VARs to answer policy questions, to analyze the effects of shocks, or more

generally to give a causal interpretation to such class of models, it becomes necessary to map

the VAR into a system of simultaneous equations.

As is well known in the macroeconometrics literature, the main difficulty of this task comes

from the fact that such a mapping is not unique, and one has to rely on assumptions derived from

economic theory or on external information to restrict the set of admissible structural models

that share the same reduced form representation. The fundamental problem is that the data are

only informative about the joint dynamics of macroeconomic and financial variables, but are

silent about the contemporaneous causal links in economic variables unless further assumptions

are made.

Traditionally, these additional assumptions took the form of zero restrictions on the matrix

that defines the contemporaneous relations across the variables, or the matrix measuring the ef-

fect of a structural shock on a certain variable, either on impact or in the long run. However, the

assumption that a shock does not affect at all certain macroeconomic variables is too restrictive

in many cases. Moreover, the number of zero restrictions required increases rapidly with the

size of the model, making restrictions even harder to choose and to defend. For this reason

researchers have endeavored to devise alternative identification strategies able to narrow down

the set of structural models in which a VAR can be mapped (see Kilian and Lutkepohl (2017)

for a thorough treatment). Particularly successful strategies entail the use of sign restrictions,

narrative restrictions, and external instruments (proxies).

The sign restriction approach, formulated by Faust (1998), Canova and De Nicolò (2002),

and Uhlig (2005), is based on the conjecture that the effect of a shock on a given variable, at

some horizon, has a pre-specified sign. More recently, this idea has been revisited by Baumeister

1See e.g. Litterman (1986), Banbura et al. (2010), Koop and Korobilis (2013) and Carriero et al. (2019).
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and Hamilton (2015), who impose sign restrictions on the structural contemporaneous relation-

ships between variables on the basis of widely accepted theoretical postulates. The remarkable

merit of this class of identification strategies is that it replaces the strong assumptions on which

zero restrictions are based with arguably milder conjectures about the sign of macroeconomic

relations. The price for being able to impose these milder conditions is potentially high: sign re-

strictions provide set identification, as opposed to point identification. This means that, contrary

to what is usually achieved imposing zeros restrictions, the resulting set of admissible structural

models associated with the reduced form VAR is not singleton, and inference must be drawn on

the basis of the whole set. 2

Antolin-Diaz and Rubio-Ramirez (2018) propose to further restrict the set of admissible

models by exploiting generally acceptable accounts of historical events. The authors call these

additional constraints ’narrative restrictions’ because they confine the set of admissible models

to those that produce structural innovations in line with the chronicle of specific events. For

instance, narrative restrictions may require that a certain structural shock takes large positive or

negative values at specific dates, or that the shock is the main contributor to the change in a cer-

tain variable observed on a specific day. Similar restrictions were introduced by Ludvigson et

al. (2021) in a frequentist setting to identify the effects of macroeconomic and financial uncer-

tainty on the real economy. In many relevant cases, narrative restrictions are able to reduce the

uncertainty about structural parameters, but, in general, they do not provide point identification.

On the other hand, the external instruments approach, pioneered by Stock (2008), Stock

and Watson (2012) and Mertens and Ravn (2013), exploits the availability of variables that

are believed to be correlated with some structural shocks of interest, but uncorrelated with

all the other shocks. Also this approach allows to avoid the imposition of excessively strong

restrictions on the model and is being widely and successfully implemented. However, also

this strategy can (and does) in some cases run into problems. In particular, when more than

one proxy variable is available for more than one shock, also this approach can only yield set

identification, and some researchers in some instances had to complement this identification

2Bayesian methods for set identified model have been proposed by Rubio-Ramirez et al. (2010), Arias et al.
(2018), Giacomini and Kitagawa (2021) and Inoue and Kilian (2021a), while frequentist methods are the focus of
Granziera et al. (2018).
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strategy with the reintroduction of some additional zero restrictions (e.g. Mertens and Ravn

(2013), Lakdawala (2019)).

Parallel to these approaches (which are used widely), a separate strand of the recent litera-

ture has pointed towards exploiting heteroskedasticity for identification. Notable examples are

Sentana and Fiorentini (2001), Rigobon (2003), Rigobon and Sack (2004), Lanne et al. (2010)

and Wright (2012), who show that, if changes in the variances of structural shocks are het-

erogeneous enough, reduced form information is sufficient to pin down the parameters of the

structural model. Lewis (2020, 2021) extends these ideas to more general and unknown vari-

ance processes, showing in a non-parametric setup that identification can be achieved even in

the presence of misspecification of the variance process. However, the condition that changes

in the variance of structural shocks are heterogeneous enough is not always supported by the

data. If some of the variances change proportionally throughout the sample, Bacchiocchi et al.

(2022) have shown that also this strategy only yields set identification. Moreover, even if the

volatility processes of different shocks are not exactly proportional, the identifying information

provided by the heteroskedasticity in the data may still be weak due to limited heterogeneity or

limited samples.3

Moreover, another important limitation that has prevented identification through heteroskedas-

ticity from being widely used by empirical researchers is that this method allows to pin down

a set of orthogonal shocks, but does not offer a clear way to attach economic meaning to such

shocks. In this sense identification trough heteroskedasticity offers statistical identification, not

economic identification, an issue referred to as the “labelling” problem. In fact, the presence of

heteroskedasticity allows the econometrician to determine uniquely the structural shocks that

drive economic fluctuations, but it does not convey information about what the nature of the

identified innovations is; one can only attach an ex-post label to shocks based on the effects it

produces on the variables of the system, as done, for instance, by Lanne and Luoto (2020) and

Brunnermeier et al. (2021).

In this paper we argue that the set identification strategies and the heteroskedasticity based

strategies can be fruitfully used together, thereby resolving their respective key issues. We sup-

3See Stock and Watson (2016) and Lewis (2022) for an instrumental variable interpretation of identification
through heteroskedasticity and a discussion of the weak identification problem.
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port a view that researchers should consider blending together these alternative identification

strategies as the blend contains more identifying information than the parts. Specifically, the

identifying information embedded in heteroskedasticity can be used to sharpen the identifica-

tion schemes based on sign restrictions, narrative restrictions, and external instruments. When

the conditions for point identification through heteroskedasticity are met, the likelihood of the

data becomes perfectly informative about structural parameters, making the model immune

to the problem of never-updated priors intrinsic in set-identified models. We show how het-

eroskedasticity can be routinely and effectively used to reduce the identified set of VARs identi-

fied via sign restrictions, narrative restrictions, and external-instruments approaches. Similarly,

we show that the information contained in sign restrictions, narrative restrictions, and external

instruments schemes can help overcoming the key issues inherent in heteroskedasticity-based

strategies, i.e. the lack of labeling and the possibly weak identification power.

Following different Bayesian and frequentist strategies respectively, Braun (2021), and

Drautzburg and Wright (2021) also aim at refining set identified models by considering fea-

tures of the data that are usually overlooked. Both these papers exploit non-Gaussianity to

further restrict the set of admissible structural parametrization but consider different restrictions

on the distribution of the structural shocks. Different from our case, Braun’s (2021) method

rules out the presence of cross-sectional volatility clustering, while Drautzburg and Wright

(2021) grant more flexibility in the number of moments conditions imposed, adapting their

method to allow for co-kurtosis. Furtehrmore, both the contributions only consider combining

the identifying information coming from non-Gaussianity with sign restrictions, while we also

extend our blended approach to the case of set-identifying information in the form of narrative

restrictions and instrumental variables. In a related series of papers including Lutkepohl and

Netsunajev (2014), Lutkepohl and Wozniak (2020), and Schlaak et al. (2021), heteroskedastic-

ity is exploited to develop tests of over-identifying assumptions in the form of zero restrictions

and sign restrictions, or to test the validity of external instrument in a Proxy-SVAR. Differently

from these contributions, we propose to exploit heteroskedasticity in conjunction with trusted

incomplete identifying assumptions, maintaining both types of restrictions at the same time.

The difference in the objectives of the two strategies is therefore substantial: while they exploit
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statistical identification to verify the validity of economically motivated restrictions, our goal is

to combine both types of information in order to compensate their respective weaknesses and

maximize the extent to which we can learn from the data.

We develop three algortihms for estimation of SVARs under blended identification. The

first algorithm applies to SVARs in which sign restrictions are imposed trough a truncation

in the prior on the parameters describing the contemporaneous relations in the structural form

as in Baumeister and Hamilton (2015). The second algorithm applies to SVARs in which sign

restrictions are imposed on the impact matrix trough the specification of a rotation matrix with a

uniform prior distribution, as in Uhlig’s (2005) and Rubio-Ramirez et al. (2010), and combined

with narrative restrictions as in Antolin-Diaz and Rubio-Ramirez (2018). The third algorithm

applies to Proxy-SVARs along the lines of Stock (2008), Stock and Watson (2012) and Mertens

and Ravn (2013).

We illustrate the convenience of the blended approach by revisiting empirical results pre-

sented in seminal papers based on either sign restrictions, narrative restrictions, or proxy vari-

ables. With reference to sign restrictions, we consider both Baumeister and Hamilton’s ap-

proach and the conventional approach. In particular, we revisit the applications in Baumeister

and Hamilton (2015) and in Kilian and Murphy (2012), analyzing the effects of labour market

and oil market shocks, respectively. With reference to the narrative restrictions, we revisit the

monetary policy application in Antolin-Diaz and Rubio-Ramirez (2018), which is based on the

seminal Uhlig’s (2005) sign-restricted SVAR. Finally, with reference to the external instruments

approach, we reproduce the Proxy-SVAR model of Mertens and Ravn (2013), whose aim is to

assess the effects of APITR (Average Personal Income Tax Rate) and ACITR (Average Corpo-

rate Income Tax Rate) shocks, and we do this by relaxing the zero restrictions that allow them

to achieve point identification.

Our empirical applications show that the introduction of identifying information coming

from heteroskedasticity can generate substantial changes in the results. For example, in the

labor market application, blending leads to a significantly steeper aggregate labour supply and

a demand that is almost flat. The responses of employment to demand and supply shocks are

importantly revised, with wages that are significantly more responsive to demand shocks, when
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compared to the model that does not exploit changes in variances. In the application on oil, our

results show that oil-specific demand shocks affect global economic activity only marginally,

but they represent the main driver of oil price changes in the short run. In the monetary pol-

icy application, a monetary contraction has deeper recessive consequences once our blended

identification is applied, and the ability to curb inflation at short horizons is called into ques-

tion. In the fiscal policy application, both types of fiscal contractions have deep negative effects

on output once heteroskedasticity is taken into consideration. Following a tax shock, the cor-

responding income tax base decreases. This mechanism, together with the negative effect on

output, prevents government debt from diminishing significantly in response to the unexpected

corporate tax increase. On the other hand, a personal income tax shock allows a reduction of

the government debt, but only at short to medium horizons.

The paper is structured as follows: Section 2 describes the structural VAR (SVAR) model

and discusses the identification problem. Section 3 reviews the use of sign restrictions in a

SVAR, it illustrates the Bayesian algorithm we employ in order to draw from the posterior of

a heteroskedastic version of the model (SVAR-H), and revisits some empirical results obtained

by seminal papers in this literature, namely Baumeister and Hamilton (2015) and Kilian and

Murphy (2012). Section 4 extends the idea to the case in which narrative restriction are available

and shows how the results of the monetary application in Antolin-Diaz and Rubio-Ramirez

(2018) are affected when our blended strategy is applied. Section 5 describes the Proxy-SVAR

approach, adapts it to account for heteroskedasticity and re-examines the effects of personal

and corporate tax surprises using data from Mertens and Ravn (2013). Section 6 discusses

some robustness checks and section 7 summarizes and concludes.

