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Abstract. This paper analyzes equilibrium social distancing choices in

a model with potentially asymptomatic infection. Since infection only prompts

symptoms probabilistically, individuals cannot perfectly infer their health state

from the absence of symptoms. Instead, they must form beliefs about their health

state based on knowledge of the population frequencies. I show that relative to

a benchmark with perfect health state information, asymptomatic infection leads

to lower mitigation through four distinct channels, some mechanistic and some

that work through beliefs and thus decisions. The model is then applied to an

analysis of individual and mass testing. The value of the former derives from the

value of information and it is shown that the latter may influence the course of

the epidemic through its influence on aggregate equilibrium behavior. Tests for

immunity generally have a higher value of information and aggregate effects than

tests for infection.

JEL Classification: C73, I18.

Keywords: Economic epidemiology, social distancing, asymptomatic infection,

fatalism, diagnostic testing, value of information, mass testing.

1. Background

The current health crisis, caused by the SARS-CoV-2 virus, is unprecedented in mod-

ern times. As governments and health authorities scramble to contain and manage the

outbreak, individuals face diffi cult tradeoffs and must balance infection risk from social

proximity against the social and financial costs of mitigation and self-isolation.

A complicating factor during the COVID-19 epidemic, like during the HIV/AIDS epi-

demic before it, is that a significant proportion of infected individuals are asymptomatic

or pre-symptomatic, which means that they can continue being infected for prolonged pe-

∗This paper supercedes a draft previously distributed under the title Social Distancing with Asymp-
tomatic Infection: Beliefs, Fatalism and Testing (April, 2020). I greatly benefited from feedback from
Stephen Kissler, Chryssi Giannitsarou, Darren Hoover, Jakob Berndt, Marco Ottaviani, Ted Temzelides
and seminar participants at New York University, Penn State University, ITAM, Stony Brook Univer-
sity, Rice University, Stockholm School of Economics, the Virtual Seminars in Economic Theory and the
Covid-19 Search and Matching Workshop at the University of Chicago.
†Faculty of Economics, University of Cambridge and CEPR. Email: fmot2@cam.ac.uk.
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riods without knowing that they are infected.1 During this time, they may unknowingly

pass the infection on to others. Recent research shows that a large proportion of tested

subjects turn out to be recovered from a previous spell of infection and are thus partially

immune to new infection in the short run, without having had any noticeable symptoms.

Estimates vary widely but most studies suggest that as many as half of all infected indi-

viduals display no symptoms.2 Asymptomaticity is often credited with making it easier

for diseases to spread in the population.3

But what exactly is the mechanism that makes it easier for asymptomatic infection

to spread? First, note that by definition, symptoms are subjective and thus cannot serve

as a warning to others to keep their distance and take precautionary measures around

the infected person. Visible signs of infection would of course help alert those at risk and

could help people self-protect. With asymptomatic infection though, neither those at risk

of infection nor those that are the source of infection know their own health status and

thus both may change behavior accordingly.

This possibility raises a number of questions. First, absent possibilities for testing,

how will individuals behave when facing a potentially asymptomatic epidemic when the

only available protective measure is social distancing? Second, how does the possibility

of testing change individual decisions and what are people’s incentives to take tests in

the first place? Third, how do these incentives change across the stages of the epidemic?

Fourth, as pre-test infection probabilities– which mirror the population frequencies of

health states in a homogeneous population– change over the epidemic, how does the

interpretation of test results depend on aggregate disease prevalence?

This paper provides a tractable framework for studying the aggregate effects that

asymptomaticity can have on individual beliefs and incentives and on how these inter-

act with aggregate equilibrium disease dynamics. The model nests two extreme models,

namely those with full health state information like Toxvaerd (2019), Rowthorn and

Toxvaerd (2020) and Toxvaerd (2020) and the purely mechanistic, non-behavioral SIR

model studied in mathematical epidemiology. Depending on the fraction of asymptomatic

individuals in the population, the dynamics of these two idealized benchmarks emerge

in my setup as special cases. Second, the analysis contributes to the literature by en-

dogenizing the matching function. In full-information frameworks like those referenced

above, equilibrium necessarily leads to so-called linear matching in which only suscep-

1A pre-symptomatic individual is someone who is infected with COVID-19, has not yet shown symp-
toms, but eventually will. An asymptomatic individual is someone infected with COVID-19, but who
will never exhibit symptoms. A symptom-naive (or naive) individual is someone who has not yet shown
any symptoms. Naive individuals are sometimes referred as non-symptomatic.

2See https://www.cebm.net/covid-19/covid-19-what-proportion-are-asymptomatic/ for a review of
recent studies.

3See e.g. https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-
science/asymptomatic-infection
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tible individuals protect themselves, while infected people do not. In contrast, in some

recent analyses of equilibrium dynamics in economic-epidemic frameworks, people are

assumed not to know their infection status (see e.g. Farboodi et al., 2021 and Dasaratha,

2021). In such cases, both infected and susceptible individuals self-protect, leading to

so-called quadratic matching. Notably, individuals in those papers do not form beliefs

about their health status and so the matching function remains unchanged throughout

the course of the epidemic. In the present analysis, people continually update their be-

liefs about their health status. This leads to state-dependent self-protection decisions for

non-symptomatic individuals (infected and susceptible alike), which results in a force of

infection that is an endogenous composite of linear and quadratic matching. As the frac-

tion of asymptomatic people in the population is varied from one extreme to the other,

the two matching functions emerge as special cases.

In terms of individual decision making, the introduction of potential asymptomaticity

has several distinct effects. The first, which I term the severity effect, works directly

through preferences. If preferences over health states are tied to the presence or absence

of symptoms (rather than to the underlying health state), then the wellbeing from being

asymptomatically infected is no different than that from being healthy and non-infected.

This means that when there is a probability that one is never to experience any symptoms

regardless of one’s health state, then the prospect of becoming infected is altogether less

unpleasant. This will tend to reduce individuals’incentive to mitigate infection.

The second, which I term the fatalism effect, is that individuals now face an inference

problem which changes across the stages of the epidemic.4 Specifically, because individu-

als cannot distinguish states in which they are still susceptible and at risk with states in

which they are asymptomatically infected or recovered, they must make inferences about

their likely susceptibility and hence the extent to which they will engage in social dis-

tancing. As time passes, lack of symptoms is increasingly ascribed to asymptomaticity,

thereby decreasing the probability attached to being susceptible and at risk.

Third, there is what I term the force of infection effect. This effect comes from the

fact that some infected individuals are naive and thus engage in social distancing. This

reduces the force of infection faced by those who are actually at risk. In other words,

while individuals who know that they are infected may have reduced personal incentives

to self-protect, this reduction is attenuated under asymptomatic infection. This means

that aggregate self-protection by infected individuals may be higher under asymptomatic

infection, ceteris paribus. The fatalism effect and the force of infection effect can be

4The term fatalism is used here in the sense commonly employed in the literature, namely that people
in high-risk environments may have higher propensity to engage in transmissive behavior. Of course,
being less susceptible may be regarded as a positive thing, even if it is a consequence of having been
infected. This should cause no ambiguities in the analysis that follows.
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seen as two opposite reflections of the same underlying force, namely that individuals

who have imperfect health state information have diffi culty matching behavior to their

personal health circumstances.

In addition, the possibility that asymptomatically infected people are less infectious

to others introduces a mechanistic impact on disease propagation.

The upshot of these effects is that aggregate mitigation decreases relative to the

full information benchmark, with knock-on effects on the number of infected people.

