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Abstract

A frequent challenge when using graphical models in applications is that the sample size is lim-

ited relative to the number of parameters to be learned. Our motivation stems from applications

where one has external data, in the form of networks between variables, that provides valuable

information to help improve inference. Specifically, we depict the relation between COVID-19 cases

and social and geographical network data, and between stock market returns and economic and

policy networks extracted from text data. We propose a graphical LASSO framework where like-

lihood penalties are guided by the external network data. We also propose a spike-and-slab prior

framework that depicts how partial correlations depend on the networks, which helps interpret the

fitted graphical model and its relationship to the network. We develop computational schemes and

software implementations in R and probabilistic programming languages. Our applications show

how incorporating network data can significantly improve interpretation, statistical accuracy, and

out-of-sample prediction, in some instances using significantly sparser graphical models than would

have otherwise been estimated.

Keywords: GLASSO; Bayesian Inference; Spike-and-Slab.
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1 Introduction

Graphical models form a convenient framework to describe the dependence among random variables

in an interpretable manner. Despite numerous theoretical and methodological advances, an important

practical limitation is that they require the estimation of an inherently large number of parameters,

which can be challenging unless the sample size is large enough. The main idea behind our work

is that there are numerous applications where external data provides valuable information to help

guide the graphical model selection and estimation, and hence improve their accuracy. We propose a

frequentist and a Bayesian framework to exploit this complementary information.

Although our ideas can be used in many other examples, here we showcase two motivating appli-

cations where the external data comes in the form of one or more networks between variables, and we

develop the corresponding methodology. First, we study the dependence between COVID-19 infection

rates across U.S. counties, and whether said dependence is related to the physical distances between

counties and network data measuring Facebook connections. We refer to these network data as exter-

nal data, in the sense that they do not directly measure COVID-19. To illustrate how such data may

be informative, Figure 1 shows the estimated partial correlations between each county pair vs. their

geographical distance and the Facebook index. Counties that are highly connected on Facebook have

a higher proportion of non-zero, and positive, partial correlations. A similar observation applies to

the geographic network, defined such that nearby counties have a stronger network connection. As a

second application, we study the dependence of stock market excess returns across companies, incor-

porating external information given by company similarity scores based on text data about economic

and policy risk indicators. The idea is that if two companies are described by similar text data, then

their dependence might be stronger. A common feature in both applications is that the sample size n

is moderate relative to the number of variables p, and to the p(p + 1)/2 parameters in the Gaussian

graphical model.

To our knowledge, there are no methods to incorporate multiple network-valued external data in

undirected graphical models. There has been however active research on incorporating external data

in regression. For example, Stingo et al. (2010) proposed a multivariate regression of gene expression

on micro-RNA, where the prior probabilities that micro-RNAs have a non-zero coefficient depend

on an external biological and structural similarity scores. Along similar lines, Stingo et al. (2011)

incorporated pathway information into regression models for gene expression, Quintana and Conti

(2013) proposed a Bayesian variable selection framework where prior inclusion probabilities depend
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Figure 1: Residual partial correlations in COVID-19 infections (adjusted for covariates) across counties

vs Geographical Distance Network defined as 1/ log(Geodistance) (left) and log-Facebook Connectivity

Index (right). Top panel: partial correlations estimated with graphical LASSO, with penalization

parameter set via BIC. Bottom panel: fitted spike-and-slab distributions and fitted partial correlations

estimated with network graphical spike-and-slab LASSO.

on meta-covariates, with applications in genomics, Cassese et al. (2014) a multivariate regression

of gene expression versus copy number variations that incorporates their physical distance in the

genome, and Chiang et al. (2017) a brain activity vector auto-regression that incorporates external

brain information. Guha and Rodriguez (2020) proposed a Bayesian shrinkage prior to regress the

mean of a univariate outcome on network-valued covariates, encouraging similar regression coefficients

for covariates that are connected in the network. Chen et al. (2021) predicted disease outcomes given

single nucleotide polymorphisms (SNPs), where the LASSO regularization parameter for each SNP
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depends on several functional annotation categories. The main difference between these previous

works and ours is that we incorporate external network data to model the (inverse) covariance rather

than the mean, i.e. we use graphical models to study the dependence structure. Also, we allow the

external data to inform not only prior inclusion probabilities or overall regularization but also the

location and variance of non-zero parameters. This can be important in applications, where one may

want to shrink estimates to values other than zero, e.g. in Figure 1 large Facebook connectivity is

associated with positive partial correlations.

It should also be noted that there exist methods to incorporate external data into covariance

models. Azose and Raftery (2018) proposed an estimation procedure for correlations that uses Laplace

priors and can capture different prior beliefs on each correlation. Although not done by the authors,

one could structure such prior beliefs using external data. Schiavon et al. (2021) proposed a factor

model where variable loadings are allowed to depend on meta-covariates. Relative to these authors we

focus on the graphical model, i.e. on describing partial rather than marginal correlations, and propose

more flexible parametric forms to incorporate the network data.

Our main contribution is developing two frameworks to incorporate external network data into

Gaussian graphical model selection and parameter estimation, and applying them to the COVID-19

and stock market motivating applications. The first framework is a hierarchical extension of the

graphical LASSO (GLASSO) (Friedman et al. (2008); Yuan and Lin (2007), see also Wang (2012) for

a discussion of Bayesian counterparts). The construction resembles the GLASSO priors of Khondker

et al. (2013), where each precision matrix entry has a different regularization parameter, with the

important difference that we allow the latter to depend on external network data. A practically-

appealing feature of this first framework is that, by using tailored optimization algorithms that build

on the GOLAZO algorithm of Lauritzen and Zwiernik (2020), the computational cost is similar to that

of a standard GLASSO problem. A limitation however is that, as mentioned, in our applications the

external data appears to be not only informative about whether a parameter is zero but also about

its sign. To address this, our second framework uses a spike-and-slab prior, with the novel feature

that the slab’s location and variance depend on the external network data. To ensure its practical

applicability we developed a software implementation in the probabilistic programming languages Stan

(Carpenter et al., 2017) and NumPyro (Bingham et al., 2019; Phan et al., 2019). The latter capitalizes

on efficient automatic differentiation and GPUs to help boost the computational speed. Similarly, the

first framework is implemented in R.

The paper proceeds as follows. Section 2 discusses our motivating applications in more detail.
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Section 3 reviews the GLASSO, introduces our network-adjusted extension and its Bayesian analogue.

Section 4 discusses our computational strategy for learning the graphical model and hyper-parameters

that depict its association with the external network data. Section 5 investigates the performance of

our model in some simulations and Section 6 applies our model to our COVID-19 and stock market

datasets. Both examples demonstrate that the network data is informative, the Facebook network

being particularly informative about the structure of COVID-19 cases and the Economic risks network

about stock-market dependence. Code to implement all of our experiments and data pre-processing

is available at https://github.com/llaurabat91/graphical-models-external-networks.

2 Motivating applications

2.1 Dependence in COVID-19 infections versus Facebook and geographical net-

works

Studying the evolution of pandemics such as COVID-19 is of great importance for health, economic

and societal reasons. The emphasis of such studies is typically either to forecast infections or to

understand how expected infections are related to various factors (e.g. health measures, temperature).

Here we consider a further important aspect that is often neglected: understanding how the disease co-

evolves across (possibly distant) geographical units, and what factors may drive such co-evolution. For

example, if several counties were expected to simultaneously exhibit higher-than-expected infection

rates, health and economic authorities might need to plan resources accordingly. Further, identifying

factors that are related to the co-evolution (e.g. the Facebook index) may suggest strategies to limit

such coordinated growth (e.g. targeted social media campaigns).

To study COVID-19 co-evolution across U.S. counties, we downloaded weekly infection rates from

CSSE (2020a) for the period 22 January 2020 to 30 November 2021 (97 weeks total) for the 99 most-

populated counties. We also obtained data on covariates that may be associated with the disease’s

evolution, such as temperature, population density, vaccination rates and an index measuring the

stringency of pandemic measures (CSSE (2020c); Bureau (2020); CSSE (2020d); CSSE (2020b)). We

defined the outcome of interest as the county log-infection rates, i.e. log infections relative to the

county’s population. Our interest is in studying the disease co-evolution after accounting for factors

driving the mean structure. To this end, we fitted a linear regression model that included temperature,

vaccination rates, the stringency of pandemic measures, a weekly fixed effect term estimating the mean

infections across all counties in that particular week, and a first-order auto-regressive term measuring
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the infection rate in the previous week. See Section A.2 and the supplementary code for the data

collection, pre-processing, and residual checks assessing the linearity and normality assumptions, and

that higher-order auto-regressive terms are not needed.

Although the model explained most of the variance in infection rates (adjustedR2 coefficient 0.942),

certain counties were systematically above or below the model predictions. Motivated by Kuchler

et al. (2021), who found that marginal correlations between county infections rates were related to

their Facebook connectivity index, we wish to study how partial correlations depend on the Facebook

index. Said index defines a network of counties, measuring the strength of the connection between

every pair of counties. We also consider a second network defined by their geographical distance (see

Section 6.1), given that nearby counties may be more likely to co-evolve. We believe that partial

correlations are a more appealing measure of disease co-evolution than marginal correlations. For

example, suppose that infections in County A drive those of County B, which in turn drive those of

County C, then all three counties would have non-zero marginal correlation. In contrast, the partial

correlation between counties A and C would be zero, suggesting there is no direct link between them.

As discussed, Gaussian graphical models are a natural strategy to estimate partial correlations.

Here we develop a framework to fit Gaussian graphical models that can incorporate the external

information provided by the Facebook and geographical networks, and neglect said information when

not needed. The Facebook and geographical network data should help improve the graphical model

estimation, e.g. regularize to a lesser degree the partial correlations for county pairs that are highly-

connected in Facebook and vice versa. This desideratum led us to develop a network-regularized

graphical LASSO framework, see Section 3.

An important observation stemming from Figure 1 is that counties that are highly connected on

Facebook have a higher proportion of non-zero, and positive, partial correlations. A similar obser-

vation applies to geographic distances. Hence one wishes not only to regularize to a lesser extent

county pairs with a strong Facebook connection but also to describe how the average non-zero partial

correlation depends on Facebook (or geographical) connectivity. This desideratum led us to develop a

network-regularized spike-and-slab framework, where the slab location and probability are driven by

the network, see Section 3.

2.2 Dependence in stock market returns versus text data

A longstanding insight in finance is that the dependence structure among assets informs optimal port-

folios (Markowitz, 1952). In particular, the precision matrix determines the weights across assets that
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minimize a portfolio’s standard deviation. Bringing optimal portfolio theory to data requires esti-

mating high-dimensional covariance/precision matrices, which is an important barrier to its practical

application (Elton and Gruber, 1973). A variety of approaches have been used to tackle the problem

including, recently, GLASSO (Goto and Xu, 2015). Moreover, Senneret et al. (2016) compare several

approaches for the empirical implementation of the theory and find GLASSO to be competitive with

other approaches in the financial econometrics literature. However, relational data for stocks has

never—to the best of our knowledge—been incorporated into the estimation of the precision matrix.