2 Identification approaches in SVAR models

This section provides a brief overview of the alternative identification methods used in this

paper. Specifically, we describe identification trough sign restrictions, narrative restrictions,

external instruments, and heteroskedasticity. This is not intended as an exhaustive treatment,

it rather aims at laying out the ground work and notation for the description of our blending

approach discussed in Section 3, Section 4, and Section 5.
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2.1 Baseline SVAR model and Cholesky identification

The joint dynamics of macroeconomic variables is often modeled as a VAR(p) process:

yt = Πxt−1 +ut , (1)

where yt is a n × 1 vector of endogenous variables, xt−1 is the k × 1 (k = np + 1) vector[
1,y′t−1, . . . ,y

′
t−p
]′, and Π is a n × k matrix of coefficients. The n × 1 vector of prediction

errors ut is assumed to be normally distributed with zero mean and variance Ω, and it is a linear

combination of structural shocks: ut = A−1
Λ0.5ε t , ε t ∼ N(0, In), with Λ = diag[λ1, ...,λn] and

A a full matrix with ones on the main diagonal.4

Macroeconomists are interested in the propagation of structural innovations, which are con-

sidered the drivers of economic fluctuations. For this reason, policy analysis is usually carried

out considering the structural form of the VAR model. This is obtained premultiplying both

sides of equation (1) by A:

Ayt = Bxt−1 +Λ
0.5

ε t , (2)

where B = AΠ.

The main difficulty when moving from the reduced form in (1) to the structural represen-

tation in (2) is that this mapping is not unique, unless more information is introduced in the

model. This problem is known as the identification problem in the SVAR literature and it arises

because the data are only informative about the parameters (Π,Ω), but they cannot distinguish

between alternative structural specifications, (A,B,Λ), that give rise to the same reduced form

model. To see this, note that the following must hold:

Ω = A−1
Λ
(
A−1)′. (3)

Since the reduced form variance Ω is symmetric, (3) provides a system of n(n+1)/2 equations

in which the left hand side can be inferred from the data, but the right hand side contains

4In some applications, it may be more convenient to impose unit diagonal elements in A−1
0 rather than in A0.

This is the case, for example, in the application described in Section 5 and leaves our reasoning unaffected.
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n(n− 1) + n unknown elements. As a result, (3) does not have a unique solution and more

information has to be introduced in order to obtain an economically meaningful parametrization

of the SVAR (2).

A typical solution is to use a Cholesky decomposition, which amounts to put (linearly inde-

pendent) zero restrictions on n(n− 1)/2 coefficients in A−1 , or other types of restrictions im-

plementing beliefs on the long run behavior of the system, or other choices of restrictions based

on economic theory. All these approaches are valid but typically require more zero restrictions

than researchers and macroeconomist are comfortable with.5This issue becomes worse as the

size of the model increases, which is problematic since there is much theoretical and empirical

support for using VARs with a rather large cross-sectional dimension in order to describe the

data appropriately and avoid issues of nonfundamentalness.6

To avoid the problems associated with zero restrictions, researchers have developed alter-

native identification strategies, some of which are being increasingly used, namely sign restric-

tions, narrative restrictions, and external instruments. These strategies have the clear advantage

of imposing a constraint on the model which is not only milder, but also in line with high level,

broadly defendable, identifying assumption.

2.2 Sign restrictions, narrative restrictions, and external instruments

The use of sign restrictions consists in considering only the solutions of equation (3) that satisfy

the assumption that certain elements of A−1(or A in the case of Baumaister and Hamilton, 2015)

have a specified sign. These assumptions are usually made on the basis of widely acceptable

theoretical justifications, which explains why this identification strategy has become one of the

most popular in the empirical literature. The set of admissible solutions can be further restricted

considering only those structural parameterizations that produce structural shocks possessing

characteristics in line with the narrative information at hand, as proposed by Antolin-Diaz and

5As discussed by Primiceri (2005), Carriero et al. (2019) and Arias et al. (2022), a separate issue arises at the
estimation stage when using a Cholesky-type factorization of the error variance, if the priors are elicited on the
individual elements of the Cholesky factor. In this case alternative orderings imply alternative priors on the error
variance, and therefore different posterior distributions for the reduced form parameters.

Our methodology does not suffer from this issue because it allows for a full impact matrix A. The ordering
invariance of point and density forecasts produced by a VAR identified through heteroskedasticity is in fact the
focus of Chan et al. (2021).

6See e.g. Banbura et al. (2010).
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Rubio-Ramirez (2018) and Ludvigson et al. (2021). Such mild assumptions, however, are often

not enough to make the solution of (3) unique. For this reason, inference must be drawn from a

set of equally likely parameterizations (A,B,Λ) with possibly vague interpretations.

External instruments (also referred to as proxy variables), when available, provide precious

information that can be used to obtain identification. The special feature of proxy variables is

that they are known to be correlated with the structural shocks of interest (relevance condition)

but uncorrelated with all other shocks (exogeneity condition). If one proxy is available for the

i-th shock, the parameters of the i-th equation in the SVAR (2) can be uniquely determined.

However, in practice it is often the case that m > 1 instruments are correlated with m shocks of

interest and uncorrelated with all the other n−m. In that case, the parameters of the m equations

in (2) that are associated with the m innovations of interest are only set identified, in the sense

that there exists a set of parameterizations that satisfy the conditions implied by the external

instruments, but all the elements of this set are observationally equivalent. In order to reduce

the set to a collection of economically meaningful models, researchers often impose additional

zero restrictions, as in Mertens and Ravn (2013) and Lakdawala (2019), or sign restrictions, as

in Piffer and Podstawski (2017) , Braun and Bruggemann (2022) and Arias et al. (2021).

In summary while sign restrictions, narrative restrictions, and external instruments do allow

to obtain identification using just some mild high-level assumptions, this comes at the cost

of the system being often only set-identified, with the identified set being potentially large.

In the following subsection we discuss how this cost can be partially offset by exploiting the

information contained in heteroskedasticity.

2.3 Identification through heteroskedasticity

Another identification strategy that has been put to the fore is based on heteroskedasticity. This

is a purely statistical method to achieve a unique parametrization (A,B,Λ) and is based on

results developed by Sentana and Fiorentini (2001), Rigobon (2003) and Lanne et al. (2010).

The strategy is a typical application of the identification through stability restrictions discussed

by Magnusson and Mavroedis (2014).

Intuitively, heteroskedasticity adds more equations than free parameters to the system in (3).
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If one considers the case with S volatility-regimes, the mapping of the reduced form variance

Ωs, s = 1, ...,S, into the structural parameters (A,Λs) becomes:

Ωs = A−1
Λs
(
A−1)′, (4)

which is now a system of S[n(n+1)/2] equations in n(n−1)+Sn unknowns. Results in Lanne

et al. (2010) and Lutkepohl and Wozniak (2020) prove that, as long as there exist at least two

regimes, s1 and s2, for which λi,s1/λ j,s1 ̸= λi,s2/λ j,s2 , ∀ j ̸= i and ∀i ∈ {1, ...,n}, then the parameters

of the structural model (2) are uniquely identified up to a permutation of the columns of A−1.

In other words, if changes in the variance of shocks are not proportional across all regimes,

heteroskedasticity allows to achieve point identification. This procedure is silent about the

economic nature of ε t , and any permutation of these shocks is observationally equivalent.

Differently from the approaches discussed above, as long as the heteroskedasticity process is

not proportional across shocks, this approach does achieve a unique structural parameterization,

and therefore it delivers point identification. However, this approach has a shortcoming insofar

it is a purely statistical method which identifies a set of mutually orthogonal shocks, but gives no

guide to the researcher as to what these shocks are representing in terms of relevant economic

variables. This issue is known as the labeling problem. Furthermore, when the change in

the variances of some structural shocks is close to proportional, the sampling uncertainty may

significantly weaken the ability of disentangling the effects of those shocks.

There is a definite gain when introducing heteroskedasticity in SVARs identified via sign re-

strictions, narrative restrictions, or external instruments: the identifying information stemming

from the variation in the variances will allow to dramatically reduce the identified set stemming

from these approaches, in some cases reducing it to a point. In other words, heteroskedasticity

in the reduced form can be used to pick one model out of all the ones in the identified set. One

can also think of this procedure backwards: starting from a set of structural shocks (possibly

weakly) identified via heteroskedasticity, and therefore un-labeled, one can use sign restric-

tions, narrative restrictions, and external instruments to label the shocks, and to help discerning

the effects of those shocks whose volatility process cannot be clearly distinguished by the data

alone. Since both these interpretations are valid we refer to our strategy as “blending” the two
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identification approaches.

The benefits of “blending” come at the cost of requiring a parametric specification for

the time variation in the reduced form conditional variances, which we will detail below. As

stressed by Montiel Olea et al. (2021), identification from heteroskedasticity does not simply

exploit more information in the data than traditional SVAR methods, it also requires stronger

assumptions on the shock processes than unconditional second-moment methods do.

We argue that this cost is largely mitigated by two considertations. First, the overwhelming

evidence in favour of time varying volatility in macroeconomic data, documented in studies

such as Clark (2011), Clark and Ravazzolo (2015) and Chan and Eisenstat (2018). The risk of

misspecifying the specific law of motion of the volatilities is present, but results in Lewis (2021)

and Sims (2020) show that even in presence of a misspecified process for the volatility regimes,

the identification via heteroskedasticity results still hold.

Second, the cost emphasized by Montiel Olea et al. (2021) is already present - and to a larger

extent - in some of the most popular methods in the literature. Specifically, the sign and nar-

rative restriction approaches of Baumeister and Hamilton (2015) and Antolin-Diaz and Rubio-

Ramirez (2018) both assume that the shocks are homoskedastic and unconditionally Gaussian.

This assumption goes directly against the evidence mentioned above. Instead, our assumption

that the shocks are heteroskedastic is milder and implies that the shocks are unconditionally a

mixture of Gaussians. The homoskedastic Gaussian VARs of Baumeister and Hamilton (2015)

and Antolin-Diaz and Rubio-Ramirez (2018) are nested in our more general specification, they

can be obtained as a special case by imposing the (strong) restriction that the variance of the

volatility states is zero.

We will assume for the rest of the paper that the variances of structural innovations evolve

as a regime switching process, where the dates of regime changes are either known to the re-

searcher or determined on the basis of a change-point specification. It is worth emphasizing

that recognizing the exact date of regime changes is not necessary for consistency. Rigobon

(2003) and Sims (2020) show that estimates of the structural parameters are still consistent if

the windows of heteroskedasticity are moderately misspecified. The main assumption behind

identification through heteroskedasticity is that the variation in the reduced form error variance
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Ωs is entirely driven by the variation in the structural shocks variance Λs while the contempo-

raneous impact of shocks on economic variables, defined by A−1, is time invariant.7

3 Blending sign restrictions and heteroskedasticity

The traditional way of implementing sign restrictions is to estimate reduced form parameters

(Π,Ω) and then to consider all the possible structural representations that are consistent with the

desired signs for the impact response to an impulse. This is achieved by defining an orthonormal

rotation QQ′ = In and the corresponding rotated shocks Qε t . The rotated shocks enter (2) in the

place of ε t and the resulting system is observationally equivalent to the original one, since

equation (3) continues to hold:

Ω = A−1QQ′
ΛQ
(
A−1Q

)′
= Ã−1

Λ̃

(
Ã−1

)′
. (5)

Finally, a uniform prior is specified on Q and draws are performed from this distribution, re-

taining only those draws yielding the desired sign in the impact matrix Ã−1. 8

In an influential paper, Baumeister and Hamilton (2015, BH henceforth) point out some

limitations of this approach. Their main argument is that the prior over the admissible SVAR

parameterizations is never updated by the data, and apparently uninformative priors for the ro-

tation matrix Q can translate into very informative and implausible priors for objects of interest,

such as Impulse-Response Functions (IRF).

