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best-response functions. We also provide novel economic insights for both the existing network
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1 Introduction

Peer effects matter in education (Epple and Romano, 2011; Sacerdote, 2014), crime (Warr, 2002;
Lindquist and Zenou, 2019), performance at the workplace (Herbst and Mas, 2015), obesity (Chris-
takis and Fowler, 2007), environmentally friendly behavior (Kyriakopoulou and Xepapadeas,
2021), and depression (Giulietti et al., 2022), among other outcomes. Most of the aforementioned
peer-effect studies used the linear-in-means model in which each agent was linearly affected by the
mean action of her reference group. The game theory foundation of the linear-in-means model is a
network model that shows the best-response function of each agent to be linear and proportional
to the mean action of her peers (see, e.g., Patacchini and Zenou, 2012; Boucher, 2016; Kline and
Tamer, 2020; Ushchev and Zenou, 2020; Boucher et al., 2022).

In this paper, we provide a new methodology that relaxes the linearity assumption of this
model. A general methodology exists that solves theoretical models with linear best-response func-
tions (Jackson and Zenou, 2015); however, despite few existing network models with nonlinear
best-response functions (e.g., Baetz, 2015; Allouch, 2015; Melo, 2019; Parise and Ozdaglar, 2019),1 a
general methodology that could solve these models in a unified manner does not exist yet.2 In this
paper, we propose such a methodology based on variational inequalities (VI) and sign-equivalent
transformation (SET). Through many illustrations, we show that this new methodology is simple
to apply, and it can provide a unified approach to analyze many of the existing nonlinear network
models in the literature. In addition, we propose new network models that can be accommodated
using the VI and SET techniques.

Many equilibrium models in economics and operations research can be formulated as a VI
problem.3 In particular, if a game is well-behaved, there is a well-known equivalence between
determining the Nash equilibrium of continuous actions in pure strategy and solving a related
VI problem where the operator in the VI, called the game Jacobian operator, is the (minus of the)
gradients of players’ payoffs in the underlying game (Lemma 1).

Next, we introduce an ordinal equivalent relation on VI that we called SET, which has the
property of preserving the set of solutions on any rectangular domain. That is, if we consider
two VI problems defined on the same (rectangular) domain, these two VIs are considered sign
equivalent if the sign of the operators defining these VIs is the same at every point (Theorem 1). The
combination of Lemma 1 and Theorem 1 is particularly useful for applications in well-behaved
games. Indeed, starting from a game with an initial game Jacobian operator, we construct a new

1Melo (2019) and Parise and Ozdaglar (2019) also provided a general methodology to solve network models with
nonlinear best-response functions. We explain the differences with our methodology in Section 5.1.

2Allen et al. (2022) study the equilibrium properties of network models with heterogeneous agents that include
both linear and nonlinear best-response functions. Their main result is to characterize the equilibrium properties of
these models based on a single statistic of the matrix of the strength of economic interactions: its spectral radius. Their
techniques are different than ours and rely on (an extension of) the contraction mapping theorem.

3For overviews, see Nagurney (1999) and Konnov (2007).
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VI whose operator is sign equivalent to the initial operator. Then, by finding the solution to the
new VI, we obtain the solutions of the Nash equilibrium of the original game. Furthermore, many
ways for conducting sign equivalent transformations exist. In Proposition 1, we identify different
types of operations that preserve sign equivalence.

The theory of SET is applicable to well-behaved games. In this paper, we are particularly in-
terested in games played on networks.4 Consider a VI problem on a network (games on networks)
with relatively general best-response functions (which include nonlinear best responses). In The-
orem 2, we show that we can reorganize these best-response functions to obtain sign-equivalent
ones that have the property of being integrable. Integrability of an operator is an appealing prop-
erty since the solution to the corresponding VI is also the solution to the mathematical program-
ming problem of minimizing a function, whose gradient is equal to the operator on the domain.5

In other words, we have identified a best-response potential for the original game. We give the ex-
act potential of these best-response functions and show that the Nash equilibrium of this class
of games is one that maximizes this best-response potential function. This theorem shows that,
in many classical network models, finding Nash equilibria can be equivalent to a much simpler
optimization problem, in which the existence, uniqueness, and stability problems can be easily
identified.6

Finally, we revisit many classical network games with nonlinear best responses, which include
both games with strategic complements and substitutes. For each of these games, we can trans-
form an original VI problem into a much simpler one by identifying certain SETs. This allowed us
to construct a best-response potential function of the original network game, from which various
properties of Nash equilibrium can be easily derived.

To illustrate our methodology, we start with general preferences and the simple possible net-
work: the dyad; that is, a complete network with two players. We explain each step of our SET
methodology and derive conditions that must be met for a unique Nash equilibrium to exist;
that is, we explicitly construct the potential best-response function with its Hessian matrix being
positive definite (under certain conditions). This simple example shows that we can solve many
aggregative network games; that is, games in which the underlying network is complete.

Then, we consider network games with an arbitrary network structure with nonlinear best
responses and strategic complements. We start with the model of Baetz (2015) and provide a con-
dition under which there exists a unique interior Nash equilibrium for any possible network. In-
terestingly, by generalizing the model of Baetz (2015), we can solve all network games with linear
best-response functions and strategic complements, since they are a particular case of the utility
function considered in Baetz (2015).

4We briefly mention applications beyond network games in Section 5.4.
5This function can be computed using a line integral by Green’s Theorem.
6Technically, an SET finds a suitable reoganization of the original equilibrium conditions into a new form, such that

the Hessian matrix becomes symmetric, hence integrable.
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Next, we consider network games with nonlinear best responses and strategic substitutes. We
start with a generalized version of the linear public-good model of Bramoullé and Kranton (2007)
(BK hereafter) by having convex costs, instead of linear costs, and more general spillover effects.7

Because of the convexity of the cost, the best-response functions are, generally, nonlinear and it
becomes difficult to solve the game using the techniques used in BK, where the best responses are
linear. Following our SET framework, we construct a best-response potential, which facilitates the
equilibrium analysis. In particular, we show that only interior solutions exist if the marginal cost
is zero at zero (which is true for many specifications of convex costs). Thus, contrary to BK, there
are no corner solutions, which implies that the equivalence between the maximal independent set
and specialized equilibrium in BK does not hold anymore.

Furthermore, in terms of economic implications, when we consider the complete network and
the star network, we show that the equilibrium properties are drastically different when costs are
convex instead of being linear. For the complete network, there is a unique Nash equilibrium in
our framework, whereas there is a continuum of equilibria in BK. In the star network, we show
that the center node always exerts strictly less effort than the periphery nodes; however, this is
not always true in BK. We also identify a reverse relationship between a player’s equilibrium
action and its neighboring nodes in the sense of set inclusion under any equilibrium. Focusing
on nested-split graphs, we show that, at any Nash equilibrium, players with lower degree always
exert higher effort, which is not necessary true in BK.

Finally, we consider network games with nonlinear best responses and strategic substitutes for
the private provision of public goods, which, among others, have been considered by the public
economics literature (Bergstrom, Blume, and Varian, 1986; complete network and δ = 1)8 and
the network literature (Allouch, 2015; and network and δ = 1). We generalize both models by
considering an arbitrary network and a δ that takes any positive value between 0 and 1; that is,
δ ∈ (0, 1]. Using our SET methodology, we provide conditions under which there is a unique
Nash equilibrium of our extended game. This model is richer and highlights the role of δ in the
provision of public goods.

Related literature

Network games. As stated previously, we contribute to the literature on network games (for
overviews, see Jackson and Zenou, 2015; Bramoullé and Kranton, 2016). Most papers in this lit-
erature consider linear-quadratic utility function. An exception is the paper by Bramoullé et al.
(2014), who considered non-quadratic payoffs with linear best responses. They also introduced
the notion of best-response potential; however, it is a quadratic function in their setting. Another
exception is the study by Bourlès et al. (2017) who introduced a novel transformation to the equi-

7Indeed, in BK, the intensity of spillover effects δ is assumed to be equal to 1, whereas we assume that δ ∈ (0, 1].
8In this model, δ captures the intensity of the impact of the sum of the public-good provisions of a consumer’s

neighbors on own utility.
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librium system to obtain a simple, integrable system that leads to the best-response potential of
the altruism network game. According to our terminology, the transformation they adopt is sign
equivalent.

We believe we are the first to provide a unified and systematic methodology that solves net-
work games with nonlinear best-response functions. Other researchers have used VI to solve
network games with nonlinear best-response functions (Melo, 2019; Parise and Ozdaglar, 2019)
without using SET, and thus best-response potentials, which limit their applicability.9

Our methodology has the advantage of simplicity and easy applicability. All we need to do is
define an ordinal equivalent relation on VIs, which can preserve the solution set by our Theorem
1. Since SET is a large set, it gives us sufficient flexibility to change the original VI into a SET VI
to simplify the Nash equilibrium (NE) problem. For many well-known games on networks, we
show that the new VI is integrable; hence, there is a potential function associated with it. Then,
showing that this constructed potential function is a strictly convex function suffices. Furthermore,
we can prove that the only domains that preserve the solution sets for arbitrary pair of ordinal
equivalent VIs are the rectangular domains. Since many economic models naturally have either a
lower bound and/or an upper bound on each effort xi, the strategy space is usually a rectangular
domain.10

Potential games. Beyond network games, potential function approaches have been widely adopted
in several classes of games in the literature (Monderer and Shapley, 1996), such as the congestion
game (Rosenthal, 1973; Nisan et al., 2007), Cournot oligopoly (Slade, 1994), aggregative games
(Dubey et al., 2006; Jensen, 2010), and beauty contest (Huo and Pedroni, 2020), among others.11

Potential games have also been used in network games. However, as stated previously, this
literature mostly deals with network games with linear best-response functions and shows that
the game has an exact potential. Having an exact potential imposes strong restrictions on the un-
derlying network models (see Monderer and Shapley, 1996). In this study, we show that even if
the original game does not have an exact potential (which is usually the case if the best responses
are not linear), we can still construct a best-response potential after using appropriate SET opera-
tions. Thus, we can establish equilibrium properties (such as existence, uniqueness, and stability)
by just analyzing this constructed best-response potential.

The rest of the paper is as follows. In Section 2, we introduce the concept of VI and SET.
In Section 3, we provide our main theoretical result, that is, how to solve network games with
nonlinear best-response functions using best-response potentials. In Section 4, we show how we

9In Section 5.1, we discuss in details the differences between our model and that of Melo (2019) and Parise and
Ozdaglar (2019).

10Indeed, our results apply to any rectangular domain [a1, b1]× · · · × [an, bn] with the possibility of ai = −∞ and/or
bi = +∞.

11See Voorneveld (2000) for discussion of games with best-response potentials and Ewerhart (2020) for necessary
(and some sufficient) conditions for the existence of ordinal potentials in smooth games.
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can use our new methodology to solve network games with nonlinear best-response functions
with strategic complements (Section 4.1) and substitutes (Sections 4.2 and 4.3). In Section 5, we
discuss the strengths and limitations of our approach. Finally, Section 6 concludes our study. All
proofs can be found in the Appendix.

2 Variational inequalities and sign equivalence

We first introduce variational inequalities (VI hereafter) in Section 2.1, followed by defining sign
equivalence and mentioning its implications in Section 2.2.

2.1 VI and Nash equilibrium

Given a nonempty closed convex set K ⊂ Rm and a continuous mapping F = (F1, · · · , Fm)′ from
K to Rm,12 the VI problem, VI(K, F), is to determine a vector x∗ ∈ K ⊂ Rm, such that

〈(x− x∗), F(x∗)〉 ≥ 0, ∀x ∈ K, (1)

where 〈., .〉 denotes the inner product. Let Sol(K, F) denote the solution set, and #|Sol(K, F)| denote
the cardinality of the solutions.13

VI provides a convenient tool for our analysis, since many economic problems using equilib-
rium notation can succinctly be reformulated using VI.14 In particular, a well-known reformula-
tion of Nash equilibrium exists while using VI in well-behaved games.

Definition 1. A normal form game Γ = (ui, Ki)i∈N among N = {1, · · · , n} players is well-behaved if
(i) the strategy space of each player Ki is a closed and convex subset of Rmi ; (ii) the payoff functions are
twice continuously differentiable; and (iii) for each player i, for any x−i ∈ ∏j 6=i Kj, ui(xi, x−i) is concave
in xi ∈ Ki.

Lemma 1. Suppose Γ is a well-behaved game (Definition 1). Then, x∗ = (x∗1 , · · · , x∗n) ∈ ∏i Ki is a
pure-strategy Nash equilibrium of Γ if and only if x∗ solves the VI(K, F) with15

F(x) ≡ −

∇x1 u1(x)
· · · ,

∇xn un(x)

 and K =
n

∏
i=1

Ki, (2)

12Let Rn
+ and Rn

++ denote the set of nonnegative and positive vectors, respectively. Transpose of a matrix A is denoted
by A′. All bold symbols refer to vectors and matrices.

13Geometrically, x∗ is a solution to the VI(K, F) if and only if −F(x∗) ∈ NC(x∗), where NC(F) denotes the normal
cone of K at x defined by NC(x) = {y ∈ Rm : 〈y, z− x〉 ≤ 0, ∀z ∈ K}. See Nagurney (1999).

14VI was initially introduced in the literature to succinctly characterize critical points for minimization programs
with constraints. By now, VI is a well-studied subject (Facchinei and Pang, 2007). Many economic problems can be
reformulated using VI. For overview, see Nagurney (1999) and Konnov (2007).