The relational data we use is built from the unstructured text of the Risk Factors (RF ) section

of publicly traded firms’ annual 10-K filings to the US Securities and Exchange Commission. RF

texts provide an exhaustive description of sources of future earnings risk that firms face. There is

an incentive for full disclosure because investors can take legal action against firms that withhold

relevant information that if revealed would have prevented financial losses. A natural assumption is

that firms that face similar risks have more dependent stock returns. For example, firms that both

mention risks arising from a rise in oil prices will tend to co-move when oil prices move. Consistent

with this intuition, Hanley and Hoberg (2019) regress the covariance of excess returns between pairs

of financial firms on a measure of RF text overlap and show a positive relationship in the lead-up to

the global financial crisis in 2008. More recently, Davis et al. (2020) show that firms with similar RF

texts reacted similarly to the arrival of COVID-19.

To implement the idea that RF text overlap is useful for precision matrix estimation, we first

sample 200 American firms at random from the population of firms described in Davis et al. (2020).1

For each trading day in 2019 (252 in total), we obtain firm-level stock prices from the CRSP database,

and then construct daily excess returns using the Fama-French three-factor model.2 To measure

RF text overlap, we first use the construction of Baker et al. (2019), who define dozens of risk

exposures at the firm level that encompass both economic and policy risks. Examples of the former

include ‘exchange rates’ and ‘macroeconomic news’, and of the latter include ‘taxes’ and ‘trade policy’.

For each exposure, the authors define a term set meant to capture the concept, e.g. the ‘food and

1These firms are those for which one can retrieve a 10-K filing; are sufficiently large; and have available financial

records in the Compustat database. We choose 200 firms for computational reasons, but in principle, our method is

scalable to more given sufficient computing resources (e.g. multiple GPUs). Moreover, optimal portfolio allocation

does not require the continuous updating of precision matrix estimates and so infrequent, but large-scale, estimation is

adequate for the problem.
2To do so, we regress each firm’s daily return on the variables contained in the daily, three Fama/French factors file

downloaded from Kenneth French’s Data Library website.
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drug policy’ risk is captured by the term set {prescription drug act, drug policy, food and drug

administration, fda}. For each firm’s 2019 RF text, we tabulate the number of appearances of terms

for each category and scale it by the number of words in the text. Finally, we compute the pairwise

correlation between firms based on the vectors of economic risk categories and, separately, based on

the vectors of policy risk categories. This creates two separate network measures that may inform

precision matrix estimation.

The particular representation of RF texts we adopt is not definitive and is meant for illustration

purposes. Our goal is to establish that text-based relational data is useful in principle to estimate

the dependence structure in equity returns, which we establish below is the case in this setting. The

optimal representation of text for this task is an open question that we do not consider here. Still, as

we show below, separately controlling for economic and policy risks yields important insights regarding

whether government policy generates return co-movement above and beyond that generated by firm

fundamentals.

See Section A.3 and the supplementary code for the data collection, pre-processing, linear model

fit, and residual checks assessing our model assumptions.

3 Model

This section reviews the definition of an undirected Gaussian graphical model on p variables and

proposes two new model-fitting strategies to incorporate external network data. We first set notation.

Let yi ∈ Rp be the outcomes for individuals i = 1, . . . , n (e.g. log-infection rates in p counties at week

i) and xi ∈ Rd a covariate vector (e.g. temperature, percentage of fully vaccinated individuals in week

i), which might be omitted in a simplest case with no covariates. We assume that yi ∼ Np
(
Bxi,Θ

−1
)

independently across i = 1, . . . , n, where B is a p × d regression coefficients matrix and Θ a p × p
positive-definite precision (or inverse covariance) matrix. To ensure that the independence assumption

across i is tenable, one may include lagged versions of yi into the covariates xi. For simplicity in our

applications, we start by subtracting the estimated mean B̂xi from yi, where B̂ is the least-squares

estimator, and in the sequel we assume the outcomes to have zero mean, i.e. yi ∼ Np(0,Θ−1).

Importantly, in our framework, one also observes external data in the form of Q ≥ 1 networks

between variables. These are denoted by p×p symmetric matrices A(1), . . . , A(Q), where a
(q)
jk measures

strength of the connection between variables (j, k). For example, a
(1)
jk may be the geographical distance

between counties (j, k) and a
(2)
jk their Facebook connection index.
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3.1 Gaussian graphical models

A convenient property of modelling yi ∼ Np
(
0,Θ−1

)
is that conditional independence statements can

be drawn from the graph defined by the non-zero elements of Θ. Specifically, (yij , yik) are independent

given the remaining elements in yi if and only if Θjk = 0. Hence, by determining what elements in

Θ are zero one learns about conditional independence. As argued earlier, in our applications we

consider using partial correlations as a measure of association. In the Gaussian model, conditional

independence is equivalent to zero partial correlation. We denote negative partial correlations by

ρjk :=
Θjk√

ΘjjΘkk

= −corr(yij , yik | yi{1,...,p}\{j,k}). (1)

A popular approach to estimate Θ, and hence the partial correlations, is the Graphical LASSO

(GLASSO) (Friedman et al., 2008; Yuan and Lin, 2007). GLASSO produces an estimate of Θ that

contains zeroes by maximising the Gaussian log-likelihood with a LASSO penalty. Specifically,

arg max
Θ∈Sp+

log det(Θ)− tr(SΘ)− λ
∑
i 6=j
|Θij |, (2)

where Sp+ is the set of non-negative definite matrices, λ > 0 is a regularization parameter, tr(·) denotes

the matrix trace and S is the empirical covariance matrix of (y1, . . . , yn). Alternatives to (2) include

the adaptive graphical LASSO, SCAD and MCP (Fan et al., 2009; Wang et al., 2016), which were

proposed to reduce bias in the estimation of large entries in Θ. We focus on (2) however due to

its practical appeal of defining a concave problem for which one may establish efficient optimisation

methods.

The hyperparameter λ is a critical quantity that determines the level of sparsity in the estimated

partial correlations. Two popular strategies to set λ are using cross-validation (Friedman et al.,

2008) and information criteria such as the Bayesian information criterion (BIC) (Schwarz, 1978). An

issue with cross-validation is that it does not lead to consistent model selection even in simple linear

regression models, i.e. the probability of recovering the set of non-zero parameters does not converge

to 1 as n → ∞. In contrast, the BIC and certain other generalised Bayesian information criteria are

model selection consistent. For further details we refer the reader to Foygel and Drton (2010); Zhang

et al. (2010); Wang and Zhu (2011); Fan and Tang (2013). Based on these observations, here we use

information criteria. Viewing the estimate Θ̂(λ) as a function of λ, the BIC selects the non-negative

λ minimising

BIC(λ) = −2`n(Θ̂(λ)) +
∣∣E(Θ̂(λ))

∣∣ · log n, (3)
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where `n(Θ̂) is the Gaussian log-likelihood function and |E(Θ̂(λ))| counts the number of edges in the

graph associated with Θ̂(λ). An alternative to the BIC is the Extended BIC (EBIC) (Chen and Chen,

2008) which contains an additional penalty to the BIC for model complexity. As a sensitivity check,

we provide results using the EBIC to select λ in Sections A.1.6, A.2.8 and A.3.7. In our examples the

EBIC was overly conservative in selecting edges, which resulted in high mean-squared-error. Finally,

we note that there are alternative approaches to choosing λ, see Kuismin and Sillanpää (2021), but

they require more extensive computations that become prohibitive in our setting.

On the Bayesian side, Gan et al. (2018) proposed a spike-and-slab framework designed to bypass

computational difficulties in standard conjugate frameworks, while attaining good model selection

properties. We defer further discussion to Section 3.3, where we develop a network-driven extension.

3.2 Network graphical LASSO

The main idea behind our network graphical LASSO framework is to estimate Θ ∈ Sp+ maximising

log det(Θ)− tr(SΘ)−
∑
j 6=k

λjk|Θjk|, (4)

where the regularisation λjk = λjk(A
(1), . . . , A(Q)) depends on the network data. That is, each Θjk

gets a potentially different penalty parameter λjk, which is a function of A(1), . . . , A(Q). To simplify

notation, we omit the dependence on A(1), . . . , A(Q) and simply use λjk, and let A = (A(1), . . . , A(Q)).

For convenience we parameterise the penalties in terms of a scaled version of A(q) that is centered to

have zero sample mean and unit sample variance, and which we denote by Ā(q).

Consider first a simple example with only one external matrix A(1) with binary entries a
(1)
jk ∈ {0, 1}

for k 6= j. One could then use A(1) to structure the regularization by considering

λjk =

λ0 if a
(1)
jk = 0

λ1 if a
(1)
jk = 1

with λ0, λ1 ≥ 0. More generally when one has multiple potentially non-binary networks, as is the case

for the COVID-19 and stock market data introduced in Section 2, we consider the simple extension

λjk = exp

β0 +

Q∑
q=1

βqa
(q)
jk

 (5)

where β = (β0, β1, . . . , βQ) ∈ RQ+1 are regularisation hyperparameters. To set β we choose the value

optimising the BIC in (3), which is now a function of β. Note that GLASSO is nested within our

framework and is recovered when β1 = · · · = βQ = 0 and λ = exp(β0).
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One could of course consider alternative parameterisations to (5), e.g. let λjk depend non-

parametrically on the network data. However, (5) requires fewer hyper-parameters than a non-

parametric treatment and is easy to interpret: the log-regularisation depends linearly on the net-

works. Further, a model-checking exercise suggested that (5) is a reasonable parameterisation for

our two motivating applications. Said model-checking is best understood by adopting a Bayesian

interpretation. The penalised estimator associated to (5) is equivalent to the posterior mode under

independent Laplace priors (Wang, 2012) with scale parameter 1/λjk, that is

π(Θ | A, β) ∝
∏
j>k

λjk
2

exp {−λjk|θjk|} I(Θ � 0), (6)

where I(Θ � 0) is an indicator for Θ being positive-definite, λjk is as in (5) and β are now prior

parameters. The Bayesian interpretation is that the λjk’s arise from a Laplace random effects distri-

bution with parameter β. The a priori expected value of θjk is 0, which induces sparsity, and the

prior variance is

Var [θjk | β,A] = E
[
θ2
jk | β,A

]
=

2

λ2
jk

. (7)

Therefore (5) assumes that the log-variance of the partial covariances θjk depends linearly on the

network data

logE
[
θ2
jk | β,A

]
= log(2)− 2

(
β0 + β1ā

(1)
jk + . . .+ βQā

(Q)
jk

)
. (8)

Provided one has an initial estimate of the left-hand side of (8), which in our examples we derived

from standard GLASSO estimates of θjk, one may check whether its relation to the network data

is roughly linear. Such a check motivated taking the logarithm of the raw distances and Facebook

connectivities to define our networks for the COVID-19 data. See Supplementary Sections A.2.5 and

A.3.5 for further details.

