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Abstract

On several proof-of-stake blockchains, agents engaged in validating transactions

can open a pool to which others can delegate their stake in order to earn higher

returns. We develop a model of staking pool formation in the presence of malicious

agents and establish existence and uniqueness of equilibria. We then identify po-

tential and risk of staking pools. First, allowing for staking pools lowers blockchain

security. Yet, honest stake holders obtain higher returns. Second, by choosing

welfare optimal distribution rewards, staking pools prevent that malicious agents

receive large rewards. Third, when pool owners can freely distribute the returns

from validation to delegators, staking pools disrupt blockchain operations, since

malicious agents attract most delegators by offering generous returns.
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1 Introduction

From both the financial side and the security side, there are reasons why a proof-of-stake

(PoS) blockchain may want to allow the formation of staking pools. With staking pools,

agents interested in validating transactions are allowed to open a pool, such that others

can delegate their stake for some time to it. For delegating agents who are not interested

in validating transactions, this can provide an additional income on their token holdings.

In turn, their stakes are blocked and cannot be used for other purposes during the time

of commitment. By agents we mean all participants of the decentralized system who own

some stake, which usually takes the form of a native token. Agents interested in running

a staking pool could earn a higher income from their transaction validation activities.1

Ideally, such a staking system makes it more attractive to hold tokens, provides in-

centives for a sufficient number of agents to run staking pools and act as transaction

validators, and increases the share of honest agents, weighted by the stakes they hold, in-

volved in transaction validation. As every staking pool acts as a validator, we occasionally

use the word “validator” for a staking pool.

However, malicious agents also run staking pools and may thus enlarge the share of

the stake they control in transaction validation.2 This may undermine the security of the

blockchain and lead to a collapse of the protocol, as the malicious agents take over.

We explore how such a system can be modeled and designed, so that it operates

beneficially for the decentralized consensus mechanism—i.e. by lowering the share of

malicious agents who disrupt the validation of transactions—and for the ecosystem as a

whole. The model invokes a measure of honest agents who are interested in the returns

from holding a stake (of tokens) in a PoS blockchain and thus are also interested in

the proper functioning of the blockchain. An agent is honest if s/he is prepared to

run the software for validation, as required by the system. Otherwise, honest agents

choose actions to maximize their expected returns. The PoS protocol that we consider

in this paper perfectly mimics how the proof-of-work (PoW) protocol works. The PoW

protocol chooses the next block writer according to who finds the nonce that satisfies

certain conditions, that is, the probability that the next writer is chosen proportionally

to his/her hash rate. Similarly, in the PoS protocol, the next writer of the block is chosen

proportionally to his/her stake size. In the PoW protocols, the costs are typically assumed

to be different across agents, as they depend on electricity, hardware, and maintenance

costs. In the PoS protocol, we have a similar situation, except for electricity costs.

Agents have different costs in participating in transaction validation, as availability of

1An agent that decides to run a pool and validate transactions is usually referred as a node of a
network.

2Our assumption that malicious agents always run staking pools is justified, since if they do not,
they do not affect blockchain functioning and thus cannot be considered malicious. If they delegate their
stakes, they act like honest delegators and thus again are not malicious in any way.
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appropriate computer software and hardware, speed and bandwidth of the internet, the

knowledge of how to run a secure validation node, and opportunity costs to engage in

validation activities(that is, costs of not being able to use tokens for other purposes)

differ across them. The difference between PoW and PoS protocol pools is the following.

In the former, the costs are incurred by all pool members, and therefore the rewards

are distributed proportionally. In the latter, the costs are incurred only by the pool

runner, while the rest—the delegators—incur no cost. In this paper, we examine the

simplest reward distribution, where the pool runner keeps some fraction of the rewards

and distributes the rest to the delegators proportionally.

There is a measure of malicious agents who are only interested in disrupting the

blockchain, and therefore, their costs are ignored by the designer.

A Blockchain Designer aims at maximizing the chance that the blockchain is working

(maximizing blockchain security), which will be captured by maximizing the number of

honest validators. We will also consider an alternative objective where the Blockchain

Designer trades off the probability that the blockchain is running correctly with the costs

for all honest agents of validating transactions. This is a standard economic welfare

criterion. Two further aspects can be important for a Blockchain Designer: Reducing the

rewards for malicious agents, as this decreases their future influence and distributing the

rewards to validators as equally as possible.

The Blockchain Designer has two basic options when designing the market for staking

pools. First, s/he can fix the return distribution between the pool owner and the pool

delegators. We call this “return fixing”. Second, s/he can allow competition of pool

runners regarding how the returns from transaction validation are shared between the

pool owner and the pool delegators. This is called “return competition”.

We model the ensuing interaction as a three-stage game. In the first stage, agents

decide whether (i) to open a staking pool, (ii) to delegate their stake to some pool or (iii)

to abstain from validation activities. Setting up pools for validating transactions is costly,

and these costs may differ between agents. In the second stage, either the Blockchain

Designer determines the shares uniformly for all running pools (return fixing) or pool

owners determine how returns should be shared between pool owners and delegators

(return competition). In the third stage, transactions are validated and, depending on

the share of stakes controlled by malicious agents, validation either works properly or the

blockchain is disrupted.

Our main insights start from the observation that honest agents with high costs to

set-up a node as a validator may want to delegate their stake to other pool owners, while

honest agents with low costs may want to open their own pool. Malicious agents always

open a pool, as this increases their chances to disrupt the blockchain.

We establish existence and uniqueness of equilibria of the stake pool formation game

with fixed return distribution between pool owners and delegators and show that they
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are of the threshold type. We show next that there exists a unique sharing rule of the

returns from validation between delegators and pool owners that maximizes the probabil-

ity that the blockchain operates correctly and we do the same for maximizing welfare of

honest agents when costs of running staking pools are taken into account in addition to

blockchain security. Then, we provide numerical illustrations of the equilibria for uniform

distribution of costs.

Subsequently, we identify the potential and risk of staking pools. First, staking pools

can never increase current blockchain security over a system in which no such pools

are allowed. The reason is as follows. Without staking pools, a share of honest agents

participates in validating transactions, as the additional reward is higher than the costs.

With staking pools and if the returns are shared with the validators, the return to pool

owners declines, as the average rewards from validating transactions is given. Hence, less

honest agents are willing to open staking pools, so that malicious agents will control a

larger share of stakes in validating transactions 3.

Yet, by optimally choosing the distribution of the validation returns to delegators,

the allocation of rewards to honest stakes involved in validation increases, which may be

beneficial for subsequent blockchain operations. We show how return splitting between

pool owners and delegators has to be determined in order to minimize the rewards to

malicious agents.

Second, by choosing welfare optimal distribution rewards, staking pools may decrease

blockchain security, but it prevents allocating large rewards to only a fraction of agents.

Third, when pool owners can freely distribute the returns from validation to delega-

tors, staking pools decrease blockchain security, since malicious agents attract delegators

by distributing most of the returns to them.

