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use tools from the theory of large deviations to show that wishful thinking decision problems are

equivalent to utility maximization problems, both of which are equivalent to growth maximization

under idiosyncratic risk. Rational inattention problems are equivalent to growth-optimal portfolio

problems, both of which are equivalent to growth maximization under aggregate risk. Stochastic

growth generates extreme inequality, with nearly all wealth eventually held by those who happen

to have faced an empirical distribution of shocks that matches the solution to the wishful thinking
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Decision Theory and Stochastic Growth

1 Introduction

This paper derives and exploits connections between stochastic growth in large economies and

individual decision problems.

Using a result from the theory of large deviations, we show that a decision model of wishful

thinking is equivalent to the standard expected utility maximization under a modified utility func-

tion, and that rational inattention problems are equivalent to growth-optimal portfolio problems.

In particular, behavioral data alone cannot distinguish wishful thinking from “rational” utility

maximization, while uninformed growth-optimal portfolio decisions lead to distributions of actions

duplicating those of the optimally informed outcome of rational inattention.

We then introduce the stochastic growth model, tracking wealth accumulation in a continuous

population of agents that face idiosyncratic or aggregate risk. In the former case, each agent faces

her own draw of the payoff state. In the latter case, all agents face the same draw. We show

that expected utility maximization and equivalently wishful thinking are equivalent to growth

maximization under idiosyncratic risk, while growth-optimal portfolio and equivalently rational

inattention optimization are equivalent to growth maximization under aggregate risk. Hence, we

have equivalences between the growth process and representations in the first row of the following,

as well as between those in the second row:

Growth Process Representations

Idiosyncratic Risk Expected Utility Wishful Thinking

Maximization

Aggregate Risk Growth-Optimal Rational Inattention

Portfolio Problem

Tracking the population dynamics allows us to isolate the statistical properties of stochastic

growth of wealth and to connect these to their decision-theoretic counterparts. First, stochastic

growth generates extreme wealth concentration. Nearly all wealth is held by a fraction of the

population that has enjoyed a specific “large deviation,” and this fraction vanishes exponentially

with time. For the growth process with idiosyncratic risk, the wealth concentration increases at

the rate that equals the expenditure on belief distortion in the wishful thinking model. For the

aggregate risk case, the wealth concentration increases at the rate that equals the expenditure on

information acquisition in the rational inattention model. Second, the agents who end up owning

nearly all wealth in the two processes enjoy the empirical distribution of payoff states given by

large deviations. Under idiosyncratic risk, these “winners” of the growth process face an empirical

distribution of states that equals the subjective distribution chosen by the wishful thinker. Similarly,

the “winners” under aggregate risk face an empirical joint distribution of states and actions equal

to that of the optimizing rationally inattentive decision maker.
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As an example of how these connections can be exploited, we show that rational inattention

techniques can be used to derive comparative statics for the growth-optimal portfolio problem. We

find that, under a regularity condition, the increase in the growth rate induced by a provision of a

public signal equals the mutual information between the signal and the underlying state, and that

the provision of the public signal reduces inequality. In a related result, we show that a decline of

the growth rate caused by a misspecification of the prior distribution of the payoff shocks equals

the Kullback-Leibler divergence of the true prior from the misspecified one. Strikingly, the value of

information and cost of misspecification arising in the context of growth are universal in that they

do not depend on the details of the underlying incentives.

Growth processes with idiosyncratic and aggregate risks were introduced by Robson (1996). A

subsequent literature, surveyed by Robson and Samuelson (2011), has explored this distinction,

with an initial emphasis on the contrasting implications of idiosyncratic and aggregate risk for risk

attitudes. The goal in this literature is typically to argue that evolution will select for certain

preferences, beliefs, or decision procedures. For example, Robson and Szentes (2014) examine the

evolutionary foundations of time preferences, Steiner and Stewart (2016) examine the evolutionary

foundations of distorted beliefs, and Sadowski and Sarver (2021) argue that evolution can select

for ambiguity averse preferences that are dynamically consistent but may violate consequentialism.

Like this literature, we use growth processes to provide insights into decision-theoretic models,

while also using decision theory insights to derive statistical properties of growth processes.

