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We estimate the parameters of our model and we find that a fourth-order approximation around the
indeterminate steady-state provides the best fit to U.S. data. Our work interprets the large and
persistent generational inequality that has been observed in western economies over the past
century as the result of uninsurable income shocks to birth cohorts.
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Department of Economics, University of Virginia

ROGER E. A. FARMER

Department of Economics, University of Warwick and UCLA

We construct a perpetual youth DSGE model with aggregate uncertainty in

which there are dynamically complete markets and agents have Epstein-Zin pref-

erences. We prove that, when endowments have a realistic hump-shaped age-

profile, our model has three steady-state equilibria. One of these equilibria is dy-

namically inefficient and displays real price indeterminacy. We estimate the pa-

rameters of our model and we find that a fourth-order approximation around the

indeterminate steady-state provides the best fit to U.S. data. Our work interprets

the large and persistent generational inequality that has been observed in western

economies over the past century as the result of uninsurable income shocks to

birth cohorts.

KEYWORDS: Perpetual Youth, Asset Pricing, Indeterminacy.

1. INTRODUCTION

The use of dynamic stochastic general equilibrium (DSGE) models to understand

the macroeconomy began in the 1980s with the Real Business Cycle (RBC) model of

Kydland and Prescott (1982) and Long and Plosser (1983). Although the initial version of

the RBC model contained a representative agent, more recent heterogeneous agent new-

Keynesian (HANK) models built around an RBC core, contain multiple agents and in-
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We would like to thank David Andolfatto, Borağan Aruoba, Dan Cao, Christopher Carroll, Pablo Cuba-
Borda, Greg Duffee, Jonas Fisher, François Gourio, Olivier Jeanne, Ioannis Kospentaris, Leonardo Melosi,
Stephen Spear and seminar participants at the Federal Reserve Bank of Chicago, Federal Reserve Bank of Rich-
mond, Georgetown University, Johns Hopkins University, University of Maryland, University of Miami, and Vir-
ginia Commonwealth University for helpful comments and discussions.



2

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

complete asset markets (Kaplan et al., 2018, Auclert et al., 2020). This paper presents an

alternative way – the perpetual youth model – of introducing heterogeneous agents into a

DSGE model.

A perfect foresight version of the perpetual youth model in continuous time was intro-

duced by Blanchard (1985) and was extended to discrete time with aggregate shocks by

Farmer (1990) and to include multiple types of agents in Farmer (2018). The perpetual

youth model is a variant of the overlapping generations (OLG) model of Allais (1947) and

Samuelson (1958) and, as such, it has very different properties from the class of infinite-

lived agent models of which the RBC model is a special case.

In the perpetual youth model there are always at least two steady state equilibria. Fiscal

and monetary policy work very differently from the way they operate in representative

agent models and active fiscal and monetary policy may fail to uniquely determine either

the price level or the real interest rate (Farmer and Zabczyk, 2022). As in the OLG model,

stationary equilibria may be indeterminate of arbitrary degree (Kehoe and Levine, 1985)

and, as a consequence, monetary policy may have real effects in the short-run (Farmer,

1991) even in the absence of menu-costs or other forms of price-rigidity.

We focus in this paper on two sets of facts which, we argue, are connected. The first set

concerns asset prices, interest rates and growth. The second set concerns the low frequency

behavior of inter-generational inequality.

Our first set of facts concerns the behavior of the safe nominal interest rate, the nominal

return on a risky portfolio, and the growth rate of nominal GDP. In data the safe nominal

interest rate has been less than the nominal growth rate for long periods of time whereas

the ex-post return to the aggregate stock market (as proxied by the CRSP value-weighted

market portfolio) has been consistently higher than the safe rate by about 6% and higher

also than the GDP growth rate. The risky rate is also much more volatile than the safe rate

at both high and low frequencies. These facts are illustrated in Figure 1.

Next we turn our attention to generational inequality and its connection to asset market

volatility. Figure 2 plots the cyclically adjusted price earnings ratio from Shiller (2014),

measured on the right axis, alongside a measure of relative median lifetime income, mea-

sured on the left axis. This latter data-series measures the median lifetime income of the

generation that attains the age of 25 in the year measured on the horizontal axis, relative

to the generation that attained age 25 in 1957. We want to draw attention to two features
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Figure 1.: Asset Returns and GDP growth

Note: This figure plots ten-year moving averages of three different quarterly U.S. time series from 1957-2019: 1)
the nominal GDP growth rate (solid black), 2) the 3-month Treasury Bill rate (dashed blue), and 3) the return on
the CRSP value-weighted market portfolio (dotted-dashed red). Each series is reported in annualized percentage
points.

of these data. First, lifetime median income varies considerably by cohort and those that

got their first job in the late 1960s and early 1970s were roughly 12% better off than both

earlier and later generations. Second, lifetime earnings prospects are highly correlated with

the state of the stock market at the time of attaining adulthood. In this paper, we connect

these two sets of facts and we offer an explanation which ties together a theory of excess

asset price volatility with a theory of generational inequality.

To explain the connection between our two sets of facts we construct a stochastic per-

petual youth model of an exchange economy in which agents have Epstein Zin preferences

(Epstein and Zin, 1989, 1991) and we estimate the parameters of our model using simu-

lated method of moments. Our model explains excess asset price volatility as a sunspot

equilibrium in a low safe-rate equilibrium and it connects asset pricing evidence with gen-

erational inequality using the fact that agents cannot insure against the state of the world

they are born into.
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Figure 2.: Asset Prices and Generational Inequality

Note: This figure plots the cyclically adjusted price earnings ratio (CAPE) for the S&P 500 in red on the right
axis and a measure of relative median lifetime income for males in the U.S. in blue on the left axis at an annual
frequency. The CAPE is taken from Robert Shiller’s website http://www.econ.yale.edu/ shiller/data.htm and the
measure of median liftetime income is taken from Guvenen et al. (2022). Median lifetime income is normalized
to 1 in 1957 and all subsequent observations are relative to 1957.

2. LITERATURE REVIEW

Our work is related to a number of previous papers that deal with asset pricing

in an exchange economy. Much of this literature deals with a continuous time model

with endowment shocks that follow a diffusion process. Papers in this literature include

Gârleanu and Panageas (2015, 2021, 2022), Schmidt (2022), and Gomez (2022). Typically,

there is no government sector and inflation is assumed to be exogenous.1 In contrast, we

build a model in which government intervenes in the goods and asset markets through fis-

cal and monetary policy and we assume that time is discrete. This places our work at the

intersection of the representative agent macro models surveyed in Leeper and Leith (2016)

and the asset pricing papers cited above.

1An important exception to this is Swanson (2021), who shows that a discrete-time representative agent
New-Keynesian model with Epstein-Zin preferences is consistent with a number of asset pricing facts.
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An emerging literature extends Representative Agent New-Keynesian (RANK) mod-

els to allow for uninsurable income risk by adding multiple agents and incomplete mar-

kets. These models come in two-agent varieties – TANK models – of the kind studied by

Bilbiie (2008, 2020), and – HANK models – as in the work of Kaplan et al. (2018) and

Auclert et al. (2020).2 HANK models are more general than TANK models but they must

carry around the wealth distribution as a state variable. Since the wealth distribution is an

infinite dimensional object, solving and estimating HANK models is a challenging, but not

insurmountable, problem. Techniques to solve and estimate HANK models, building on

insights from Krusell and Smith (1998), have been developed by Reiter (2009), Winberry

(2018), Auclert et al. (2021) and Bilal (2021).

Our work is complementary to the HANK literature, but we approach the issue of het-

erogeneity in a different way. In contrast to the literature reviewed in Kaplan and Violante

(2018), where wealth inequality arises from uninsurable idiosyncratic income risk, we fol-

low Campbell and Nosbusch (2007) by assuming that wealth inequality is caused by unin-

surable aggregate risks to newborn generations who cannot insure across the state of the

world they are born into. Unlike Campbell and Nosbusch (2007) who calibrate a perpetual

youth model with logarithmic preferences, our agents have Epstein-Zin preferences and

we estimate the parameters of our model on U.S. data. The extension to a more general

preference specification is key to our results which exploit the existence of multiple au-

tarkic steady-state equilibria when agents have a hump-shaped income profile and a low

intertemporal elasticity of substitution.

The first DSGE perpetual youth model in discrete time, of which we are aware, is the

paper by Farmer (1990) who builds a DSGE perpetual youth model using a special case of

Epstein-Zin preferences. We generalize Farmer (1990) to the case of general Epstein-Zin

(1989) preferences and we allow for a hump-shaped endowment process.3 Both of these

features are key to the ability of our model to fit asset pricing facts in U.S. data.

2TANK is an acronym for Two Agent New Keynesian and HANK stands for Heterogeneous Agent New
Keynesian.

3In related developments in the DSGE perpetual youth literature, Farmer et al. (2011) show how to construct
the pricing kernel in a discrete time DSGE perpetual youth model with complete markets and Farmer (2018)
uses their result to construct a model with two types of agents who have Von-Neumann Morgenstern preferences.
Gârleanu and Panageas (2015, 2021, 2022) present a series of results for the Epstein and Duffie (1992) continuous
time case.
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Our solution to the individual’s problem is related to the results in Toda (2014) and

Flynn et al. (2023) who study the solution to a problem in which agents have access to a

limited set of assets. In contrast, our assumption that markets are dynamically complete

allows us to aggregate individual decision rules and to generate a set of low dimensional

aggregate equations that characterize equilibrium and facilitates our empirical application.