15For a multivariable function f (z, y) with z = (z1, · · · , zp) ∈ Rp and y = (y1, · · · , yq) ∈ Rq, ∇z f =

(∂ f /∂z1, · · · , ∂ f /∂zp)′ denotes the gradient (column) vector of f with respect to z.
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where F is called the game Jacobian of Γ.16

Lemma 1 is applicable to many games studied in applied and theoretical papers because the
conditions stated in Definition 1 are very mild. For instance, in games with continuous actions,
the differentiability assumption in Definition 1 items (i) and (ii) are usually satisfied. In addition,
the concavity requirement in Definition 1 (iii) facilitates the equilibrium analysis by focusing on
local deviations instead of global ones.17

As a bridge connecting VI and Nash equilibrium (NE), Lemma 1 is useful because we will em-
ploy the results of VI to analyze Nash equilibrium in (network) games. For instance, the unique-
ness of the solution to the VI(K, F) implies the uniqueness of NE of Γ, and the comparative statics
analysis of this VI informs us how the NE changes with parameters.18 From now on, we can work
directly with the game Jacobian F of the game. In addition, Lemma 1 lays out the basis of our
subsequent VI-based theory called sign equivalence.19

2.2 Sign equivalences: Definition, implications, and constructions

Consider two VI problems, VI(K, F) and VI(K, F̃), defined on the same domain K ⊂ Rm,20 where
F = (F1(x), · · · , Fm(x))′ and F̃ = (F̃1(x), · · · , F̃m(x))′.

Definition 2. VI(K, F) is said to be sign equivalent to VI(K, F̃) on K if, for every i,

Fi(x) S 0 if and only if F̃i(x) S 0, ∀x ∈ K. (3)

The definition is easy to check as follows: for any x in K, Fi(x) and F̃i(x) must have the same
sign. The requirement for sign equivalence is fairly weak as the exact values of Fi(x) and F̃i(x) at x
could differ dramatically as long as the signs of Fi(x) and F̃i(x) are the same.

Definition 3. K is called rectangular if K = ∏m
i=1[ai, bi] with −∞ ≤ ai < bi ≤ +∞.

The following theorem demonstrates the implications of sign equivalence on the solution sets
of VIs.

16The dimension of ∇xi ui(x) is mi, so the dimension of F is ∑n
i=1 mi, which is the same as that of K.

17Although we think of the requirements of Definition 1 as very mild, they rule out games with discrete actions.
Furthermore, one can relax the concavity requirement in Definition 1 (iii) by imposing weaker conditions such as
quasi-concavity.

18This Lemma (or its variation) appears in several recent economic papers (see, e.g., Ui, 2016; Melo, 2019; Parise and
Ozdaglar, 2019).

19In Lemma 1, both interior solution and corner solution are analyzed symmetrically.
20Throughout the paper, we assume that the domain K of a VI is nonempty, convex, and closed. These assumptions

are usually satisfied in most of the economic applications. Note that K is not necessarily compact.
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Theorem 1. Suppose F and F̃ are sign equivalent on K.

(i) Both VIs have the same set of solutions in int(K), the interior of K, that is,21

Sol(K, F) ∩ int(K) = Sol(K, F̃) ∩ int(K).

This means that if x∗ ∈ int(K), then x∗ solves VI(K, F) if and only if x∗ solves VI(K, F̃).

(ii) In addition, if K is rectangular, then, two VIs have the same solution set, that is,

Sol(K, F) = Sol(K, F̃).

This means that any x∗ ∈ K that solves VI(K, F) must solve VI(K, F̃), and vice versa.

Theorem 1 illustrates that the solutions of two sign-equivalent VIs must be the same within
the interior of K. Furthermore, if K is rectangular (Definition 2), their solutions (regardless of in-
terior or corner ones) must be the same. Note that a solution to VI(K, F) might be in the interior
of K or on its boundary. Theorem 1(i) has broad applicability as the domain K is arbitrary. How-
ever, it only compares the solutions in the interior of K and remains silent about the solution on
the boundary (see Remark 1). The implication of Theorem 1(ii) is strong as it compares all the
solutions across two problems but it imposes additional mild rectangularity assumption on K.

Our theory of sign equivalence is particularly powerful when the domain is rectangular, that is,
a product of intervals. In Definition 3, we allow for the possibility that ai = −∞ and/or bi = +∞.
For instance, the Euclidean space Rm, its first quadrant Rm

+ = [0, ∞)m, and the unit box [0, 1]m are
all rectangular. Furthermore, if Kj is rectangular for each j = 1, · · · , n, then the Cartesian product

∏n
j=1 Kj is also rectangular (the product domain naturally arises in VI formulation of equilibrium

in games; see Lemma 1).

Remark 1. Suppose interior solutions are the main interest, which is true for many applied works, then,
for any domain K, Theorem 1(i) is applicable. Furthermore, we could obtain the same result in Theorem 1
(i) by weakening sign equivalence to zero equivalence.22

Remark 2. Theorem 1(i) is silent about the solution possibly on the boundary. In fact, sign equivalence
does not always preserve the solutions on the boundary of K when K is not rectangular (see Example A1(i)
in Section A of the Online Appendix for an illustration).

Furthermore, in Theorem A1, we show that the rectangular domain is the only domain that preserves the
solution set to VI under any sign equivalent transformations. Thus, it shows the necessity of considering
rectangular domains in Theorem 1(ii).

21A point x is in the interior of K if there exists ε > 0 such that the ball centered at x with radius ε is in K. We let
int(K) denote the set of interior points of K. Note that it is possible that Sol(K, F) ∩ int(K) is empty.

22Fi is zero equivalent to F̃i if Fi(x) = 0⇐⇒ F̃i(x) = 0, ∀x ∈ K. Note that this notation is weaker than sign equivalence
(Definition 2), since it is possible that Fi(y) > 0 but F̃i(y) < 0 for some y ∈ K.
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The combination of Lemma 1 and Theorem 1 is particularly useful for applications in well-
behaved games. To see this, let F be the game Jacobian of Γ, as defined in Lemma 1. Suppose
we can construct F̃, which is sign equivalent to F (see Proposition 1 below for sign preserving
operations), then, we can obtain information about the Nash equilibrium of Γ from the constructed
VI(K, F̃). In particular, any interior equilibrium of Γ must solve VI(K, F̃). Furthermore, if each
player’s strategy space Ki is rectangular, then K = ∏i Ki is also rectangular; thus, any equilibrium
of Γ (no matter whether it is in the interior or on the boundary of K) must solve VI(K, F̃) and vice
versa.

The scope of the applicability of Theorem 1 hinges on the following two critical prerequisites:

(A) How can we construct “many” sign equivalent transformations of F?

(B) Among these sign-equivalent problems, is it possible to identify a particular one that is sim-
pler and easier (in some appropriate sense) to analyze than the original one?

In general, issue (B) is complicated, since it depends on the specific structure of the original
problem VI(K, F). However, within a large class of network games, we are able to exploit the
network structure to systematically construct a “nice” F̃, as given in the next section, which helps
us shed light on the equilibrium of the original network game.

To address issue (A), we identify several types of operations of F that preserve the sign equiv-
alence. Since sign equivalent requires component-wise comparison of F and F̃, in the operations
defined below, we define it on each component Fi.23

SET1: Scalar multiplication by a positive function:

Fi(x)→ F̃i(x) = αi(x)Fi, (4)

where αi(x) > 0, ∀x ∈ K.

SET2: Composition with a sign-preserving function:

Fi(x)→ F̃i(x) = κ(Fi(x)) (5)

where κ is a scalar function such that κ(t) S 0 if and only if t S 0. Note that κ is not
necessarily monotone.

SET3: Suppose Fi(x) = A(x)− B(x) for some functions A(·) and B(·). Define

F̃i(x) =

h+(A(x))− h+(B(x)), where h+(·) is strictly increasing;

h−(B(x))− h−(A(x)), where h−(·) is strictly decreasing.
(6)

23Note that the transformation from Fi to F̃i can differ from that of Fj to F̃j for j 6= i.
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It is clear that each of these three operations preserves the sign. Since sign equivalence, as a
binary relation on all VIs defined on K, is transitive,24 any composition of these operations must
preserve the sign. Proposition 1 summarizes these observations.

Proposition 1. F and F̃ are sign equivalent if, for each i, we can obtain F̃i(x) from Fi(x) through a sequence
of operations using SET1, SET2, or SET3 defined previously.

In view of Proposition 1, these operations are called sign-equivalent transformations (SETs).
Of course, the list of the aforementioned transformations is by no mean exhaustive. Hence, other
well-suited SETs for specific applications might exist.

Remark 3. Fix a game Γ = (ui, Ki)i∈N . Then, suppose we modify the payoff ui(x) to ũi(x) = φi(ui(x))
to define a new game Γ̃ = (ũi, Ki)i∈N , where the scalar function φi(·) is strictly increasing, that is, φ′i >

0, then, the Jacobian F̃ of the new game Γ̃ is sign equivalent to the Jacobian F of Γ (see Lemma 1). In
fact, F̃i(x) can be obtained from Fi(x) using SET1 by setting αi(x) = φ′i(ui(x)) > 0 as ∇xi ũi(x) =

φ′i(ui(x))∇xi ui(x) by the chain rule. Obviously, Γ and Γ̃ have the same set of pure-strategy equilibrium, a
result consistent with Theorem 1.25

Remark 4. Though for different purposes, special cases of SET1 are explicitly used in the literature (see
Rosen, 1965; Ui, 2008).26 In defining diagonal concavity, Rosen (1965) considered multiplying each Fi(x)
by a positive constant γi, which clearly was a special case of SET1 with αi(x) ≡ γi. Ui (2008), in defining
his γ-monotonicity of the VI, considered multiplying Fi(x) by γi(xi), a positive function depending only
on xi, but not on x−i. Incidentally, this operation used by Ui (2008) is also a special case of SET1. Both
Rosen (1965) and Ui (2008) neither considered other types of SETs nor formally discussed the impact of
these SETs on the solution sets of VIs as in our Theorem 1.

Remark 5. As the pivotal step in analyzing a network altruism game, Bourlès et al. (2017) employed a
novel “logarithmic” transformation of the equilibrium conditions in their setting to a simple, integrable
system, which eventually led to an explicitly constructed best-response potential of the underlying game.
Incidentally, the transformation they adopted is a special case of SET3 with h+(z) = ln(z).27

24That is, if VI(K, F) is “sign equivalent” to VI(K, F̃), then VI(K, F̃) is “sign equivalent” to VI(K, F). Moreover, if
VI(K, F) is “sign equivalent” to VI(K, F̃) and VI(K, F̃) is “sign equivalent” to VI(K, F̂), then VI(K, F̃) is “sign equiva-
lent” to VI(K, F̂). Note that the binary relation is not complete, since not any pair of VIs are comparable.

25Such a monotonic transformation of payoff naturally arises in some economic settings. For instance, when φi is
affine, then ui and ũi are two equivalent utility representations of i’s preference over (mixed) strategy profile. When
φi is increasing and concave, it reflects risk aversion of player i. See, for instance, Weinstein (2016) on the impact of
risk attitude (risk aversion and risk loving) on strategic behavior in games, and Weinstein (2017) for discussions of
substitutes and complements in classical consumer theory.

26These two papers focus on concave games (which satisfy our Definition 1), but have different research questions.
In particular, they are interested in identifying conditions of the modified VI to obtain results such as uniqueness and
integrability. Instead, we consider a broader class of operations of SET and study the implications on the solution to VI.

27Roughly speaking, they rewrite the equilibrium conditions (see their paper for the notation):

0 ≤ tij ⊥ (u′i(yi)− aiju′j(yj)) ≥ 0, ∀i, j (7)
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3 Network games and best-response potentials

Consider a network g and a normal-form network game Γg = (ui, G, Ki)i∈N . Here, Ki is the strat-
egy space of agent i, ui is her payoff, and G = (gij)n×n is the adjacency matrix of the network g in
which gij = 1 if and only if i and j are directly connected, and gij = 0, otherwise. We also assume
that gii = 0 (no self-loops) and gij = gji ∈ {0, 1} (undirected and unweighted network). Denote
the set of neighbors of i by Ni, that is, Ni =

{
all j | gij = 1

}
, and the degree of i by di, that is,

di = |Ni|.

3.1 A general result

We consider a class of network games in which a player’s payoff depends on the actions of her
direct neighbors. We present a general theorem demonstrating how to use SET to obtain simple
ways of equilibrium characterization and establish existence and uniqueness results. In particular,
we are able to provide solutions to network games when the best-response functions are not linear,
which is a well-known difficult problem in the literature.

Theorem 2. Consider a network game Γg = (ui, G, Ki)i∈N with a single-dimension strategy space Ki =

[ai, bi] ⊆ R and K = ∏i Ki. Assume that, for each i, there exists a scalar δ, and some continuous functions
hi(·), si(·) and Ri(·), such that player i’s optimal decision xi, given each x−i, implicitly satisfies28

hi(xi) = Ri

(
si(xi) + δ

n

∑
j=1

gijxj

)
. (9)

Assume that Ri(·) is either strictly increasing or strictly decreasing. Then, x∗ = (x∗1 , · · · , x∗n) in int(K)
solves (9) if and only if x∗ is a stationary point of φ(x), where

φ(x) :=
n

∑
i=1

∫ xi

x0
i

{
R−1

i (hi(zi))− si(zi)
}

dzi −
1
2

δ
n

∑
i=1

n

∑
j=1

gijxixj. (10)

The intuition behind Theorem 2 is simple. Consider a network game Γg = (ui, G, Ki)i∈N for
which the best-response function of each player i is given by (9). By inverting Ri(·) in (9), we
obtain:

R−1
i (hi(xi))− si(xi)− δ

n

∑
j=1

gijxj︸ ︷︷ ︸
=∂φ/∂xi , for φ(x) defined in (10)

= 0, ∀i.

as
0 ≤ tij ⊥ (ln u′i(yi)− ln aij − ln u′j(yj)) ≥ 0, ∀i, j. (8)

Note that the first function in (7), u′i(yi)− aiju′j(yj), is sign equivalent to the second function in (8), (ln u′i(yi)− ln aij −
ln u′j(yj)) using SET3 with h+(z) = ln(z).