Somewhat further afield, Dillenberger et al. (2017) establish an equivalence whose spirit is

similar to ours, showing that the behavior of an expected utility maximizer is indistinguishable from

that of an agent with a transformed utility function who attaches beliefs to states that depend on

the outcomes of the act under consideration, without appealing to growth considerations. Benhabib

and Bisin (2018) stress the propensity of stochastic growth to give rise to inequality, without making

connections to decision theory. Heller and Robson (2021) (Section 6), in a model related to ours,

also obtain a growing inequality result, but do not characterize this in terms of large deviations.

Williams (2004) emphasizes the importance of large deviations for stochastic growth processes.

2 A Large Deviation Result

Our basic tool is an insight from large deviation theory. Consider a random variable x with a

full-support distribution p ∈ ∆(X) on a finite set X.1 Let f be a real-valued function on X. Let

D(q ∥ p) = Eq ln
q(x)
p(x) ≥ 0 be the Kullback-Leibler divergence of the distributions q and p, commonly

interpreted as the (pseudo) distance of the probability distribution q from the reference distribution

p.2 Dupuis and Ellis (1997) (Proposition 1.4.2) prove the following:

1We denote random variables in bold throughout.
2We use the usual convention that 0 ln 0 = 0.
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Lemma 1 (Donsker-Varadhan Lemma).

ln Ep e
f(x) = max

q∈∆(X)
{Eq f(x)−D(q ∥ p)} . (1)

The maximum in (1) is attained, as the objective is a continuous function on a compact set.

We develop a heuristic derivation of (1) that highlights its relevance for stochastic growth.

Suppose that some quantity begins at value s0 = 1 and is then governed by the multiplicative

process st = ef(xt)st−1 for t = 1, . . . , T . Assume that the values xt are independently drawn from

the distribution p.

We show that each side of (1) is an (at least approximate) expression for the growth rate of

the expected value of sT . First, since the realizations of xt are independently drawn, we have

E sT =
(
Ep e

f(x)
)T

. Taking a log and dividing by T to obtain a growth rate then gives the left side

of (1):
1

T
ln E sT = lnEp e

f(x). (2)

Alternatively, let xT = (xt)
T
t=1 denote the random sequence of length T generated by drawing

according to p in each period. We can compute E sT by averaging over such sequences. Let xT stand

for the sequence realization and let qxT (x) = 1
T

∑T
t=1 1xt=x, so that qxT ∈ ∆(X) is the empirical

distribution for the sequence realization xT . For each sequence realization xT , sT attains value

exp
[
T × Eq

xT
f(x)

]
. (3)

Ignoring divisibility concerns, the large deviation principle states that the log probability of ob-

serving an empirical probability q ∈ ∆(X) asymptotically approximates −T × I(q) as T grows,

where I : ∆(X) → R+ is a rate function. In this case, taking the expectation of (3) over real-

ized sequences, pooling sequences with the same empirical distribution q, and applying the large

deviation principle, we obtain

1

T
ln E sT ≈ 1

T
ln

∫
q∈∆(X)

exp
[
T ×

(
Eq f(x)− I(q)

)]
dq

≈ 1

T
ln exp

[
T × max

q∈∆(X)
{Eq f(x)− I(q)}

]
= max

q∈∆(X)
{Eq f(x)−D(q ∥ p)} . (4)

For the first approximate equality, observe that the contribution of each empirical distribution q

to the expectation is the realized value of sT (given by (3)) multiplied by the probability of q

(approximately equal to E−T×I(q), by the large deviation principle). For the second approximate

equality, note that all these contributions are exponential functions of T . When T is large, then all

the contributions are dominated by the exponential function with the largest exponent.3 Finally,

3This argument is referred to as the Laplace principle in the large deviation theory.
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by Sanov’s Theorem (Cover and Thomas (1999), Section 11.4), there is a rate function given by

I(q) = D(q ∥ p)—the probability of observing an empirical sequence q when draws are taken from

the distribution p decays exponentially with the length of the sequence at rate equal to the Kullback-

Leibler divergence of the empirical distribution q from the actual distribution p.4 Applying this

result and performing the obvious simplification gives the final equality.

Combining (2) and (4) gives an approximation of the desired result (1). The approximation

becomes arbitrarily sharp at T grows, giving the equality in (1).

