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1 Introduction

Since economics in general, and game theory in particular, adopted the use of laboratory ex-
periments, hundreds of experimental studies have shown that Nash equilibrium theory has
clear limitations in regard to its ability to describe how people behave in strategic environ-
ments, see for example Thaler (1988), Nagel (1995), McKelvey and Palfrey (1992), Goeree
and Holt (2001), Arad and Rubinstein (2012) among many others. If it is not only equilibrium
thinking, then what determines individual behavior in games? Extensions of individual pref-
erences to the so called social or interdependent preferences, e.g. Sobel (2005), and models
of bounded rationality, e.g. Crawford et al. (2013), have been put forward to explain individ-
ual behavior in games. Yet, the determinants of individual behavior in games are not fully
understood.

In this paper, we take a novel approach. We analyze the different pieces of information or
considerations contained within a game and study their impact in individual behavior. In par-
ticular, we use the direct-sum decomposition of games, proposed by Candogan et al. (2011),
to connect individual behavior and different behavioral rules to the different components of
a game. Candogan et al. (2011) defined a specific direct-sum decomposition for any finite
games in strategic form: games are decomposed into the strategic and nonstrategic compo-
nents. The appealing attribute of this particular decomposition is that the strategic component,
also referred to as the normalized game, captures all strategic considerations, while the non-
strategic component, what is left, captures all nonstrategic considerations. In other words,
this decomposition is the only one that separates and filters out the strategic and nonstrate-
gic information in two different components (see footnote 5 to understand the connection of
this particular decomposition with other existing decompositions). Non-cooperative games
are solved using mainly strategic solution concepts. Among those, the canonical solution
concept is the Nash equilibrium, which only takes the strategic information of the game into
account, fully contained in the strategic component. Therefore, from a game theory point
of view, only the strategic component will be key in terms of predicting individual behavior
and therefore individual behavior should remain constant in strategically equivalent games,
i.e. games with the same strategic component, as defined in Candogan et al. (2011). What
about considerations included in the nonstrategic component? They may indeed play a role
in players’ decision-making. In this paper we address whether the nonstrategic component of
a game is relevant to behavior and if so, when.

To illustrate all these ideas, take the Prisoner’s Dilemma (PD) game, and three additional
modifications of this game, all shown in Figure 1. The four games have the same unique

2



Prisoner’s Dilemma I
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Figure 1: Four Examples of the Prisoner’s Dilemma Game
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Nash equilibrium prediction, hereinafter referred to as NE, given by (NC, NC), which can be
achieved by eliminating the strictly dominated strategy of C. Moreover, following Candogan
et al. (2011), each of the four games can be decomposed into their strategic and nonstrategic
components, as shown in Figure 1. For an easy illustration of how to decompose a game, we
will start with the calculation of the values of the nonstrategic component and we will then
get the strategic component values taking the difference between the original game and the
nonstrategic component values, as it is a direct-sum decomposition. In particular, in game I
and for the row player, fix column player’s strategy C or NC and summing own payoffs (6+7)
or (3+4) and dividing by 2, we obtain row player’s values of 6.5 or 3.5 for the nonstrategic
component when the column player plays C or NC, respectively. Similarly, we can perform
the same calculations to obtain the nonstrategic component’s values for the column player
fixing strategies for the row player. The strategic component is then obtained by subtracting
to each of the payoffs of the original game the value in the nonstrategic component.

On the one hand, looking at the strategic component, note that all four games have exactly
the same strategic component, which can be interpreted as a game on itself, and therefore, the
four original PD games, as well as the four games represented by their respective strategic
components will have the same NE prediction. The same equivalence is true for other strate-
gic solution concepts, such as Quantal Response Equilibrium (McKelvey and Palfrey, 1995)
and level-k thinking rules (Stahl and Wilson, 1994, 1995; Nagel, 1995; Costa-Gomes et al.,
2001; Camerer et al., 2004). For any games that have the same strategic component, given
that this component captures all strategic considerations, Candogan et al. (2011) define them
as strategically equivalent.

On the other, the nonstrategic component can be also interpreted as a game, although it
is clear that there is no meaningful strategic consideration in this component because both
strategies yield the same payoff for any player. Therefore, in the game represented by the
nonstrategic component, all strategy profiles are Nash equilibria.

Does the addition or manipulation of a nonstrategic component affect behavior in the
original game? In other words, is individual behavior constant in strategically equivalent
games? This is the initial question we address in this paper. Although we have not taken
these particular four games into the laboratory, we expect, as many readers will, that the
answer will be positive. Jessie and Kendall (2022) and Kendall (2022) showed that individual
behavior is significantly affected when manipulating the nonstrategic component of a game
using different 2× 2 games and stag-hunt games, respectively. Our empirical findings are
consistent with their results. However, we have added to their work by delving deeper into
the analysis of the nonstrategic component, by defining a new solution concept, and by using
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carefully designed 3×3 games in two important ways. First, we show when the manipulation
of the nonstrategic component will affect individual behavior most and second, we also show
how individual behavior will be affected, i.e., which behavioral rule individuals will follow.
The answer to these two questions in short is: individual behavior will be affected most
when manipulations of the nonstrategic component change the Pareto optimality of different
outcomes in the original game, and individuals will mostly follow a behavioral rule that has
efficiency concerns.

We start analyzing the nonstrategic component. Going back to the example: What are the
relevant considerations in the nonstrategic component? It is obvious that the four outcomes
given by the four strategy combinations in the nonstrategic components in Figure 1 can be
partially ordered by Pareto optimality, see for example Mock (2011).1 Most importantly,
there is a unique strong Pareto optimal (PO) outcome, which coincides with the prediction
by the social-welfare maximization or altruistic rule, hereafter A rule, which maximizes the
sum of players’ payoffs, as described by Charness and Rabin (2002).2 Needless to say, and
scanning all the four matrices shown by the nonstrategic components, the unique A is the
sensible strategy profile to play. In particular, in the games represented by the nonstrategic
components in I and II, (C,C) is the prediction by the A rule. In game III, the A rule selects
(NC, NC), and finally, in game IV, the A prediction is now given by (C, NC). What are the
three different modifications of the nonstrategic components doing to the original PDs in
II, III and IV in Figure 1? In game II, it is exacerbating the social dilemma that exists in the
original PD, described in game I, making the Pareto dominance between (C,C) over (NC,NC)
more extreme. By contrast, the nonstrategic component in games III and IV destroys the
social dilemma that existed in the original PD, such that we cannot even label these last
two games PD games, as the unique NE is not Pareto dominated by the (C,C). These four
games clearly illustrate that predictions by the A rule in the nonstrategic component will not

1Payoff dominance, defined by Harsanyi et al. (1988), is a related concept, when an outcome is Pareto dom-
inating. According to these authors the payoff dominance principle relies on the idea that “rational individuals
will cooperate in pursuing their common interests if the conditions permit them to do so”. There are multiple
experimental investigations of when payoff dominance is important for individual behavior, in games where
Nash equilibrium and payoff dominance are in conflict, as in the classical Prisoner’s Dilemma, among the old-
est experiments on games going back to Deutsch (1958), but also in games with multiple Nash equilibria, where
payoff dominance is one selection criteria (Cooper et al. (1990), Cooper et al. (1992), Van Huyck et al. (1990),
Van Huyck et al. (1991), Straub (1995), Haruvy and Stahl (2007) or Crawford et al. (2008)).

2In the nonstrategic component, a strong PO and A or the social-welfare maximization rule will select
the same strategy profile(s), which we will refer to as the A rule. Jessie and Kendall (2022) refer to this as the
outcome with positive values. However, in the original game, strong or weak PO and A rules will not necessarily
fully coincide. In particular, any A profile will always be strong PO but there can be strong PO profiles that are
not A. Of all the strong PO profiles, we will focus on A profile.
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necessarily coincide with the predictions by the A in the original game. In particular, in game
IV, the prediction by A in the game represented by the nonstrategic component selects (C,NC)
but in the original game IV, the A rule selects (NC,NC), so the same behavioral rule can select
different strategy profiles in the nonstrategic component and the original game. Consequently,
to identify the importance of the nonstrategic component, separating the A rule predictions in
the original and in the nonstrategic component game is crucial and an important contribution
of this paper. We will now go on to explain this contribution using the examples in Figure 1.

We define a new solution concept for two-player games, which we shall call the Mutual-

Max Sum, MMS for short. The MMS identifies, in the original game, the predicted strategy
profile(s) identified by the A rule in the nonstrategic component. In particular, the MMS

selects strategy profile(s) where players choose their strategies by maximizing the sum of
the other player’s payoffs. The MMS solution concept may be understood as an empathetic
player who chooses her strategy maximizing the sum of the opponent’s payoffs, as if the
other player would not be able to do so by herself. Going back to the four games in Figure
1, the MMS for players 1 and 2 in PD I would choose C, because this strategy would yield
a payoff of 6+7=13 for the other player (if she chose NC, then this strategy would yield a
payoff of 3+4=7 for the other player). Similarly, in game II, the MMS profile would select
(C, C), as this maximizes the sum of payoffs for the other player. However, in game III, the
MMS prediction is given by (NC, NC) and by (C, NC) in game IV.

What are the appealing features of the MMS solution? We show that, in the original game,
the MMS will always identify the A profile(s) in the nonstrategic component (Proposition 1).
An important advantage of the MMS solution concept is that no decomposition is required
to identify the relevant profile(s) of the nonstrategic component. Interestingly, as the NE is
indifferent between any of the strategy profiles in the nonstrategic component, the MMS is
also indifferent between any of the strategy profiles in the strategic component. Consequently,
the NE captures the essence of the strategic component while being indifferent between any
of the strategy profiles in the nonstrategic component, and the MMS captures the essence of
the nonstrategic component while being indifferent between any of the strategy profiles in the
strategic component.

In addition to the NE and MMS, how do other solution concepts or behavioral rules
depend on strategic and nonstrategic components? Let us focus on A and/or PO selection
rules. First, note that a PO criterion can select multiple strategy profiles, so we will focus
our attention on the A rule, which will be unique to most of our games of interest and will
be strong PO by definition (see footnote 2). Second, we show that, in the original game,
A profiles depend on both components and that, in principle, in the original game we can
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separate the predictions of these main three solution concepts: NE, MMS and A. This is a
very important result of our study, showing that MMS predictions do not necessarily coincide
with the predictions by A. For example, in games I and II, NE is separated from A and
MMS but the last two coincide. In game III, NE, MMS and A are all confounded. Finally,
in game IV, MMS predictions are different from predictions by NE and A but the last two
coincide. To perfectly separate the three different rules, we then proceed to design 3× 3
games to test whether MMS is behaviorally relevant. The question of interest in this regard
is: when manipulating or adding a nonstrategic component, is MMS a good indicator of how
manipulations in the nonstrategic component affect individual behavior? This is a relevant
question because the MMS identifies the altruistic profile, and the most sensible strategy
profile, in the nonstrategic component. An important limitation of Jessie and Kendall (2022)
and Kendall (2022) is that MMS predictions are always confounded with the A behavioral
rule’s predictions. We show that this confound is crucial when assessing how behaviorally
relevant the MMS predictions are.

To this end, we design a laboratory experiment to address the two questions mentioned
above. First, is individual behavior constant in strategically equivalent games, when the only
difference resides in the nonstrategic component? Second, is MMS behaviorally relevant,
particularly when separated from A rule predictions?