Finally, we show how our results can be extended to situations in which not only

running a pool but also the act of delegation is costly. Moreover, as we use a continuum

model for tractability reasons, we show how our analysis can be recast—albeit with a

more complex formal apparatus—in a discrete setting.

The paper is organized as follows. In the next section, we discuss the related literature.

In particular, literature motivating the formation of staking pools in PoS blockchains is

reviewed. In Section 3, we introduce the model and preliminaries. In Section 4, we

analyze the equilibria of the fixed return game. In Section 5, we discuss designs for

staking rewards that either maximize security or maximize welfare. Section 6 addresses

a uniform cost distribution and provides numerical examples. In Section 7, we analyze a

return competition game, where pool owners individually decide on the reward sharing

scheme. In Section 8, we study extensions of our basic model. Section 9 concludes.

3The return splitting cannot be strictly enforced by the protocol (designer) itself, but should rather
be a recommendation. Therefore, if some pool owner publicly offers more rewards to delegators than is
recommended, it should be a signal that this pool owner is not honest.
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2 Related Literature

Staking Pools: Many blockchains have already implemented staking or will implement it

in the near future. Such examples include, but are not limited to Cardano (Kiayias et al.

(2017)), Solana (Yakovenko (2017)), Polkadot (Wood (2016)), Tezos (Goodman (2014))

and Concordium. All these allow staking pools in which agents who do not run their

own staking pool will be able to delegate their stake to an existing pool and benefit from

rewards. By delegation, agents are indirectly involved in block proposal and validation,

via their stake.

Brünjes et al. (2020) study staking pools among honest agents from an interesting

mechanism design perspective. Their reward scheme ensures that a desired number of

staking pools is achieved while each pool has approximately the same amount of stake

and low-cost agents are running the pools. The reward scheme ensures that reporting

the true costs is the dominant strategy. Our paper is complementary as we focus on

the design of staking pools in the presence of malicious agents who want to disrupt the

blockchain and thus have quite different objectives than honest agents. We examine on

how such staking pools affect blockchain security, how security risks can be alleviated

and how distribution of rewards to malicious agents can be limited. Our mechanism is

also simpler to implement, as there is no communication between the designer and pool

runners, and therefore, no need for contracting, unlike in Brünjes et al. (2020). It is also

intuitive to interpret for the agents, than the generic mechanisms studied in there.

Blockchain and Consensus Protocols: There is a rapidly growing literature on blockchains

and consensus protocols. The most common reference is Nakamoto (2008), a Bitcoin

whitepaper, in which the consensus protocol PoW is introduced. Many papers focusing

on consensus protocols, that have been published recently, include John et al. (2020)

and Benhaim et al. (2021). PoS protocols were introduced to avoid the significant use

of energy associated with PoW protocols. In this paper, we adopt a widely used PoS

protocol, in which the next validator is chosen proportionally to the available stake. A

major paper on the game-theoretic analysis of blockchain and its folk theorem is Biais

et al. (2019). Benhaim et al. (2021) and Amoussou-Guenou et al. (2020) consider games

in the presence of malicious agents. This aspect is also part of our model. In particular,

we argue that the probability that the blockchain is well-functioning is increasing with

the share of honest validators and achieves complete security (probability one) when the

share of malicious agents falls below a certain threshold. More specific work on blockchain

mining rewards from a game-theoretic angle are studied in Chen et al. (2019) and Kiayias

et al. (2016).

Model Assumptions: Herrera et al. (2014) study a voting game with two parties where

voters vote for one party or abstain. In their model, voters have individual costs that

are drawn according to some distribution function. Similarly to our paper, Herrera et al.
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(2014) characterize equilibria of their game which take the form of so called “cut-off

thresholds”. They obtain a pair of thresholds, one for each party. Then, a citizen whose

cost is below the corresponding threshold will turn out and vote for his/her party. If

a citizen’s cost is above the threshold, s/he will abstain. Our model works in a similar

manner. We characterize threshold equilibria such that if the cost for an individual is

below that threshold, s/he will run a staking pool, and delegate or abstain otherwise.

Similar to Herrera et al. (2014), Castanheira (2003) studies a voting game where

citizens’ costs are drawn from a uniform distribution. In our paper, we also consider a

uniform distribution for costs. One key difference, however, is that the costs in Herrera

et al. (2014) and Castanheira (2003) are costs of voting4, whereas in our paper, the costs

are associated with running a pool and the costs connected to it.

Apart from direct mining rewards for the next block miner, there are also rewards

coming from auctions, where users bid on their transactions to be included to the next

block. The rewards from auctions may sometimes even be higher than mining rewards,

see Chitra and Kulkarni (2022) for the extended treatment of maximal extractable value

(MEV) and its role on the security of blockchain protocols. There are even calls for

aligning rewards from MEV with rewards from mining 5, which would result into scaling

up the reward parameter of our paper.

In our paper, we use continuum approach to model the measure of agents, and thus

follow the approach in Gersbach (2009) and Halaburda et al. (2021), for instance. More

concretely, agents are modeled as infinitely small. The continuum approximates large

communities and it proves to be a tractable approach for the staking pool formation

game. The continuum model is thus a limiting case where the number of agents becomes

large and delegation to staking pools is done uniformly at random. In our model, besides

a pool ID (or address), no further information is provided to delegators. From addresses

or pool IDs, no information about pool owners can be inferred. Hence, every pool has

equal chances to be chosen by agents.6 In the basic version of the model, delegation

entails no cost.

Crypto-Democracy and Vote Delegation: There is an extensive research on democracy

and blockchains, such as voting on blockchain (see Leonardos et al. (2020), Osgood (2016)

and Allen et al. (2017), for instance). Very recent work on vote delegation in the presence

of malicious agents is Gersbach et al. (2021a). The delegation of votes can be seen as

a delegation of stakes in the blockchain environment. Further literature in the field of

vote delegation is known under “liquid democracy”, where besides voting and abstaining,

4See the rational and costly voting literature (Palfrey and Rosenthal (1983), Ledyard (1984), Börgers
(2004) and Gersbach et al. (2021b)).

5https://notes.ethereum.org/cA3EzpNvRBStk1JFLzW8qg#Committee-driven-smoothing
6In practice, delegators may have more information about pool owners, but they remain anonymous.

On the Cardano blockchain, for example, agents can find all staking pools on pool.pm, which visualizes
all staking pools with the pool IDs, the current stake of the pools, the number of delegators and which
blocks were produced by which staking pool.
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agents have the additional option to delegate their vote to other agents (see Bloembergen

et al. (2019), for example).

Automated Market Maker (AMM): Staking is also used in other contexts such as yield

aggregation7 and automated market maker. The analogy to staking pools is the following.

There are liquidity providers who add funds to a liquidity pool that is managed by an

AMM. The liquidity providers correspond to agents who delegate their stake in our model.

Hence, the AMMs collect funds in a liquidity pool that can be traded later.8 In return,

liquidity providers receive tokens proportional to their staked amount, which correspond

to the rewards in our model. Besides these analogies, AMMs have other tasks as well,

such as determining prices for traders. A well-known AMM is Uniswap, for example

(see Hayden Adams (2020)).