Their proposed method to overcome these limitations follows from the idea of Sims and

Zha (1998) of eliciting informative priors on the structural form in (2) directly. Specifically,

BH introduce sign restrictions in this setting by placing truncated student-t priors on specific

elements of A. Although it is not an essential aspect of their suggested method, BH’s preference

for considering sign restrictions on the contemporaneous relations in A rather than on the impact

matrix A−1is based on a view that the former type of constraints are more easily elicited on the

basis of economic theory. For example, in order to identify the simultaneous equations describ-

7Lutkepohl and Schlaak (2021) propose to exploit the over-identifying restrictions in a heteroskedastic Proxy-
SVAR to test this assumption.

8Rubio-Ramirez, Waggoner and Zha (2010) develop an efficient algorithm for this approach.
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ing demand and supply in SVAR models, the researcher can impose that price and quantity are

negatively related in the former and positively related in the latter.

It must be noted that in the class of models proposed by BH, even though the posterior dis-

tribution is able to assign different probabilities to alternative structural models in the identified

set, such distinction is entirely based on - albeit well motivated - prior information. Instead,

the likelihood remains unable to distinguish between points in the structural parameter space

associated with the same reduced form representation, i.e. it features some flat regions. The

blended approach we suggest in this paper often allows to achieve point identification, because

the mere introduction of heteroskedasticity in the structural shocks (when indeed present in the

data) removes these flat regions from the likelihood.

As pointed out by Montiel Olea et al. (2021), traditional identification strategies do not

necessarily rely on the assumption of homoskedastic shocks, because standard Quasi-ML esti-

mators remain consistent even in the presence of heteroskedasticity. However, it is important

to stress that the consistency argument made by Montiel Olea et al. (2021) does not directly

apply to the BH model considered in this subsection, as this is a fully parametric homoskedastic

Gaussian VAR, estimated with Bayesian methods.

In this section, we begin by showing how heteroskedasticity can be introduced in the SVAR

to obtain what we label SVAR-H and make the data more informative about the structural pa-

rameters. In this way, as long as the conditions stated in Lanne et al. (2010) and Lutkepohl

and Wozniak (2020) are satisfied, there will be no regions of the parameters space in which the

likelihood is flat. The SVAR-H we present is a natural extension of the model proposed by BH

as it directly elicits priors on structural parameters. However, following arguments put forward

by Inoue and Kilian (2021a) and Arias et al. (2022), we remark that BH’s method does not rep-

resent a definitive solution to the problem of never-updated priors in sign restricted SVAR, and

researchers may still feel more comfortable eliciting Normal-Inverse-Wishart (N-IW) priors on

the reduced form parameters and a uniform (U) prior over the set of admissible rotations Q. As

a matter of fact, Arias et al. (2022) have proven that in order to specify a uniform joint prior

for the vector of impulse response functions, it is both necessary and sufficient to assume a uni-

form prior over the set of orthonormal matrices Q. For this reason, we continue the section by
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showing how our blended identification approach can be easily implemented in the conventional

U-N-IW setting thanks to the distributional equivalence pointed out by Arias et al. (2018).

Subsection 3.1 describes the general Bayesian algorithm we use to draw from the posterior

distribution of the SVAR-H model, while in subsection 3.2.1 we revisit the empirical results

in BH through the lenses of our heteroskedastic model. Subsection 3.2.2 demonstrates the

ability of heteroskedasticity to sharpen structural inference in the oil market model of Kilian

and Murphy (2012).

3.1 Structural VAR with heteroskedasticity (SVAR-H)

In this section we borrow notation from Lutkepohl and Wozniak (2020) and write λi,s = λi,1ωi,s,

s = 1, ...,S, where it is understood that ωi,1 = 1 for every i ∈ {1, ...,n}. Although this specifi-

cation does not change any property of the model, it provides an immediate way to check that

enough heterogeneity is present in the changes of variance regimes.

If we assume that the data are generated by the SVAR(p) model in (2) with time varying Λs,

s = 1, ...,S, the likelihood is:

p(y1:T |A,B,Λ1:S) = (2π)−
T n/2 |det(A)|T

(
n

∏
i=1

λ
−T/2
i,1

)(
n

∏
i=1

S

∏
s=1

ω
−Ts/2
i,s

)
×

exp

{
−1

2

n

∑
i=1

λ
−1
i,1

[
S

∑
s=1

ω
−1
i,s

(
Aiy(s)−Bix(s)

)(
Aiy(s)−Bix(s)

)′]}
, (6)

where T is the time series size of the sample and Ts is the length of regime s. The matrices

y(s) and x(s) collect the values of yt and xt−1 observed during regime s and have size n×Ts and

k×Ts respectively, while Ai and Bi denote the i-th row of A and B.

Adopting the notation in Braun (2021), we write A′
i =Wiαi +wi,9 and assume independent

priors for the free elements in Ai, p(αi), conditionally normal priors with mean µbi
and variance

V bi on the vectors of coefficients Bi, independent inverse-gamma priors with di,1/2 degrees of

freedom and scale parameter ζi,1/2 for the variances λi,1, inverse-gamma priors with di,s/2 degrees

of freedom and scale parameter ζi,s/2 for the ratios ωi,s, for s = 2, ...,S.

9W i is a n×nα selection matrix and wi is a n×1 vector fixes one of the elements of Ai
′ to 1.

15



The free elements αi have a conditional posterior distribution whose density is:

p(αi|Y ,Λ1:S) ∝ p(αi) |det(A)|T exp
[
−1

2
(αi − ᾱi)

′ V̄−1
αi

(αi − ᾱi)

]
, (7)

where:

V̄−1
αi

=W ′
i

(
λ
−1
i,1

S

∑
s=1

ω
−1
i,s y(s)y(s)′−ϒ

′V̄ biϒ

)
Wi,

ᾱi = V̄ αiW
′
i

[
ϒ
′V̄ bi

(
V−1

bi
µbi

+λ
−1
i,1

S

∑
s=1

ω
−1
i,s x(s)

(
w′

iy
(s)
)′)

−

(
λ
−1
i,1

S

∑
s=1

ω
−1
i,s y(s)y(s)′wi

)]
,

with ϒ = λ
−1
i,1 ∑

S
s=1 ω

−1
i,s y(s)x(s)′.10 The conditional posterior distribution of Bi is shown in Ap-

pendix A to be normal with moments:

V̄ bi =

[
V−1

bi
+λ

−1
i,1

S

∑
s=1

ω
−1
i,s x(s)

(
x(s)
)′]−1

,

µ̄
′
bi
=

[
µ
′
bi

V−1
bi

+λ
−1
i,1

S

∑
s=1

ω
−1
i,s Aiy(s)

(
x(s)
)′]

V̄ bi. (8)

The variances λi,1, conditional on all other parameters, have inverse-gamma posteriors with
d̄i,1
2 =

di,1+T
2 degrees of freedom and scale parameters

ζ̄i,1

2
=

ζi,1 +∑
S
s=1 ω

−1
i,s

(
Aiy(s)−Bix(s)

)(
Aiy(s)−Bix(s)

)′
2

. (9)

Finally, the ratios ωi,s have inverse-gamma conditional posteriors with d̄i,s
2 =

di,s+Ts
2 degrees of

freedom and scale parameters

ζ̄i,s

2
=

ζi,s +λ
−1
i,1

(
Aiy(s)−Bix(s)

)(
Aiy(s)−Bix(s)

)′
2

. (10)

The detection of the variance regimes is performed through a change-point specification

of the type proposed by Chib (1998). Chib’s method can be thought of as a standard Markov

10The derivation of the posterior distribution is illustrated in Appendix A.
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Switching model with banded S× S transition probability matrix P, 11 so that once the model

has entered a regime it can only move to the next one. Setting independent Dirichlet priors

D(τs,s,τs,s+1), s = 1, ...,S− 1, for the free elements in P, the conditional posteriors are conju-

gate: D(τs,s+(Ts−1),τs,s+1+1). The states, δt ∈ {1, ...,S}, t = 1, ...,T , can thus be smoothed

using the Hamilton filter. In what follows, we set a priori the number of regimes S = 3; we

replicated all the examples in the paper with S = 2, with almost no difference in the results.

Given these conditional densities, draws from the joint posterior of the parameters of the

SVAR-H model can be obtained implementing a Markov Chain Monte Carlo (MCMC) algo-

rithm that draws from each full conditional posterior M times, where M is a sufficiently large

number of iterations.12 Defining the set of SVAR parameters θ = {B,A,Λ1:S}, the steps of the

algorithm can be summarized as follows:

11The only non-zero elements in P are those on the main diagonal and those on the one below, with the (S,S)
element equal to 1

12In our empirical applications M = 15,000 with a burn-in of M/3
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Algorithm 1 SVAR-H

1. Draw from p
(

θ (m),P(m)|Y ,δ (m−1)
1:T

)
by:

(a) Drawing the SVAR parameters from p
(

θ (m)|Y ,δ (m−1)
1:T

)
:

i. Draw from p
(

Λs|Y ,A(m−1),B(m−1),δ
(m−1)
1:T

)
for s = 1, ...,S, which is accom-

plished by:

A. drawing from p
(

λi,1|Y ,Ai
(m−1),Bi

(m−1),ω
(m−1)
i,2:S ,δ

(m−1)
1:T

)
for i = 1, ...,n;

B. drawing from p
(

ωi,s|Y ,Ai
(m−1),Bi

(m−1),λ
(m)
i,1 ,δ

(m−1)
1:T

)
for i = 1, ...,n and

for s = 2, ...,S;

ii. Draw from p
(

A,B|Y ,Λ(m)
1:S ,δ

(m−1)
1:T

)
:

A. Draw from p
(

αi|Y ,Λ(m)
1:S ,δ

(m−1)
1:T

)
, for i = 1, ...,n, using an Independence

Metropolis-Hastings step, which:
• draws a candidate α⋆ using the likelihood as proposal density;

• compute ϑ = min
{

p(α⋆)

p(α(m−1))
,1
}

, and set α(m) = α⋆ with probability ϑ

and α(m) = α(m−1) with probability (1−ϑ) ;

B. Draw from p
(

Bi|Y ,A(m)
i ,λ

(m)
i,1:S,δ

(m−1)
1:T

)
, for i = 1, ...,n;

(b) Drawing the transition matrix from p
(

P(m)|Y ,δ (m−1)
1:T

)
following Chib (1998);

2. Draw from p
(

δ
(m)
1:T |Y ,θ (m),P(m)

)
through a Hamilton smoother.

Although we enforce sign restrictions through the exact same priors on αi proposed by BH,

it is important to stress a subtle difference between our approach and the one implemented in

their original paper, in that for the coefficients Bi and Λs we use independent Normal-Inverse

Gamma priors, while BH use a natural conjugate Normal-Inverse Gamma prior. The conjugate

prior is computationally convenient but it implies that the prior variances of the coefficients

in the various equations are proportional to the error variance of the system, and conjugacy

requires the likelihood to be symmetric across equations.13 Indeed, if heteroskedasticity is

added to the model, the symmetry in the likelihood breaks down and the conjugate prior is no

longer a viable option. As a result, one should keep in mind that the prior distributions we

use for these parameters in the following subsection are broadly comparable but not exactly

identical to the ones elicited in the original BH paper and there is, in principle, a possibility that
13See Sims and Zha (1998) and Carriero et al. (2019) for a discussion of this issue
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some of the differences reported in the results are due to differences in the prior distributions.

To check if this is the case, we also repeated the analysis using a version of the BH model that

assumes the same independent Normal-Inverse Gamma prior we use in this paper. Results are

reported in section B of the Supplemental materials available online and show that the effect of

the differences in the form of the prior (natural conjugate vs independent) plays only a marginal

role.