Our ability to accommodate heterogeneous agents in a tractable way distinguishes our em-

pirical work from DSGE models that solve and estimate Epstein-Zin models with a repre-

sentative consumer (Epstein and Zin, 1991, van Binsbergen et al., 2008).

An important contribution of our paper is our proof that a hump-shaped endowment

pattern interacts with a low intertemporal elasticity of substitution to generate multiple au-

tarkic steady-state equilibria in a perpetual youth model. Our current paper extends results

in Farmer and Zabczyk (2022) for a 62-period model to the perpetual youth model with

aggregate shocks and estimates the parameters of the model using real-world U.S. data.

We are not the only authors to point to dynamic indeterminacy as a potential explana-

tion for features of the asset markets. Brunnermeier et al. (2022b,a) study the existence of

bubbles in infinite horizon models in both continuous and discrete time and Aguiar et al.

(2021) study Pareto improving policies in a model with idiosyncratic income risk. Reis

(2021) explicitly studies the role of liquidity effects in a model with aggregate shocks in

which the interest rate is less than the growth rate and Miao and Su (2021) study the emer-

gence of debt as a bubble in a Keynesian model with production. Unlike the papers cited

here, our model has no frictions and dynamically complete markets and we estimate the

parameters of our model on U.S. data.

Our theoretical model contains multiple steady-state equilibria each of which may be

locally indeterminate under some combinations of monetary and fiscal regimes. In our em-

pirical work we estimate both determinate and indeterminate versions of our model as in

the work of Lubik and Schorfheide (2004), Aruoba et al. (2018) and Farmer and Nicolò

(2018).4 In our estimation strategy we first choose the dimension of the state and, for each

choice of this dimension, we approximate the solution to the model by a fourth order ap-

proximation using Matlab code from Levintal (2017).

4Lubik and Schorfheide (2003) were the first to develop a method to estimate indeterminate models. Their
approach was refined by Farmer et al. (2015) and Bianchi and Nicolò (2021).
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3. THE AGENTS’ PROBLEM

We construct a perpetual youth model in which agents die with probability 1− π and in

which a member of the cohort born at date j is endowed with a before-tax fraction yjt of

aggregate real GDP which we refer to with the symbol Yt. Define

yjt =
1

1− π

(

κ1λ
t−j
1 + κ2λ

t−j
2

)

, (1)

for (κ1, κ2) ∈ R
2 and (λ1, λ2) ∈ [0,1]2. We choose the parameters κ1, κ2, λ1 and λ2 to

match the U.S. income profile as in Gârleanu and Panageas (2015). Figure 3 shows the

age-profile of individual before-tax income shares for our choice of parameters.

20 30 40 50 60 70 80 90 100

Age

0

0.5

1

1.5

2

Figure 3.: Individual Before-Tax Income Share

Note: This figure plots the individual before-tax income share of an agent conditional on surviving. The x-axis is
the age of the agent in years, assuming the agent “begins life" at age 20.

GDP is generated by the process Yt
Yt−1

= γt, where γt is a non-negative random variable

whose dynamics follow an autoregressive process in logs. Define γ̃t ≡ log(γt). Let 0 <

ργ < 1 be the persistence of γ̃t, let γ̄ be the steady-state growth rate of GDP, and let εγ be
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an i.i.d. random variable with mean 0 and variance σ2γ . The dynamics of γ̃t are given by

γ̃t+1 = (1− ργ) log(γ̄) + ργ γ̃t + εγ,t+1. (2)

The variables of our model are elements of a vector of random variables Xt ∈ X ⊂

R
n
+ which we partition into two subsets X = {S,T}, S ∈ XS ⊂ R

n1
+ , T ∈ XT ⊂

R
n2
+ , n = n1 + n2. We refer to S as states and T as co-states. To keep the notation

concise, in the remainder of the paper we refer to variables xt ∈Xt and xt+1 ∈Xt+1 with

the notation x and x′ where x here refers to a generic element of X .

Private agents maximize the discounted expected value of an Epstein-Zin recursive utility

function. The problem of a member of cohort j is defined by the value function, vj , that

solves Problem 1.

PROBLEM 1:

vj
(

Aj
)

=max
Aj ′

[

(

Cj
)ρ

+ βπ
(

mj
)ρ
]
1
ρ
, (3)

mj =

{

E

[

vj
′
(

Aj
′
)ρθ
]}

1
ρθ

,

Cj + πE
[

Q′Aj
′
]

=Aj + yj(1− τ)Y, (4)

with initial condition Aj(Sj) = 0 and where τ is the tax rate.

PROPOSITION 1—Solution to the Consumers’ Problem: The value function and the

policy function that solve Problem 1 are given by Cj = ψ−1W j and vj = ψ
1−ρ
ρ W j . The

variable ψ is defined recursively as, ψ = 1 + πβ
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−ρθ
(1−ρ)θ

, where

W j is the sum of three components. W j = Hj
1 + Hj

2 + Aj , and H1 and H2 represent

the discounted present values of the two components of the after-tax income shares from

the right-hand-side of Eq. (1). Aj is the value of financial assets owned by a member of

generation j in state St.

PROOF: For a proof of Proposition 1, see Appendix A. Q.E.D.
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The parameters ρ and θ are related to the intertemporal elasticity of substitution, ies, and

the coefficient of relative risk aversion, rra, by the identities5

ies≡
1

1− ρ
, rra≡ 1− ρθ. (5)

Q′ ≡ Q̃′/χ(S′) is the pricing kernel, Q̃′ is the price at date t of a claim to one unit of the

commodity in state S′ and χ(S′) is the date t conditional probability that state S′ occurs.

Aj is the value of state S dependent Arrow securities that were accumulated at date t− 1

by generation j.

The term π that appears in equations (3) and (4) serves two roles. In Eq. (3) it is the

probability that a person survives into period t+ 1. In Eq. (4) it is the price of a security

that insures the life of the agent. This security sells for price π when there is free entry to

the financial services industry.6

4. GOVERNMENT POLICY

In this section we discuss fiscal and monetary policy.

4.1. Fiscal Policy

The government purchases g goods as a fraction of nominal GDP which it pays for by

raising a proportional income tax at rate τ and by issuing nominal debt with a maturity

structure parameterized by δ. The government budget equation is given by the expression,

Bδ ′pδ =
(

1 + δpδ
)

Bδ + PY (g− τ) . (6)

5It is more usual to parameterize Epstein-Zin preference by a parameter ρ and a parameter α, where in our
notation, α = ρθ. Our alternative parameterization permits us to study the special case of ies = 1 by taking the
limit as ρ→ 0. The more familiar parameterization using ρ and α leads to numerical instability in our empirical
estimates for values of ρ close to 0. For the special case when θ = 1, agents have Von-Neumann Morgenstern
preferences on the space of lotteries over intertemporal consumption sequences.

6If the agent is a debtor, the contract pays her debts in the event that she dies. If she is a creditor, the security
represents an annuity that gives the agent an additional stream of payments while she is alive and that returns her
assets to the financial institution that issued the security in the event of her death. Because there is a continuum of
agents in each generation, there is no aggregate risk to issuing these securities.
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Here, P is the dollar price of commodities and the nominal bond Bδ ′ is a promise to repay

$1 plus δBδ ′ nominal bonds in period t + 1. By choosing δ ∈ [0,1] we can mimic the

maturity structure of public debt in U.S. data.

Bδ ′ sells for price pδ in period t and it follows from the assumption of no riskless arbi-

trage that pδ is given by the expression

pδ = E

[

Q′

Π′

(

1 + δpδ
′
)

]

. (7)

Using the definition bδ = Bδ

PLYL
, where PL and YL are the lagged dollar price of commodi-

ties and lagged GDP respectively, we can rewrite Eq. (6) in terms of ratios to nominal

GDP,

pδbδ
′
=
bδ
(

1 + δpδ
)

Πγ
+ g− τ, (8)

where Π is the gross inflation rate between periods t− 1 and t.

We model government purchases with the assumption that a transformation of govern-

ment purchases is determined by an autoregressive process. Define g̃ ≡ log
(

1
1−g

)

, let ḡ

denote the steady-state government spending-GDP ratio, and define the persistence of g̃ by

the parameter 0< ρg < 1. We assume that

g̃′ = (1− ρg) log

(

1

1− ḡ

)

+ ρgg̃ + ε′g, (9)

where ε′g is a zero mean random variable with standard deviation σg .

We assume further that the government follows a fiscal rule of the form

τ = τ̄ + φτ

[

bδ(1 + δpδ)

Πγ
−Φ

]

,
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where φτ is a fiscal response coefficient. By setting a positive response coefficient, φτ , our

model can capture a passive fiscal policy in which the government actively stabilizes the

economy at a given debt-GDP ratio, represented here by the symbol Φ.7

The target value of the debt-GDP ratio must be consistent with its steady-state value,

Φ= b̄δ(1+p̄δ)
Π̄γ̄

. Because there may be multiple steady-states and the steady-state value of the

debt-GDP ratio b̄δ(1+p̄δ)
Π̄γ̄

is different in each of them, Φ cannot be chosen independently;

it is a function of τ̄ and φτ , as well of all of the other parameters of the model which

contribute to the determination of the steady state values of b̄δ , p̄δ , and Π̄.