For the design of the experiment, we start with the direct-sum decomposition of games of
normal-form by Candogan et al. (2011), which decomposes the game into the strategic and
nonstrategic, and at the same time the strategic into the potential and harmonic components.
We add to this decomposition the one proposed by Jessie and Saari (2015), which decom-
poses the nonstrategic into the behavioral and kernel components. This combination yields
a four-component direct-sum decomposition of games: potential, harmonic, behavioral and
kernel components. Following (Candogan et al., 2011), we use three different classes of
games: harmonic games (those without a potential component), potential games (those with-
out a harmonic component) and constant-sum games (games that have both potential and
harmonic components). These further decompositions are useful to see when different be-
havioral rules’ predictions will be differentiated. Thus, they will be important to understand
the experimental design of the games. Harmonic games are useful for separating predictions
by MMS from predictions by NE, although they are limited by the fact that predictions by
MMS and A are fully confounded. Constant-sum games are the most useful for separating
NE and MMS predictions, as their predictions will always be separated (Proposition 2). Fi-
nally, potential games are the most useful for separating MMS, A and NE predictions. With
regard to the decomposition by Jessie and Saari (2015), we use it in order to keep constant
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the kernel component in all variations, in contrast to Jessie and Kendall (2022), and change
only the behavioral component. This is important because there is work showing that un-
derlying stakes can also impact individual behavior, see for example Esteban-Casanelles and
Gonçalves (2020).

In the empirical test, we find that individual behavior may indeed show very important
differences in strategically equivalent games, when changes occur only in the nonstrategic
component. Although Nash equilibrium is a strong predictor of individual behavior in our
games, changes in the nonstrategic component can clearly change individual behavior, which
is consistent with Jessie and Kendall (2022). More specifically, when comparing individ-
ual behavior in games that are strategically equivalent (with the same strategic component)
but that differ in their nonstrategic component (more particularly, in their behavioral com-
ponent keeping the kernel component constant), individual behavior is statistically different
for at least one of the player roles, and many times it is statistically different for both player
roles. Moreover and most importantly, how does individual behavior change? Which rule do
individuals follow? We find that MMS predictions gain most relevance over the Nash equi-
librium for individual behavior only when they fully coincided with the A rule predictions.
As in the designs by Jessie and Kendall (2022) and Kendall (2022), MMS predictions always

coincided with the A rule predictions, led them to conclude that the strategy profile that is
strong Pareto in the behavioral component, in our definition, the MMS, is very important for
individual behavior. By contrast, in our design, where MMS can be separated from A and
Pareto concerns, comparing observed individual behavior directly but also through the use of
a mixture-of-types econometric model estimation, we confirmed that NE and Pareto efficient
outcomes are important attractors for individual behavior, while we found little evidence to
support the idea that MMS is generally a behaviorally relevant rule.

We conclude that Candogan et al. (2011) is useful to inform about individual behavior
in games. As carefully noted in footnote 7 in by Candogan et al. (2011), the nonstrategic
component can affect efficiency in games. They further mention that the nonstrategic com-
ponent is of interest mainly through its effect on the efficiency or Pareto optimality properties
of games. We have elaborated on this idea by empirically showing that changes in the non-
strategic component will affect the efficiency in the original game depending on the class
of games. Furthermore, we empirically show that when these changes affect the Pareto op-
timality (A rules’ prediction) in the original game, that is when individual behavior will be
most affected. Nevertheless, MMS is an inherently different behavioral rule to the PO and A

rules. Overall, when MMS does not coincide with the PO or A behavioral rules in the original
game, we found little evidence for its relevance in individual behavior. To summarize, going
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back to the four different versions of PD in Figure 1, our results would imply that, while
individual behavior would follow the MMS prediction in games I, II and III, in game IV the
MMS prediction would not explain much of the individual behavior.

The paper is organized as follows. Section 2 shows the four direct-sum decomposition
of games, adding the decomposition by Jessie and Saari (2015) to the one by Candogan
et al. (2011). This section also relates the decomposition to different behavioral rules, and
to different classes of games. Section 3 describes the experimental design and procedures
to empirically test whether and when the manipulations of the nonstrategic component will
affect individual behavior and whether MMS is a behaviorally relevant rule. Section 4 shows
the results and finally, Section 5 concludes.

2 Theoretical Framework

2.1 Preliminaries

We first introduce the general framework for two-person normal form games and their corre-
sponding bimatrix representation.

Let G =
〈
I,S,T,(ui){i=1,2}

〉
be a two-person finite normal form game, where I = {1,2} is

the set of players, S= {s1, ...,sh} and T = {t1, ..., th} are the sets of strategies for players 1 and
2, respectively, and ui : S×T → R is player i (i = 1,2) payoff function. A pair (si, t j) (i, j =

1, ...,h) denotes a strategy profile. A mixed strategy for player i (i = 1,2) is a probability
measure over her possible pure strategies, σ ∈ ∆(S) and τ ∈ ∆(T ). We will focus on games
where players have the same number of strategies, although all results are easily generalizable
to games in which players have a different number of strategies.

Game G can be written as a bimatrix square game (A,B). Matrix A corresponds to player
1’s payoffs with elements ai j (i, j = 1, ...,h) where ai j = u1(si, t j). Matrix B corresponds to
player 2’s payoffs with elements bi j (i, j = 1, ...,h), where bi j = u2(si, t j). Since our study
focuses on two-person games, we will use matrix notation where appropriate.

2.2 Direct-Sum Decomposition of Games

We start showing the direct-sum decomposition of games, proposed by Candogan et al.
(2011) and then we add the decomposition of the nonstrategic component, proposed by Jessie
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and Saari (2015).3 This combination leads to a four-component direct-sum decomposition,
which is important to understand the underlying reasoning behind the experimental design, in
particular, the games. Although in this section we will differentiate between the game and its
corresponding components, note that each component can be understood as a payoff matrix
of an independent game.4

Candogan et al. (2011) started normalizing the game by eliminating the nonstrategic in-
formation. In particular, the nonstrategic component is computed by taking the average of
each player’s own payoffs for each of their opponents’ strategies. Then, in order to get the
strategic component, this average is subtracted from the payoffs in the game, such that in the
strategic component the sum of one player’s payoffs, given the other players’ strategies, is
always zero. They further proposed a canonical direct-sum decomposition of the strategic
component into two components: potential and harmonic.

Jessie and Saari (2015) build on Candogan et al. (2011) focusing on the nonstrategic
component, which in turn was decomposed into what they called behavioral and kernel com-
ponents. Although they defined the decomposition for 2×2 games, it is easily generalizable
to h×h games.

The combination of the two proposed decomposition of bimatrix games yields the four-
component decomposition represented in Figure 2.

We will now describe the four-component decomposition for a bimatrix square game.
First, we consider the nonstrategic component. Denote the column vector of ones by 1

and its transpose by 1T. The nonstrategic component is then computed as follows:

(AN S ,BN S ) = ((
1
h
)11TA,(

1
h
)B11T)

Then, we can further decompose the nonstrategic component into the kernel component, and
the behavioral component, denoted by (AK ,BK ) and (AB,BB), respectively.

The kernel component is a matrix of payoffs computed by taking the average of all payoffs
for each player of game (A,B). Formally, the kernel component can be computed as follows:

3Candogan et al. (2011)’s decomposition was based on the Helmholtz decomposition theorem, which enables
the decomposition of a flow on a graph into three components: globally consistent, locally consistent (but
globally inconsistent), and locally inconsistent components, which are the potential, harmonic and nonstrategic
components, respectively. For a more detailed theoretical description see Section 3 and for its application see
Section 4 in Candogan et al. (2011). Jessie and Saari (2015)’s decomposition was based on the mathematics of
symmetry groups and representation theory.

4The strategic and nonstrategic components correspond to the classes of nonstrategic and µ-normalized
games introduced by Abdou et al. (2022) see Definition 2.2 and Section 2.3 for details.

10



Game (A,B)

(AS ,BS )
Strategic (normalized)

(AN S ,BN S )
Nonstrategic

(AP ,BP)
Potential

Component

(AH ,BH )
Harmonic

Component

(AB,BB)
Behavioral
Component

(AK ,BK )
Kernel

Component

Figure 2: Diagram of Four-Component Direct-Sum Decomposition of Games

(AK ,BK ) = ((
1
h2 )11TA11T,(

1
h2 )11TB11T)

This component can be interpreted as an “inflationary term” or underlying stakes that can
vary by player.

The behavioral component is obtained as the difference between the nonstrategic and the
kernel components.

(AB,BB) = (AN S ,BN S )− (AK ,BK )

All rows of matrix AB and all columns of matrix BB have equal payoffs, meaning that both
players are strategically indifferent between their strategies in the behavioral component.
Also, since this component is normalized, there must always be at least one positive payoff
in each row (and column). Therefore, strategy profiles in the behavioral component can be
ordered according to Pareto optimality, Mock (2011). In particular, we are interested in the
strategy profile selected by the strong PO or A rule on this component. This is also the case
overall for the nonstrategic component.

There are two explanatory comments that we would like to make. First, throughout the
paper we will use nonstrategic and behavioral components interchangeably, as the kernel
component is just a constant term for each player (and we make sure we keep this term
constant in all our manipulations in the experimental design). Second, given what our paper
reveals, our preference would be to change the term "behavioral component" to "efficiency
component", as it can affect the efficiency or Pareto optimality of the outcomes in the original
game, which is when it becomes most relevant for individual behavior. However, given this
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name was originally proposed by Jessie and Saari (2015), we decided to follow their labeling
of these components.

Second, we consider the decomposition of the strategic component. We start by iden-
tifying the strategic component, which can be obtained as the difference between (A,B) and
its nonstrategic component (AN S ,BN S ).

(AS ,BS ) = (A− (
1
h
)11TA,B− (

1
h
)B11T).

Then, the potential and the harmonic components are obtained by first calculating the follow-
ing matrices: M = 1

2(A
S +BS ), D = 1

2(A
S −BS ) and Γ = 1

2h(A11T −11TB).
The potential component is, then:

(AP ,BP) = (M+Γ,M−Γ)

while the harmonic component is:

(AH ,BH ) = (D−Γ,−D+Γ)

These two components are also normalized, hence 1T AP = 0,BP1=0 and 1T AH = 0,BH 1=0.
This decomposition separates the cyclical and the acyclical parts of the strategic compo-

nent giving rise to the harmonic and the potential components, respectively. Therefore, by
construction, the harmonic part is a zero-sum payoff matrix. Consequently, starting from any
of its payoff profiles, there exists a deviation for a single player that strictly increases her
payoff until the same payoff profile is reached again. By contrast this iteration always ends
in the potential component.5

This completes the introduction of the four-component direct-sum decomposition of games.
From now on, when a particular component is a matrix of zeros, we say that it lacks this
particular component. To illustrate the calculation of the four-component direct-sum decom-
position, please find a detailed step by step calculation for a particular game, as well as the 11
experimental games we use later in the empirical test decomposed into the four direct-sum
components in the Online Appendix A.

5Kalai and Kalai (2013) proposed a decomposition of a two-person normal-form game into an identical
common-interest component, which is potential, and a zero-sum component which is not necessarily a harmonic
component. Clearly, this decomposition is in line with the decomposition of the strategic component proposed
by Candogan et al. (2011) whenever each cell of payoffs of the auxiliary matrix Γ is zero. Hwang and Rey-Bellet
(2020) show that any two-person normal form game can be uniquely decomposed into a zero-sum normalized
game, a zero-sum equivalent potential game, and an identical interest normalized game.
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2.3 Decomposition and Solution Concepts: the Usual Suspects and Mutual-
Max-Sum

A solution concept or behavioral rule can be understood as a prediction of how agents will
play a game. We start by listing the most common solution concepts used to explain individ-
ual behavior in games and then introduce a new solution concept.