PoW and Mining Pools: PoW has been studied extensively since the rise of Bitcoin

Nakamoto (2008). While in PoS protocols, the next validator is chosen randomly based on

their amount of stakes, PoW protocols use computational power. That is, the chance that

a miner will mine the next block is proportional to his/her computational power9 relative

to the total computational power of all miners. Similar to PoS protocols, miners in PoW

protocols can form a pool to gather more computational power and hence increase the

chance to mine the next block. Such mining pools have been analyzed game-theoretically

in Lewenberg et al. (2015), Leonardos et al. (2019), Cong et al. (2020), Cheung et al.

(2021), Arnosti and Weinberg (2022) and Chatzigiannis et al. (2022), for example. Cong

et al. (2020) study mining pools and focus on risk sharing as centralizing force. In

their model, miners are modelled as a continuum who can invest a hash rate. Arnosti

and Weinberg (2022) study a model where miners have heterogeneous costs and show

that asymmetries in costs lead to concentration of mining power. Different levels of

electricity costs, for example, are a source of heterogeneity of costs. In PoS heterogeneity

of costs of validators to run a pool can arise because of different skills and computer

facilities to set up a validator node and offering it as a continuously running validator

and pool for other stake holders and different operation costs of validation. Chatzigiannis

et al. (2022) models miners as rational agents who distribute their power across pools

and across different cryptocurrencies. Reward functions for mining pools are studied in

e.g. Schrijvers et al. (2017). Fisch et al. (2017) study optimal mining pooling strategies

in PoW blockchains.

7Under yield aggregation, investors can passively earn rewards by sending tokens to reward generating
smart contracts (see Cousaert et al. (2021)).

8Note that the liquidity pools hold at least two different assets, which is a major difference to staking
pools.

9As a measure of computational power, one typically uses the hash rate.
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3 Model

3.1 The General Set-up

There is a continuum of measure H of honest agents10 and there is a continuum of

measure M of malicious agents. The continua can be represented by intervals on the real

line, with length H and M , respectively. Working with a continuum of agents models

a blockchain with a large number of participants and approximates the corresponding

discrete model. Indeed, we show in Section 8.3, how the analysis—albeit in a much more

complicated way—can be performed in a discrete framework and how we can recover

results in that framework. While the continuum model is much more tractable and yields

simpler expressions, it requires more subtle interpretations, though.

We assume H > M , so that, honest agents are in the majority. Each agent (malicious

or honest) has one unit of the stake.11

Each honest agent is identified by his/her cost level for validation of transactions,

respectively, for running a staking pool on the blockchain.12 Costs are denoted by c and

are heterogeneous across honest agents, as they depend on the availability of appropriate

computer capital and human capital. Let the random variable X correspond to the costs

for honest agents. Specifically, the costs for honest agents are distributed according to

the atomless density function f(c) defined on [0, T ). Note that the support interval can

be R+, that is, T can be equal to∞. The corresponding cumulative distribution function

is denoted by F (c). Malicious agents are of the Byzantine type and do not care about

the costs and returns of running a pool. Hence, we set their costs to zero.

There is also a reward R ∈ R+, paid for creating the next block13. The agents’ types

are private information. As assumed above all honest and malicious agents have the same

amount of stakes, equal to one unit. There is also a Blockchain Designer. The blockchain

is assumed to be functioning better if more of validators are honest.

3.2 Objectives

The Blockchain Designer and the two types of agents have the following general objectives:

• Maximize the chance that the blockchain is working (maximizing blockchain secu-

rity), which will be captured by a maximization of the number of honest validators

(Blockchain Designer).

10These agents are called “rational” by other authors, e.g. in Amoussou-Guenou et al. (2020) and Ha-
laburda et al. (2021).

11As the total amount of stakes is infinite, all variables which are integrated over the set of agents are
averages in the continuum model.

12Costs include, for example, the costs for registering, running the software and forwarding messages
on transactions.

13In some contexts it is called mining reward.
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• Maximize expected reward minus cost (Honest Agents).

• Maximize the measure of stakes delegated to them (Malicious Agents).

We will formally specify the manifestation of these objectives later. As to the Blockchain

Designer, we will consider an alternative objective where s/he trades-off the probability

that the blockchain is running correctly with the costs for all honest agents to validate

transactions. While we consider maximizing blockchain security as the most important

objective, arguably one could also consider a standard economic welfare criterion as a

guiding principle for the Blockchain Designer.

Two further aspects can be important for a Blockchain Designer. First, s/he may aim

at minimizing the rewards received by malicious agents, as this decreases their future

influence. Second, the Blockchain Designer may want to distribute rewards to validators

as equally as possible, which is an original motivation of staking. We will discuss to which

extent these aspects materialize when we present our results.

3.3 Staking Pool Formation Game

We consider the following game, which consists of three stages:

Stage 1: Agents decide either to form a staking pool or not (both honest and

malicious). Agents who decide to become a pool owner obtain an identification

number, denoted by i.

Stage 2: Agents who did not register for a staking pool decide whether to delegate

their stake to some staking pool or to remain idle.

Stage 3: The blockchain runs, validation takes place (or not), and rewards are

distributed.

If an agent i forms a staking pool, we denote by si the amount of stakes s/he is

receiving. We also denote by P the measure of honest agents who form a staking pool.

D and I denote the measure of honest agents who delegate their stakes or stay idle,

respectively. We have H = P +D + I.

Our main assumption for this game is that delegators distribute themselves evenly

across all possible pools. The rationale is that the type of a pool owner is private informa-

tion, and for delegators, pool owners are all alike. Hence, invoking measure consistency,

this assumption implies

si =
D

P +M
,∀i.

We note that all pools obtain the same amount of delegated stakes and thus we write s

for si in the following. The total size of the pool—stakes of the pool owner and delegated

stakes—is then s+ 1. We note that (s+ 1)(P +M) + I = D + P +M + I = M +H.
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The payoffs are determined as follows: The next validator14 is chosen among the

available pools proportionally to the pool size. This particular rule is already implemented

in major PoS protocols (e.g., see Kiayias et al. (2017)), as it perfectly replicates the PoW

protocol, where probability for the next leader (in our case next validator who writes

the block) is proportional to computing powers. Such a system has the advantage that

splitting and pooling of the stakeholders does not increase the chances to be chosen as a

next validator as the expected return is unaffected by such strategies.

The reward for the next block is given by an amount R. Since all pools have the

same size, the return distribution is a uniform distribution with density 1
P+M

. Hence, the

individual reward a pool expects to receive is r = R
P+M

. Since we have a continuum model,

we note that both the individual return for an individual and the cost of running a pool

have zero weight in the average return R and the average amount of costs, respectively.

Yet for an agent, only the individual returns and costs matter.

The blockchain designer sets a parameter, denoted by λ, 0 < λ ≤ 1, which determines

how rewards have to split between pool owners and delegators. To sum up, the individual

expected rewards are as follows:

• A pool receives r = R
P+M

.

• The pool owner obtains λ · r.