In recent contributions, Inoue and Kilian (2021a) and Arias et al. (2022) argue that BH’s ap-

proach does not represent a uniformly superior method to implement sign restrictions in SVAR

models. In particular, Arias et al. (2022) show that the conventional practice of specifying

a uniform prior over the set of orthogonal matrices is the only way to reflect a joint uni-

form prior for the vector of impulse response functions. If this is the case, researchers may

still want to work with the conventional Normal-Inverse Wishart prior distributions on the re-

duced form parameters coupled with a Uniform prior for the rotation matrix Q, as done by

most of the literature ever since Uhlig (2005). Furthermore, Arias et al. (2018) show that

this Uniform-Normal-Inverse Wishart (U-N-IW) prior specified on the reduced form parame-

ters can be mapped into a Normal-Generalized Normal (N-GN) prior on the parameters of the

structural form. In such case, given the conjugacy properties of N-GN priors, the Independence

Metropolis step (1.a.ii.A) of the algorithm described in section 3.1 is no longer needed, and

sign restrictions can be enforced by rejection sampling. In practice, this amounts to a truncation

discarding the draws of αi, i = 1, . . . ,n, that do not imply the desired signs in impulse response

functions. In summary, the following algorithm can be used when working with the U-N-IW

prior:
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Algorithm 2 SVAR-H with Uniform-Normal-Inverse Wishart prior.

1. Draw from p
(

θ (m),P(m)|Y ,δ (m−1)
1:T

)
by:

(a) Drawing the SVAR parameters from p
(

θ (m)|Y ,δ (m−1)
1:T

)
:

i. Draw from p
(

Λs|Y ,A(m−1),B(m−1),δ
(m−1)
1:T

)
for s = 1, ...,S, which is accom-

plished by:

A. drawing from p
(

λi,1|Y ,Ai
(m−1),Bi

(m−1),ω
(m−1)
i,2:S ,δ

(m−1)
1:T

)
for i = 1, ...,n;

B. drawing from p
(

ωi,s|Y ,Ai
(m−1),Bi

(m−1),λ
(m)
i,1 ,δ

(m−1)
1:T

)
for i = 1, ...,n and

for s = 2, ...,S;

ii. Draw from p
(

A,B|Y ,Λ(m)
1:S ,δ

(m−1)
1:T

)
:

A. Draw from p
(

A,B|Y ,Λ(m)
1:S ,δ

(m−1)
1:T

)
, which is accomplished by:

• drawing from p
(

αi|Y ,Λ(m)
1:S ,δ

(m−1)
1:T

)
, for i= 1, ...,n, implementing Wag-

goner and Zha’s (2003) sampler;

• drawing from p
(

Bi|Y ,A(m)
i ,λ

(m)
i,1:S,δ

(m−1)
1:T

)
, for i = 1, ...,n;

B. Check sign restrictions: if they are satisfied, move to the next step, other-
wise return to step (ii.A).

(b) Drawing the transition matrix from p
(

P(m)|Y ,δ (m−1)
1:T

)
following Chib (1998);

2. Draw from p
(

δ
(m)
1:T |Y ,θ (m),P(m)

)
through a Hamilton smoother.

3.2 Empirical applications

This section illustrates the blended approach by revisiting two widely known empirical appli-

cations on the effects of shocks to the labor market and oil price.

3.2.1 Identifying labour market shocks [Baumeister and Hamilton (2015)]

The empirical example used by BH to illustrate their method is a bivariate SVAR describing

aggregate labour demand and supply in the U.S. The model takes the form in (2) with:

A =

 −β d 1

−αs 1

 , (11)

and yt = [∆wt ,∆nt ], where wt and nt are 100 times the logarithm of the wage level and employ-
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ment level, while ∆ denotes the quarterly difference. 14 The free elements of A, β dand αs, are

interpreted as the short run demand and supply elasticity respectively. The authors place on β d

a student-t prior with 3 degrees of freedom, location parameter cβ =−0.6 and scale parameter

σβ = 0.6, and they set for αs the same type of prior with cα = 0.6 and σα = 0.6. Furthermore,

in accordance with any plausible theoretical model, BH truncate the priors for these elasticities

to have respectively only negative and positive support.

In our specification of the model, we set the exact same prior on the free elements of A and

use an implied Minnesota type conditional prior for the structural parameters Bi: µ i = AiΠ0,

with Π0 an n× k matrix of zeros.15In addition, we follow the original paper and introduce the

non-dogmatic restriction that the long run effect of a labour demand shock on employment is

zero. We do this by adding an independent normal prior for the sum of the coefficients in B2

associated with lagged values of ∆wt .16 The prior distributions for the variances λi,1 are inverse-

gamma with degrees of freedom di,1 = 2 and scale ζi,1 =
(

di,1ÂΣ(1)Â
′)

i,i
, where Â is the matrix

that maximizes Baumeister and Hamilton’s posterior and Σ is the variance/covariance matrix of

AR(1) residuals computed for the first regime. Finally, the variance ratios ωi,s, s = 2, ...,S, have

also inverse-gamma prior with di,s = 2 and scale ζi,s = di,s

(
ÂΣ(s)Â′)

i,i(
ÂΣ(1)Â′)

i,i

.

For this application, we use the same data analyzed in the original paper, which are quar-

terly and cover the period 1970:Q1-2014:Q2. The two change-points are detected by the model

between 1983:Q2 and 1984:Q4 and around the beginning of the Great Financial Crisis respec-

tively.

Figure 1 illustrates the contribution provided by heteroskedasticity to the identification of

the structural parameters β dand αs. The histograms show the marginal posterior distributions

of the demand elasticity (left panel) and the supply elasticity (right panel) obtained from the

homoskedastic SVAR (BH) and from the SVAR-H model. The continuous red lines depict the

prior distributions of the two parameters. The figure shows a considerable difference between

the results of the two models, SVAR-H portrays a significantly steeper aggregate labour supply
14Wage level is measured as the seasonally adjusted real compensation per hour and employment level is the

seasonally adjusted number of people on non-farm payrolls.
15The variance V i is a diagonal k×k matrix with the top left element equal to δ0, and j-th main diagonal element

equal to
δ1δ2(1 j ̸=i)

lδ3
σi
σ j

, where l is the lag of the associated regressor, σi and σ j are the residual variances of an AR(1)
estimated via OLS for the i-th and j-th variable of the system. In our application, δ0=100, δ1 = 0.2, δ2=1, δ3 = 1.

16This prior is centered at −αs and has variance R = 0.1σi.
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and a demand that is almost flat. Although the demand elasticity depicted may seem extreme

compared to the consensus in the microeconometric literature, Akerlof and Dickens (2007)

provide theoretical reasons explaining why large demand elasticities are plausible in macroeco-

nomic models. Interstingly, a large demand elasticity is also estimated by Doppelt (2021) using

the same model but exploiting seasonality for identification.

Figure 1: Revisiting Baumeister and Hamilton (2015): Posteriors under alternative identifica-
tion strategies

Notes: BH (blue histogram) denotes the homoskedastic SVAR with natural conjugate priors, SVAR-H
(red histogram) indicates the heteroskedastic model. The red line is the prior density, which is identical
in both specifications.

The divergent implications of the two specifications are reflected in the cumulated IRFs

depicted in Figure 2. 17 In the figure, the size of the demand shock has been normalized to

have a unit impact on wages, while the size of the supply shocks has been normalized to have

a unit impact on employment. As a consequence of the different elasticities, the responses of

employment to demand and supply shocks are substantially revised with the introduction of

heteroskedasticity. Due to the steepness of the supply curve, employment is less responsive

to demand shocks on impact when compared to the case with constant variances, and the cu-
17In order to facilitate comparisons with the original applications, throughout the paper we do not adopt Inoue

and Kilian’s (2021b) Bayes estimator for IRFs, but we report point-wise medians and credible bands. Point-wise
medians are shown by Baumeister and Hamilton (2018) to be indeed optimal Bayes estimates when the researcher’s
loss function takes a linear-absolute form.
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Figure 2: Revisiting Baumeister and Hamilton (2015): Impulse responses.

Notes: BH (blue) denotes the homoskedastic SVAR with natural conjugate priors, SVAR-H (red) indi-
cates the heteroskedastic model. Solid lines indicate point-wise median responses while shaded areas
and dashed lines represent point-wise 68% credible bands.

mulated effect remains lower at all horizons. On the other hand, the different supply-demand

schedules also imply that a supply shock increasing employment by 1% produces a significantly

smaller response of wages on impact in the model that exploits heteroskedasticity for identifi-

cation. This is in line with the anecdotical evidence collected by Friedberg and Hunt (1995),

who notice that large increases of the supply of labour due to exogenous immigration waves

generated only limited effects on salaries in a number of historical episodes.

Although point identification is not necessarily the objective of our blended approach, it may

be of interest to know whether the presence of heteroskedasticty is actually supported by the

data and if the non-proportionality conditions are satisfied. For this reason, we report in Table

1 the Log- Bayes factors in favour of the homoskedastic model (ωi,1 = ωi,2 = 1, i = 1, . . . ,n)

and a model with proportional changes in the shocks variances (ωis/ω js = 1, s = 2,3) for all

the applications considered in the paper. The Bayes factors are computed as Savage-Dickey

Density Ratios (SDDR) as suggested by Lutkepohl and Wozniak (2020). Based on the scale

recommended by Kass and Raftery (1995), the authors consider SDDR with an absolute value

larger than five as providing strong evidence against the restricted model. The table shows that,
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for BH’s model, the data do support the presence of regimes changes in the variance of both

structural shocks, and there is no sign of proportional changes across regimes.18

Table 1: Log-SDDR

Restriction: ωi,2 = ωi,3 = 1
Restriction: ωi,1/ω j,1 = ωi,2/ω j,2 = 1

j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

BH15
i = 1 −8.1970 −18.7085

i = 2 −14.2412

KM12
i = 1 −93.5873 −126.3354 −107.3837

i = 2 −172.3215 −20.4317

i = 3 −6.4990

AR18 i = MP −∞ −27.5061 −92.8301 −89.8227 −1.9582 −227.4372

MR13
i = APIT R −7.8672 −35.6227 −7.0247 −17.5384 −10.6323 −7.3824 −7.1596

i = ACIT R −25.7048 −27.1317 0.0964 −5.3968 −25.4468 −4.9284

Notes: Log-SDDR comparing SVAR-H with a model with homoskedastic shocks (ωi,2 = ωi,3 = 1), and with a
model with proportional changes in shocks variances (ωi,1/ω j,1 = ωi,2/ω j,2 = 1). BH15: Baumeister and Hamilton
(2015); KM12: Kilian and Murphy (2012); AR18: Antolin-Diaz and Rubio-Ramirez (2018); MR13: Mertens and
Ravn (2013). SDDRs with absolute value greater than five are in bold.

3.2.2 Identifying oil market shocks [Kilian and Murphy (2012)]

In order to illustrate the use of our blended approach in the context of conventional sign re-

strictions, we revisit the seminal oil market model developed by Kilian and Murphy (2012, KM

henceforth). KM’s model is a SVAR(24) with monthly endogenous variables yt = [∆qt ,yt , pt ]
′,

where ∆qt is the growth rate of global oil production, yt is a measure of real global economic

activity, and pt is the logarithm of the real price of oil. The authors identify three structural

shocks that they label ’oil supply’, ’aggregate demand’, and ’oil-specific demand’, through the

sign restrictions on A−1 illustrated in Table 2. To further reduce the set of admissible models,

on the basis of previous empirical studies and historical evidence, KM also impose an upper

bound of 0.0258 to the short-run price elasticity of oil supply.1920

18Log-SDDR considering regime specific homoskedasticity or proportionality are reported in the online Ap-
pendix E.

19In the terminology used in oil market modeling, supply (demand) elasticity is represented by the ratio between
the response of ∆qt and the response of pt to a demand (supply) shock. See Kilian (2022) for a detailed discussion.