4.2. Monetary Policy

The central bank sets the gross nominal interest rate R as a function of the date t − 1

interest rate RL, the gross inflation rate Π, and the gross real GDP growth rate γ, according

to the Taylor Rule (Taylor, 1999),

R=RL
φR

[

(

Π

Π∗

)φπ ( γ

γ∗

)φγ (Π∗

Q∗

)

]1−φR

exp(εR), (10)

where εR is a policy shock, generated by an i.i.d. stochastic process with mean 0 and

variance given by σ2R.

Π∗ is the gross inflation target, γ∗ is the target GDP growth rate, and Q∗ is the target

steady-state value of the pricing kernel. The parameters φR, φπ , and φγ capture the interest

rate smoothing motive, the inflation response, and the output growth response of the Taylor

Rule. The central bank is free to choose any value for Π∗, γ∗ and Q∗; but in order to hit the

growth and inflation targets they must choose values that are consistent with equilibrium.

In our estimation we approximate a solution to the model around a steady-state. We choose

γ∗ = γ̄ and we pick values of Π∗ = Π̄ and Q∗ = Q̄ that are consistent with their target

non-stochastic steady-state.

7A fiscal policy in which the government adjusts taxes and spending to maintain budget balance is referred
to as passive. A fiscal policy in which the government sets a deficit rule that is independent of the debt-GDP ratio
is said to be active. This definition originates in an attempt to provide a unified theory of fiscal and monetary
interactions (Leeper, 1991). A government that actively adjusts its fiscal rule is said to follow a passive fiscal
policy. We retain the definition here for consistency with previous literature.
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5. DEFINITIONS OF THE VARIABLES

In this section we construct a set of aggregate variables and a set of equations that connect

these variables at consecutive dates and in consecutive states. We divide the variables that

are growing through time by GDP to create a set of stationary variables and we assemble

the equations of the model into a function that defines equilibrium.

5.1. The State Variables of the Model

We discuss two representations of the model, one in which all of the state variables are

fundamental, and one in which the state includes a non-fundamental variable driven by

sunspot shocks. We refer to the fundamental representation of the state as S and to the

non-fundamental representation of the state as S̃.

S includes the variables γ and g which we model as first order auto-correlated processes

in the transformed variables log(γ) and log
(

1
1−g

)

, bδ which is related to the real value of

the debt-GDP ratio, and εR, the monetary policy shock. S also includes RL and cL from

the date t− 1 information set and zL, where z is the following function of the moments of

ψ′ and Q′,

z = E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
1−ρθ

]

.

We include zL and cL in the state because the pricing kernel at date t holds in all pairs of

consecutive states {St−1, St} and, as we show in Proposition 2, Q is a function of cL and

zL.

This discussion leads to the following vector of fundamental state variables, S ≡

{cL, zL,RL, b
δ, γ, g, εR}. Most existing DSGE models are estimated under the assumption

that all of the states are fundamental. However, the perpetual youth model is not restricted

to purely fundamental equilibria and for some parameterizations of the model we find that

there exists an indeterminate steady-state. For these parameterizations we define an asset

that we refer to as equity. Equity issued at date j is a claim to the income stream λt−jYt for
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all t≥ j and its price, PE is determined by the recursion8

PE = E

[

Q′
(

λPE
′
+ Y ′

)]

.

The price-dividend ratio is determined by the expression

pE = E

[

γ′Q′
(

λpE
′
+ 1
)]

.

Equity is a redundant asset and in a model with a unique determinate steady-state it

would appear as a co-state variable. In contrast, in a model with an indeterminate steady-

state, there are stationary equilibria driven purely by sunspots. In these equilibria, there

are insufficient initial conditions to uniquely determine all of the variables and there may

exist sunspot equilibria in which non-fundamental shocks influence prices and allocations

(Azariadis, 1981, Cass and Shell, 1983).

In our empirical work, we explore the properties of sunspot equilibria close to an in-

determinate steady-state by choosing pE to be an additional state variable. In the non-

fundamental version of the model we define the augmented state vector S̃ ≡ {S, pE}.

There is no unique way to choose an additional state variable although Farmer et al.

(2015) show, in the context of a linear model, that if one allows for an arbitrary variance-

covariance between the sunspot shock and the fundamental shocks, all choices of the ad-

ditional state are observationally equivalent. The sunspot moves the economy to a point

on the stable manifold of a locally indeterminate steady state. By specifying a variance-

covariance structure for all the shocks one arrives at an empirically testable model that

can be compared with non sunspot theories. In this paper we show that a sunspot-driven

equilibrium provides a much better fit to U.S. data than fundamental equilibria of the same

model.

8λ represents the decay rate of the claim and it is not identified independently of the volatility of the innova-
tion to the sunspot shock. For existence of equilibrium, it must satisfy the inequality λγ̄Q̄ < 1 in a steady state
parameterized by Q̄. In our estimation we set λ = πλ1 which guarantees that this inequality is satisfied in any
equilibrium in which human wealth is well defined.
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5.2. The Co-state Variables of the Model

The co-state vector T includes z, ψ, Q and c. It also includes the variables R, τ , Π, pδ

and two stationary variables, h1 and h2 which represent the net present values of the two

components of the income streams in Eq. (1) added up over all living agents and expressed

as ratios to GDP. These variables are defined recursively,9 h1 = α(1− τ)+πλ1E [γ′Q′h′1] ,

and h2 = (1− α)(1− τ) + πλ2E [γ′Q′h′2] . For the specification of the state in which all

states are fundamental, T also includes the price-dividend ratio pE .

This discussion leads to the following vectors of co-state variables for the fundamental

and non-fundamental versions of the model, T̃ = {z,ψ,h1, h2,Q, c,R, τ,Π, p
δ}, and T =

{pE , T̃}.

6. COMPETITIVE EQUILIBRIUM

In this section we introduce the dynamic equations that link the variables through time

and we define the concepts of a competitive equilibrium, a steady-state equilibrium, and a

balanced-budget steady-state.

DEFINITION 1—Competitive Equilibrium: A ‘competitive equilibrium’ is a stochastic

sequence of prices and allocations such that markets clear at every period and allocations

solve the households’ utility maximization problems at every date and in every state.

PROPOSITION 2—Characterization of Equilibrium:

Define a vector X ∈ X ⊂R
n
+, where

X ≡ {cL, zL,RL, b
δ, γ, g, εR, p

E , z,ψ,h1, h2,Q, c,R, τ,Π, p
δ}

9See Appendix D.
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and functions F :X 2 →R
n
+ and φ :X 2 →R+, where

F (X,X ′)≡































































































c− cL
′

z − zL
′

R−RL
′

ψc− h1 − h2 −
bδ(1+δpδ)

Πγ

γ̃′ − (1− ργ) log(γ̄)− ργ γ̃ − ε′γ

g̃′ − (1− ρg) log
(

1
1−ḡ

)

− ρgg̃− ε′g

ε′R

pE − γ′Q′(λpE
′
+ 1)

z − ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

ψ− 1− πβ
1

1−ρ z
1−ρθ
(1−ρ)θ

h1 − α(1− τ)− πλ1γ
′Q′h′1

h2 − (1− α)(1− τ)− πλ2γ
′Q′h′2

Q− φ(X,X ′)

c+ g− 1

R− Q′

Π′

τ − τ̄ − φτ

[

bδ(1+δpδ)
Πγ −Φ

]

R−
[

RL
]φR

[

(

Π
Π∗

)φπ
(

γ
γ∗

)φγ (
Π∗

Q∗

)

]1−φR

pδ − Q′

Π′

(

1 + δpδ
′
)































































































,

and

φ(X,X ′)≡









πβ
1

1−ρ cL

γ

(

c− ψ−1 [(1− λ1π)h1 + (1− λ2π)h2]

)

z
θ−1

(1−ρ)θ

L ψ
1−θ
1−ρθ









1−ρθ

.

A competitive equilibrium is characterized by a bounded stationary stochastic process

{Xt}
∞
t=1 that satisfies the functional equation E [F (X,X ′)] = 0, with boundary conditions

ψ−1
1

(

h1,1 + h2,1 +
bδ1(1+δp

δ
1)

Π1γ1

)

= 1 − g1, RL = RL,1, cL = cL,1, and zL = zL,1,

where
bδ1(1+δp

δ
1)

Π1γ1
, h1,1, and h2,1 are the debt-GDP ratio and the two components of the
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human wealth-GDP ratio in period 1, g1 is the period 1 government spending-GDP ratio,

and ψ1 is the initial inverse savings propensity.

A steady-state is a vector X̄ ∈ X that satisfies the equation

F (X̄, X̄) = 0. (11)

The proof of Proposition 2 is found in Appendix D.

