DISCUSSION PAPER SERIES

DP17594 (v. 2)

ZOOMERS AND BOOMERS: ASSET PRICES AND INTERGENERATIONAL INEQUALITY

Roger Farmer and Leland Farmer

ASSET PRICING

ZOOMERS AND BOOMERS: ASSET PRICES AND INTERGENERATIONAL INEQUALITY

Roger Farmer and Leland Farmer

Discussion Paper DP17594 First Published 21 October 2022 This Revision 10 March 2023

Centre for Economic Policy Research 33 Great Sutton Street, London EC1V 0DX, UK Tel: +44 (0)20 7183 8801 www.cepr.org

This Discussion Paper is issued under the auspices of the Centre's research programmes:

• Asset Pricing

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic Policy Research. Research disseminated by CEPR may include views on policy, but the Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to promote independent analysis and public discussion of open economies and the relations among them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage discussion and comment. Citation and use of such a paper should take account of its provisional character.

Copyright: Roger Farmer and Leland Farmer

ZOOMERS AND BOOMERS: ASSET PRICES AND INTERGENERATIONAL INEQUALITY

Abstract

We construct a perpetual youth DSGE model with aggregate uncertainty in which there are dynamically complete markets and agents have Epstein-Zin preferences. We prove that, when endowments have a realistic hump-shaped age-profile, our model has three steady-state equilibria. One of these equilibria is dynamically inefficient and displays real price indeterminacy. We estimate the parameters of our model and we find that a fourth-order approximation around the indeterminate steady-state provides the best fit to U.S. data. Our work interprets the large and persistent generational inequality that has been observed in western economies over the past century as the result of uninsurable income shocks to birth cohorts.

JEL Classification: N/A

Keywords: Asset pricing, Indeterminacy

Roger Farmer - rfarmer@econ.ucla.edu UCLA, University of Warwick and NIESR and CEPR

Leland Farmer - lefarmer@virginia.edu Department of Economics, University of Virginia Submitted to

1	ZOOMERS AND BOOMERS: ASSET PRICES AND INTERGENERATIONAL	1
2	INEQUALITY	2
3		3
4	Leland E. Farmer	4
5	Department of Economics, University of Virginia	5
6		6
7	ROGER E. A. FARMER	-
/	Department of Economics, University of Warwick and UCLA	/
8		8
9	We construct a perpetual youth DSGE model with aggregate uncertainty in	9
10	which there are dynamically complete markets and agents have Epstein-Zin pref-	10
11	erences. We prove that, when endowments have a realistic hump-shaped age-	11
12	profile, our model has three steady-state equilibria. One of these equilibria is dy-	12
13	namically inefficient and displays real price indeterminacy. We estimate the pa-	13
14	rameters of our model and we find that a fourth-order approximation around the	14
15	indeterminate steady-state provides the best fit to U.S. data. Our work interprets	15
10	the large and persistent generational inequality that has been observed in western	10
10	birth cohorts	10
17		17
18	KEYWORDS: Perpetual Youth, Asset Pricing, Indeterminacy.	18
19		19
20		20
21	1. INTRODUCTION	21
22	The use of dynamic stochastic general equilibrium (DSGE) models to understand	22
23	the macroeconomy began in the 1980s with the Real Business Cycle (RBC) model of	23
24	Kydland and Prescott (1982) and Long and Plosser (1983). Although the initial version of	24
25	the RBC model contained a representative agent, more recent heterogeneous agent new-	25
26	Keynesian (HANK) models built around an RBC core, contain multiple agents and in-	26
20		20
21	Leland E. Farmer: lefarmer@virginia.edu	21
28	Roger E. A. Farmer: r.farmer. 1@warwick.ac.uk	28
29	We would like to thank David Andolfatto, Borağan Aruoba, Dan Cao, Christopher Carroll, Pablo Cuba-	29
30	Borda, Greg Duffee, Jonas Fisher, François Gourio, Olivier Jeanne, Ioannis Kospentaris, Leonardo Melosi,	30
31	Stephen Spear and seminar participants at the Federal Reserve Bank of Chicago, Federal Reserve Bank of Rich- mond, Georgetown University, Johns Hopkins University. University of Maryland, University of Miami, and Vir-	31
32	ginia Commonwealth University for helpful comments and discussions.	32

¹ complete asset markets (Kaplan et al., 2018, Auclert et al., 2020). This paper presents an

alternative way – *the perpetual youth model* – of introducing heterogeneous agents into a
 DSGE model.

A perfect foresight version of the perpetual youth model in continuous time was intro-duced by Blanchard (1985) and was extended to discrete time with aggregate shocks by Farmer (1990) and to include multiple types of agents in Farmer (2018). The perpetual youth model is a variant of the overlapping generations (OLG) model of Allais (1947) and Samuelson (1958) and, as such, it has very different properties from the class of infinite-lived agent models of which the RBC model is a special case. In the perpetual youth model there are always at least two steady state equilibria. Fiscal and monetary policy work very differently from the way they operate in representative agent models and active fiscal and monetary policy may fail to uniquely determine either the price level or the real interest rate (Farmer and Zabczyk, 2022). As in the OLG model, stationary equilibria may be indeterminate of arbitrary degree (Kehoe and Levine, 1985) and, as a consequence, monetary policy may have real effects in the short-run (Farmer, 1991) even in the absence of menu-costs or other forms of price-rigidity. We focus in this paper on two sets of facts which, we argue, are connected. The first set 17

concerns asset prices, interest rates and growth. The second set concerns the low frequency
 behavior of inter-generational inequality.

Our first set of facts concerns the behavior of the safe nominal interest rate, the nominal return on a risky portfolio, and the growth rate of nominal GDP. In data the safe nominal interest rate has been less than the nominal growth rate for long periods of time whereas the ex-post return to the aggregate stock market (as proxied by the CRSP value-weighted market portfolio) has been consistently higher than the safe rate by about 6% and higher also than the GDP growth rate. The risky rate is also much more volatile than the safe rate at both high and low frequencies. These facts are illustrated in Figure 1.

Next we turn our attention to generational inequality and its connection to asset market 27 volatility. Figure 2 plots the cyclically adjusted price earnings ratio from Shiller (2014), 2.8 2.8 measured on the right axis, alongside a measure of relative median lifetime income, mea-sured on the left axis. This latter data-series measures the median lifetime income of the generation that attains the age of 25 in the year measured on the horizontal axis, relative to the generation that attained age 25 in 1957. We want to draw attention to two features

got their first job in the late 1960s and early 1970s were roughly 12% better off than both earlier and later generations. Second, lifetime earnings prospects are highly correlated with the state of the stock market at the time of attaining adulthood. In this paper, we connect these two sets of facts and we offer an explanation which ties together a theory of excess asset price volatility with a theory of generational inequality.

To explain the connection between our two sets of facts we construct a stochastic per-petual youth model of an exchange economy in which agents have Epstein Zin preferences (Epstein and Zin, 1989, 1991) and we estimate the parameters of our model using simu-2.8 2.8 lated method of moments. Our model explains excess asset price volatility as a sunspot equilibrium in a low safe-rate equilibrium and it connects asset pricing evidence with gen-erational inequality using the fact that agents cannot insure against the state of the world they are born into.

³² New-Keynesian model with Epstein-Zin preferences is consistent with a number of asset pricing facts.

ZOOMERS AND BOOMERS

An emerging literature extends Representative Agent New-Keynesian (RANK) mod-els to allow for uninsurable income risk by adding multiple agents and incomplete mar-kets. These models come in two-agent varieties – TANK models – of the kind studied by Bilbiie (2008, 2020), and – HANK models – as in the work of Kaplan et al. (2018) and Auclert et al. (2020).² HANK models are more general than TANK models but they must 5 carry around the wealth distribution as a state variable. Since the wealth distribution is an infinite dimensional object, solving and estimating HANK models is a challenging, but not insurmountable, problem. Techniques to solve and estimate HANK models, building on insights from Krusell and Smith (1998), have been developed by Reiter (2009), Winberry (2018), Auclert et al. (2021) and Bilal (2021). Our work is complementary to the HANK literature, but we approach the issue of het-erogeneity in a different way. In contrast to the literature reviewed in Kaplan and Violante (2018), where wealth inequality arises from uninsurable idiosyncratic income risk, we fol-low Campbell and Nosbusch (2007) by assuming that wealth inequality is caused by unin-surable aggregate risks to newborn generations who cannot insure across the state of the world they are born into. Unlike Campbell and Nosbusch (2007) who calibrate a perpetual youth model with logarithmic preferences, our agents have Epstein-Zin preferences and we estimate the parameters of our model on U.S. data. The extension to a more general preference specification is key to our results which exploit the existence of multiple au-tarkic steady-state equilibria when agents have a hump-shaped income profile and a low intertemporal elasticity of substitution. The first DSGE perpetual youth model in discrete time, of which we are aware, is the paper by Farmer (1990) who builds a DSGE perpetual youth model using a special case of Epstein-Zin preferences. We generalize Farmer (1990) to the case of general Epstein-Zin (1989) preferences and we allow for a hump-shaped endowment process.³ Both of these features are key to the ability of our model to fit asset pricing facts in U.S. data. ²TANK is an acronym for Two Agent New Keynesian and HANK stands for Heterogeneous Agent New 2.8 2.8 Keynesian. ³In related developments in the DSGE perpetual youth literature, Farmer et al. (2011) show how to construct the pricing kernel in a discrete time DSGE perpetual youth model with complete markets and Farmer (2018) uses their result to construct a model with two types of agents who have Von-Neumann Morgenstern preferences.

 ³¹ discs their result to construct a model with two types of agents who have your resultant morgenteen preferences.
 ³¹ Gârleanu and Panageas (2015, 2021, 2022) present a series of results for the Epstein and Duffie (1992) continuous
 ³² time case.

Our solution to the individual's problem is related to the results in Toda (2014) and Flynn et al. (2023) who study the solution to a problem in which agents have access to a 2 limited set of assets. In contrast, our assumption that markets are dynamically complete allows us to aggregate individual decision rules and to generate a set of low dimensional aggregate equations that characterize equilibrium and facilitates our empirical application. Our ability to accommodate heterogeneous agents in a tractable way distinguishes our em-pirical work from DSGE models that solve and estimate Epstein-Zin models with a repre-sentative consumer (Epstein and Zin, 1991, van Binsbergen et al., 2008). An important contribution of our paper is our proof that a hump-shaped endowment pattern interacts with a low intertemporal elasticity of substitution to generate multiple au-tarkic steady-state equilibria in a perpetual youth model. Our current paper extends results in Farmer and Zabczyk (2022) for a 62-period model to the perpetual youth model with aggregate shocks and estimates the parameters of the model using real-world U.S. data. We are not the only authors to point to dynamic indeterminacy as a potential explana-tion for features of the asset markets. Brunnermeier et al. (2022b,a) study the existence of bubbles in infinite horizon models in both continuous and discrete time and Aguiar et al. (2021) study Pareto improving policies in a model with idiosyncratic income risk. Reis (2021) explicitly studies the role of liquidity effects in a model with aggregate shocks in which the interest rate is less than the growth rate and Miao and Su (2021) study the emer-gence of debt as a bubble in a Keynesian model with production. Unlike the papers cited here, our model has no frictions and dynamically complete markets and we estimate the parameters of our model on U.S. data. Our theoretical model contains multiple steady-state equilibria each of which may be

locally indeterminate under some combinations of monetary and fiscal regimes. In our em-pirical work we estimate both determinate and indeterminate versions of our model as in the work of Lubik and Schorfheide (2004), Aruoba et al. (2018) and Farmer and Nicolò (2018).⁴ In our estimation strategy we first choose the dimension of the state and, for each choice of this dimension, we approximate the solution to the model by a fourth order ap-2.8 2.8 proximation using Matlab code from Levintal (2017).

³¹ ⁴Lubik and Schorfheide (2003) were the first to develop a method to estimate indeterminate models. Their ³² approach was refined by Farmer et al. (2015) and Bianchi and Nicolò (2021). 32

³² $\rho_{\gamma} < 1$ be the persistence of $\tilde{\gamma}_t$, let $\bar{\gamma}$ be the steady-state growth rate of GDP, and let ε_{γ} be ³²

an i.i.d. random variable with mean 0 and variance σ_{γ}^2 . The dynamics of $\tilde{\gamma}_t$ are given by $\tilde{\gamma}_{t+1} = (1 - \rho_{\gamma}) \log(\bar{\gamma}) + \rho_{\gamma} \tilde{\gamma}_t + \varepsilon_{\gamma,t+1}.$ (2)The variables of our model are elements of a vector of random variables $X_t \in \mathcal{X} \subset$ \mathbb{R}^n_+ which we partition into two subsets $X = \{S, T\}, S \in \mathcal{X}_S \subset \mathbb{R}^{n_1}_+, T \in \mathcal{X}_T \subset \mathbb{R}^n_+$ $\mathbb{R}^{n_2}_+$, $n = n_1 + n_2$. We refer to S as *states* and T as *co-states*. To keep the notation concise, in the remainder of the paper we refer to variables $x_t \in X_t$ and $x_{t+1} \in X_{t+1}$ with the notation x and x' where x here refers to a generic element of X. Private agents maximize the discounted expected value of an Epstein-Zin recursive utility function. The problem of a member of cohort j is defined by the value function, v^{j} , that solves Problem 1. **PROBLEM 1:** $v^{j}\left(A^{j}\right) = \max_{A^{j'}} \left[\left(C^{j}\right)^{\rho} + \beta \pi \left(m^{j}\right)^{\rho} \right]^{\frac{1}{\rho}},$ (3) $m^{j} = \left\{ \mathbb{E} \left[v^{j'} \left(A^{j'} \right)^{\rho \theta} \right] \right\}^{\frac{1}{\rho \theta}},$ $C^{j} + \pi \mathbb{E}\left[Q'A^{j'}\right] = A^{j} + y^{j}(1-\tau)Y,$ (4)with initial condition $A^{j}(S_{j}) = 0$ and where τ is the tax rate. PROPOSITION 1—Solution to the Consumers' Problem: The value function and the policy function that solve Problem 1 are given by $C^j = \psi^{-1}W^j$ and $v^j = \psi^{\frac{1-\rho}{\rho}}W^j$. The variable ψ is defined recursively as, $\psi = 1 + \pi \beta^{\frac{1}{1-\rho}} \left(\mathbb{E} \left[\psi'^{\frac{(1-\rho)\theta}{(1-\rho)\theta}} Q'^{\frac{\rho\theta}{\rho\theta-1}} \right] \right)^{\frac{1-\rho\theta}{(1-\rho)\theta}}$, where W^j is the sum of three components. $W^j = H_1^j + H_2^j + A^j$, and H_1 and H_2 represent the discounted present values of the two components of the after-tax income shares from 2.8 the right-hand-side of Eq. (1). A^{j} is the value of financial assets owned by a member of generation j in state S_t . **PROOF:** For a proof of Proposition 1, see Appendix A. Q.E.D.