3 Two Equivalences

We establish two equivalences between pairs of decision problems. These problems are built on the

following common foundation. An agent chooses action a ∈ A and receives payoff u(a,θ), where

the payoff state θ is a random variable drawn from the distribution p that attains values in Θ. The

sets A and Θ are finite for sake of simplicity. We call the pair (p, u) a problem.

3.1 Expected Utility versus Wishful Thinking

We first show that expected utility maximization is behaviorally equivalent to wishful thinking.

The expected utility maximizer in problem (p, u) chooses an action in

A∗
eu(p, u) = argmax

a∈A
Ep u(a,θ). (5)

The wishful thinker in problem (p, u) solves

max
a∈A,q∈∆(Θ)

{Eq u(a,θ)−D(q ∥ p)} . (6)

That is, the wishful thinker chooses a subjective belief q at distortion cost D(q ∥ p), chooses an

action a, and enjoys subjective expectation Eq u(a,θ) formed under the distorted belief. We let

A∗
wt(p, u) denote the set of actions that, together with some subjective belief, optimize the objective

in (6). Caplin and Leahy (2019) have introduced this model as a psychologically plausible procedure.

4To build intuition, suppose n independent draws are taken from a coin whose probability of a head is p. Then
letting q = k/n, the log of the probability of k heads, divided by n, is given by

1

n
ln

n!

k!(n− k)!
pk(1− p)n−k =

1

n
(lnn!− ln k!− ln(n− k)! + k ln p+ (n− k) ln(1− p))

=
1

n
(n lnn− k ln k − (n− k) ln(n− k) + k ln p+ (n− k) ln(1− p) +O(lnn))

= −q ln q − (1− q) ln(1− q) + q ln p+ (1− q) ln(1− p) +
O(lnn)

n
≈ −D(q ∥ p),

where the second equality follows from an application of Stirling’s formula (lnn! = n lnn− n+O(lnn)).
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Proposition 1. Wishful thinking with utility function u(a, θ) is behaviorally equivalent to expected

utility maximization with the monotonically transformed utility function U(a, θ) = eu(a,θ):

A∗
wt(p, u) = A∗

eu(p, U).

Thus, even though the two models appear to be conceptually and procedurally distinct, they have

the same normative appeal. In fact, an analyst, who does not observe the decision maker’s utility

function cannot distinguish the two models based on choice data.

Proof of Proposition 1. Since the logarithm is an increasing function, the expected utility maxi-

mizer in problem (p, U) = (p, eu) solves

max
a∈A

ln Ep e
u(a,θ).

By the Donsker-Varadhan Lemma, this is equivalent to

max
a∈A,q∈∆(Θ)

{Eq u(a,θ)−D(q ∥ p)} ,

where the last optimization is the problem of the wishful thinker, as needed.

Strzalecki (2011) (pages 56–57), in the course of providing an axiomatic foundation for the mul-

tiplier preferences of Hansen and Sargent (2001) and Hansen et al. (2006), uses a similar argument

to establish an equivalence between multiplier preferences and expected utility maximization.5

3.2 Growth-Optimal Portfolios versus Rational Inattention

Now interpret A as a set of assets. The asset a ∈ A yields the growth rate u(a, θ) and hence the

gross return eu(a,θ) in state θ. The portfolio that distributes an investor’s wealth in proportions

α(a) across assets a ∈ A then enjoys the growth rate ln
(
Eα e

u(a,θ)
)
in each state θ, where we

formalize the portfolio as a random variable a drawn from distribution α ∈ ∆(A). Following

a large literature originating in Kelly (1956) and surveyed in Christensen (2005), we say that a

mixed strategy α∗ ∈ ∆(A) is a growth-optimal portfolio for (p, u) if

α∗ ∈ argmax
α∈∆(A)

Ep ln
(
Eα e

u(a,θ)
)
. (7)

The solution to (7) maximizes the expected growth rate of the value of the portfolio. Appealingly,

an investor who rebalances her investment proportions according to α∗ every period achieves at

least as high an asymptotic growth rate of wealth as any other strategy; see e.g. Cover and Thomas

(1999) (Theorem 16.3.1). See Section 4 for the evolutionary reinterpretation.