While overall cumulative infections may be higher under asymptomaticity, the number

of infected with symptoms is in fact lower than in the full information benchmark. This

fact is reflected in overall social welfare, which turns out to be higher with asymptomatic

infection, despite the higher infection numbers.

Last, I use my framework to analyse the effects of both individual and mass testing.

For the individual, diagnostic tests for infection and immunity change behavior and thus

have a value of information. Except at early stages, tests for immunity have higher

private value than tests for infection. This also implies that mass testing for immunity

may lead to stronger effects on aggregate behavior and disease dynamics than mass tests

for infection, ceteris paribus. I show that depending on the sensitivity and specificity of

the tests and on the stage of the epidemic, mass testing may lead to changes in aggregate

behaviour that either increases or decreases disease incidence, thereby complicating the

welfare assessment of such testing programs.

1.1. Related literature. This paper contributes to three distinct but related litera-

tures. First, there is a strand of literature that considers decentralized social distancing.

Examples include Reluga (2010), Fenichel et al. (2011), Fenichel (2013), Chen et al.

(2011), Chen (2012) and Toxvaerd (2020). Second, the paper contributes to the lit-

erature on asymptomatic infection. Examples include Matthies and Toxvaerd (2016),

Toxvaerd (2014) and references therein. Last, the paper contributes to the literature on

testing, exemplified by Boozer and Philipson (2000), Gersovitz (2010), Godlonton and

Thornton (2013). Berger et al. (2020) study testing in a non-behavioral model in which

quarantine planning can be informed by the results of mass testing. Eichenbaum et al.

(2020) study the macroeconomics of testing. Ely et al. (2020) consider the optimal al-

location of a set of heterogeneous but scarce tests in a static setting. Last, there are

a few papers that feature social distancing under incomplete information. Farboodi et

al. (2021) and Dasaratha (2021) assume that individuals don’t know whether they are

susceptible or infected, but become perfectly informed once they exogenously recover. In

Farboodi et al. (2021), individuals are assumed not to form beliefs about their health

state, although this information is directly payoff relevant to them. In Dasaratha (2021),

individuals pay a cost upon becoming infected, yet this does not induce individuals to
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update their beliefs until they recover. Keppo et al. (2021) set up a model with potential

learning about payoff relevant health states, but proceed to analyze the model under the

simplifying assumption that beliefs are degenerate. In particular, while individuals can-

not determine whether they are susceptible or infected, they behave as if they are in fact

at risk of becoming infected. Berger et al. (2020) consider socially optimal quarantines

and testing when individuals can be presymptomatic. They show how testing allows the

health authority to better target quarantines to individuals’health states. Piguillem and

Shi (2020) similarly show how testing can improve the targeting of public quarantine

policies. Eichenbaum et al. (2022) assume that individuals cannot directly observe their

health states and so must all act alike. They assume that testing, which perfectly re-

veals infection status, is gradually rolled out and this allows authorities to better target

quarantines. Brotherhood et al. (2020) also study the interaction between testing and

mitigation policies under presymptomatic infection and, unlike other papers in the liter-

ature, consider the possibility that individuals have confounding symptoms from other

sources than the main disease under consideration.

2. The Model

The model builds on the classical susceptible-infected-recovered model, but is extended

to include the possibility of asymptomatic infection. Time is continuous and runs in-

definitely. A closed population consists of a continuum P = [0, 1] of infinitely lived

individuals who can at each instant t ≥ 0 be in one of three states, namely susceptible,

infected or recovered. The sets of individuals who are susceptible, infected or recovered are

denoted by S(t), I(t) and R(t) and have measures S(t), I(t) and R(t), respectively. The

population size is normalized to one, so these measures can be interpreted as fractions.

At each instant, the population mixes homogeneously. This corresponds to pair-wise

random matching where each individual has an equal chance of meeting any other indi-

vidual, irrespective of the health status of the two matched individuals. A match between

an infected and a susceptible individual may infect the susceptible. The rate at which

infection is transferred in such a match, absent social distancing, is denoted by β > 0.

This parameter captures the infectivity of the disease. Recovered individuals are immune

to further infection and also cannot carry the disease. Coupled with the assumption of

homogeneous mixing, this means that the aggregate rate at which susceptible individuals

become infected, or disease incidence, is given by βI(t)S(t).

Last, infected individuals spontaneously recover at rate γ ≥ 0. This means that on

aggregate, the rate at which recovery occurs is γI(t). Throughout, I will maintain the

assumption that β > γ ≥ 0. Note that the analysis is easily extended to allow for the

possibility of disease-induced mortality. The basic model compartments with states and

flows is illustrated in Figure 1.
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Figure 1: States and flows in the SIR model.

To model the possibility of engaging in social distancing, assume that the individuals

can affect their personal rate of infection by controlling the extent to which they expose

themselves to others in the population. In particular, at each instant t ≥ 0, each indi-

vidual non-cooperatively chooses some social distancing level di(t) ∈ [0, 1], at personal

cost c× di(t)2/2 with c > 0 a constant. Effectively, this reduces the rate of infection for

the individual to (1 − di(t))βI(t). This formalization captures the notion that, ceteris

paribus, engaging in social distancing is costly to the individual. In this analysis, infected

and recovered (and therefore immune) individuals who know their health status have no

private benefits from social distancing and are thus taken to not engage in any preven-

tive efforts. To complete the economic model, assume that susceptible and recovered

individuals earn flow payoffs π, while infected individuals earn π < π.

For simplicity, I will assume that individuals are myopic in the sense that while they

understand the behaviour of aggregate dynamics, they do not maximize an intertemporal

objective function. This considerably reduces the complexity of the analysis, while allow-

ing me to focus on the ways in which introducing asymptomatic infection modifies the

incentives to socially distance and to submit to diagnostic tests. As will become clear,

the main insights remain valid in a setting with forward-looking behavior. This will be

shown formally in Section 7.

2.1. Aggregate Epidemic Dynamics and the Matching Function. The dynam-

ics of the epidemic are described by the following system of differential equations:
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Ṡ(t) = −βI(t)S(t) (1)

İ(t) = I(t) [βS(t)− γ] (2)

Ṙ(t) = γI(t) (3)

S(t) = 1− I(t)−R(t) (4)

S(0) = S0 > γ/β, I(0) = I0 ≈ 0, S0 + I0 = 1 (5)

To understand the different effects of asymptomaticity on behavior, it is useful to

start by recalling that behavior is driven by a tradeoff between the costs and benefits

of protective measures. While the costs of social distancing are independent of people’s

health state (i.e. whether susceptible, infected or recovered), the expected benefits are

not. As a benchmark, consider an individual i’s infection risk under full information. It

can be modeled as

βI(t)(1− di(t))(1− d̄(t)) (6)

where di(t) ∈ [0, 1] is individual i’s personal social distancing decision and d̄ is the aver-

age social distancing decision of those who are currently infected. Note that the social

distancing activity of those who are infected is a substitute for the social distancing of

those at risk (i.e. the susceptible), in the sense that transmission is decreasing in the

mitigation effort of either type. This formulation is known in the literature as quadratic

matching, because the exposure level of the matched individuals are multiplied.5 Now

let us consider incentives. Under full information, infected individuals have no personal

benefit from self-protection and so in any equilibrium it must be that d̄(t) = 0, leaving

susceptible individuals to do all the mitigation of their own accord. This reduces the

transmission rate to

βI(t)(1− di(t)) (7)

which is referred to in the literature as linear matching.6 It is important to note that the

incentives to self-protect of infected and susceptible people are misaligned unless they

have other-regarding preferences. Now consider a world in which only a fraction (1− α)

of the population show symptoms if infected, while a fraction α never experience any

symptoms. In such a situation, all symptomatically naive individuals (whether they are

susceptible, infected or recovered) will behave the same way and distance at some common

level d∗(t). The resulting equilibrium infection risk rate for a susceptible individual will

therefore be

5See e.g. Alvarez et al. (2021).
6See e.g. Toxvaerd (2019).
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Susceptible Infected Recovered
Asymptomatic αS(t) αI(t) αR(t)
Symptomatic (1− α)S(t) (1− α)I(t) (1− α)R(t)

Table 1: Fractions of the population in different classes.