• An individual delegator obtains (1−λ)·r
s

. The total amount given to the delegators

in a pool is (1− λ) · r.

• An idle agent obtains 0.

We measure the probability that the blockchain operates correctly by a function

Pc(·) : [0, T ]→ [0, 1],

that depends on the share of honest agents running staking pools, that is (weakly) in-

creasing as a function of this share, and which may reach probability one if a sufficient

share of honest agents is participating in validating transactions. Later in this paper,

we will study two different versions of this probability function and reward schemes that

depend on it. In the basic version of the staking pool formation game, we assume that

the returns are paid, no matter whether the blockchain operates correctly or not. The

motivation for this assumption is as follows: Whether or not the blockchain operates

correctly may not be immediately detected or agents maybe able to sell their rewards

immediately after writing the next block. Hence, agents involved in validating transac-

tions aim at maximizing the immediate returns from these activities in such cases. The

14In blockchains, transaction validation is done by creating a new block.
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Blockchain Designer is, of course, interested in how well the blockchain is functioning. In

Section 8.2, however, we make rewards dependent on the operation of blockchains, that

is, rewards are only distributed if the blockchain operates correctly.

The main design parameter λ ∈ [0, 1] is a non-negative real number set by the

Blockchain Designer. A game with a payoff structure as above, together with (H,M,R, F, λ),

is called a “staking pool formation game” and is denoted by G.

4 Equilibrium Analysis

In this section, we analyze the equilibria of a staking pool formation game.

4.1 Equilibrium Concept

In a staking game with non-zero reward R, an honest agent will never stay idle. The

reason is that since delegation is free of cost and delegators earn some reward, the expected

payoff is positive for a delegator, whereas the payoff for staying idle is zero. Only in the

case λ = 1, agents would be indifferent between delegation and staying idle. Hence,

delegation weakly dominates staying idle and so H = P +D.

In Section 8.1, we will consider the case where delegation comes at a small fixed cost

and so, staying idle will not be dominated in general. For tractability we assume a tie-

breaking rule. First, if an honest agent is indifferent between delegating and staying idle,

s/he will choose to delegate. This implies that when there are no delegation costs, no

agent remains idle.

We now proceed by focusing on equilibria of the threshold type. In particular, we

solve for the threshold equilibrium by looking at the agent with a specific cost level c∗ at

which this agent is indifferent between running a pool and delegating, i.e., the expected

utility from delegating is equal to the expected utility from running a pool.

An important remark is in order. If a threshold equilibrium exists, it is unique. If a

threshold equilibrium does not exist, we end up in a corner solution—either no honest

agent will run a pool or all honest agents will run a pool, and thus there will be no

delegation.

We introduce the following definition:

Definition 1 (Threshold Equilibrium)

A cost level c∗ > 0 is called a “threshold equilibrium” if an agent with cost c∗ is indifferent

between running a staking pool and delegating. Furthermore, all agents incurring a cost

that is lower than c∗ will run a staking pool, and all agents with a cost greater than c∗

will delegate.

In the threshold equilibrium we have P = F (c∗)H and D = (1− F (c∗))H.

11



4.2 Equilibrium Characterization

In the following we are looking for the equilibria, in which at least some fraction of honest

agents decide to run own pools. We characterize the equilibria of the staking game:

Theorem 1

There exists a unique threshold equilibrium to the game G if and only if

λ >
M

H +M
. (1)

Proof. First, we have to set up the indifference condition for an honest agent. That is,

we have to equate the expected utility from being a delegator with the expected utility

from running a pool. More precisely, the expected utility from being a delegator is

(1− λ)r

s
,

which is the share (1− λ) of the reward r, divided by the number of delegators, for the

particular pool. Similarly, the expected utility from running a pool is

λr − c,

which is the share λ of the reward r, minus the cost c of the particular pool owner. In

the equilibrium point c∗, an honest agent is indifferent between delegating and running

a pool, that is, c∗ solves the indifference equation:

(1− λ)r

s
= λr − c∗. (2)

From the equilibrium definition, we know that P = F (c∗)H and D = (1 − F (c∗))H.

Plugging in these values in (2) and simplifying, we obtain:

(1− λ)R

(1− F (c∗))H
= λ

R

F (c∗)H +M
− c∗. (3)

We reorder equation (3) as follows:

c∗ =
λR

F (c∗)H +M
− (1− λ)R

(1− F (c∗))H
. (4)

We note that the left hand side (LHS) of equation (4) is obviously increasing in c∗, while

the right hand side (RHS) is decreasing in c∗. Indeed, the derivative of the RHS with

respect to c∗ is

− λRF ′(c∗)H

(F (c∗)H +M)2
− (1− λ)RF ′(c∗)

(1− F (c∗))2H
< 0.

Since the LHS of (4) is increasing and is equal 0 for c∗ = 0, and the RHS is decreasing in

12



c∗, the necessary condition to have a solution to the equation is that the RHS is positive

for c∗ = 0. That is, we have the condition

λR

F (c∗)H +M
− (1− λ)R

(1− F (c∗))H
> 0,

which is, for c∗ = 0, equivalent to the condition in the theorem,

λ >
M

H +M
.

The indifference condition of the equilibrium of equation (4) to have an internal solu-

tion is obtained by taking c∗ = T . In this case, the LHS has to be larger than the RHS,

which always holds for λ < 1, as the RHS is equal to −∞.

To establish uniqueness, suppose that λ > M
H+M

. As shown above, if we focus on

threshold equilibria, there exists a unique equilibrium characterized with the cost level

c∗. Suppose that an equilibrium exists which is not of the threshold type. Without loss

of generality, assume two cost levels c1 and c2 with c2 > c1, with the following property.

A agent with cost c2 will run a pool, while a agent with c1 will delegate. Hence, for the

first agent, it must hold that

λR

F (c∗)H +M
− c2 >

(1− λ)R

(1− F (c∗))H
,

while for the second agent, we must have the opposite inequality, that is,

λR

F (c∗)H +M
− c1 <

(1− λ)R

(1− F (c∗))H
.

Together, this implies that

c2 <
λR

F (c∗)H +M
− (1− λ)R

(1− F (c∗))H
< c1,

which contradicts the assumption c2 > c1. Hence, any equilibrium will be of threshold

type.

Since all equilibria are of the threshold-type, we simply refer to threshold-type equi-

libria as “equilibria”.

The interpretation of the lower bound condition on λ in the theorem is straightforward.

To have a positive measure of pools owned by honest agents, the share of the reward for

the pool owners should be higher than the share of malicious agents in the whole system.

As long as λ satisfies this condition, we have a unique equilibrium of the game G. From

the proof of Theorem 1, it is straightforward to see that if λ = M
H+M

, then the only

solution to the indifference condition is c∗ = 0 and hence, all honest agents will delegate
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and malicious agents control all stakes. If λ < M
H+M

, then there exists no equilibrium

solution, where a positive measure of honest agents run pools.

5 Optimal Reward Design

In this section, we use the framework developed in the previous sections to design

blockchains that maximize security or, alternatively, maximize welfare.