3.3 Network graphical spike-and-slab LASSO

The network graphical LASSO in Section 3.2 provides sparse point estimates of partial correlations

and, via its Bayesian interpretation, describes how their variance depends on the network data. In

applications, however, it is also interesting to describe how the proportion of non-zero partial correla-

tions and their mean depend on the network. For example, in the COVID-19 data both the probability

that two counties are conditionally dependent and the mean partial correlation grow as their Facebook

connection grows (Figure 1), and similarly for the stock market data (Figure A.12). To address this
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issue, we developed a spike-and-slab framework that builds on the regression setting of Rockova and

George (2014) and the graphical spike-and-slab of Gan et al. (2018). The main novelty is that both

the slab prior probability and its parameters depend on network data. In particular, the slab need not

be centered at zero, a feature that is novel—to our knowledge—and has some independent interest.

We parameterise Θ in terms of partial correlations ρjk in (1), which facilitates interpretation and

ensures that the posterior mode is invariant to scale transformations. By scale invariance we refer to

the property that the estimated partial correlations remain the same regardless of whether one applies

a scale transformation to the input data or not. See Carter et al. (2021) for a detailed discussion,

showing that applying a GLASSO penalty on the precision entries θjk is not scale-invariant, whereas

applying it to the partial correlations ρjk is. We set a prior density π(diag(Θ), ρ) = π(diag(Θ))π(ρ),

where
√

Θii ∼ IG(a, b) with a = 0.01 and b = 0.01 reflecting an uninformative prior on the diagonal

elements of Θ, and

π(ρ) ∝ I(ρ � 0)
∏
j>k

(1− wjk)DE(ρjk; 0, s0) + wjkDE
(
ρjk; η

T
0 ajk, sjk

)
(9)

wjk =
(

1 + e−η
T
2 ajk

)−1
, sjk = s0(1 + exp

{
−ηT1 ajk

}
)

The spike is a double-exponential with zero mean and small scale s0 meant to capture partial correla-

tions that are practically zero. We model the slab prior probability wjk via a logistic regression on the

network data ajk = (1, a
(1)
jk , . . . , a

(Q)
jk ). Note that because of the positive-definiteness constraint the

marginal prior π(ρjk) could be fairly different from the spike-and-slab in (9), and then wjk could not

be interpreted as the marginal slab prior probability. To address this issue we elicit prior parameters

such that the positive-definiteness indicator I(ρ � 0) is satisfied with high prior probability, see below.

The slab’s mean ηT0 ajk depends linearly on the network data ajk, and its variance sjk is larger than

that of the spike by a factor that also depends on ajk. Finally, η0, η1, η2 ∈ RQ+1 are prior hyper-

parameters. We remark that, although we adopt a Bayesian treatment, one could also take − log π(ρ)

as a likelihood penalty and devise suitable optimisation algorithms.

A popular strategy to set prior hyper-parameters such as (η0, η1, η2) in (9) is an empirical Bayes

framework where one maximises the marginal likelihood. Such a framework allows us to do inference

on the η’s themselves through the marginal posterior π(η | y) and inference for Θ through the empirical

Bayes posterior

π(Θ|y, η̂) = f(y|Θ)π(Θ|η̂),
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where η̂ maximises the marginal posterior of η given the data

η̂ : = arg max
η

π(η | y) = arg max
η

∫
π(Θ, η|y)dΘ = arg max

η

∫
f(y|Θ)π(Θ|η)π(η)dΘ.

One could consider using the joint posterior π(Θ, η|y) for inference on Θ and η, but we found the

empirical Bayes approach to perform better in our experiments. Insofar as one of our goals is to learn

the appropriate degree of sparsity from data in social science applications, this approach complements

that of Giannone et al. (2021) which uses a spike-and-slab prior to infer the relevant predictors for

mean outcomes in common economic and financial datasets.

We next discuss our default elicitation for the prior π(ρ). The guiding principle was to set a

minimally-informative prior, so that data may suitably update prior beliefs, while encouraging sparse

solutions and preserving the interpretability of (9). Briefly, we set independent Gaussian priors on

(η0, η1, η2). The prior on η2 was set such that the prior mean number of edges is proportional to

p, which induces sparsity, and the prior sample size can be thought of as 1, in analogy to a Beta

prior in a Binomial experiment. The prior on η1 was set such that the prior mode of the slab’s scale

is 10s0 and greater than 3s0 with probability 0.99, i.e. the slab captures partial correlations of a

larger magnitude than the slab. Finally, the prior on η0 was set such that the slab has zero prior

mean and such that sampling entries of ρ independently from the double-exponential priors in (9)

returns a positive-definite matrix with 0.95 prior probability. This ensures that π(ρ) is similar to its

unconstrained version where one drops the positive-definiteness indicator, as otherwise wjk cannot be

interpreted as the marginal slab probability.

To assess the impact of these default prior choices, it is useful to display the implied prior marginal

distribution on the ρjk’s. Figure 2 shows that in both the COVID-19 and stock market applications

most of the prior probability is contained in ρjk ∈ (−0.5, 0.5), which seems a sensible prior interval.

The prior concentrates significant mass around 0, which induces shrinkage, but also features thick

tails, which favors capturing truly non-zero ρjk’s. Indeed, the corresponding posteriors (Figure 2,

bottom panels) set significant mass away from zero, suggesting that the prior shrinkage towards 0 was

not excessive. We refer the reader to Section A.1.3 for further details, where we also list the hyper-

parameter values used in our examples. Our supplementary material contains R code to implement

our prior elicitation.
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Figure 2: Elicited prior distribution and posterior distribution for ρjk, j = 1, . . . , p, k < j for the

COVID-19 data p = 99 and stock market data p = 200.

3.4 Beyond Gaussian data

In certain applications such as our stock market example, data exhibit non-Gaussian behavior such

as thick tails and asymmetries, even after taking logarithmic or similar transforms (see the normality

checks in Section A.3.4). To address this issue in this application we used a non-paranormal model,

which can accommodate said departures from normality. The distribution of yi = (yi1, . . . , yip) is

non-paranormal if there exist strictly increasing functions fj : R → R for j = 1, . . . , p such that the

vector f(yi) := (f1(yi1), . . . , fp(yip)) is Gaussian. Such a non-paranormal model may be estimated by

first obtaining an estimate f̂ from the data, for which we used the R package huge, and subsequently

applying our methodology to the transformed data f̂(yi).

An interesting property of the non-paranormal family is that the graphical model can be inter-

preted as in the Gaussian case. The partial correlation between the transformed fj(yij) and fk(yik)

is zero if and only if (yij , yik) are conditionally independent. Partial correlations retain an interest-
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ing interpretation in the trans-elliptical family: zero partial correlation ρjk = 0 indicates that yij is

linearly independent with any transformation of yik (Rossell and Zwiernik, 2021).

4 Computation and inference

4.1 Network GLASSO

We first describe how to optimise (4) for a fixed β, and subsequently how to estimate β̂. The main

idea is that, since λjk = λjk (A, β) are fixed for a fixed β, the network GLASSO objective in (4) is a

special case of the GOLAZO class of models in Lauritzen and Zwiernik (2020).

Motivated by the desire to penalise positive and negative partial correlations differently, GOLAZO

algorithms consider Gaussian graphical models with likelihood penalties of the form

p∑
j=1

∑
k 6=j

max {Ljkρjk, Ujkρjk} , (10)

where −∞ ≤ Ljk ≤ 0 ≤ Ujk ≤ ∞ are fixed. Noting that λ|x| = max {−λx, λx} for positive λ, we

see that the penalty in (4) is in the form of (10) with Ljk = −λjk and Ujk = λjk. Penalising the

Gaussian log-likelihood with (10) leads to a convex problem that can be efficiently solved using a

block-coordinate ascent algorithm similar to that proposed for GLASSO in (Banerjee et al., 2008). An

R package is also provided for the GOLAZO optimisation - https://github.com/pzwiernik/golazo.

Analogously to (18), we set β by minimising the BIC

β̂BIC := arg min
β∈RQ+1

BIC (λ (A, β)) (11)

The function BIC (λ (A, β)) in (11) is a non-concave function of β that exhibits discontinuities,

hence the use of gradient optimisation methods is challenging. Instead, we use a grid-search opti-

misation strategy, akin to that used to set the regularisation parameter in standard GLASSO. The

efficiency of the GOLAZO optimisation combined with the implementation details outlined next make

this feasible.

First we initialise β̂0 (the first entry in β̂), such that λ̂ = exp(β̂0), where λ̂ maximises the BIC in

(18) over a univariate grid. Assuming that all variables in yi are standardised to unit sample variance,

the grid search is facilitated by an analytic upper bound that

β̂0 ≤ log

(
max
k 6=j
{|Rjk|}

)
(12)
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where R is the empirical correlation matrix, see Appendix A.1.1 for the proof. Second, we conduct a

grid search on the whole vector β, with the first entry being centered around β̂0. The grid search is

again facilitated by the existence of bounds, specifically, Appendix A.1.1 shows that one may restrict

attention to β such that

max
j 6=k

λjk = max
j 6=k

eβ0+
∑Q

q=1 βq ā
(q)
jk ≤ 1− |Rjk|

since increasing λjk beyond this bound will not change Θ̂. Within the grid search, we also use the

solution obtained for a particular β as a warm start for subsequent values of β.

4.2 Spike-and-slab

The full parameter of interest is (diag(Θ), ρ, η), where η = (η0, η1, η2) are the hyper-parameters in (9).

To approximate their posterior distribution π(diag(Θ), ρ, η | y) given the data y we used Hamiltonian

Monte Carlo (see Neal (2011) for a review). Specifically, we developed an R implementation using

the Stan software (Carpenter et al., 2017), as well as a Python implementation using the NumPyro

package (Phan et al., 2019). Sections A.1.2 and A.1.5 describe further implementation details and

our code provides both implementations. The purpose of the R version is to make our methods

available to the ample R community, whereas NumPyro provides significant computational savings by

using improvements in automatic differentiation and enabling the use of GPUs. The savings were

substantial, Section A.4 demonstrates that greater than an order of magnitude speed up was possible

even in simple experimental settings.

The output of both implementations are N posterior samples (diag(Θ(i)), ρ(i), η(i)) for i = 1, . . . , N

that can be used to approximate the posterior distribution or suitable summaries such as the marginal

posterior mean and standard deviation of any parameter. Of particular interest to us is to estimate

the posterior probability for the presence of an edge between any two nodes (j, k), i.e. that the partial

correlation ρjk was generated by the slab in (9). We next discuss how to estimate said posterior

probability using the posterior samples.

To ease notation re-write the prior as

π(ρjk | η) = (1− wjk(η))π0(ρjk | η) + wjk(η)π1(ρjk | η) (13)

where π0(ρjk | η) is the spike prior density, π1(ρjk | η) the slab prior density, and wjk(η) the slab

prior probability. The idea is that any ρjk generated by the spike takes a near-zero value, i.e. the

partial correlation is either truly zero or small enough to be practically irrelevant. Let zjk = 1
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indicate that ρjk was generated from the slab and zjk = 0 that it was generated from the spike, i.e.