DEFINITION 2—Steady-State Equilibrium: A ‘steady-state equilibrium’, or more com-

pactly a ‘steady-state’, is a competitive equilibrium in which the variables of the model are

non-stochastic and time invariant. A steady-state equilibrium is ‘non-trivial’ if the steady-

state pricing kernel, Q̄, is strictly positive. A ‘balanced budget steady-state’ is a steady-

state equilibrium of the model in which the government follows the balanced budget policy

ḡ = τ̄ .

Proposition 3 characterizes the properties of balanced-budget steady-states.

PROPOSITION 3—Multiplicity of Balanced-Budget Steady-States: The model has at

least two balanced-budget steady-states. In one of these steady-states Q̄gr =
1
γ̄ . We refer

to this as the golden rule and we index the elements of X̄ in the golden-rule steady state

with the subscript gr. In the one-commodity model, the golden-rule is unique. In addition

to the golden rule, there is at least one other steady-state in which b̄aui = 0. We refer to

these steady states as a ‘generationally autarkic’ or more compactly as ‘autarkic’ and we

index the elements of X̄ in the i-th autarkic steady state with the subscript aui.

PROOF: Using equations (7) and (8) and exploiting the balanced budget assumption

leads to the steady-state expression, b̄δ(Q̄)
(

1− 1
Q̄γ̄

)

= 0, from which it follows that either

b̄δ(Q̄) = 0, or Q̄= 1
γ̄ . This established Proposition 3. Q.E.D.

PROPOSITION 4—Multiplicity of Autarkic Steady-States: Define the following com-

pound parameters, δ1 ≡
1

1−πλ1γ̄
, δ2 ≡

1
1−πλ2γ̄

, δb ≡
1

1−πβ
1

1−ρ

,∆≡ δ1 − δ2, ρc ≡− log(πβ)
log(λ1γ̄)

,

and the following inequalities

α > 1, δb > δ1 > δ2, δ1 −∆(1− α)> δb, ρ < ρc < 0. (12)
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When the parameters satisfy the inequalities in (12), there is a trivial autarkic steady-state

and two non-trivial autarkic steady-states. The steady-state pricing kernel in these steady-

states are solutions to the equation,

h(Q)

1− ḡ
≡

[

α

1− πλ1γ̄Q
+

(1− α)

1− πλ2γ̄Q

]

=

[

1

1− πβ
1

1−ρQ
ρ

ρ−1

]

≡
ψ(Q)

1− τ̄
, (13)

where h(Q)≡ h1(Q)+h2(Q) is the aggregate human wealth to GDP ratio. We refer to the

values of the non-trivial steady-state pricing kernel in these two steady-states as Q̄au1 and

Q̄au2 .

The steady state indexed by au1 is dynamically efficient and the steady state pricing

kernel Q̄au1 satisfies the inequality Q̄au1 < Q̄gr =
1
γ . The steady state indexed by au2 is

dynamically inefficient and the steady state pricing kernel Q̄au2 satisfies the inequality

Q̄au2 > Q̄gr =
1
γ .

The parameter ρ is related to the intertemporal elasticity of substitution by the iden-

tity ies ≡ 1
1−ρ , and Proposition 4 implies that, when the parameters of the model sat-

isfy inequalities (12), there exists a critical value, iesc = 1
1−ρc

, such that for all values

of ies < iesc there exist multiple autarkic steady-states. In our empirical work we calibrate

the parameters π,λ1, and γ̄ and estimate the parameter β. For our parameterization, this

critical value is ies= 0.453. For an explanation and a proof of Proposition 4 see Appendix

E.

7. THE DETERMINACY PROPERTIES OF THE STEADY-STATES

In this section we discuss the concept of local determinacy of equilibrium and we explain

the solution and estimation strategy that we use to compare the model with data.

7.1. The Definition of Local Determinacy

A steady-state, X̄ is said to be locally determinate if, in the absence of shocks, and for

initial values of the state variables in the neighborhood of X̄ , there is a unique value for the

co-state variables such that equilibrium sequences {Xt}t≥0 converge to X̄ . We elaborate

on this definition below.
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Define the matrices Aeq ≡ FX |eq and Beq ≡ FX ′|eq , where Aeq and Beq represents the

Jacobians of the function F (X,X ′) with respect to the vectors X and X ′ evaluated at a

steady state eq ∈ {gr, au1, au2}. Consider the following linear approximation of Eq. (11)

AeqX̃ +BeqX̃
′ = 0, where the tilde signifies deviations from the steady state.

Let σeq ∈ C
n denote the spectrum of the matrix pencil (Aeq − σeqBeq) and let meq

denote the number of elements of σeq inside the unit circle.10 Let deq denote the de-

gree of indeterminacy of the steady state. It follows from the Blanchard Kahn conditions

(Blanchard and Kahn, 1980) that deq =meq − n + n1, where n1 is the number of funda-

mental state variables and n is the dimension of X .

For a simple version of our model with a balanced budget and monetary and fiscal poli-

cies that are both active, we computed the spectra at the three steady states for values of

ies ∈ [0.05, iesc]. For all values of ies in this range we found that dau1 =−1, dgr = 0 and

dau2 = 1. These results imply that the efficient autarkic steady state is explosive and would

never be reached if monetary and fiscal policy were both active. The golden-rule steady

state is locally determinate and, in the vicinity of the golden-rule, there exists a unique

equilibrium that is a function only of fundamentals. In contrast, we found that the inef-

ficient autarkic steady-state equilibrium displays one degree of indeterminacy even when

both monetary and fiscal policy are active. This is in marked contrast to results from the

representative agent model in which equilibrium, under an active monetary policy and an

active fiscal policy, does not exist (Leeper and Leith, 2016). The indeterminacy that oc-

curs at the inefficient autarkic steady-state is real as opposed to nominal and it leads to the

possibility of a volatile pricing kernel, driven by sunspot fluctuations in non-fundamentals.

7.2. Excess Volatility and the Equity Premium

The fact that the overlapping generations model has an indeterminate dynamically in-

efficient steady-state equilibrium was established in Samuelson’s seminal (1958) paper.

In two-generation one-commodity models, the existence of an indeterminate steady-state

equilibrium occurs only if debt is denominated in dollars. In models with three or more gen-

erations, that qualification is unnecessary and we have examples of multi-generation mod-

els that display indeterminacy of relative prices and real interest rates (Kehoe and Levine,

10The σi(eq) are solutions to the polynomial equation: det (Aeq − σeqBeq) = 0.
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1983, 1985, Farmer and Zabczyk, 2022). Our paper provides a further example of this phe-

nomenon.

The existence of an indeterminate dynamically inefficient steady-state equilibrium is

interesting because it offers the potential to understand three asset market facts that are

otherwise difficult to explain. The first fact is that asset prices are far more volatile than can

easily be explained by fluctuations in fundamentals (Shiller, 1981, Leroy and Porter, 1981).

The second fact is that the return to government debt has been lower than the growth rate

of GDP for long periods of time (Blanchard, 2019). And the third fact is that the average

rate of return to the stock market has been two to three percentage points higher than the

growth rate of GDP in a century of U.S. data (Mehra and Prescott, 1985).

For any risky asset with returnR′
r, the no-arbitrage condition in the asset markets implies

that E[R′
r] =

1−Cov(R′

r,Q
′)

E[Q′] > 1
E[Q′] ≡R′

s, where R′
s is the return on a risk-free bond and the

inequality follows if Cov(R′
r,Q

′) < 0. By choosing pE as a state variable, we ensure that

fluctuations in ε′s cause excess volatility in the pricing kernel, Q′, and conditional on a

realization of γ′, they induce a negative covariance between sunspot fluctuations in the

pricing kernel and the return to a risky asset.

8. SOLUTION AND ESTIMATION STRATEGY

We parameterize the model by a finite vector of parameters ϑ ∈ Θ ⊂ R
ℓ and us-

ing the partition, X ≡ {S,T}, we define the function G : X 2
S × X 2

T → R
n, where

G(S,S′, T, T ′;ϑ)≡ F (X,X ′).

Define a vector shocks ε ∈ E ⊂R
k
+. A solution to the model is pair of functions f :XS×

E → XS and g : XS → XT , where S′ = f(S, ε′) and T = g(S), where the functions

f and g satisfy the functional equation, E [G (S, f [S, ε′], g[S], g[f(S, ε′)];ϑ)] ≡ 0. For the

fundamental version of the model we choose S ≡ {cL, zL,RL, b
δ, γ, g, ε̄R}, and we define

three fundamental shocks, εγ , εg , and εR. In this representation of the model, k = 3 and we

specify AR(1) processes for γ̃ = log(γ) and g̃ = log
(

1
1−g

)

and a zero mean i.i.d. process

for εR,

γ̃′ = (1− ργ) log(γ̄) + ργ γ̃ + εγ
′,

g̃′ = (1− ρg) log

(

1

1− ḡ

)

+ ρgg̃ + εg
′,



20

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

ε′R ∼ i.i.d.(0, σ2R).

In our estimation strategy we further assume that the elements of ε are uncorrelated and we

parameterize their standard deviations by σγ , σg , and σR. For the non-fundamental version

of the model we choose S̃ = {S, pE}, and we add a non-fundamental shock εs. In this

specification, k = 4, and the states γ, g, εR, and pE follow the processes

γ̃′ = (1− ργ) log(γ̄) + ργ γ̃ + εγ
′,

g̃′ = (1− ρg) log

(

1

1− ḡ

)

+ ρgg̃ + εg
′,

ε′R ∼ i.i.d.(0, σ2R),

pE
′
= E

[

pE
′
]

exp(εs
′).