5Strzalecki (2011) shows that multiplier preferences are the intersection of variational preferences (Maccheroni
et al. (2006)) and second-order expected utility preferences (Ergin and Gul (2009)) (and a strict subset of both) in an
Anscombe and Aumann (1963) setting with both subjective and objective uncertainty, while multiplier preferences
are equivalent to expected utility preferences in a setting with only subjective uncertainty.
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We show that the growth-optimal portfolio problem (7) is equivalent to an associated rational

inattention problem. In the latter problem, as introduced by Matějka and McKay (2015), a decision

maker chooses a state-contingent stochastic choice rule q(a | θ) ∈ ∆(A) for each state θ and solves

max
q∈∆(A)Θ

{Ep,q u(a,θ)− Ip,q(a;θ)} , (8)

where the optimization is over rules q = (q(a | θ))a,θ. Matějka and McKay motivate the objective in

(8) as an information acquisition problem: a more informed choice rule q achieves a higher expected

payoff but incurs a higher information cost. The authors set this cost to the mutual information

Ip,q(a;θ) = H(θ)−H(θ | a),

where H stands for (conditional) entropy.6

Amarginal action distribution q∗(a) is induced by the solution of the rational inattention problem

if q∗(a) = Ep q
∗(a | θ) and the rule q∗(a | θ) solves (8).

Proposition 2. An action distribution is induced by the solution of the rational inattention problem

(8) if and only if it is the growth-optimal portfolio (7).

Again, the equivalence between the two problems holds despite of their procedural differences: an

investor in (7) cannot acquire information while the decision maker in (8) can.5 7

Proof of Proposition 2. For each state θ ∈ Θ and any strategy α, applying the Donsker-Varadhan

Lemma to the random action a |θ gives

ln
(
Eα e

u(a,θ)
)
= max

q(a|θ)∈∆(A)

{
Eq(a|θ) u(a, θ)−D

(
q(a | θ) ∥ α(a)

)}
.

Taking an expectation over θ with respect to p and then maximizing over α ∈ ∆(A), the left side

of this equation becomes the growth-optimal portfolio problem (7), which is accordingly equivalent

to

max
α∈∆(A),q∈∆(A)Θ

{
Ep,q u(a,θ)− EpD

(
q(a | θ) ∥ α(a)

)}
. (9)

It is now a straightforward calculation that the right side of (9) is equivalent to the rational

inattention problem. In particular, the chain rule for Kullback-Leibler divergence implies that

D
(
p(θ)q(a | θ) ∥ p(θ)α(a)

)
= D

(
p(θ) ∥ p(θ)

)
+ EpD

(
q(a | θ) ∥ α(a)

)
= D

(
q(a) ∥ α(a)

)
+ Eq(a)D

(
q(θ | a) ∥ p(θ)

)
,

where the left side is the divergence of two joint distributions and q(a) = Ep q(a | θ) is the marginal

6Hence, H(θ) = −
∑

θ p(θ) ln p(θ) and H(θ | a) =
∑

a q(a)H(θ | a = a).
7Our Proposition 2 is mathematically equivalent to Lemma 2 in Matějka and McKay (2015), who state it without

a reference to an investment problem or the growth process
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action distribution for prior p and rule q(a | θ). Since D
(
p(θ) ∥ p(θ)

)
= 0, we have

EpD
(
q(a | θ) ∥ α(a)

)
= D

(
q(a) ∥ α(a)

)
+ Eq(a)D

(
q(θ | a) ∥ p(θ)

)
.

Thus, the expected divergence in (9) is for a given rule q(a | θ) minimized by α(a) = q(a). Hence,

expression (9) and in turn the growth-optimal portfolio problem (7) are equivalent to

max
q∈∆(A)Θ

{
Ep,q u(a,θ)− Eq(a)D

(
q(θ | a) ∥ p(θ)

)}
.

This last problem is equivalent to the rational inattention problem (8) as needed because

Ip,q(θ;a) = Eq(a)D
(
q(θ | a) ∥ p(θ)

)
.