P (zjk = 1 | η) = wjk. A measure of evidence in favor of the presence of the edge is the posterior

probability

P (zjk = 1 | y) =

∫
P (zjk = 1 | ρjk, η)π(ρjk, η | y)dρjkdη, (14)

where from Bayes rule

P (zjk = 1 | ρjk, η) =
wjk(η)π1(ρjk | η)

(1− wjk(η))π0(ρjk | η) + wjk(η)π1(ρjk | η)
. (15)

Given B posterior samples from π(ρ, η | y), (14) may be easily estimated by

P̂ (zjk = 1 | y) =
1

N

N∑
I=1

P (zjk = 1 | ρ(I)
jk , η

(I)) (16)

Our decision rule is to include edge (j, k) whenever P̂ (zjk = 1 | y) ≥ t for some threshold t ∈ [0, 1].

In problems where the goal is to estimate Θ it is customary to use t = 0.5, see Barbieri and Berger

(2004). In contrast, in structural learning where one seeks to control a Bayesian version of the false

discovery rate (the posterior expected false discovery proportion) below some given level α, Müller

et al. (2004) showed that the optimal threshold maximising statistical power is to set the largest t

such that

1

|D|
∑

(j,k)∈D

P̂ (zjk = 0 | y) ≤ α

where D is the set of included edges. In particular, setting t = 1 − α ensures that the posterior

expected false discovery proportion is below α.

4.3 Empirical Bayes

The empirical Bayes estimate η̂ discussed in Section 3.3 requires marginalizing the joint posterior

π(Θ, η | y). This is possible given N posterior samples (Θ(i), η(i)) for i = 1, . . . , N from the latter,

since then by definition η(i) are samples from π(η | y). Then one may obtain η̂ by maximising a

kernel density estimate of π(η | y), for example. Given that the accuracy of kernel density estimators

degrades as dimensionality grows, in our examples when dim(η) > 2 we instead obtain marginal mode

estimators η̂j = arg maxηj π(ηj | y).
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5 Simulation study

We conducted a simulation study as proof of principle that, by incorporating external network data,

one may improve graphical model inference. To this end, we compared standard GLASSO with the

network GLASSO of Section 3.2 and the network graphical spike-and-slab of Section 3.3 in several

settings. As discussed in Section 4, the network GLASSO hyper-parameters β are set via the BIC, and

the spike-and-slab hyper-parameters η using empirical Bayes. We considered a setting where there

is a single binary network A with entries ajk ∈ {0, 1} and considered p ∈ {10, 50} and sample sizes

n ∈ {100, 200, 500}. We then generated 50 independent datasets where yi ∼ N (0,Θ−1) independently

across i = 1, . . . , n. We set the data-generating Θ to have unit diagonal and most non-zero entries

along the main tri-diagonal (Θjk where |j−k| = 1). Specifically, a proportion of 0.95 of the tri-diagonal

entries were set to non-zero values uniformly spaced in [0.2, 0.5]. Regarding entries outside the main

tri-diagonal (i.e. Θjk where |j − k| > 1), a proportion of 0.5/p were set to non-zero values uniformly

spaced in [−0.1, 0.1] (i.e. the number of edges in the graphical model grows linearly with p).

The primary purpose of the study is two-fold. First, to show that if the network data provide

no valuable information about the graphical model structure, then our methods perform similarly to

standard GLASSO where the network data is not used. Second, to show that as the network becomes

more informative, the inference provided by our methods improves gradually. To measure the degree

to which the network data ajk ∈ {0, 1} is informative we count the proportion of overlaps where

ajk = I(Θjk 6= 0), i.e. the presence/absence of an edge in the network A matches that of an edge in

Θ. We considered the following settings:

1. Independent network: The tri-diagonal elements of A are set such that half of them are 1 and

half of them 0, equally for the elements outside the main tri-diagonal, half of these are 1 and

half of these are 0. This led to a 0.533 and 0.502 proportion of edges that agree between A and

I(Θ 6= 0) for p = 10 and 50 respectively.

2. Mildly informative network: The tri-diagonal elements of A are set such that the proportion

ajk = 1 is 0.75, alternatively for the elements outside the main tri-diagonal the proportion of

ajk = 1 is 0.25. This led to a 0.778 and 0.747 proportion of edges that agree between A and

I(Θ 6= 0) for p = 10 and 50 respectively.

3. Strongly informative network: The tri-diagonal elements of A are set such that the proportion

ajk = 1 is 0.85, alternatively for the elements outside the main tri-diagonal, the proportion of
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ajk = 1 is 0.15. This led to a 0.867 and 0.844 proportion of edges that agree between A and

I(Θ 6= 0) for p = 10 and 50 respectively.

Code to reproduce our simulations is available in the GitHub repository. For each setting, we report

the mean squared estimation error (MSE), the false discovery rate (FDR), and the false negative rate

(Benjamini and Hochberg, 1995). The FDR is the expected proportion of false positive edges among

the edges estimated to be present, a measure of type I error, whereas the FNR is the expected

proportion of false negative edges among those not reported to be present, which measures statistical

power. Under the GLASSO methods, an edge is declared if the corresponding estimate of ρjk was

non-zero (rounded to 5 decimal places). For the spike-and-slab model an edge is declared when the

posterior probability that ρjk arises from slab (15) is above 0.95.

Table 1 summarises the results. For all sample sizes, the network GLASSO significantly reduced

the MSE when the network data were mildly or strongly informative (A0.75 and A0.85), whereas it

attained a similar MSE to standard GLASSO in the uninformative network setting (Aind). The FDR

was significantly above the usually accepted level of 0.05, which is to be expected, since LASSO-based

point estimates are geared towards prediction rather than statistical inference. Regarding the spike-

and-slab formulations, they consistently achieved an FDR below 0.05 and a small FNR, and in large p

situations a further improvement of the MSE compared with the network-GLASSO methods. Adding

network data improved the spike-and-slab MSE and FNR, particularly when p was large relative to

n. The FDR did not noticeably improve, but it was already near-zero when not using the network

data. These findings suggest that the spike-and-slab formulations tend to attain better inference

than the GLASSO counterparts. However the latter may be more appealing in settings with pressing

computational demands. For example, in the p = 10, n = 100, A.85 setting GOLAZO took 9 seconds

to run, whereas the NumPyro spike-and-slab implementation took 47 seconds (and Stan 8.95 minutes),

see Section A.4 for further details.

6 Results

6.1 COVID-19 infection rates

We illustrate the findings afforded by our methodology in the COVID-19 application. Recall that the

outcomes are log-infection rates for the p = 99 most populous US counties during n = 97 weeks and

that a regression model was fit to account for various factors such as temperature and vaccination
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Table 1: Simulation results under non, mildly and strongly informative networks Aind, A0.75 and A0.85.

For SS and network SS models edges declared when posterior probability > 0.95.

p = 10 p = 50

n MSE FDR FNR MSE FDR FNR

GLASSO 100 0.350 0.370 0.098 3.505 0.442 0.292

Network GLASSO, Aind. 100 0.354 0.340 0.122 3.623 0.392 0.306

Network GLASSO, A0.75 100 0.291 0.258 0.093 2.847 0.421 0.251

Network GLASSO, A0.85 100 0.170 0.174 0.120 2.246 0.426 0.223

SS 100 0.222 0.000 0.086 1.611 0.000 0.023

Network SS, Aind. 100 0.237 0.003 0.082 1.631 0.004 0.025

Network SS, A0.75 100 0.234 0.007 0.073 1.462 0.005 0.023

Network SS, A0.85 100 0.189 0.047 0.060 1.280 0.002 0.022

GLASSO 200 0.184 0.416 0.022 1.794 0.476 0.181

Network GLASSO, Aind. 200 0.201 0.378 0.040 1.871 0.439 0.189

Network GLASSO, A0.75 200 0.161 0.309 0.022 1.515 0.412 0.181

Network GLASSO, A0.85 200 0.096 0.204 0.098 1.241 0.388 0.173

SS 200 0.109 0.000 0.056 0.672 0.002 0.017

Network SS, Aind. 200 0.127 0.007 0.053 0.671 0.002 0.017

Network SS, A0.75 200 0.114 0.007 0.048 0.597 0.003 0.015

Network SS, A0.85 200 0.091 0.023 0.041 0.527 0.002 0.015

GLASSO 500 0.082 0.367 0.002 0.825 0.410 0.032

Network GLASSO, Aind. 500 0.085 0.315 0.007 0.766 0.443 0.035

Network GLASSO, A0.75 500 0.066 0.270 0.000 0.604 0.419 0.031

Network GLASSO, A0.85 500 0.045 0.195 0.008 0.512 0.386 0.027

SS 500 0.030 0.000 0.023 0.198 0.002 0.009

Network SS, Aind. 500 0.034 0.000 0.023 0.201 0.001 0.010

Network SS, A0.75 500 0.032 0.002 0.018 0.193 0.001 0.009

Network SS, A0.85 500 0.033 0.008 0.022 0.183 0.001 0.009

rate, fixed time and county effects, and serial correlation (see Section 2). See also Section A.2 for a

description of the data pre-processing. The two networks are a geographical network A1 where a
(1)
jk
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Table 2: Four models for the COVID-19 data. A1 and A2: networks defined by 1/ log(Geodistance) and

log(Facebook). BIC values account for the extra hyper-parameters in the network GLASSO models.

10-fold: 10-fold cross-validated log-likelihood

Method BIC β̂0 β̂1 β̂2 Edges 10-fold

GLASSO 7066.313 -1.711 646 273.61

Network GLASSO- A1 5555.422 -0.132 -1.211 245 285.00

Network GLASSO- A2 5561.311 0.263 -1.368 217 286.77

Network GLASSO- A1 & A2 5525.378 -0.056 -0.333 -1.000 235 287.22

is the reciprocal of the log-geographic distance between counties (j, k) (hence larger values indicate

smaller distance), and a Facebook network A2 where a
(2)
jk is the log-Facebook connection index between

(j, k). We note that Pearson’s correlation between A1 and A2 is 0.746 and therefore there is a large

overlap in the information introduced by both networks.

As a first exercise, we analyze the data using four strategies: a standard GLASSO using no network

information, our network GLASSO using only the geographical or only the Facebook networks, and

using both networks. Table 2 shows a summary comparing the four models. The model attaining

the best BIC value includes the two networks, suggesting that they both carry relevant information to

help learn the graphical model. The estimated coefficients for both networks (β̂1, β̂2) were negative,

i.e. counties that are close geographically or highly-connected at Facebook are regularised less. The

larger coefficient β̂2 in the joint model suggests that the effect of the Facebook network is greater.

Interestingly, the three network-regularised solutions were significantly sparser relative to the 628

edges detected by GLASSO.