5.1 Maximal Blockchain Security

We obtain the equilibrium solution of (3) for a given λ by simply solving for c∗. We

denote it by c∗(λ). The inverse function is denoted by λ(c∗), and can be trivially found

from (3). Namely,

λ(c∗) =
c∗ + R

(1−F (c∗))H

R
F (c∗)H+M

+ R
(1−F (c∗))H

. (5)

λ is a designer’s variable.

We assume in this section that the probability that the blockchain operates correctly

is given by:

Pc(c
∗) :=

P (c∗)

P (c∗) +M
.

That is, the probability that the next block consists of correct transactions is equal

to a share of honest pool runners. This is a simple formulation, reflecting that the next

block writer is chosen uniformly at random. However, our analysis holds qualitatively for

any probability function that is increasing in the share of honest agents and may reach 1

if a sufficient share of honest agents is achieved.

The first goal of the designer is to maximize the share of honest agents running pools,

that is, to maximize P (c∗). The probability that the blockchain is run correctly depends

on P , which is increasing in c∗. Increasing λ has two effects on the honest agents’ decision.

First, it motivates an agent to run a pool, as a greater share of the rewards is allocated

to the owner of the pool. On the other hand, since a higher λ motivates many agents to

run pools, there are many pools, and therefore, lower chances for each of them to win the

reward. However, we obtain the following result:

Proposition 1

The fraction of honest agents running a pool is maximized for λ = 1.

Proof. Note that the RHS of (4) is increasing in λ. By increasing λ, we have to

increase c∗ to have equality, as the RHS is decreasing in c∗. That is, if λ1 ≤ λ2, then
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c∗(λ1) ≤ c∗(λ2). Taking the maximum value λ = 1 transforms equation (4) into

c∗ =
R

F (c∗)H +M
. (6)

The solution to this equation maximizes the share of honest validators.

We note that by setting λ = 1, in the threshold equilibrium of game G, we do replicate

the levels of honest and malicious stakes involved in transaction validation which would

arise in the simple game without delegation and no staking pools. In this game, instead,

honest agents are allowed to either validate transactions or abstain. In such a game, the

indifference condition of the threshold equilibrium corresponds to c∗ = r, equivalent to

λ = 1 in the pool formation game. Yet, with λ = 1 and pool formation, all returns from

validation are channelled to staking pool owners while delegators receive nothing. This

is a concern for the future evolution of the blockchain since stake holding may be more

and more concentrated on pool owners.

We will see next that the solution λ = 1 does not maximize social welfare, and does

not distribute the rewards on honest agents that have high costs of running a pool either.

5.2 Welfare Optimal Reward Schemes

In this section, we consider the alternative objective the Blockchain Designer may pursue,

namely taking into account that achieving maximal security may involve large costs,

as too many honest agents with high costs participate in the validation process. For

the alternative objective, we normalize the returns from a successful operation of the

blockchain per honest agent to one and express the costs relative to these returns. To

quantify the gains and losses, we introduce social welfare of the game G.

Definition 2 (Social Welfare)

Social welfare of the game G is defined as

W =
P (c∗)

P (c∗) +M
H − P (c∗)E[X|X < c∗]. (7)

The social welfare is calculated as the probability that the blockchain runs correctly,

times the measure of honest agents, minus average pool running costs incurred by honest

agents.

Increasing λ has two competing effects on social welfare. First, it increases the number

of honest agents who create their own pools. Therefore, the likelihood that malicious

agents will write the next block is decreasing. Second, increasing the number of honest

agents who create their own pools wastes a lot of costs of running pools. These two effects

work against each other. In the following, we show that for a wide class of distribution

functions, the social welfare optimum value is not polar. We obtain the following result:
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Theorem 2

Let the cost distribution function satisfy F ′′(c) ≤ 0 for any c ∈ [0, T ). If HM ≥ (H +

M)2T , then the optimum value maximizing welfare is c∗ = T . On the other hand, if

HM < (H +M)2T , then there is a unique optimum value of c∗ that maximizes the social

welfare.

Proof. The welfare (7) can be rewritten as

W =
F (c∗)H2

F (c∗)H +M
− F (c∗)HE[X|X < c∗] =

F (c∗)H2

F (c∗)H +M
− F (c∗)H

∫ c∗
0
xf(x)d(x)

F (c∗)
.

The derivative of W with respect to c is equal to:

W ′ =
f(c)H2M

(F (c)H +M)2
−H · cf(c).

The second derivative is equal to:

W ′′ =
f ′(c)H2M(F (c)H +M)− 2f(c)2H3M

(F (c)H +M)3
−Hf(c)− cHf ′(c).

We note that given F ′′(c) < 0, the second derivative is always negative, that is, the

welfare function is concave. It is easy to verify that W ′(0) ≥ 0. That is, if W ′(T ) < 0,

which is equivalent to HM < (H+M)2T , we have a unique optimum solution. If, on the

other hand, W ′(T ) ≥ 0, equivalent to HM ≥ (H +M)2T , then the optimum is achieved

in the point c∗ = T .

Note that the uniform distribution function satisfies the condition F ′′(c) ≤ 0. In fact,

all distribution functions of the type F (c) = cα, where α ≤ 1 satisfy the condition of the

theorem.

6 Uniform Cost Distribution

In this section, we analyze the equilibria that maximize blockchain security and calculate

the welfare optimal values for c∗ and λ for the case when costs are distributed uniformly

on [0, 1]. Furthermore, we study for the uniform distribution how rewards for malicious

agents can be minimized.
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6.1 Security Maximization

To maximize the share of honest staking pools, we have to solve equation (6). Hence,

for uniform distribution on the interval [0, 1], that is, F (c∗) = c∗, we have to solve the

following quadratic equation:

c2H + cM −R = 0. (8)

The positive solution is given by

c∗ =
−M +

√
M2 + 4HR

2H
. (9)

If H = 1 and M = 0.4 and R = 1, then the solution to (8) is c∗ = −1+
√

26
5
≈ 0.82. This

solution maximizes the share of honest staking pools. That is, approximately 82% of

honest agents will run pools in the equilibrium. More numerical values are provided in

Section 6.3.

6.2 Welfare Maximization

For uniform distribution F , the welfare measure (7) simplifies to

W = H

(
c∗H

c∗H +M
− 1

2
c∗2
)
,

where we used that P (c∗) = F (c∗)H = c∗H and

E[X|X < c∗] =

∫ ∞
0

xf(x|x < c∗)dx =

∫ c∗
0
xf(x)dx

F (c∗)
=

1
2
c∗2

c∗
=
c∗

2
.

The derivative of W with respect to c∗ is

W ′(c∗) =
H2M

(c∗H +M)2
− c∗H.