ZOOMERS AND BOOMERS

1	The parameters ρ and θ are related to the intertemporal elasticity of substitution, <i>ies</i> , and	1
2	the coefficient of relative risk aversion, rra , by the identities ⁵	2
3	1	3
4	$ies \equiv \frac{1}{1-\rho}, rra \equiv 1-\rho\theta.$ (5)	4
5		5
6	$Q' \equiv \tilde{Q}' / \chi(S')$ is the pricing kernel, \tilde{Q}' is the price at date t of a claim to one unit of the	6
7	commodity in state S' and $\chi(S')$ is the date t conditional probability that state S' occurs.	7
8	A^{j} is the value of state S dependent Arrow securities that were accumulated at date $t-1$	8
9	by generation <i>j</i> .	9
1.0	The term π that appears in equations (3) and (4) serves two roles. In Eq. (3) it is the	1.0
10	probability that a person survives into period $t + 1$. In Eq. (4) it is the price of a security	10
ΤŢ	that insures the life of the agent. This security sells for price π when there is free entry to	ΤŢ
12	that insufes the fire of the agent. This security sens for price π when there is nee entry to	12
13	the maneral services moustry.	13
14	A COVEDNMENT DOLLOV	14
15	4. GOVERNMENT POLICI	15
16	In this section we discuss fiscal and monetary policy.	16
17		17
18	4.1. Fiscal Policy	18
19		19
20	The government purchases g goods as a fraction of nominal GDP which it pays for by	20
21	raising a proportional income tax at rate τ and by issuing nominal debt with a maturity	21
22	structure parameterized by δ . The government budget equation is given by the expression,	22
23		23
24	$-\delta'$ δ $(-\delta)$ $-\delta$ $-\delta$	24
25	$B^{o} p^{o} = \left(1 + \delta p^{o}\right) B^{o} + PY \left(g - \tau\right). $ (6)	25
26		26
27	⁵ It is more usual to parameterize Epstein-Zin preference by a parameter ρ and a parameter α , where in our	27
2.0	notation, $\alpha = \rho \theta$. Our alternative parameterization permits us to study the special case of <i>ies</i> = 1 by taking the limit as $\alpha \to 0$. The more familier parameterization using α and α leads to numerical instability in our ampirical	2.0
∠8 29	estimates for values of ρ close to 0. For the special case when $\theta = 1$, agents have Von-Neumann Morgenstern preferences on the space of lotteries over intertemporal consumption sequences	28 29
30	⁶ If the agent is a debtor, the contract pays her debts in the event that she dies. If she is a creditor, the security	30
31	represents an annuity that gives the agent an additional stream of payments while she is alive and that returns her assets to the financial institution that issued the security in the event of her death. Because there is a continuum of	31

Here, P is the dollar price of commodities and the nominal bond $B^{\delta'}$ is a promise to repay \$1 plus $\delta B^{\delta'}$ nominal bonds in period t + 1. By choosing $\delta \in [0, 1]$ we can mimic the maturity structure of public debt in U.S. data. $B^{\delta'}$ sells for price p^{δ} in period t and it follows from the assumption of no riskless arbi-trage that p^{δ} is given by the expression $p^{\delta} = \mathbb{E}\left[\frac{Q'}{\Pi'}\left(1 + \delta p^{\delta'}\right)\right].$ (7)Using the definition $b^{\delta} = \frac{B^{\delta}}{P_L Y_L}$, where P_L and Y_L are the lagged dollar price of commodi-ties and lagged GDP respectively, we can rewrite Eq. (6) in terms of ratios to nominal GDP. $p^{\delta}b^{\delta'} = \frac{b^{\delta}\left(1+\delta p^{\delta}\right)}{\Pi \gamma} + g - \tau,$ (8) where Π is the gross inflation rate between periods t - 1 and t. We model government purchases with the assumption that a transformation of govern-ment purchases is determined by an autoregressive process. Define $\tilde{g} \equiv \log\left(\frac{1}{1-g}\right)$, let \bar{g} denote the steady-state government spending-GDP ratio, and define the persistence of \tilde{g} by the parameter $0 < \rho_g < 1$. We assume that $\tilde{g}' = (1 - \rho_g) \log\left(\frac{1}{1 - \bar{q}}\right) + \rho_g \tilde{g} + \varepsilon'_g,$ (9)where ε'_q is a zero mean random variable with standard deviation σ_q . We assume further that the government follows a fiscal rule of the form $\tau = \bar{\tau} + \phi_{\tau} \left[\frac{b^{\delta} (1 + \delta p^{\delta})}{\Pi \gamma} - \Phi \right],$ 2.8

where ϕ_{τ} is a fiscal response coefficient. By setting a positive response coefficient, ϕ_{τ} , our model can capture a passive fiscal policy in which the government actively stabilizes the economy at a given debt-GDP ratio, represented here by the symbol Φ .⁷ The target value of the debt-GDP ratio must be consistent with its steady-state value, $\Phi = \frac{\bar{b}^{\delta}(1+\bar{p}^{\delta})}{\bar{\Pi}\bar{\gamma}}$. Because there may be multiple steady-states and the steady-state value of the debt-GDP ratio $\frac{\bar{b}^{\delta}(1+\bar{p}^{\delta})}{\bar{\Pi}\bar{\gamma}}$ is different in each of them, Φ cannot be chosen independently; it is a function of $\bar{\tau}$ and ϕ_{τ} , as well of all of the other parameters of the model which contribute to the determination of the steady state values of \bar{b}^{δ} , \bar{p}^{δ} , and $\bar{\Pi}$. 4.2. Monetary Policy The central bank sets the gross nominal interest rate R as a function of the date t-1interest rate R_L , the gross inflation rate Π , and the gross real GDP growth rate γ , according to the Taylor Rule (Taylor, 1999), $R = R_L^{\phi_R} \left[\left(\frac{\Pi}{\Pi^*} \right)^{\phi_\pi} \left(\frac{\gamma}{\gamma^*} \right)^{\phi_\gamma} \left(\frac{\Pi^*}{Q^*} \right) \right]^{1-\phi_R} \exp(\varepsilon_R),$ (10)where ε_R is a policy shock, generated by an i.i.d. stochastic process with mean 0 and variance given by σ_B^2 . Π^* is the gross inflation target, γ^* is the target GDP growth rate, and Q^* is the target steady-state value of the pricing kernel. The parameters ϕ_R , ϕ_{π} , and ϕ_{γ} capture the interest rate smoothing motive, the inflation response, and the output growth response of the Taylor Rule. The central bank is free to choose any value for Π^* , γ^* and Q^* ; but in order to hit the growth and inflation targets they must choose values that are consistent with equilibrium. In our estimation we approximate a solution to the model around a steady-state. We choose $\gamma^* = \bar{\gamma}$ and we pick values of $\Pi^* = \bar{\Pi}$ and $Q^* = \bar{Q}$ that are consistent with their target non-stochastic steady-state. 2.8 ⁷A fiscal policy in which the government adjusts taxes and spending to maintain budget balance is referred

to as *passive*. A fiscal policy in which the government sets a deficit rule that is independent of the debt-GDP ratio
 is said to be *active*. This definition originates in an attempt to provide a unified theory of fiscal and monetary
 interactions (Leeper, 1991). A government that *actively* adjusts its fiscal rule is said to follow a *passive* fiscal

³² policy. We retain the definition here for consistency with previous literature.

	12	
1	5. DEFINITIONS OF THE VARIABLES	1
2		2
3	In this section we construct a set of aggregate variables and a set of equations that connect	3
4	these variables at consecutive dates and in consecutive states. We divide the variables that	4
5	are growing through time by GDP to create a set of stationary variables and we assemble	5
6	the equations of the model into a function that defines equilibrium.	6
7		7
8		8
9		9
10	5.1 The State Variables of the Model	10
11	5.1. The state variables of the Model	11
12		12
13	We discuss two representations of the model, one in which all of the state variables are	13
14	fundamental, and one in which the state includes a non-fundamental variable driven by	14
15	sunspot shocks. We refer to the fundamental representation of the state as S and to the	15
16	non-fundamental representation of the state as S.	16
17	S includes the variables γ and g which we model as first order auto-correlated processes in the transformed variables $\log(z)$ and $\log(1)$ k^{δ} which is related to the real value of	17
18	In the transformed variables $\log(\gamma)$ and $\log\left(\frac{1}{1-g}\right)$, b which is feated to the feat value of the debt CDP ratio and c_{2} the monotory policy shock. S also includes P_{2} and c_{3} from	18
19	the debt-GDP ratio, and ε_R , the monetary poincy shock. S also includes K_L and c_L from the dete t = 1 information set and ε_{-} , where z is the following function of the moments of	19
20	the date $i - 1$ information set and z_L , where z is the following function of the moments of ab' and O'	20
21		21
22	$z = \mathbb{E} \left[\psi'^{rac{(1- ho) heta}{1- ho heta}} Q'^{rac{ ho heta}{1- ho heta}} ight].$	22
23		23
24	We include z_L and c_L in the state because the pricing kernel at date t holds in all pairs of	24
25	consecutive states $\{S_{t-1}, S_t\}$ and, as we show in Proposition 2, Q is a function of c_L and	25
26	z_L .	26
27	This discussion leads to the following vector of fundamental state variables, $S \equiv \left[a + b + b \right]$. Most existing DSCE models are estimated under the eccumation	27
28	$\{c_L, z_L, n_L, o^{\dagger}, \gamma, g, \varepsilon_R\}$. Most existing DSGE models are estimated under the assumption that all of the states are fundamental. However, the perpetual wouth model is not metricised	28
29	that <i>all</i> of the states are fundamental. However, the perpetual youth model is not restricted	29
30	to purely fundamental equilibria and for some parameterizations of the model we find that there exists an indeterminete steady state. For these peremeterizations we define an exist	30
31	there exists an indeterminate steady-state. For these parameterizations we define an asset that we refer to as aquity Equity issued at data <i>i</i> is a plaim to the income stream $\lambda^{t-i} V$ for	31
32	that we refer to as equily. Equily issued at date j is a claim to the income stream λ° , Y_t for	32

	DE is determined by the maximal	
1	all $t \ge j$ and its price, P^{\ge} is determined by the recursion	1
2	$P^E - \mathbb{E} \left[O' \left(\lambda P^{E'} + V' \right) \right]$	2
3	$I = \mathbb{E}\left[\mathbb{Q}\left(\left\langle \mathcal{M} \right\rangle + I \right) \right].$	3
4	The <i>price-dividend ratio</i> is determined by the expression	4
5		5
6	$p^E = \mathbb{E}\left[\gamma' Q' \left(\lambda p^{E'} + 1 ight) ight].$	6
7		7
8	Equity is a redundant asset and in a model with a unique determinate steady-state it	8
9	would appear as a co-state variable. In contrast, in a model with an indeterminate steady-	9
10	state, there are stationary equilibria driven purely by sunspots. In these equilibria, there	10
11	are insufficient initial conditions to uniquely determine all of the variables and there may	11
12	exist sunspot equilibria in which non-fundamental shocks influence prices and allocations	12
13	(Azariadis, 1981, Cass and Shell, 1983).	13
14	In our empirical work, we explore the properties of sunspot equilibria close to an in-	14
15	determinate steady-state by choosing p^E to be an additional state variable. In the non-	15
16	fundamental version of the model we define the augmented state vector $\tilde{S} \equiv \{S, p^E\}$.	16
17	There is no unique way to choose an additional state variable although Farmer et al.	17
18	(2015) show, in the context of a linear model, that if one allows for an arbitrary variance-	18
19	covariance between the sunspot shock and the fundamental shocks, all choices of the ad-	19
20	ditional state are observationally equivalent. The sunspot moves the economy to a point	20
21	on the stable manifold of a locally indeterminate steady state. By specifying a variance-	21
22	covariance structure for all the shocks one arrives at an empirically testable model that	22
23	can be compared with non sunspot theories. In this paper we show that a sunspot-driven	23
24	equilibrium provides a much better fit to U.S. data than fundamental equilibria of the same	24
25	model.	25
26		26
27		27
28		28
29		29
30	$^{8}\lambda$ represents the decay rate of the claim and it is not identified independently of the volatility of the innova-	30
21	tion to the sunspot shock. For existence of equilibrium, it must satisfy the inequality $\lambda \gamma Q < 1$ in a steady state	21

tion to the sunspot shock. For existence of equilibrium, it must satisfy the inequality $\lambda \bar{\gamma} \bar{Q} < 1$ in a steady state parameterized by \bar{Q} . In our estimation we set $\lambda = \pi \lambda_1$ which guarantees that this inequality is satisfied in any equilibrium in which human wealth is well defined.