Despite these solutions being sparser, they included some edges that were not included by GLASSO.

Figure 3a shows edges that were only selected when adding the geographical network A1, which largely

correspond to counties that are close to each other. Figure 3b shows an analogous plot when using

the Facebook network A2, interestingly there are connections between faraway counties in the west,

north-east and south-east. Figure A.7 further portrays the estimated graphical model when using

both networks.

To further assess the relative performance of the four models, we undertook a 10-fold cross-

validation exercise where we assessed the log-likelihood (as a measure of predictive accuracy) in an

out-of-sample fashion. The models incorporating network information also performed much better
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than standard GLASSO according to this predictive criterion.

Finally, we applied our spike-and-slab framework to obtain further insights on how the proportion

of edge connections, as well as the mean partial correlation, depend on the two networks. As discussed

earlier, the bottom panels in Figure 1 display the fitted spike-and-slab distribution as a function of both

networks. Table 3 presents the corresponding (empirical Bayes) hyper-parameter estimates, and Figure

A.6 display the estimated prior slab mean and prior slab probability as functions of the geographic

and Facebook network connections. The mean of the non-zero partial correlations (−ρjk), i.e. the slab

location parameter, was estimated to increase with both networks (negative η̂01, η̂02). Their variance

(slab dispersion parameter) was also estimated to increase with both networks (negative η̂11, η̂12). The

estimated coefficients (η̂21, η̂22) parameterising the slab probability (i.e. non-zero partial correlation)

had opposite signs. Larger Facebook connectivity was associated with a larger probability of the

corresponding ρjk being non-zero, while under the Geographical distance the opposite was observed.

However the credibility interval for the latter (η21) included 0, i.e. while there was strong evidence

that the geographical distance affects the mean and variance of the partial correlations, this was not

the case for the probability of a non-zero partial correlation (after accounting for the Facebook index).

Indeed, Figure A.6 illustrates that the probability of a non-zero partial correlation increases from

near-zero to near-one as the Facebook index grows, whereas that is not the case for the geographical

index. These results illustrate the greater flexibility provided by the network spike-and-slab models to

portray the relation between the network data and the partial correlations. For completeness, Table

A.3 summarises the selected graphical model under a 0.5 and 0.95 posterior probability threshold for

declaring an edge.

6.2 Stock market excess returns

We apply our methodology to study the log-daily excess returns (calculated by the Fama-French three-

factor model) of p = 200 US companies. The two networks are an economic risks network A1 where

a
(1)
jk is the Pearson’s correlation between vectors of log(1 + count) of terms related to economic risks

(Baker et al., 2019) in company j and k’s 10-K filings, and A2 the equivalent but for those terms

classified as policy risks. Pearson’s correlation between the two networks was 0.301, suggesting that

they provide largely different information. See Section A.3 for a description of the data pre-processing.

We firstly analyze the data using the standard GLASSO, our network GLASSO using only the

Economic network, only the Policy network, and finally using both networks. Table 4 compares

these four models. The model including both networks attained the highest BIC and their estimated
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Figure 3: Edges identified by Network GLASSO but not by standard GLASSO. The coordinates of

Honolulu (Hawaii) have been adjusted from (-164.44361, 23.87280) to (-158.2019740, 21.4613654) for

presentation
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Table 3: Network spike-and-slab empirical Bayes (marginal MAP) estimates and 95% posterior inter-

vals for COVID-19 data. A1 and A2: networks defined by 1/log(Geodistance) and log(Facebook).

Intercept A1 A2

η0 (slab location) 0.046 -0.016 -0.047

95% interval (0.027, 0.049) (-0.023, -0.006) (-0.051, -0.021)

η1 (slab dispersion) -2.325 -0.183 -0.177

95% interval (-2.423, -1.691) (-0.323, -0.02) (-0.509, -0.01)

η2 (slab probability) -1.781 -0.187 1.154

95% interval (-1.961, -0.232) (-0.349, 0.191) (0.718, 1.379)

Table 4: Four models for the stock market data. A1 is the Economic network, A2 the Policy network.

BIC values account for the extra hyper-parameters in the network GLASSO models. 10-fold is the

10-fold cross-validation log-likelihood

Method BIC β̂0 β̂1 β̂2 Edges 10-fold

GLASSO 47505.870 -1.474 631 -6857.00

Network GLASSO- A1 46927.615 -1.289 -0.368 664 -6834.45

Network GLASSO- A2 47012.765 -1.105 -0.474 604 -6828.51

Network GLASSO- A1 & A2 46853.544 -1.222 -0.306 -0.167 654 -6831.10

parameters (β̂1, β̂2) are both negative. That is, partial correlations between companies that have

large connections in the network are more likely to be non-zero, and are hence less regularised. The

estimated graphical model when using both networks is slightly denser than under standard GLASSO.

To further assess the four models we evaluated their out-of-sample log-likelihood using 10-fold cross-

validation. The models incorporating network information perform better than standard GLASSO in

this prediction exercise.

To gain further insights into the relation between partial correlations and the network data, we

applied our spike-and-slab framework. Figure A.12 shows estimated spike-and-slab distributions for

the partial correlations as a function of both networks, and Table 5 the corresponding hyper-parameter

estimates. Further, Figure A.14 displays the estimated effect of both networks on the slab location

(mean non-zero partial correlation) and its probability. Interestingly, the policy network had a large
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Table 5: Network spike-and-slab empirical Bayes (marginal MAP) estimates and 95% posterior credible

intervals for the stock market data. A1 is the Economic network, A2 the Policy network.

Intercept A1 A2

η0 (slab location) -0.001 -0.014 -0.009

95% interval (-0.005, 0.004) (-0.02, -0.01) (-0.014, -0.004)

η1 (slab dispersion) -2.480 -0.129 -0.048

95% interval (-2.657, -2.301) (-0.24, -0.01) (-0.198, 0.105)

η2 (slab probability) -1.798 0.313 0.734

95% interval (-2.138, -1.416) (0.092, 0.541) (0.455, 1.046)

positive effect on the probability of a non-zero partial correlation, but its effect on their mean and vari-

ance is negligible. On the other hand, the economic network was positively associated with probability

of a non-zero partial correlation, its mean and variance.

This rather surprising result is substantively important. Since the pioneering work of Hassan

et al. (2019), economists have used word-count based approaches to measure and evaluate firm-level

exposure to political and policy risks. But exposure to policy risks is in part a function of fundamental

economic risks: for example, firms exposed to air travel via their business model will also be exposed

to regulation of the Federal Aviation Administration. The finding that policy risk overlap is not

associated with positive excess return co-movement after controlling for economic risk overlap suggests

that much of its effect operates through firm fundamentals. This can also be seen in the last row of

Table 4: when both networks are included in the GLASSO, the estimated impact of the economic risk

network on the regularlization is stronger than that of the policy risk network.

For completeness, Table A.5 summarises the selected graphical model under a 0.5 and 0.95 posterior

probability threshold for declaring an edge.

7 Discussion

In this paper, we explored how exogenous network information could be incorporated to improve

graphical model inference. We considered two approaches for so doing. Firstly, under a penalised like-

lihood framework where the penalty term for the partial correlation between two variables is allowed

to depend on the strength of their network connection(s). Secondly, a Bayesian hierarchical model
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where the networks can characterise the probability that there is no connection and also model the

behaviour of non-zero connections. The former approach was operationalised using the GOLAZO algo-

rithm (Lauritzen and Zwiernik, 2020) and network hyper-parameters were learned using the BIC, while

the Bayesian model was implemented in the NumPyro probabilistic programming language (Bingham

et al., 2019; Phan et al., 2019) and empirical Bayes was used to estimate the network hyper-parameters.

Our simulations showed that network information could be particularly helpful in situations where

the network dimension p was large relative to the sample size n, as is often the case in real-world sce-

narios. Further, we observed that the ability to learn hyperparameters ameliorated the consequences

in a worst-case scenario where one introduces an uninformative network.

We applied our methodology to model the evolution of COVID-19 cases across the p = 99 most

populous counties in the US and to model the log-excess return of p = 200 US companies. In the

former, we found that both a geographical distance network and a Facebook connectivity network were

informative about the dynamics of COVID-19 cases, allowing for the estimation of a sparser graphical

model that predicted better out-of-sample, and that of the two, the Facebook network appeared to

have the greater effect. In the latter, we found that networks parameterising the similarity of two

firm’s risk exposures grouped into economic and policy risks were both informative of the graphical

model and that while the policy network appeared to have a stronger relationship to whether two firms

were connected, the economic network was more predictive of the behaviour of connected observations.

Further work could consider richer relationships for how the graphical models can depend on

the networks, e.g. by considering non-parametric models. Other extensions are replacing our spike-

and-slab prior with so-called ‘non-local ’ slabs using optimisation algorithms as in (Avalos-Pacheco

et al., 2022), or developing tailored variational methods. Said methods could help scale Bayesian

implementation to even higher dimensions, i.e. the setting where adding network information is more

useful.

Finally, we remark that the general notion of adding external information to help improve inference

extends well beyond our graphical model and network data applications. In this sense, we hope that

our constructions can be helpful to researchers in (hopefully numerous) applied statistical modelling

settings beyond the one considered here.
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A Supplementary Material

Section A.1 provides further details for the implementation of our network GLASSO and network spike-

and-slab models. Section A.2 contains further information related to our COVID-19 data application,

including the data collection, preprocessing, linear model estimation and diagnostic checks, network

specification and linearity check, as well as further results and figures. Section A.3 provides analogous

information for the stock market data. Lastly, Section A.4 provides a performance comparison of

the network GLASSO frequentist model with the network spike-and-slab Bayesian model using Stan

and NumPyro. Code to implement all of our experiments and data pre-processing is available at

https://github.com/llaurabat91/graphical-models-external-networks.

A.1 Implementation details for network GLASSO and network spike-and-slab

A.1.1 Bounding the region for optimal GOLAZO hyperparameters β.

We describe simple bounds to limit the grid search for the hyper-parameter β̂ optimising the BIC/EBIC.

The GOLAZO algorithm (Section 8.1 in Lauritzen and Zwiernik (2020)) is a block coordinate descent

algorithm where the j-th row is optimized with other entries of Σ fixed by solving a quadratic program

min
d

dT (Σ\j)
−1d subject to |Σij − Sij | ≤ λij for all i < j and Σii = Sii for all i, (17)

where d contains the off-diagonal entries of the j-th row of Σ (the diagonal entry always satisfies

Σjj = Sjj). The following lemma guarantees that for large enough λij the solution is to set all

parameter estimates to zero.

Lemma A.1. If λjk ≥ |Sjk| for all k 6= j then d = 0 optimises (17).

Proof. Under the given condition d = 0 is always feasible. Since d = 0 is also the global minimum,

the result follows.

We can therefore assume that λjk < |Sjk| for at least one pair (j, k). That is, we may restrict

attention to β satisfying

max
j 6=k

log(λjk) = max
j 6=k

β0 +

Q∑
q=1

βqā
(q)
jk ≤ max

j 6=k
log |Sjk|.