20The elasticity bound and other features of KM’s approach have been superseded on various grounds by sub-
sequent contributions (see e.g. Kilian and Murphy (2014), Baumeister and Hamilton [2019] and Caldara et al.
[2019]), nevertheless the model represents an ideal example to clarify the implementation and usefulness of our
blended approach due to its simplicity and popularity.
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Table 2: Sign Restrictions in Kilian and Murphy (2012)
Variable\Shock Oil Supply Aggregate Demand Oil-specific Demand

∆qt − + +
yt − + −
pt + + +

The original analysis was performed by KM in a Bayesian setting with flat priors, thus, in

order to maximize comparability, we elicit the prior p(A,B) ∝ |det(A)|−n, which is equivalent

to the Jeffreys’ (flat) prior on the reduced-form parameters. Furthermore, to facilitate the com-

parison between priors, we do not impose the unit normalization of specific elements of A as

done in the previous section, but we instead normalize the structural shocks to have unit vari-

ance in the first regime, λi,1 = 1 for every i. For the ratios ωi,s, i = 1, ...,n and s = 2,3, we

set conservative Inverse Gamma priors with n degrees of freedom and scale n−1, which imply

prior means equal to 1. The conditional posterior distribution of αi, i = 1, ...,n, is therefore

Generalized Normal:

p(αi|Y ,Λ1:S) ∝ |det(A)|T−n exp
[
−1

2
αi

′V̄−1
αi

αi

]
(12)

where V̄−1
αi

= ∑
S
s=1 ω

−1
i,s y(s)y(s)′−ϒ

′V̄ biϒ, and ϒ = ∑
S
s=1 ω

−1
i,s y(s)x(s)′.

The rows Bi have a normal conditional posterior with variance V̄ bi =

[
∑

S
s=1 ω

−1
i,s x(s)

(
x(s)
)′]−1

and mean µ̄ ′
bi
=

[
∑

S
s=1 ω

−1
i,s Aiy(s)

(
x(s)
)′]

V̄ bi
21. The posterior moments for all other parame-

ters are identical to those derived in section 3.1. We estimate both KM original model and our

SVAR-H version based on the sample, extended by Antolin-Diaz and Rubio-Ramirez (2018),

that covers the period from January 1971 to December 2015.

Figure 3 compares the impulse response functions obtained from KM’s model, identified

through sign-restrictions and elasticity bounds only, with those obtained from the same model

that also accounts for regimes changes in the variances of structural shocks. Form the figure it

is clear that while KM’s sign-restrictions are extremely informative in identifying an oil supply

shock, they are less effective in pinning down the two demand shocks in their system. As shown

by the differences in both shape and width, the responses to demand shocks (both aggregate and

21These posterior moments can be obtained by substituting Wi = I, wi = 0, and V−1
bi

= 0 in the derivations of
Appendix A.
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Figure 3: Revisiting Kilian and Murphy’s (2012): Impulse responses.

Notes: KM12 (blue) denotes Kilian and Murphy’s (2012) SVAR, SVAR-H (red) indicates the het-
eroskedastic model. Solid lines indicate median responses while shaded areas and dashed lines repre-
sent 68% credible bands. To aid comparisons, the figure normalizes the shocks to have a unit impact
on the target variable.

oil-specific) are largely affected by the additional information introduced by heteroskedasticity.

The effects of an aggregate demand shock appear less pronounced on impact but tend to be

higher and more persistent at longer horizons. More specifically, the response of the economic

activity index never becomes lower than its impact level for the first 16 months according to the

SVAR-H, while, in the sign-restricted only model, it starts to dissipate already after one quarter.

A similar pattern is shown by the response of real oil price. In the SVAR-H specification, the

impact effect is significantly lower and it tends to strengthen over time, whereas, according to

the alternative model, the response is large on impact and slightly decreases over the horizon.

Contrarily, the effect of an oil-specific demand shock on the real price of oil appears more

persistent when heteroskedasticity is exploited, and its repercussion on economic activity is

significantly downsized and even sign-reverted at medium horizons.

It is worth noting at this point that the revisions in IRFs shown in Figure 3 are strikingly

similar to those obtained by Antolin-Diaz and Rubio-Ramirez (2018) through a completely dif-
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ferent method, i.e. the addition of narrative restrictions. Besides supporting the robustness of

our results, this fact points out the effectiveness of both these methods (narrative restrictions

and heteroskedasticity) in sharpening identification. There is further scope to fruitfully blend

these two approaches, as we shall discuss in the next section. The way in which the introduction

of heteroskedasticity sharpens identification is also consistent with the results obtained by KM

adding further economically motivated restrictions to the baseline model described. In partic-

ular, to reduce the identified set, KM also impose a bound on the response of global economic

activity to oil-specific demand shock finding results largely in line with ours.

Figure 4: Revisiting Kilian and Murphy’s (2012): Forecast error variance decompositions.

Notes: KM12 (blue) denotes Kilian and Murphy’s (2012) SVAR, SVAR-H (red) indicates the het-
eroskedastic model. Solid lines indicate median FEVDs while shaded areas and dashed lines represent
68% credible bands. For the heteroskedastic specification, the depicted FEVD are computed by setting
the variances of structural shocks to their arithmetic average across regimes.

Besides IRFs, other quantities that are of particular interest in the oil market modeling lit-

erature are the Forecast Error Variance Decompositions (FEVDs) of oil production and price.

The FEVD represents a measure of the relative importance of each shock for the unexpected

change in the endogenous variables, and it has been the object of strong debate in the recent

literature.22 One particular question at the core of the debate is whether changes in oil price are
22See e.g Baumeister and Hamilton (2019), Caldara et al .(2019) and Kilian (2021) and references therein.
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mainly driven by demand or supply shocks.

Figure 4 compares the variance decompositions obtained by the original Kilian and Mur-

phy’s (2012) model with those obtained by the SVAR-H specification.23 The answer provided

by the two models to the crucial question is similar: the bulk of oil price variation is due to

demand shocks. However, the SVAR-H results show that oil-specific demand is the most im-

portant factor at shorter horizons, while aggregate demand becomes the dominant driver of oil

price in the long run. The latter mechanism is absent in the model identified only through sign-

restrictions and elasticity bounds due to the large uncertainty about the parameters in the matrix

Q, but it also becomes evident once the identified set is reduced exploiting narrative information

as done by Antolin-Diaz and Rubio-Ramirez (2018). Moreover, the SVAR-H also sheds light

on the fact that only a negligible share of global economic fluctuations is associated with oil

market shocks, whereas KM’s model attributes between 20% and 60% of the economic activity

forecast variance to oil-specific demand shocks.

Finally, as in the previous section, we compute the Log-SDDR in favour of the model with

time invariant or proportional volatility changes. The density ratios are reported in Table 1 and

show strong evidence against homoskedastic shocks or proportional shifts in their variances.

4 Blending narrative restrictions and heteroskedasticity

In many relevant instances, the information a researcher has before seeing the data is not only

in the form of sign restrictions. Sometimes a reliable account of some shocks that materialized

in association with specific events may be available. For example the econometrician may be

reasonably sure that the shock of interest was positive at a specific point in time (“shock sign

restrictions” in the terminology of Giacomini et al., 2021), or that it was the most significant

contributor to the change in an observable variable (’shock rank restrictions’ in the terminology

of Giacomini et al., 2021). The idea of exploiting this narrative information for identification

purposes has been only recently formalized by Antolin-Diaz and Rubio-Ramirez (2018) and

Ludvigson et al. (2021). Despite the similarity with sign restrictions, narrative restrictions bear

23Because of the presence of heteroskedasticity, the FEVD is time-varying in the SVAR-H specification. How-
ever, to maximize comparability, we consider the FEVD computed by setting the variances of structural shocks to
their arithmetic average across regimes.
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some peculiarities that are worth emphasizing. In particular, they do not restrict the support

of the prior distribution, they rather truncate the likelihood by restricting the set of admissible

realizations of the structural shocks εt .24 The likelihood in (6) becomes:

p(y1:T |A,B,Λ1:S) = (2π)−
T n/2 |det(A)|T

(
n

∏
i=1

λ
−T/2
i,1

)(
n

∏
i=1

S

∏
s=1

ω
−Ts/2
i,s

)
×

exp

{
−1

2

n

∑
i=1

λ
−1
i,1

[
S

∑
s=1

ω
−1
i,s

(
Aiy(s)−Bix(s)

)(
Aiy(s)−Bix(s)

)′]}
×DNR (θ ,y) , (13)

where DNR (θ ,y) is the Dirac delta function that takes value 1 when the narrative restrictions

are satisfied, and 0 otherwise.

Narrative restrictions are usually implemented in conjunction with sign restrictions to reduce

the set of SVAR parameterizations associated with a given reduced form model. Inside this

smaller set, however, the likelihood remains flat, allowing for infinitely many equally likely

parameter points. The structural model is therefore still set identified, and there is scope for

heteroskedasticity to be exploited in order to make the likelihood more informative. This is

achieved by truncating the posterior via rejection sampling. In particular, this is achieved by

appropriately specifying the truncation set in step (1.a.ii) of Algorithm 2.

4.1 Monetary policy shocks [Antolin-Diaz and Rubio-Ramirez (2018)]

Antolin-Diaz and Rubio-Ramirez (2018, AR henceforth) consider the six-variable monthly

SVAR(12) designed by Uhlig (2005) to study the propagation of monetary policy shocks. The

endogenous variables in the model are: real output, the GDP deflator, a price index for com-

modities, total reserves, non-borrowed reserves, and the fed funds rate. The monetary policy

shock is identified by Uhlig (2005) by assuming that the response, up to a five-month horizon,

of the fed funds rate to such shock is positive, while it is negative for the GDP deflator, the

commodity price index and non-borrowed reserves. In this setting, AR show that the identified

set can be narrowed down significantly by exploiting the sole uncontroversial fact that in Octo-
24See Giacomini et al. (2021) for a formal discussion of the differences between sign restrictions and narrative

restrictions.
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ber 1979 the monetary policy was contractionary, and it was the main driver of the unexpected

change in the fed funds rate.25

Figure 5: Revisiting Antolin-Diaz and Rubio-Ramirez (2018): Responses to a monetary policy
shock

Notes: AD-RR (blue) denotes Antolin-Diaz and Rubio-Ramirez (2012) SVAR, SVAR-H (red) indicates
the heteroskedastic model. Solid lines indicate median responses while shaded areas and dashed lines
represent 68% credible bands. To aid comparisons, the figure normalizes the shocks to 25 basis points
impact on the fed funds rate.

Figure 5 shows that the presence of heteroskedasticity in the structural shocks can be ex-

ploited for identification also in this context. The red impulse responses are derived from the

posterior distribution of the model that includes the same sign and narrative restrictions con-

sidered by AR and also accounts for heteroskedasticity, while the blue IRFs are generated

imposing only AR’s sign and narrative restrictions. Both results are based on the sample pe-

riod January 1965 to November 2007.26 Also in this case, we take advantage of the distri-

butional equivalence derived by Arias et al. (2018) and consider a prior distribution for the

structural parameters that translates into the Jeffreys (flat) prior on the reduced-form parame-

ters, p(Π,Ω) ∝ |det(Ω)|−(n+1+k)/2, and a uniform prior over the space of admissible rotations

25In October 1979 the Fed Chairman Paul Volcker announced new operating procedures to curb inflation, which
comprised large increases of short-term interest rates. See e.g. Lindsey, Orphanides and Rasche (2005).

26The dataset is available for download from Juan Antolin-Diaz website.
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Q.

The figure shows that, once again, the introduction of the identifying information coming

from heteroskedasticity exerts a remarkable contribution in reducing uncertainty about IRFs,

especially at shorter horizons. Moreover, the implications of a monetary policy shock are re-

vised significantly in several directions. In particular, when compared to the original model, the

SVAR-H highlights a reduced ability of contractionary monetary policy surprises to reduce in-

flation in the short-run. In line with the evidence provided by Nakamura and Steinsson (2018),

the response of the general inflation measure is virtually null for the first three years from the

shock. At the same time, the recessionary effects brought in by the monetary contraction appear

larger and more significant, although they are positive in the first few months after the shock.