28Assuming h′i − R′is
′
i 6= 0, we have a unique solution of xi to (9) for any x−i.
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Thus, the gradient of φ(x) defined in (10) vanishes if and only if (9) holds for any i. To determine
the Nash equilibrium of Γg, one needs to find critical points x of φ(x) in (10). Note that Theorem
2 is a direct consequence of Theorem 1 as the operation we adopted here is a special case of SET
(more precisely SET3). This theorem is quite general but, at the same time, quite simple.

Observe that, in Theorem 2, the definition of the rectangular domain K is important. For eco-
nomic applications, this rectangular domain may have some limitations; however, for the unidi-
mensional domain, it is a very natural one. For some non-rectangular domains, we can still use
our SET approach to show the existence and uniqueness of equilibrium.

We can summarize our results using Figure 1. Consider a normal-form, well-behaved game
Γ = (ui, Ki)i∈N (Definition 1). Finding the pure-strategy Nash equilibrium x∗ of this game is
equivalent for x∗ to solve the VI problem VI(K, F) defined in (1), where F is the Jacobian matrix of
this game Γ (Lemma 1). We can then have a sign-equivalent transformation of VI(K, F) by using
VI(K, F̃) instead of VI(K, F) (Definition 2) because the Nash equilibrium solution x∗ is the same
for VI(K, F) and VI(K, F̃) for interior solutions and, if K is rectangular (Definition 3), it is the same
for all solutions (Theorem 1). In particular, many transformations of F lead to a sign-equivalent F̃
(Proposition 1). Now, consider a network game Γg = (ui, G, Ki)i∈N , which has the same properties
as those of the aforementioned game above. Then, if the best-response function of this game using
F̃ can be written as given in (9), so that it can be integrated and equal to φ(x), then, the potential
best response x∗ in (10), which is a maximizer of φ(x), is a Nash equilibrium of this game (Theorem
2).

Well-behaved game

VI(K,F)

New VI(K,F̃)

BR potential

Lemma 1

Proposition 1 and Theorem 1

Theorem 2

Figure 1: A summary of our methodology

3.2 Example: A dyad network

Now, let us illustrate Theorem 2 and Figure 1 using a simple example.
Consider a dyad network gd with N = 2 and g12 = g21 = 1. Define the network game

Γgd
= (ui, Gd, Ki)i∈N , where Gd is the adjacency matrix of the dyad network gd, and assume that

12



Γgd
is well behaved (Definition 1). Applying the first-order conditions yield the following:

x1 = R1(x2), (11)

x2 = R2(x1), (12)

where Ri(.) is the best-response function of player i = 1, 2. Clearly, these best-response functions
are a particular case of (9) when hi(xi) = xi, si(xi) = 0, δ = 1, and the network is a dyad. Assume
that Ri(·) is invertible for each i = 1, 2, then, we can rewrite these equations as follows:

x2 = R−1
1 (x1) := f1(x1), (13)

x1 = R−1
2 (x2) := f2(x2), (14)

where fi(.) denotes the inverse function of Ri(·) for each i.
We can define the VI problem VI(K, F), where K = R2 and F is given by:

F(x) = −
(

R1(x2)− x1

R2(x1)− x2

)
. (15)

Observe that F(x) is not integrable because its Jacobian matrix is not symmetric: ∂F1(x)
∂x2

= −R′1(x2) 6=
−R′2(x1) = ∂F2(x)

∂x1
. Thus, none of the functions has gradient equal to F(x). Now, the “trick” is to

transform this first-order condition into a new form that is integrable and has a best-response
potential. Indeed, SET of VI(K, F) is VI(K, F̃), where F̃ is given by:

F̃(x) = −
(

f1(x1)− x2

f2(x2)− x1

)
. (16)

Indeed, it should be clear that, for every i,

Fi(x) S 0⇔ F̃i(x) S 0, ∀x ∈ K. (17)

It is easily verified that the Jacobian matrix of F̃ is now symmetric, since ∂F̃1(x)
∂x2

= 1 = ∂F̃2(x)
∂x1

. An
SET changes the best-response function in a way that the Jacobian matrix becomes symmetric. By
doing so, the operator becomes integrable and is associated with a potential function. Thus, to
find the Nash equilibrium x∗ = (x∗1 , x∗2) of the original network game Γgd

= (ui, Gd, Ki)i∈N , we can
solve the VI problem VI(K, F̃).

Following Theorem 2, we can use a line integral to F̃ to obtain the best-response potential
function φ(x) given by:

φ(x) =
∫ x1

x0
1

f1(z1)dz1 +
∫ x2

x0
2

f2(z2)dz2 − x1x2, (18)

with the property that ∇φ = F̃. Clearly, the Nash equilibrium x∗ = (x∗1 , x∗2) solves the system of
equations (11) and (12) if and only if x∗ is a critical point of φ(x). The Hessian matrix of φ(x), or,
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equivalently, the Jacobian of F̃, is given by:

H [φ(x)] =

[
f ′1(x1) −1
−1 f ′2(x2)

]
. (19)

Note that the slope of fi(.) is the inverse of the slope of Ri(.). To show that the Nash equilibrium is
unique, we can impose a condition to make the Hessian matrix positive (negative) definite, so that
φ(x) is strictly convex (concave). For strategic complements in which both best-response functions
R1 and R2 are strictly increasing (or equivalently f ′i (.) > 0, i = 1, 2), H [φ(x)] is positive definite
when f ′1(x1) f ′2(x1) > 1, or equivalently R′1(x1)R′2(x2) < 1. Under this condition, φ(x) is strictly
convex, and a critical point must be unique. For strategic substitutes in which both best-response
functions R1 and R2 are strictly decreasing (or equivalently f ′i (.) < 0, i = 1, 2), H [φ(x)] is negative
definite when | f ′1(x1) f ′2(x1)| > 1, or, equivalently, |R′1(x1)R′2(x2)| < 1. Under this condition, φ(x)
is strictly concave and a critical point must be unique.

For more general network settings, we can construct the potential function in a similar way
and impose similar restrictions to guarantee the uniqueness and existence of the equilibrium of
the original network game. We elaborate more on this in Section 4 for several network games with
nonlinear best response functions.

3.3 Discussion: The scope of Theorem 2

A few remarks on Theorem 2 are given below.
First, note that this theorem is applicable to very broad settings, since it includes network

games with both strategic complements and substitutes and also network games with nonlinear
best-response functions.

Second, Theorem 2 does not always require an explicit expression of the best response of player
i, xi, as a function of x−i. What is important is that i’s best response explicitly solves (9) for
some functions hi(·), Ri(·), and si(·). Moreover, we only require that Ri(.) is invertible, which
covers either strictly increasing or decreasing Ri(.). The invertibility of Ri(.) can be a consequence
of standard monotone comparative statics results, such as those in the studies by Milgrom and
Shannon (1994) and Edlin and Shannon (1998).

Third, the network structure g is arbitrary. Thus, this Theorem takes a specific form when
the network structure g takes a particular shape. In particular, Theorem 2 also contributes to the
literature on aggregative games. To see that, when g is a complete network, Theorem 2 is applicable
when the best response of player i is either (i) xi = τi(X − xi) for some τi(·), or (ii) xi = ρi(X) for
some ρi(·), where X = ∑n

k=1 xk is the aggregate action. Therefore, aggregative games with either
invertible τi or ρi satisfy our condition and, thus, Theorem 2 presents a closed-form best-response
potential function for these aggregative games.29

29ρi is often called the fitting-in curve of player i in aggregative games (see, e.g., Dubey et al., 2006; Jensen, 2010).
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4 Solving network games with nonlinear best-response functions

Given Theorem 2, we would like to show how general our results are and how we can apply them
to standard network games with nonlinear best response functions, which are usually difficult to
solve. For all these applications, we assumed that the network is undirected, so that the adjacency
matrix G is symmetric. We highlight two features of our approach: (i) tractability even for general
models and (ii) new predictions and novel insights.

4.1 Network games with strategic complementarities

Consider the following network game ΓB of Baetz (2015). There are n players connected in a
network g with the utility function:30

ui(x, g) = v

(
∑

j
gijxj

)
xi −

1
2

x2
i , (20)

where v(·) is strictly increasing. The best-response function of i takes the following form

xi = v

(
∑

j
gijxj

)
. (21)

Baetz (2015) assumes that v(0) = 0, v′(0) > 1, 0 ≤ limx→∞ v′(x) < 1/(n − 1) and v′′(·) < 0
and shows that, under these assumptions, there are exactly two equilibria for any network g: (i)
a trivial equilibrium in which all agents choose 0 and (ii) a nontrivial equilibrium that is interior.
The uniqueness of the non-trivial equilibrium in the study of Baetz (2015) relies on a fixed-point
theorem in Kennan (2001), which puts some restrictions on v(·), in particular, on the concavity of
v(·).

Now, let us use our technique to show the uniqueness of equilibrium of ΓB under a different
set of conditions. First, we can define the VI problem VI(K, F), where K = Rn

+ = [0, ∞)n and F is
the Jacobian matrix of this game with

Fi(x) = −
∂ui(x, g)

∂xi
= xi − v

(
∑

j
gijxj

)
. (22)

Observe that the original game is not a potential because the Jacobian of F(x) is not symmetric,
since ∂Fi(x)

∂xj
= −v′

(
∑j gijxj

)
6= −v′

(
∑i gjixi

)
=

∂Fj(x)
∂xi

. This is true even if the network is a dyad,

While we primarily focus on network games, several classes of non-network games, such as Cournot quantity compe-
tition and differentiated product Bertrand competition with linear demand, are aggregate games; hence, our results are
directly applicable. See Section 5.4.

30Baetz (2015) provides other forms of utility functions leading to the same best responses in (21).
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since xi 6= xj. Now, the “trick” is to transform this first-order condition into an integrable one with
a best-response potential. Indeed, a SET of VI(K, F), using SET3, is VI(K, F̃) with

F̃i(x) = v−1(xi)−∑
j

gijxj, (23)

where, as in Baetz (2015), we assume that v(·) is strictly increasing. It is easily verified that the

Jacobian matrix of F̃ is now symmetric, since ∂F̃i(x)
∂xj

= −gij = −gji =
∂F̃j(x)

∂xi
. Thus, following

Theorem 2, we can construct a best-response potential φB(x) as follows:

φB(x) =
n

∑
i=1

∫ xi

0
v−1(zi)dzi −

1
2

n

∑
i=1

n

∑
j=1

gijxixj, (24)

where ∇φB(x) = F̃(x) in equation (23). To show that there exists a unique Nash equilibrium, we
need to demonstrate under which condition the Hessian matrix of φB(x) is positive definite (so
that φB(x) is strictly convex). The Hessian matrix of φB is given by H

[
φB(x)

]
= D−G, where D

is a diagonal matrix with 1/v′(v−1(xi)) on the diagonal of row i. H [φ(x)] is positive definite if the
following condition holds: minz

{
1

v′(z)

}
− λmax(G) > 0, where λmax(G) is the largest eigenvalue

of G. This is equivalent to:

max
z
{v′(z)} < 1

λmax(G)
. (25)

We summarize our finding in the following proposition:

Proposition 2. Suppose v(0) ≥ 0, v′(z) > 0 for z ≥ 0, and condition (25) holds. Then, there exists a
unique equilibrium of the game ΓB.

Compared to Baetz (2015), we have a unique equilibrium, and we only assume (25) and the fact
that v(·) is strictly increasing. On the contrary, Baetz (2015) had to assume concavity (v′′(·) < 0),
v(0) = 0, and v′(0) > 1 and end up with two equilibria. In our framework, to obtain a unique
equilibrium, we do not need to impose these conditions, which are stronger than ours.

Remark 6. Proposition 2 holds with heterogeneous marginal benefit function vi(·) as long as the same set
of assumptions stated in Proposition 2 hold for each i.

Remark 7. Consider an extension of (20) where the utility function is now given by: ui(x, g) = vi

(
∑j gijxj

)
xi−

1
2 x2

i , where δ > 0. Then, all network games with linear best-response functions are a particular case of this
utility function and the results in Proposition 2 and Remark 6 hold for vi(z) ≡ θi + δz. In particular,
the corresponding condition (25) reduces to 0 < δ < 1

λmax(G)
, which is the standard regularity condition

imposed in these network games (see, e.g., Ballester et al., 2006).
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4.2 Network games with strategic substitutes: Public goods on networks with convex
costs

Consider an undirected network g of n agents, where each player i exerts effort xi ≥ 0 (K = Rn
+ =

[0, ∞)n) by maximizing the following utility function:

uBKC
i (x, g) = b(xi + δ ∑

j
gijxj)− c(xi), (26)

where b(·) captures the individual benefit of exerting effort as well as the impact of peers’ efforts
on own utility; δ ∈ (0, 1] is the intensity of peers’ effort on own benefit; and c(xi) is the private
cost of effort. When δ = 1 and c(xi) = xi, (26) reduces to the utility function in Bramoullé and
Kranton (2007), which we denote by uBK

i (x, g).31 Moreover, we denote the game of Bramoullé and
Kranton (2007) by ΓBK = (uBK

i , G, R+)i∈N and our game by ΓBKC = (uBKC
i , G, R+)i∈N .32

The game ΓBKC extends ΓBK by considering a convex instead of a linear cost and an imperfect
substitution, δ ∈ (0, 1] instead of perfect substitutable δ = 1. Next we use our SET techniques
to solve this game with strategic substitutes and nonlinear best response functions, and show the
key differences with the original model of Bramoullé and Kranton (2007).