The canonical solution concept is the NE. A strategy profile is said to be a NE if no player
can gain by altering its strategy, given the existing strategies of other players. Thus, a NE

represents a best response by any player to the given strategies of other players. Among the
non-equilibrium solution concepts, the level-k thinking model excels. In the so-called level-k
model, each player k = 0,1, ... corresponding to the number of steps of reasoning the player is
able to perform. Thus, a level-0 agent chooses her strategies randomly while a level-1 agent
assumes her opponent will act as a level-0 agent and best responds. Alternatively, level-1
players 1 and 2 sum their own payoffs across columns and rows, respectively, and take the
strategy that yields the maximum sum of payoffs.6

Other solution concepts can be better understood as if they were selected by an external
observer whose aim is to identify the best outcomes for the two players. Pareto optimality
or efficiency (PO) stands out as the most popular criterion. With a weak PO, any change
will make at least one player no better off, but may not make any party worse off. With a
strong PO, any change will make at least one player worse off. Often there will be multiple
strategy combinations that lead to PO outcomes. The most salient PO outcome is the altruis-

tic, or social welfare maximizing behavioral rule (Charness and Rabin, 2002), A, one which
can be viewed as an implicit agreement between players who select the strategy profile that
maximizes the sum of their payoffs. So, when choosing her strategy, the A behavioral rule
simply sums her own and opponent’s payoffs in each cell of the payoff matrix, and applies the
maxmax operator. In such a solution, rather than trying to predict her decision, both players
implicitly assume that the other player is also altruistic (Costa-Gomes et al., 2001). Finally,
also following Costa-Gomes et al. (2001), we consider both the Pessimistic and the Optimistic

behavioral rules. The Pessimistic (P) can be understood as a conservative player who, when
choosing her strategy, maximizes her minimum payoff. The Optimistic behavioral rule (O)
on the other hand, when choosing her strategy, maximizes her maximum payoff.

We now introduce a novel solution concept that we call, Mutual-Max-Sum (MMS). This
solution can be understood as the reciprocal behavior that may take place in bilateral encoun-
ters between empathetic players. Thus, each player when choosing her strategy considers,

6k = 2 or higher are similarly defined such that level-k best response to level-k-1 behavior.
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not her own payoffs, but instead the payoffs of her opponent.7

DEFINITION 1. Let G be a two-person normal-form game. A strategy profile (s̃, t̃) ∈ S×T is

Mutual-Max-Sum if:

s̃ ∈ argmax
si∈S

∑
t j∈T

u2(si, t j) and t̃ ∈ argmax
t j∈T

∑
si∈S

u1(si, t j).

Note that this is not an equilibrium concept, as players are not mutually best responding
to each other. Indeed, individuals choose their strategies independently of the behavior of
their opponent but we assume both players are doing this in order to define the MMS profile.

In an interesting and useful result, demonstrated in Appendix B, we relate MMS in the
original game and the A payoff profile(s) in the behavioral component. In particular, the
MMS in the (A,B) always identifies exactly the payoff profile(s) that is A in the behavioral
component.

PROPOSITION 1. Let (A,B) be a bimatrix game and let (AB,BB) be its behavioral com-

ponent. Then the MMS solution(s) of (A,B) will coincide with the A payoff profile(s) of

(AB,BB).

It is worth noting two points. First, this result allows us to apply the MMS solution to game
(A,B) and identify the most relevant payoff profile(s) in the behavioral component without
having to decompose the game. Second, although the MMS solution may not be unique, in
our experimental exercise we will only consider the case where this is unique or the trivial
case, where the behavioral component is zero, such that any strategy combination is trivially
MMS.

All these behavioral rules that we have presented are defined in the original game (A,B).
Now, if we were to make changes to any of the two main strategic or nonstrategic components,
would their predictions change? We can identify strategic, nonstrategic, and mixed behavioral
rules based on their dependence on the strategic and nonstrategic components. On the one
hand, NE and any level-k behavioral rules are strategic rules, such that any change in the
nonstrategic component will never affect their predicted behavior. On the other hand, MMS

is a nonstrategic rule, such that it is invariant to any changes in the strategic component.
7This definition shares similarities with the mutual-max solution defined by Rabin (1993). The difference

relies on the fact that for the selection of a strategy in the mutual-max solution each player considers the maxi-
mum payoff of her opponent while in the MMS solution each player selects the maximum sum of the payoffs of
her opponent. As it is the case for the mutual-max solution, the MMS does not satisfy invariance to the deletion
of dominated strategies. However, in contrast to the mutual-max solution, the MMS satisfies the invariance to
affine transformations.
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Finally, predictions by PO, A, P and O rules can be affected by any changes in any of the two
main components, meaning that we will refer them as mixed behavioral rules.

Looking at this in more detail, we can see that the NE prediction in the original game
(A,B) will always coincide with its prediction in the strategic component. This is also the case
for any behavioral rule that is strategic. In other words, as the strategic component contains
all the strategic information of the original game, the strategic solutions remain invariant
between the original game and the strategic component. Furthermore, the predictions by
every strategic behavioral rule would be trivially indifferent for any of the strategy profiles
in the nonstrategic components. Interestingly, the MMS solution is the mirror image such
that its prediction in the original game (A,B) will always coincide with its prediction in
the nonstrategic component and, further, its prediction in the strategic component will be
trivially indifferent for any of the strategy profiles. In short, the strategic component isolates
all the strategic considerations, while the nonstrategic component isolates all the nonstrategic
considerations. These results are summarized in the following remark.

REMARK 1. (i) The Nash equilibria of (AS ,BS ) coincides with the Nash equilibria of

(A,B), while every strategy profile of (AS ,BS ) is a Mutual-Max-Sum. (ii) The Mutual-

Max-Sum solution (AN S ,BN S ) coincides with the Mutual-Max-Sum of (A,B), while every

strategy profile in the (AN S ,BN S ) is a Nash equilibrium.

Finally, note that we cannot make any similar statements for mixed rules, such as the PO,
A, P and O rules. They can select different strategy profiles for different components and,
therefore, their predictions in the original game are not invariant to changes in any of the
components.

2.4 Decomposition and Classes of Games: Harmonic, Potential and Constant-
Sum Games

Candogan et al. (2011), see their Theorem 5.1, allows to reformulate the classes of potential
and harmonic games in terms of their components as follows: the absence of a harmonic
component defines a potential game, while the absence of a potential component defines a
harmonic game. A potential game admits at least one Nash equilibrium in pure strategies,
while a square harmonic game admits only a uniformly mixed Nash equilibrium.8 Any other

8As pointed out by Candogan et al. (2011), harmonic games have appeared in earlier publications but have
not been defined as a class.
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class of games always has both components. Looking at these other games with both compo-
nents, we will focus on constant-sum games. These are games of conflict where the sum of
all players’ payoffs remains constant for each strategy profile, meaning that the gain for one
player is always at the expense of her opponent. All constant-sum games have both poten-
tial and harmonic components, except the class of matching pennies (rock-paper-scissors for
three strategies).9

Our main objective is to understand whether and when the manipulations in the nonstrate-
gic component will affect individual behavior and also whether the MMS solution is relevant
to behavior. Therefore, we use this classification of games to assess when the MMS solution
will make a different prediction from other relevant behavioral rules. To proceed, we start by
saying that any two solution concepts or behavioral rules are separable if they can provide a
different predicted probability of choosing each of the strategies, while they are separated if
they never coincide. Below is a table that summarizes the separability between MMS, NE,
and A by the classes of games.

Table 1: Separability between MMS, NE and A, by Class of Game

MMS vs NE MMS vs A

Harmonic Games Separated Not separable
Constant-sum Games Separated Not separable*
Potential Games Separable Separable

* In CSG all strategy profiles are A.

Harmonic games. The unique Nash equilibrium prediction in these games is the uniformly
mixed strategy profile. Therefore, the MMS prediction is always separated in these games.
However, such a prediction cannot be separated by the A behavioral rule. Consequently,
harmonic games will not be useful when it comes to separating the MMS solution from the A

behavioral rule.
Constant-sum games. These games are particularly interesting because NE and MMS are
always perfectly separated as shown by the proposition below. However, they will not to be
useful when it comes to separating MMS predictions from A rule predictions.

9Furthermore, a constant-sum game can be transformed into a zero-sum game by subtracting half of the
value of the constant from each payoff in the initial game so that in the former the kernel is positive instead of
0. Zero-sum games generalize the generalized rock-paper-scissors games whose decomposition was analyzed
by Candogan et al. (2011).

16



PROPOSITION 2. Let (A,B) be a constant-sum game with a unique Nash equilibrium in pure

strategies and a unique MMS solution. Then, the NE and the MMS solution will never

coincide.

Potential games. These games offer the highest degree of separability. Interestingly, manip-
ulating the behavioral component we can lead to three situations:

(1) The MMS coincides with a NE of the game, in which case we would say that it rein-

forces the strategic behavior.

(2) The MMS points out to a different strategy profile such that it does not coincide with
the NE.

(3) The MMS can be separated from the A.

As summarized in Table 1, although it is relatively easy to separate MMS predictions
from NE predictions, it is not trivial to separate MMS predictions from A rule’s predictions,
as illustrated by the work by Jessie and Kendall (2022). In our design, we do separate them,
and we show that this separation leads to very different interpretation of the results on the
importance of the nonstrategic component.

3 Experimental Study

Do nonstrategic considerations affect individual behavior or is individual behavior constant
in strategically equivalent games? Do individuals follow MMS predictions? As these are
empirical questions, we carried out a laboratory experiment. Potentially, we could use ex-
isting empirical studies and games to answer this question. However, the games in existing
studies were not designed with our research questions in mind, and, as such, they would not
provide the most informative answer. Therefore, we designed our own games guided by the
four direct-sum decompositions of games.

3.1 Procedures

Using the ORSEE system (Greiner, 2015), we recruited 200 subjects for the experiment.
The laboratory sessions, which lasted around 1 hour and a half, were conducted using the
computer software z-tree (Fischbacher, 2007). The 5 sessions, with around 40 participants
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each, took place in April 2022 in the Laboratory of Experimental Analysis (Bilbao Labean)
at the University of the Basque Country UPV/EHU.10

We started with general instructions that informed subjects that payments would depend
on their own and other participants’ decisions in the same session, as well as on luck. After
that, the participants were given detailed instructions explaining the task in hand, including
examples of games, how their own and the other players’ decisions could affect the payments
and how they were going to be matched. Before subjects started the task, we posed a set
of three questions to ensure the correct understanding of the payoff-matrix representation of
games and payments. Online Appendix C includes a translated version of the instructions.

All of the subjects played the same eleven 3× 3 normal-form two-player games in the
same order, twice, once as a row player and once as a column player, leading to a total of 22
decisions per subject.