5.2. The Co-state Variables of the Model

1	5.2. The Co-state Variables of the Model	1
2		2
3	The co-state vector T includes z, ψ , Q and c. It also includes the variables R, τ , Π , p^{δ}	3
4	and two stationary variables, h_1 and h_2 which represent the net present values of the two	4
5	components of the income streams in Eq. (1) added up over all living agents and expressed	5
6	as ratios to GDP. These variables are defined recursively, ${}^{9}h_{1} = \alpha(1-\tau) + \pi \lambda_{1} \mathbb{E} [\gamma' Q' h'_{1}]$,	6
7	and $h_2 = (1 - \alpha)(1 - \tau) + \pi \lambda_2 \mathbb{E}[\gamma' Q' h'_2]$. For the specification of the state in which all	7
, 8	states are fundamental, T also includes the price-dividend ratio p^E .	, R
9	This discussion leads to the following vectors of co-state variables for the fundamental	9
10	and non-fundamental versions of the model, $\tilde{T} = \{z, \psi, h_1, h_2, Q, c, R, \tau, \Pi, p^{\delta}\},$ and $T = \{z, \psi, h_1, h_2, Q, c, R, \tau, \Pi, p^{\delta}\},$	$=_{10}^{10}$
11	$\{p^E, \tilde{T}\}.$	11
10		10
13		12
11	6. COMPETITIVE EQUILIBRIUM	1.0
15		15
16	In this section we introduce the dynamic equations that link the variables through time	16
17	and we define the concepts of a <i>competitive equilibrium</i> , a <i>steady-state equilibrium</i> , and a	17
1.8	balanced-budget steady-state.	1.8
10		10
20		20
20	DEFINITION 1—Competitive Equilibrium: A 'competitive equilibrium' is a stochastic	20
21	sequence of prices and allocations such that markets clear at every period and allocations	21
22	solve the households' utility maximization problems at every date and in every state.	22
20		23
24		24
20	PROPOSITION 2—Characterization of Equilibrium:	20
20	Define a vector $X \in \mathcal{X} \subset \mathbb{R}^n_+$, where	26
27		27
28	$X \equiv \{c_L, z_L, R_L, b^{\delta}, \gamma, g, \varepsilon_R, p^E, z, \psi, h_1, h_2, Q, c, R, \tau, \Pi, p^{\delta}\}$	28
29		29
30		30
31		31
32	See Appendix D.	32

1	and functions $F: \mathcal{X}^2 \to \mathbb{R}^n_+$	and $\phi: \mathcal{X}^2 \to \mathbb{R}_+$, where		1
2				2
3		$c - c_L'$		3
4		$z-z_L'$		4
5		$R-R_L'$		5
6		$\psi c - h_1 - h_2 - \frac{b^{\delta}(1+\delta p^{\delta})}{\Pi \gamma}$		6
7		$\tilde{\gamma}' - (1 - \rho_{\gamma}) \log(\bar{\gamma}) - \rho_{\gamma} \tilde{\gamma} - \varepsilon_{\gamma}'$		7
8		$\tilde{g}' - (1 - \rho_g) \log\left(\frac{1}{1 - \bar{a}}\right) - \rho_g \tilde{g} - \varepsilon_g'$		8
9		ε'_{R}		9
10		$p^{E} - \gamma' Q' (\lambda p^{E'} + 1)$		10
11		$z - \psi' \frac{(1- ho) heta}{1- ho heta} Q' \frac{ ho heta}{ ho heta-1}$		11
12	$F(X, X') \equiv$	$\psi - 1 - \pi \beta^{\frac{1}{1-\rho}} z^{\frac{1-\rho\theta}{(1-\rho)\theta}}$,	12
13		$h_1 - \alpha(1-\tau) - \pi \lambda_1 \gamma' Q' h'_1$		13
14		$h_2 - (1 - \alpha)(1 - \tau) - \pi \lambda_2 \gamma' Q' h'_2$		14
15		$Q - \phi(X, X')$		15
16		c + q - 1		16
17		$R - \frac{Q'}{\pi}$		17
18		$\begin{bmatrix} 1 & 1 \\ \tau & -\bar{\tau} & -\phi_{\tau} \begin{bmatrix} b^{\delta}(1+\delta p^{\delta}) \\ -\bar{\tau} \end{bmatrix} = \Phi$		18
19		$\begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ & \cdot & \cdot & \cdot \\ & \cdot & \cdot &$		19
20		$\left R - \left[R_L \right]^{\phi_R} \left \left(\frac{\Pi}{\Pi^*} \right)^{\phi_\pi} \left(\frac{\gamma}{\gamma^*} \right)^{\gamma^*} \left(\frac{\Pi^*}{Q^*} \right) \right \right $		20
21		$p^{\delta} - \frac{Q'}{\Pi'} \left(1 + \delta p^{\delta'} \right)$		21
22			1	22
23	and			23
24	/		$1- ho\theta$	24
25		$\pi \beta \frac{1}{1- ho} c_L$		25
26	$\phi(X, X') \equiv \left[\frac{1}{2\sqrt{2}} \right]$	$(-1 [(1, \lambda, \pi)b + (1, \lambda, \pi)b]) \approx \frac{\theta - 1}{(1 - \rho)\theta} \sqrt{1}$	$\frac{1-\theta}{1-\theta}$	26
27	$\int \gamma \int c - \zeta$	$\psi = [(1 - \lambda_1 \pi)n_1 + (1 - \lambda_2 \pi)n_2] \int z_L \psi^T$	<i>p</i> ••)	27
28	A competitive equilibrium	, is characterized by a bounded stationary s	tochastic process	28
29	$\{X_{i}\}^{\infty}$, that satisfies the fun	nctional equation $\mathbb{E}[F(X X')] = 0$ with bound	ndary conditions	29
30	$y_{1}^{-1}(h_{1,1} + h_{2,1} + \frac{b_{1}^{\delta}(1+\delta p_{1}^{\delta})}{b_{1,1}^{\delta}})$	$\left(\frac{1}{2}\right) = 1 - a_1$ $B_I = B_{I,1}$ $c_I = c_{I,2}$	and $\gamma_{1} - \gamma_{1}$.	30
31	$ \begin{array}{c} \varphi_1 \left(\begin{array}{ccc} \mu_1, \mu_1 & \mu_2, \mu_1 & \mu_1 \\ \mu_1 & \mu_2 \\ h_1 & h_1 \\ h_1 & (1 + \delta n_2^{\delta}) \end{array} \right) \Pi_1 \gamma_1 $	$\int -1 g_1, 1_L = 1_{L,1}, \mathbf{c}_L = \mathbf{c}_{L,1}, \mathbf{c}_L = \mathbf{c}_L, \mathbf{c}_L = $	$\omega_L = \omega_{L,1},$	31
32	where $\frac{G_{1}(1+G_{P1})}{\Pi_{1}\gamma_{1}}$, $h_{1,1}$, and $h_{1,1}$	$h_{2,1}$ are the debt-GDP ratio and the two co	omponents of the	32

human wealth-GDP ratio in period 1, q_1 is the period 1 government spending-GDP ratio,

$$F(\bar{X},\bar{X}) = 0.$$
 (11) 5

The proof of Proposition 2 is found in Appendix D.

and ψ_1 is the initial inverse savings propensity.

A steady-state is a vector $\bar{X} \in \mathcal{X}$ that satisfies the equation

DEFINITION 2—Steady-State Equilibrium: A 'steady-state equilibrium', or more com-pactly a 'steady-state', is a competitive equilibrium in which the variables of the model are non-stochastic and time invariant. A steady-state equilibrium is 'non-trivial' if the steady-state pricing kernel, \overline{Q} , is strictly positive. A 'balanced budget steady-state' is a steady-state equilibrium of the model in which the government follows the balanced budget policy $\bar{q} = \bar{\tau}.$ Proposition 3 characterizes the properties of balanced-budget steady-states. PROPOSITION 3—Multiplicity of Balanced-Budget Steady-States: The model has at least two balanced-budget steady-states. In one of these steady-states $\bar{Q}_{gr} = \frac{1}{\bar{z}}$. We refer

to this as the golden rule and we index the elements of \bar{X} in the golden-rule steady state with the subscript qr. In the one-commodity model, the golden-rule is unique. In addition to the golden rule, there is at least one other steady-state in which $\bar{b}_{au_i} = 0$. We refer to these steady states as a 'generationally autarkic' or more compactly as 'autarkic' and we index the elements of \bar{X} in the *i*-th autarkic steady state with the subscript au_i .

PROOF: Using equations (7) and (8) and exploiting the balanced budget assumption leads to the steady-state expression, $\bar{b}^{\delta}(\bar{Q})\left(1-\frac{1}{\bar{Q}\bar{\gamma}}\right)=0$, from which it follows that either $\bar{b}^{\delta}(\bar{Q}) = 0$, or $\bar{Q} = \frac{1}{\bar{\gamma}}$. This established Proposition 3. Q.E.D.

PROPOSITION 4-Multiplicity of Autarkic Steady-States: Define the following com-2.8 2.8 pound parameters, $\delta_1 \equiv \frac{1}{1-\pi\lambda_1\bar{\gamma}}, \delta_2 \equiv \frac{1}{1-\pi\lambda_2\bar{\gamma}}, \delta_b \equiv \frac{1}{1-\pi\beta^{\frac{1}{1-\rho}}}, \Delta \equiv \delta_1 - \delta_2, \rho_c \equiv -\frac{\log(\pi\beta)}{\log(\lambda_1\bar{\gamma})}, \delta_b \equiv \frac{1}{1-\pi\beta^{\frac{1}{1-\rho}}}, \delta_b \equiv \frac{1}{1-\pi$ and the following inequalities

$$\alpha > 1, \qquad \delta_b > \delta_1 > \delta_2, \qquad \delta_1 - \Delta(1 - \alpha) > \delta_b, \qquad \rho < \rho_c < 0.$$
 (12) ³¹₃₂

When the parameters satisfy the inequalities in (12), there is a trivial autarkic steady-state 1
 and two non-trivial autarkic steady-states. The steady-state pricing kernel in these steady states are solutions to the equation, 3

4

5

6

26

27

28

26

27

2.8

$$\frac{h(Q)}{1-\bar{g}} \equiv \left[\frac{\alpha}{1-\pi\lambda_1\bar{\gamma}Q} + \frac{(1-\alpha)}{1-\pi\lambda_2\bar{\gamma}Q}\right] = \left[\frac{1}{1-\pi\beta^{\frac{1}{1-\rho}}Q^{\frac{\rho}{\rho-1}}}\right] \equiv \frac{\psi(Q)}{1-\bar{\tau}}, \quad (13) \quad 5 \quad 6$$

⁷ where $h(Q) \equiv h_1(Q) + h_2(Q)$ is the aggregate human wealth to GDP ratio. We refer to the ⁷ ⁸ values of the non-trivial steady-state pricing kernel in these two steady-states as \bar{Q}_{au_1} and ⁸ ⁹ \bar{Q}_{au_2} .

¹⁰ The steady state indexed by au_1 is dynamically efficient and the steady state pricing ¹⁰ ¹¹ kernel \bar{Q}_{au_1} satisfies the inequality $\bar{Q}_{au_1} < \bar{Q}_{gr} = \frac{1}{\gamma}$. The steady state indexed by au_2 is ¹¹ ¹² dynamically inefficient and the steady state pricing kernel \bar{Q}_{au_2} satisfies the inequality ¹² ¹³ $\bar{Q}_{au_2} > \bar{Q}_{gr} = \frac{1}{\gamma}$. ¹⁴

15 15 The parameter ρ is related to the intertemporal elasticity of substitution by the identity $ies \equiv \frac{1}{1-a}$, and Proposition 4 implies that, when the parameters of the model sat-16 16 isfy inequalities (12), there exists a critical value, $ies_c = \frac{1}{1-\rho_c}$, such that for all values 17 17 18 of $ies < ies_c$ there exist multiple autarkic steady-states. In our empirical work we calibrate 18 the parameters π, λ_1 , and $\bar{\gamma}$ and estimate the parameter β . For our parameterization, this 19 19 20 critical value is ies = 0.453. For an explanation and a proof of Proposition 4 see Appendix 20 21 21 E. 22 22 7. THE DETERMINACY PROPERTIES OF THE STEADY-STATES 23 23 24 24 In this section we discuss the concept of local determinacy of equilibrium and we explain 25 25 the solution and estimation strategy that we use to compare the model with data.

7.1. The Definition of Local Determinacy

A steady-state, \bar{X} is said to be locally determinate if, in the absence of shocks, and for initial values of the state variables in the neighborhood of \bar{X} , there is a unique value for the co-state variables such that equilibrium sequences $\{X_t\}_{t\geq 0}$ converge to \bar{X} . We elaborate on this definition below. Define the matrices $A_{eq} \equiv F_X|_{eq}$ and $B_{eq} \equiv F_{X'}|_{eq}$, where A_{eq} and B_{eq} represents the Jacobians of the function F(X, X') with respect to the vectors X and X' evaluated at a steady state $eq \in \{gr, au_1, au_2\}$. Consider the following linear approximation of Eq. (11) $A_{eq}\tilde{X} + B_{eq}\tilde{X}' = 0$, where the tilde signifies deviations from the steady state.