βI(t)(1− d∗(t))(1− αd∗(t)) (8)

From this expression, it’s clear that as the asymptomatic ratio varies from zero to one,

the linear and quadratic formulations obtain as special cases.7

2.2. Symptoms, Beliefs and Updating. To model the presence of asymptomatic

individuals, I assume that there are two types of individuals, namely asymptomatic and

(potentially) symptomatic. A fraction α ∈ [0, 1] of the population is asymptomatic, which

means that they will never find out whether they are or have been infected (unless they

take a test, which will be analyzed in Sections 5 and 6). However, they can still become

infected and infect others. I assume that someone who is infected but asymptomatic

transmits infection to susceptible contacts at rate σβ, where σ ∈ [0, 1] captures the possi-

bility that asymptomatic infection has reduced transmissibility. Potentially symptomatic

individuals do not show any symptoms while susceptible, but do so once infected. Since

they become aware of their infection status as soon as they become infected, they also

know once they recover that they are then immune. I will maintain the assumption that

asymptomatic individuals have the same utility as susceptible or recovered individuals at

all times, so that experiencing symptoms is equivalent to bearing the disease burden due

to infection.

Since people do not know ex ante whether they are of the symptomatic or the asymp-

tomatic type, they all behave alike unless they start showing symptoms. Symptomatic

infected and symptomatic recovered individuals do not engage in any social distancing,

as they know that they face no risk of further infection.

As a fraction α of the population show no symptoms irrespective of their health sta-

tus, there are effectively six compartments in the model, namely susceptibles, infected

or recovered and each of these can be symptomatic or asymptomatic, respectively. The

population frequencies for the different types of individual (asymptomatic versus symp-

tomatic) across health compartments are shown in Table 1.

7In the analysis that follows, this formula will be further generalized to accommodate the possibility
that asymptomatic individuals have reduced infectiousness.
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Figure 2: Relative probabilities of being susceptible and non-susceptible, conditional
on not showing symptoms. Upper hatched area is asymptomatic non-susceptible, lower
hatched area is susceptible (symptomatic and non-symptomatic) and white region is
symptomatic non-susceptible (infected and recovered).

The measures of individuals in each compartment are common knowledge amongst

individuals. But although everyone knows the population averages, i.e. how many people

are in each of these compartments, asymptomatic individuals cannot distinguish between

being susceptible or being asymptomatically infected or recovered. This is important,

because the inference problem, which changes across the stages of the epidemic, influence

people’s incentives to engage in social distancing.

Absent any additional information, say learned through testing, how many people

would potentially engage in social distancing? Since social distancing is costly, only

those individuals who do not positively know that they are not at risk, i.e. that are

or have been symptomatically infected, will socially distance. Denote by A(t) the set

of individuals who have never observed any symptoms by time t ≥ 0. The set of the

symptomatically naive individuals has measure

S(t)[α + (1− α)]︸ ︷︷ ︸
All susceptible

+ αI(t)︸ ︷︷ ︸
Asympt. infected

+ αR(t)︸ ︷︷ ︸
Asympt. recovered

= S(t) + α(1− S(t)) (9)

where the last equality follows since I(t) +R(t) = 1− S(t).
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Conversely, individuals who do not engage in social distancing consists of all those

who either know they are infected or know that they have been infected but have now

recovered. This set has measure

(1− α)I(t)︸ ︷︷ ︸
Sympt. infected

+ (1− α)R(t)︸ ︷︷ ︸
Sympt. recovered

= (1− α)(1− S(t)) (10)

The beliefs of a naive individual are thus

pS(t) ≡ Pr(i ∈ S(t)|i ∈ A(t)) =
S(t)

S(t) + α(1− S(t))
(11)

pI(t) ≡ Pr(i ∈ I(t)|i ∈ A(t)) =
αI(t)

S(t) + α(1− S(t))
(12)

pR(t) ≡ Pr(i ∈ R(t)|i ∈ A(t)) =
αR(t)

S(t) + α(1− S(t))
(13)

Note that the beliefs pS(t) are increasing in the measure of susceptibles S(t) but decreasing

in the proportion of asymptomatic individuals α. As the susceptibles necessarily decrease

in measure over time, this implies that the probability that an individual assigns to him

or herself being susceptible, conditional on not having observed any symptoms, must

decrease as time progresses.

The probability of becoming infected per unit of exposure, conditional on not having

had any symptoms, is then

pS(t)βI(t) (14)

The last thing that must be emphasised is that for an individual to engage in social

distancing, it is not enough that he or she perceives him or herself to be susceptible. In

fact, for social distancing to make sense, the individual must be both susceptible and of the

symptomatic type. The probability that a symptom-naive individual is asymptomatically

susceptible is

(1− α)pS(t) (15)

Note that

lim
α→0

(1− α)pS(t) = 1, lim
α→1

(1− α)pS(t) = 0 (16)

As will be shown below, these limit results will imply that the equilibrium under asymp-

tomatic infection will nest the two extreme models in which there is perfect health state

information and in which there is no behavioral responses to risks at all (i.e. the outcome

coincides with the purely biological model). In particular, as α → 0, the equilibrium

path coincides with the full information equilibrium while as α→ 1, individuals cease all

mitigation and the dynamics follow the mechanical, non-behavioral dynamics.
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α β γ R0 σ π π c S(0) I(0) R(0) qI qR
1/3 1/2 1/7.5 3.75 0.9 0 -1 1/10 0.99 0.01 0 0.95 0.95

Table 2: Parameter values used for simulations.

Throughout, I use the model parameters in Table 2 to generate plots.

For the disease dynamics parameters, I use numbers that yield a basic reproduction

ration R0 = 3.75, as this is similar to estimates made for the COVID-19 pandemic

(Kucharski et al., 2020; Wu et al., 2020). Additionally, I use a recovery rate of γ = 1/7.5,

which implies an average infectious period of 7.5 days. This is also close to some estimates

made for the COVID-19 pandemic (Byrne et al., 2020).8

3. Equilibrium Disease Dynamics

In this section, I first characterize the individual best responses and then proceed to

characterize aggregate equilibrium disease dynamics and their properties.