4 A Population Perspective

We have phrased the problems of Section 3 as problems of a single decision maker. We now adopt a

population perspective by embedding a stochastic growth process into a population of agents who

face decisions under uncertainty. In the population reinterpretation, we consider a continuum of

agents who repeatedly experience draws of the state. We consider two cases. In one case, each

agent faces an independent draw, which leads to expected utility maximization. In another case,

all agents face the same draw, which leads to the growth-optimal portfolio problem with hedging

over the finite action set occurring on the aggregate level.

Time is discrete, with the length δ of the periods t = 1, 2, . . . in this section normalized to

δ = 1. In our leading interpretation, we normalize the size of the population and the initial wealth

of each agent to one. Each agent chooses a private action a ∈ A each period and enjoys wealth

wt = eu(a,θt)wt−1 at the end of each period t, where θt is drawn from p ∈ ∆(Θ), independently

across periods. Alternatively, we can interpret the process as demographic growth. We normalize

the initial population size to one and interpret a as a characteristic a parent chooses for her offspring,

with eu(a,θ) then being the attendant expected number of surviving offspring and wt the size of the

population at time t.

In the idiosyncratic uncertainty variant, the payoff shocks θt are independent across agents. We

impose a law of large numbers on the continuous population. Hence, if all agents choose an action

a in all periods, then the population wealth in period t is
(
Ep e

u(a,θ)
)t

with certainty. We seek an

action that maximizes the growth rate of the population’s wealth, and hence solves8

max
a∈A

ln Ep e
u(a,θ). (10)

8Allowing for mixed actions, period-dependent, or history-dependent choice is inconsequential under idiosyncratic
risk since an optimal history-independent and time-independent pure action always exists.
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Since the logarithmic transformation does not affect the maximizer, this problem is equivalent to

the expected utility maximization problem (5) with utility U(a, θ) = eu(a,θ).

In the aggregate uncertainty variant of the growth process, we assume that all agents in each

period t are subject to the same period-dependent θt. We let each agent randomize their action

according to a mixed strategy α ∈ ∆(A) independently across agents and periods. We again

assume that a law of large numbers applies to the continuous population. Hence, if the share of the

agents choosing an action a is α(a), then the population’s aggregate wealth is multiplied by factor

Eα e
u(a,θ) in each state θ. We seek a strategy α∗ that maximizes the long run growth rate of the

population’s wealth, that is, the solution of the growth-optimal portfolio problem (7):

max
α∈∆(A)

Ep ln
(
Eα e

u(a,θ)
)
.

Our implicit assumption in adopting these objectives is that strategies maximizing the long run

aggregate wealth of population will themselves dominate the population. This will be the case if

these strategies are deliberately chosen by maximizing agents. Alternatively, this prevalence will

emerge, no matter how strategies are chosen, if market forces cause wealth maximizing strategies to

displace other strategies (cf. Blume and Easley (1992)), or if more successful strategies are imitated.

Wealth maximizing strategies will automatically dominate if one samples behavior according to

wealth, or if the growth process is interpreted as population growth (cf. Tanny (1981)).

Under idiosyncratic risk, every finite sequence of states is realized for some segment of the pop-

ulation and nearly all aggregate growth occurs along atypical sequences of states. We characterize

these atypical sequences by applying the Donsker-Varadhan Lemma to the stochasticity of states,

leading to the wishful thinking representation, which optimizes across such deviations. Under ag-

gregate risk, the growth rate is maximized along the typical sequences of shocks, but some fractions

of the population enjoy large deviations in the sequences of their actions. Proposition 3.2 charac-

terizes these atypical sequences by applying the Donsker-Varadhan Lemma to the stochasticity of

actions, leading to the rational inattention representation.

4.1 Idiosyncratic Uncertainty

This subsection connects the equivalence between expected utility maximization and wishful think-

ing established in Proposition 1 to growth under idiosyncratic risk. We show that at the end of

each period, a wealth-weighted sampling of the population’s realized states reproduces the opti-

mally distorted distribution q∗ from the wishful thinking problem. Population wealth becomes

concentrated on a vanishingly small subpopulation whose empirical distribution of realized states

matches q∗ and whose size shrinks at a rate equal to the belief distortion expense in the wishful

thinking representation.