Let $\sigma_{eq} \in \mathbb{C}^n$ denote the spectrum of the matrix pencil $(A_{eq} - \sigma_{eq}B_{eq})$ and let m_{eq} 5 denote the number of elements of σ_{eq} inside the unit circle.¹⁰ Let d_{eq} denote the *de*gree of indeterminacy of the steady state. It follows from the Blanchard Kahn conditions (Blanchard and Kahn, 1980) that $d_{eq} = m_{eq} - n + n_1$, where n_1 is the number of fundamental state variables and n is the dimension of X.

For a simple version of our model with a balanced budget and monetary and fiscal poli-10 10 cies that are *both* active, we computed the spectra at the three steady states for values of 11 11 $ies \in [0.05, ies_c]$. For all values of *ies* in this range we found that $d_{au_1} = -1, d_{gr} = 0$ and 12 12 $d_{au_2} = 1$. These results imply that the efficient autarkic steady state is explosive and would 13 13 never be reached if monetary and fiscal policy were both active. The golden-rule steady 14 14 state is locally determinate and, in the vicinity of the golden-rule, there exists a unique 15 15 equilibrium that is a function only of fundamentals. In contrast, we found that the inef-16 16 ficient autarkic steady-state equilibrium displays one degree of indeterminacy even when 17 17 both monetary and fiscal policy are active. This is in marked contrast to results from the 18 18 representative agent model in which equilibrium, under an active monetary policy and an 19 19 active fiscal policy, does not exist (Leeper and Leith, 2016). The indeterminacy that oc-20 20 curs at the inefficient autarkic steady-state is *real* as opposed to nominal and it leads to the 21 21 possibility of a volatile pricing kernel, driven by sunspot fluctuations in non-fundamentals. 22 22 23 23

2.4

7.2. Excess Volatility and the Equity Premium

24

25 25 The fact that the overlapping generations model has an indeterminate dynamically in-26 26 efficient steady-state equilibrium was established in Samuelson's seminal (1958) paper. 27 27 In two-generation one-commodity models, the existence of an indeterminate steady-state 28 28 equilibrium occurs only if debt is denominated in dollars. In models with three or more gen-29 29 erations, that qualification is unnecessary and we have examples of multi-generation mod-30 30 els that display indeterminacy of relative prices and real interest rates (Kehoe and Levine, 31 31 ¹⁰The $\sigma_i(eq)$ are solutions to the polynomial equation: det $(A_{eq} - \sigma_{eq}B_{eq}) = 0$. 32 32

1983, 1985, Farmer and Zabczyk, 2022). Our paper provides a further example of this phenomenon.
 The existence of an indeterminate dynamically inefficient steady-state equilibrium is

interesting because it offers the potential to understand three asset market facts that are otherwise difficult to explain. The first fact is that asset prices are far more volatile than can 5 easily be explained by fluctuations in fundamentals (Shiller, 1981, Leroy and Porter, 1981). The second fact is that the return to government debt has been lower than the growth rate of GDP for long periods of time (Blanchard, 2019). And the third fact is that the average rate of return to the stock market has been two to three percentage points higher than the

¹⁰ growth rate of GDP in a century of U.S. data (Mehra and Prescott, 1985).

For any risky asset with return R'_r , the no-arbitrage condition in the asset markets implies that $\mathbb{E}[R'_r] = \frac{1 - \operatorname{Cov}(R'_r, Q')}{\mathbb{E}[Q']} > \frac{1}{\mathbb{E}[Q']} \equiv R'_s$, where R'_s is the return on a risk-free bond and the inequality follows if $\operatorname{Cov}(R'_r,Q') < 0$. By choosing p^E as a state variable, we ensure that fluctuations in ε'_s cause excess volatility in the pricing kernel, Q', and conditional on a realization of γ' , they induce a negative covariance between sunspot fluctuations in the pricing kernel and the return to a risky asset.

8. SOLUTION AND ESTIMATION STRATEGY

¹⁹ We parameterize the model by a finite vector of parameters $\boldsymbol{\vartheta} \in \Theta \subset \mathbb{R}^{\ell}$ and us-²⁰ ing the partition, $X \equiv \{S, T\}$, we define the function $G : \mathcal{X}_{S}^{2} \times \mathcal{X}_{T}^{2} \to \mathbb{R}^{n}$, where ²¹ $G(S, S', T, T'; \boldsymbol{\vartheta}) \equiv F(X, X')$.

Define a vector shocks $\varepsilon \in \mathcal{E} \subset \mathbb{R}^k_+$. A *solution* to the model is pair of functions $f : \mathcal{X}_S \times$ $\mathcal{E} \to \mathcal{X}_S$ and $g: \mathcal{X}_S \to \mathcal{X}_T$, where $S' = f(S, \varepsilon')$ and T = g(S), where the functions f and g satisfy the functional equation, $\mathbb{E}[G(S, f[S, \varepsilon'], g[S], g[f(S, \varepsilon')]; \vartheta)] \equiv 0$. For the fundamental version of the model we choose $S \equiv \{c_L, z_L, R_L, b^{\delta}, \gamma, g, \bar{\varepsilon}_R\}$, and we define three fundamental shocks, ε_{γ} , ε_{g} , and ε_{R} . In this representation of the model, k = 3 and we specify AR(1) processes for $\tilde{\gamma} = \log(\gamma)$ and $\tilde{g} = \log\left(\frac{1}{1-q}\right)$ and a zero mean i.i.d. process for ε_R ,

$$\tilde{\gamma}' = (1 - \rho_{\gamma})\log(\bar{\gamma}) + \rho_{\gamma}\tilde{\gamma} + \varepsilon_{\gamma}',$$

1	$\varepsilon_R' \sim i.i.d.(0, \sigma_R^2).$	1
2		2
3	In our estimation strategy we further assume that the elements of ε are uncorrelated and we	3
4	parameterize their standard deviations by σ_{γ} , σ_{g} , and σ_{R} . For the non-fundamental version	4
5	of the model we choose $\tilde{S} = \{S, p^E\}$, and we add a non-fundamental shock ε_s . In this	5
6	specification, $k = 4$, and the states γ, g, ε_R , and p^E follow the processes	6
7		7
8	$\tilde{\gamma}' = (1 - \rho_{\gamma}) \log(\bar{\gamma}) + \rho_{\gamma} \tilde{\gamma} + \varepsilon_{\gamma}',$	8
9	$\tilde{a}' = (1 - a_a) \log\left(\frac{1}{1}\right) + a_a \tilde{a} + \varepsilon_a'$	9
10	$g = \left(1 - \overline{g}\right) + pgg + cg$	10
11	$\varepsilon_R' \sim i.i.d.(0, \sigma_R^2),$	11
12	$n^{E'} - \mathbb{E}\left[n^{E'}\right] \exp(\epsilon^{\prime})$	12
13	$p = \mathbb{E}\left[p = \int \operatorname{Cxp}(e_s)\right]$	13
14	In the non-fundamental model there is an additional i.i.d. shock ε_s' with mean 0 and stan-	14
15	dard deviation σ_s .	15
16		16
17	9. DATA SOURCES AND MOMENT MATCHING	17
18		18
19	This section describes data sources and partitions the parameter space into a subset of	19
20	parameters that we calibrated, or estimated by OLS, and a subset that we estimated by	20
21	simulated method-of-moments.	21
22	For the risky asset, we used data on the value-weighted market portfolio from the Cen-	22
23	ter for Research in Security Prices (CRSP). The price-dividend ratio was computed as the	23
24	price of the value-weighted market portfolio divided by a 12-month moving sum of daily	24
25	dividends (as in Welch and Goyal (2008)). For the risk-free 1-period asset, we used the ef-	25
26	fective federal funds rate from FRED. ¹¹ For inflation, we used Consumer Price Index (CPI)	26
27	inflation. For the government debt-to-GDP ratio we used total public debt as a percentage	27
28	of GDP from FRED. All data are quarterly and the sample period is 1990Q1-2019Q4.	28
29	The model has 23 parameters which we collect into the vector $\vartheta \in \Theta$. We calibrated	29
30	11 of these parameters to match various observable features of the data and we refer to	30
31		31
32	¹¹ Federal Reserve Bank of St Louis Economic Database.	32

ZOOMERS AND BOOMERS

1	the subset of calibrated parameters as ϑ_C . The remaining 12 parameters, collected into the	1
2	vector $\boldsymbol{\vartheta}_E$, were estimated by simulated method-of-moments, $\boldsymbol{\vartheta} \equiv \left[\boldsymbol{\vartheta}_C', \boldsymbol{\vartheta}_E'\right]'$.	2
3		3
4	9.1. Parameters Calibrated or Estimated by Least-Squares	4
5 6 7 8 9 10 11 12 13 14 15 16 17 18	Table I displays the values of ϑ_C . We chose the survival probability π to match an average life expectancy of 50 years. Agents are assumed to begin life as working-age adults, so if an agent enters the economy at age 20, they would live on average until they are 70. We chose the parameters λ_1, λ_2 , and α to match the U.S. income profile as shown in Figure 3. These parameters are taken from Gârleanu and Panageas (2015) who use least-squares to fit a doubly exponential process to the age profile of U.S. cohort data. We chose AR(1) processes for output growth and government spending from univariate first-order auto-regressions of the logs of real GDP growth and a transformation of the government spending-GDP ratio in U.S. data. The estimated parameters for output growth imply an annualized real GDP growth rate of 2.43% and an annualized unconditional standard deviation of 1.14%. The estimated parameters for government spending imply a mean real government spending-GDP ratio of 20.85% and unconditional standard deviation of 1.41%.	5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20	which we estimate to be 5 years.	19 20
21 22	9.2. Parameters Estimated by Method of Moments	21 22
23	We collect the estimated parameters into a vector $\boldsymbol{\vartheta}_E = [\beta, \rho, \theta, \overline{\tau}, \phi_{\tau}, \rho_R, \overline{\pi}, \phi_{\pi}, \phi_{\gamma}, \kappa, \sigma_R, \sigma_R, \phi_{\tau}, \phi_{\tau},$	σ_{3}^{T}
24	The parameter β is the discount factor of the household. The parameters ρ and θ are the	24
25	functions of the intertemporal elasticity of substitution and the coefficient of relative risk	25
26	aversion defined in Eq. (5); these are the only three estimated private-sector parameters. $\bar{\tau}$	26
27	and ϕ_{τ} parameterize the fiscal rule, ϕ_R , ϕ_{π} , and ϕ_{γ} parameterize the monetary rule and σ_R	27
28	and σ_s are standard deviations of the monetary shock and the sunspot shock.	28
29	In order to match the equity premium and the Sharpe ratio in U.S. data we introduce	29
30	the parameter κ which represents the fraction of a firm financed by debt. This parameter	30
31	captures leverage and it allows us to increase our estimate of the equity premium and simul-	31
32	taneously increase the standard deviation of the return on the risky asset. The risk-return	32

0	2
7	4

1	Parameter Calibrated Value	1
2	Survival Probability	2
3	π 0.995	3
4		4
5	Endowment Profile	5
6	λ_1 0.987	6
7	α 8 522	7
/	a 0.522	/
8	Output Growth	8
9	$100\log(ar{\gamma})$ 0.608	9
10	$ ho_\gamma$ 0.402	10
11	$100\sigma_{\gamma}$ 0.529	11
12	Government Spending	12
13	\bar{a} 0.209	13
1 /	ρ_a 0.991	1 /
14	$100\sigma_q$ 0.230	14
15		15
16	Government Debt	16
17	δ 0.950	17
18	Note: We chose the survival probability to match	18
19	an average working-age life-span of 50 years. We	19
20	chose the endowment profile parameters to match	20
20	timate the output growth and government spend-	20
21	ing parameters by OLS using data from FRED. Fi-	21
22	nally, we chose the decay rate of government bonds	22
23	to match an average maturity of 5 years.	23
24	TABLE I: Calibrated Parameters	24
25		25
26		26
27	trade-off to a leveraged asset is a direct application of the Modigliani-Miller theorem in a	27
28	model with dynamically compete markets.	28
29	Let $R_{r,\ell}$, $R_{r,u}$ and R_s denote the gross real return on a levered risky asset, the gross real	29
30	return on an unlevered risky asset and the gross real return on a riskless bond. It follows	30
31	from the assumption of complete asset markets that $R_{r\ell} - R_s = \frac{1}{1-r} (R_{r\mu} - R_s)$. When	31
32	we report statistics related to the risky return we use $R_{r,\ell}$.	32

ZOOMERS AND BOOMERS

For some parameterizations, our model has three steady-state equilibria and for others it has only two. Our estimation strategy allows for both possibilities. First, we chose the state vector to be S, and we searched over the parameter space Θ_E for the minimum dis-tance between the model and data moments. Our estimation procedure computes the steady states associated with any given vector and it rejects a steady state if it does not satisfy the Blanchard-Kahn conditions. This implies that, for a given definition of the state our equi-librium is determinate by construction. We did not impose any assumptions, in advance, about whether fiscal and/or monetary

policy are active or passive. Instead, we allowed the stance of policy to be chosen to achieve the best fit. In a model with a unique steady-state, our approach would require that either fiscal policy is active and monetary policy is passive, or monetary policy is active and fiscal policy is passive. In our model, in contrast, there are always at least two steady states and, for low values of the *ies*, there are three. This fact allows us to construct a determinate equilibria at any one of the three steady states by picking appropriate combinations of policy activism.