3.1. Best Responses and Equilibrium. The objective of a representative naive

individual i ∈ A(t) at time t ≥ 0 is to choose a level of social distancing di ∈ [0, 1] to

solve the following problem:

max
di(t)∈[0,1]

U(di(t), pS(t)) = max
di(t)∈[0,1]

{
−(1− di(t))pS(t)(1− α)φ(t)βI(t)(π − π)− c× di(t)

2

2

}
(17)

where

φ(t) ≡ (1− α)× 1 + σα(1− d(t)) = [1− α(1− σ(1− d(t)))] (18)

is the adjusted force of infection coeffi cient under asymptomatic infection and d(t) is the

average social distancing of all naive individuals in the population.9 Note that

lim
α→0

φ(t) = 1, lim
α→1

φ(t) = σ (1− d(t)) (19)

Definition 1. An equilibrium is a set of paths{
{d∗i (t)}i∈A(t) , S(t), I(t), R(t)

}
t≥0

(20)

with the following properties:

8The simulations in this paper were done in Mathematica 13.0. All code is available upon request.
9This objective function is identical to the objective [1− (1− di(t))pS(t)(1− α)φ(t)βI(t)]π + (1 −

di(t))pS(t)(1−α)φ(t)βI(t)π−c×di(t)2/2, except for the constant π, which does not alter the maximizer.
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(a) Given {S(t), I(t), R(t)}, d∗i (t) solves problem (17) for each individual i ∈ A(t) at

each instant t ≥ 0.

(b) Given {d∗i (t)}i∈A(t), the paths {S(t), I(t), R(t)} satisfy the set of differential equations
for the aggregate system

Ṡ(t) = −(1− d∗(t))(1− α(1− σ(1− d∗(t)))βI(t)S(t) (21)

İ(t) = I(t) [(1− d∗(t))(1− α(1− σ(1− d∗(t)))βS(t)− γ] (22)

Ṙ(t) = γI(t) (23)

S(t) = 1− I(t)−R(t) (24)

S(0) = S0 > γ/β, I(0) = I0 ≈ 0, S0 + I0 = 1 (25)

Next, I characterize the equilibrium path. The first-order condition for the individual’s

(17) problem is given by10

∂U(di(t), pS(t))

∂di(t)
= pS(t)(1− α)φ(t)βI(t)(π − π)− cdi(t) = 0 (26)

Thus the best-response social distancing decision of the individual, if it is interior, is

defined by the equation

di(t) = pS(t)(1− α)φ(t)βI(t)

(
π − π
c

)
(27)

This equation states that the individual will engage in social distancing to the extent

that it equalizes the marginal cost of social distancing with its expected marginal benefit.

In turn, the latter is a function of beliefs about susceptibility, of the adjusted force of

infection and of the disease burden from infection (i.e. its severity). For comparison, the

best response of a susceptible individual under perfect information without asymptomatic

infection is obtained by setting pS(t) = φ(t) = (1− α) = σ = 1, namely

di(t) = βI(t)

(
π − π
c

)
(28)

The first-order condition clearly shows the attenuation effect of asymptomaticity, as

it reduces the disease burden from (π − π) to (1 − α)(π − π). It also shows that ceteris

paribus, the incentive for social distancing of a symptom-naive individual is moderated

by the perceived susceptibility pS(t) and by the population-wide behavioral response

of symptom-naive infected people, captured by φ(t). While the former is monotone

decreasing over time, the latter is typically not.

10The second-order condition is satisfied as ∂2U(di(t), pS(t))/∂di(t)2 = −c < 0.
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Figure 3: Equilibrium social distancing paths under symptomatic and asymptomatic
infection.

Using the definition of φ(t) and the fact that in symmetric equilibrium di(t) = d(t),

the best response can be rewritten as

d(t) =
S(t)

S(t) + α(1− S(t))
(1− α(1− σ(1− d(t)))(1− α)βI(t)

(
π − π
c

)
(29)

This can be solved to yield

d(t) =
(1− α(1− σ))(1− α)S(t)βI(t)(π − π)

cα + (1− α)(c− αβ(π − π)σI(t))S(t)
(30)

The equilibrium extent of social distancing for a symptom-naive individual at time t ≥ 0,

including the possibility of a corner solution, is then

d∗(t) = min

{
1,

(1− α(1− σ))(1− α)S(t)βI(t)(π − π)

cα + (1− α)(c− αβ(π − π)σI(t))S(t)

}
(31)

Figure 3 compares the equilibrium paths of social distancing under asymptomatic and

under perfect health state information, respectively. In turn, Figure 4 displays the re-

sulting equilibrium paths of disease prevalence and compares these with the disease path

under the mechanistic (non-behavioral) dynamics.Note that for fixed beliefs pS(t), social

distancing is increasing in the force of infection βI(t) because an individual who is not

certain that he or she is either (asymptomatically) infected or recovered, will use this as a

measure of the probability of becoming infected. Furthermore, it also follows that for any

disease prevalence level I(t), the privately optimal social distancing effort is decreasing
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Figure 4: Equilibrium disease prevalence paths under symptomatic and asymptomatic
infection.

in the individual’s perceived susceptibility pS(t).

3.2. Effect Decomposition. From the individual’s best response function (29) it is

readily verified that relative to the full-information benchmark (28), the individual’s best

response to disease risk is decreased through three distinct channels, illustrated in Figure

5. First, the factor pS(t) captures a fatalism effect, whereby individuals decrease their

mitigation efforts because they become increasingly confident that they are no longer

at risk. This effect is monotone decreasing as the epidemic progresses. Second, the

factor φ(t) constitutes a force of infection effect, which is U-shaped. This effect stems

from the fact that a fraction α of infected individuals are symptomatically naive and

therefore behave as if they were still at risk. This leads these individuals to engage in

mitigation, thereby effectively decreasing the force of infection for those who are actually

susceptible. Last, the constant factor (1 − α) constitutes a severity effect, because a

fraction α of the population will never experience any symptoms. This means that ex

ante, when people don’t know whether they are of the symptomatic type, the overall

expected disease burden from becoming infected is diminished. This lowers the benefits

of mitigation.11 Last, if transmissibility of asymptomatic infection is reduced and σ < 1,

then there is an additional mechanistic infectivity reduction effect of asymptomaticity.

In Section 6, I will consider the aggregate effects on disease incidence of mass testing

11Note that the absence of symptoms does not necessarily imply the absence of harm, because infection
can have long-term consequences regardless of the short-term symptoms. In those cases, the additional
disease burden from symptomatic infection should be thought of as the level that is over and above the
long-term effects of infection. For more detail, see e.g. https://www.acpjournals.org/doi/10.7326/M20-
3012
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Figure 5: Decomposition of effects of asymptomaticity. The fatalism effect, the force of
infection effect and the severity effect.

for infection and immunity. It turns out that these aggregate changes stem from the

impact that testing has on the fatalism and force of infection effects (while the severity

effect is unchanged).

3.3. Aggregate Welfare. To compare social welfare under asymptomatic infection

with the full information benchmark, I compute the undiscounted sum of individual

payoffs across the epidemic. Aggregate welfare at time t ≥ 0 is simply

W (t) = [S(t) + α(I(t) +R(t))] (π − c(d∗(t))) + (1− α) [I(t)π +R(t)π] (32)

Overall social welfare is then

WT =

∫ T

0

W (t)dt (33)
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Note that asymptomaticity has multiple influences on aggregate welfare.12 First, a frac-

tion α of all non-susceptible individuals engage in costly mitigation. Under full informa-

tion, these individuals would know that they are at no risk and would therefore engage

in no protective behavior. Second, a measure αI(t) of individuals are infected but do not

know it, earning them payoffs π rather than the reduced payoffs π < π. Third, under

asymptomaticity, the entire infection path is changed, as is the concomitant path of social

distancing by those who are actually at risk. This involves less mitigation throughout,

which in turn causes higher aggregate infection. Figure 6 and Figure 7 show the cumu-

lated number of infections and aggregate social welfare, respectively. Two features stand

out. First, aggregate infections may be substantially higher under asymptomatic infec-

tion than under the full information benchmark (unless the infection reduction effect is

substantial). This follows naturally from the fact that the three effects of asymptomatic

disease all work in the direction of diminishing equilibrium mitigation. Yet despite this,

we see that aggregate social welfare is actually higher under asymptomatic infection, de-

spite higher aggregate infection numbers. This stems from the severity effect, i.e. that

the disease burden for those who are infected is discounted by a factor (1 − α). Fig-

ure 7 shows that the cumulative number of infected with symptoms under asymptomatic

infection (i.e. a subset of those infected in the model with asymptomatic infection) is

lower than the corresponding number under full information. Thus, while it is true that

asymptomatic infection unambiguously increases disease prevalence, the analysis shows

that on welfare grounds, decreased severity counterweights that effect.