When the subjects had finished the 22 decisions, the computer randomly matched subjects
in pairs and selected one game per pair, in each of the two parts (the first 11 decisions and
the second 11 decisions). This ensured that each subject was paid for one game played in
each of the two player roles. After we informed subjects about their payments, the subjects
completed a non-incentivized questionnaire regarding demographic data, risk preferences
following Eckel and Grossman (2002), and a cognitive reflection test. Table 2 shows the
descriptive statistics for all these variables. The majority of the subjects were aged between
18 and 22, with a higher presence of women (64%). This is consistent with there being a
higher proportion of women studying social sciences, particularly Business Administration
and Management, Law and Economics, which represents more than 60%. We also requested
free-format responses regarding their explanations of how they made their choices and their
expectations of how other subjects made their choices. To finish the session, each subject
was paid privately according to the two games selected plus a 3 euros attendance fee. The
average payment was 17.06 euros, with a standard deviation of 3.71.

3.2 Experimental Design: Player Roles, Games, Behavioral Rule Pre-
dictions and Separability

The specific structure of the experiment was as follows. The computer randomly divided
the participants into two types, Type 1 and Type 2. Type 1 subjects started the first eleven
decisions playing as row players and, then, in the second part of the task, they played as

10The CEISH-UPV/EHU Ethics Committee issued a favorable report for carrying out the experiment. Ref.:
M10_2022_102
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Table 2: Descriptive Statistics

Variables Mean Values Stand. Dev.
Women 0.635
Age 20.75 2.817
Spanish 0.96
University Entry Grade (out of 10) 7.831 2.269
Business and Economics Degree 0.625

Distribution over risk choices:
1.5e with 0.50 or 1.5e with 0.50 0.350
1.3e with 0.50 or 1.8e with 0.50 0.170
1.1e with 0.50 or 2.1e with 0.50 0.195
0.9e with 0.50 or 2.4e with 0.50 0.080
0.7e with 0.50 or 2.7e with 0.50 0.070
0.6e with 0.50 or 2.8e with 0.50 0.020
0.4e with 0.50 or 2.9e with 0.50 0.020
0e with 0.50 or 3e with 0.50 0.095

Cognitive reflection test:
Q1. Percent correct answer 0.295
Q1. Percent intuitive answer 0.210
Q2. Percent correct answer 0.375
Q2. Percent intuitive answer 0.370
Q3. Percent correct answer 0.600
Q3. Percent intuitive answer 0.280
Notes: Women is a dummy variable which takes a value of 1 if the subject is female. Age is
referred to in years. Spanish is a dummy variable which takes a value of 1 if the subject is Spanish.
University Entry Grade is normalized to a grade out of 10. Risk Choices are ordered from safest
to riskiest and was elicited via Eckel and Grossman (2002). Finally, the cognitive reflection test
includes questions from Toplak et al. (2014). The questions are as follows: 1. If John can drink
one barrel of water in 6 days, and Mary can drink one barrel of water in 12 days, how long would
it take them to drink one barrel of water together? (correct answer 4 days; intuitive answer 9); 2.
Jerry received both the 15th highest and the 15th lowest mark in the class. How many students are
in the class? (correct answer 29 students; intuitive answer 30); 3. A man buys a pig for 60, sells it
for 70, buys it back for 80, and sells it finally for 90. How much has he made? (correct answer 20;
intuitive answer 10).
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column players. Type 2 subjects played the opposite way round, first as column players and
then as row players. The subjects were never informed about their types or even about the
existence of types, but at the beginning of the experimental task they were told they would
be presented with 11 payoff-matrices, one at a time. Only when these 11 decisions had been
taken were they told that they would be presented with an additional set of 11 payoff matrices.
The subjects did know there would be participants playing as row and column players, but
they were not explicitly told that the total of 22 matrix payoffs came from the same 11 games.
In order to facilitate the reading of the games, we showed all the games to all subjects from
the perspective of row players, transposing the games when the subject was a column player.
There were no time restrictions for making decisions.

When designing the games, the main goal was to separate MMS predictions from the
predictions of other behavioral rules, particularly the predictions by the NE and A behavioral
rules. Therefore, we chose 3× 3 normal-form games instead of 2× 2 normal-form games,
as 2×2 games make it impossible to perfectly separate out the predictions of three different
behavioral rules.

Figure 3 displays the eleven 3×3 normal-form two-player games designed for the exper-
iment. We presented the games to the subjects in a randomized order, but in the same order
to all subjects.11

By design no game has dominated strategies in pure strategies. The eleven games can
be separated into 3 different sets of games. G1 to G3 are strategically equivalent harmonic
games, where G2 and G3 have a behavioral component, and the MMS points towards a dif-
ferent strategy profile each, while G1 has no behavioral component. G4 and G5 are the two
experimental constant-sum games we designed. These are interesting because by definition
the predictions of NE and MMS are always fully separated. Finally, G6 to G8 and G9 to G11
are the two sets of strategically equivalent potential games. Both sets have the same struc-
ture. The first game has no behavioral component, meaning that the behavioral component
is composed of all 0s, and the NE and A behavioral predictions coincide in the same strategy
profile. Then, in the second game of each set, we added a behavioral component where the
MMS, A and NE predictions are all separated. Finally, in the last game of each potential set,
we increased the magnitude of the behavioral component to obtain a game where the MMS

prediction will also coincide with the A rule’s prediction. However, these two are separated
from the NE predictions, which is Pareto dominated.

11The actual order of the games was G5, G9, G7, G11, G2, G6, G8, G4, G10, G3, G1. The goal of random-
izing was to prevent the subjects from observing the similarity in some particular games, such as the harmonic
game with no behavioral component and the harmonic game with the addition of a behavioral component.
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Harmonic Games

G1
6.62⋆ 7.62⋆ 5.62⋆

6.56⋆ 5.56⋆ 7.56⋆

5.62⋆ 6.62⋆ 7.62⋆

7.56⋆ 6.56⋆ 5.56⋆

7.62⋆ 5.62⋆ 6.62⋆

5.56⋆ 7.56⋆ 6.56⋆

G2
6.62⋆ 7.62⋆ 5.62⋆

11.56⋆ 0.56⋆ 7.56⋆

0.62⋆ 1.62⋆ 2.62⋆

12.56⋆ 1.56⋆ 5.56⋆

12.62⋆ 10.62⋆ 11.62⋆

10.56⋆ 2.56⋆ 6.56⋆

G3
6.62⋆ 7.62⋆ 5.62⋆

1.56⋆ 5.56⋆ 12.56⋆

0.62⋆ 1.62⋆ 2.62⋆

2.56⋆ 6.56⋆ 10.56⋆

12.62⋆ 10.62⋆ 11.62⋆
0.56⋆ 7.56⋆ 11.56⋆

Constant-sum Games

G4
4.55⋆ 3.77 1.67

5.45⋆ 6.23 8.33
5.82 3.15 7.76

4.18 6.85 2.24
4.89 9.78 0.98

5.11 0.22 9.02

G5
3.11 4.80 6.67

6.89 5.20 3.33
3.95 3.97⋆ 1.90

6.05 6.03⋆ 8.10
7.72 5.74 0.15

2.28 4.26 9.85

Potential Games. First set

G6
8.53 7.63 8.59

7.18 4.05 6.66
8.29 8.43 8.03

6.82 4.75 5.97
5.11 12.55⋆ 7.08

5.49 10.71⋆ 6.87

G7
9.68 8.78 9.74

8.44 1.45 8.00
9.73 9.87 9.47

8.08 2.15 7.31
2.52 9.96⋆ 4.49

6.75 8.11⋆ 8.21

G8
8.33 7.43 8.39

6.98 0.05 10.86
12.49 12.63 12.23

6.62 0.75 10.17
1.11 8.55⋆ 3.08

5.29 6.71⋆ 11.07

Potential Games. Second Set

G9
5.56 5.22 5.72

7.53 6.88 7.41
6.32⋆ 5.32 4.85

9.15⋆ 7.84 7.40
4.03 6.30 6.18

5.82 7.78 7.69

G10
5.86 5.52 6.02

6.63 7.28 7.91
6.12⋆ 5.12 4.65

8.25⋆ 8.24 7.90
3.93 6.20 6.08

4.92 8.18 8.19

G11
9.86 9.52 10.02

3.53 6.58 11.71
2.32⋆ 1.32 0.85

5.15⋆ 7.54 11.70
3.73 6.00 5.88

1.82 7.48 11.99

Notes: For each game, outcomes compatible with the NE play are denoted by ⋆, those compatible with the MMS are in bold, and those compatible with the A play
are underlined. For simplicity purposes, MMS is only shown when the behavioral component of the game is non-zero, so is not shown in G1, G6, and G9. In the
experiment, we show only two decimals as in the figure. The actual values of the games are displayed in Figure 4 in Appendix A.

Figure 3: Experimental Games
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With regard to the actual chosen payoff numbers, we opted for having three digit num-
bers in order to increase separability between different behavioral rules and also avoid round
numbers. Then, the choice was to either opt for points that we then translated into euros or
present the payoffs in euros directly (and use decimals). We opted for the latter for simplicity.

Table 3: Predicted Strategies by Different Behavioral Rules for the 11 Games

Rules Roles G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

NE: Nash Equilibrium R 1,2,3 1,2,3 1,2,3 1 2 3 3 3 2 2 2

C 1,2,3 1,2,3 1,2,3 1 2 2 2 2 1 1 1

MMS: Mutual-Max Sum R 1,2,3 3 3 2 1 1,2,3 2 2 1,2,3 1 1

C 1,2,3 1 3 3 3 1,2,3 3 3 1,2,3 3 3

A: Altruistic R 1,2,3 3 3 1,2,3 1,2,3 3 1 2 2 3 1

C 1,2,3 1 3 1,2,3 1,2,3 2 1 3 1 2 3

PO: Pareto Optimality R 1,2,3 1,2,3 1,3 1,2,3 1,2,3 3 1,3 1,2,3 2 2,3 1,3

C 1,2,3 1 1,3 1,2,3 1,2,3 2 1,2 1,2,3 1 1,2 3

L1: Level-1 R 1,2,3 1,2,3 1,2,3 1 2 3 3 3 2 2 2

C 1,2,3 1,2,3 1,2,3 2 1 2 2 2 2 2 2

P: Pessimistic R 1,2,3 3 2 1 2 3 3 3 2 2 2

C 1,2,3 3 3 1 2 2 2 2 2 2 1

O: Optimistic R 1,2,3 2 1 3 3 3 1 3 2 2 3

C 1,2,3 1 1 2 1 2 2 2 1 2 3

Notes: The table reports the strategies predicted by all the behavioral rules we consider; 1, 2 and 3 refer to the first, second and third
strategies, respectively. In a few instances, a behavioral rule is indifferent between multiple strategies, so we assume the behavioral
rule will predict any of those strategies with equal probability.

Table 3 shows the predicted strategies by different behavioral rules. We can comment on
the predicted choices by the MMS. In the games with no behavioral component, such that
these games only have the strategic component and the kernel component, we can observe
that MMS is indifferent between any of the strategies (see games G1, G6 and G9, both in
Figure 3 and in Figure 4). In any other case, i.e., when the behavioral component is positive,
then the games are designed such that the MMS will have a unique prediction.
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Table 4: Separation between Different Behavioral Rules

MMS NE A PO L1 P O

MMS 0 0.6061 0.3636 0.5606 0.6061 0.5455 0.5455

NE 0.6061 0 0.4848 0.3788 0.1515 0.1818 0.3636

A 0.3636 0.4848 0 0.1970 0.4848 0.4242 0.3636

PE 0.5606 0.3788 0.1970 0 0.4091 0.4697 0.3182

L1 0.6061 0.1515 0.4848 0.4091 0 0.2121 0.3030

P 0.5455 0.1818 0.4242 0.4697 0.2121 0 0.3636

O 0.5455 0.3636 0.3636 0.3182 0.3030 0.3636 0

Notes: The table reports the proportions of decisions across all 22 decisions in which the different
behavioral rules predict different strategies. The minimum possible separation value is 0, which occurs
when two behavioral rules prescribe the same strategy in all 22 decisions, and the maximum possible
separation value is 1, which occurs when the two models predict a different strategy in each of the
22 decisions. When one behavioral rule’s prediction is 1,2,3, meaning playing each of the strategies
with equal probability, and another behavioral rule’s prediction is 1,2, meaning playing the first two
strategies with equal probability, the separation value is equal to 1/3, as these two behavioral rules can
be separated only 1/3 of the times, particularly, when a subject plays the third strategy.