The novel aspect of our work, is that we are not restricted to the choice of S as the state vector. In our empirical work we repeated the estimation exercise using p^E as an additional state. We refer to the augmented state vector as $\tilde{S} = \{S, p^E\}$. The augmented model has one additional state variable and one additional non-fundamental shock that we assumed to be uncorrelated with the fundamental shocks. We parameterized the volatility of the non-fundamental shock by σ_s . This discussion implies that the standard model has 11 estimated parameters while the augmented model has 12. We refer to the standard and augmented models as models S and \tilde{S} respectively.

We searched over all determinate equilibria under both definitions of the state and we compared the best fit for the two alternative specifications, where by best fit, we mean the model that most closely matches the following fifteen macro and financial moments:

• $\mu_{r_r^n}$: mean of the nominal risky rate • $\sigma_{r_n^n}^2$: variance of the nominal risky rate 2.8 2.8 • $\mu_{r_{f}^{n}}$: mean of the nominal risk-free rate • $\sigma_{r_{e}^{n}}^{2}$: variance of the nominal risk-free rate • $\rho_{r_{x}^{n}}$: auto-correlation of the nominal risk-free rate • μ_{pd} : mean of the log price-dividend ratio

1	• σ_{pd}^2 : variance of the log price-dividend ratio	1
2	• ρ_{pd} : auto-correlation of the log price-dividend ratio	2
3	• μ_{π} : mean of inflation	3
4	• σ_{π}^2 : variance of inflation	4
5	• μ_b : mean of the debt-to-GDP ratio	5
6	• σ_b^2 : variance of the debt-to-GDP ratio	6
7	• $\sigma_{r_f^n,\pi}$: covariance between the nominal risk-free rate and inflation	7
8	• $\sigma_{r_{f}^{n},\gamma}$: covariance between the nominal risk-free rate and real GDP growth	8
9	• $\sigma_{\pi,\gamma}$: covariance between inflation and real GDP growth	9
10	We estimated $\boldsymbol{\vartheta}_E$ using two-step simulated method of moments. For a given parameter	10
11	vector, we solved the model using a fourth-order perturbation approximation with code	11
12	from Levintal (2017). We simulated 5,000 periods of burn-in and we kept the subsequent	12
13	100,000 draws to compute moments.	13
14		14
15	9.3. Model Fit	15
16	We found that the data favor model \tilde{S} in which the sunspot shock plays an important role.	16
17	Table II compares the fit of models \tilde{S} and S to the targeted moments. We report estimated	17
18	parameter values and 95% bootstrapped confidence intervals for Model \tilde{S} in Table III. We	18
19	begin by discussing the results for Model \tilde{S} .	19
20	With a couple of exceptions, the moments of Model \tilde{S} are close to their data analogues	20
21	with a typical percentage difference of less than 10% . The two exceptions to the close fit are	21
22	the mean and persistence of the price-dividend ratio. The mean of the log price-dividend	22
23	ratio is 3.11 compared to 3.92 and its persistence, measured by ρ_{pd} , is estimated to be 0.99	23
24	compared to 0.75 in data. ¹²	24
25	Model S exhibits major shortcomings relative to Model \tilde{S} when it comes to fitting the tar-	25
26	geted moments. The main issue is that Model S is incapable of producing enough volatility	26
27	in interest rates and asset prices relative to the data. Model S produces a high equity pre-	27
28	mium of 7.45% using financial leverage but only produces a risky rate volatility of 3.03%	28
29		29
30	¹² We suspect that this aspect of our model could be improved by exploring alternative specifications for the	30

additional state variable that allow the price-dividend ratio to respond to lagged and contemporaneous values of shocks to other variables in the model. For example, we have not allowed for the possibility that the stock market

is too volatile because it over-reacts to fundamentals. Instead, we modeled *all* excess volatility as exogenous.

Moments	Data	Model Š	Model S
Risky Rate			
$\mu_{r_r^n}$	9.23	9.34	9.86
$\sigma_{r_r^n}$	16.21	16.24	3.03
Risk-free Rate			
$\mu_{r_{s}^{n}}$	2.66	2.82	2.40
$\sigma_{r_{e}^{n}}^{j}$	1.10	1.02	0.73
$\rho_{r_{f}^{n}}$	0.85	0.87	0.74
Log Price-Dividend Ratio) 307	3 11	3 03
μ_{pd}	0.26	0.29	0.03
ρ_{pd}	0.20	0.99	0.94
Inflation	2 38	2 40	2 37
σ_{π}	1.18	1.26	1.21
5			
Government Debt			
μ_b	74.02	75.28	73.33
06	18.90	18.23	19.47
Correlations			
$ ho_{r_{f}^{n},\gamma}$	0.20	0.22	0.33
$ ho_{r_{f}^{n},\pi}$	0.32	0.42	0.55
$\rho_{\gamma,\pi}$	0.25	0.22	0.23
Note: We annualize all mome	ents except	correlations.	Specifically
we multiply means by 4 and	l standard	deviations a	re multiplie
auto-correlations to the powe	r 4. We co	mpute mome	nts. we raise
model as the average of 105,	000 simula	ited draws w	here the first
5,000 draws are discarded as l	burn-in.		
TABLE II: Ta	rgeted Mo	oments Fit	
compared to 16.21% in the data. This lea	ids to an a	annualized	Sharpe rati

1	Similarly, the log price-dividend ratio is too low on average with a mean of 3.03 com-	1
2	pared to 3.92 in the data and exhibits significantly less volatility, 0.03 compared to 0.26.	2
3	Model S also produces a much stronger correlation between the nominal risk-free rate and	3
4	inflation than in the data, 0.55 compared to 0.32.	4
5		5
6	9.4 Parameter Estimates	6
7		7
8	Our point estimate of the intertemporal elasticity of substitution, <i>ies</i> , is equal to 0.41.	8
9	This estimate is less than ies_c implying a parameterization with three steady states. We	9
10	found that the data favors an approximation around the dynamically inefficient steady-	10
11	state, allowing the model to capture the fact that, in the U.S. data, the safe interest rate has	11
12	been lower than the growth rate in much of the post-war period.	12
13	Our estimate of the <i>ies</i> is consistent with empirical studies using micro-level data to	13
14	estimate Euler equations. A consistent finding of that literature is that the <i>ies</i> of poorer	14
15	households tends to be small and close to zero, while the ies of richer households is sub-	15
16	stantially larger although often less than 1. ¹³	16
17	Our point estimate of the coefficient of relative risk aversion, rra , is 17.37. In a model	17
18	with constant-relative-risk-aversion (CRRA) preferences, a value for rra of 17.37 would	18
19	imply a value for the ies of 0.06 which is well outside the 5% confidence bound of 0.37 for	19
20	our estimate of that parameter. Similarly, the estimated value of the ies would, under CRRA	20
21	preferences, imply a coefficient of relative risk-aversion of 2.48. This, once again, is below	21
22	the 5% confidence bound of our estimate of this parameter which is equal to 14.87. We	22
23	conclude that our estimates allow us to reject the hypothesis of Von-Neumann Morgenstern	23
24	CRRA preferences in favor of Epstein-Zin.	24
25	Next, we turn to the fiscal rule parameters. We estimated a steady state tax-to-GDP ratio	25
26	of 17.55% which implies a steady state deficit-to-GDP ratio of 3.33%. The debt stabiliza-	26
27	tion parameter $\phi_{\tau}=3.63\times 10^{-6}$ implies a weak fiscal response of taxes to deviations of	27
28	debt from its steady state. This response accounts implies a nearly constant tax rate as a	28
29	fraction of GDP and is too small to act as an independent stabilization mechanism. We	29
30	conclude that our estimates imply that fiscal policy during our sample period was active.	30
31		31

¹³See e.g. Zeldes (1989), Lawrance (1991), and Jorgenson (2002).

ZOOMERS	AND	BOOMERS
---------	-----	---------

L	Parameter	Estimate	95% Bootstrap CI
	Preferences		
	$eta\pi$	0.992	[0.991, 0.993]
	ies	0.404	[0.370, 0.466]
	rra	17.373	[14.874, 21.232]
	Fiscal Rule		
	$\overline{ au}$	0.176	[0.156, 0.189]
	$\phi_{ au}$	3.63×10^{-6}	$[3.24 \times 10^{-6}, 3.97 \times 10^{-6}]$
	Taylor Rule		
	ρ_B	0.914	[0.884, 0.967]
	$100 \log (\Pi^*)$	-0.398	[-0.447, -0.363]
	ϕ_{π}	2.137	[1.765, 2.390]
	ϕ_{γ}	0.939	[0.817, 1.143]
	Leverage		
	κ	0.812	[0.729, 0.860]
	Exogenous Shocks	5	
	$100\sigma_R$	7.69×10^{-4}	$[6.80 \times 10^{-4}, 8.46 \times 10^{-4}]$
	$100\sigma_s$	1.443	[1.029, 1.560]
	Note: We estimate p	arameters using the	he simulated method of moment
	(SMM). For each para	ameter value, we s	olve the model using fourth-orde
	perturbation around a	all steady states fo	r which a solution exists. We us
	the solution associate	ed with the lowes	t value of the objective function
	We simulated the mo	odel using a com	mon set of random numbers for
	100,000 draws. We d	uscaru ine first 5,0	nts. We report bootstrapped 050
	confidence intervals i	n brackets and ac	count for data moment variabilit
	by using a block boot	strap with optimal	block length chosen according
	Politis and White (20	04).	
	TA	BLE III: Estimat	ted Parameters
	For the monetary policy rule	, we estimated a	a response coefficient to infla
2	.14 and a response coefficient	to real GDP gro	owth of $\phi_{\gamma} = 0.94$. These est
t	nat monetary policy was active	e and are within	the range estimated in previo
1	The 95% confidence intervals f	for these parame	eters significantly overlap wi

1	intervals reported in other estimated DSGE models. For example, Gust et al. (2017), report	1
2	point estimates of $\phi_{\pi} = 1.67$ and $\phi_{\gamma} = 0.73$ and corresponding 95% percent credible sets of	2
3	[1.21, 2.14] and $[0.39, 1.07]$, albeit in a richer model which includes production and a zero	3
4	lower bound on nominal interest rates.	4
5	We estimated the leverage ratio, κ , to be 0.81 which implies a debt-to-equity ratio of	5
6	approximately 4. This is higher than the value of 2 used in Bansal and Yaron (2004), like	6
7	the monetary policy parameters ϕ_{π} , and ϕ_{γ} , it is relatively imprecisely estimated with a	7
8	95% confidence interval of $[2.69, 6.15]$.	8
9	In our preferred specification the state is \tilde{S} and there are four shocks, $\varepsilon_{\gamma}, \varepsilon_{g}, \varepsilon_{R}$ and	9
10	ε_s . The standard deviations of ε_γ and ε_g were recovered from least-squares regressions of	10
11	univariate AR processes and our point estimates are $\sigma_{\gamma} = 5.3 \times 10^{-3}$ and $\sigma_g = 2.3 \times 10^{-3}$.	11
12	Our estimate of the standard deviation of ε_R is $\sigma_R = 0.008 \times 10^{-3}$. These are all small	12
13	numbers relative to the main driver of fluctuations in our model, the sunspot shock ε_s ,	13
14	which has an estimated standard deviation of $\sigma_s = 14 \times 10^{-3}$, three times larger than the	14
15	growth shock. We conclude from these estimates that the hump-shaped income profile, in	15
16	conjunction with sunspot shocks and a low ies are critical features of our explanation of	16
17	the data that are inconsistent with a steady-state driven by fundamentals.	17
18		18
19	10. EXPLAINING TWO SETS OF FACTS	19
20	In the introduction to this paper, we drew attention to two sets of facts. The first set of	20
21	facts concerned comparisons of the returns to safe and risky assets with GDP growth and	21
22	the second set of facts linked the asset price data with generational inequality.	22
23		23
24	10.1 Replicating the Eacts	24
25	10.1. Replicating the Facts	25
26	In the top panel of Figure 4 we reproduce Figure 1 and in the bottom panel we graph a	26
27	single simulation of our model using the estimated values of the parameters from the US	27
28	data. This figure illustrates, visually, the ability of our perpetual youth model to replicate	28
29	the three features of the asset pricing and growth data that we drew attention to in the	29
30	introduction. Our model is able to replicate the fact that the safe rate of interest is lower	30
31	than the GDP growth rate whilst the risky rate is more volatile, consistently above the safe	31
32	rate and higher than the GDP growth rate.	32

omy, relative to the cohort in the initial period. In the model, state dependent consumption
 depends only on date of birth. Once a cohort has been born, its entire lifecycle consumption
 profile, state by state, is completely determined. This figure illustrates that in the model, as
 in the data, life-cycle consumption prospects are closely correlated with the state of the

³² asset markets at the date that the agent enters adulthood.