Assumption 1. b(·) is strictly increasing and strictly concave, and c(·) is strictly increasing and weakly
convex. That is, b′(·) > 0, b′′(·) < 0, c′(·) > 0, and c′′(·) ≥ 0. Furthermore, we impose the standard
Inada conditions, that is, b′(0) > c′(0) and limxi→+∞ b′(xi) < limxi→+∞ c′(xi).

Denote the autarky solution by k∗, which solves maxk≥0 b(k)− c(k). By Assumption 1, k∗ > 0
is uniquely defined by b′(k∗) = c′(k∗). By Assumption 1, uBKC

i (x, g) is strictly concave in xi, and
thus, the unique maximizer (including corner solutions) satisfies the following complementary
slackness condition:

c′(xi)− b′(xi + δ ∑
j

gijxj) = 0, if xi > 0,

c′(xi)− b′(xi + δ ∑
j

gijxj) ≥ 0, if xi = 0,

or, equivalently in the following compact form:

0 ≤ xi ⊥
{

c′(xi)− b′(xi + δ ∑
j

gijxj)

}
≥ 0.33

31In Section C of the Online Appendix, we solve the original model of Bramoullé and Kranton (2007) using our
methodology.

32The superscript BKC refers to the model of Bramoullé and Kranton (2007) but with convex costs and δ ∈ (0, 1].
33Here, we adopt this notation to succinctly state the following three conditions:

xi ≥ 0,

c′(xi)− b′(xi + δ ∑
j

gijxj)

 ≥ 0, and xi ×

c′(xi)− b′(xi + δ ∑
j

gijxj)

 = 0.
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Thus, we can define the VI problem VI(Rn
+, F), where F is the Jacobian matrix of this game

with

Fi(x) = −
∂uBKC

i (x, g)
∂xi

= c′(xi)− b′(xi + δ ∑
j

gijxj). (27)

This game is well-behaved (Definition 3) and, by Lemma 1, x∗ is a Nash equilibrium if it solves
VI(Rn

+, F). However, F is not integrable because the Jacobian of F is not symmetric.34 There-
fore, we cannot solve the VI(Rn

+, F) using a potential approach, as there is no function φ(x) such
that ∇φ(x) = F. However, using a sign-equivalent transformation (SET), we can transform the
VI(Rn

+, F) into a new one VI(Rn
+, F̃) with

F̃i(x) = −
{

xi + δ ∑
j

gijxj − b′−1(c′(xi))

}
.

Indeed, since b′(·) is strictly decreasing, we can do this transformation using SET3 (see (6)). By
Proposition 1, Fi(x) and F̃i(x) are signed equivalent and, since K = Rn

+ is rectangular, by Theorem
1, all solutions (including corner solutions) of VI(Rn

+, F) and VI(Rn
+, F̃) are the same. In other

words, we need to solve:

0 ≤ xi ⊥
{

b′−1(c′(xi))− xi − δ ∑
j∈Ni

gijxj

}
≥ 0.

Observe that now the Jacobian of F̃ is symmetric and thus F̃ is integrable.35 As a result, we can use
Theorem 2 by noticing that R−1

i (t) = b−1(t), hi(zi) = c′(zi), and si(zi) = zi to obtain the following
best-response potential function, for x ≥ 0:36

φBKC(x) =
n

∑
i=1

∫ xi

0

{
b′−1(c′(zi))

}
dzi −

1
2

n

∑
i=1

x2
i −

1
2

δ
n

∑
i=1

n

∑
j=1

gijxixj. (28)

Now, i is easy to impose conditions to establish the existence and uniqueness of a Nash equi-
librium. It is easily verified that the Hessian of φBKC(x) (or equivalently the Jacobian of F̃) is equal
to: H

[
φBKC(x)

]
= D− (I + δG), where I is the identity matrix and D is a diagonal matrix with

c′′(xi)/
[
b′′
(
b′−1(c′(xi))

)]
< 0 on the diagonal of row i. Define λmin(G) as the lowest eigenvalue

of the adjacency matrix G. Hence, we have the following:

Proposition 3. Consider the network public-good game ΓBKC and suppose that Assumption 1 holds. If,
in addition, δλmin(G) + 1 > 0, then (i) φBKC(x) is strictly concave and (ii) there exists a unique Nash
equilibrium in ΓBKC.

34For two linked nodes i and j, that is, gij = gji = 1, ∂Fi(x)/∂xj = −δb′′(xi + δ ∑j gijxj) 6= ∂Fj(x)/∂xi = −δb′′(xj +

δ ∑k gjkxk).
35For two linked nodes i and j, that is, gij = gji = 1, ∂F̃i(x)/∂xj = ∂F̃j(x)/∂xi = −δ.
36Note that, by construction, ∂φBKC

i (x)
∂xi

= −
{

xi + δ ∑j∈Ni
gijxj − b′−1(c′(xi))

}
= F̃i(x).
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Remark 8. All the results in Proposition 3 hold with heterogeneous ci(·) and bi(·) as long as Assumption
1 holds for bi(·) and ci(·).

Remark 9. Our result about the existence of the best-response potential is more general than that of
Bramoullé and Kranton (2007), which only considered linear cost. Indeed, assume c(x) = x. If, the
autarky solution is k∗ = b′−1(1), then, φBKC(x) reduces to

φBK(x) = ∑
i
(k∗xi −

1
2

x2
i ) + δ ∑

ij
gijxixj,

which is a quadratic function. In this case, φBK(x) is strictly concave if and only if the Hessian matrix
−(I + δG) is positive definite or, equivalently, δλmin(G) + 1 > 0.37

When the cost c(.) is strictly convex, we assume the following.

Assumption 2. b′(0) > c′(0) = 0.

Remark 10. Consider the network public-good game ΓBKC and suppose that Assumptions 1 and 2 hold.
Then, any NE must be interior since, at zero effort, the marginal benefit of public good is still strictly posi-
tive, while the marginal cost is zero. Hence, contrary to Bramoullé and Kranton (2007), there cannot be a
specialized equilibrium where some agents provide zero effort and others exert k∗ (the autarky contribution).
This is true regardless of whether δ = 1 or δ ∈ (0, 1).

This remark shows that the discussion about specialized equilibrium in Bramoullé and Kran-
ton (2007) is not valid for the case with nonlinear cost under Assumption 2. In particular, the
equivalence between maximal independent set (of certain degree) and Nash equilibrium, which
is at the center of Bramoullé and Kranton (2007), does not hold anymore.

Remark 11. When G is directed, the Jacobian of F̃ may not be symmetric anymore, and thus, F̃ is not
integrable; therefore, there is no best-response-potential function φBKC(x) associated with it. However,
uniqueness is still guaranteed when I + δG is a P−matrix, no matter the values of b(.) and c(.).38 Indeed,
when G is symmetric, I + δG is a P−matrix, if and only if I + δG is positive definite, which is true if and
only if δλmin(G) + 1 > 0. When G is asymmetric, a sufficient (not often necessary) condition for I + δG
to be a P−matrix is that δλmin(GS) + 1 > 0, where GS = (G + G′)/2 is the symmetric part of G.

Proposition 4. Consider the network public-good game ΓBKC and suppose that Assumptions 1 and 2 hold.
In addition, assume that δ = 1. Then the following statements hold:

(i) Any Nash equilibrium x∗ is interior, that is, x∗i > 0, for all i.

(ii) At any Nash equilibrium x∗,

37See Section C of the Online Appendix.
38See Section B of the Online Appendix for a definition of a P−matrix.
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(a) Ni ⊆ (()Nj, =⇒ x∗i ≥ (>)x∗j .

(b) N̄i ⊆ (()N̄j, =⇒ x∗i ≥ (>)x∗j , where N̄i = Ni ∪ {i}.

(iii) For the complete network, there exists a unique Nash equilibrium in which every agent exerts the
same effort x̄∗, where x̄∗ uniquely solves b′(nx̄∗) = c′(x̄∗).

(iv) For the star network (n ≥ 3), in any Nash equilibrium, the center node exerts strictly less effort than
any of the periphery nodes, while all periphery nodes exert the same effort.

These results are in sharp contrast with those of Bramoullé and Kranton (2007) where the cost
function is linear and δ = 1. For the complete network, Bramoullé and Kranton (2007) predict
a specialized equilibrium in which a single node exerts k∗, while all the remaining nodes free
ride by choosing zero. In addition, there is a continuum of equilibria. Indeed, (x∗1 , · · · , x∗n) is a
Nash equilibrium as long as the sum of x∗i adds up to k∗. In our ΓBKC game, when the network is
complete, there is a unique equilibrium.39 In the star network, Bramoullé and Kranton (2007) show
that only specialized profiles are equilibria and there are just two Nash equilibria: either the center
or the three agents at the periphery are specialists. This implies, in particular, that the center node
can exert either a higher or a lower effort than the periphery nodes. In Proposition 4(iv), we show
that this is impossible: the center node always exerts strictly less effort than the periphery nodes.

Definition 4. A nested-split graph (NSG) is a network gNSG such that, for any three different indices i, j, k,
if gij = 1 and dk ≥ dj, then gik = 1.

As shown by Mahadev and Peled (1995) and König et al. (2014), a nonempty network is a
nested-split graph (NSG)40 if the set of nodes can be partitioned into several classes, where players
in the same class have the same degree and those in the “upper” class are linked to every agent in
the “lower” classes.

Corollary 1. Consider the network public-good game ΓBKC with the same assumptions as imposed in
Proposition 4. If the network g is a Nested Split Graph (NSG), then, at any Nash equilibrium x∗, players
with lower degree exert higher effort, that is, di < dj =⇒ x∗i > x∗j .

Note that the complete network and the star are both NSG. Corollary 1 is quite general and the
prediction is very sharp, since, in any Nash equilibrium, the effort of a player must be a decreasing
function of her degree. Note that this corollary does not rely on the uniqueness of the NE.

Remark 12.

• In Proposition 4 and Corollary 1, we assume δ = 1. In fact, these results hold for any δ ∈ (0, 1].

39Here, we do not impose the condition δλmin(G) + 1 > 0 as in Proposition 3.
40There are several equivalent definitions of NSG; see, for instance, König et al. (2014), Billand et al. (2015), Nord-

vall Lagerås and Seim (2016), and Belhaj et al. (2016).
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• In Assumption 2, we impose c′(0) = 0, which implies that any Nash equilibrium is interior. If
c′(0) > 0, then the Nash equilibrium might be in the corner. In this case, the strict inequalities in
Corollary 1 do not hold anymore, but we still have the following property: di < dj implies x∗i ≥ x∗j .

4.3 Network games with strategic substitutes: Private provision of public goods

In this section, we simultaneously extend the pure-public goods provision models of Bergstrom,
Blume, and Varian (1986) and Allouch (2015) on the private provision of public goods in networks
by considering an arbitrary network and δ ∈ (0, 1]. Indeed, Bergstrom et al. (1986) (referred to as
BBV) consider a complete network and δ = 1, while Allouch (2015) (referred to as AL) allows for any
network but imposes the condition δ = 1. We use our SET techniques to solve this general game
with strategic substitutes and nonlinear best-response functions and show several key differences
with the findings of Bergstrom et al. (1986) and Allouch (2015).

Consider an undirected network g of n agents. Each individual i consumes two goods: a private
good xi and a local public good qi. The utility function of i is equal to:41

uALD
i (x, q, g) = ui(xi, qi + δQ−i), (29)

where Q−i = ∑j gijqj is the sum of public good provisions of consumer i’s neighbors and δ ∈ (0, 1]
captures the intensity of the impact of Q−i on i’s marginal utility. The budget constraint of each
consumer i is given by:

xi + qi = wi, xi ≥ 0, (30)

where wi > 0 is the income of player i (note that, for simplicity, we have normalized the prices of
both goods to 1).

Each individual i chooses xi ≥ 0 and qi ≥ 0 that maximize the utility function (29) under
the budget constraint (30). When δ = 1 and the network is complete (i.e., g = gC), we are
back to the utility function used in Bergstrom et al. (1986), which we denote by uBBV

i (x, q, gC).
When δ = 1 and the network is arbitrary, the utility function is the one given in Allouch (2015),
which we denote by uAL

i (x, q, g). Moreover, we denote the game of Bergstrom et al. (1986) by
ΓBBV = (uBBV

i , GC, R+)i∈N , that of Allouch (2015) by ΓAL = (uAL
i , G, R+)i∈N , and ours by ΓALD =

(uALD
i , G, R+)i∈N .

Assumption 3. ui(·) is continuous, strictly increasing in xi and qi, and is strictly quasi-concave.

Define Qi = qi + δQ−i. Then, each individual i solves the following program:

max
xi ,Qi

ui(xi, Qi)

s.t. xi + Qi = wi + δQ−i, xi ≥ 0, Qi ≥ δQ−i.
(31)

41The superscript ALD refers to the model of Allouch (2015) but with δ ∈ (0, 1].