Finally, the mean reversion of the fed funds rate is slower once changes in the variance of struc-

tural shocks are considered, presumably reflecting a stronger preference of the Fed for interest

rates smoothing.

Table 1 shows that the data strongly favour the model with regime shifting in the variance of

structural shocks. However, the Log-SDDR also show that the evidence against a proportional

change between the volatility of the monetary policy shock and that of all other shocks is not

strong. In particular, one of the remaining (unlabelled) structural innovation seems to display a

volatility process that cannot be clearly distinguished from that of the monetary policy shock.

This demonstrates that the convenience of our blending approach is not limited to the solution

of the labelling problem. As shown by Bacchiocchi et al (2022), if we were to identify the

monetary policy shock based on heteroskedasticity alone, we would likely be left with a set

identified model. The combination of heteroskedasticity with nattarive and sign restrictions,

however, is able to dramatically reduce the size of the set of admissible models. This is even

more important when inference is performed through Monte Carlo algorithms, in which label

switching can happen across posterior draws.

5 Blending proxy-SVARs and heteroskedasticity

A Proxy-SVAR is a Structural VAR identified by means of external instruments that are cor-

related with the shocks of interest but uncorrelated with all other shocks. That is, given the
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model in equation (2), a r×1 vector of variables, zt , is available, and evolves according to the

following process:

zt = Γc +Γxxt−1 +Γz,1zt−1 + . . .+Γz,pzt−p +ΦΛ
0.5

εt +Λ
0.5
e et (14)

where Γc is a r× 1 vector of intercepts, Γx has dimension r× k, and Γz,l , l = 1, ..., p, are r× r

matrices of lagged coefficients. The matrix Φ links the external instruments to the identified

structural shocks of the SVAR and can be partitioned as Φ =

[
Φr 0n−r

]
, in which Φr is a

full rank r×r matrix and 0n−r is a r×(n− r) matrix of zeros. This partition makes clear why the

external instruments are able to distinguish the first r shocks from all the remaining innovations.

Finally, et is a r×1 i.i.d. vector of measurement errors that are normally distributed with mean

zero and variance Σe, and independent from the structural shocks εt .

In most practical cases, and in our application in section 5.2, instruments are such that Γc,

Γx and Γz,l are all zeros, therefore equation (14) simplifies to: zt = Φε t + et . The Proxy-SVAR

can then be written compactly in reduced form as:

 zt

yt

=

ỹt

 0

Π

xt−1

Π̃ xt−1

+

 Ωe Φ

0 A−1


Ã−1

 Λ0.5
e 0

0 Λ0.5


Λ̃

 e

ε t


ε̃t

(15)

where ε̃t is a multivariate standard Gaussian and Ωe is a potentially full matrix with ones on the

main diagonal, such that Σe = ΩeΛeΩ′
e.

When r is greater than one, the Proxy-SVAR is only set identified, unless more constraints

are introduced either on Φ or A−1, or on both. Such constraints come often in the form of

zero restrictions or sign restrictions. In the latter case, however, the identified set is only made

smaller, but it is usually not reduced to a single parameter point.

In what follows we provide a method to point identify a Proxy-SVAR with r > 1 instru-

ments and r shocks of interest, without imposing dubious restrictions on Φ or A−1. Following

our discussion of heteroskedasticity as a complementary identification strategy, we propose to

reduce the identified set in Proxy-SVARs taking advantage of the time variation in the variances

of structural shocks.
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5.1 Proxy-SVAR-H

Extending the reduced form Proxy-SVAR in equation (15) to account for heteroskedasticity is

straightforward, it suffices to consider εt as generated by a normal distribution with mean zero

and variance Λs, for s = 1, ...,S, where S continues to indicate the number of regimes. Without

loss of generality, we also set the diagonal elements of A−1 to 1 to fix the scale.

The likelihood of the resulting Proxy-SVAR-H is therefore:

p
(

y1:T |Ã−1,Π̃, Λ̃1:S

)
= (2π)−

T n/2
∣∣∣det

(
Ã−1

)∣∣∣−T
(
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∏
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λ
−T/2
e, j

)(
n

∏
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λ
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i,1

)(
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∏
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−Ts/2
i,s
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×
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ỹ(s)
′

t

)
−
(
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)′((
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Λ̃s

(
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)′)
⊗ ITs

)−1(
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′
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)
−
(

In ⊗ x(s)
′)

π̃

)]}
,

where π̃ = vec
(

Π̃

)
is a vector of reduced form VAR coefficients.

Assuming an independent Gaussian prior, N (π̃0,V ), conditional on Ã−1 and Λ̃1:S, the pos-

terior is Gaussian with variance and mean:

V̄ =

[
V−1 +

S

∑
s=1

(
Ã⊗ x(s)

′)′(
Λ̃s ⊗ ITs

)−1(
Ã⊗ x(s)

′)]−1

,

π̄ = V̄−1

[
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(
Ã⊗ x(s)

′)′(
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)−1
vec
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ỹ(s)
′

t Ã
′
)]

. (16)

Furthermore, conditional on Ã, the equations of the SVAR are independent. Accordingly,

given an inverse gamma prior, IG(di,1,ζi,1), i = 1, ...,r+n, for each element of Λ̃1, the posteri-

ors are conjugate with d̄i,1 = di,1 +T degrees of freedom, and scale parameters:

ζ̄i,1 = ζi,1 +
S

∑
s=1

ω
−1
i,s

[
Ãi

(
y(s)− Π̃x(s)

)(
y(s)− Π̃x(s)

)′
Ã

′

i

]
. (17)

Since in many applications we do not have reasons to believe that the measurement error in

proxies is heteroskedastic, we focus on the case in which the first r diagonal elements of Λ̃s are
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time invariant, that is, we set ω̃i,s = 1 for i = 1, ...,r and s = 2, ...,S. As a result, we consider

regime-switching variance ratios only for the structural shocks εt . For given priors, ω̃i,s ∼

IG(di,s/2,ζi,s/2), i = r+ 1, ...,r+ n and s = 2, ...,S, the posteriors are then also Inverse Gamma

with d̄i,s
2 =

di,s
2 + Ts

2 degrees of freedom and scale parameters

ζ̄i,s

2
=

ζi,s

2
+

λ̃
−1
i,1

2

[
Ãi

(
y(s)− Π̃x(s)

)(
y(s)− Π̃x(s)

)′
Ã

′

i

]
. (18)

Finally, the conditional posterior of Ã−1 is not of a standard form because of the term∣∣∣det
(

Ã
)∣∣∣T appearing in the likelihood. Provided a prior for the nα free elements in Ã−1, p(α),

we can thus write its posterior distribution as:

p
(

α|Y ,Π̃, Λ̃1:S

)
∝ p(α)
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,

which can be used as a target density in a Metropolis-Hastings step.

As in the previous sections, the detection of change-points is performed by means of Chib’s

(1998) method. Define θ = {Π̃, Ã−1, Λ̃1:S}. The following MCMC algorithm draws from the

posterior of the Proxy-SVAR-H parameters, the states and the transition probabilities:
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Algorithm 3 Proxy-SVAR-H

1. Draw from p
(

θ (m),P(m)|Y ,δ (m−1)
1:T

)
by:

(a) Drawing the SVAR parameters from p
(

θ (m)|Y ,δ (m−1)
1:T

)
:

i. Draw from p
(

Λ̃s|Y ,
(

Ã−1
)(m−1)

,Π̃
(m−1)

,δ
(m−1)
1:T

)
for s = 1, ...,S, which is

accomplished by:

A. drawing from p
(

λ̃i,1|Y ,
(

Ã−1
)(m−1)

,Π̃
(m−1)

, ω̃
(m−1)
i,2:S ,δ

(m−1)
1:T

)
for i =

1, ...,r+n;

B. drawing from p
(

ω̃i,s|Y ,
(

Ã−1
)(m−1)

,Π̃
(m−1)

, λ̃
(m)
i,1 ,δ

(m−1)
1:T

)
for i = r +

1, ...,n and for s = 2, ...,S;

ii. Draw from p
(

α|Y ,Π̃(m−1)
, Λ̃

(m)
1:S ,δ

(m−1)
1:T

)
using a Random Walk Metropolis-

Hastings step, which:
A. draws a candidate α⋆ = α(m−1)+ ξ ν , where ν ∼ t (2) and has dimension

nα × 1, while ξ is a tuning parameter that guarantees an acceptance rate
between 30% and 40%;

B. compute ϑ = min

 p
(

α⋆|Y ,Π̃(m−1)
,Λ̃

(m)
1:S

)
p
(

α(m−1)|Y ,Π̃(m−1)
,Λ̃

(m)
1:S

) ,1
, and set α(m) = α⋆ with

probability ϑ and α(m) = α(m−1) with probability (1−ϑ) ;

iii. Draw from p
(

Π̃
(m−1)|Y ,

(
Ã−1

)(m)
, Λ̃

(m)
1:S ,δ

(m−1)
1:T

)
;

(b) Drawing the transition matrix from p
(

P(m)|Y ,δ (m−1)
1:T

)
following Chib (1998);

2. Draw from p
(

δ
(m)
1:T |Y ,θ (m),P(m)

)
through a Hamilton smoother.

The sampler is iterated for m = 1, ...,M, where M is a sufficiently large number, discarding

the first M0 draws.27

Notice that, since the coefficients in the first r rows of Π̃ are all zeros and the last n reduced

form errors are independent from the measurement errors, the last step of the sampler can be

performed by focusing only on the last n equations of the augmented VAR.

27In our empirical application M = 2,000,000 and M0 = 1,000,000.
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5.2 Identifying tax shocks [Mertens and Ravn (2013)]

One of the most important studies exploiting the availability of external instruments in a SVAR

framework is Mertens and Ravn (2013, MR henceforth), subsequently replicated and extended

by Jentsch and Lunsford (2019), Mertens and Ravn (2019) and Giacomini et al. (2020). The

authors construct two narrative measures correlated with personal income tax (APITR) and

corporate income tax (ACITR) shocks for the U.S.. They then acknowledge the fact that these

proxies contain measurement errors and therefore rely on a Proxy-SVAR analysis. This is a

typical example of the situation in which r > 1 (r = 2 in this case) instruments are available to

identify r > 1 shocks. As a result, the structural model is only set-identified. MR obtain point

identification by imposing that the matrix Φr is lower triangular, ordering either the APITR or

the ACITR instrument first. In other words, the authors assume that the instrument ordered first

only contains information about one shock, while the other is correlated with both fiscal shocks.

As argued by Giacomini et al. (2020), this additional restriction may be undesirable because

it introduces a significant degree of arbitrariness in the identification scheme. To avoid this

problem, Giacomini et al. (2020) propose to relax the zero restriction and to base inference on

the whole identified set, i.e. rely on set identification. Our blended identification strategy instead

allows to relax the zero restriction and obtain point identification using heteroskedasticity. In

fact, the Log-SDDR reported in Table 1 show strong evidence against homoskedasticity or

proportional variance processes, at least for one of the shocks of interest, namely the APITR

shock. It can be noticed that, despite one of the shocks seems to experience variance changes

that cannot be clearly distinguished by the change-point specification, the model is still point

identified by the presence of proxy variables. Therefore, the application represents another

example in which identification through heteroskedasticity can be fruitfully combined with set

identifying information, not just for labelling purposes, but also to compensate the respective

weaknesses. The only additional condition we need is a “relevance condition”, which imposes

that the first shock explains a larger portion of the first instrument’s variance, and it is required

to avoid column switchings in Ã−1.