³² income profile creates the possibility for multiple autarkic steady-state equilibria in addi- ³²

ZOOMERS AND BOOMERS

the job market during a severe recession, it has a strong negative impact on their lifetime	1
earnings and consumption.	2
	3
11. CONCLUSION	4
We have constructed and estimated a perpetual youth model of an endowment economy	5
with dynamically complete markets and aggregate shocks. Our work makes three principal	6
contributions to the literature.	7
First, our theoretical work presents the first discrete-time solution of the problem of a	8
	С

long-lived agent with Epstein-Zin preferences as a function of the moments of the endow-ment profile and of current and future prices. Previous macro models that use Epstein-Zin preferences have exploited the representative agent assumption to simplify the solution. Our contribution to this literature will permit researchers to construct more general mod-els with multiple types of agents and can potentially be generalized to allow for multiple commodities. Second, we have proved the existence of multiple autarkic steady-state equilibria in the perpetual youth model when agents have a hump-shaped endowment profile and when the intertemporal elasticity of substitution is less than a critical value that depends on the in-come profile and the preference and aggregate endowment parameters. We established that one of the autarkic steady-states is dynamically inefficient and we demonstrated that this fact permits the construction of equilibria that are driven principally by non-fundamental shocks to beliefs. By exploiting sunspots and indeterminacy, we are able to explain three asset market puzzles: the low safe rate of interest, excess volatility of asset prices and a large equity premium. Third, we compared estimated versions of our model with and without sunspot equilib-ria and we showed that the indeterminate equilibrium provides a significantly better fit to U.S. data from 1990Q1-2019Q4. Although our model can explain how fiscal and monetary policy influence generational inequality, it cannot explain feedback effects from fiscal and monetary policy to real GDP since we assume that all GDP movements are generated by an exogenous stochastic process.¹⁴

³¹ ¹⁴In ongoing research, we are generalizing these results to a production economy with the goal of comparing ³² alternative mechanisms of policy transmission from nominal to real variables. 32

APPENDIX A: PROOF OF PROPOSITION 1 PROBLEM 2: $v^{j} = \max_{W^{j'}} \left[(C^{j})^{\rho} + \beta \pi (m^{j})^{\rho} \right]^{\frac{1}{\rho}},$ (14) $m^{j} = \left[\mathbb{E}(v^{j'})^{\rho \theta} \right]^{\frac{1}{\rho \theta}},$ (15) $\pi \mathbb{E}\left[Q' W^{j'}\right] = W^j - C^j,$ (16) $W^j = H^j$ (17)We seek to prove that the value function v^j and the policy function C^j that solve Problem 1 are given by the expressions $C^{j} = \psi^{-1}W^{j}$ and $v^{j} = \psi^{\frac{1-\rho}{\rho}}W^{j}$. (18)where ψ is the inverse propensity to consume out of wealth and where ψ satisfies the recursion, $\psi = 1 + \pi \beta^{\frac{1}{1-\rho}} \left(\mathbb{E} \left[\psi'^{\frac{(1-\rho)\theta}{(1-\rho\theta)}} Q'^{\frac{\rho\theta}{\rho\theta-1}} \right] \right)^{\frac{1-\rho\theta}{(1-\rho)\theta}}$. The proof proceeds in five steps. STEP 1 We show that the wealth of a person with the income share defined in Eq. (1) evolves according to Eq. (16). \$TEP 2 We show that our conjectured solution obeys the envelope condition. STEP 3 We show that the Euler equation implies the following two lemmata LEMMA 1: In the optimal program $m^{j} = \beta^{\frac{1}{1-\rho}} \left(\mathbb{E} \left[\psi'^{\frac{(1-\rho)\theta}{(1-\rho)\theta}} Q'^{\frac{\rho\theta}{\rho\theta-1}} \right] \right)^{\frac{1-\rho\theta}{(1-\rho)\rho\theta}} C^{j}.$ (19)Lemma 1 is proved in Appendix B. LEMMA 2: In the optimal program $C^{j'} = C^{j} \beta^{\frac{1}{1-\rho}} \left(Q'^{\frac{1}{\rho\theta-1}} \psi'^{\frac{\theta-1}{1-\rho\theta}} \right) \left(\mathbb{E} \left[\psi'^{\frac{(1-\rho)\theta}{(1-\rho\theta)}} Q'^{\frac{\rho\theta}{\rho\theta-1}} \right] \right)^{\frac{1-\rho}{(1-\rho)\theta}}.$ (20)

1	Lemma 2 is proved in Appendix C.	1
STEP 4	Using Lemma 1 we show that if $C^j = \psi^{-1} W^j$, and if ψ satisfies the recursion $\psi =$	2
3	$1 + \pi \beta \frac{1}{1-\rho} \left(\mathbb{E} \left[\frac{1}{\rho \sqrt{1-\rho\theta}} O' \frac{\rho\theta}{\rho\theta-1} \right] \right)^{\frac{1-\rho\theta}{(1-\rho)\theta}}$ that the budget constraint Eq. (16) holds at	3
4	$1 + \pi\beta^{2-p} \left(\mathbb{E} \left[\phi^{(2-p)}, \phi^{(p)-2} \right] \right)$, that the budget constraint, Eq. (10), notes at	4
5 07757 5	consecutive dates.	5
6 STEP 5	Using Lemma 2 we show that the value function has the functional form given by the $\frac{1-\rho}{1-\rho}$ Wi	6
7	equality $v^{j} = \psi^{-\rho} W^{j}$.	7
8 D	DOOD OF DEDOOGUTION 1. We prove each stop in turn	8
9 P.	ROOF OF PROPOSITION 1: we prove each step in turn.	9
10 У ТЕР 1	Define I^j : the endowment at date t of a member of cohort i conditional on surviving	10
11 II	to date t as $I^{j} = \frac{1}{2} \left(\kappa_{1} \right)^{t-j} + \kappa_{2} \right)^{t-j} \left(1 - \tau \right) V$ and define the human wealth	11
12	of cohort <i>i</i> by the recursion	12
13	or conort y by the recursion	13
14	$H^{j} = I^{j} + \pi \mathbb{E}\left[Q'H^{j'}\right], \qquad (21)$	14
15		15
16	where H^j , I^j and Q are functions of the state S. Define $W^j = A^j + H^j$, where A^j is	16
17	the value of Arrow securities owned by a member of cohort j that have positive value	17
18	in the state S . It follows from the budget constraint of a member of cohort j that	18
19		19
20	$\pi \mathbb{E}\left[Q'A^{j'}\right] = A^j + I^j - C^j. $ ⁽²²⁾	20
21		21
22	Combining equations $(21) - (22)$ gives the wealth evolution equation,	22
23	$\mathbb{E}\left[O'W^{j'}\right] W^{j} O^{j} \tag{22}$	23
24	$\pi \mathbb{E}\left[Q W^{s}\right] = W^{s} - C^{s}. \tag{23}$	24
25	This establishes STEP 1	25
²⁶ STEP 2	The envelope condition is that $\frac{\partial v^j}{\partial t^j} = \frac{\partial v^j}{\partial C^j}$. Using Equations (14) and (18)	26
27 27	$2i = \frac{1-\rho}{\rho} \left(-i \right) \frac{1-\rho}{\rho} = 1 2i = \frac{1-\rho}{\rho}$	27
28	$\frac{\partial \psi}{\partial W^j} = \psi^{\rho} = \left(\frac{\psi}{C^j}\right)^r \psi^{-1} = \frac{\partial \psi}{\partial C^j} \frac{\partial \psi}{\partial W^j}$. This establishes STEP 2. Appendices B	28
29	and C establish STEP 3.	29
STEP 4	Use Eq. (18) to replace W^j and $W^{j'}$ with ψC^j and $\psi' W_j'$ in Eq. (23),	30
31	$-\mathbb{E}\left[O'_{i} _{i}^{j}O_{i}^{j}\right] \rightarrow UO_{i}^{j}O_{i}^{j}$	31
32	$\pi \mathbb{E}\left[Q \ \psi \ C^{s}\right] = \psi C^{s} - C^{s}. \tag{24}$	32

1	Use Lemma 2 to replace $C^{j'}$	1
2	$\begin{bmatrix} 1 & 1 & \theta - 1 \end{bmatrix}$	2
3	$\pi \mathbb{E} \left[Q'\psi' \right\{ C^j \beta^{\frac{1}{1-\rho}} \left(Q'^{\frac{\nu-1}{\rho\theta-1}} \psi'^{\frac{\nu-1}{1-\rho\theta}} \right)$	3
4	$\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix}$	4
5	$\left(\mathbb{E} \left \psi'^{\frac{(1-\rho)\nu}{(1-\rho)\theta}} Q'^{\frac{\rho\theta}{\rho\theta-1}} \right \right)^{(1-\rho)\theta} \right\} = \psi C^j - C^j. $ (25)	5
6		6
7	Cancel terms in C^j and rearrange and consolidate terms to give,	7
8	$1 - a\theta$	8
9	$\psi = 1 + \pi \beta^{\frac{1}{1-\rho}} \left(\mathbb{E} \left[\psi'^{\frac{(1-\rho)\theta}{(1-\rho\theta)}} Q'^{\frac{\rho\theta}{\rho\theta-1}} \right] \right)^{\frac{1}{(1-\rho)\theta}}.$ (26)	9
10		10
10	This establishes STEP 4.	12
STEP 5	Define the function u^j by the recursion,	13
14	\cdot , \cdot , $\frac{1}{2}$	14
15	$u^{j} = \left[(C^{j})^{\rho} + \beta \pi (m^{j})^{\rho} \right]^{\overline{\rho}}, \qquad (27)$	15
16	$m^{j} - \left[\mathbb{F}(u^{j'})^{\rho\theta} \right]^{\frac{1}{\rho\theta}} \tag{28}$	16
17	$m = \left[\mathbb{E}(a^{\prime})^{\prime} \right]^{\prime}. $	17
18	u^j is the utility attached to an arbitrary stochastic sequence $\{C_t^j\}_{t>j}$. Use Lemma 1	18
19	to replace m^j in Eq. (27), and rearrange terms to give	19
20		20
21	$ = \frac{1}{\rho} \left[\frac{1}{\rho} \left[\frac{1}{\rho} + \frac{\rho}{\rho} \right] \right]^{\frac{1-\rho\theta}{1-\rho\theta}} \left[\frac{1-\rho}{\rho} + \frac{\rho}{\rho} \right]^{\frac{1}{\rho}} $	21
22	$u^{j} = C^{j} \left[1 + \pi \beta^{\overline{1-\rho}} \left(\mathbb{E} \left[\psi^{\prime (1-\rho\theta)} Q^{\prime \rho\theta-1} \right] \right) \right] , \qquad (29)$	22
23		23
24	Using Eq. (26) and the conjecture $C^j = \psi^{-1} W^j$, it follows that the expression for the	24
25	optimal value, $v^{j}(W^{j})$, is given by Eq. (30)	25
26	\cdot \cdot \cdot 1 $1- ho$ \cdot	26
27	$v^{j}(W^{j}) = C^{j}\psi^{\overline{\rho}} = \psi^{\overline{\rho}}W^{j}.$ (30)	27
28	This astablishes STED 5	28
29		29
30		30
31		31
32	Q.E.D.	32

APPENDIX B: PROOF OF LEMMA 1 Differentiating the value function, Eq. (14) w.r.t. $W^{j'}$ leads to the expression $\frac{\partial v^j}{\partial w^{j'}} = \frac{\partial v^j}{\partial C^j} \frac{\partial C^j}{\partial w^{j'}} + \frac{\partial v^j}{\partial m^j} \frac{\partial m^j}{\partial v^{j'}} \frac{\partial v^{j'}}{\partial W^{j'}} = 0,$ (31)where the partial derivatives of v^{j} and m^{j} w.r.t. $W^{j'}$ are taken using the functions de-fined by equations (15), (16) and the conjecture, Eq. (18). These expressions are, $\frac{\partial v^j}{\partial C^j} =$ $\left(\frac{v^j}{C^j}\right)^{1-\rho}, \frac{\partial C^j}{\partial W^{j'}} = -\pi\chi' Q' \ \frac{\partial v^j}{\partial m^{j'}} = \beta\pi \left(\frac{v^j}{m^j}\right)^{1-\rho}, \frac{\partial m^j}{\partial v^{j'}} = \chi' \left(\frac{m^j}{v^{j'}}\right)^{1-\rho\theta}, \quad \frac{\partial v^{j'}}{\partial W^{j'}} = \psi'^{\frac{1-\rho}{\rho}},$ is the conditional probability that state S' occurs. Substituting these expressions into Eq. (31) canceling terms and rearranging terms gives, $Q' = \beta C^{j^{1-\rho}} (m^{j})^{\rho(1-\theta)} (v^{j'})^{\rho\theta-1} \psi'^{\frac{1-\rho}{\rho}}.$ (32)Take the term in ψ' to the left-hand-side, raise the equation to the power $\frac{\rho\theta}{\rho\theta-1}$ and take date t conditional expectations of both sides, $\mathbb{E}\left[\psi^{\prime\frac{\theta(1-\rho)}{1-\rho\theta}}Q^{\prime\frac{\rho\theta}{\rho\theta-1}}\right] = \beta^{\frac{\rho\theta}{\rho\theta-1}}C^{j\frac{(1-\rho)\rho\theta}{(\rho\theta-1)}}\left(m^{j}\right)^{\frac{\rho(1-\theta)\rho\theta}{\rho\theta-1}}\mathbb{E}\left[\left(v^{j^{\prime}}\right)^{\rho\theta}\right].$ (33)Simplify this expression using the fact that $\mathbb{E}\left[\left(v^{j'}\right)^{\rho\theta}\right] = \left(m^{j'}\right)^{\rho\theta}$, to give $\mathbb{E}\left[\psi'^{\frac{\theta(1-\rho)}{1-\rho\theta}}Q'^{\frac{\rho\theta}{\rho\theta-1}}\right] = \beta^{\frac{\rho\theta}{\rho\theta-1}}C^{j\frac{(1-\rho)\rho\theta}{(\rho\theta-1)}}\left(m^{j}\right)^{\frac{(\rho-1)\rho\theta}{\rho\theta-1}}.$ (34)Rearranging and raising both sides to the power $\frac{1-\rho\theta}{(1-\rho)\rho\theta}$ $m^{j} = \beta^{\frac{1}{1-\rho}} \left(\mathbb{E} \left[\psi'^{\frac{(1-\rho)\theta}{1-\rho\theta}} Q'^{\frac{\rho\theta}{\rho\theta-1}} \right] \right)^{\frac{1-\rho\nu}{(1-\rho)\rho\theta}} C^{j}.$ (35)This establishes Lemma 1.