In the non-fundamental model there is an additional i.i.d. shock εs′ with mean 0 and stan-

dard deviation σs.

9. DATA SOURCES AND MOMENT MATCHING

This section describes data sources and partitions the parameter space into a subset of

parameters that we calibrated, or estimated by OLS, and a subset that we estimated by

simulated method-of-moments.

For the risky asset, we used data on the value-weighted market portfolio from the Cen-

ter for Research in Security Prices (CRSP). The price-dividend ratio was computed as the

price of the value-weighted market portfolio divided by a 12-month moving sum of daily

dividends (as in Welch and Goyal (2008)). For the risk-free 1-period asset, we used the ef-

fective federal funds rate from FRED.11 For inflation, we used Consumer Price Index (CPI)

inflation. For the government debt-to-GDP ratio we used total public debt as a percentage

of GDP from FRED. All data are quarterly and the sample period is 1990Q1-2019Q4.

The model has 23 parameters which we collect into the vector ϑ ∈ Θ. We calibrated

11 of these parameters to match various observable features of the data and we refer to

11Federal Reserve Bank of St Louis Economic Database.
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the subset of calibrated parameters as ϑC . The remaining 12 parameters, collected into the

vector ϑE , were estimated by simulated method-of-moments, ϑ≡
[

ϑ
′
C ,ϑ

′
E

]′
.

9.1. Parameters Calibrated or Estimated by Least-Squares

Table I displays the values of ϑC . We chose the survival probability π to match an

average life expectancy of 50 years. Agents are assumed to begin life as working-age adults,

so if an agent enters the economy at age 20, they would live on average until they are 70.

We chose the parameters λ1, λ2, and α to match the U.S. income profile as shown in

Figure 3. These parameters are taken from Gârleanu and Panageas (2015) who use least-

squares to fit a doubly exponential process to the age profile of U.S. cohort data.

We chose AR(1) processes for output growth and government spending from univari-

ate first-order auto-regressions of the logs of real GDP growth and a transformation of the

government spending-GDP ratio in U.S. data. The estimated parameters for output growth

imply an annualized real GDP growth rate of 2.43% and an annualized unconditional stan-

dard deviation of 1.14%. The estimated parameters for government spending imply a mean

real government spending-GDP ratio of 20.85% and unconditional standard deviation of

1.41%.

Finally, we chosen δ to match the average maturity of government debt in our data set

which we estimate to be 5 years.

9.2. Parameters Estimated by Method of Moments

We collect the estimated parameters into a vector ϑE = [β, ρ, θ, τ , φτ , ρR, π, φπ, φγ , κ, σR, σs]
⊤

The parameter β is the discount factor of the household. The parameters ρ and θ are the

functions of the intertemporal elasticity of substitution and the coefficient of relative risk

aversion defined in Eq. (5); these are the only three estimated private-sector parameters. τ̄

and φτ parameterize the fiscal rule, φR, φπ , and φγ parameterize the monetary rule and σR

and σs are standard deviations of the monetary shock and the sunspot shock.

In order to match the equity premium and the Sharpe ratio in U.S. data we introduce

the parameter κ which represents the fraction of a firm financed by debt. This parameter

captures leverage and it allows us to increase our estimate of the equity premium and simul-

taneously increase the standard deviation of the return on the risky asset. The risk-return
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Parameter Calibrated Value

Survival Probability

π 0.995

Endowment Profile

λ1 0.987
λ2 0.985
α 8.522

Output Growth

100 log(γ̄) 0.608
ργ 0.402
100σγ 0.529

Government Spending

ḡ 0.209
ρg 0.991
100σg 0.230

Government Debt

δ 0.950

Note: We chose the survival probability to match
an average working-age life-span of 50 years. We
chose the endowment profile parameters to match
estimates in Gârleanu and Panageas (2015). We es-
timate the output growth and government spend-
ing parameters by OLS using data from FRED. Fi-
nally, we chose the decay rate of government bonds
to match an average maturity of 5 years.

TABLE I: Calibrated Parameters

trade-off to a leveraged asset is a direct application of the Modigliani-Miller theorem in a

model with dynamically compete markets.

Let Rr,ℓ, Rr,u and Rs denote the gross real return on a levered risky asset, the gross real

return on an unlevered risky asset and the gross real return on a riskless bond. It follows

from the assumption of complete asset markets that Rr,ℓ −Rs =
1

1−κ (Rr,u −Rs) . When

we report statistics related to the risky return we use Rr,ℓ.
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For some parameterizations, our model has three steady-state equilibria and for others

it has only two. Our estimation strategy allows for both possibilities. First, we chose the

state vector to be S, and we searched over the parameter space ΘE for the minimum dis-

tance between the model and data moments. Our estimation procedure computes the steady

states associated with any given vector and it rejects a steady state if it does not satisfy the

Blanchard-Kahn conditions. This implies that, for a given definition of the state our equi-

librium is determinate by construction.

We did not impose any assumptions, in advance, about whether fiscal and/or monetary

policy are active or passive. Instead, we allowed the stance of policy to be chosen to achieve

the best fit. In a model with a unique steady-state, our approach would require that either

fiscal policy is active and monetary policy is passive, or monetary policy is active and fiscal

policy is passive. In our model, in contrast, there are always at least two steady states and,

for low values of the ies, there are three. This fact allows us to construct a determinate

equilibria at any one of the three steady states by picking appropriate combinations of

policy activism.

The novel aspect of our work, is that we are not restricted to the choice of S as the state

vector. In our empirical work we repeated the estimation exercise using pE as an additional

state. We refer to the augmented state vector as S̃ = {S, pE}. The augmented model has

one additional state variable and one additional non-fundamental shock that we assumed to

be uncorrelated with the fundamental shocks. We parameterized the volatility of the non-

fundamental shock by σs. This discussion implies that the standard model has 11 estimated

parameters while the augmented model has 12. We refer to the standard and augmented

models as models S and S̃ respectively.

We searched over all determinate equilibria under both definitions of the state and we

compared the best fit for the two alternative specifications, where by best fit, we mean the

model that most closely matches the following fifteen macro and financial moments:

• µrnr : mean of the nominal risky rate

• σ2rnr : variance of the nominal risky rate

• µrn
f

: mean of the nominal risk-free rate

• σ2rn
f

: variance of the nominal risk-free rate

• ρrn
f

: auto-correlation of the nominal risk-free rate

• µpd: mean of the log price-dividend ratio
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• σ2pd: variance of the log price-dividend ratio

• ρpd: auto-correlation of the log price-dividend ratio

• µπ: mean of inflation

• σ2π: variance of inflation

• µb: mean of the debt-to-GDP ratio

• σ2b : variance of the debt-to-GDP ratio

• σrn
f
,π: covariance between the nominal risk-free rate and inflation

• σrn
f
,γ : covariance between the nominal risk-free rate and real GDP growth

• σπ,γ : covariance between inflation and real GDP growth

We estimated ϑE using two-step simulated method of moments. For a given parameter

vector, we solved the model using a fourth-order perturbation approximation with code

from Levintal (2017). We simulated 5,000 periods of burn-in and we kept the subsequent

100,000 draws to compute moments.

9.3. Model Fit

We found that the data favor model S̃ in which the sunspot shock plays an important role.

Table II compares the fit of models S̃ and S to the targeted moments. We report estimated

parameter values and 95% bootstrapped confidence intervals for Model S̃ in Table III. We

begin by discussing the results for Model S̃.

With a couple of exceptions, the moments of Model S̃ are close to their data analogues

with a typical percentage difference of less than 10%. The two exceptions to the close fit are

the mean and persistence of the price-dividend ratio. The mean of the log price-dividend

ratio is 3.11 compared to 3.92 and its persistence, measured by ρpd, is estimated to be 0.99

compared to 0.75 in data.12

Model S exhibits major shortcomings relative to Model S̃ when it comes to fitting the tar-

geted moments. The main issue is that Model S is incapable of producing enough volatility

in interest rates and asset prices relative to the data. Model S produces a high equity pre-

mium of 7.45% using financial leverage but only produces a risky rate volatility of 3.03%

12We suspect that this aspect of our model could be improved by exploring alternative specifications for the
additional state variable that allow the price-dividend ratio to respond to lagged and contemporaneous values of
shocks to other variables in the model. For example, we have not allowed for the possibility that the stock market
is too volatile because it over-reacts to fundamentals. Instead, we modeled all excess volatility as exogenous.
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Moments Data Model S̃ Model S

Risky Rate

µrnr 9.23 9.34 9.86
σrnr 16.21 16.24 3.03

Risk-free Rate

µrn
f

2.66 2.82 2.40

σrn
f

1.10 1.02 0.73

ρrn
f

0.85 0.87 0.74

Log Price-Dividend Ratio

µpd 3.92 3.11 3.03
σpd 0.26 0.29 0.03
ρpd 0.75 0.99 0.94

Inflation

µπ 2.38 2.40 2.37
σπ 1.18 1.26 1.21

Government Debt

µb 74.02 75.28 73.33
σb 18.90 18.23 19.47

Correlations

ρrn
f
,γ 0.20 0.22 0.33

ρrn
f
,π 0.32 0.42 0.55

ργ,π 0.25 0.22 0.23

Note: We annualize all moments except correlations. Specifically,
we multiply means by 4 and standard deviations are multiplied
by 2, and we report both quantities in percentage points. We raise
auto-correlations to the power 4. We compute moments from the
model as the average of 105,000 simulated draws where the first
5,000 draws are discarded as burn-in.