Note that W ′(c∗) = 0 has three solutions. Furthermore, W ′′(c∗) = − 2H3M
(c∗H+M)3

−H < 0 for

any non-negative c∗. This means that the real-valued extremum (which is in the interval

[0, 1]) of W is a maximum. By simply solving W ′(c∗) = 0, we obtain the following

real-valued solution which maximizes W :

c∗ =
(1 + i

√
3)M2

22/33Z
+

(1− i
√

3)Z

6 3
√

2H2
− 2M

3H
, (10)

where Z =
3
√
−27H5M − 2H3M3 + 3

√
3
√

27H10M2 + 4H8M4. The welfare function is

maximized at c∗. Numerical examples follow in the subsequent section.
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6.3 Numerical Illustrations

In this subsection, we provide detailed security maximizing (see Section 6.1) and welfare

maximizing (see Section 6.2) equilibrium values for three sets of parameters in Table 1

and Table 2. In Table 1 the values for c∗ are given by Equation (9). In Table 2 the values

for λ and c∗ are given by Equations (5) and (10), respectively.

H M R λ c∗ P (= c∗H) W

1 0.5 1 1 0.78 0.78 0.305
1 0.4 1 1 0.82 0.82 0.336
1 1

3
1 1 0.85 0.85 0.359

Table 1: Maximizing the measure of honest staking pools: P .

H M R λ c∗ P (= c∗H) W

1 0.5 1 0.83 0.5 0.5 0.375
1 0.4 1 0.8 0.497 0.497 0.431
1 1

3
1 0.77 0.491 0.491 0.475

Table 2: Maximizing social welfare: W .

For example, consider the case where M = 0.4. Social welfare is maximized for cost

c∗ = 0.497. That is, it is quite different from c∗ = 0.82, which is the value for maximizing

the honest agents running a pool. On the other hand, λ = 0.8, the value optimizing

welfare is also quite different from λ = 1, the value maximizing the share of honest

agents running their own pools.

6.4 Malicious Reward Minimization

The share of rewards received by malicious agents as a function of λ is calculated in the

following way:

µ(λ) :=
Mλ

F (c∗)H +M
. (11)

To show the main result of this section, we first show a lemma that holds for any cost

distribution function:

Lemma 1

Rewards for malicious agents when λ = M
H+M

are lower than rewards for λ = 1, for any

cost distribution function F .

Proof. In the first case, where λ = M
H+M

, we have c∗ = 0, and therefore, using (11),

rewards are equal to

µ

(
M

H +M

)
=

M

0 +M
λ =

M

H +M
.
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In the second case, rewards are equal to

µ(1) =
M

F (c∗(1))H +M
λ =

M

F (c∗(1))H +M
.

Since F (c∗(1)) ≤ 1, the lemma is proved.

Next, we show the main result of this section:

Proposition 2

Rewards to malicious agents µ(λ) are minimized for λ = M
H+M

for a uniform cost distri-

bution function on the interval [0, 1]. Moreover, µ(λ) is increasing or first increasing and

then decreasing on the interval [ M
M+H

, 1].

Proof. We verify the derivative of the share of rewards received by malicious agents

with respect to c∗ for a uniform cost distribution. It is given by,

d Mλ
F (c∗)H+M

dc∗
=
Mλ′(c∗)(c∗H +M)−HMλ

(c∗H +M)2
. (12)

Note that the denominator is always positive. In Equation (5), λ is given as a function

of c∗. The derivative is

λ′(c∗) =
1

R(H +M)
(−3c∗2H2 + 2c∗(H2 −HM) +HR +MH).

After plugging this into Equation (12), the numerator of (12), Mλ′(c∗)(c∗H+M)−HMλ,

is given by

−2H3Mc∗3 +H2c∗2(HM − 4M2) + 2Hc∗(HM2 −M3) +HM3

R(H +M)
.

Again, note that the denominator is always positive and hence, we only consider the

numerator, −2H3Mc∗3 + H2c∗2(HM − 4M2) + 2Hc∗(HM2 −M3) + HM3. For c∗ = 0

(equivalent to λ = M/(H +M)), it is positive, and for c∗ = −M+
√
M2+4HR
2H

(equivalent to

λ = 1), it is, depending on H,M and R, either positive or negative.

As increasing (decreasing) λ yields increasing (decreasing) c∗ and vice versa, (12)

translates easily. Therefore, given µ( M
H+M

) < µ(1) from Lemma 1, the minimum value

is achieved in the point λ = M
H+M

. From the observation µ( M
H+M

) < µ(1), we see that

the derivative cannot always be negative. Therefore, it is either always positive, implying

that µ(λ) is increasing on the whole interval [ M
H+M

, 1], or the derivative is first positive

and then negative, implying that µ(λ) is first increasing and then decreasing.

This result suggests that rewards to malicious agents are minimized in the corner

case, where only malicious parties run pools. In that case, however, the probability that

the blockchain functions correctly is equal to 0. Therefore, from the blockchain security

perspective, designer needs a higher λ. Our result suggests that once λ is large enough
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(λ ≥ tλ) for the blockchain security to cross the required threshold specified by a system,

the designer only needs to verify endpoints of the interval [tλ, 1], for minimizing rewards

to malicious agents.

We next provide numerical examples for the share of rewards that malicious agents

receive for a uniform cost distribution when λ = 1 and λ < 1.

First, for λ = 1, the malicious agents’ reward share is M
P+M

, with P = F (c∗)H, where

c∗ is given by (9). For λ = 1, H = 1, R = 1 the share of rewards that malicious agents

receive is given by
2M

M +
√
M2 + 4

.

We summarize some values in Table 3.

H M R Share of Reward

1 0.5 1 0.390388
1 0.4 1 0.327922
1 1

3
1 0.282376

Table 3: Share of rewards for malicious agents when λ = 1.

Second, for λ < 1, the malicious reward share is M
Pλ+M

λ, with Pλ = F (c∗)H, where c∗

is the real-valued non-negative solution to (3). We first solve the indifference equation as

follows: With uniform distribution, we obtain from (3),

0 = H2c∗3 + (MH −H2)c∗2 − (RH +MH)c∗ + λR(H +M)−RM. (13)

To find the roots of this cubic equation, we can write (13) as 0 = ac∗3 + bc∗2 + cc∗ + d,

where

a = −H2,

b = H(H −M),

d = H(M +R),

e = −λR(H +M) +MR.

Let

∆0 = b2 − 3ad

= H2((H −M)2 + 3H(M +R)),

∆1 = 2b3 − 9abd+ 27a2e

= H3(2(H −M)3 + 9H(H −M)(M +R) + 27HMR)− λ · 27H4R(H +M).
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Then, we define

C =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
, (14)

and the three roots of (13) are given by

c∗k = − 1

3a

(
b+ zkC +

∆0

zkC

)
, (15)

where z = −1+i
√

3
2

and k = 0, 1, 2.

We summarize some values in Table 4.

H M R λ Share of Reward

1 0.5 1 0.99 0.395647
1 0.5 1 0.9 0.414172
1 0.5 1 0.8 0.416164
1 0.5 1 0.7 0.409608
1 0.5 1 0.6 0.396822
1 0.5 1 0.5 0.378318
1 0.4 1 0.9 0.35305
1 0.4 1 0.8 0.357138
1 0.4 1 0.6 0.345172
1 0.4 1 0.5 0.331877
1 0.4 1 0.4 0.313697
1 1

3
1 0.9 0.307422

1 1
3

1 0.5 0.294599
1 1

3
1 0.4 0.28047

1 1
3

1 0.3 0.261626

Table 4: Share of reward that malicious agents receive.