APPENDIX C: PROOF OF LEMMA 2 Using Eq.(35) we have the following expression for $(m^j)^{\rho(1-\theta)}$ $(m^j)^{\rho(1-\theta)} = \beta^{\frac{\rho(1-\theta)}{1-\rho}} \left(\mathbb{E}\left[\psi'^{\frac{(1-\rho)\theta}{1-\rho\theta}} Q'^{\frac{\rho\theta}{\rho\theta-1}} \right] \right)^{\frac{(1-\theta)(1-\rho\theta)}{(1-\rho)\theta}} (C^j)^{\rho(1-\theta)}.$ (36)Use this expression to replace m^j in Eq. (32), consolidate terms in β and C^j , and use Eq. (18) to replace $v^{j'}$ by $C^{j'}\psi'^{\frac{1}{\rho}}$ to give $Q' = \beta^{\frac{1-\rho\theta}{1-\rho}} C^{j1-\rho\theta} \left\{ \left(\mathbb{E}\left[\psi'^{\frac{(1-\rho)\theta}{1-\rho\theta}} Q'^{\frac{\rho\theta}{\rho\theta-1}} \right] \right)^{\frac{(1-\theta)(1-\rho\theta)}{(1-\rho)\theta}} \right\} \left(C^{j'} \psi'^{\frac{1}{\rho}} \right)^{\rho\theta-1} \psi'^{\frac{1-\rho}{\rho}}.$ (37) Simplifying further and rearranging gives $C^{j'} = C^{j} \beta^{\frac{1}{1-\rho}} \left(Q'^{\frac{1}{\rho\theta-1}} \psi'^{\frac{\theta-1}{(1-\rho\theta)}} \right) \left(\mathbb{E} \left[\psi'^{\frac{(1-\rho)\theta}{1-\rho\theta}} Q'^{\frac{\rho\theta}{\rho\theta-1}} \right] \right)^{\frac{1-\rho}{(1-\rho)\theta}}.$ (38)This establishes Lemma 2. APPENDIX D: PROOF OF PROPOSITION 2 We begin by establishing that aggregate human wealth obeys a simple recursive relation-ship. We assume that, conditional on survival, the cohort of newborns is endowed with the after-tax income streams, for $i = \{1, 2\}$, $\kappa_1 \{\lambda_1^{s-t}\}_{s=t}^{\infty} (1-\tau) Y_s \text{ and } \kappa_2 \{\lambda_2^{s-t}\}_{s=t}^{\infty} (1-\tau) Y_s,$ (39)where $\kappa_1 = \alpha_1(1 - \lambda_1 \pi)$, $\kappa_2 = \alpha_2(1 - \lambda_2 \pi)$, and $\alpha_1 + \alpha_2 = 1$. Note that the $\frac{1}{1 - \pi}$ from (1) drops out since we are integrating over the measure $1 - \pi$ of newborn agents. Define the type i after-tax human wealth, H_i^t , owned by cohort t at date t for $i \in \{1, 2\}, H_i^t =$ 2.8 $\alpha_i(1-\lambda_i\pi)(1-\tau)\mathbb{E}\left[\sum_{k=t}^{\infty}(\lambda_i\pi)^{k-t}Q_t(S_k)Y_k\right]$, where $Q_t(S_k)$ is the date t price of a claim to one commodity in state S_k , for k > t. At date t there are π^{t-j} surviving members of cohort $j \leq t$ each of whom owns a claim to a fraction λ_i^{t-j} of the type *i* income stream of a new-born. It follows that the type *i* human 32

wealth at date t of cohort j is given by the expression $H_i^j = (\lambda_i \pi)^{t-j} H_i^t$, for all $j \leq t$. Adding up this expression over all cohorts $j = -\infty, \dots, t$ gives the following expressions for type i aggregate human wealth $H_i = \frac{1}{1 - \lambda_i \pi} H_i^t,$ (40)and notice that H_i has a recursive representation, using prime notations, as $H_i = \alpha_i (1 - \alpha_i)$ $\tau Y + \lambda_i \pi \mathbb{E}[Q'H'_i]$. Define the human wealth ratio, h_i for i = 1, 2 $h_i \equiv \frac{H_i}{Y}$, where Y is aggregate GDP and the h_i follow the recursion $h_i = \alpha_i(1-\tau) + \lambda_i \pi_i \mathbb{E} \left[\gamma' Q' h'_i \right]$. Next, we establish that Eq. (41), $\phi(X, X') \equiv$ $\left(\frac{\pi\beta^{\frac{1}{1-\rho}}c_L}{\gamma\left(c-\psi^{-1}\left[(1-\lambda_1\pi)h_1+(1-\lambda_2\pi)h_2\right]\right)z_L^{\frac{\theta-1}{(1-\rho)\theta}}\psi^{\frac{1-\theta}{1-\rho\theta}}}\right)^{1-\rho\theta},$ (41) is a valid representation for the pricing kernel. We begin with Eq. (38), which holds for all individuals at alive in two consecutive date-state pairs, Let $C_t = \sum_j C_t^j$ be the aggregate consumption of all people alive at date t. Let $\mathcal{A}(t,t+1)$ denote the index set of all individuals alive at dates t and t+1 and note that $\sum_{j \in \mathcal{A}(t,t+1)} C_t^j = \pi C_t.$ (42)This expression recognizes that a measure π of people alive at date t survive into period t+1. Next, note that $\sum_{j \in \mathcal{A}(t,t+1)} C_{t+1}^j = C_{t+1} - C_{t+1}^{t+1},$ (43)where C_{t+1}^{t+1} denotes the consumption of generation t+1 at date t+1. These individuals own no financial assets but, from Eq. (40) they own a fraction $1 - \lambda_i \pi$ of type *i* human

$$\begin{aligned} & \text{wealth. Using the expression for the policy function from Eq. (18) it follows that \\ & C_{t+1}^{t+1} = \psi_{t+1}^{-1} [(1 - \lambda_1 \pi) H_{1,t+1} + (1 - \lambda_2 \pi) H_{2,t+1}] \\ & (44) \\ & \text{Summing equation (38) over all } j \in \mathcal{A}(t, t+1), \text{ using equations (42), (43) and (44) gives} \\ & C' - \psi'^{-1} [(1 - \lambda_1 \pi) H_1' + (1 - \lambda_2 \pi) H_2'] \\ & = C \pi \beta^{\frac{1}{1-\rho}} \left(Q'^{\frac{1}{p^{\theta-1}}} \psi'^{\frac{1-\theta}{p^{\theta-1}}} \right), \\ & (45) \\ & \text{where } z = \mathbb{E} \left[\psi'^{\frac{(1-\rho)\theta}{1-\rho^{\theta}}} Q'^{\frac{\theta}{p^{\theta-1}}} \right]. \text{ Rearranging,} \\ & \\ & \text{Where } z = \mathbb{E} \left[\psi'^{\frac{(1-\rho)\theta}{1-\rho^{\theta}}} Q'^{\frac{\theta}{p^{\theta-1}}} \right] \text{ Rearranging,} \\ & \\ & \text{Divide the top and bottom of the right hand side by } (\alpha_1 + \alpha_2)Y, \text{ rearrange terms and lag is the equation by one period to give } \\ & Q \equiv \\ & \left(\frac{\pi \beta^{\frac{1}{1-\rho}} c_L}{\gamma \left(c - \psi^{-1} [(1 - \lambda_1 \pi) h_1 + (1 - \lambda_2 \pi) h_2] \right) z_L^{\frac{\theta}{L-\rho^{\theta}}} \psi^{\frac{1-\theta}{1-\rho^{\theta}}}} \right)^{1-\rho\theta}, \\ & (47) \\ & \text{Where } c_L \text{ and } c \text{ are the ratios of consumption to GDP at dates $t - 1$ and t . This completes the proof of the functional form of the function $Q = \phi(X, X'). \\ & \text{APPENDIX E: PROOF OF PROPOSITION 4} \\ & \text{A steady-state goods market equilibrium is characterized by the equality,} \\ & \psi^{-1} \left(\overline{h}_1 + \overline{h}_2 + \frac{\overline{b}^{\delta}(1 + \delta \overline{p}^{\delta})}{\overline{\Pi}\gamma} \right) = 1 - \overline{g}. \end{aligned}$$$

The left-hand-side of this expression is the demand for consumption goods and the right-hand-side is the supply of consumption goods. Both variables are written as ratios to GDP. In an autarkic steady-state, $b^{\delta}(\bar{Q}) = 0$ and $\bar{g} = \bar{\tau}$: these conditions imply that, $\frac{h(Q)}{1-\bar{q}} = \frac{\psi(Q)}{1-\bar{\tau}}$, where the functions h(Q) and $\psi(Q)$ are written out explicitly in Eqn. (49) $\frac{h(Q)}{1-\bar{g}} \equiv \left[\frac{\alpha}{1-\pi\lambda_1\bar{\gamma}Q} + \frac{(1-\alpha)}{1-\pi\lambda_2\bar{\gamma}Q}\right] = \left|\frac{1}{1-\pi\beta^{\frac{1}{1-\rho}}Q^{\frac{\rho}{\rho-1}}}\right| \equiv \frac{\psi(Q)}{1-\bar{\tau}},$ (49)and where $h(q) \equiv h_1(Q) + h_2(Q)$. Define the compound parameters, $\delta_1 \equiv \frac{1}{1-\pi\lambda_1\bar{\gamma}}, \qquad \delta_2 \equiv \frac{1}{1-\pi\lambda_2\bar{\gamma}}, \\ \delta_b \equiv \frac{1}{1-\pi\beta^{\frac{1}{1-\rho}}}, \\ \Delta = \frac{1}$ $\delta_1 - \delta_2, \rho_c \equiv -\frac{\log(\pi\beta)}{\log(\lambda_1\bar{\gamma})}$, and the following inequalities, $\alpha > 1, \qquad \delta_b > \delta_1 > \delta_2, \qquad \delta_1 - \Delta(1 - \alpha) > \delta_b, \qquad \rho < \rho_c < 0.$ (50)The proof that there are three autarkic steady-states proceeds in steps. 1. Note that the functions $h(Q): (0, Q_1) \to \mathbb{R}_+$ and $\psi(Q): (0, Q_1] \to \mathbb{R}_+$ are continuous. 2. Next we establish that h and ψ are increasing. The derivative of h is given by the expression $h_Q = \frac{\alpha \pi \lambda_1 \bar{\gamma}}{(1 - \pi \lambda_1 \bar{\gamma} Q)^2} - \frac{(1 - \alpha) \pi \lambda_2 \bar{\gamma}}{(1 - \pi \lambda_2 \bar{\gamma} Q)^2} > 0,$ (51)where the inequality follows since $\alpha > 1$. The derivative of ψ is given by the expres-sion $\psi_Q = \frac{\rho}{\rho - 1} \frac{\pi \beta^{\frac{1}{1 - \rho}} Q^{\frac{1}{\rho - 1}}}{\left(1 - \pi \beta^{\frac{1}{1 - \rho}} Q^{\frac{\rho}{\rho - 1}}\right)^2} > 0,$ (52)where the inequality follows since $\rho < 0$. This establishes that both functions are in-creasing. 2.8 3. Now consider the derivatives of h and ψ evaluated at Q = 0. These are given by the expressions, $0 < \{h_Q\}_{Q \to 0} \to \pi \bar{\gamma}(\alpha \lambda_1 + (1 - \alpha)\lambda_2) < \infty$, and $0 < \{\psi_Q\}_{Q \to 0} \to \infty$, which establishes that for small ε , $\psi(\varepsilon) > h(\varepsilon)$. ZOOMERS AND BOOMERS