TABLE II: Targeted Moments Fit

compared to 16.21% in the data. This leads to an annualized Sharpe ratio 2.53 which is

significantly larger than the annualized Sharpe ratio of 0.41 in the data.
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Similarly, the log price-dividend ratio is too low on average with a mean of 3.03 com-

pared to 3.92 in the data and exhibits significantly less volatility, 0.03 compared to 0.26.

Model S also produces a much stronger correlation between the nominal risk-free rate and

inflation than in the data, 0.55 compared to 0.32.

9.4. Parameter Estimates

Our point estimate of the intertemporal elasticity of substitution, ies, is equal to 0.41.

This estimate is less than iesc implying a parameterization with three steady states. We

found that the data favors an approximation around the dynamically inefficient steady-

state, allowing the model to capture the fact that, in the U.S. data, the safe interest rate has

been lower than the growth rate in much of the post-war period.

Our estimate of the ies is consistent with empirical studies using micro-level data to

estimate Euler equations. A consistent finding of that literature is that the ies of poorer

households tends to be small and close to zero, while the ies of richer households is sub-

stantially larger although often less than 1.13

Our point estimate of the coefficient of relative risk aversion, rra, is 17.37. In a model

with constant-relative-risk-aversion (CRRA) preferences, a value for rra of 17.37 would

imply a value for the ies of 0.06 which is well outside the 5% confidence bound of 0.37 for

our estimate of that parameter. Similarly, the estimated value of the ieswould, under CRRA

preferences, imply a coefficient of relative risk-aversion of 2.48. This, once again, is below

the 5% confidence bound of our estimate of this parameter which is equal to 14.87. We

conclude that our estimates allow us to reject the hypothesis of Von-Neumann Morgenstern

CRRA preferences in favor of Epstein-Zin.

Next, we turn to the fiscal rule parameters. We estimated a steady state tax-to-GDP ratio

of 17.55% which implies a steady state deficit-to-GDP ratio of 3.33%. The debt stabiliza-

tion parameter φτ = 3.63× 10−6 implies a weak fiscal response of taxes to deviations of

debt from its steady state. This response accounts implies a nearly constant tax rate as a

fraction of GDP and is too small to act as an independent stabilization mechanism. We

conclude that our estimates imply that fiscal policy during our sample period was active.

13See e.g. Zeldes (1989), Lawrance (1991), and Jorgenson (2002).
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Parameter Estimate 95% Bootstrap CI

Preferences

βπ 0.992 [0.991, 0.993]
ies 0.404 [0.370, 0.466]
rra 17.373 [14.874, 21.232]

Fiscal Rule

τ 0.176 [0.156, 0.189]
φτ 3.63× 10−6 [3.24× 10−6, 3.97× 10−6]

Taylor Rule

ρR 0.914 [0.884, 0.967]
100 log (Π∗) -0.398 [-0.447, -0.363]
φπ 2.137 [1.765, 2.390]
φγ 0.939 [0.817, 1.143]

Leverage

κ 0.812 [0.729, 0.860]

Exogenous Shocks

100σR 7.69× 10−4 [6.80× 10−4, 8.46× 10−4]
100σs 1.443 [1.029, 1.560]

Note: We estimate parameters using the simulated method of moments
(SMM). For each parameter value, we solve the model using fourth-order
perturbation around all steady states for which a solution exists. We use
the solution associated with the lowest value of the objective function.
We simulated the model using a common set of random numbers for
105,000 draws. We discard the first 5,000 draws as burn-in and use the
subsequent 100,000 to compute moments. We report bootstrapped 95%
confidence intervals in brackets and account for data moment variability
by using a block bootstrap with optimal block length chosen according to
Politis and White (2004).

TABLE III: Estimated Parameters

For the monetary policy rule, we estimated a response coefficient to inflation of φπ =

2.14 and a response coefficient to real GDP growth of φγ = 0.94. These estimates imply

that monetary policy was active and are within the range estimated in previous literature.

The 95% confidence intervals for these parameters significantly overlap with confidence
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intervals reported in other estimated DSGE models. For example, Gust et al. (2017), report

point estimates of φπ = 1.67 and φγ = 0.73 and corresponding 95% percent credible sets of

[1.21,2.14] and [0.39,1.07], albeit in a richer model which includes production and a zero

lower bound on nominal interest rates.

We estimated the leverage ratio, κ, to be 0.81 which implies a debt-to-equity ratio of

approximately 4. This is higher than the value of 2 used in Bansal and Yaron (2004), like

the monetary policy parameters φπ , and φγ , it is relatively imprecisely estimated with a

95% confidence interval of [2.69,6.15].

In our preferred specification the state is S̃ and there are four shocks, εγ , εg, εR and

εs. The standard deviations of εγ and εg were recovered from least-squares regressions of

univariate AR processes and our point estimates are σγ = 5.3× 10−3 and σg = 2.3× 10−3.

Our estimate of the standard deviation of εR is σR = 0.008 × 10−3. These are all small

numbers relative to the main driver of fluctuations in our model, the sunspot shock εs,

which has an estimated standard deviation of σs = 14× 10−3, three times larger than the

growth shock. We conclude from these estimates that the hump-shaped income profile, in

conjunction with sunspot shocks and a low ies are critical features of our explanation of

the data that are inconsistent with a steady-state driven by fundamentals.

10. EXPLAINING TWO SETS OF FACTS

In the introduction to this paper, we drew attention to two sets of facts. The first set of

facts concerned comparisons of the returns to safe and risky assets with GDP growth and

the second set of facts linked the asset price data with generational inequality.

10.1. Replicating the Facts

In the top panel of Figure 4 we reproduce Figure 1 and in the bottom panel we graph a

single simulation of our model using the estimated values of the parameters from the US

data. This figure illustrates, visually, the ability of our perpetual youth model to replicate

the three features of the asset pricing and growth data that we drew attention to in the

introduction. Our model is able to replicate the fact that the safe rate of interest is lower

than the GDP growth rate whilst the risky rate is more volatile, consistently above the safe

rate and higher than the GDP growth rate.
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Figure 4.: Asset Returns and GDP Growth: Data and Model

Note: This figure plots ten-year moving averages of nominal output growth, the risk-free return, and the risky
return in both U.S. data and simulated data from our model. The top panel replicates Figure 1 while the bottom
panel plots one simulated draw of our model with the sample size as the U.S. data.

Next we turn to the implications of our model for the temporal structure of wealth and

consumption inequality across generations. Although we assume the existence of dynami-

cally complete markets over aggregate uncertainty, the generational structure of our model

does not allow agents to insure over the state of the world they are born into. When this

assumption is combined with large persistent fluctuations in non-fundamental uncertainty

it implies that cohorts born at different points in time have vastly different lifetime earnings

prospects.

The top panel of Figure 5 reproduces Figure 2 and the lower panel plots data for the

price-dividend ratio against a measure of human wealth by cohort for our artificial econ-

omy, relative to the cohort in the initial period. In the model, state dependent consumption

depends only on date of birth. Once a cohort has been born, its entire lifecycle consumption

profile, state by state, is completely determined. This figure illustrates that in the model, as

in the data, life-cycle consumption prospects are closely correlated with the state of the

asset markets at the date that the agent enters adulthood.
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Figure 5.: Asset Prices and Generational Inequality: Data and Model

Note: The top panel of this figure reproduces Figure 2, where the blue line on the left axis is relative median
lifetime income and the red line on the right axis is the CAPE. The bottom panel plots annual averages of aggregate
human wealth relative to the first period in blue on the left axis and the price-dividend ratio in red on the right axis
from one simulated draw of our model with the same sample size as the U.S. data.

To give a measure of how likely is any particular draw, Figure 6 plots 5th and 95th

percentile bounds, these are the dashed lines, for any given path of relative human wealth.

The solid lines on the same figure reproduce the data and the single simulation of one

draw from Figure 5. The figure illustrates that, given our estimates of the magnitude of

sunspot uncertainty from the data, a path for relative consumption inequality in which some

generations have lifetime median income that is 12% higher than other is not particularly

unusual and birth cohorts separated by twenty-five years could easily find themselves better

or worse off than earlier generations by as much as 30%.

10.2. Discussion of the Mechanism

What are the key features of our approach that allow us to reconcile our two sets of facts?

First, the interaction of a low intertemporal elasticity of substitution with a hump-shaped

income profile creates the possibility for multiple autarkic steady-state equilibria in addi-
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Figure 6.: Distribution of Generational Inequality

Note: This figure plots the distribution of relative human wealth paths from our estimated model. We simulate
100,000 paths of aggregate human wealth from our model of the same sample size as the U.S. data. For each path,
we normalize the first period’s value to be one. The red line plots one particular sample path realization which
mimics the data on U.S. median lifetime income. The dashed black lines are the 5th and 9th percentiles of the
simulated distribution of relative human wealth paths.

tion to the golden rule. This is in contrast to most existing calibrated OLG models in which

there is a single autarkic steady state equilibrium.