4. Diagnostic Tests and Predictive Values

In this section, I consider the application of two diagnostic tests, namely an I-test, which

detects whether infection is present in the individual at the time of testing and an R-

test, which detects whether the individual is immune. Note that tests for infection and

immunity are indirectly informative about the individual’s susceptibility at a point in

time, although they are not direct tests for susceptibility. Each test will have the following

structure. For each test k = I, R, the individual will either be in the given category or

not at time t ≥ 0, indicated by a state of the world θk(t) ∈ {0, 1}. The test will return a

12Two notes are in order. First, the definition ofW (t) contains the term (1−α)R(t)π, which means that
the planner values the utility of recovered individuals although people themselves ignore the possibility of
recovery from their own (myopic) decision making. But since there is a one-for-one relationship between
infected and recovered individuals, the inclusion of this term is just a rescaling of the value of the disease
burden. In addition, π can be reinterpreted as the expected net present value of an individual who has
just become infected and who will recover at the constant rate γ (see e.g. Toxvaerd, 2020). Second, the
welfare criterion is calculated over some finite but large horizon T in order to avoid having to compare
infinite undiscounted sequences of payoffs.
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Figure 6: Cumulative infection cases under full information, under asymptomatic infec-
tion and in non-behavioral benchmark.

Figure 7: Cumulative welfare under full information and under asymptomatic infection.
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mk(t) = 1 mk(t) = 0
θk(t) = 1 qk 1− qk
θk(t) = 0 1− qk qk

Table 3: Health states, test results and precisions.

test result mk(t) ∈ {0, 1} with precision

Pr(mk(t) = 1|θk(t) = 1) = Pr(mk(t) = 0|θk(t) = 0) = qk > 1/2 (34)

Without loss of generality, I impose symmetry so that the probability of a true positive

equals the probability of a true negative. The testing setup is illustrated in Table 3.

The I-test is essentially a virological test, while theR-test is a serological (or antibody)

test. In practice, tests for infection and tests for antibodies or T cells may differ in their

accuracy. As will become clear, the predictive value and value of information for the two

tests will change during the epidemic as the proportion of the population in the different

classes change. To focus on these changes, I will put the two tests on an equal footing

and assume that qI = qR so that the tests are equally informative about the state for

which they test.13

In this model, risk-mitigation is the central concern of individuals and since their

incentives depend on how susceptible they believe themselves to be, beliefs play a key

role in driving behavior. Diagnostic testing, either for infection or for immunity, can be

indirectly informative about the risks that symptom naive individuals face. This means

that diagnostic tests can induce changes in behavior and are thus valuable in the value of

information sense.14 But the value of the tests changes across the states of the epidemic,

because belief formation is part and parcel of the equilibrium dynamics. To understand

how the value of the different diagnostic tests changes over time, I characterize the testing

of a single individual at arbitrary moments along the equilibrium path. In practice, I take

the aggregate evolution of the disease as given and consider the effects of testing a single

individual who is symptomatically naive.

Consider an individual who has not shown any previous symptoms and who receives

a positive result mk(t) = 1 on a k-test at time t ≥ 0. From Bayes’rule, the probability

13https://academic.oup.com/bjaed/article/8/6/221/406440
14See e.g. work by Boozer and Philipson (1996, 2000).
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Figure 8: Positive and negative predictive values of tests for infection. Graph shows
pre-test probabilities and corresponding posterior beliefs after positive and negative test
results at different stages of epidemic.

of being in state k = I, R is

p1k(t) ≡ Pr(θk(t) = 1|mk(t) = 1)

=
Pr(θk(t) = 1 ∩mk(t) = 1)

Pr(mk(t) = 1)
(35)

=
Pr(mk(t) = 1|θk(t) = 1) Pr(θk(t) = 1)

Pr(mk(t) = 1)

=
qk Pr(θk(t) = 1)

qk Pr(θk(t) = 1) + (1− qk)(1− Pr(θk(t) = 1))
(36)

Similarly, the posterior probabilities after receiving a negative result mk(t) = 0 on a

k-test are



20 F. Toxvaerd

Figure 9: Positive and negative predictive values of tests for immunity. Graph shows
pre-test probabilities and corresponding posterior beliefs after positive and negative test
results at different stages of epidemic.

p0k(t) ≡ Pr(θk(t) = 1|mk(t) = 0)

=
Pr(θk(t) = 1 ∩mk(t) = 0)

Pr(mk(t) = 0)
(37)

=
Pr(mk(t) = 0|θk(t) = 1) Pr(θk(t) = 1)

Pr(mk(t) = 0)

=
(1− qk) Pr(θk(t) = 1)

(1− qk) Pr(θk(t) = 1) + qk(1− Pr(θk(t) = 1))
(38)

Since beliefs are a martingale, we know that

[pk(t)qk + (1− pk(t))(1− qk)] p1k(t) + [(1− pk(t))qk + pk(t)(1− qk)] p0k(t) = pk(t) (39)

It should be noted that the inference drawn from different test results varies with the

state of the epidemic, because the state determines the pre-test probabilities of being in

different classes. Figures 8 and 9 compare the pre-test probabilities with the posterior

beliefs after positive and negative tests for infection and immunity, respectively, at differ-

ent points on the equilibrium path of the epidemic. As would be expected, a positive test
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Figure 10: Positive and negative predictive values of susceptibility of tests for infection.
Graph shows pre-test probabilities and corresponding posterior beliefs after positive and
negative test results at different stages of epidemic.

increases the posterior, while a negative test decreases it. Having said that, the extent

to which the posteriors differ from the prior clearly depends on the prior, which in turn

varies greatly as the epidemic progresses. E.g., a positive test result for infection has only

moderate effects on beliefs at early and late stages of the epidemic, but significant effects

at intermediate stages, because disease prevalence is hump-shaped and thus the pre-test

probability of infection is highest at intermediate stages. Similarly, testing negative for

immunity towards the tail-end of the epidemic moves beliefs considerably, because by

then the individual’s pre-test beliefs of being recovered but asymptomatic are high.

To trace the effects that testing has on individuals’behavior, we need to determine the

information content of different tests. Recall that there is no direct test for susceptibility

but that tests for infection and immunity are indirectly informative about the extent to

which an individual is at risk. It is therefore useful to distinguish between test states and

target states. The test state is the state that we are testing for, e.g. infection or immunity.

The target state is the state we want to make inferences about and this can coincide or

be different from the test state. In the previous two formulae, the states coincided and

we found the predictive value of tests for infection and immunity. We now consider the

equivalent formulae for tests where the target state and the test state are different.