1	4. Now consider the inequalities (50) which imply that $Q_b < Q_1$ where Q_b is the asymp-	1
2	tote of the function ψ and Q_1 is the asymptote of the function h. Since both functions	2
3	are increasing, it follows that, as $Q \to Q_b$, $\psi(Q) \to \infty > h(Q)$.	3
4	5. We have established that there is a trivial equilibrium at $Q = 0$ and that $\psi(Q) > h(Q)$	4
5	close to $Q = 0$ and close to $Q = Q_h$. Now note that	5
6		6
7	$h(1) - \psi(1) = \delta_1 - \Delta(1 - \alpha) - \delta_b > 0, \tag{53}$	7
, 0		, 0
0	where the inequality follows from assumption (50) .	0
9	We have established that h and ψ are continuous functions and that h starts below ψ , is	9
10	above ψ for $Q = 1$ and drops below ψ at $Q = Q_b$. It follows that the functions must cross	10
11	at least twice and for large enough negative values of ρ there are two non-trivial autarkic	11
12	equilibria. When inequalities (50) hold, $\bar{Q}_{av1} < \bar{\gamma}^{-1}$ and $\bar{Q}_{av2} > \bar{\gamma}^{-1}$. These inequalities	12
13	establish that \bar{Q}_{uu} is dynamically efficient and \bar{Q}_{uu} is dynamically inefficient as claimed	13
14	in Proposition 4 \square	14
15		15
16	ADDENIDIY, DEFENSION	16
17	APPENDIX: REFERENCES	17
18	AGUIAR, MARK A., MANUEL AMADOR, AND CRISTINA ARELLANO (2021): "Micro Risks and Pareto Improv-	18
19	ing Policies with Low Interest Rates," NBER Working Paper 28996. [6]	19
20	ALLAIS, MAURICE (1947): Economie et intérêt., Paris: Imprimerie Nationale. [2]	20
21	namics Near the ZLB: A Tale of Two Countries" <i>Review of Economic Studies</i> 85 (1) 87–118 [6]	21
22	AUCLERT, ADRIEN, BENCE BARDÓCZY, MATTHEW ROGNLIE, AND LUDWIG STRAUB (2021): "Using the	22
23	Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models," Econometrica, 89 (5), 2375-	23
21	2408. [5]	2/
27	AUCLERT, ADRIEN, MATTHEW ROGNLIE, AND LUDWIG STRAUB (2020): "Micro Jumps, Macro Humps: Mon-	2 -
23	etary Policy and Business Cycles in an Estimated HANK Model," NBER Working Papers 26647, National	23
26	Bureau of Economic Research, Inc. [2, 5]	26
27	AZARIADIS, COSTAS (1981): "Self-tulfilling Prophecies," <i>Journal of Economic Theory</i> , 25 (3), 380–396. [13]	27
28	Puzzles" The Journal of Finance 59 (4) 1481–1509 [28]	28
29	BIANCHI, FRANCESCO AND GIOVANNI NICOLÒ (2021): "A Generalized Approach to Indeterminacy in Linear	29
30	Rational Expectations Models," <i>Quantitative Economics</i> , 12 (3), 843–868. [6]	30
31	BILAL, ADRIEN (2021): "Solving Heterogeneous Agent Models with the Master Equation," Tech. rep., Technical	31
2.2	report University of Chicago [5]	30

1	BILBIIE, FLORIN O. (2008): "Limited Asset Market Participation, Monetary Policy, and (Inverted) Aggregate	1
2	Demand Logic," Journal of Economic Theory, 140, 162–196. [5]	2
З	(2020): "The New Keynesian Cross," Journal of Monetary Economics, 114, 90–108. [5]	З
5	BLANCHARD, OLIVIER J. (1985): "Debt, Deficits, and Finite Horizons," Journal of Political Economy, 93	1
4	(April), 223–247. [2]	4
5	(2019): "Public Debt and Low Interest Rates," American Economic Review, 109 (4), 1197–1229. [19]	5
6	BLANCHARD, OLIVIER J. AND CHARLES M. KAHN (1980): "The Solution of Linear Difference Models Under	6
7	Rational Expectations," Econometrica, 48 (July), 1305–1311. [18]	7
8	BRUNNERMEIER, MARKUS K., SEBASTIAN MERKEL, AND YULIY SANNIKOV (2022a): "Debt As Safe Asset,"	8
9	Unpublished Working Paper. [6]	9
1.0	(2022b): "The Fiscal Theory of the Price Level with a Bubble," Unpublished Working Paper. [6]	1.0
TO	CAMPBELL, JOHN Y. AND YVES NOSBUSCH (2007): "Intergenerational risksharing and equilibrium asset	10
11	prices," Journal of Monetary Economics, 54 (8), 2251–2268. [5]	11
12	CASS, DAVE AND KARL SHELL (1983): "Do Sunspots Matter?" Journal of Political Economy, 91, 193–227. [13]	12
13	EPSTEIN, LARRY AND DARREL D. DUFFIE (1992): "Stochastic Differential Utility," Econometrica, 60 (2), 353-	13
14	394. [5]	14
15	EPSTEIN, LARRY AND STANLEY ZIN (1989): "Substitution, Risk Aversion and the Temporal Behavior of Con-	15
16	sumption and Asset Returns: An Empirical Analysis." Journal of Political Economy, 99, 263-286. [3, 5]	16
17	(1991): "Substitution, Risk Aversion and the Temporal Behavior of Consumption and Asset Returns: A	17
Τ/	Theoretical Framework." <i>Econometrica</i> , 57, 937–969. [3, 6]	1/
18	FARMER, ROGER E. A. (1990): "Dynasty: A Simple Stochastic Growth Model," UCLA Working Paper #598. [2,	18
19	5]	19
20	(1991): "Sticky Prices," <i>Economic Journal</i> , 101 (409), 1369–1379. [2]	20
21	(2018): "Pricing Assets in a Perpetual Youth Model," <i>Review of Economic Dynamics</i> , 30, 446–460. [2, 5]	21
22	FARMER, ROGER E. A., VADIM KHRAMOV, AND GIOVANNI NICOLÒ (2015): "Solving and Estimating Inde-	22
23	terminate DSGE Models," Journal of Economic Dynamics and Control., 54, 17–36. [6, 13]	23
2.0	FARMER, ROGER E. A. AND GIOVANNI NICOLÒ (2018): "Keynesian Economics without the Philips Curve,"	20
Ζ4	Journal of Economic Dynamics and Control., 89, 137–150. [6]	Ζ4
25	FARMER, ROGER E. A., CARINE NOURRY, AND ALAIN VENDITTI (2011): "Debt Deficits and Finite Horizons,	25
26	the Stochastic Case," <i>Economics Letters</i> , 111, 47–49. [5]	26
27	FARMER, ROGER E. A. AND PAWEL ZABCZYK (2022): "Monetary and Fiscal Policy when People have Finite	27
28	Lives," NBER Working Paper 25445. [2, 6, 19]	28
29	FLYNN, JOEL P., LAWRENCE D.W. SCHMIDT, AND ALEXIS AKIRA TODA (2023): "Robust comparative statics	29
30	for the elasticity of intertemporal substitution," <i>Theoretical Economics</i> , 18 (1), 231–265. [6]	30
21	GÂRLEANU, NICOLAE B. AND STAVROS PANAGEAS (2015): "Young, Old, Conservative, and Bold: The Impli-	
31	cations of Heterogeneity and Finite Lives for Asset Pricing," <i>Journal of Political Economy</i> , 123 (3). [4, 5, 7, 21,	31
32	22]	32

ZOOMERS AND BOOMERS

1	(2021): "What to expect when everyone is expecting: Self-fulfilling expectations and asset-pricing puz-	1
2	zles," Journal of Financial Economics, 140 (1), 54–73. [4, 5]	2
3	(2022): "Heterogeneity and asset prices: A different approach," Journal of Political Economy. [4, 5]	3
Л	GOMEZ, MATTHIEU (2022): "Asset prices and wealth inequality," Unpublished paper: Columbia. [4]	Л
-	GUST, CHRISTOPHER, EDWARD HERBST, DAVID LÓPEZ-SALIDO, AND MATTHEW E. SMITH (2017): "The	-
5	empirical implications of the interest-rate lower bound," American Economic Review, 107 (7), 1971–2006. [28]	5
6	GUVENEN, FATIH, GREG KAPLAN, JAE SONG, AND JUSTIN WEIDNER (2022): "Lifetime Earnings in the	6
7	United States over Six Decades," American Economic Journal: Applied Economics, 14 (4), 446-79. [4]	7
8	JORGENSON, ANNETTE VISSING (2002): "Limited Asset Market Participation and the Elasticity of Intertemporal	8
9	Substitution," Journal of Poitical Economy, 110 (4), 825–853. [26]	9
10	KAPLAN, GREG, BENJAMIN MOLL, AND GIOVANNI L. VIOLANTE (2018): "Monetary Policy According to	10
1 1	HANK," The American Economic Review, 108 (3), 697–743. [2, 5]	11
11	KAPLAN, GREG AND GIOVANNI L. VIOLANTE (2018): "Microeconomic Heterogeneity and Macroeconomic	11
12	Shocks," Journal of Economic Perspectives, 32 (3), 167–194. [5]	12
13	KEHOE, TIMOTHY J. AND DAVID K. LEVINE (1983): "Indeterminacy of Relative Prices in Overlapping Gener-	13
14	ations Models," Unpublished MIT Working Paper no. 313. [18]	14
15	(1985): "Comparative Statics and Perfect Foresight in Infinite Horizon Economies," <i>Econometrica</i> , 53,	15
16	433–453. [2, 19]	16
17	KRUSELL, PER AND ANTHONY A. SMITH (1998): "Income and Wealth Heterogeneity in the Macroeconomy,"	17
1.0	Journal of Political Economy, 106 (5), 867–896. [5]	1.0
18	KYDLAND, FINN E. AND EDWARD C. PRESCOTT (1982): "Time to Build and Aggregate Fluctuations," Econo-	16
19	<i>metrica</i> , 50, 1345–1370. [1]	19
20	LAWRANCE, EMILY C. (1991): "Poverty and the rate of time preference: evidence from panel data," Journal of	20
21	<i>Political Economy</i> , 99 (1), 54–77. [26]	21
22	LEEPER, ERIC M. (1991): "Equilibria Under 'Active' and 'Passive' Monetary and Fiscal Policies," Journal of	22
23	Monetary Economics, 27 (1), 129–147. [11]	23
24	LEEPER, ERIC M. AND CAMPBELL LEITH (2016): "Understanding Inflation as a Joint Monetary-Fiscal Phe-	24
21	nomenon," in <i>Handbook of Macroeconomics</i> , ed. by John B. Taylor and Harald Uhlig, Elsevier, vol. 2, chap. 30,	27
25	2305–2415. [4, 18]	25
26	LEROY, STEPHEN AND RICHARD PORTER (1981): "Stock Price Volatitlity: A Test based on Implied Variance	26
27	Bounds," <i>Econometrica</i> , 49, 97–113. [19]	27
28	LEVINTAL, OREN (2017): "Fifth-order perturbation solution to DSGE models," <i>Journal of Economic Dynamics</i>	28
29	ana Control, 80, 1–16. [6, 24]	29
30	LONG, JOHN B. AND CHARLES I. PLOSSER (1983): "Real Business Cycles," <i>Journal of Political Economy</i> , 91 (1), 20, 60, 111	30
31	(1), $\forall \forall \forall \forall i \in \mathbb{N}$, [1]	٦1
9 T	EUBIK, THOMAS A. AND FRANK SCHORFHEIDE (2003): "Computing Sunspot Equilibria in Linear Rational Expositations Models," Journal of Economic Dynamics and Castral 28 (2), 272–285, 161	
32	Expectations wooders, <i>journal of Economic Dynamics and Control</i> , 28 (2), 2/3–283. [0]	- 32

1	(2004): "Testing for Indeterminacy: An Application to U.S. Monetary Policy," The American Economic	1
2	Review, 94 (1), 190–219. [6]	2
3	MEHRA, RAJNISH AND EDWARD C. PRESCOTT (1985): "The Equity Premium: A Puzzle," Journal of Monetary	3
Д	Economics, 15, 145–161. [19]	Д
-	MIAO, JIANJUN AND DONGLING SU (2021): "Fiscal and Monetary Policy Interactions in a Model with Low	-
5	Interest Rates," Unpublished Working Paper. [6]	5
6	POLITIS, DIMITRIS N. AND HALBERT WHITE (2004): "Automatic block-length selection for the dependent	6
7	bootstrap," Econometric Reviews, 23 (1), 53–70. [27]	7
8	REIS, RICARDO (2021): "The Constraint on Public Debt when r <g but="" g="">m,". [6]</g>	8
9	<i>Economic Dynamics and Control</i> 33 (3) 649=665 [5]	9
10	SAMUELSON, PAUL A. (1958): "An Exact Consumption-Loan Model of Interest With or Without the Social	10
11	Contrivance of Money," <i>Journal of Political Economy</i> , 66 (December), 467–482. [2, 18]	11
12	SCHMIDT, LAWRENCE (2022): "Climbing and falling off the ladder: Asset pricing implications of labor market	12
10	event risk," Available at SSRN 2471342. [4]	10
13	SHILLER, ROBERT (2014): "Online Data source for "Irrational Exuberance."	13
14	Http://www.econ.yale.edu/ shiller/data.htm. [2]	14
15	SHILLER, ROBERT J. (1981): "Do stock prices move too much to be justified by subsequent changes in divi-	15
16	dends?" American Economic Review, 71, 421–436. [19]	16
17	SWANSON, ERIC T (2021): "A Macroeconomic Model of Equities and Real, Nominal, and Defaultable Debt," .	17
18	[4]	18
19	TAYLOR, JOHN B. (1999): "An Historical Analysis of Monetary Policy Rules," in <i>Monetary Policy Rules</i> , ed. by	19
20	John B. Taylor, Chicago: University of Chicago Press, 319–341. [11]	20
20	TODA, ALEXIS AKIRA (2014): "Incomplete market dynamics and cross-sectional distributions," <i>Journal of Eco</i>	20
21	nomic Theory, 154, 310–348. [6]	21
22	(2008): "Likelihood Estimation of DSCE Models with Epstein Zin Preferences" SSRN Electronic Journal [6]	22
23	WEI CH IVO AND AMIT GOVAL (2008): "A comprehensive look at the empirical performance of equity premium	23
24	prediction." <i>The Review of Financial Studies</i> , 21 (4), 1455–1508, [20]	24
25	WINBERRY, THOMAS (2018): "A method for solving and estimating heterogeneous agent macro models," <i>Quan</i> -	25
26	titative Economics, 9 (3), 1123–1151. [5]	26
27	ZELDES, STEPHEN P (1989): "Consumption and liquidity constraints: an empirical investigation," Journal of	27
28	Political Economy, 97 (2), 305–346. [26]	28
20		20
29		29
30		30
31		31
32		32