We now revisit MR’s results through the lenses of a Proxy-SVAR-H and show that the

information brought in by heteroskedasticity can be substantial. The SVAR in the original paper
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Figure 6: Revisiting Mertens and Ravn (2013): responses to personal income tax shock

Notes: Proxy-SVAR (blue) denotes the homoskedastic SVAR with independent priors, Proxy-SVAR-H
(red) indicates the heteroskedastic model. Solid lines indicate median responses while shaded areas
and dashed lines represent 68% credible bands.

has 4 lags and a n×1 vector of endogenous variables, yt = [t pt , tct ,bpt ,bct ,gt ,yt ,dt ]
′, where t pt

and tct are respectively the real personal and corporate average income tax rate, bpt and bct are

the real personal and corporate income tax base per capita, gt measures government purchases

of final goods per capita, yt is the real GDP per capita, and dt is the real Federal Government

debt per capita. Data are quarterly and cover the period 1951:Q1-2006:Q4. The model defines

a first variance regime that lasts until 1963:Q3, and selects 1985 as a further break point. The

prior we set for the lagged coefficients, Π̃, are Gaussian with an identity matrix as mean and

Minnesota-type variances.28 The inverse gamma priors for the diagonal elements of Λ̃1 and

for the variance ratios ωi,s have two degrees of freedom and scale parameters computed as in

section 3.2.1. Finally, all the free elements in Ã−1 have independent student-t prior distributions

with three degrees of freedom, scale 0.5 and location at 0.

Results are presented in Figures 6 and 7, which depict the responses to one-unit tax shock

for both the homoskedastic and the heteroskedastic version of the Proxy-SVAR. The IRFs in

28Variances are
δ1δ2(1 j ̸=i)

lδ3
σi
σ j

, with δ0=100, δ1 = 0.5, δ2=1, δ3 = 2.
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Figure 7: Revisiting Mertens and Ravn (2013): responses to corporate income tax shock

Notes: Proxy-SVAR (blue) denotes the homoskedastic SVAR with independent priors, Proxy-SVAR-H
(red) indicates the heteroskedastic model. Solid lines indicate median responses while shaded areas
and dashed lines represent 68% credible bands.

Figure 6 are generated by a fiscal surprise that rises APITR by 1 percentage point, while Figure

7 plots the responses to a 1% unexpected increase in ACITR. It is clear that heteroskedasticity

adds important information in many directions. The fact that credible bands around responses

are generally narrower especially at shorter horizons, once heteroskedasticity is considered,

signals that the additional information introduced is able to reduce uncertainty about the free

elements in the impact matrix Ã−1. The Proxy-SVAR-H model makes evident that both types

of fiscal contractions have deep and persistent negative effects on output. Another important

feature of the heteroskedastic model is that following both types of shock the associated tax

base decreases. Furthermore, while a personal income tax shock allows a reduction of the

government debt (as one would expect), the effect of a corporate income tax surprise on debt is

weak and negative only at shorter horizon. Finally, government purchases tend to increase after

a corporate tax surprise and then tends to be reabsorbed within one year from the shock, while

government spending drops following an unexpected personal tax increase.
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6 Robustness

To check the robustness of our results, we re-estimated all of the models changing the number

of states (S) from three to two. This did not produce any relevant difference in the results. We

have also considered the possibility of four regimes (results available upon request) and for the

first three applications the impulse responses are very similar. With S=4 in the Proxy-SVAR the

responses to personal tax (APIRT) shocks do not change while the responses of Government

spending and debt to corporate income (ACIRT) tax shocks change. Yet, in this model, due to

the small sample available, the estimation algorithm does not manage to properly identify each

of the four regimes, and it assigns very few observations to some of them.

In addition, we replicated the analysis fixing change-points to predetermined dates defined

following Brunnermeier et al. (2021) or based on external information. Figure 8 compares

the posterior mean of the states, δ1:T , obtained through the change-point specification of Chib

(1998) with the ones built on the basis of predetermined regimes. It can be seen that the two

series are fairly different. Nevertheless, the two models produce very few differences in the

IRFs. This is not surprising in light of theoretical results pointed out by Rigobon (2003), Lewis

(2021), and Sims (2020), according to which misspecification of the variance regimes does

not undermine the consistency of the estimated structural parameters, as long as the variance

of the shocks is sufficiently different across the misspecified regimes. To further support this

interpretation we report in section C of the Supplemental materials results obtained fixing the

variance regimes to the predetermined dates.

7 Conclusions

In this paper we proposed a blended approach to identification. Specifically, the approach con-

sists in exploiting heteroskedasticity to sharpen identification in models with sign restrictions,

narrative restrictions, and external instruments. The basic mechanism at work is one in which

the introduction of regime shifts in the reduced form variances allows the data to be more in-

formative about which of the structural representations is compatible with sign and narrative

restrictions or which conditions coming from external instruments are admissible.
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Figure 8: Estimated states and predetermined regimes

Notes: Posterior mean of states (blue) and predetermined states (red). For the first three applications,
regimes are defined following Brunnermeier et al. (2021), for the fiscal application the first variance
regime that goes from 1951:Q1 to 1971:Q1 and can be called the“Bretton Woods” regime, the second
change point is in 1996:Q4 and separates a period of deficit increase from the subsequent period of
deficit cuts.

We developed the estimation algorithms necessary to implement such blended approach.

We presented a view that researchers should consider this approach as the blend contains more

identifying information than the parts, while the cost is minimal. We illustrated this point

by revisiting some key influential papers using sign restrictions, narrative restrictions, or proxy

variables. In particular, we revisited the applications in Baumeister and Hamilton (2015), Kilian

and Murphy (2012) and Antolin-Diaz and Rubio Ramirez (2018), and the Proxy-SVAR model

in Mertens and Ravn (2013). In all these instances we found that combining the information

introduced by heteroskedasticity with incomplete restrictions does sharpen identification, and

leads to economically relevant changes in the effects of the identified structural shocks.
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Appendix A. Conditional Posterior Distributions

A.1 SVAR Parameters

Recall that the likelihood of the SVAR-H model of section 3.1 is given by:

p(Y |A,B,Λ1:S) = (2π)−
T n
2 |det(A)|T

(
n

∏
i=1

λ
−T/2
i,1

)(
n

∏
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i,s
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2

n

∑
i=1

λ
−1
i,1

[
S

∑
s=1

ω
−1
i,s

(
Aiy(s)−Bix(s)

)(
Aiy(s)−Bix(s)

)′]}

A.1.1 Conditional posterior distribution of (A,B) We elicit normal prior for the structural

parameter Bi, p(Bi) ∼ N
(
µbi

,Vbi

)
, for i = 1, ...,n. Furthermore, we write Ai = Wiαi +wi and

set priors p(αi) for the free elements of Ai. Applying Bayes theorem, we obtain the posterior:

p(αi,Bi|Y,Λ1:S) ∝ p(Y |A,B,Λ1:S)× p(Bi)× p(αi)

∝ |det(A)|T exp

{
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2
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Completing squares and rearranging terms, the density above can be written as:

p(αi,Bi|Y,Λ1:S) ∝ |det(A)|T exp
[
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where the first line is the posterior density of αi conditional on Λ1:S only, p(αi|Y,Λ1:S), and the

second line is the Gaussian posterior density of Bi, conditional on both Λ1:S and Ai, p(B|Y,αi,Λ1:S)∼

N
(
µ̄bi

,V̄bi
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Furthermore, it is straightforward to show that V̄−1
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where ϒ = λ
−1
i,1 ∑

S
s=1 ω

−1
i,s y(s)x(s)′.

If the priors p(αi) are uniform or belong to the generalized normal family, draws from

p(αi|Y,Λ1:S) are readily available using an extension of Waggoner and Zha’s (2003) sampler

developed by Villani (2009) and Chan et al. (2021). For any arbitrary prior p(αi), Waggoner

and Zha’s (2003) method can be still implemented to draw a candidate in the Independence

Metropolis Hastings algorithm described in section 3.1.

A.1.2 Posterior distribution of λ1,i Given the structural parameters A and B. If we focus

on regime s = 1 and set an inverse gamma prior for λi,1, λi,1 ∼ IG(di,1/2,ζi,1/2), the posterior

distribution is:

p(λi,1|Y,A,B,ωi,s) ∝ p(Y |A,B,Λ1:S)× p(λi,1)
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−
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which is the kernel of an Inverse Gamma pdf with T+di,1
2 degrees of freedom and scale equal

to ζ̄i,1/2 =
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A.1.4 Posterior distribution of ωi Given the prior distribution ωi,s ∼ IG(di,s/2,ζi,s/2), the pos-

terior for ωi,s is:

p(ωi,s|Y,A,B,λi,1) ∝ p(Y |A,B,Λ1:S)× p(ωi,s)
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which is again an Inverse Gamma kernel with Ts+di,s

2 degrees of freedom and scale equal to

ζ̄i,s/2 =
[
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/2.

endappendices
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[51] Lütkepohl H., and Woźniak T., 2020, “Bayesian inference for structural vector autoregres-

sions identified by Markov-switching heteroskedasticity,” Journal of Economic Dynamics

& Control 113, 1–21;

[52] Magnusson, L.M. and Mavroeidis, S., 2014, “Identification Using Stability Restrictions”.

Econometrica, 82: 1799-1851.

[53] Mertens, K. and Ravn, M.O., 2013. “The Dynamic Eects of Personal and Corporate In-

come Tax Changes in the United States”. American Economic Review 103 (4), pp. 1212-

47;

[54] Mertens, K., & Ravn, M. O., 2019. “The dynamic effects of personal and corporate income

tax changes in the United States: Reply”. American Economic Review, 109(7), 2679-91;

[55] Nakamura, E., & Steinsson, J., 2018. “High-frequency identification of monetary non-

neutrality: the information effect.” The Quarterly Journal of Economics, 133(3), 1283-

1330;

[56] Piffer, M. and Podstawski, M., (2018). “Identifying Uncertainty Shocks Using the Price

of Gold”. The Economic Journal 128 (616), pp. 3266-3284;

[57] Primiceri, G. E. (2005). “Time Varying Structural Vector Autoregressions and Monetary

Policy.” Review of Economic Studies 72 (3), 821{852}.

[58] Rigobon, R., 2003, “Identication through Heteroskedasticity”, Review of Economics and

Statistics, 85, 777-792;

[59] Rigobon, R. and Sack, B., 2004. “The Impact of Monetary Policy on Asset Prices,” Journal

of Monetary Economics, 51, 1553–1575;

[60] Rubio-Ramrez, J.F., D.F.Waggoner and T. Zha (2010). “Structural Vector Autoregressions:

Theory of Identication and Algorithms for Inference". The Review of Economic Studies 77

(2), pp. 665{696};

47



[61] Uhlig, H., 2005. “What Are the Effects of Monetary Policy on Output? Results from an

Agnostic Identification Procedure.” Journal of Monetary Economics 52 (2): 381–419;

[62] Schlaak, T., Podstawski, M., and M. Rieth, 2021. “Monetary policy, external instruments

and heteroskedasticity,” Discussion Papers of DIW Berlin 1749, DIW Berlin, German

Institute for Economic Research;

[63] Sentana, E., and Fiorentini, G.. 2001, “Identication, Estimation and Testing of Condition-

ally Heteroskedastic Factor Models”, Journal of Econometrics 102, 143-164;

[64] Sims, C., 1980. “Macroeconomics and Reality.” Econometrica, 48(1), 1-48.

doi:10.2307/1912017;

[65] Sims, C. A. 2020. “SVAR Identification through Heteroskedasticity with Misspecified

Regimes.” Princeton University;

[66] Sims C. A. and T. Zha, 1998, “Bayesian Methods for Dynamics Multivariate Models”,

International Economic Review, 39, 949-968;

[67] Stock, J.H., 2008. “What’s New in Econometrics-Time Series, Lecture 7: Structural VARs.

Cambridge”, MA.: National Institute for Economic Research;

[68] Stock, J. H. and Watson, M. W., 2012. “Disentangling the Channels of the 2007-09 Re-

cession”. Brookings Papers on Economic Activity, Spring, pp. 81-156;

[69] Stock, J. H., and Watson, M. W., 2016. “Dynamic factor models, factor-augmented vector

autoregressions, and structural vector autoregressions in macroeconomics.” In Handbook

of macroeconomics (Vol. 2, pp. 415-525). Elsevier;

[70] Villani, M., 2009. “Steady-state priors for vector autoregressions”. Journal of Applied

Econometrics 24(4): 630–650;

[71] Waggoner, D. F. & Zha, T., 2003. “A Gibbs sampler for structural vector autoregressions.”