Finally, we are able to measure how successful we were in separating MMS predictions
from the predictions of any other behavioral rules. Table 4 shows the separation between
different behavioral rules. The values in the table represent the proportion of games × player
roles, i.e. decisions in which the predictions of two behavioral rules are separated. The
numbers can take any value between 0 (no separation at all, such that two behavioral rules
predict exactly the same strategy in each of the 22 decisions) and 1 (full separation, such
that two behavioral rules predict a different strategy in each of the 22 decisions). The most
interesting row in the table is the one referring to the MMS, shown in bold, as the main
goal when designing the games was to have the highest separation between MMS and the
rest of the behavioral rules. All separation values for MMS are above 50%, as desired, with
the exception of the separation between MMS and A behavioral rules, which is the hardest
to separate. This is closely linked to the results shown in Table 1, as harmonic games and
constant-sum games are not qualified to separate predictions by A and MMS.

As far as the separability between other behavioral rules is concerned, we can conclude
that these games are far from ideal in terms of separating predictions by NE and L1, pre-
dictions by NE and P, and predictions by PO and A, with perfect confounds between some
of these behavioral rules and particular classes of games. However, the goal was to separate
MMS from NE and from A and PO rules. We will come back to this when interpreting the
empirical results.
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4 Results

We will start off by showing some preliminary analysis testing for whether different sessions
can be pooled and for the effects of player role order, as half of the subjects played first as row
players and then as column players, while the other half played in the reverse order. We will
then analyze how the subjects played game by game to understand whether the manipulation
and addition of a behavioral component affect individual behavior. Finally, we will carry out
mixture-of-types model estimations, across all games and by sets of games, to get conclusions
about the empirical relevance of MMS.

4.1 Preliminaries: Testing for the Effects of Player Role Order

We held 5 different sessions and in each of them we had subjects playing the games in each
of the two roles.

We start off by testing whether we can pool all 5 sessions, both overall, and by player
role order. Table 5 shows the p-values for the two-sided t-test performed for the overall
participants in each session, and for the subsets of participants corresponding to each player
type in the experiment. We cannot reject the null hypothesis of no significant differences
between each of the sessions and the rest. Therefore, we are able to pool all 5 sessions.

Table 5: Poolability of Sessions: p-value of two-sided T-test

H0 Overall Type 1 Type 2
S1 = Rest 0.4685 0.5135 0.7130
S2 = Rest 0.6178 0.4663 0.1477
S3 = Rest 0.8487 0.5470 0.7383
S4 = Rest 0.3022 0.4600 0.4718
S5 = Rest 0.9742 0.1450 0.1276

Notes: The null hypotheses are H0 : µ1 = µ2 where µ1
and µ2 correspond to the means of the distributions of the
strategy choices for participants for a given session and for
the remaining sessions jointly, respectively. For p-values
lower than the significance level, the null hypothesis is re-
jected in favor of the alternative, H1 : µ1 ̸= µ2. S1, S2,...,
S5 refer to different sessions, while Rest refers to the re-
maining sessions pooled together. Type 1 and 2 refer to
those subjects who played first as row players and then as
column players and then the other way round, respectively.
Results are robust to using non-parametric tests (Mann-
Whitney U test).

Due to the two-part design of the experiment, and two types of subjects (Type 1 and
Type 2, as described in Section 3.2), we next check whether there was any kind of effect
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from player role order when participants chose their strategies, i.e., whether subjects behaved
differently when they started playing as row players instead of as column players. Table
6 displays p-value for the two-sided t-test. We cannot reject the null hypothesis of equal
behavior across different player role orders for either of the sessions individually, nor for all
of them as a whole. This allows us to use the data for each subject in both roles, and not only
in the first role they performed the task. Consequently, we are able to use 200 observations
per game.

Table 6: Player Role Order Effects: p-value of two-sided T-test

H0 Overall Session 1 Session 2 Session 3 Session 4 Session 5
Type 1 = Type 2 0.8246 0.4704 0.8805 0.7800 0.5416 0.3020

Notes: The null hypotheses are H0 : µ1 = µ2 where µ1 and µ2 correspond to the means of the distributions of the strategy
choices for participants labeled as type 1 (started as a row player and then as a column players) and type 2 (started as a
column player and then as a row player), respectively, for a given session. For p-values lower than the significance level, the
null hypothesis is rejected in favor of the alternative, H1 : µ1 ̸= µ2. Results are robust to using non-parametric tests (Mann-
Whitney U test).

4.2 Individual Behavior Game by Game: Is Individual Behavior Con-
stant in Strategically Equivalent Games?

We start by analyzing individual behavior game by game. Table 7 shows the frequencies of
play, by all 200 participants, of each of the three strategies in each of the player roles game
by game. The strategies that are in the NE profile, MMS and A are denoted by ⋆, in bold
and underlined, respectively, for each game. For simplicity, we have only marked the MMS

prediction when the behavioral component is non-zero. For example, in G7 the NE profile is
(3,2), the MMS solution is the strategy profile (2,3), and the A strategy profile is (1,1).
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Table 7: Frequencies of Strategy Choices, by Player Role and by Game

Row Players Column Players
1 2 3 1 2 3

G1 0.225⋆ 0.545⋆ 0.230⋆ 0.205⋆ 0.570⋆ 0.225⋆

G2 0.105⋆ 0.200⋆ 0.695⋆ 0.310⋆ 0.165⋆ 0.525⋆

G3 0.300⋆ 0.420⋆ 0.280⋆ 0.105⋆ 0.255⋆ 0.640⋆

G4 0.805⋆ 0.160 0.035 0.775⋆ 0.205 0.020
G5 0.265 0.700⋆ 0.035 0.360 0.605⋆ 0.035
G6 0.030 0.015 0.955⋆ 0.040 0.920⋆ 0.040
G7 0.100 0.060 0.840⋆ 0.105 0.770⋆ 0.125
G8 0.055 0.135 0.810⋆ 0.045 0.735⋆ 0.220
G9 0.045 0.900⋆ 0.055 0.565⋆ 0.345 0.090

G10 0.075 0.795⋆ 0.130 0.455⋆ 0.365 0.180
G11 0.380 0.555⋆ 0.065 0.380⋆ 0.235 0.385

Notes: 1,2,3 denote the first, second, and third strategies of the game respectively for
each role. For each game, strategies in the NE strategy profile are denoted by ⋆, those in
the MMS strategy profile are in bold, and those in the A strategy profile are underlined.
For simplicity purposes, MMS is only shown when the behavioral component of the game
is non-zero, so in G1, G6, and G9 is not shown.

A straightforward way to analyze whether manipulation of the behavioral component
affects individual behavior is to compare individual behavior across subsets of strategically
equivalent games (G1-G2-G3, G6-G7-G8 and G9-G10-G11). We check whether the observed
differences are significant or not by performing paired two-sided t-tests between strategically
equivalent games. Table 8 shows the corresponding p-value for each of those tests.
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Table 8: Behavioral Effects, p-value of (paired) two-sided t-test

Row Players Column Players
Games Harmonic

G1-G2 4.48e−15∗∗∗ 0.0110∗∗

G1-G3 0.7441 1.03e−12∗∗∗

Potential 1

G6-G7 6.73e−05∗∗∗ 0.6068
G6-G8 5.87e−05∗∗∗ 9.32e−06∗∗∗

Potential 2

G9-G10 0.2258 0.0020∗∗∗

G9-G11 2.43e−11∗∗∗ 3.06e−09∗∗∗

Notes: The null hypotheses are H0 : µ1 = µ2 where µ1 and µ2 cor-
respond to the means of the distributions of the strategy choices for
each of the two games considered (first column), respectively. For
p-values lower than the significance level, the null hypothesis is re-
jected in favor of the alternative, H1 : µ1 ̸= µ2. ∗p ≤ 10%, ∗∗p ≤
5%, ∗∗∗p ≤ 1%. Results are robust to using non-parametric tests
(Mann-Whitney U test).

We start with the three strategically equivalent harmonic games, G1 to G3, where each
of them has a unique uniformly mixed NE. First, for neither of the two roles the observed
frequencies are equal to the theoretical predictions (of 1/3 for each strategy), as the subjects
playing in both player roles show a bias towards the central strategy. This bias is consistent
with experimental work on related zero-sum games, see Rubinstein et al. (1997), Rosenthal
et al. (2003) and Crawford and Iriberri (2007). Second, in G2 and G3, once a positive be-
havioral component is added such that there is a unique MMS prediction, the strategy choice
frequencies change either both or for at least one of the player roles. In more detail, for the
row player, the frequency of playing the third strategy increases from 0.230 to 0.695 (incre-
ment of 200%) and to 0.280 (increment of 22%) in G2 and G3, respectively. For the column
player, the significance of the effect is similar. The observed frequency of playing the MMS

strategy increases from 0.205 to 0.310 in G2 (increment of 55%) and from 0.225 to 0.640
in G3 (increment of 184%). As shown by the p-values in Table 8, the change in the strat-
egy choices from G1 to G2 is significant for both player roles, while the change in strategy
choices from G1 to G3 is only significant for the column player. Therefore, the addition of
a behavioral component with a unique MMS (which is at the same time an A strategy pro-
file) strategy profile does indeed modify individual behavior in harmonic games. However,
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it is worth remembering that in harmonic games, the MMS will always coincide with A rule
predictions, so we cannot conclude that MMS is relevant for behavior.

We observe a similar pattern for the two strategically equivalent sets of potential games.
For both sets, we start with a game with no behavioral component, G6 and G9, where the
NE and the A solutions coincide, such that the observed frequencies are clearly the highest:
0.955 and 0.920 in G6, and 0.900 and 0.565 in G9, for row and column roles, respectively. In
the first modification, G7 and G10, where all three behavioral rules are perfectly separated,
we are able to observe that the frequencies of the NE strategies decrease, while the strategy
choices by MMS and A increase. In G7 and G10, when MMS and A are directly competing
with each other, A seems to get slightly higher adherence. In more detail, NE predicted
strategy changes from 0.955 to 0.84 and from 0.92 to 0.77 for G7 and from 0.90 to 0.795
and from 0.565 to 0.455 for G10, for each of the player roles, respectively. Finally, in the
second modification, G8 and G11, when the behavioral components are added, MMS and
A fully coincide and compete with the NE prediction, and the frequency of play for the
strategies prescribed by the NE decrease even further, bringing the frequency of play by
MMS and A rules’ predictions close to the frequency of NE. In more detail, we observe
that the play for the NE strategies decreases down to 0.810 and 0.735 in G8, and down to
0.555 and 0.380 in G11, for row and column players, respectively. Table 8 shows that these
behavioral changes are significant across strategically equivalent games for both player roles
in the second modification, while for the first modification the behavioral changes are only
significant for one of the player roles. Thus, for potential games, we conclude that MMS is
most relevant for behavior when it coincides with the predictions of the A type.