21



If we ignore the constraint Qi ≥ δQ−i, then solving this maximization problem allows us to
interpret Qi as the Marshallian demand for the public good; hence, it can be written as Qi =

γi(wi + δQ−i), where wi + δQ−i may be interpreted as consumer i’s social income and γi(·) as con-
sumer i’s Engel curve. Introducing back the constraint Qi ≥ δQ−i in this maximization program
leads to Qi = max{γi(wi + δQ−i), δQ−i}. The solution of this program is equal to:

q∗i =

0 if γi(wi + δQ−i)− δQ−i < 0

γi(wi + δQ−i)− δQ−i if γi(wi + δQ−i)− δQ−i ≥ 0
(32)

In other words,
q∗i = max{0, γi(wi + δQ−i)− δQ−i} := fi(q). (33)

Then, the Nash equilibrium of this game ΓALD is a vector q∗ = (q∗1 , · · · , q∗n) such that q∗i =

fi(q∗) for every i.
Now, let us apply our SET technique using the VI formulation to show the uniqueness of Nash

equilibrium of this game. First, we can define the VI problem VI(Rn
+, F) with

Fi(q) = qi + δQ−i − γi(wi + δQ−i). (34)

It is easy to see that the best responses of player i (equations (32) and (33)) can be written as
follows:

0 ≤ q ⊥ F(q) ≥ 0, (35)

or, equivalently,
q∗i ≥ 0, Fi(q∗i , q−i) ≥ 0, q∗i × Fi(q∗i , q−i) = 0, for each i.

Define ηi(zi) = zi−γi(zi) as the Engel curve for the private good. Clearly, η′i(zi) = 1−γ′i(zi) ∈
(0, 1). In particular, ηi(zi) is invertible. Let ζi(.) denote the inverse of ηi(zi). We construct a series
of SETs of Fi:

Fi(q) = qi + δQ−i − γi(wi + δQ−i) ≥ 0⇔ qi − wi + wi + δQ−i − γi(wi + δQ−i) ≥ 0

⇔ qi − wi + ηi(wi + δQ−i) ≥ 0⇔ wi + δQ−i − ζi(wi − qi) ≥ 0.

Define the function F̃i(q) as follows:

F̃i(q) = wi + δQ−i − ζi(wi − qi).

By construction, Fi(q) and F̃i(q) are signed equivalent, that is, Fi(q) S 0 if and only if F̃i(q) S 0
for any q ∈ K = ∏i[0, wi]; see Definition 2. Thus, the solutions of VI(K, F) and VI(K, F̃) are the
same by Theorem 1. Therefore, the Nash equilibrium is equivalent to the following VI(Rn

+, F̃):

0 ≤ q ⊥ F̃(q) ≥ 0, (36)
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It is easily verified that F̃ is integrable, since

∂F̃i(q)
∂qj

=
∂F̃j(q)

∂qi
= δgij = δgji.

This holds for any inverse function ζi(.). Since the Jacobian of F̃ is symmetric, this game has a
best-response potential function −φALD(·), where:42

φALD(q) = −∑
i

∫ qi

q0
i

{ζi(wi − zi)− wi} dzi +
1
2

δ
n

∑
i=1

n

∑
j=1

gijqiqj, (37)

with ∇φALD(q) = F̃(q).

Proposition 5. Suppose that Assumption 3 holds and for each i = 1, ..., n,

1
1− γ′i(wi + δQ−i)

+ δλmin(G) > 0. (38)

Then, there exists a unique Nash equilibrium of the game ΓALD.

In the proof of Proposition 5, we show that condition (38) implies the strict convexity of
φALD(q), which immediately gives the uniqueness result stated in the proposition. More gener-
ally, Proposition 5 provides a unified and simple proof of uniqueness. For instance, in the model
of BBV,43 the condition (38) requires that for each individual, both goods are strictly normal, that
is, 0 < γ′i < 1, which is exactly the condition imposed in BBV. In Allouch (2015), where δ = 1 and
the network is general, condition (38) reduces to the network normality assumption stated in his
paper for δ = 1, that is, 1+ 1

λmin(G)
< γ′i < 1. Our model is more general since δ can take any value

between 0 and 1.
Note that Proposition 5 is also useful to understand the results developed in this literature on

the private provision of public goods regarding the effects of income redistribution. To see this, we
define the potential function φALD in the space of private good consumption x instead of public
good consumption q, that is,

φ̃ALD(x) := φALD(w− q).

Clearly, the minimizer of φ̃ALD(x) over ∏i[0, wi] gives the equilibrium private consumption of
agents. Under condition (38), φ̃ALD(x) is strictly convex and thus, has a unique minimizer.

In the model of BBV, one can further simplify φ̃ALD(x) as follows:

φ̃BBV(x) :=

(
∑

i

∫ xi

x0
i

ζi(zi)dzi

)
− w̄(∑

i
xi) + ∑

i 6=j
xixj, (39)

42Alternatively, we can use Theorem 2 to obtain φALD.
43where δ = 1 and G = Kn (complete network) with a minimal eigenvalue that is equal to −1.
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where w̄ = ∑ wi is the aggregate income (recall that ζi is the inverse of i’s Engel curve for the
private good). Since φ̃BBV(x) depends on the income vectors only through the aggregate income
w̄, any local income redistribution should have no impact on the consumption of private goods
for all agents; it also has no effect on the aggregate public good Q = ∑i qi as Q = w̄−∑i xi.44

Corollary 2. In the BBV’s model, any local income redistribution is neutral in the sense that it has no
impact on the equilibrium consumption bundles of all agents.

Such a neutrality result in the setting of BBV is a standard result (see, among others, Warr, 1983
and Bergstrom, Blume, and Varian, 1986). However, we believe that our approach provides a new
perspective. In particular, we use the special structure of the best-response potential that we have
explicitly constructed. Thus, one can adopt our approach to explore the implications of income
redistribution in general settings (such as in Allouch, 2015).45

5 Discussions

5.1 Comparisons with Melo (2019) and Parise and Ozdaglar (2019)

The papers by Melo (2019)46 and Parise and Ozdaglar (2019) are related to our model, since both
use VI to solve network games with nonlinear best-response functions. Basically, they prove the
uniqueness of the solution to VI (i.e., Nash equilibrium) by finding conditions in which the map-
ping F is monotone (or equivalent the Jacobian of F is a P−matrix). These conditions are normally
verified by showing that the Jacobian of F belongs to a certain class of matrices, such as PD−
or P−matrices.47 We have a different but complementary approach by determining SET, that is,
transforming best responses into best-response potentials.48 Indeed, we define an ordinal equiva-
lent relation on VIs, which preserves the solution set. This gives us plenty of room to reorganize
the original VI to simplify the Nash equilibrium problem. Furthermore, for many network games,
we show that the new VI is integrable, hence there is a potential function. More importantly, SET
substantially simplifies the general problem and is very simple to apply. Indeed, in Section 4, in
many games, we show that the new VI (SET) is integrable and hence, there is a potential function.
This implies that our Theorem 2 has many economic applications. On the contrary, the conditions

44Under a local income redistribution t = (t1, · · · , tn), agent i’s income becomes ti + wi, where ∑j tj = 0 and |tj| is
small (so that the set of active contributors to the public goods does not change (see Bergstrom et al., 1986; Andreoni,
1989, 1990; Allouch, 2015).

45One can show that in our general model ALD, where δ ∈ (0, 1], local income redistribution neutrality does not hold
under a generic δ.

46See also Melo (2022).
47See Section B of the Online Appendix for a definition of these matrices.
48Observe that the property of the F matrix is not necessarily preserved under SET. Indeed, even if F and F̃ are sign

equivalent, the properties of the Jacobian matrix of F(x) and F̃(x) can change dramatically. For example, if A is a
P−matrix, then Ã may fail to be a P−matrix.
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imposed by Melo (2019) and Parise and Ozdaglar (2019) are more difficult to verify in many ap-
plications. In Section G of the Online Appendix, we provide a simple example where we show
that the conditions for equilibrium uniqueness in Melo (2019) and Parise and Ozdaglar (2019) are
much more restrictive than ours. However, we believe that our approach is complementary to
theirs as we could first use our SET transformation and then check the uniqueness of the Nash
equilibrium using the techniques developed by Melo (2019) and Parise and Ozdaglar (2019).

Observe that, even if the potential function is not concave, such a potential function is still
useful for economic selection mechanism and the dynamics of best-response potentials along the
lines of standard benefits of potential games (see, e.g., Morris and Ui, 2004, 2005).

5.2 The applicability of our approach and its limitations

As shown in Section 4, Theorem 2 is relatively easy to apply to many network games with nonlin-
ear best responses. Following are the strengths of our approach and its limitations.

5.2.1 Directed versus undirected networks

We assumed that the network adjacency matrix G is undirected. Although we believe this is natural
in many real-world applications (e.g., social links), there are some scenarios when the network
matrix is not symmetric, that is, the network is directed. Our SET transformation and Theorem 1
do not rely on the symmetry of the adjacency matrix G; thus, we can combine SET and standard
VI results to simplify the game. However, for Theorem 2 and, in particular, for the integrability of
the potential, we need the symmetry of G. Note that, even if Theorem 2 cannot be directly applied,
we can still solve games with directed networks using SET.

5.2.2 Row-normalized and weighted networks

In Theorem 2, we normalized δi = δ for every i in (9). This was without any loss of generality
as we could redefine si(.) and Ri(.) appropriately to set δi = δ. Consequently, Theorem 2 could
incorporate network games with local average (see, e.g., Ushchev and Zenou, 2020) instead of local
aggregate, that is, we could have ∑j

gij
di

xj in (9) (where di is the degree of i) instead of ∑j gijxj.49 For
instance, for the local-average model, the utility function in the study of Baetz (2015) would be
given by ui(x, g) = v

(
∑j

gij
di

xj

)
xi − 1

2 x2
i instead of (20).

In addition, instead of a (0, 1) adjacency matrix G, Theorem 2 could easily incorporate weighted
networks with gij ∈ [0, 1].

49We focus on the mathematical applicability of Theorem 2 in both models. See Ushchev and Zenou (2020) for an
illustration of the differences in terms of economics predictions between the two network models.
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5.3 Multiple activities and multiple networks

Even though, we cannot derive general results when agents make efforts in different activities or
are embedded in multiple networks, we can still solve some specific games having these features.

First, we can easily use our SET approach to solve network games with multiple activities. In
Section D of the online Appendix, we use our SET methodology to solve for the game of Chen
et al. (2018), who consider multiple activities in a network game with strategic complementarities
but linear best-response functions.

Second, to illustrate the fact that our SET approach can incorporate a network game with mul-
tiple networks and nonlinear best-response functions, we would like to present a new network
game (which has not been studied by the literature) with two public goods and two networks.

Consider the private provision of two local public goods qi and yi. For each public good, there
is an undirected network that connects n agents for the consumption of the public good. For the
public good qi, the corresponding undirected n-players network is denoted by g with adjacency
matrix G while, for the public good yi, the corresponding undirected n-players network is denoted
by h with adjacency matrix H. Each player i has an exogenous endowment of income wi > 0,
which can be allocated between two public goods.50 The payoff of player i has a strictly convex
preference given by

uNEW
i (q, y, g, h) = ui(qi + Q−i, yi + Y−i), (40)

where Q−i = δ ∑j gijqj and Y−i = µ ∑j hijyj are the sums of public good provisions of consumer i’s
neighbors, and δ > 0 and µ > 0 capture the intensity of the network effects. The budget constraint
of each consumer i is given by:51

qi + yi = wi, qi ≥ 0, yi ≥ 0. (41)

Each player i chooses qi and yi that maximize ui(qi + Q−i, yi + Y−i) under the budget constraint
(41). To isolate the impact of network structure on the provision of the two public goods, we
assume that both public goods are symmetric ex ante, that is, ui(qi + Q−i, yi + Y−i) = ui(yi +

Y−i, qi + Q−i).52

Under this symmetry assumption, the solution to this maximization program must satisfy:

(q∗i , y∗i ) =


(0, wi) if wi−Q−i+Y−i

2 ≤ 0,(
wi−Q−i+Y−i

2 , wi+Q−i−Y−i
2

)
if wi−Q−i+Y−i

2 ∈ (0, wi)

(wi, 0) if wi−Q−i+Y−i
2 ≥ wi.

(42)

50For simplicity, we ignore the consumption of private good.
51For simplicity, we have normalized the prices of both public goods to be 1.
52Many utility functions satisfy this condition. For example, for any increasing and concave function vi(.), this is

true for ui(qi + Q−i, yi + Y−i) = vi(qi + Q−i) + vi(yi + Y−i). This is also true for Cobb-Douglas preference ui(qi +

Q−i, yi + Y−i) = (qi + Q−i)
bi (yi + Y−i)

bi , for any constant bi > 0. Note that we do not require identical preferences
across players.
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This result is intuitive. In the region with positive supplies of both goods, which happens when
Q−i ≤ wi + Y−i and Y−i ≤ wi + Q−i, the supply of qi is decreasing in Q−i (strategic substitution)
and increasing in Y−i (strategic complementarity), since the consumer i has a taste for variety in
consumption. However, if Q−i ≥ wi + Y−i, there is excess supply of public good qi than yi by i’s
neighbors; thus, player i prefers to contribute to zero for the public good qi. The same reasoning
applies to the consumption of the public good yi.

In Section E of the Online Appendix, we solve this game using our SET methodology by first
determining the potential function φ(q) of this game (see (E8)) and then, by showing that under
a network regularity condition, 2 + λmin(δG + µH) > 0, there is a unique Nash equilibrium. We
also characterize this NE when the solutions q∗ and y∗ are interior.