Journal of Economic Dynamics and Control 28(2): 349–366;

[72] Wright, J. H., 2012. “What does Monetary Policy do to Long-term Interest Rates at the

Zero Lower Bound?” Economic Journal 122, F447–F466.

48



Supplemental Materials

(intended for online publication)

�Blended Identi�cation in Structural VARs�

Andrea Carriero, Massimiliano Marcellino, and Tommaso Tornese



Appendix B. Baumeister and Hamilton (2015) with Independent
Priors

In this section we compare the results for generated by the SVAR-H model with those generated by a
homoskedastic version of the same speci�cation, obtained setting ωi,s = 1 for all i and s. Therefore, the
di�erences shown in the �gures can be only driven by information conveyed by the data, and cannot be
a�ected by di�erences in parameters priors or in the sampling algorithm.

Figure A1: Prior vs Posteriors.

Notes: BH (blue histogram) denotes the homoskedastic SVAR with independent priors, SVAR-H
(red histogram) indicates the heteroskedastic model. The red line is the prior density, which is
identical in both speci�cations.

Figure A2: Cumulated IRFs.

Notes: BH (blue) denotes the homoskedastic SVAR with independent priors, SVAR-H (red) in-
dicates the heteroskedastic model. Solid lines indicate median responses while shaded areas and
dashed lines represent 68% credible bands.
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Appendix C. Model With Predetermined Regimes

In this section we compare the posterior distributions of the key structural parameters obtained using
the change-point speci�cation of Chib (1998) with those obtained �xing the variance regimes to the
predetermined dates.

The �xed dates are de�ned following Brunnermeier et al. (2021) for the �rst three applications and
a historical account of the U.S. budget policy for the last application.

C.1. Labour Market Model [Baumeister and Hamilton (2015)]

Figure A3: Prior vs Posteriors.

Notes: BH (blue histogram) denotes the homoskedastic SVAR with natural conjugate priors, SVAR-
H (red histogram) indicates the heteroskedastic model with predetermined regimes. The red line
is the prior density, which is identical in both speci�cations. Predetermined regimes are: 1970:Q1-
1989:Q4, 1990:Q1-2007:Q4, 2008:Q1-2014:Q4.

Figure A4: Cumulated IRFs.

Notes: BH (blue) denotes the homoskedastic SVAR with natural conjugate priors, SVAR-H (red)
indicates the heteroskedastic model with predetermined regimes. Solid lines indicate pointwise
median responses while shaded areas and dashed lines represent pointwise 68% credible bands.
Predetermined regimes are: 1970:Q1-1989:Q4, 1990:Q1-2007:Q4, 2008:Q1-2014:Q4.
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C.2. Oil Market Model [Kilian and Murphy (2012)]

Figure A5: IRFs.

Notes: KM12 (blue) denotes the sign-restricted only SVAR, SVAR-H (red) indicates the het-
eroskedastic model with predetermined regimes. Solid lines indicate pointwise median responses
while shaded areas and dashed lines represent pointwise 68% credible bands. Predetermined regimes
are: 1971:M1-1989:M12, 1990:M1-2007:M12, 2008:M1-2015:M12.

Figure A6: FEVD.

Notes: KM12 (blue) denotes the sign-restricted only SVAR, SVAR-H (red) indicates the het-
eroskedastic model with predetermined regimes. Solid lines indicate pointwise median FEVD while
shaded areas and dashed lines represent pointwise 68% credible bands. Predetermined regimes are:
1971:M1-1989:M12, 1990:M1-2007:M12, 2008:M1-2015:M12.

A3



C.3. Monetary Model [Antolin-Diaz and Rubio-Ramirez (2018)]

Figure A7: IRFs.

Notes: AD-RR18 (blue) denotes the sign/narrative-restricted only SVAR. SVAR-H (red) indicates
the heteroskedastic model with predetermined regimes. Solid lines indicate median responses while
shaded areas and dashed lines represent 68% credible bands. Predetermined regimes are: 1972:Q1-
1989:Q4, 1990:Q1-2007:Q4, 2008:Q1-2019:Q4.

C.4. Fiscal Policy Model [Mertens and Ravn (2013)]

Figure A8: IRFs to APTIR shocks.

Notes: Proxy-SVAR (blue) denotes the homoskedastic SVAR with independent priors, Proxy-
SVAR-H (red) indicates the heteroskedastic model. Solid lines indicate median responses while
shaded areas and dashed lines represent 68% credible bands. Predetermined regimes are: 1951:Q1-
1971:Q1 (Bretton Woods), 1971:Q2-1996:Q4 (de�cit increase), 1997:Q1-2006:Q4 (de�cit cuts).
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Figure A9: IRFs to ACTIR shocks.

Notes: Proxy-SVAR (blue) denotes the homoskedastic SVAR with independent priors, Proxy-
SVAR-H (red) indicates the heteroskedastic model. Solid lines indicate median responses while
shaded areas and dashed lines represent 68% credible bands. Predetermined regimes are: 1951:Q1-
1971:Q1 (Bretton Woods), 1971:Q2-1996:Q4 (de�cit increase), 1997:Q1-2006:Q4 (de�cit cuts).
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Appendix D. Variance Ratios Between Regimes

In this section we report the 68% credible intervals obtained for the variance ratios, ωi,s, in the four
applications analyzed in the paper. The tables show that heteroskedasticity is a feature of the data, and
that regime changes are heterogeneous.

D.1. Labour Market Model [Baumeister and Hamilton (2015)]

Table A1: Variance Ratios
s = 1 s = 2 s = 3

ω1,s 1 [1.0032, 1.9796] [2.7348, 5.5208]
ω2,s 1 [0.1851, 0.3052 [0.2793, 0.5711]

Notes: The table shows the 68% credible intervals for the variace ratios ωi,s = λi,s/λi,1.

D.2. Oil Market Model [Kilian and Murphy (2012)]

Table A2: Variance Ratios
s = 1 s = 2 s = 3

ω1,s 1 [0.1889, 0.2500] [0.1334, 0.2031]
ω2,s 1 [0.7276, 0.9726] [7.5255, 10.9030]
ω3,s 1 [1.3688, 1.8332] [2.0231, 3.0166]

Notes: The table shows the 68% credible intervals for the variace ratios ωi,s = λi,s/λi,1.

D.3. Monetary Model [Antolin-Diaz and Rubio-Ramirez (2018)]

Table A3: Variance Ratios
s = 1 s = 2 s = 3

ωmp,s 1 [10.8775, 15.0954] [0.2889, 0.4246]
ω2,s 1 [11.4725, 16.4732] [7.1076, 10.3021]
ω3,s 1 [1.5768, 2.9079] [0.8366, 2.1579]
ω4,s 1 [1.4515, 2.8020] [0.7571, 2.0046]
ω5,s 1 [8.6978, 12.2856] [0.4705, 0.6747]
ω6,s 1 [2.5761, 3.9236] [35.9409, 51.8108]

Notes: The table shows the 68% credible intervals for the variace ratios ωi,s = λi,s/λi,1. The
subscript mp indicates the monetary policy shock.

D.4. [Mertens and Ravn (2013)]

Table A4: Variance Ratios
s = 1 s = 2 s = 3

ω1,s 1 [6.2132, 12.3128] [3.4723, 6.9967]
ω2,s 1 [0.2945, 0.5278] [0.0855, 0.1543]

Notes: The table shows the 68% credible intervals for the variace ratios ωi,s = λi,s/λi,1.
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Appendix E. Bayes Factors

In this section we report the logarithmic Bayes factors in favour of our identi�ed model against the re-
stricted alternatives with homoskedastic shocks or with proportional changes in the variances of shocks.
Since the models characterized by shocks with constant variances or with variances that change pro-
portionally across regimes are nested in the SVAR-H speci�cation, Bayes factors can be computed as
Savage-Dickey Density Ratios (SDDR) as suggested by Lutkepohl and Wozniak (2020). Based on the
scale discussed by Kass and Raftery (1995), Lutkepohl and Wozniak (2020) argue that a log-SDDR with
absolute value larger than 5 should be considered as strong evidence against the restricted models.

E.1. Labour Market Model [Baumeister and Hamilton (2015)]

Table A5: Log-SDDR against homoskedasticity
Restriction: ωj,2 = 1 Restriction: ωj,3 = 1

j = 1 0.5570 −6.8053
j = 2 −4.1586 −2.0581

Notes: Log-SDDR comparing SVAR-H with a model with homoskedastic shocks.

Table A6: Log-SDDR against proportional changes in variances of shocks
s = 2 s = 3

Restriction: ω1,s/ω2,s = 1 −3.7048 −11.3288
Notes: Log-SDDR comparing SVAR-H with a model with proportional changes in shocks variances.

E.2. Oil Market Model [Kilian and Murphy (2012)]

Table A7: Log-SDDR against homoskedasticity
Restriction: ωj,2 = 1 Restriction: ωj,3 = 1

j = 1 −60.0116 −33.4291
j = 2 1.3080 −163.3203
j = 3 −2.4388 −8.2182

Notes: Log-SDDR comparing SVAR-H with a model with homoskedastic shocks.

Table A8: Log-SDDR against proportional changes in variances of shocks: ωi,s/ωj,s = 1

s = 2 s = 3
j = 2 j = 3 j = 2 j = 3

i = 1 −26.3433 −57.9711 −104.3174 −42.6160
i = 2 −2.4626 −10.0056

Notes: Log-SDDR comparing SVAR-H with a model with proportional changes in shocks variances.

E.3. Monetary Model [Antolin-Diaz and Rubio-Ramirez (2018)]

Table A9: Log-SDDR against homoskedasticity
s = 1 s = 2

Restriction: ωmp,s = 1 −617.5537 −302.2689
Notes: Log-SDDR comparing SVAR-H with a model with homoskedastic shocks.
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Table A10: Log-SDDR against proportional changes in variances of shocks: ωi,s/ωj,s = 1
s = 1

j = 2 j = 3 j = 4 j = 5 j = 6

Restriction: ωmp,s/ωj,s = 1 1.1233 −26.4753 −32.9548 0.9047 −11.4614

s = 2

j = 2 j = 3 j = 4 j = 5 j = 6

Restriction: ωmp,s/ωj,s = 1 −9.9081 −3.3393 −5.2298 −0.5995 −101.6933
Notes: Log-SDDR comparing SVAR-H with a model with proportional changes in shocks variances.

E.4. [Mertens and Ravn (2013)]

Table A11: Log-SDDR against homoskedasticity
s = 1 s = 2

Restriction: ωapitr,s = 1 −9.4389 −6.6678
Restriction: ωacitr,s = 1 −4.6126 −27.2904

Notes: Log-SDDR comparing SVAR-H with a model with homoskedastic
shocks.

Table A12: Log-SDDR against homoskedasticity
s = 1

j = acitr j = 3 j = 4 j = 5 j = 6 j = 7

Restriction: ωapitr,s/ωj,s = 1 −12.9349 −5.9923 −7.0207 −11.6530 −7.3421 −4.2139

Restriction: ωacitr,s/ωj,s = 1 −1.2835 −1.3635 1.2729 −0.9778 −2.2920

s = 2

j = acitr j = 3 j = 4 j = 5 j = 6 j = 7

Restriction: ωapitr,s/ωj,s = 1 −32.3109 −0.6315 −19.3867 −8.6897 −1.3102 −7.3570

Restriction: ωacitr,s/ωj,s = 1 −27.4489 −0.0844 −5.2758 −26.6766 −5.3718
Notes: Log-SDDR comparing SVAR-H with a model with proportional changes in shocks variances.
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