Consider a large time horizon t. Under idiosyncratic risk, any empirical distribution q of states

is enjoyed by a fraction of population of approximate size e−t×D(q∥p) up to period t (again ignoring

divisibility concerns). If the population chooses an action a, then agents from the subpopulation

8



experiencing empirical distribution q have enjoyed growth rate Eq u(a,θ) and hold aggregate wealth

exp
[
t×

(
Eq u(a,θ)−D(q ∥ p)

)]
at the end of the period t. The first term in the exponent describes

the per capita wealth of this subpopulation, while the second describes the size of the subpopulation.

The law of large numbers allows us to conclude that the population experiences the distribution

p of realized states in each period, and hence population wealth in period t is given by
(
Ep e

u(a,θ)
)t
,

but this law can be misleading when examining the distribution of wealth. Here, some sequences of

realized states will be exponentially rare, but these sequences may beget exponentially large wealth.

The aggregate wealth of the entire population will be dominated by the wealth of the subpopulation

whose sequence of realized states appropriately balances these two forces, i.e., that has enjoyed the

empirical distribution q∗ that maximizes Eq u(a,θ) − D(q ∥ p). An ever-growing fraction of the

population’s wealth, approaching one in the limit, will be held by this ever-shrinking subpopulation,

whose size becomes negligible in the limit, while the wealth of the residual population also becomes

negligible. To secure a nonnegligible wealth share, an agent in the idiosyncratic growth problem

thus needs to be both lucky and prepared. She needs to be lucky in order to experience the optimal

large deviation of shocks, and she needs to be prepared in the sense of choosing an action that

maximizes the growth rate under this deviation.

To make these remarks precise, define the sampled distribution as

q̃(θ) =
p(θ)eu(a

∗,θ)

Ep eu(a
∗,θ)

, (11)

where a∗ is the optimal action from the idiosyncratic growth problem (10). To interpret the sampled

distribution, think of sampling a dollar uniformly from the population wealth at the end of any

given period. The numerator is proportional to aggregate wealth generated by state θ and the

denominator is proportional to the total wealth. Hence, q̃ is the distribution of the payoff state θ

of the dollar’s owner from this period. A naive frequentist who learns the distribution of states by

sampling agents proportionally to their wealth and by averaging their empirical distributions learns

the sampled distribution. Alternatively, a population biologist who took an unweighted sample of

survivors would learn the sampling distribution.

Corollary 1. The sampled distribution q̃ equals the distorted distribution q∗ chosen by the wishful

thinker.

Proof. The first-order conditions in the wishful thinking optimization problem,

max
q

{∑
θ∈Θ

q(θ)u(a∗, θ)−D(q ∥ p)

}
s.t.:

∑
θ∈Θ

q(θ) = 1,

have a unique solution, given by

q∗(θ) =
p(θ)eu(a

∗,θ)

Ep eu(a
∗,θ)

, (12)

9



which coincides with the sampled distribution q̃ from (11).

For intuition for Corollary 1, think of sampling a dollar in period t, tracing the predecessor

dollar whose investment generated the terminal dollar, and tracing the predecessor’s predecessor,

and so on. The payoff shocks experienced by the owner of these dollars are independently drawn

from the sampled distribution q̃. By the law of large numbers, the empirical state distribution

experienced by the owner of the random dollar sampled at t is likely to be near q̃ when t is large.

But for large t, nearly all wealth is owned by agents who have enjoyed the optimal large deviation

q∗ of payoff states, which is also the distorted distribution of the wishful thinking, ensuring q̃ = q∗.

The next result describes a debiasing procedure that arises endogenously in our setting and is

akin to the robust-control approach of Hansen and Sargent (2011).

Corollary 2. Let a∗ be the optimal action and q∗ be the sampled distribution in the growth process

with prior p and growth rates u(a, θ). Then,

p ∈ argmin
p′

{
Ep′ u(a

∗,θ) +D(p′ ∥ q∗)
}
. (13)

In Hansen and Sargent (2011), an agent faces a generic decision problem under uncertainty

and observes the distribution q∗. The agent assumes that the true distribution of payoff states

is within a Kullback-Leibler-divergence ball of distributions around q∗, and selects the worst case

distribution from this ball. Our problem (13) coincides with this worst case optimization relaxed

by the Lagrange method with the Lagrange multiplier normalized to one.