Note that this expression bounds the range of possible optima for each βq given the rest, and in

particular for β0 we obtain

β0 ≤ max
j 6=k
{log |Sjk| −

Q∑
q=1

βqā
(q)
jk },
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which is ≤ maxj 6=k log |Sjk| at the initialisation step where β1 = . . . = βQ = 0.

The fact that Σ in (17) must be positive definite allows for the construction of further simple

bounds. For every i 6= j we necessarily have Σ2
jk ≤ ΣjjΣkk = SjjSkk, or equivalently, Σjk ∈

[−
√
SjjSkk,

√
SjjSkk]. It follows that, without loss of generality, we can restrict attention to that

λjk ≤
√
SjjSkk − |Sjk| giving

β0 +

Q∑
q=1

βqā
(q)
jk ≤ log(

√
SjjSkk − |Sjk|) for all j 6= k.

A.1.2 Implementation of spike-and-slab

If the spike has a very small variance, or the slab has too bigger variance it can be difficult for an

MCMC sampler to efficiently explore both spaces. We use a rescaling trick to facilitate efficient MCMC

inference for the network spike-and-slab model. Rather than sample directly from π(ρ) as defined by

(9), for each ρjk we define latent variables ρ̃spikejk , ρ̃slabjk and ujk. We then sample

ρ̃spikejk ∼ DE (0, 1) , ρ̃slabjk ∼ DE (0, 1) and ujk ∼ Unif[0, 1],

and set

ρjk = I(ujk > wjk)
(
s0 × ρ̃spikejk

)
+ I(ujk ≤ wjk)

(
ηT0 ajk + sjk × ρ̃slabjk

)
.

It is straightforward to see that the marginal distribution of ρjk matches that defined in (9). Lastly,

to make such an implementation suitable for MCMC samplers that require differentiability, we approx-

imate the indicator I(ujk > wjk) with a sigmoid function

I(x ≥ 0) ≈ σk(x) =
1

1 + exp(−kx)
for large k,

taking k = 100.

A.1.3 Prior elicitation

We elicit spike-and-slab prior parameters (η0, η1, η2) that encourage sparse solutions, avoid pathological

values, and maintain their specified intuition whilst being minimally informative. We finish this section

with a table of the values used in the simulations and in our applications. For interpretability, we treat

the spike’s scale parameter s0 as a constant. Recall that the spike captures partial correlations ρjk that

are considered to be 0 for all practical purposes, which here we consider to be |ρjk| < 0.01. We hence
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set s0 such that the spike has most of its density below this threshold, i.e. Π(ρij ∈ (−τ, τ); s0) = 0.95,

where τ = 0.01. This gave the value s0 = 0.003

Consider first the hyperparameters (η00, η10, η20) defining the intercept of the regression of the

slab’s mean, variance, and prior probability on the network data. We set the priors

η00 ∼ N
(
0, g2

0

)
η10 ∼ N

(
m1, g

2
1

)
η20 ∼ N

(
m2, g

2
2

)
.

For the hyperparameters that capture the effect of each network A(q), where q = 1, . . . , Q, we set

η0q ∼ N
(
0, g2

0

)
η1q ∼ N

(
0, g2

1

)
η2q ∼ N

(
0, g2

2

)
.

Centering the prior of η00 at 0 encodes the absence of information about whether partial correlations

are positive or negative on average. Similarly, centering the priors of (η0q, η1q, η2q) at zero reflects no

prior knowledge on whether the network data are predictive of ρ and in which direction. To set the

remaining hyperparameters we assume the networks have been standardised and conduct the prior

elicitation for the average value of the networks (i.e. ā
(q)
jk = 0 for all networks q). As a result, our

prior elicitation is invariant to the network(s) considered.

The prior on η2 was set based on sparsity and minimal informativeness considerations. Specifically,

we set the prior expected number of edges (non-zero partial correlations) to scale linearly with p, so

that each node is expected to have a constant degree as p grows. When all networks are at their

average value the slab prior probability is w = 1/(1 + e−η20). A standard non-informative prior on

slab prior probabilities is a Beta(mwvw,mw(1 − vw)) distribution (Scott and Berger, 2010), where

mw is the prior mean and vw is often interpreted as the prior ‘sample size’. We take the minimally

informative choice vw = 1. Regarding mw, we set it such that the prior expected number of edges is

p. Since the prior expected number of edges is

E

 p∑
j=1

∑
k<j

I(ρjk ∈ slab)

 =
p(p− 1)

2
w,

for mw = 2
(p−1) the expected number of edges is p. Based on these considerations, we set the (m2, g

2
2)

featuring in the prior of η20 and η2q so that the implied prior on w has the same mean and variance

as the Beta prior described above.
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Table A.1: Network spike-and-slab prior hyperparameters

p = 10 p = 50 COVID-19 data (p = 99) Stock data (p = 200)

s0 0.003 0.003 0.003 0.003

g0 0.145 0.152 0.145 0.140

m1 -2.197 -2.197 -2.197 -2.197

g1 0.661 0.661 0.661 0.661

m2 -2.722 -6.737 -9.368 -9.158

g2 3.278 3.395 4.184 3.658

Regarding the prior on η1, we considered that for the slab to capture non-zero partial correlations

its prior scale parameter at the average value of the networks sjk = s0(1 + exp {−η10}) should be

significantly larger than that of the spike s0. We hence set m1 and g1 such that the prior mode of s1

is 10× s0, as well as s1 > 3× s0 with prior probability 0.99.

Finally, the prior on η0 was set based on prior positive-definiteness considerations. Specifically, the

positive-definiteness indicator I(ρ � 0) induces dependence in the spike-and-slab prior density, i.e. it

can produce a joint prior that is vastly different from the product of independent priors on each ρjk.

Such a discrepancy is undesirable for prior interpretation, particularly in our setting where the priors

and their hyperparameters are objects of interest that describe how ρjk depends on network data. To

address this issue we set prior parameters such that the prior probability of ρ being positive definite

when independently sampling its elements is at least 0.95. Conditional on the priors specified for

(η1, η2), g0 was set to the largest value (i.e. least informative) that guarantees at least 0.95 probability

that ρ is positive-definite under independent sampling from the unconstrained spike-and-slab prior

components.

A.1.4 Elicited values

Table A.1 presents the elicited values used in our simulations and real data examples. Code to elicit

priors following the specification above for further examples is available in the GitHub repository. As

the dimension of the data increases, only the prior for η2 changes greatly. This is a result of the

assumption that the number of edges grows linearly with p, and therefore Θ is a priori assumed more

sparse for larger p.
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A.1.5 Reparametrisation of the network hyperparameters

An advantage of the Bayesian network spike-and-slab approach is that it allows us to do inference

for the network hyperparameter as was done in Tables 3 and 5. Such inferences, however, require

that the effective sample size (ESS) of the sampled hyperparameters is sufficiently high. We observed

empirically that hyperparameters attain lower ESS. Although this phenomenon has not been studied

in our graphical model settings, in hierarchical models it is well understood that parameters associ-

ated to higher levels have strictly slower MCMC mixing, and that said mixing can be improved by

reparameterising the problem (Zanella and Roberts, 2021). We applied the following transformation

of the hyperparameters to facilitate their sampling.

Rather than sample directly from the priors for the hyperparameters as outlined in Section A.1.3,

we reparameterised and sampled

η̃iq ∼ N
(

0,
p(p− 1)

2n

)
, i = 1, 2, 3, q = 0, 1, . . . , Q.

The original η hyperparameters can then be recovered as

ηi0 = mi + η̃i0 × gi/
√
p(p− 1)/2n,

ηiq = 0 + η̃iq × gi/
√
p(p− 1)/2n, i = 1, 2, 3, q = 1, . . . , Q,

where m0 := 0. The idea behind this is to first standardise the η’s to all have mean 0 and variance 1,

before adjusting the variance of the η̃’s by the square-root of the ratio of the number of ρ’s (p(p−1)/2)

from which the η’s are learned, to the number of observations Y (n) from which the ρ’s themselves

are learned. Such a reparametrisation leaves the model completely unchanged, but we found this

improved the ESS of the η′s.

A.1.6 Simulation results using the EBIC

As a sensitivity check, we also consider using the EBIC (Chen and Chen, 2008) to select hyperparam-

eters for the GLASSO and Network GLASSO models

EBIC(λ) = −2`n(Θ̂(λ)) + |E(Θ̂(λ))| log n+ 4|E(Θ̂(λ))|γEBIC log p (18)

Compared with the BIC, (18) has an additional complexity penalty, controlled by hyperparameter

γ. Foygel and Drton (2010) recommend γEBIC ∈ [0, 0.5] where γEBIC = 0 recovers the BIC. Table A.2

presents the results of the experiments introduced in Section 5 when using the EBIC with γEBIC = 0.5
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Table A.2: GLASSO and network GLASSO simulation results under non, mildly and strongly informa-

tive networks Aind, A0.75 and A0.85 with EBIC rule (γEBIC = 0.5) for learning the β hyperparameters.

p = 10 p = 50

n MSE FDR FNR MSE FDR FNR

GLASSO 100 0.474 0.243 0.176 6.628 0.163 0.566

Network GLASSO, Aind. 100 0.556 0.163 0.253 7.008 0.128 0.632

Network GLASSO, A0.75 100 0.383 0.138 0.162 5.691 0.112 0.504

Network GLASSO, A0.85 100 0.195 0.103 0.153 4.566 0.098 0.414

GLASSO 200 0.254 0.283 0.060 2.726 0.224 0.241

Network GLASSO, Aind. 200 0.265 0.223 0.082 2.678 0.227 0.248

Network GLASSO, A0.75 200 0.200 0.176 0.058 2.155 0.206 0.216

Network GLASSO, A0.85 200 0.108 0.118 0.120 1.837 0.188 0.207

GLASSO 500 0.101 0.281 0.004 0.958 0.327 0.138

Network GLASSO, Aind. 500 0.099 0.235 0.011 1.002 0.286 0.142

Network GLASSO, A0.75 500 0.074 0.185 0.000 0.781 0.272 0.153

Network GLASSO, A0.85 500 0.051 0.116 0.096 0.698 0.214 0.158

to select hyperparameters. Comparing these results with Table 1 shows that using the EBIC reduced

the FDR relative to the BIC, however, this generally results in much more conservative edge selection

which damaged the MSE.

A.2 COVID-19 data analysis

This section provides additional details for the analysis of the COVID-19 infection rate data.

A.2.1 Data sources

To undertake our analysis, we collected and combined the following datasets.

1. U.S. population data

We selected the top 100 counties for analysis based on 2019 U.S. population data. Data were sourced

from https://www2.census.gov/programs-surveys/popest/tables/2010-2019/counties/totals/.

Due to the lack of statistics for the District of Columbia in the COVID-19 policy dataset, we proceed

with the top 99 counties.
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Figure A.1: Weekly COVID-19 Cases per county for the 99 biggest counties in the U.S.