Second, our generalization of preferences to the Epstein-Zin class is important to our

exercise because it allows us to fit the coefficient of relative risk aversion to the equity

premium while freeing the value of the intertemporal elasticity of substitution to be low

enough for the existence of three steady-states. We find that to understand asset market data,

we need very large sunspot shocks which are uninsurable for newborns. The magnitude of

this inequality displays significant highly persistent time series variation even though the

primary source of aggregate shocks is an i.i.d. sunspot.

We find, in our model, that the relative wealth of different cohorts is significantly im-

pacted by whether they are born into a state of the world in which the price earnings ratio

is high or low. This feature of our model captures the idea that if a particular cohort enters
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the job market during a severe recession, it has a strong negative impact on their lifetime

earnings and consumption.

11. CONCLUSION

We have constructed and estimated a perpetual youth model of an endowment economy

with dynamically complete markets and aggregate shocks. Our work makes three principal

contributions to the literature.

First, our theoretical work presents the first discrete-time solution of the problem of a

long-lived agent with Epstein-Zin preferences as a function of the moments of the endow-

ment profile and of current and future prices. Previous macro models that use Epstein-Zin

preferences have exploited the representative agent assumption to simplify the solution.

Our contribution to this literature will permit researchers to construct more general mod-

els with multiple types of agents and can potentially be generalized to allow for multiple

commodities.

Second, we have proved the existence of multiple autarkic steady-state equilibria in the

perpetual youth model when agents have a hump-shaped endowment profile and when the

intertemporal elasticity of substitution is less than a critical value that depends on the in-

come profile and the preference and aggregate endowment parameters. We established that

one of the autarkic steady-states is dynamically inefficient and we demonstrated that this

fact permits the construction of equilibria that are driven principally by non-fundamental

shocks to beliefs. By exploiting sunspots and indeterminacy, we are able to explain three

asset market puzzles: the low safe rate of interest, excess volatility of asset prices and a

large equity premium.

Third, we compared estimated versions of our model with and without sunspot equilib-

ria and we showed that the indeterminate equilibrium provides a significantly better fit to

U.S. data from 1990Q1-2019Q4. Although our model can explain how fiscal and monetary

policy influence generational inequality, it cannot explain feedback effects from fiscal and

monetary policy to real GDP since we assume that all GDP movements are generated by

an exogenous stochastic process.14

14In ongoing research, we are generalizing these results to a production economy with the goal of comparing
alternative mechanisms of policy transmission from nominal to real variables.
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APPENDIX A: PROOF OF PROPOSITION 1

PROBLEM 2:

vj =max
W j ′

[

(Cj)ρ + βπ(mj)ρ
]

1
ρ , (14)

mj =
[

E(vj
′
)ρθ
]

1
ρθ
, (15)

πE
[

Q′W j ′
]

=W j −Cj , (16)

W j =Hj . (17)

We seek to prove that the value function vj and the policy function Cj that solve Problem

1 are given by the expressions

Cj = ψ−1W j and vj = ψ
1−ρ
ρ W j , (18)

where ψ is the inverse propensity to consume out of wealth and where ψ satisfies the

recursion, ψ = 1+ πβ
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−ρθ
(1−ρ)θ

. The proof proceeds in five steps.

STEP 1 We show that the wealth of a person with the income share defined in Eq. (1) evolves

according to Eq. (16).

STEP 2 We show that our conjectured solution obeys the envelope condition.

STEP 3 We show that the Euler equation implies the following two lemmata

LEMMA 1: In the optimal program

mj = β
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−ρθ

(1−ρ)ρθ

Cj . (19)

Lemma 1 is proved in Appendix B.

LEMMA 2: In the optimal program

Cj
′
=Cjβ

1
1−ρ

(

Q′
1

ρθ−1ψ′
θ−1
1−ρθ

)(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−θ

(1−ρ)θ

. (20)
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Lemma 2 is proved in Appendix C.

STEP 4 Using Lemma 1 we show that if Cj = ψ−1W j , and if ψ satisfies the recursion ψ =

1+ πβ
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−ρθ
(1−ρ)θ

, that the budget constraint, Eq. (16), holds at

consecutive dates.

STEP 5 Using Lemma 2 we show that the value function has the functional form given by the

equality vj = ψ
1−ρ
ρ W j .

PROOF OF PROPOSITION 1: We prove each step in turn.

STEP 1 Define, Ij ; the endowment at date t of a member of cohort j conditional on surviving

to date t, as Ij , Ij = 1
1−π

(

κ1λ
t−j
1 + κ2λ

t−j
2

)

(1− τ)Y, and define the human wealth

of cohort j by the recursion

Hj = Ij + πE
[

Q′Hj ′
]

, (21)

where Hj , Ij and Q are functions of the state S. Define W j =Aj +Hj , where Aj is

the value of Arrow securities owned by a member of cohort j that have positive value

in the state S. It follows from the budget constraint of a member of cohort j that

πE
[

Q′Aj
′
]

=Aj + Ij −Cj . (22)

Combining equations (21) – (22) gives the wealth evolution equation,

πE
[

Q′W j ′
]

=W j −Cj . (23)

This establishes STEP 1.

STEP 2 The envelope condition is that ∂vj

∂W j = ∂vj

∂Cj
∂Cj

∂W j . Using Equations (14) and (18)

∂vj

∂W j = ψ
1−ρ
ρ =

(

vj

Cj

)
1−ρ
ρ
ψ−1 = ∂vj

∂Cj
∂Cj

∂W j . This establishes STEP 2. Appendices B

and C establish STEP 3.

STEP 4 Use Eq. (18) to replace W j and W j ′ with ψCj and ψ′Wj
′ in Eq. (23),

πE
[

Q′ψ′Cj
′
]

= ψCj −Cj . (24)
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Use Lemma 2 to replace Cj
′

πE

[

Q′ψ′

{

Cjβ
1

1−ρ

(

Q′
1

ρθ−1ψ′
θ−1
1−ρθ

)

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−θ

(1−ρ)θ

}]

= ψCj −Cj . (25)

Cancel terms in Cj and rearrange and consolidate terms to give,

ψ = 1+ πβ
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−ρθ
(1−ρ)θ

. (26)

This establishes STEP 4.

STEP 5 Define the function uj by the recursion,

uj =
[

(Cj)ρ + βπ(mj)ρ
]

1
ρ , (27)

mj =
[

E(uj
′
)ρθ
]

1
ρθ
. (28)

uj is the utility attached to an arbitrary stochastic sequence {Cjt }t≥j . Use Lemma 1

to replace mj in Eq. (27), and rearrange terms to give

uj =Cj



1 + πβ
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])

1−ρθ
(1−ρ)θ





1
ρ

, (29)

Using Eq. (26) and the conjecture Cj = ψ−1W j , it follows that the expression for the

optimal value, vj(W j), is given by Eq. (30)

vj(W j) =Cjψ
1
ρ = ψ

1−ρ
ρ W j . (30)

This establishes STEP 5.

Q.E.D.
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APPENDIX B: PROOF OF LEMMA 1

Differentiating the value function, Eq. (14) w.r.t. W j ′ leads to the expression

∂vj

∂W j ′
=
∂vj

∂Cj
∂Cj

∂W j ′
+
∂vj

∂mj

∂mj

∂vj
′

∂vj
′

∂W j ′
= 0, (31)

where the partial derivatives of vj and mj w.r.t. W j ′ are taken using the functions de-

fined by equations (15), (16) and the conjecture, Eq. (18). These expressions are, ∂vj

∂Cj =
(

vj

Cj

)1−ρ
, ∂C

j

∂W j ′
= −πχ′Q′ ∂vj

∂mj ′
= βπ

(

vj

mj

)1−ρ
, ∂m

j

∂vj
′ = χ′

(

mj

vj
′

)1−ρθ
, ∂vj

′

∂W j ′
= ψ′

1−ρ
ρ ,

where χ′ is the conditional probability that state S′ occurs. Substituting these expressions

into Eq. (31) canceling terms and rearranging terms gives,

Q′ = βCj
1−ρ (

mj
)ρ(1−θ)

(

vj
′
)ρθ−1

ψ′
1−ρ
ρ . (32)

Take the term in ψ′ to the left-hand-side, raise the equation to the power ρθ
ρθ−1 and take date

t conditional expectations of both sides,

E

[

ψ′
θ(1−ρ)
1−ρθ Q′

ρθ
ρθ−1

]

= β
ρθ

ρθ−1Cj
(1−ρ)ρθ
(ρθ−1)

(

mj
)

ρ(1−θ)ρθ
ρθ−1

E

[

(

vj
′
)ρθ
]

. (33)

Simplify this expression using the fact that E

[

(

vj
′
)ρθ
]

=
(

mj ′
)ρθ

, to give

E

[

ψ′
θ(1−ρ)
1−ρθ Q′

ρθ
ρθ−1

]

= β
ρθ

ρθ−1Cj
(1−ρ)ρθ
(ρθ−1)

(

mj
)

(ρ−1)ρθ
ρθ−1 . (34)

Rearranging and raising both sides to the power 1−ρθ
(1−ρ)ρθ

mj = β
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

])

1−ρθ
(1−ρ)ρθ

Cj . (35)

This establishes Lemma 1.
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APPENDIX C: PROOF OF LEMMA 2

Using Eq.(35) we have the following expression for (mj)ρ(1−θ)

(

mj
)ρ(1−θ)

= β
ρ(1−θ)
1−ρ

(

E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

])

(1−θ)(1−ρθ)
(1−ρ)θ

(Cj)ρ(1−θ). (36)

Use this expression to replace mj in Eq. (32), consolidate terms in β and Cj , and use Eq.