For some state h 6= k, the posterior beliefs after a negative result on a k = I, R test
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Figure 11: Positive and negative predictive values of susceptibility of tests for immunity.
Graph shows pre-test probabilities and corresponding posterior beliefs after positive and
negative test results at different stages of epidemic.

are

p10hk(t) ≡ Pr(θh(t) = 1|mk(t) = 0) (40)

=
Pr(mk(t) = 0|θh(t) = 1) Pr(θh(t) = 1)

Pr(mk(t) = 0)
(41)

=
qk Pr(θh(t) = 1)

qk Pr(θk(t) = 0) + (1− qk)(1− Pr(θk(t) = 0))
> Pr(θh(t) = 1) (42)

This inequality means that when an individual tests negative for being in a state k, then

the posterior probability assigned to being in state h 6= k increases and is proportional

to the prior probability of being in state h.

Similarly, beliefs after a positive result on a k = I, R are

p11hk(t) ≡ Pr(θh(t) = 1|mk(t) = 1) (43)

=
Pr(mk(t) = 1|θh(t) = 1) Pr(θh(t) = 1)

Pr(mk(t) = 1)
(44)

=
(1− qk) Pr(θh(t) = 1)

qk Pr(θk(t) = 1) + (1− qk)(1− Pr(θk(t) = 1))
< Pr(θh(t) = 1) (45)

Figures 10 and 11 show the pre-test probabilities and posterior beliefs for susceptibility
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Figure 12: Best responses after tests for infection. Graph shows pre-test best response and
corresponding best responses after positive and negative test results at different stages of
epidemic.

after negative and positive tests for infection and immunity, respectively, at different

points on the equilibrium path of the epidemic. Because the test states and the target

states no longer coincide with these tests, the interpretation of these graphs is slightly

different from the ones showing predictive values. A positive test result for either infection

or immunity causes the posterior probability of susceptibility to decrease, whereas a

negative result on either of those tests causes the posterior probability of susceptibility

to increase.

It is noteworthy that because there are three health states, the informativeness of a

test for one test state varies not only with the pre-test probability of the target state, but

also on the prior for the residual state (see Birkett, 1988). This causes non-monotonicities

seen in Figures 10 and 11.

5. Private Demand for Tests and the Value of Information

When individuals are potentially asymptomatic, they may remain uncertain about their

health status for prolonged periods of time unless they experience unambiguous symptoms

showing infection. For this reason, the model is ideally suited for analyzing the desirability

and effects of diagnostic tests. In this section, I do so in two different settings, namely

individual testing and mass testing.
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Figure 13: Best responses after tests for immunity. Graph shows pre-test best response
and corresponding best responses after positive and negative test results at different
stages of epidemic.

Figure 14: Expected utilities after tests for infection. Graph shows pre-test utility and
corresponding utilities after positive and negative test results at different stages of epi-
demic.
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Figure 15: Expected utilities after tests for immunity. Graph shows pre-test utility
and corresponding utilities after positive and negative test results at different stages of
epidemic.

5.1. Individual Testing. Individual mitigation behavior is driven by infection risks

and thus intimately tied to perceptions of susceptibility. Diagnostic testing is a key tool

to improve such information and can therefore help guide people’s decisions. For that

reason, I now analyze how test results can alter behavior and how such changes can make

testing valuable in the first place.

To this end, recall that for arbitrary social distancing decision di(t) and “personal”

beliefs p̂S(t), an individual’s utility at some point t ≥ 0 on the equilibrium path is

U(di(t), p̂S(t)) = −(1− di(t))p̂S(t)(1− α)φ∗(t)βI(t)(π − π)− c× di(t)
2

2
(46)

where the force of infection effect is the equilibrium amount

φ∗(t) = [1− α(1− σ(1− d∗(t)))] (47)

d∗(t) =
(1− α(1− σ))(1− α)S(t)βI(t)(π − π)

cα + (1− α)(c− αβ(π − π)σI(t))S(t)
(48)

Here, the aggregate social distancing is evaluated at the “aggregate”beliefs

pS(t) =
S(t)

S(t) + α(1− S(t))
(49)
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I distinguish between personal and aggregate beliefs so that I can consider the effects

on behavior of only a single individual who gets tested.

Denote by di(p̂S(t)) the privately optimal decision of an individual with beliefs p̂S(t).

Figures 12 and 13 compare the best responses after positive and negative results on

tests for infection and immunity, respectively, together with the pre-test best responses,

at different stages of the epidemic. Since mitigation efforts are monotone in perceived

susceptibility, the shifts in beliefs evident in Figures 10 and 11 are mirrored in the post-

test best responses. In turn, these changes in behavior, prompted by information gained

from the tests, are reflected in corresponding changes in post-test expected utilities, as

shown in Figures 14 and 15. These changes in information, best responses and post-test

utilities can be valued ex ante.

At the moment of taking a k-test, the expected utility of the individual is

VT ≡ Pr(mk(t) = 1)U(di(p
1
S(t)), p1S(t)) + Pr(mk(t) = 0)U(di(p

0
S(t)), p0S(t)) (50)

where

Pr(mk(t) = 1) = pk(t)qk + (1− pk(t))(1− qk) (51)

Pr(mk(t) = 0) = (1− pk(t))qk + pk(t)(1− qk) (52)

are the ex ante probabilities of receiving positive and negative results on a k-test, respec-

tively. Let the no-test expected utility be

VN ≡ U(di(pS(t)), pS(t)) (53)

The value of information of a k-test is calculated as

VT − VN ≥ 0 (54)

Note that this value is a function of what is being tested for (i.e. whether the test detects

infection or immunity), the aggregate state of the system (S(t), I(t), R(t)) and of the

population-wide contemporaneous social distancing d∗(t). Figure 16, shows the value

of information for a test for infection and immunity, respectively. The figure has several

noteworthy features. First, since the value of information derives from the potential

changes that new information induce in behavior, the value of information of tests for

infection and immunity are not necessarily highest when there is the highest pre-test

levels of mitigation. Rather, the values are highest when the difference in the post-test

mitigation levels are highest, as can be verified in Figures 12 and 13 for infection and

immunity tests, respectively. Second, except at early stages of the epidemic, the value
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Figure 16: Value of information of tests for infection or immunity at different stages of
epidemic.

of information from a test of immunity is significantly higher than the value of a test

of infection. Furthermore, the value of the former reaches its highest point later in the

epidemic. Here it should be recalled that in these plots, the tests for infection and

immunity are equally precise.

5.2. Mass Testing. To this point, I have considered only the testing of a single indi-

vidual. This allowed me to focus on the effects of tests on the behavior of the individual,

while sidestepping the issue of how tests may affect aggregate behavior and thus the

overall dynamics of the epidemic. In this section, I take a different perspective and ask

what the aggregate effects of mass testing are. While the effects will depend on the exact

time-path of aggregate testing, I will illustrate the basic principles by way of a simple

thought experiment. In particular, I will trace the effects on disease incidence at a given

point in time of mass diagnostic tests and determine how these effects vary with the state

of the epidemic.

For individual testing, the sensitivity and specificity of diagnostic tests influences the

value of information, but these properties have no effect on aggregate disease dynamics

in this case. This is no longer true under mass testing. As there is a continuum of

individuals in each class (susceptible, infected, recovered), this means that for a k-test

with precision qk, a fraction qk of individuals who are actually in this class will test positive

(true positives), while the remaining fraction (1− qk) will test negative (false negatives).
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I-test True positives False negatives False positives True negatives
Measure αI(t)qI αI(t)(1− qI) S(t)(1− qI) S(t)qI
Effect + − + −

Table 4: Effects of test for infection on incidence.