7 Return Competition

In this section, we reconsider the staking pool formation game. Instead of the Blockchain

Designer, we allow that pool runners choose both their own levels of rewards and the

rewards they want to distribute to delegators. A pool owner i sets his/her own λi. This

game is a variant of the game G studied so far in the paper.

In the first part of this section, we allow free return competition, that is, pool owner

i can choose any λi ∈ [0, 1]. We denote this game by G0. Hence, the game unfolds as

follows:

Stage 1: Agents (both honest and malicious) either decide to form a staking pool or

not. Agents who decide to become a pool owner obtain an identification number,

denoted by i, and set λi.
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Stage 2: Agents who did not register for a staking pool decide whether to delegate

their stake to some staking pool or to remain idle.

Stage 3: The blockchain runs, validation takes place (or not), and rewards are

distributed.

We obtain the following result:

Proposition 3

In any equilibrium of the game G0, malicious agents control all stakes involved in trans-

action validation and the blockchain is disrupted.

Proof. Suppose that there exists an equilibrium in which honest agents run staking

pools. Since running such staking pools is costly and there is zero measure of honest

agents with zero costs, such an equilibrium necessarily must involve that the minimal

value of all offered values λi by staking pool owners, denoted by λ̂, must be positive.

Otherwise, honest agents are better off by delegating their stakes. Note that the last

statement holds, since an individual honest agent has no influence on the probability

that the blockchain operates correctly by his/her decision whether to run a staking pool

or to delegate,

However, every malicious agent has an incentive to deviate and to set a lower value

of λ̂ for his/her own staking pool in order to attract more delegators, thereby making

staking pools for honest agents unattractive. Hence, all honest agents delegate. This

is a contradiction that honest agents run staking pools. Hence, in any equilibrium,

malicious agents control all stakes involved in transaction validation and the blockchain

is disrupted..

In the second part of this section, agents are only allowed to choose their corresponding

λi from the interval [λ̄, 1], where λ̄ > M
H+M

. We denote this game by Gλ̄. Invoking standard

Bertrand competition logic, we obtain the following result in this case:

Proposition 4

The equilibrium of the extended game Gλ̄ is the same as the equilibrium of game G.

Proof. First, we note that in the equilibrium, all malicious agents choose the lowest

possible level λ̄. If honest agents choose any λ that is strictly larger than λ̄, then nothing

is delegated to them. Therefore, they also choose the same λ̄.

That is, imposing a lower bound on λ also guarantees the same upper bound. This

adds to the robustness of the result obtained in Theorem 1 and offers a way to implement

the equilibrium solution. On a practical side, the blockchain system does not need to force

the agents to have the same level of rewards. Rather, they reach it through rational play.

Note that setting any lower bound λ̄ ≤ M
H+M

would result in the same (bad) equilibrium

obtained in Proposition 3.
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8 Extensions

In this section, we study two extensions of our basic model. In first extension, we intro-

duce a cost of delegation and in the second extension, we study the case when rewards

are realized endogenously. Finally, we outline how the analysis has to be performed in a

discrete framework and how we can recover results as the one in Theorem 1 in a discrete

framework.

8.1 Costly Delegation

In this subsection, we include costs of delegation. Arguably, such costs are non-zero,

since agents have to obtain the knowledge how to delegate their stakes safely to staking

pools, which lock-up conditions are attached to such operations and how to observe the

returns from delegation in comparison to other alternatives. This takes time and involves

opportunity costs. We denote the costs of delegation by cd > 0.

Costs for delegation introduce new trade-offs, as large values of λ may motivate honest

agents to run pools but simultaneously discourage honest agents from delegating to pools,

as they may simply stay idle. We will see that staking pools and suitably chosen sharing

parameters for λ may increase blockchain security in such cases.

To prepare the analysis, let us first assume that the strategy set only consists of

running a pool and delegating. We denote this game by Gd. The indifference condition

in this game is the same as (4), with only one difference—the RHS has the additional

summand cd.

c∗ =
λR

F (c∗)H +M
− (1− λ)R

(1− F (c∗))H
+ cd. (16)

We obtain the following auxiliary result:

Proposition 5

For any value of λ > MR−cdMH
HR+MR

, the indifference cost level of the equilibrium solution of

the extended game Gd is higher than the cost level of the equilibrium solution of G.

Proof. The proof is analogous to the proof of Theorem 1. The additional term cd

increases the RHS of (16), and therefore, the intersection of the LHS and RHS curves

corresponds to higher c∗. By plugging in c∗ = 0, and requiring LHS is lower than RHS,

and simplifying we obtain:

λ >
MR− cdMH

HR +MR
.

Note that the lower bound on λ for a positive equilibrium in the game Gd is lower than

the lower bound obtained in Theorem 1. However, in this game, it might be that the

expected utility of running a pool minus the expected utility of delegation is negative,
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but adding cd makes the RHS of (16) positive. In that case, individual rationality of

pool running agents is violated. Therefore, if we consider an extended game Gid, in which

honest agents are allowed to be idle, then those with high costs would choose to stay

idle instead of delegating. This also changes the behavior of agents that run pools. In

particular, they stay idle. That is, the strategy sets of agents are extended, and also

the definition of the threshold equilibrium takes a new strategy into account. Namely, in

the indifference condition, only positive values are compared, as the strategy to stay idle

yields zero utility. Formally, we obtain the following result:

Proposition 6

For λ ∈ [MR−cdMH
HR+MR

, M
M+H

], the equilibrium solution of the game Gid is lower than the one

of Gd. Below the threshold, all honest agents run pools and above it all honest agents stay

idle.

Proof. When λ ∈ [MR−cdMH
HR+MR

, M
M+H

], the expected gain from running a pool minus the

expected gain from delegation is negative: λR
F (c∗)H+M

− (1−λ)R
(1−F (c∗))H

< 0. Agents with cost

c ≥ c∗ stay idle. Agents with cost c < c∗ are divided in two groups. Namely, there exists

a c′ ∈ (0, c∗) such that all agents with cost c < c′ run a pool and others stay idle. The

threshold c′ is a solution of the following equation: λR
F (c′)H+M

− c′ = 0 and does always

exist.

Next, we ask if costly delegation can help to increase the level of honest agents running

a pool. Note that λ = 1 maximizes the level without costly delegation. From equation (6),

we find the level of c∗, such that agents with cost lower than this threshold will run a

staking pool and those agents with costs higher than the threshold will stay idle, since

delegation is costly. However, if we decrease λ in such a way that the expected return

from delegation compensates the delegation cost cd, then all honest agents who were

staying idle will delegate or run a staking pool.