2. FIPS code data

To allow for a better match between different datasets, we also extracted the “FIPS code” that uniquely

identifies counties within the U.S. from the U.S. Bureau of Labor Statistics https://www.bls.gov/

cew/classifications/areas/sic-area-titles.htm.

3. COVID-19 infection data

Time series data of confirmed COVID-19 infections in each U.S. county was obtained from https://

github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_

series/time_series_covid19_confirmed_U.S..csv. Figure A.1 plots of the weekly aggregated con-

firmed COVID-19 infections

4. COVID-19 vaccination data

State-level vaccination data was obtained from https://github.com/govex/COVID-19/tree/master/

data_tables/vaccine_data/us_data/time_series.
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5. Policy data

The Oxford COVID-19 Government Response Tracker https://github.com/CSSEGISandData/COVID-

19_Unified-Dataset tracks individual policy measures across 20 indicators. They also calculate sev-

eral indices to give an overall impression of government activity. We used their Containment and

Health indices to summarise the policy variables.

6. Temperature data

We extracted the daily average near-surface air temperature from the ‘Hydromet’ folder of the above

repository https://github.com/CSSEGISandData/COVID-19_Unified-Dataset/tree/master/Hydromet.

7. U.S. area data

Population densities were obtained by dividing the county population by the area of the region. Area

data were obtained from the U.S. Census Bureau https://tigerweb.geo.census.gov/tigerwebmain/

TIGERweb_main.html.

8. Geodistance data

To measure the Geographical distance between two counties we use the Haversine distance (Sinnott,

1984) which assumes the earth is spherical. The latitude and longitude of each county were downloaded

from the U.S. Census Bureau https://tigerweb.geo.census.gov/tigerwebmain/TIGERweb_main.

html.

9. Facebook connectivity data

The Facebook Social Connectedness Index (SCI), obtained from https://data.humdata.org/dataset/

social-connectedness-index, uses an anonymized snapshot of all active Facebook users and their

friendship networks to measure the intensity of connectedness between locations. Specifically, it mea-

sures the relative probability that two individuals across two locations are friends with each other on

Facebook.

A.2.2 Data processing

Once the data was collected, some minimal data preprocessing was required to prepare the data for

our analysis. This consisted mainly of variable transformation and imputing of missing values.
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Variables transformation Natural logarithms were taken of the variables ‘confirmed case’, ‘pop-

ulation density ’ and ‘number of vaccinations’.

Missing values In addition, there were missing values in covariates Containment and Health Index

data (CHI) as well as the Temperature (Temp) data and the Vaccination data. We imputed these

missing values as follows

1. The CHI values were calculated as a function of different policy measures (https://github.com/

OxCGRT/covid-policy-tracker/blob/master/documentation/index_methodology.md). On

several occasions either these policy measures or their flags were missing. We imputed these as

follows

• Missing flags were imputed as 0’s, i.e. no flags

• Missing values before the first recorded value were imputed as 0, i.e. assuming no measures

were in place before the first recorded measure

• Missing values in between two recorded values were imputed as an average of the before

and after measures

• Missing values after the last recorded value were imputed as the last seen measure, i.e.

assuming a continuation

2. For the Temp data, the temperatures for San Francisco were not recorded at all. We imputed

these using the nearest county geographically, San Mateo County.

3. The vaccination data was only recorded from the 14th of December 2020 and therefore all

vaccination counts before this date were imputed as 0’s.

A.2.3 Model description

Our final response variable is the log of the weekly COVID-19 infections per 10,000 members of the

population (i.e. cases / population × 10,000). This results in data y1, . . . , yn where yi = (yi1, ..., yip)

is the log of the standardised weekly COVID-19 infections at week i in the p = 99 counties with largest

population. The sample interval is from 22 January 2020 to 30 November 2021 resulting in n = 97

weeks of data.

Our graphical model posits yi ∼ Np(µi, Θ−1) where µi = (µi1, ..., µip). For convenience, we

decouple the estimate of µi from Θ. We pose a regression model for µij and then estimate Θ using
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the residuals of this model assuming zero mean as in Section 3.1. Our generalised additive regression

model for yij can be summarised as follows

log(confirmed)ij = b0 + b1 × log(Lagconfirmed)ij + b2 × log(popdensi)j + b3 × Cum vaccinatedij+

b4 × CHIij + s(Temp)ij + γ2 × Time2 + ...+ γT × TimeT + εij

where

(1) log(confirmed)ij represents the natural logarithm of weekly per 10,000 people confirmed case

in county j at time i.

(2) log(Lagconfirmed)ij a first-order auto-regressive term measuring the infection rate at the previous

time point i− 1 for each county j

(3) log(popdensi)j is the population density for county j

(4) Cum vaccinatedij is the cumulative number of vaccinated individuals in county j by time i

(5) CHIij represented the Containment and Health Index summarising COVID-19 policies/measures

put in place for county j and time i (wearing masks, closing schools, etc.)

(6) s(Temp)ij is a non-parametric smooth of the average temperature for county j at time i imple-

mented in mgcv package in R

(7) Timei is a weekly fixed effect term estimating the mean infections across all counties at time i

(8) εij are the residuals of county j at time i

With such a model we aim to remove the effect of the most relevant covariates that drive the mean

number of infections, allowing Θ−1 to capture dependencies unexplained by these covariates.

A.2.4 Checking model goodness-of-fit

The main assumptions behind our assumed model require that the residuals εi are Gaussian dis-

tributed and independent across i = 1, . . . , n time points. We provide diagnostic plots to check these

assumptions.

Figure A.2 plots the fitted values ŷij and each of the predictors against the residuals εij . This

demonstrates that the assumption that the covariates are linearly related to the response is satisfac-

tory and that the residuals appear reasonably homoskedastic. Figure A.3 shows a histogram of the

standardised residuals and Q-Q-normal plots for εij . The Gaussian assumption is tenable here.
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Figure A.2: Plots of the fitted values and each covariateagainst the residuals for the COVID-19 data.

The red line corresponds to the LOWESS smooth.
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Figure A.3: COVID-19 data. Left Histogram of the standardised residuals compared with the standard

Gaussian density. Right Q-Q Normal plot of the standardised residuals.
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Figure A.4: Residual autocorrelation functions and partial autocorrelation functions after incorporat-

ing the AR1 term for the COVID-19 data.

The raw COVID-19 data exhibited strong serial correlation. To address this issue we added a first-

order auto-regressive term. Figure A.4 plots the autocorrelation functions and partial autocorrelation

functions for further lags after incorporating the AR1 term. These indicate that higher-order terms

are unnecessary. After adding an AR1 term the interpretation of the errors (and their covariance)

changes: they measure the infection rate relative to the covariates and to the infection rate of the

previous week, i.e. they capture whether certain counties are growing faster/slower than expected

(relative to the next week). So the model is investigating the growth rates, rather than absolute

infection numbers.
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Figure A.5: Assessing the linear relation between logE[ρ̂2
jk|A] and the network matrices, where ρ̂jk

is the GLASSO estimate. The points represent the log-mean values of ρ̂2
jk within 10 equispaced bins

defined for each network.

A.2.5 The network predictors

A further assumption of our proposed network GLASSO models, as discussed in Section 3.2, is that

there is a linear relation between logE[ρ2
jk|A] and the network entries a

(q)
jk . To achieve linearity we

defined our two network predictors as

A1 := 1/ log(Geodist), A2 := log(Facebook).

Figure A.5 illustrates that after such transformations, the assumption of linearity is reasonably satis-

fied.

A.2.6 Supplementary figures

Table A.3 summarises the estimated graphical model under the network spike-and-slab model using

a posterior slab probability threshold of > 0.5 and > 0.95. The number of edges estimated under the

0.5 slab probability threshold is similar to the number of edges estimated under the network GLASSO

models. Under the 0.95 slab probability threshold, the estimated number of edges is considerably

more conservative.

Figure A.6 shows how the estimated network hyperparameters of Table 3 affect the location of

the slab and the probability of being in the slab marginally for each network when fixing the other

network to its mean. We see that while as both networks increase the location of the slab increases,

the probability of being in the slab increases with the Facebook network and decreases with the

geographical network.
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Table A.3: COVID-19 data: Edge counts of the network spike-and-slab model when declaring an edge

for posterior slab probability > 0.5 and > 0.95

Edges (> 0.5) Non-Edges (> 0.5) Edges (> 0.95) Non-Edges (> 0.95)

Network SS 280 4571 68 4783
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Figure A.6: COVID-19 data: Slab location (left) and slab probability (right) as a function of both

networks estimated by empirical Bayes. We consider the slab here as the location of the partial

correlations, the negation of the ρ model parameters, which is why negative hyperparameter for η0

(Table 3) result in positive effects.

This demonstrates the benefits of the more complex spike-and-slab framework, while the network

GLASSO estimated negative coefficients for both networks indicating positive correlation between the

networks and the size of the partial correlations. The spike-and-slab disentangles this effect, showing

that while the mean of those partial correlations that are non-zero increases with the geographical

network, the probability of being non-zero does not.

A.2.7 U.S. map plots

Figure A.7 visualises the network given by non-zero elements of the GLASSO estimated Θ with no

network information (top) and the network GLASSO estimate of Θ obtained when using both A1 and

A2 (bottom) on top of a U.S. map. The network GLASSO estimates a much sparser network, but we
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see there are still edges present between counties that are close in terms of geographical distance as

well as those that are farther away.

A.2.8 Results using the EBIC

Similarly to the simulations, we also investigate the sensitivity of our COVID-19 data results by con-

sidering selecting hyperparameters using the EBIC with γEBIC = 0.5. Table A.4 presents these results.

From the number of edges, we can see that using the EBIC estimates sparser networks than under the

BIC, but the out-of-sample test set estimate suggests these estimates may be too sparse. Importantly,

we see that the improvement of the network GLASSO methods over standard GLASSO is still apparent

when using the EBIC selection criteria.

Table A.4: Four models for the COVID-19 data when using the EBIC (γEBIC = 0.5) to learn the

network hyperparameters. A1 and A2: networks defined by 1/ log(Geodistance) and log(Facebook).

EBIC values account for the extra hyper-parameters in the network GLASSO models. 10-fold: 10-fold

cross-validated log-likelihood

Method EBIC β̂0 β̂1 β̂2 Edges 10-fold

GLASSO 9556.655 -0.789 175 59.67

Network GLASSO- A1 7252.871 1.276 -1.132 132 246.07

Network GLASSO- A2 6795.846 3.605 -1.947 91 262.9537

Network GLASSO- A1 & A2 6809.573 3.556 0.278 -2.278 97 263.12

A.3 Stock market data preparation

This section provides additional details for the analysis of the stock market excess returns data.

A.3.1 Data sources

To undertake our analysis, we collected and combined the following datasets.