Finally, it is worth remembering that the constant-sum games we considered for the ex-
periment were independent games of each other. By contrast with the harmonic and potential
games, we did not modify and add any behavioral component.12 Despite this, we can remark
an important aspect of the observed behavior. For both games, G4 and G5, the strategy in the
NE strategy profile was by far the highest observed choice with frequencies between 0.605 to
0.805, which is in line with the results in Rey-Biel (2009) (please see the next section to note
the lack of separability between P rule and NE rules in constant-sum games). Interestingly,
for row players the strategy predicted by the MMS profile is the second highest observed
frequency, while it is the lowest for the column role.

To sum up, adding a behavioral component where we have a unique MMS seems to affect
individual behavior because the observed behavior between strategically equivalent games

12Note that if we start with a constant-sum game and modify the behavioral component, the resulting game
will no longer be a constant-sum game.
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changes significantly. However, and more importantly, these changes are most relevant when
the MMS and A behavioral rules predictions coincide, leading us to conclude that it is not
the MMS itself which has the most impact on behavior but the A behavioral rule. This is an
important contribution to the findings of Jessie and Kendall (2022) and Kendall (2022). This
result will be more clearly confirmed in the following section.

4.3 Mixture-of-types Model Estimation: Do Individuals Follow the MMS
Behavioral Rule?

Mixture-of-types models, which are probabilistic models for representing the presence of
sub-populations within an overall population, are useful to understand the prevalence of each
behavioral rule on the subject sample. In this section we carry out two types of mixture-of-
types models estimation, First using all 11 games and then using each of the sets of classes of
games. It should be noted that among the different classes, potential games offer the greatest
separation between the three main behavioral rules we considered in this study: MMS, NE

and A models.
We assume that a subject i employing rule k follows type-k’s predicted decision with

probability (1− εk) but with a probability of making a mistake of εk ∈ [0,1]. In such a case,
the individual would play each of the three available strategies uniformly at random. As
in most mixture-of-types model applications, we assume that the errors are identically and
independently distributed across games and that they are type-specific. The first assumption
facilitates the statistical treatment of the data, while the second considers that some behavioral
rules may be more difficult to follow and thus make more errors than others.

The likelihood of a particular individual of a particular type can be constructed as follows.
First, let Pg, j

k be type-k’s predicted choice probability for strategy j in game g. Some rules
may predict more than one strategy in a particular game. This characteristic is reflected in
the vector Pg

k = (Pg,1
k ,Pg,2

k ,Pg,3
k ) with ∑ j Pg, j

k = 1. When multiple strategies belong to the
predicted set, the predicted choice probabilities are defined as choosing uniformly randomly
over the predicted set. For each individual in each game, we observe the chosen strategy and
whether it is consistent with k. Let xg, j

i = 1 if strategy j is chosen by subject i in game g in
the experiment and xg, j

i = 0 otherwise. The likelihood of observing a sample xi = (xg, j
i )g, j

given type k and subject i is then:

Lk
i (εk|xi) = ∏g ∏ j

[
(1− εk)P

g, j
k +

εk

3

]xg, j
i

(1)
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Second, the likelihood function is given by the sum of all the behavioral types that are
considered. We include K = 7 behavioral models: MMS, NE, A, PO, L1, P and O; where
pk assigns probabilities p = (p1, p2, ..., pK) to each behavioral rule. Finally, and as we are
interested in the behavioral rule’s frequency at the sample of subjects in the experiment, we
sum the log likelihood over all 200 subjects.

lnL(p,ε|xi) = ∑i ln∑k pkLk
i (εk|xi) (2)

The output from these models are the estimated frequencies for each of the behavioral
models we consider, p = (p1, p2, ..., pK), as well as their noise levels, ε = (ε1,ε2, ...,εK).

Table 9: Estimation Results

All 11 Games Harmonic CSG Potential
pk εk pk εk pk εk pk εk

Rules (1) (2) Rules (3) (4) Rules (5) (6) Rules (7) (8)
NE 0.42 0.29 NE = L1 0.00 – NE = P 0.82 0.33 NE 0.45 0.26
MMS 0.02 0.54 MMS = A 0.18 0.23 MMS 0.00 – MMS 0.05 0.56
A 0.07 0.34 A = PO 0.00 – A 0.00 –
PO 0.05 0.12 PO 0.02 0.23 PO 0.17 0.16
L1 0.12 0.35 L1 0.17 0.40 L1 0.17 0.26
P 0.28 0.23 P 0.58 0.46 P 0.13 0.12
O 0.04 1.00 O 0.22 0.96 O 0.00 – O 0.03 0.88

LL 3491.04 1191.40 603.45 1647.28
Notes: The table reports the estimation results for the uniform error specification for all 11 games, in columns 1 and 2, for the three harmonic
games, in columns 3 and 4, for the two constant-sum games in columns 5 and 6 and for the 6 potential games, in columns 7 and 8. Columns
1, 3, 5 and 7 present the estimated frequencies of each behavioral model, while columns 2, 4, 6 and 8 show the estimated error for each of the
behavioral models. All models are identifiable in all 11 games and in the 6 potential games. In the harmonic games, NE and L1 are confounded,
as well as MMS and A. In the constant-sum games, NE and P are confounded, as well as A and PO.

The main takeaway from Table 9 is that the MMS behavioral rule has negligible relevance
when it comes to explaining individual behavior. This is confirmed in columns 1, 5 and 7.
Of course, if we focus on the harmonic class of games, we can misleadingly interpret that the
MMS appears to be an important rule in explaining behavioral data. However, it is important
to note that in the harmonic class of games, MMS predictions are totally confounded with
the A rule predictions. By contrast, in constant-sum games, where NE and MMS are fully
separated, and more importantly, in potential games, where MMS is separable from NE, A

and PO rules’ predictions, we can see that the relevant behavioral rules are NE and those with

30



efficiency concerns. We therefore conclude that the MMS behavioral rule is most relevant for
explaining individual behavior when it coincides with either NE and with behavioral rules
with efficiency concerns (A and PO).

Two additional comments. First, with regard to other behavioral rules on top of the three
main we have focused on, and consistent with existing work, other two behavioral rules are
important: L1 and P rules. L1 rules are important for constant-sum and potential games, while
P is behaviorally very relevant for harmonic and constant-sum games. Second, although we
have mentioned that A is a refinement of PO and is our main focus, we have kept both PO

and A in the econometric specification as there is some separability. If we include only A,
then, as expected, most of the behavior explained before by PO is now explained by A. These
results are available upon request.

5 Conclusions

In this paper, we empirically test two main questions. First, whether and when changes in
the nonstrategic component of games of normal form are relevant for individual behavior.
Second, after defining the MMS, whether MMS predictions are behaviorally relevant when
they are clearly separated from NE and A behavioral rules. As they are empirical questions,
we carry out a laboratory experiment.

Regarding the first question, and consistent with the work by Jessie and Kendall (2022)
and Kendall (2022), we find that additions and manipulations of nonstrategic component
indeed can change individual behavior, particularly when the Pareto optimality of different
outcomes is changed in the original game. In other words, individual behavior can vary in
strategically equivalent games. Regarding the second question, in relation to MMS, which
captures the most important considerations of the nonstrategic component of the game, we
do not find that it is in general a behaviorally relevant rule. How useful is then the MMS?
From a theoretical point of view, it is the only behavioral rule that depends only on the non-
strategic component. Moreover, on many occasions MMS predictions will be coinciding with
the A behavioral rule, which shows Pareto efficiency concerns and indeed could change the
efficiency of different outcomes, as mentioned by Candogan et al. (2011). In those cases,
MMS would be most relevant but this is the case only when this confound occurs. MMS

can be separated from the A rule predictions and when it is the case, we find little empirical
evidence of the MMS relevance to explain individual behavior. We conclude that the decom-
position proposed by Candogan et al. (2011) is a useful tool to predict which behavioral rule
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will be important for explaining individual behavior in games.
We see two avenues for further research. First, the empirical analysis could also be ap-

plied to games with more than 3 strategies, as this would expand the possibility of separating
out more than the three behavioral rules we have focused on: NE, MMS and A. Second,
and more challenging, the analysis could be extended to games with more than two players,
where a potential re-definition of MMS is needed.
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A Decomposition of Games: An Example and the Case for
the 11 Experimental Games

We start by showing an example of how to compute the four-components of the decomposi-
tion of a game. We specifically decompose G4, and Figure 4 displays the decomposition of
the 11 experimental games.13

G4 is represented in matrix notation as follows:

A =

5.45 6.23 8.33
4.18 6.85 2.24
5.11 0.22 9.02

 ; B =

4.55 3.77 1.67
5.82 3.15 7.76
4.89 9.78 0.98


Recall that we can decompose a game starting either from the strategic component or

from the nonstrategic components. We will start by obtaining the nonstrategic components.
The kernel component is obtained as AK = ( 1

h2 )11TA11T, and BK = ( 1
h2 )11TB11T, for row

and column player, respectively, which can be computed, alternatively, as follows:

k1 =
5.45+6.23+8.33+4.18+6.85+2.24+5.11+0.22+9.02

9
= 5.29

k2 =
4.55+3.77+1.67+5.82+3.15+7.76+4.89+9.78+0.98

9
= 4.71

With the kernel values, which are the average of each player’s payoffs, the resulting matrix
of the kernel component, for each player, is:

AK =

k1 k1 k1

k1 k1 k1

k1 k1 k1

=

5.29 5.29 5.29
5.29 5.29 5.29
5.29 5.29 5.29

 ; BK =

k2 k2 k2

k2 k2 k2

k2 k2 k2

=

4.71 4.71 4.71
4.71 4.71 4.71
4.71 4.71 4.71


As the game is a 3×3 game, we have 3 behavioral values for each player. To obtain each

value, for each of the opponent’s strategies, we just compute the average payoff, keeping
constant the opponent’s strategy, and subtract the own kernel value. That is,

b1
1 =

5.45+4.18+5.11
3

−5.29 =−0.38

b2
1 =

6.23+6.85+0.22
3

−5.29 =−0.86

13In both cases, for simplicity, we rounded up all values to two decimals, as in the experiment.
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b3
1 =

8.33+2.24+9.02
3

−5.29 = 1.24

Analogously we obtain the behavioral values for column player: b1
2 =−1.38, b2

2 = 0.87,
and b3

2 = 0.51.
The matrices of the behavioral component, given the behavioral values obtained above,

are:

AB =

b1
1 b2

1 b3
1

b1
1 b2

1 b3
1

b1
1 b2

1 b3
1

=

−0.38 −0.86 1.24
−0.38 −0.86 1.24
−0.38 −0.86 1.24

 ; BB =

b1
2 b1

2 b1
2

b2
2 b2

2 b2
2

b3
2 b3

2 b3
2

=

−1.38 −1.38 −1.38
0.87 0.87 0.87
0.51 0.51 0.51


To obtain the strategic component, we can either normalize the original game or take

the differences between the original game and the sum of the nonstrategic component. The
strategic component of the game is:

AS =

 0.54 1.80 1.80
−0.73 2.42 −4.29
0.20 −4.21 2.49

 ; BS =

 1.22 0.44 −1.66
0.24 −2.43 2.18
−0.33 4.56 −4.24


Once we obtain the strategic component, denoted by AS and BS for row and column

player, respectively, we can compute the potential and harmonic components. To do so, we
need to calculate first three auxiliary matrices: M = 1