We obtain the following result:

Proposition 7

With costly delegation, the highest possible blockchain security level is always lower than

the one in the benchmark game G.15

Proof. We first look at the decision of agents whether to delegate or to stay idle. For

values of λ that satisfy the following inequality:

(1− λ(c∗))R

(1− F (c∗))H
≥ cd, (17)

honest agents delegate instead of staying idle. λd(c
∗) is calculated from (16), that is,

from the indifference condition of the game Gd. That is, c∗ should satisfy both condi-

tions (16) and (17).

15In knife-edge cases, both security levels can be the same.
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Recall that in the benchmark case λ = 1 and cd = 0, the equilibrium cost level c∗ is

a solution to the following equation:

c =
R

F (c)H +M
.

In the costly delegation game, however, c∗ solves the equation (16), which together

with (17), yields:

c∗ =
λR

F (c∗)H +M
− (1− λ)R

(1− F (c∗))H
+ cd ≤

λR

F (c∗)H +M
≤ R

F (c∗)H +M
.

Given the monotonic decreasing property of λR
F (c∗)H+M

, we obtain that the equilibrium

c∗ of the costly delegation game is always lower than the equilibrium level of game G.

8.2 Endogenous Rewards

Throughout the paper, we assumed that rewards for writing the next block are exoge-

nously given and are equal to a constant number R, no matter what fraction of honest

agents runs pools and participates in the validation. In this section, we assume that

rewards are realized only if the blockchain functions correctly, with probability one. This

probability is calculated by the following formula:

Pc(c
∗) := min

[
1,

(
P

P +M
+ θ

)]
.

Here θ is a real number in [0, 1
2
] that describes the tolerance of a system regarding the

share of malicious agents it can handle without compromising network security.

We say that full network security is achieved when

P

P +M
≥ 1− θ.

Typically, for example in Byzantine-fault-tolerant protocols, θ is about 1
3

in many

consensus protocols (see Lamport et al. (1982), Abd-El-Malek et al. (2005), David et al.

(2017) Aiyer et al. (2005) and Dinsdale-Young et al. (2019)). Thus, in that case, if the

fraction of staking pools run by honest agents is at least 2
3
, then full security is achieved.

Requiring the probability of the blockchain security to surpass the threshold 1 − θ

imposes a threshold on the cost of pool running in the equilibrium. We denote the

corresponding game by Ge and the cost threshold by cθ. It is defined by the following

equation:

cθ := inf
c

F (c)H

F (c)H +M
≥ 1− θ. (18)
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In this setting, to have a unique threshold equilibrium, we need

cθ <
λR

F (cθ)H +M
− (1− λ)R

(1− F (cθ))H
. (19)

We obtain a result similar to the one of Theorem 1:

Theorem 3

There exists a unique threshold equilibrium c∗ > cθ to the game Ge if and only if

λ >
cθ

R
(F (cθ)H +M)(1− F (cθ))H + F (cθ)H +M

H +M
. (20)

The proof is analogous to the proof of Theorem 1.

The results from the Section 7 on return competition are also translated directly in

this setting. In particular, if the agents are allowed to set any λ ∈ [0, 1] as their own pool

return, the blockchain security fails. We denote this game by Ge0. Formally, we obtain

the following result:

Proposition 8

In any equilibrium of the game Ge0 no honest agent runs a pool and the blockchain is

disrupted.

The proof is analogous of the proof of Proposition 3 and exploits the fact that indi-

vidual honest agents have zero measure. Therefore, any unilateral deviation by an agent

does not affect the probability that the blockchain operates correctly.

8.3 Discrete Case

In this subsection, we show how the analysis can be recast in the discrete framework—

albeit in a much more complicated form. In particular, we show that the same lower

bound condition on λ for having positive threshold equilibrium as in Theorem 1 can

be obtained if we assume that the number of honest agents is a large integer n > 0,

and replace the expected number of honest agents who run pools with nF (c∗). The

latter approximately holds by Chernoff concentration bounds for large enough n. This

observation adds to the robustness of the continuum approach, as it shows that the result

obtained in Theorem 1 is not a byproduct of our assumption on having infinitely small

agents. Rather, this assumption allows us to derive clean results more easily.

Let m ∈ N denote the number of malicious agents. By the assumption on c∗, we have

k +m pools, where k is distributed as binomial random variable with parameters n and

F (c∗). In expectation, every pool will obtain n−k
k+m

delegated stakes. Hence, every pool

has a total expected stake of 1 + n−k
k+m

= n+m
k+m

. If a pool is chosen (i.e. it becomes the new

proposer), then all its delegators receive a reward. In expectation, the probability that
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a pool is chosen is 1
k+m

and the reward for all delegators who delegated to this pool is

(1− λ)r.

The pool owners always face private cost c∗ and obtain the reward λr with probability
1

k+m
. The expected utility of the single delegator is 1

k+m
(1− λ) r

d
, where d is the number

of delegators to that particular pool.

Let d1, ..., dk+m be non-negative numbers, such that
∑

i di = n− k, where di denotes

the number of delegators to pool i. The ex-post utility of a delegator of a baking pool i,

when pool i has di delegators:
1 + di
n+m

(1− λ)
r

di
,

and for the pool owner,
1 + di
n+m

λr − ci.

We model di as a binomial random variable, di ∼ Bin(n− k, 1
k+m

).

Next, we replace random variables with their means in the ex-post indifference equa-

tion, i.e., instead of di, we insert E[di] = n−k
k+m

and instead of k, we insert E[k] = F (c∗)n.

Then, we obtain:

1 + di
n+m

(1− λ)
r

di
=

1 + di
n+m

λr − c∗

1 + n−F (c∗)n
F (c∗)n+m

n+m
(1− λ)

r
n−F (c∗)n
F (c∗)n+m

=
1 + n−F (c∗)n

F (c∗)n+m

n+m
λr − c∗

c∗ =
1

F (c∗)n+m
λr − 1

n− F (c∗)n
(1− λ)r.

The left hand side is equal to 0 for c∗ = 0 and it is increasing in c∗. The right hand

side is a decreasing function in c∗ and therefore, it should be non-negative for c∗ = 0, to

have a positive solution in c∗. That is,

1

F (c∗)n+m
λr ≥ 1

n− F (c∗)n
(1− λ)r.

For c∗ = 0, we take into account that F (0) = 0 for a distribution function F . Thus, we

obtain:

1

m
λ ≥ 1

n
(1− λ)

λ ≥ m

n+m
.
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9 Conclusion

In this paper, we initiated the study of the formation of staking pools from game-theoretic

and mechanism design perspectives. Our insights can help to design reward distribution

rules that improve the blockchain security and fairness of reward distribution. This

study might open many further research avenues on how staking pools can be designed

optimally for blockchains. For instance, one might introduce quantity constraints such

as a leverage constraint on staking pools which limits the share of delegators towards the

pool owner. Whether such a constraint further improves the security of the blockchain is

left for future research. One might also allow the history of staking and running staking

pools to play a role in dynamic versions of the game and thus, an agent’s reputation to

behave honestly may be taken into account in such staking pool formation games. Future

research can also extend our model to arbitrary distribution of stakes across agents.
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