1. Stock price data

We extracted the daily closing stock price for a random selection of p = 200 firms satisfying the

following criteria: we could retrieve their 10-K filings, they were sufficiently large; and had available

financial records in the Compustat database between 2 January 2019 to 31 December 2019 (leaving

n = 252 time points). The data was downloaded from the Center for Research in Security Prices
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(b) Edges identified in network GLASSO with networks A1 and A2

Figure A.7: Edges identified by GLASSO and network GLASSO with the geographical distance and

Facebook networks. The coordinates of the county Honolulu (Hawaii) have been adjusted from (-

164.44361, 23.87280) to (-158.2019740, 21.4613654) for presentation.
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(CRSP) database accessed via Wharton Research Data Services (WRDS).

2. CIK-TIC crosswalk data

The stock price data use the TIC identifier while the risk data from which we derive our networks uses

the CIK identifier. We manually created a CIK-TIC crosswalk from the Compustat database accessed

via WRDS.

3. Fama/French Three-Factor Model

We constructed excess returns using the Fama-French three-factor model (Fama and French, 1993).

The three factors are the 1) overall market return, 2) a measure of firm size, and 3) a measure of

book-to-market ratio. The daily Fama/French factors were downloaded from https://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/data_library.html. For each stock, we regress 2019

daily returns on the three factors (plus a constant) and extract the residual as the excess return.

4. Risk measures

Our network data measures the similarity of two companies’ risk exposures stratified into Economic

and Policy risks. The 2019 10-K risk exposure data counts for each risk category the number of

sentences within a company’s 10-K filings that contained any member of a dictionary associated with

that risk category. We manually construct these using the dictionary terms listed in Baker et al.

(2019). From this data, we can construct a p × p network matrix for firms, where each entry Xij

represents the degree of “closeness” between firm Xi and firm Xj .

A.3.2 Data processing

1. The price data from CRSP is arranged by TIC, while the risk measures are arranged by CIK.

So we need to use the TIC-CIK crosswalk table for matching.

2. There are some negative values in the stock data. The negative signs are to “indicate that it is a

bid/ask average and not an actual closing price” when the “closing price is not available” https:

//faq.library.princeton.edu/econ/faq/11159. We, therefore, took the absolute values of

the returns before the log return calculations.
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A.3.3 Model description

Our final response variable is the log daily returns for p = 200 U.S. firms throughout 2019, resulting in

n = 252 observations. We are, however, interested in the graphical model, Np(0,Θ−1), of the ‘excess

returns’, defined as the residuals of a linear model regressing the log-returns on the Fama-French

factors.

The ‘excess returns’ are therefore estimated using the following model

log(return)ij = b0 + b1 × SMBi + b2 ×HMLi + b3 × (Rm−Rf)i + εij (19)

where

(1) log(return)ij is the log daily return of stock j at time i

(2) SMBi (Small Minus Big) is the average return on the three small portfolios minus the average re-

turn on the three big portfolios at time i https://mba.tuck.dartmouth.edu/pages/faculty/

ken.french/Data_Library/f-f_factors.html

(3) HMLi (High Minus Low) is the average return on the two value portfolios minus the aver-

age return on the two growth portfolios at time i https://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/Data_Library/f-f_factors.html

(4) (Rm−Rf)i, the excess return on the market at time i, value-weighted return of all CRSP firms

incorporated in the U.S. and listed on the NYSE, AMEX, or NASDAQ that have a CRSP share

code of 10 or 11 at the beginning of i’s month, good shares and price data at the beginning

of i’s month, and good return data for i minus the one-month Treasury bill rate. https:

//mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html

A.3.4 Checking model goodness-of-fit

Similarly to Section A.2.4, we produce diagnostic plots to confirm the validity of the linear-model and

the Gaussianity and independence of its residuals.

Figure A.8 plots autocorrelation functions and partial autocorrelation functions, demonstrating

that the observations can be considered independent and that there is no need to consider auto-

regressive terms. Figure A.9 plots the fitted values ŷij and each of the predictors against the residuals

εij , demonstrating that the assumption that the covariates are linearly related to the response is

satisfactory and that the residuals appear reasonably homoskedastic.
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Figure A.8: Residual autocorrleation function and partial autocorrelation function for the stock market

data.
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Figure A.9: Plots of the fitted values and each covariate against the residuals for the stock market

data. The red line corresponds to the LOWESS smooth.
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Figure A.10: Stock market data. Left Histogram of the standardised residuals compared with the

standard Gaussian density. Right Q-Q Normal plot of the standardised residuals.
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Figure A.11: Stock market data. Left Histogram of the transformed residuals compared with the

standard Gaussian density. Right Q-Q Normal plot of the transformed residuals.

While the Gaussian assumption was tenable for the COVID-19 data, Figure A.10 shows that this is

not the case for the stock market data. There is evidence of considerably heavier tails than Gaussianity.

To address this issue we fit a non-paranormal model based on transforming the data into f(εi) :=

(f1(εi1), . . . , fp(εip)), where f̂ was estimated using the R package huge. Figure A.11 shows a histogram

and Q-Q-normal plot for f(εi), where the Gaussian assumption is more tenable.

A.3.5 The network predictors

Based on the construction of Baker et al. (2019), we divided the 37 risk factors into two categories:

the economic risks (containing 17 risks) and the policy risks (containing 20 risks). Then, for each risk

type, we centered the log(1 + counts) and evaluated the Pearson’s correlation between all pairs of
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Table A.5: Stock market data: Edge counts of the network spike-and-slab model when declaring an

edge for posterior slab probability > 0.5 and > 0.95

Edges (> 0.5) Non-Edges (> 0.5) Edges (> 0.95) Non-Edges (> 0.95)

Network SS 746 19154 80 19820

companies to obtain two network matrices Epears and Ppears.

Figure A.12 demonstrates that under both networks there appears to be an increased chance of

having positive partial correlation if the two firms have highly correlated risk factors. Figure A.13

demonstrates that no further transformation of the networks is required to satisfy the network GLASSO

assumption of linearity.

The fitted spike-and-slab priors illustrated at the bottom of Figure A.12 show how the relationship

between the networks and the graphical model is captured. The estimates parameterising these spike-

and-slab distributions are available in Table 5. We see that as the economics network increases,

the slab location increases, the slab scale increases, and also the probability of being in the slab

increases. Alternatively, when accounting for the economic network, an increase in the policy network

corresponds to an increased probability of being in the slab, but not an increase in the slab location

or scale.

A.3.6 Supplementary figures

Table A.5 summarises the estimated graphical model under the network spike-and-slab model using

a posterior slab probability threshold of > 0.5 and > 0.95. The number of edges estimated under

the 0.5 slab probability threshold is slightly greater than the number of edges estimated under the

network GLASSO models. Under the 0.95 slab probability threshold, the estimated number of edges

is considerably more conservative.

Figure A.14 plots the marginal effect of each network on the slab location and the probability of

being in the slab for each network, fixing the other at its mean, given the estimates of Table 5. This

shows that while both networks cause both the slab location and the probability of being in the slab

to increase, the Economic network increases the location of non-zero partial correlations to a greater

extent than the Policy network, the Policy network increases the probability of having a non-zero

partial correlation to a greater extent.
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Figure A.12: Residual partial correlations of the stock market excess returns across firms vs Economy

risk (left) and Policy risk (right). Top panel: Partial correlations were estimated with GLASSO, with

penalization parameter set via BIC. Bottom panel: fitted spike-and-slab distributions and fitted partial

correlations estimated with network spike-and-slab model.
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Figure A.13: Assessing the linear relation between logE[ρ̂2
jk|A] and the network matrices, where ρ̂jk

is the GLASSO estimate. The points represent the log-mean values of ρ̂2
jk within 10 equispaced bins

defined for each network.
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Figure A.14: Stock-market data: Slab location (left) and slab probability (right) as a function of

both networks estimated by empirical Bayes. We consider the slab here as the location of the partial

correlations, the negation of the ρ model parameters, which is why negative hyperparameter for η0

(Table 5) result in positive effects.
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A.3.7 Results using the EBIC

Table A.4 presents results investigating the stability of our stock market data analysis to selecting

hyperparameters using the EBIC with γEBIC = 0.5 rather than the BIC. The EBIC continues to estimate

sparser networks than the BIC, but to the detriment of the out-of-sample test set score. Importantly,

we see that the improvement of the network GLASSO methods over standard GLASSO is still apparent

when using the EBIC selection criteria.

Table A.6: Four models for the stock market data when using the EBIC (γEBIC = 0.5) to learn the

network hyperparameters. A1 is the Economic network, A2 the Policy network. EBIC values account

for the extra hyper-parameters in the network GLASSO models. 10-fold is the 10-fold cross-validation

log-likelihood.

Method EBIC β̂0 β̂1 β̂2 Edges 10-fold

GLASSO 50008.018 -0.868 93 -7020.84

Network GLASSO- A1 49632.192 -0.237 -0.605 109 -6993.37

Network GLASSO- A2 49723.101 1.632 -1.868 100 -7022.70

Network GLASSO- A1 & A2 49587.239 0.889 -0.361 -1.028 78 -7025.53

A.4 Stan vs NumPyro

We estimated our network spike-and-slab models using the No-U-Turn Sampler (NUTS) (Hoffman and

Gelman, 2014), an extension of Hamiltonian Monte Carlo (HMC, Duane et al. 1987) that automates

the setting of the step-size in the Hamiltonian discretisation. Two probabilistic programming imple-

mentations of NUTS are Stan (Carpenter et al., 2017) and NumPyro (Bingham et al., 2019; Phan et al.,

2019). We provide implementations of our algorithm in both languages, but for our experiments, we

found NumPyro’s ability to take advantage of parallel computing for automatic differentiation provided

a considerable speed up.

We illustrate this using one of our simulated examples from Section 5. We consider p = 10,

n = 100 and network matrix A0.85. We ran both Stan and NumPyro for 2000 warmup iterations and

2000 sampling iterations. Table A.7 compares the time taken to sample and the effective sample size

(ESS) of the resulting sample averaged across 10 repeat datasets. We present the ESS as averaged

across the ρ model parameters and the network hyperparameter η. We see that both methods produce

similar ESS but that NumPyro does so over ten times faster.
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We also take this opportunity to demonstrate how efficient the network GLASSO is when imple-

mented as a special case of the GOLAZO algorithm (Lauritzen and Zwiernik, 2020). For the same

datasets considered above, we implement the network GLASSO using 50× 50 grid search to estimate

the network hyperparameters. We see that the GOLAZO algorithm takes a fraction of the time to run

as the Bayesian implementation even when using a rudimentary grid-search optimisation scheme.

Table A.7: Comparison of time taken for network GLASSO implemented using the GOLAZO algorithm

and the network spike-and-slab sampling algorithms in Stan and NumPyro.

Time (s) ESS ρ’s ESS η’s

GOLAZO 8.58 - -

Stan 537.05 1089 555

NumPyro 47.15 1056 601

Lastly, above we limited NumPyro’s access to only 6 cores on one machine. Using more cores, for

example on a GPU, provides the potential for NumPyro to achieve even greater speed-ups for higher

dimensional problems beyond the simple one considered here.
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