2(A
S +BS ), D = 1

2(A
S −BS ), and

Γ = 1
2h(A11T −11TB). In our case,

M =
1
2

 0.54+1.22 1.80+0.44 1.80−1.66
−0.73+0.24 2.42−2.43 −4.29+2.18
0.20−0.33 −4.21+4.56 2.49−4.24

=

 0.88 1.12 0.07
−0.25 −0.01 −1.05
−0.06 0.17 −0.87



D =
1
2

 0.54−1.22 1.80−0.44 1.80+1.66
−0.73−0.24 2.42+2.43 −4.29−2.18
0.20+0.33 −4.21−4.56 2.49+4.24

=

−0.34 0.68 1.73
−0.49 2.42 −3.24
0.26 −4.39 3.36


To obtain the matrix Γ we need first two more auxiliaries matrices, denoted by ΓA and

ΓB, when ΓA = A11T, and ΓB = 11TB
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Γ
A =

 0.54+1.80+1.80 0.54+1.80+1.80 0.54+1.80+1.80
−0.73+2.42−4.29 −0.73+2.42−4.29 −0.73+2.42−4.29
0.20−4.21+2.49 0.20−4.21+2.49 0.20−4.21+2.49

=

 4.13 4.13 4.13
−2.61 −2.61 −2.61
−1.53 −1.53 −1.53



Γ
B =

1.22+0.24−0.33 0.44−2.43+4.56 −1.66+2.18−4.24
1.22+0.24−0.33 0.44−2.43+4.56 −1.66+2.18−4.24
1.22+0.24−0.33 0.44−2.43+4.56 −1.66+2.18−4.24

=

1.14 2.58 −3.71
1.14 2.58 −3.71
1.14 2.58 −3.71


Then,

Γ=
1
2h

(ΓA−Γ
B)=

1
6

 4.13−1.14 4.13−2.58 4.13+3.71
−2.61−1.14 −2.61−2.58 −2.61+3.71
−1.53−1.14 −1.53−2.58 −1.53+3.71

=

 0.50 0.26 1.31
−0.62 −0.86 0.18
−0.44 −0.68 0.36


Finally, the potential component is obtained as (M+Γ,M−Γ) and the harmonic compo-

nent as (D−Γ,−D+Γ).

AP =

 0.88+0.50 1.12+0.26 0.07+1.31
−0.25−0.62 −0.01−0.86 −1.05+0.18
−0.06−0.44 0.17−0.68 −0.87+0.36

=

 1.38 1.38 1.38
−0.87 −0.87 −0.87
−0.51 −0.51 −0.51



BP =

 0.88−0.50 1.12−0.26 0.07−1.31
−0.25+0.62 −0.01+0.86 −1.05−0.18
−0.06+0.44 0.17+0.68 −0.87−0.36

=

0.38 0.86 −1,24
0.38 0.86 −1.24
0.38 0.86 −1.24



AH =

−0.34−0.50 0.68−0.26 1.73−1.31
−0.49+0.62 −0.49+0.86 −3.24−0.18
0.26+0.44 −4.39+0.68 3.36−0.36

=

−0.84 0.42 0.42
0.14 3.29 −3.42
0.71 −3.70 3.00


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BH =

 0.34+0.50 −0.68+0.26 −1.73+1.31
0.49−0.62 0.49−0.86 3.24+0.18
−0.26−0.44 4.39−0.68 −3.36+0.36

=

 0.84 −0.42 −0.42
−0.14 −3.29 3.42
−0.71 3.70 −3.00


The final decomposition for G4 is:

5.45,4.55 6.23,3.77 8.33,1.67
4.18,5.82 6.85,3.15 2.24,7.76
5.11,4.89 0.22,9.78 9.02,0.98

=

 1.38,0.38 1.38,0.86 1.38,−1.24
−0.87,0.38 −0.87,0.86 −0.87,−1.24
−0.51,0.38 −0.51,0.86 −0.51,−1.24



+

0.84,−0.84 0.42,−0.42 0.42,−0.42
0.14,−0.14 3.29,−3.29 −3.42,3.42
0.71,−0.71 −3.70,3.70 3.00,−3.00



+

−0.38,−1.38 −0.86,−1.38 1.24,−1.38
−0.38,0.87 −0.86,0.87 1.24,0.87
−0.38,0.51 −0.86,0.51 1.24,0.51



+

5.29,4.71 5.29,4.71 5.29,4.71
5.29,4.71 5.29,4.71 5.29,4.71
5.29,4.71 5.29,4.71 5.29,4.71


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Harmonic Games

G1
6.62 7.62 5.62

6.56 5.56 7.56

5.62 6.62 7.62
7.56 6.56 5.56

7.62 5.62 6.62
5.56 7.56 6.56

=

Potential
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Harmonic
0 1 -1

0 -1 1

-1 0 1
1 0 -1

1 -1 0
-1 1 0

+

Behavioral
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Kernel
6.62 6.62 6.62

6.56 6.56 6.56

6.62 6.62 6.62
6.56 6.56 6.56

6.62 6.62 6.62
6.56 6.56 6.56

G2
6.62 7.62 5.62

11.56 0.56 7.56

0.62 1.62 2.62
12.56 1.56 5.56

12.62 10.62 11.62
10.56 2.56 6.56

=

Potential
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Harmonic
0 -1 1

0 1 -1

1 0 -1
-1 0 1

-1 1 0
1 -1 0

+

Behavioral
5 -5 0

0 0 0

5 -5 0
-5 -5 -5

5 -5 0
5 5 5

+

Kernel
6.56 6.56 6.56

6.62 6.62 6.62

6.56 6.56 6.56
6.62 6.62 6.62

6.56 6.56 6.56
6.62 6.62 6.62

G3
1.56 5.56 12.56

6.62 7.62 5.62

2.56 6.56 10.56
0.62 1.62 2.62

0.56 7.56 11.56
12.62 10.62 11.62

=

Potential
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Harmonic
0 1 -1

0 -1 1

-1 0 1
1 0 -1

1 -1 0
-1 1 0

+

Behavioral
0 0 0

-5 0 5

-5 -5 -5
-5 0 5

5 5 5
-5 0 5

+

Kernel
6.62 6.62 6.62

6.56 6.56 6.56

6.62 6.62 6.62
6.56 6.56 6.56

6.62 6.62 6.62
6.56 6.56 6.56

Constant-Sum Games

G4
4.55 3.77 1.67

5.45 6.23 8.33

5.82 3.15 7.76
4.18 6.85 2.24

4.89 9.78 0.98
5.11 0.22 9.02

=

Potential
0.38 0.86 -1.24

1.38 1.38 1.38

0.38 0.86 -1.24
-0.87 -0.87 -0.87

0.38 0.86 -1.24
-0.51 -0.51 -0.51

+

Harmonic
0.84 -0.42 -0.42

-0.84 0.42 0.42

-0.14 -3.29 3.42
0.14 3.29 -3.42

-0.71 3.70 -3.00
0.71 -3.70 3.00

+

Behavioral
-1.38 -1.38 -1.38

-0.38 -0.86 1.24

0.87 0.87 0.87
-0.38 -0.86 1.24

0.51 0.51 0.51
-0.38 -0.86 1.24

+

Kernel
4.71 4.71 4.71

5.29 5.29 5.29

4.71 4.71 4.71
5.29 5.29 5.29

4.71 4.71 4.71
5.29 5.29 5.29

G5
3.11 4.80 6.67

6.89 5.20 3.33

3.95 3.97 1.90
6.05 6.03 8.10

7.72 5.74 0.15
2.28 4.26 9.85

=

Potential
0.70 0.61 -1.32

-0.64 -0.64 -0.64

0.70 0.61 -1.32
0.95 0.95 0.95

0.70 0.61 -1.32
-0.31 -0.31 -0.31

+

Harmonic
-2.45 -0.67 3.13

2.45 0.67 -3.13

-0.03 0.08 -0.06
0.03 -0.08 0.06

2.48 0.59 -3.07
-2.48 -0.59 3.07

+

Behavioral
0.64 0.64 0.64

-0.70 -0.61 1.32

-0.95 -0.95 -0.95
-0.70 -0.61 1.32

0.31 0.31 0.31
-0.70 -0.61 1.32

+

Kernel
4.22 4.22 4.22

5.78 5.78 5.78

4.22 4.22 4.22
5.78 5.78 5.78

4.22 4.22 4.22
5.78 5.78 5.78

Potential Games: First Set

G6
8.5294 7.624 8.5927

7.1827 4.051 6.6561

8.287 8.4327 8.0261
6.824 4.7427 5.9827

5.1127 12.5527 7.083
5.4927 10.7061 6.871

=

Potential
0.2805 −0.624 0.3438

0.6827 −2.448 0.1561

0.038 0.1838 −0.2227
0.324 −1.7572 −0.5272

−3.1361 4.3038 −1.16
−1.0072 4.2061 0.371

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Kernel
8.25 8.25 8.25

6.50 6.50 6.50

8.25 8.25 8.25
6.50 6.50 6.50

8.25 8.25 8.25
6.50 6.50 6.50

G7
9.6805 8.775 9.7438

8.4427 1.451 7.9961

9.728 9.8738 9.4672
8.084 2.1427 7.3127

2.5238 9.9638 4.492
6.7527 8.1061 8.21

=

Potential
0.2805 −0.624 0.3438

0.6827 −2.448 0.1561

0.038 0.1838 −0.2227
0.324 −1.7572 −0.5272

−3.1361 4.3038 −1.16
−1.0072 4.2061 0.371

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
1.15 1.15 1.15

1.26 -2.60 1.34

1.44 1.44 1.44
1.26 -2.60 1.34

-2.59 -2.59 -2.59
1.26 -2.60 1.34

+

Kernel
8.25 8.25 8.25

6.50 6.50 6.50

8.25 8.25 8.25
6.50 6.50 6.50

8.25 8.25 8.25
6.50 6.50 6.50

G8
8.3305 7.425 8.3938

6.9827 0.051 10.8561

12.48 12.6338 12.227
6.624 0.7427 10.1727

1.1138 8.5538 3.082
5.2927 6.7061 11.071

=

Potential
0.2805 −0.624 0.3438

0.6827 −2.448 0.1561

0.038 0.1838 −0.2227
0.324 −1.7572 −0.5272

−3.1361 4.3038 −1.16
−1.0072 4.2061 0.371

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
-0.20 -0.20 -0.20

-0.20 -4.00 4.20

4.20 4.20 4.20
-0.20 -4.00 4.20

-4.00 -4.00 -4.00
-0.20 -4.00 4.20

+

Kernel
8.25 8.25 8.25

6.50 6.50 6.50

8.25 8.25 8.25
6.50 6.50 6.50

8.25 8.25 8.25
6.50 6.50 6.50

Potential Games: Second Set

G9
5.56 5.22 5.72

7.53 6.88 7.41

6.323 5.323 4.853
9.15 7.84 7.40

4.026 6.296 6.176
5.82 7.78 7.69

=

Potential
0.06 -0.28 0.22

0.03 -0.62 -0.09

0.823 −0.176 −0.646
1.65 0.34 -0.10

−1.473 0.796 0.676
-1.68 0.28 0.19

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Kernel
5.50 5.50 5.50

7.50 7.50 7.50

5.50 5.50 5.50
7.50 7.50 7.50

5.50 5.50 5.50
7.50 7.50 7.50

G10
5.86 5.52 6.02

6.63 7.28 7.91

6.123 5.123 4.653
8.25 8.24 7.90

3.926 6.196 6.076
4.92 8.18 8.19

=

Potential
0.06 -0.28 0.22

0.03 -0.62 -0.09

0.823 −0.176 −0.646
1.65 0.34 -0.10

−1.473 0.796 0.676
-1.68 0.28 0.19

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
0.30 0.30 0.30

-0.90 0.40 0.50

-0.20 -0.20 -0.20
-0.90 0.40 0.50

-0.10 -0.10 -0.10
-0.90 0.40 0.50

+

Kernel
5.50 5.50 5.50

7.50 7.50 7.50

5.50 5.50 5.50
7.50 7.50 7.50

5.50 5.50 5.50
7.50 7.50 7.50

G11
9.86 9.52 10.02

3.53 6.58 11.71

2.323 1.323 0.853
5.15 7.54 11.70

3.726 5.996 5.876
1.82 7.48 11.99

=

Potential
0.06 -0.28 0.22

0.03 -0.62 -0.09

0.823 −0.176 −0.646
1.65 0.34 -0.10

−1.473 0.796 0.676
-1.68 0.28 0.19

+

Harmonic
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

+

Behavioral
4.30 4.30 4.30

-4.00 -0.30 4.30

-4.00 -4.00 -4.00
-4.00 -0.30 4.30

-0.30 -0.30 -0.30
-4.00 -0.30 4.30

+

Kernel
5.50 5.50 5.50

7.50 7.50 7.50

5.50 5.50 5.50
7.50 7.50 7.50

5.50 5.50 5.50
7.50 7.50 7.50

Notes: The figure displays the 11 experimental games used in the experiments and the corresponding four-components decomposition. In some games and components the actual value is periodic, 1.234 denotes the periodicity
of the third decimal.