5.4 Applications beyond network games

Our SET theory is applicable for not only network games but also any smooth games. Here,
we discuss its application to industrial organization by studying a standard pricing game of an
oligopoly market with discrete choices. We show the benefit of using our SET methodology in
demonstrating the uniqueness of the Bertrand-Nash equilibrium.

Consider a market with n ≥ 2 firms, where each sells a differentiated product. Fore each firm
i = 1, 2, · · · , n, let pi denote the price charged by firm i, p−i, the price charged by other firms, and
p0 the price charged by the outside option, which is exogenously fixed (depending on the utility
obtained from the outside option). Using a discrete choice model, we can derive the demand for a
firm i, which is given by Qi(pi, p−i, p0). Consider the Bertrand pricing competition game among
n firms with payoff given by

πi(pi, p−i) = (pi − ci)Qi(pi, p−i), i = 1, 2, · · · , n.

In Section F of the Online Appendix, using standard assumptions, we show that there exists
a unique Nash equilibrium of this game using our SET methodology by finding a suitable SET of
the game Jacobian of this Bertrand-pricing game (see Lemma F5 and Theorem F4). We believe that
our SET methodology can be applied to many other economics problems such as contest models,
rent-seeking games, and Cournot game with nonlinear demand.53

6 Conclusion

In this paper, we developed the concept of sign-equivalent transformation (SET) to analyze games
played on networks with nonlinear best responses. First, we introduced SET, which is an ordinal

53For the latter, we could assume an (inverse) demand function given by pi(Q) = (A− qi −∑ gijqj)
a, a > 0, a linear

marginal cost Ci(qi) = ciqi, and, fixing q−i, a payoff that needs to be strictly quasi-concave in qi. Notice that when
a = 1, this game has an exact potential (Monderer and Shapley, 1996).
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equivalent relation on variational inequalities (VI) and has the property of preserving the set of
solutions on any rectangular domain. Second, we considered a VI problem on a network game
and showed that we can rewrite the best-response functions to obtain sign-equivalent ones, which
has the property of being best-response potentials. We showed that finding Nash equilibria can
be equivalent to a much simpler problem, where the existence, uniqueness, stability problems can
be easily identified. Finally, we explained how to apply our methodology to many well-known
network games with general payoffs and nonlinear best responses.

Compared to the existing approaches in the literature, our SET method is much simpler to ap-
ply and delivers sharper results by expanding its applicability. Indeed, Theorem 2 is very general
and simple to use for anyone who wants to apply SET to network models. Moreover, by provid-
ing a unified approach, SET gives a new perspective on issues such as existence, uniqueness, and
structure of equilibria.54 We believe that the methodological contribution of this approach is valu-
able for researchers who are interested in theory and technical aspects of equilibrium55 as well as
researchers interested in application and use of our methodology to solve applied network issues.
By using and extending different network models from the literature, we showed how to apply
our SET methodology to a large class of network games.

A possible direction for future research is to study interventions/targeting policy in network
games (such as those in Ballester et al., 2006 and Galeotti et al., 2020). One advantage of having
a best-response potential is that we can transform the intervention/targeting problem on net-
works, which is normally an optimization program with (Nash) equilibrium constraints, into an
optimization program with optimality constraints, that is, potential maximization. The latter is
simpler to handle than the former. Other possible directions of research would be to incorporate
incomplete information in our model or to have a general theory of multi-dimensional strategy
space or multiplex networks.

We believe that having a general methodology solving for nonlinear network models is important
for empirical applications, since the linear-in-means model, the workhorse model in empirical
work on peer/network effects, imposes a particular linear relationship between the outcome of an
individual and the (mean) outcomes of the other individuals in the group.56 Nonlinear models
relax this assumption by assuming a nonlinear relationship instead, which is often more realistic
and can also allow to test for linearity as a special case.

54Observe that best-response potential is not only useful for the theoretical analysis of existence, uniqueness, and
stability of equilibrium but also for its application. With best-response potential, the computation of Nash equilibrium,
usually in fixed-point equations, is reduced to a maximization program, which is well analyzed in numerical compu-
tations. There are fast algorithm, such as Newton gradient descent, that we can compute if the objective function is
concave, which happens to be true in many applications mentioned in this paper.

55When starting with multiple equilibria, our best-response potential function approach can be used as a selection
criterion to identify a stable equilibrium.

56See Boucher et al. (2022) who empirically showed that the correct empirical model is not linear in many activities.
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leotti and Brian W. Rogers (Eds.), Oxford Handbook of the Economics of Networks, Oxford: Oxford
University Press.

29
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Appendix: Proofs

Proof of Lemma 1: The proof is standard. See, for instance, chapter one of Facchinei and Pang
(2007). �

Before proving Theorem 1, we need the following well-known result about VI on rectangular
domains.

Lemma 2.

(i) When K = ∏[ai, bi] with −∞ ≤ ai < bi ≤ +∞, x∗ solves VI(K, F) if and only if, for every i,

x∗i = ai =⇒ Fi(x∗) ≥ 0,

ai < x∗i < bi =⇒ Fi(x∗) = 0, (43)

x∗i = bi =⇒ Fi(x∗) ≤ 0.

(ii) When K = Rn
+ = [0,+∞)n, x∗ solves VI(K, F) if and only if fore every i,

x∗i ≥ 0, Fi(x∗) ≥ 0, xi × Fi(x∗) = 0

which is called Nonlinear Complementarity Problem NCP(F), and can be rewritten using the
following compact form

0 ≤ x∗ ⊥ F(x∗) ≥ 0.

(iii) When K = Rn, then x∗ solves VI(K, F) if and only if F(x∗) = 0.

Proof of Theorem 1:
Theorem 1 (i) follows from a simple observation that x∗ is a solution to the VI(K, F) and x∗

is interior point of K, then it must be the case that F(x∗) = 0. Then, F̃(x∗) = 0 as well by sign
equivalence, thus x∗ is also the solution of VI(K, F̃). Theorem 1 (ii) further shows that under rect-
angularity assumption, the solution on the boundary must be preserved under sign equivalence.

To prove item (i), we first prove that

Sol(K, F) ∩ int(K) = {x∗ ∈ int(K), F(x) = 0}.

Note that any x∗ which satisfies F(x∗) = 0 must satisfy (1) for any x ∈ K; thus it is a solution of
VI(K, F). Hence, {x∗ ∈ int(K), F(x∗) = 0} ⊆ Sol(K, F) ∩ int(K). To show the opposite, suppose
that x∗ ∈ int(K) is a solution of VI(K, F), then 〈F(x∗), x− x∗〉 ≥ 0, ∀x ∈ K by (1). Since x∗ is an
interior point of K, there exists ε > 0, such that x = x∗+ εz ∈ K for any z with ||z|| = 1. Therefore,
〈F(x∗), (x∗ + εz)− x∗〉 = ε〈F(x∗), z〉 ≥ 0 for any z with ||z|| = 1. Then, it must be the case that
F(x∗) = 0 (otherwise we can choose z = −F(x∗)/||F(x∗)||). By sign equivalence of F and F̃ on K,
{x∗ ∈ int(K), F(x) = 0} = {x∗ ∈ int(K), F̃(x) = 0}, the result just follows.
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For part (ii), we assume that K is rectangular, i.e., K = ∏i[ai, bi]. By Lemma 2(i), we have that
x∗ = (x∗1 , · · · , x∗n) ∈ Sol(K, F) if and only if, for every i,

x∗i = ai =⇒ Fi(x∗) ≥ 0,

ai < x∗i < bi =⇒ Fi(x∗) = 0, (44)

x∗i = bi =⇒ Fi(x∗) ≤ 0,

which, from the definition of sign equivalence, implies the following:

x∗i = ai =⇒ F̃i(x∗) ≥ 0,

ai < x∗i < bi =⇒ F̃i(x∗) = 0, (45)

x∗i = bi =⇒ F̃i(x∗) ≤ 0.

Again, the above condition, by Lemma 2(i), implies that x∗ ∈ Sol(K, F̃). Thus, we have shown that
any solution of VI(K, F) is also a solution of VI(K, F̃). By the same logic, any solution of VI(K, F̃)
is also a solution of VI(K, F), implying the solution set must be the same, that is, Sol(K, F) =

Sol(K, F̃). �

Proof of Proposition 1: It follows immediately from the discussion in the main text. �

Proof of Proposition 2: It follows from the discussion in the main text. �

Proof of Proposition 3: First, the existence of equilibrium can be shown by a standard fixed point
theorem on a compact rectangular [0, k∗]N , where k∗ is the autarky solution. To show uniqueness,
it suffices to prove that the Hessian H

[
φBKC(x)

]
is negative definite. Since H

[
φBKC(x)

]
= D−

(I + δG), where I is the identity matrix and D is a diagonal matrix with c′′(xi)/
[
b′′
(
b′−1(c′(xi))

)]
<

0 on the diagonal of row i. H
[
φBKC(x)

]
is negative definite if all its eigenvalues are negative. Since

all terms in the diagonal matrix D are negative, a sufficient condition for H
[
φBKC(x)

]
to be neg-

ative definite is that −(I + δG) is negative definite, or equivalently, δλmin(G) + 1 > 0, which is
assumed in Proposition 3. �

Proof of Proposition 4: Define f (x, t) := b(x + t)− c(x), x ≥ 0, t ≥ 0. By Assumptions 1 and 2,
f (·) is strictly concave in x and fx(0, t) = b′(t)− c′(0) > 0. Let θ(t) denote the unique maximizer
of the following optimization problem

max
x≥0

f (x, t) = b(x + t)− c(x).

Clearly, θ(t) > 0 and satisfies the FOC with equality, fx(θ(t), t) = 0, i.e., b′(θ(t) + t) = c′(θ(t)).
Moreover fxt = b′′(x + t) < 0, so θ(t) is strictly decreasing in t.
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Suppose x∗ is a Nash equilibrium. We have

x∗i = θ

(
∑

k∈Ni

x∗k

)
,

which is clearly positive. This shows item (i).
For item 2(i), if Ni ⊆ (⊂)Nj, then ∑k∈Ni

x∗k ≤ (<)∑k∈Nj
x∗k since x∗k > 0 for each k by item (i).

Therefore, x∗i = θ(∑k∈Ni
x∗k ) ≥ (>)θ(∑j∈Nj

x∗j ) = x∗j , as θ(·) is strictly decreasing.
For item 2(ii), note that the FOC for player i implies that

b′(x∗i + ∑
k∈Ni

x∗k ) = c′(x∗i ).

Similarly, for j, we have
b′(x∗j + ∑

k∈Nj

x∗k ) = c′(x∗j ).

Now suppose N̄i ⊆ (⊂)N̄j, then x∗i + ∑k∈Ni
x∗k ≤ (<)x∗j + ∑k∈Nj

x∗k . Since b(·) is concave, so b′(·)
is strictly decreasing, b′(x∗i + ∑k∈Ni

x∗k ) ≥ (>)b′(x∗j + ∑k∈Nj
x∗k ). Therefore, c′(x∗i ) ≥ (>)c′(x∗j ), or

equivalently x∗i ≤ (<)x∗j .
Consider, now, the complete network in item (iii). We have N̄i = N̄j equals the whole net-

work, so in any NE, the effort must be symmetric by item (ii). The common effort x∗ must satisfy
b′(nx) = c′(x), which has a unique and finite solution by Assumption 1.

For the star network, let agent 1 denote the star, and agents 2, 3, · · · , n the periphery nodes.
In any NE, since each of the periphery node is only connected to the center, by item 2(i), all the
periphery nodes choose the same efforts. Moreover, N̄1 = {1, 2, · · · , n} ) N̄2 = {1, 2} (recall
n ≥ 3), so by item 2(ii), x∗1 < x∗2 = · · · x∗n. �

Proof of Corollary 1: First, let us state some properties of NSG (König et al., 2014). We can always
partition nodes into different classes Dk.

Suppose nodes i and j belong to the same class Dk (which implies that di = dj), we would
like to show that they must have the same effort. Suppose this class Dk is a dominant set, then
N̄i = N̄j; hence by item (ii) of Proposition 4, x∗i = x∗j . If the class Dk is in the independent class,
then Ni = Nj, so by item (i) of Proposition 4, , x∗i = x∗j .

Now consider a pair of nodes i, j with di < dj, so that they cannot belong to the same class.
Then either Ni ( Nj or N̄i ( N̄j by the definition of NSG (König et al., 2014). Moreover, any of i′

neighbor is necessarily j’s neighbor from the definition of NSG, and j has a neighbor m, which is
not directly linked to i. In other words, Ni ⊂ Nj, implying x∗i < x∗j by item (ii) of Proposition 4. �

Proof of Proposition 5: Program (36) is equivalent to:

min
q≥0

φALD(q) (46)
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where φALD(q) is defined in (37), that is,

φALD(q) = −∑
i

∫ qi

q0
i

{ζi(wi − zi)− wi} dzi +
1
2

δ
n

∑
i=1

n

∑
j=1

gijqiqj.

The Hessian matrix of φALD(q), by direct computation, is given by:

H
[
φALD(q)

]
= diag{ζ ′1(w1 − q1), · · · , ζ ′n(wn − qn)}+ δG (47)

= diag{ζ ′1(w1 − q1), · · · , ζ ′n(wn − qn)}+ δλmin(G)I + δG− δλmin(G)I.