(18) to replace vj
′

by Cj
′
ψ′

1
ρ to give

Q′ = β
1−ρθ
1−ρ Cj

1−ρθ







(

E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

])

(1−θ)(1−ρθ)
(1−ρ)θ







(

Cj
′
ψ′

1
ρ

)ρθ−1

ψ′
1−ρ
ρ . (37)

Simplifying further and rearranging gives

Cj
′
=Cjβ

1
1−ρ

(

Q′
1

ρθ−1ψ′
θ−1

(1−ρθ)

)(

E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

])
1−θ

(1−ρ)θ

. (38)

This establishes Lemma 2.

APPENDIX D: PROOF OF PROPOSITION 2

We begin by establishing that aggregate human wealth obeys a simple recursive relation-

ship. We assume that, conditional on survival, the cohort of newborns is endowed with the

after-tax income streams, for i= {1,2},

κ1{λ
s−t
1 }∞s=t(1− τ)Ys and κ2{λ

s−t
2 }∞s=t(1− τ)Ys, (39)

where κ1 = α1(1− λ1π), κ2 = α2(1− λ2π), and α1 + α2 = 1. Note that the 1
1−π from

(1) drops out since we are integrating over the measure 1− π of newborn agents. Define

the type i after-tax human wealth, Ht
i , owned by cohort t at date t for i ∈ {1,2}, Ht

i =

αi(1 − λiπ)(1 − τ)E
[
∑∞

k=t(λiπ)
k−tQt(Sk)Yk

]

, where Qt(Sk) is the date t price of a

claim to one commodity in state Sk, for k > t.

At date t there are πt−j surviving members of cohort j ≤ t each of whom owns a claim to

a fraction λt−ji of the type i income stream of a new-born. It follows that the type i human
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wealth at date t of cohort j is given by the expression Hj
i = (λiπ)

t−jHt
i , for all j ≤ t.

Adding up this expression over all cohorts j =−∞, . . . , t gives the following expressions

for type i aggregate human wealth

Hi =
1

1− λiπ
Ht
i , (40)

and notice that Hi has a recursive representation, using prime notations, as Hi = αi(1 −

τ)Y + λiπE [Q′H ′
i] . Define the human wealth ratio, hi for i = 1,2 hi ≡

Hi
Y , where Y is

aggregate GDP and the hi follow the recursion hi = αi(1− τ) + λiπiE [γ′Q′h′i] .

Next, we establish that Eq. (41),

φ(X,X ′)≡









πβ
1

1−ρ cL

γ

(

c− ψ−1 [(1− λ1π)h1 + (1− λ2π)h2]

)

z
θ−1

(1−ρ)θ

L ψ
1−θ
1−ρθ









1−ρθ

, (41)

is a valid representation for the pricing kernel.

We begin with Eq. (38), which holds for all individuals at alive in two consecutive date-

state pairs, Let Ct =
∑

j C
j
t be the aggregate consumption of all people alive at date t. Let

A(t, t+ 1) denote the index set of all individuals alive at dates t and t+ 1 and note that

∑

j∈A(t,t+1)

Cjt = πCt. (42)

This expression recognizes that a measure π of people alive at date t survive into period

t+ 1. Next, note that

∑

j∈A(t,t+1)

Cjt+1 =Ct+1 −Ct+1
t+1 , (43)

where Ct+1
t+1 denotes the consumption of generation t+ 1 at date t+ 1. These individuals

own no financial assets but, from Eq. (40) they own a fraction 1 − λiπ of type i human
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wealth. Using the expression for the policy function from Eq. (18) it follows that

Ct+1
t+1 = ψ−1

t+1 [(1− λ1π)H1,t+1 + (1− λ2π)H2,t+1] (44)

Summing equation (38) over all j ∈A(t, t+ 1), using equations (42), (43) and (44) gives

C ′ − ψ′−1 [
(1− λ1π)H

′
1 +(1− λ2π)H

′
2

]

=Cπβ
1

1−ρ

(

Q′
1

ρθ−1ψ′
θ−1
1−ρθ z

1−θ
(1−ρ)θ

)

, (45)

where z = E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

]

. Rearranging,

Q′
1

1−ρθψ′
1−θ
1−ρθ z

θ−1
(1−ρ)θ =

πβ
1

1−ρC

C ′ − ψ′−1
[(1− λ1π)H1 + (1− λ2π)H2]

. (46)

Divide the top and bottom of the right hand side by (α1 + α2)Y , rearrange terms and lag

the equation by one period to give

Q≡









πβ
1

1−ρ cL

γ

(

c− ψ−1 [(1− λ1π)h1 + (1− λ2π)h2]

)

z
θ−1

(1−ρ)θ

L ψ
1−θ
1−ρθ









1−ρθ

, (47)

where cL and c are the ratios of consumption to GDP at dates t− 1 and t. This completes

the proof of the functional form of the function Q= φ(X,X ′).

APPENDIX E: PROOF OF PROPOSITION 4

A steady-state goods market equilibrium is characterized by the equality,

ψ̄−1

(

h̄1 + h̄2 +
b̄δ(1 + δp̄δ)

Π̄γ

)

= 1− ḡ. (48)
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The left-hand-side of this expression is the demand for consumption goods and the right-

hand-side is the supply of consumption goods. Both variables are written as ratios to GDP.

In an autarkic steady-state, bδ(Q̄) = 0 and ḡ = τ̄ : these conditions imply that, h(Q)
1−ḡ = ψ(Q)

1−τ̄ ,

where the functions h(Q) and ψ(Q) are written out explicitly in Eqn. (49)

h(Q)

1− ḡ
≡

[

α

1− πλ1γ̄Q
+

(1− α)

1− πλ2γ̄Q

]

=

[

1

1− πβ
1

1−ρQ
ρ

ρ−1

]

≡
ψ(Q)

1− τ̄
, (49)

and where h(q)≡ h1(Q) + h2(Q).

Define the compound parameters, δ1 ≡ 1
1−πλ1γ̄

, δ2 ≡
1

1−πλ2γ̄
, δb ≡

1

1−πβ
1

1−ρ

,∆ ≡

δ1 − δ2, ρc ≡− log(πβ)
log(λ1γ̄)

, and the following inequalities,

α > 1, δb > δ1 > δ2, δ1 −∆(1− α)> δb, ρ < ρc < 0. (50)

The proof that there are three autarkic steady-states proceeds in steps.

1. Note that the functions h(Q) : (0,Q1)→R+ and ψ(Q) : (0,Q1]→R+ are continuous.

2. Next we establish that h and ψ are increasing. The derivative of h is given by the

expression

hQ =
απλ1γ̄

(1− πλ1γ̄Q)
2 −

(1− α)πλ2γ̄

(1− πλ2γ̄Q)
2 > 0, (51)

where the inequality follows since α > 1. The derivative of ψ is given by the expres-

sion

ψQ =
ρ

ρ− 1

πβ
1

1−ρQ
1

ρ−1

(

1− πβ
1

1−ρQ
ρ

ρ−1

)2 > 0, (52)

where the inequality follows since ρ < 0. This establishes that both functions are in-

creasing.

3. Now consider the derivatives of h and ψ evaluated at Q = 0. These are given by the

expressions, 0<
{

hQ
}

Q→0
→ πγ̄(αλ1 + (1−α)λ2)<∞, and 0<

{

ψQ
}

Q→0
→∞,

which establishes that for small ε, ψ(ε)> h(ε).
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4. Now consider the inequalities (50) which imply that Qb <Q1 where Qb is the asymp-

tote of the function ψ and Q1 is the asymptote of the function h. Since both functions

are increasing, it follows that, as Q→Qb, ψ(Q)→∞> h(Q).

5. We have established that there is a trivial equilibrium at Q= 0 and that ψ(Q)> h(Q)

close to Q= 0 and close to Q=Qb. Now note that

h(1)− ψ(1) = δ1 −∆(1− α)− δb > 0, (53)

where the inequality follows from assumption (50).

We have established that h and ψ are continuous functions and that h starts below ψ, is

above ψ for Q= 1 and drops below ψ at Q=Qb. It follows that the functions must cross

at least twice and for large enough negative values of ρ there are two non-trivial autarkic

equilibria. When inequalities (50) hold, Q̄au1 < γ̄−1 and Q̄au2 > γ̄−1. These inequalities

establish that Q̄au1 is dynamically efficient and Q̄au2 is dynamically inefficient as claimed

in Proposition 4. �.
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