Figure 4: Decomposition of the 11 Experimental Games
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B Proofs

A two-person game G can be written as a h× h bimatrix game (A,B) with ai j = u1(si, t j)

(i, j = 1, ...,h) and bi j = u2(si, t j) (i, j = 1, ...,h). To be specific,

A =


a11 · · · a1h

... . . . ...
ah1 · · · ahh

 and B =


b11 · · · b1h

... . . . ...
bh1 · · · bhh


Proof of Proposition 1. A strategy profile (s̃i, t̃ j) ∈ S × T in game G is mutual-max-sum

MMS if:
s̃i ∈ argmax

si∈S
∑

t j∈T
u2(si, t j) and t̃ j ∈ argmax

t j∈T
∑
si∈S

u1(si, t j).

We now define the following matrices Ã, B̃ as follows: the players add their opponent’s
payoffs for each of their own strategies.

Ã =


∑ j b1 j · · · ∑ j b1 j

... . . . ...

∑ j bh j · · · ∑ j bh j

 and B̃ =


∑i ai1 · · · ∑i aih

... . . . ...

∑i ai1 · · · ∑i aih


The MMS can be alternatively defined by requiring from each player to choose the strategies
with the highest payoff in matrices Ã and B̃.

Next, the nonstrategic component (AN S ,BN S ) can be displayed as follows:

AN S =
1
h


∑i ai1 · · · ∑i aih

... . . . ...

∑i ai1 · · · ∑i aih

 and BN S =
1
h


∑ j b1 j · · · ∑ j b1 j

... . . . ...

∑ j bh j · · · ∑ j bh j


Observe that B̃ ∝ AN S and Ã ∝ BN S . Since the altruistic solution in (AN S ,BN S ) is
computed by selecting the strategy profile that maximizes the sum of both players payoffs,
then we can state that the MMS solution in (A,B), computing by selecting the strategies
with the highest payoffs in Ã and B̃, coincides with the altruistic solution in (AN S ,BN S ).
Finally, the behavioral component is defined by,

(AB,BB) = (AN S ,BN S )− (AK ,BK ).

Given that subtracting the kernel component (AK ,BK ) means subtracting a fixed amount for
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each player then the altruistic solution in (AN S ,BN S ) coincides with the altruistic solution
in (AB,BB) and consequently with the MMS solution in (A,B).

Proof of Proposition 2. Let (A,B) be a constant-sum game in which an amount C > 0 is to
be divided between players 1 and 2. W.l.o.g. let (a11,b11) be the Nash equilibrium and the
MMS outcome of the game.
First, we show that a1 j > ai1, i = j ̸= 1.

Since (a11,b11) is the NE outcome, necessarily b1 j ≤ b11 and ai1 ≤ a11 for i, j = 2, ...,h.
By definition of the constant-sum-game, a1 j + b1 j = a11 + b11 = C. As b1 j ≤ b11 we have
a11 ≤ a1 j and by NE outcome we have that ai1 ≤ a11 ≤ a1 j. Therefore, by transitivity we
have:

a1 j ≥ ai1, i = j ̸= 1 (3)

Second, given (a11,b11) is the MMS outcome, by definition we have:

for each i = 2, ...,h,
h

∑
j=1

b1 j >
h

∑
j=1

bi j , and

for each j = 2, ...,h,
h

∑
i=1

ai1 >
h

∑
i=1

ai j

Summing over these two expressions we obtain:

(h−1)
h

∑
j=1

b1 j +(h−1)
h

∑
i=1

ai1 >
h

∑
j=1

b2 j + ...+
h

∑
j=1

bh j +
h

∑
i=1

ai2 + ...+
h

∑
i=1

aih

Considering that for each i, j, bi j =C−ai j and substituting it in the previous expression, by
simple algebraic manipulations, we obtain:

h

∑
i=2

ai1 >
h

∑
j=2

a1 j

which contradicts condition (3).
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C English Translation of Experimental Instructions

[The original experimental instructions were in Spanish.]
[These general instructions were read aloud and provided in paper only.]

THANK YOU FOR PARTICIPATING IN OUR EXPERIMENT!

Let’s start the experiment. From now on, you are not allowed to talk, watch what other
participants are doing or walk around the classroom. Please turn off and put away your mo-
bile phone. If you have any questions or need help, raise your hand and one of the researchers
will come and talk to you. Please do not write over these instructions. If you do not com-
ply with these rules, YOU WILL BE ASKED TO LEAVE THE EXPERIMENT WITH NO
PAYMENT. Thank you.

The University of the Basque Country UPV/EHU and the research projects have provided
the funds for this experiment. You will receive 3 Euros for coming on time. Additionally,
if you follow the instructions correctly you have the chance to win more money. This is a
group experiment. The amount you can earn depends on your decisions, the decisions of
other participants, as well as on chance. Different participants can earn different amounts.

No participant will be able to identify any other participant by his or her decisions or by
his or her earnings in the experiment. We, the researchers, will be able to observe at the end
of the experiment the earnings of each participant, but we will not associate the decisions you
have made with the names of any participant.

EARNINGS:
During the experiment you will be able to earn experimental points. At the end, each

experimental point will be exchanged for Euros, exactly 1 experimental point is worth
1 Euro. In addition, we will round up decimals to the nearest tenth.

Everything you earn will be paid to you in cash in a strictly private manner at the end of
the experimental session. Your final earnings will be the sum of the 3 Euros you receive
for participating plus whatever you earn during the experiment.

If, for example, you get a total of 25.19 experimental points you will get a total of 28.20
Euros (3 Euros as payment for participating and 25.20 Euros from converting the 25.19 ex-
perimental points to 25.20 Euros).

If, for example, you get 0.20 experimental points you will get 3.20 Euros (3+0.20 = 3.20).
If, for example, you get 12.83 experimental points you will get 15.90 Euros (3+12.90 =

15.90).
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Before starting the experiment, we will explain in detail what kind of decisions you can
make and how you can get experimental points.

[From now on, the instructions were read aloud and they were only provided on the
computer screen.]

DETAILED INSTRUCTIONS OF THE EXPERIMENT:

This experiment consists of several rounds of decisions. In each of the rounds, you will
be paired with a randomly chosen participant from this session. From now on, we will refer
to you as "You" (in red) and the other participant as "Other Participant" (in blue) in these
instructions.

In each round you will see a table and you will have to make a decision, choosing from
three possible options. Each decision will be presented in the form of a table similar to the
one below (but each time with different values). You will see the corresponding table each
time you have to choose an option. Each row of the table corresponds to an option you can
choose and the red numbers are the possible experimental points you can earn.

The other participant will also have to choose, independently from you, between her op-
tions, which correspond to the columns of the table and the blue numbers are the possible
experimental points that the other participant can earn. That is, you choose rows, while
the other participant chooses columns. However, to simplify things, the experiment is pro-
grammed in such a way that all participants - including the person you are paired with -
see their decisions just as in our example. That is, each of you will be presented with your
possible actions in the rows of the table.

When choosing, you will not know the option chosen by the other participant, and when
the other participant is choosing among her options she will not know the option you have
chosen either.

The amount of experimental points you can get in each of the rounds depends on the
option you have chosen and the option the other participant has chosen.

The experimental points table you see is an example of what you will see in each of the
rounds.
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Example 1: if this round is chosen at random and you take the first choice (row) and the
other participant takes the second choice (column), you will get 13.14 experimental points
and the other participant 12.03 experimental points.

Example 2: if this round is chosen at random and you take the third option (row) and the
other participant takes the first option (column), you will get 15.14 experimental points and
the other participant 9.86 experimental points.

These are just two examples to better understand how to read the table, as well as to better
understand how decisions affect the experimental points you can earn, but are not intended to
suggest which decisions you should make.

To make your decision, click on the white button next to the option you want to make.
The button will then turn red to indicate which option you have selected. Once you have
chosen an option, the choice is not final and you can change it as many times as you like by
clicking on another button, until you click on the "OK" button that will appear in the lower
right corner of each screen. Once you have clicked "OK" your choice will be final and you
will move on to the next round. You will not be able to move on to the next round until you
have chosen an option and clicked "OK". You will not have any time restrictions. Take as
much time as you need in each round.

Summary:

– Your experimental points will be in red and the other participant’s experimental points
will be in blue.

– You will participate in several different rounds. In each round you will be paired with
a random participant and the experimental points table will be different.

– In each round, you can choose between three different options (rows) and the exper-
imental points you earn depend on which option you have chosen, which option the
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other participant has chosen, as well as whether that round is randomly chosen at the
end of the experiment.

We will start the experiment in a few moments. Before we begin, you will see an example
again and you will have to answer several questions. If you have any questions or need help
at any point during the experiment, please raise your hand and one of the researchers will
come and talk to you.

[From now on, the instructions were not read aloud and they were provided on the com-
puter screen.]

UNDERSTANDING TEST:

To make sure you understand the game, on the next screen we will ask you to answer
some questions about the game.

[The table displayed on the screen was the same as the one shown above.]

– Write here your points earned in this round if you choose your second choice and the
other participant chooses her third choice, if this round is randomly selected for your
payment. [Correct answer: 12.72]

– Write here the points earned by the other participant if you choose your third choice
and the other participant chooses her second choice, if this round is chosen for payment.
[Correct answer: 7.19]

DECISION SCREEN:

We will now show you 11 tables, one at a time, and will ask you to make a choice from
each table.

At the end of the experiment, we will choose one of the 11 tables at random and pay you
for that table.

Click OK to start viewing the tables.

[Once each participant made choices for the first 11 tables they were shown the follow-
ing instructions on the screen.]
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DECISION SCREEN:

We will now show you other 11 tables, one at a time, and will ask you to make a choice
on each table. After these 11 tables the experiment ends.

At the end of the experiment, we will choose one of these 11 tables at random and pay
you for that table.

Click OK to start viewing the tables.
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