The smallest eigenvalue of (δG− δλmin(G)I) is 0. Hence, (δG− δλmin(G)I) is positive semidefi-
nite. We need to show that {diag{ζ ′1(w1 − q1), · · · , ζ ′n(wn − qn)}+ δλmin(G)I} is positive definite.
Observe that ζ ′i(wi − qi) =

1
1−γ′i

. Then, if for each i = 1, ..., n,

ζ ′i(wi − qi) + δλmin(G) =
1

1− γ′i
+ δλmin(G) > 0,

H
[
φALD(q)

]
is positive definite. So φALD(q) is strictly convex. Thus, the solution to (46) is unique.

�
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A More on rectangular domains

Given a nonempty closed and convex set K, we say that K is a Sign Equivalent Domain (SED)
or SET invariant if VI(K, F, ) and VI(K, F̃) has the same solution set whenever F and F̃ are sign-
equivalent.

Theorem A1. A nonempty closed and convex set K is SED if and only if K is a rectangular region.

Proof of Theorem A1: The if direction is shown in Theorem 1 (ii).
Consider the only if direction. Suppose K is a SED. If K equals the whole space Rn, which is

rectangular, we are done. For now, let us assume K is not equal to Rn. We need the following
Claim.
Claim #. Suppose K is a SED. For any x /∈ K, there exists a rectangular region Rec(x) such that x /∈
Rec(x) but K ⊆ Rec(x).

Fix any x /∈ K, let y be the orthogonal projection of x on K, i.e., y = ProjK[x] = arg minz∈K ||z−
x||. Then, geometrically, we obtain

〈(y− x), (z− y)〉 ≥ 0, ∀z ∈ K.

In other words, y is a solution to VI(K, F),where the mapping F(z) = y− x︸ ︷︷ ︸
:=w=(w1,··· ,wn)

is a constant

mapping. Pick ti > 0 for all i. Consider another constant mapping F′ = w′ = (t1w1, · · · , tnwn),
which is sign equivalent to F. Since K is SED, y must be a solution to VI(K, F′), i.e.,

〈w′, (z− y)〉 = ∑
j

tj(yj − xj)(zj − yj) ≥ 0, ∀z ∈ K.

Since the inequality holds for any positive {ti}, we must havezi − yi ≥ 0 if yi − xi > 0,

zi − yi ≤ 0 if yi − xi < 0.

Define a closed rectangular region Rec(x) = ∏i Ii(x) where

Ii(x) =


[yi,+∞) if yi − xi > 0;

(−∞, yi] if yi − xi < 0;

(−∞,+∞) if yi − xi = 0.

(A1)
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Therefore, zi ∈ Ii(x) by (A1) for all i, i.e., z ∈ Rec(x). Since it holds for any z ∈ K, we have
K ⊆ Rec(x). Also, since x 6= y (otherwise x would be in K), it must be the case that, for some
i, either yi < xi or yi > xi. In either case, xi is not in Ii(x) by the definition of Ii(x) in (A1).
Therefore, Claim # is proved.

Claim # is true for any x not in K. We now have the following relationships

K ⊆ ∩x/∈KRec(x) ⊆ K,

while the last inequality follows because for any x /∈ K, x /∈ Rec(x), so Kc ⊆ ∪x∈Kc Rec(x)c, im-
plying (∪x∈Kc Rec(x)c)c = ∩x/∈KRec(x) ⊆ K. Here a set S’s complement is denoted as Sc. As a
result, K = ∩x/∈KRec(x). Since the intersection of closed rectangular regions is a closed rectangular
region, we have now shown that K is rectangular. �

Example A1. Consider Fa(x) =

(
a(x1 − 2)
(x2 − 2)

)
, parametrized by a > 0. It is easy to see that, for any

a′, a′′ > 0, Fa′(x) is sign equivalent to Fa′′(x) at any x = (x1, x2) ∈ R2.

(i) Let K1 := {x = (x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1}. Then, Sol(K1, Fa) varies with a.1

(ii) Let K2 := [−1, 1]× [−1, 1]. Then, Sol(K2, Fa) does not vary with a.2

Proof of results in Example A1: The Jacobian matrix Fa is

[
a 0
0 1

]
, which is symmetric and positive

definite. Thus Fa is integrable. By Theorem 2, solving VI(K, F) is equivalent to solving

min
x∈K

φ(x1, x2) :=
a
2
(x1 − 2)2 +

1
2
(x2 − 2)2. (A2)

By strict convexity of φ(x1, x2), the minimizer must exist and it is unique whenever the domain K
is compact and convex.

Consider the domain K1. For any a > 0, the unique solution to VI(K1, Fa) is (sin(t∗), cos(t∗)),
where t∗(a) is the the unique solution to

a(sin(t)− 2) cos(t)− (cos(t)− 2) sin(t) = 0,

on the interval [0, π/2]. As a increases from 0+ to +∞, t∗ increases from 0 to π/2. For example,
when a = 1, t∗ = π/4, so x∗ is equal to (

√
1/2,
√

1/2). The result in case (1) is consistent with
Theorem 1(i) as the solution is always on the boundary of K1.

1Indeed, for each a > 0, the solution of VI(K1, Fa) is unique. Furthermore,

• when a = 1, the unique solution of VI(K1, Fa) is (
√

1/2,
√

1/2);

• when a→ 0+, the unique solution approaches (0, 1);

• when a→ +∞, the solution approaches (1, 0).

2Indeed, (1, 1) is the unique solution to VI(K2, Fa) for any a.
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Now consider the domain K2. We directly verify that x∗ = (1, 1) is the unique solution for any
a > 0:

〈x− x∗, Fa(x∗)〉 = (x1 − 1)︸ ︷︷ ︸
≤0

a(1− 2) + (x2 − 1)︸ ︷︷ ︸
≤0

(1− 2) ≥ 0, ∀ x ∈ K2 = [−1, 1]× [−1, 1],

as x1 ∈ [−1, 1], x2 ∈ [−1, 1]. In particular, the solution x∗ does not vary with a > 0. The result in
case (2) is consistent with Theorem 1(ii) as K2 is a rectangular domain. �

Example A1 does not contradict Theorem 1, since for any a > 0, the solution to VI(K, Fa) lies
on the boundary of K. Example A1 also demonstrates that the solution of VI on the boundary of
K may not be invariant under sign equivalence, if we drop the rectangularity of K.

B Different classes of matrices

LetMn×n denote the set of n−dimensional square matrices. We introduce some families of ma-
trices used in the paper.

Definition B5.

1. A symmetric matrix S is such that S′ = S. We denote by S the set of symmetric matrices: S = {S ∈
Mn×n|S′ = S}.

2. A diagonal matrix D is a matrix in which all off-diagonal entries are zero. We denote by D the set of
diagonal matrices, by D+, the set of diagonal matrices with positive diagonal entries, and by D0, the
set of diagonal matrices with nonnegative diagonal entries.

3. A symmetric matrix Q is a P−matrix if it is positive definite.3 Equivalently, Q is a P−matrix if
and only if every principal minor of Q is positive. We denote by P the set of P−matrices, that is,
P = {Q ∈ Mn×n|∀x ∈ Rn\{0}, ∃k, such that xk(Qx)k > 0}.

4. A symmetric matrix Q is a PD−matrix if it is positive definite. We denote by PD the set of positive
definite matrices, that is, PD = {Q ∈ Mn×n|x′Qx > 0, ∀x ∈ Rn\{0}} and by PD0 the set of
positive semidefinite matrices, that is, PD0 = {Q ∈ Mn×n|x′Qx ≥ 0, ∀x ∈ Rn}. Moreover, we
denote by SPD = PD ∩ S the set of symmetric and positive definite matrices,4 and by SPD0 =

PD0 ∩ S the set of symmetric and positive semidefinite matrices.

We collect some well-known relationships between these classes of matrices (see, for instance,
Facchinei and Pang, 2007). The proofs are standard, hence omitted.

3A positive definite matrix is a symmetric matrix with all positive eigenvalues.
4Equivalently, Q ∈ SPD if and only if Q is symmetric and all its eigenvalues are positive. Moreover, Q ∈ PD (resp.

PD0) if and only if the symmetric part of Q, i.e., (Q + Q′)/2, is in SPD (resp. SPD0).
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Lemma B3.

1. SPD ⊂ PD ⊂ P ;

2. D+ ⊂ D0 ⊂ SPD ⊂ PD;

3. P ∩ S = SPD;

4. If D ∈ D0, Q ∈ P , then D + Q ∈ P ;

5. If D ∈ D+, Q ∈ P , then DQ ∈ P and QD ∈ P .5

Lemma B4. The following conditions are equivalent for a P−matrix.

1. A is a P−matrix.

2. Every principal minor of A has a strictly positive determinant.

This lemma implies that, for a network g, if G is symmetric and δ > 0, then I − δG is a
P−matrix if and only if 1− δλmax(G) > 0 and I+ δG is a P−matrix if and only if 1+ δλmin(G) > 0.

C Public goods on networks: A linear public-good network game with
strategic substitutes

Consider the model by Bramoullé et al. (2014). For xi ≥ 0, the payoff is given by:

uBKD
i (x, g) = aixi −

1
2

x2
i − δ ∑

j
gijxj,

for δ > 0 and network g.6 This is the similar to Ballester et al. (2006) except the sign of δ reversed.
Bramoullé et al. (2014) show that this game has the following exact potential function:

φ(x) = ∑
i
(aixi −

1
2

x2
i )− δ ∑

ij
gijxixj.

Moreover this φ(x) is concave if and only if (I + δG) is positive definite, which is equivalent to
1 + δλmin(G) > 0, where λmin(G) is the lowest eigenvalue of G. Under this condition, there is a
unique Nash equilibrium.

5Note that if D ∈ D+ and Q ∈ PD, then it is not always the case that DQ ∈ PD or QD ∈ PD. For instance,

consider D =

[
10 0
0 1/10

]
∈ D+, Q =

[
2 1
1 2

]
∈ SPD, then DQ =

[
20 10
0.1 .2

]
∈ P but DQ /∈ PD.

6There exists game with different payoffs but the same best responses; see Bramoullé and Kranton (2007).
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Remark C1. For this type of game with strategic subsitutes, the constraint xi ≥ 0 may be bidding in
equilibrium. But potential function/VI approach can deal with this constrain very easily. In fact, there is a
unique equilibrium even if we impose xi ∈ [ki, k̄i] with 0 ≤ ki < k̄i ≤ +∞, as long as the potential φ(x)
remains strictly concave.

D Network games with strategic complementarities and multiple ac-
tivities

Consider the model of Chen et al. (2018), which is a multiple-activity version of network games
with the following linear quadratic payoff:7

ui(xi, x−i) = aA
i xA

i + aB
i xB

i −
{

1
2
(xA

i )
2 +

1
2
(xB

i )
2 + βxA

i xB
i

}
(D3)

+δ
n

∑
j=1

gijxA
i xA

j + δ
n

∑
j=1

gijxB
i xB

j .

where xi = (xA
i , xB

i ) ∈ R2, and x−i := (xA
1 , xB

1 , ..., xA
i−1, xB

i−1, xA
i+1, xB

i+1, ..., xA
n , xB

n ) as the decisions
selected by players other than i, parameter δ > 0, β ∈ (−1, 1).

Define the mapping F : R2n → R2n as follows:

−F(xA, xB) = (
∂u1

∂xA
1

, · · · ,
∂un

∂xB
n

,
∂u1

∂xB
1

, · · · ,
∂un

∂xB
n
)T.

Note that,

− F(xA, xB) =

[
αA

αB

]
−
[

I− δG βI
βI I− δG

]
︸ ︷︷ ︸

:=Ω

[
xA

xB

]
, (D4)

Since the network is undirected, the matrix Ω is symmetric. In fact, this game has a potential
function as follows:

φ(xA, xB) :=
[
xA xB

] [αA

αB

]
− 1

2

[
xA xB

] [I− δG βI
βI I− δG

] [
xA

xB

]
. (D5)

Chen et al. (2018) show that Ω is positive definite if and only if

1− |β| − δλmax(G) > 0. (D6)

Note that under condition (D6), φ is a strictly concave function.

7It is straightforward to extend the model in Chen et al. (2018) with two activities to any number of activities.
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Corollary D3. x∗ is a NE in game defined by (D3) if and only if F defined in (D4) satisfies F(x∗) = 0.
Under condition (D6), the unique maximizer x∗ = arg max φ(x) defined in (D5) is the unique Nash
equilibrium.

Proof of Corollary D3: Since β ∈ (−1, 1), each payoff ui is concave in xi. By Lemma 1, x∗ is a NE
if and only if x∗ solves in VI(R2n, F). Since the domain R2n has no boundary point, any solution
to VI(R2n, F) must be interior, hence F(x∗) = 0. The second implication follows from Theorem 2,
since the Jacobian of F is exactly Ω, which is positive definite under condition (D6). �

Remark D2. If we impose nonnegative constrains on efforts, then the NE is equivalent to solve 0 ≤ x∗ ⊥
F(x∗) ≥ 0, or VI(R2n

+ , F). The uniqueness of equilibrium is still obtained under the same condition (D6).
Chen et al. (2018) also consider the case with δ < 0, or settings with more than two activities, cross-activity
externalities, etc. It is straightforward to extend our analysis to those settings.

E A public-good game with two different networks

Consider the network game of Section 5.3 with two networks g and h and utility function (40).
The condition (42) is equivalent to the following for qi:

(qi − q∗i )Fi(x) ≥ 0, ∀xi ∈ [0, wi].

Define Ki = [0, wi], Fi(x) = 2qi − (wi − Q−i + Y−i) = 2qi − wi + δ ∑j gijqj − µ ∑j hij(wj − qj), and
F = (F1, · · · , Fn)T.