Similarly, for those individuals who are tested but who are not actually in this class,

(1 − qk) will test positive (false positives) while a fraction qk will test negative (true

negatives). This means that to understand the aggregate effects of mass tests, we need to

keep track both of the precision of the tests and of the magnitude of the subpopulation

that is submitted to the test. The latter is always going to be those individuals who have

never shown any symptoms, which we have determined have measure

S(t) + α [I(t) +R(t)] (55)

Mass tests for infection. Suppose that mass testing for infection is performed on

all symptom-naive individuals at some moment t ≥ 0. Equilibrium disease incidence will

then be

İ(t) = βI(t)S(t)
(
1− qId(p11SI(t))− (1− qI)d(p10SI(t))

)
×
(
1− α

{
1− σ

[
1− (1− qI)d(p11SI(t))− qId(p10SI(t))

]})
(56)

where pijhk is the posterior belief for realization i = 0, 1 of target state h 6= k after result

j = 0, 1 on a k-test.

This expression is the extension of the law of motion (22) to a population with het-

erogeneous beliefs. What happens with mass testing is that rather than having one

homogeneous naive class who all mitigate at the common level d∗(t), the tests create

two classes with different posterior beliefs (because some test positive while others test

negative) and hence with different ex post best responses. Depending on whether a given

individual is actually susceptible or infected, these different best responses lead to differ-

ent changes in behavior in different directions, the impact of which is determined by the

magnitude of the different segments of the population in each situation. The magnitudes

are in turn determined by the state of the epidemic and on the properties of the tests.

Table 4 summarizes the different effects for the case of a test for infection.

It is useful to think of the changes in aggregate behavior due to mass testing in terms

of the fatalism and force of infection effects, discussed in Section 4.2. Those who get true

positive results are in fact infected and will now become confident that they are no longer
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at risk. They will therefore increase their activity level and increase transmission, all else

equal. In contrast, those receiving false negative results are also infected, but they now

think it even more likely that they are susceptible, thereby increasing social distancing

and in effect reducing transmission. Similarly, those who receive false positive results are

in fact susceptible but think they’re not, thus lowering their guard. Last, people receiv-

ing true negative results are at risk and have their beliefs reinforced, therefore increasing

protection. What this means is that when mass tests are rolled out, there are a myriad

different, offsetting effects on behavior and this creates an ambiguous effect on the aggre-

gate number of matches between infected and susceptible individuals. As a consequence,

disease incidence can in principle increase or decrease, depending on parameters and on

the state of the epidemic. In addition, note that because each individual’s best response is

a function of contemporaneous aggregate social distancing in the population, individuals

must also trace the effects listed in the table.

To find exact values for the ex-post equilibrium mitigation levels (d(p11SI(t)), d(p10SI(t))),

I solve the system of best responses for the two test outcomes in symmetric equilibrium,

namely

d(p11SI(t)) = p11SI(t)(1− α)βI(t)

(
π − π
c

)
(57)

×
(
1− α

{
1− σ

[
1− (1− qI)d(p11SI(t))− qId(p10SI(t))

]})
(58)

d(p10SI(t))) = p10SI(t))(1− α)βI(t)

(
π − π
c

)
(59)

×
(
1− α

{
1− σ

[
1− (1− qI)d(p11SI(t))− qId(p10SI(t))

]})
(60)

These best responses are the equivalent of (29), corrected for heterogeneous ex post

beliefs and an amended force of infection effect. The solution to this system is the pair

of equilibrium social distancing levels

d(p11SI(t)) =
p11SI(t)(1− α)βI(t)(1− α(1− σ))(π − π)

c+ [(1− qI)p11SI(t) + qIp10SI(t)]ασ(1− α)βI(t)(π − π)
(61)

d(p10SI(t)) =
p10SI(t)(1− α)βI(t)(1− α(1− σ))(π − π)

c+ [(1− qI)p11SI(t) + qIp10SI(t)]ασ(1− α)βI(t)(π − π)
(62)

Figure 17 compares disease incidence at different stages of the equilibrium path of the epi-

demic, before and after a mass test for infection. Under the benchmark parameterization,

mass testing for infection increases disease incidence at any stage of the epidemic. Note

however that this does not mean that the overall effect of mass testing is an upward shift

in infection throughout the epidemic, for it is a statement only about disease incidence

at a moment in time. As is known from the control of SIR type diseases, mitigation that
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R-test False positives True negatives
Measure (1− qR) [S(t) + αI(t)] qR [S(t) + αI(t)]
Effect +/− +/−

Table 5: Effects of test for immunity on incidence.

suppresses infections early on may cause increases in infections later in the epidemic.

Mass tests for immunity. Under the assumption of density dependent transmis-

sion βI(t)S(t), tests may influence the behavior of asymptomatically recovered people,

of which there are αR(t). But these changes in behavior have no effects on aggregate

disease incidence and I can therefore ignore the effects on those who receive true positive

or false negative results on a test for immunity. Table 5 shows the effects in the case of

a test for immunity.

As can be seen, the effects are somewhat simpler than those under a mass test for

infection, yet the aggregate effects on disease incidence are still ambiguous.

When there is mass testing for immunity of all symptom-naive individuals at some

moment t ≥ 0, disease incidence is given by

İ(t) = βI(t)S(t)
(
1− (1− qR)d(p11SR(t))− qRd(p10SR(t))

)
×
(
1− α{1− σ

[
1− (1− qR)d(p11SR(t))− qRd(p10SR(t))

]
}
)

(63)

To find the exact values for the ex-post equilibriummitigation levels (d(p11SR(t)), d(p10SR(t))),

I solve the system of best responses for the two test outcomes in symmetric equilibrium,

namely

d(p11SR(t)) = p11SR(t)(1− α)βI(t)

(
π − π
c

)
(64)

×
(
1− α

{
1− σ

[
1− (1− qR)d(p11SR(t))− qRd(p10SR(t))

]})
(65)

d(p10SR(t))) = p10SR(t))(1− α)βI(t)

(
π − π
c

)
(66)

×
(
1− α

{
1− σ

[
1− (1− qR)d(p11SR(t))− qRd(p10SR(t))

]})
(67)

The solution to this system is the pair of equilibrium social distancing levels

d(p11SR(t)) =
p11SR(t)(1− α)βI(t)(1− α(1− σ))(π − π)

c+ [(1− qR)p11SR(t) + qRp10SR(t)]ασ(1− α)βI(t)(π − π)
(68)

d(p10SR(t)) =
p10SR(t)(1− α)βI(t)(1− α(1− σ))(π − π)

c+ [(1− qR)p11SR(t) + qRp10SR(t)]ασ(1− α)βI(t)(π − π)
(69)
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Figure 17: Disease incidence after mass testing for infection at different stages of epidemic.

Figure 18 compares disease incidence at different stages of the equilibrium path of the

epidemic, before and after a mass test for immunity. In this case, I find that mass testing

for immunity may reduce or increase disease incidence, depending on the stage of the

epidemic.What this analysis makes clear is that mass testing cannot be seen simply as a

means to gauge the state of the epidemic and to identify who is in which health state. The

mere act of mass testing, to the extent that the results are communicated to people and

these are allowed to change behavior in response, can itself influence disease dynamics

and change the situation on the ground. As a consequence, rollouts of mass testing must

be carefully considered on a par with other public health interventions such as mass

vaccination or generalized lockdowns..