Therefore, finding a Nash equilibrium to the game in Section 5.3 is equivalent to solving the
following VI(K, F):

〈(q− q∗), F(q∗)〉 ≥ 0, ∀q ∈ [0, w1]× · · · × [0, wn] = ∏ Ki = K.

Note that
∂F
∂x

= 2I + δG + µH, (E7)

which is symmetric. Therefore, F is integrable. Consequently, we can reformulate the above VI as
the following minimization program:

min φ(q), s.t q ∈ K

with
φ(q) = qTq− (w + µHw)Tq +

1
2

qT(δG + µH)q. (E8)

Here w = (w1, · · · , wn) represents the vector of incomes. It’s easy to check that ∇φ(q) = F(q).
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Theorem E2. The network game with two networks g and h and utility function (40) has a best response
potential function −φ(q), where φ(q) is given by (E8).

Note that this theorem holds without any assumption on δ, µ, G, and H. Since −φ(q) is
continuous, we can always obtain a global maximum on the compact set K, which is a NE of the
original game. Thus, we obtain the following result:

Proposition E1. There exists at least one Nash Equilibrium for this game.

Observe that φ(q) defined in (E8) is a quadratic function of q. Further, the Hessian matrix of
φ(q) is equal to 2I + δG + µH (see (E7)), which is positive definite if and only if 2 + λmin(δG +

µH) > 0.

Assumption 4 (Network Regularity ). 2 + λmin(δG + µH) > 0.

Theorem E3. When Assumption 4 holds, φ(q), given by (E8), is strictly convex on the rectangle region
K. Thus, there is a unique Nash equilibrium q∗, which is the global minimum of φ(q) on the region K.

Whenever the solution is interior, we can have the closed-form solution of the Nash equilib-
rium:

q∗ = [2I + (δG + µH)]−1(I + µHG)w, (E9)

and
y∗ = w∗ − q∗ = [2I + (δG + µH)]−1(I + δG)w. (E10)

Corollary E4. Assume that both G and H are regular networks with degree dgand dh, respectively. Assume
also that each player i has the same endowment wi = w, ∀i. There exists a Nash equilibrium in which each
player i chooses

q∗i =
1 + µdh

2 + δdg + µdh
w and y∗i =

1 + δdg

2 + δdg + µdh
w.

Remark E3. When Assumption 4 is violated (that is, the network effects δ and µ are too large), there still
exists at least one NE, since φ(q) is continuous and thus, we always obtain a global maximum on the
compact set K. But a critical point of −φ(q) may be a saddle point, instead of a maximizer. Furthermore,
there might be multiple equilibria.

F Pricing equilibrium in differentiated products

The purpose of this section is not to show new results but to demonstrate the usefulness of our
SET methodology for solving some known results.

Consider a market with n ≥ 2 firms; each sells a differentiated product. Fore each firm i =

1, 2, · · · , n, let pi denote the price charged by firm i, p−i, the price charged by other firms, and p0
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the price charged by the outside option, which exogenously fixed (depends on the utility obtained
from the outside option). Using a discrete choice model, we can derive the demand for a firm i,
which is given by Qi(pi, p−i, p0). We have the following (standard) assumptions:

1. Assumption E1: Qi(.) is log-concave in pi, i.e., ∂2 ln Qi

∂p2
i
≤ 0;

2. Assumption E2: Qi(.) is log-supermodular in (pi, pj) for j 6= i, i.e, ∂2 ln Qi

∂pi∂pj
≤ 0, ∀j 6= i;

3. Assumption E3 (homogeneity) For every i and every ε,

Qi(p1 + ε, p2 + ε, · · · , pn + ε, p0 + ε) = Qi(p1, p2, · · · , pn, p0).

By definition of discrete choice models, Assumption E3 holds automatically (εi is a random
variable that represents all else that affects consumers i’s choosing product i). Assumptions E1
and E2 are satisfied for many demand functions derived from discrete choice models (Anderson
et al., 1992).8

Consider the pricing competition game among n firms with payoff given by

πi(pi, p−i) = (pi − ci)Qi(pi, p−i), i = 1, 2, · · · , n.

Observe that Assumption E1 implies that πi is log-concave in pi, hence it is quasi-concave in pi.
The existence of pricing equilibrium is obtained under standard methods by either using a fixed
point argument or, under certain mild conditions, by applying classical results from supermodular
games (see, e.g., Milgrom and Roberts (1990); Vives (1990); Caplin and Nalebuff (1991)).

Let us now focus on the uniqueness of a Nash equilibrium (NE) using our SET methodology.
Clearly, if p∗ is a NE, then the following first-order conditions must hold

∂πi

∂pi
= 0 =⇒ Qi + (pi − ci)Qi

i = 0, i = 1, 2, · · · , n. (F11)

where Qi
i := ∂Qi/∂pi. Define

Fi(p) := pi − ci +
Qi

Qi
i
= pi − ci +

1
(ln Qi)i

(F12)

Clearly, the solutions to equations (F11) is the same as the solutions to

Fi(p) = 0, i = 1, 2, · · · , n. (F13)

To demonstrate the uniqueness of a NE, let us show that the system of equations (F13) has at
most one solution.

8In particular, they hold for multinomial logit demands, that is,

Qi(pi, p−i, p0) =
eεi−pi

eε0−p0 + ∑n
k=1 eεk−pk

, i = 1, 2, · · · , n.

See Nocke and Schutz (2018, 2019) for applications of exploit best-response/transformed potential in multiproduct
oligopoly competition with generalized logit and CES demands.
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Lemma F5. The mapping F = (F1(p), F2(p), · · · , Fn(p)) from Rn to Rn is univalent, that is, F(x) =

F(y), ∀x, y ∈ Rn implies x = y.

Proof: Let J(p) = (J(p)ij) denote the n× n Jacobian matrix of the mapping F. We have:

Jij(p) =
∂Fi

∂pj
= 1{i=j} −

(ln Qi)ij

[(ln Qi)i]2
.

Suppose, i 6= j, 1{i=j} = 0, and (ln Qi)ij ≥ 0 by Assumption E2. Thus, Jij ≤ 0. Moreover (ln Qi)ii ≤
0 by Assumption E1, so Jii ≥ 1 > 0 for each i.

Moreover, if we take the sum of each row of J, we obtain:

n

∑
j=1

Jij = 1−
∑n

j=1(ln Qi)ij

[(ln Qi)i]2
.

By Assumption E3, we have:

Qi(p1 + ε, p2 + ε, · · · , pn + ε, p0 + ε) = Qi(p1, p2, · · · , pn, p0),

or, equivalently,

ln Qi(p1 + ε, p2 + ε, · · · , pn + ε, p0 + ε) = ln Qi(p1, p2, · · · , pn, p0).

Taking the derivative with respect to ε and let ε = 0 yields

n

∑
j=1

(ln Qi)j = −(ln Qi)0

Taking derivative with respect to pi on both sides yields

n

∑
j=1

(ln Qi)ji = −(ln Qi)0i ≤ 0 (F14)

where the last equality follows from Assumption E2. As a result,

n

∑
j=1

Jij = 1−
∑n

j=1(ln Qi)ij

[(ln Qi)i]2
≥ 1 > 0.

We have shown that the off diagonal entries are non-positive, the sum of each row is strictly
positive, J is a strictly (row) diagonally dominant matrix, therefore it is P matrix.9 Since this is true
for any p, thus, by the global univalence theorem of Gale and Nikaido (1965), the mapping F is
injective. �

We have the following straightforward uniqueness result.

9See Section B of the Online Appendix for the definition and various properties of the P matrices.
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Theorem F4. There is at most one pure strategy Nash equilibrium in the pricing game.

Observe that, the key step to show the uniqueness of a Nash equilibrium is to rewrite the
FOC in an equivalent form (SET) to apply the univalence theorem. If we, instead, define F̃i =

Qi + (pi − ci)Qi
i, the univalence of F̃ will also imply the uniqueness of equilibrium but it is not

clear how to show the P matrix property of this new mapping F̃ using Assumptions E1-E3.
Assume that ai ≥ ci, as none of the firm would charge price below the marginal cost. Assume

also a price cap for each firm i equal to bi, which may result from either vertical restriction such as
RPM, or government regulation. We have the following result:

Theorem F5. Suppose that, for each firm i, pi is restricted to the interval [ai, bi] with −∞ ≤ ai < bi ≤
+∞. Then, there is at most one pure strategy Nash equilibrium in the pricing game with restricted prices.

Proof: For restricted pricing game, the FOCs are not always satisfied with equality, but there exists
appropriate sign restrictions on the derivative of πi at the left and right boundary points ai, bi. That
is,

∂πi

∂pi
= Qi + (pi − ci)Qi

i


= 0 if p∗i ∈ (ai, bi);

≤ 0 if p∗i = ai;

≥ 0 if p∗i = bi.

(F15)

Equivalently,

− Fi(p) := −(pi − ci +
Qi

Qi
i
) = −(pi − ci +

1
(ln Qi)i

) =


= 0 if p∗i ∈ (ai, bi)

≤ 0 if p∗i = ai

≥ 0 if p∗i = bi

(F16)

as Qi
i < 0.

The system of inequalities in (F16) is called a nonlinear complementary problem and denoted
CP(−F(·), K), with K = ∏i[ai, bi], which is a special case of variational inequalities (VI).

Since the Jacobian matrix J of mapping F is P matrix at every point, standard results of Varia-
tional Inequalities (VI) show that the solution to (F16) is either a singleton or empty. Thus, there
exists at most one price equilibrium. �

G An example with different conditions for uniqueness: Comparing
our approach with that of Melo (2019) and Parise and Ozdaglar (2019)

In this section, we give an example explaining the differences between our SET approach and that
of Melo (2019) and Parise and Ozdaglar (2019). Consider a dyad example of peer effects with
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linear quadratic payoffs (δ > 0); that is, the utility function is given by:

u1(x1, x2) = x1 −
1
2

x2
1 + δx1x2,

u2(x1, x2) = x2 −
1
2

x2
2 + δx2x1.

The game Jacobian is

F =

[
F1

F2

]
=

[
−∂u1/∂x1

−∂u2/∂x2

]
=

[
x1 − 1− δx2

x2 − 1− δx1

]
.

From Ballester et al. (2006), there is a unique interior equilibrium if and only if 0 < δ < 1, in
which case, the Jacobian matrix of F,

J =
∂F
∂x

=

[
1 −δ

−δ 1

]
= I− δG

is positive definite.

(1) To draw some comparison with Melo (2019), consider a modified problem where we scale
player 2’s payoff by β > 0, that is, ũ2(x1, x2) = βu2(x1, x2). The game Jacobian now becomes

F̃ =

[
F̃1

F̃2

]
=

[
x1 − 1− δx2

β(x2 − 1− δx1)

]
.

Clearly, β > 0 should not affect the set of equilibrium. In fact, F is sign equivalent to F̃ as
F̃2 = βF2. Thus, using our SET technique, δ < 1 is still the condition for uniqueness for this
modified model.

However, to obtain uniqueness of the solution to VI, Melo (2019) requires the strict mono-
tonicity of the operator F̃, i.e.,

〈F̃(x)− F̃(x), x− y〉 > 0, ∀x 6= y.

Note that the Jacobian of F̃ is

J̃ =
∂F̃
∂x

=

[
1

β

]
J =

[
1 −δ

−βδ β

]

is non symmetric. The strict monotonicity imposed by Melo (2019) requires that J̃ (or its
symmetric part (J̃ + J̃′)/2) is positive definite, which boils down to the following condition
on δ:

δ2 <
4β

(1 + β)2 . (G17)

For instance, when β = 4, the condition becomes δ < 0.8, which is more restrictive than the
original condition δ < 1. Even worse, 4β

(1+β)2 → 0 as β → 0+ or +∞. Thus, we can rule out
any δ ∈ (0, 1) by choosing a suitable β.
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(2) To draw comparison with Parise and Ozdaglar (2019), consider a modified game where
player 2 is now risk-averse with payoff û2(x1, x2) = −e−u2(x1,x2). The game Jacobian now
becomes

F̂ =

[
F̂1

F̃2

]
=

[
x1 − 1− δx2

e−u2(x1,x2)(x2 − 1− δx1)

]
.

In fact, F is sign equivalent to F̂ as F̂2 = e−u2(x1,x2)F2. Note that the Jacobian of F̂ is

Ĵ =
∂F̂
∂x

=

[
1 −δ

−e−u2 δ e−u2

]
+

[
1

e−u2(x2 − 1− δx1)

] [
1 −δ

−δx2 x2 − 1− δx1

]
.

Although F̂2 is sign equivalent to F2 as F̂2 = e−u2(x1,x2)F2, its gradient is not sign equivalent,
since ∇F̂2 6= e−u2(x1,x2)∇F2 by the chain rule.

To obtain uniqueness of the solution to VI, Parise and Ozdaglar (2019) require that at any
point (x1, x2) the operator F̂ is a P-mapping (or its Jacobian Ĵ is a P-matrix10). We can directly
check that the required condition is violated for δ = 0.9 at (x1, x2) = (0, 2). However, in the
original game (and also with our SET), δ = 0.9 is allowed, since we only require that δ < 1.

Note that in both modified games, the corresponding pure strategy equilibrium is equal to
the one in the original game, which is in consistent with our SET approach as F, F̃, and F̂ are all
sign equivalent. Therefore, we think of our approach as complementary to that of Melo (2019)
and Parise and Ozdaglar (2019) as we can first use our SET transformation and then check the
uniqueness of the VI using the techniques in Melo (2019) and Parise and Ozdaglar (2019).

10That is, every principal minor is positive. See Definition B5 and Lemma B4 in online appendix B
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