6. Forward-Looking Behavior

The main analysis has been conducted under the assumption of myopic decision making

by individuals. This restriction was made purely for convenience, as it allows me to get

closed-form solutions for equilibrium behavior and straightforward comparative statics

results. Assuming instead that individuals are fully forward-looking will introduce addi-

tional considerations into decision making, in particular intertemporal tradeoffs known

from complete information models like those surveyed in the literature review. Yet the

basic insights from the myopic setting remain valid under forward-looking behavior. To

show this, I will in this section set out the problem of a representative forward-looking
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Figure 18: Disease incidence after mass testing for immunity at different stages of epi-
demic.

individual and derive the best response function. I show that the nature of this best

response function closely mirrors that of the myopic individual, relative to these individ-

uals’complete information equivalents in the benchmark models with no asymptomatic

infection.

To consider forward-looking behavior, I restrict attention to so-called open-loop strate-

gies in which individuals only condition their decisions on time. This amounts to consid-

ering only passive learning whereby individuals do not intentionally deviate from their

best responses in order to experiment.

Assume that individuals discount the future at rate ρ > 0. The individual’s maxi-

mization problem is then

max
di(t)∈[0,1]

∫ ∞
0

e−ρt
{
pS(t)

[
π − c× di(t)

2

2

]
+ pI(t)π + pR(t)π

}
dt (70)

where the state variables pj(t), j = S, I,R are the health state probabilities of the

individual at time t. The individual’s problem is solved subject to the following system
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of differential equations for the “individual”state variables:

ṗS(t) = −(1− di(t))pS(t)(1− α)φ(t)βI(t) (71)

ṗI(t) = (1− di(t))pS(t)(1− α)φ(t)βI(t)− γpI(t) (72)

ṗR(t) = γpI(t) (73)

In addition to these laws of motion, equations for the evolution of the aggregate state

variables (21)-(23) complete the description of the individual’s problem.

To make a direct comparison between the best responses under forward-looking deci-

sion making and under myopic decision-making, the payoffs from infection π in the latter

setting must be replaced by some value

π′ ≡ 1

ρ+ γ

[
π + γ

π

ρ

]
(74)

The value π′ is simply the expected discounted lifetime utility of an individual in the

infected state and can be understood as follows.15 Once infected, the individual expe-

riences flow utility π until he or she recovers. From then on, the individual earns flow

utility π in perpetuity. The recovery date is governed by a Poisson process with rate γ

and cannot be influenced by the individual. Last, observe that

lim
γ→0

π′ =
π

ρ
, lim

γ→∞
π′ =

π

ρ
(75)

It is worth emphasizing that under decentralized decision making, each individual

takes the aggregate dynamics as given and chooses a path of social distancing in order

to maximize his or her individual expected discounted utility. The outcome is thus one

of perfect foresight equilibrium, in which the aggregate dynamics that the individuals

anticipate when choosing their social distancing policies actually materializes.

Let λj(t) denote the “individual”costate variables for the state variables pj(t), j =

S, I,R. Then the individual’s current-value Hamiltonian is given by

H = pS(t)[π − c× di(t)2/2] + pI(t)π + pR(t)π (76)

−λS(t)(1− di(t))pS(t)(1− α)φ(t)βI(t) (77)

+λI(t)[(1− di(t))pS(t)(1− α)φ(t)βI(t)− γpI(t)] (78)

+λR(t)γpI(t) (79)

15See Toxvaerd (2020) for a derivation.
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A necessary condition for individual maximization is that

∂H

∂di(t)
= −pS(t)cdi(t) + pS(t)(1− α)φ(t)βI(t)[λS(t)− λI(t)] = 0 (80)

which can be re-written as

di(t) = pS(t)(1− α)φ(t)βI(t)

(
λS(t)− λI(t)

c

)
(81)

di(t) = pS(t)(1− α)φ(t)βI(t)

(
π − π
c

)
(82)

The costate variables satisfy the laws of motion

λ̇S(t) = λS(t)ρ− ∂H

∂pS(t)
(83)

= λS(t) [ρ+ (1− di(t))(1− α)φ(t)βI(t)]− λI(t)(1− di(t))(1− α)φ(t)βI(t)

−
[
π − c× di(t)2/2

]
(84)

λ̇I(t) = λI(t)ρ−
∂H

∂pI(t)
(85)

= λI(t) [ρ+ γ]− λR(t)γ − π

λ̇R(t) = λR(t)ρ− ∂H

∂pR(t)
= λR(t)ρ− π (86)

Note that relative to the best response under myopic decision-making (27), reproduced

here for reference, the only difference is that in the best response (81) under forward-

looking behavior, the constant health premium (π − π) is replaced by the time-varying

equivalent (λS(t)−λI(t)). We know from e.g. Makris and Toxvaerd (2021) that in equilib-
rium, βI(t)(λS(t)−λI(t)) is hump-shaped and so the qualitative properties of equilibrium
mitigation are robust to this extension. Furthermore, it is still true under forward-looking

behavior that an individual’s beliefs about susceptibility pS(t) are monotone decreasing.

7. Discussion

In this paper, I introduced a parsimonious setting in which the effects of asymptomatic

infection on equilibrium behavior can be fruitfully analyzed. In addition, I use the model

to analyze the demand for and effects of individual and mass testing, both on individual

and on aggregate behavior and disease dynamics. While the analysis has been kept as

simple as possible for tractability, the main ideas and tools extend straightforwardly

to more complicated and realistic settings, such as forward-looking behavior and the

possibility of disease-induced mortality. Some enhancements to the disease model would

be particularly interesting and these can also be made within the framework developed

in this paper.
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First, I have for simplicity assumed that once infected, symptomatic individuals show

symptoms without delay. In practice, many infected individuals are presymptomatic,

i.e. they become aware that they’re infected only after some time. This extension seems

worthwhile pursuing, especially for future quantitative work.

Second, I have assumed that once recovered, individuals become permanently immune

to further infection. We now know that diseases such as COVID-19 have waning immu-

nity, which changes the underlying disease dynamics in interesting ways (see e.g. Gian-

nitsarou et al., 2022). The possibility of waning and/or imperfect immunity changes the

analysis of belief formation because perceived susceptibility is then no longer monotone

decreasing, as is the case in the present work based on the SIR model. With an SIRS

setting where recovered people slowly move back to susceptibility, the beliefs of those who

do not experience any symptoms may fluctuate over time. In addition, asymptomatic

people may come to learn asymptotically that they are of the asymptomatic types, with

knock-on effects on both behavior and aggregate dynamics. Similarly, if being of the

asymptomatic type is a permanent property, then anyone who experiences symptoms

at any time learn that they are of the symptomatic type going forward. This will also

influence their future mitigation decisions.

Last, it should be acknowledged that an individual’s incentives to test his or her health

status may be different from those of a medical practitioner, a public health offi cial or

the government. In addition to the value of information to individuals from diagnostic

testing, there are roughly three main reasons to test people:

(i) There may be a direct clinical benefit from testing, to help to determine the appropriate

therapy. If therapy is available for the condition in question, then it can be applied as

appropriate. Testing can also be used to exclude certain causes of symptoms and so

other tests can be conducted to determine alternative causes. In the diagnostic testing

literature, this is known as ruling in/ruling out.

(ii) Testing is an integral part of researching and learning about a disease, to better

understand the medical issues involved and to understand the scale of the problem. E.g.,

testing can help researchers determine the infectiousness of the disease and also the

asymptomatic ratio (see Nishiura et al., 2020 for an application to COVID-19).

(iii) Testing can help manage the epidemic through better targeting of policy measures,

such as imposing curfews, lock-downs and quarantines, but also to project future demand

for critical infrastructure such as hospitals and ICU capacity.

Including the value of these alternative objectives into the calculation seems worth-

while, but is not pursued in the present paper.
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