To prove Corollary 2, we fix the optimal action a∗ and trace the wealth of agents from period

t backwards. The states are distributed according to the sampled distribution q∗ and the wealth

of each agent shrinks by eu(a
∗,θt) each period; that is, it grows with rate −u(a∗,θt). The proof

consists of characterizing the sampled distribution of this backward process.

Proof of Corollary 2. Consider a growth process with prior distribution q∗(θ) and growth rates

u′(a, θ) = −u(a∗, θ). By (12), its sampled distribution is

q∗(θ)eu
′(a∗,θ)

Eq∗ eu
′(a∗,θ)

=
q∗(θ)e−u(a∗,θ)

Eq∗ e−u(a∗,θ)
= p(θ)eu(a

∗,θ)e−u(a∗,θ) = p(θ).

By Corollary 1, the sampled distribution of this growth process is in

argmax
p′∈∆(Θ)

{−Ep′ u(a
∗,θ)−D(p′ ∥ q∗)} = argmin

p′∈∆(Θ)
{Ep′ u(a

∗,θ) +D(p′ ∥ q∗)}.

Hence, p is the minimizer of the problem at the right side, as needed.

The wishful thinking representation is informative of an additional property of the stochastic

growth process. A dollar sampled at any given period has originated from an investment with

expected return Eq∗ u(a
∗;θ) given by the sampled distribution q∗. However, the growth rate of the

10



aggregate wealth is only Eq∗ u(a
∗;θ)−D(q∗ ∥ p). This difference in growth rates implies that wealth

is becoming increasingly concentrated, as the ratio of the wealth of high earners to average wealth

explodes. Indeed, nearly all wealth is concentrated among the subpopulation that has enjoyed the

optimal deviation, and its size vanishes exponentially at rate D(q∗ ∥ p). Thus:

Corollary 3. The distortion expense D(q∗ ∥ p) from the wishful thinking optimization identifies the

degree of wealth concentration in the idiosyncratic growth process, as all wealth becomes concentrated

in a subpopulation whose size shrinks at rate D(q∗ ∥ p).

4.2 Aggregate Uncertainty

We now assume that in each period a single payoff state θt is drawn that applies to all individuals.

We show that at the end of each period, a wealth-weighted sampling of the population’s realized

actions reproduces the solution of the rational inattention problem. The population wealth becomes

concentrated on a subpopulation whose size exponentially vanishes at rate equal to the information

expense in the associated rational inattention problem.

Analogously to the sampled distribution from Subsection 4.1, we define the sampled choice rule

q̃(a | θ) = α∗(a)eu(a,θ)

Eα∗ eu(a,θ)
for all θ, (14)

where the mixed strategy α∗ is the maximizer of the growth-optimal portfolio problem (7). We

write q̃ for the state-contingent system (q̃(a | θ))θ∈Θ.
For interpretation again note that the owner of a dollar uniformly selected from the wealth of

population at the end of any period t in which θt = θ has chosen action a with probability q̃(a | θ).
While the actions chosen at the beginning of any period are uncorrelated with the payoff state,

the sampled choice rule oversamples successful actions and thus features correlation induced by the

growth process itself. In the biological interpretation, the offspring’s inherited characteristics are

uncorrelated with the payoff state, but differential survival probabilities induce such correlation. A

sampling of survivors yields the sampled choice rule.

Corollary 4. A rule solves the rational inattention problem if and only if it is the sampled rule

(14).

Proof. We have shown in Proposition 2 that α∗ equals the marginal action distribution induced by

the choice rule that solves the rational inattention problem. Matějka and McKay (2015) show in

their Theorem 1 that given q∗(a) = α∗(a) the optimal choice rule q∗(a | θ) satisfies (14).

The equivalence in Corollary 4 arises even though the agents in the growth process cannot

engage in information acquisition, in contrast to the decision maker in the rational inattention

problem. Again, the equivalence can be understood in terms of large deviation theory. For any

finite time horizon, various fractions of the population in the growth process with aggregate risk

experience empirical correlations between their actions and states by luck. Some of these random
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correlations boost the exponential growth rate of wealth. Asymptotically, nearly all population

wealth is concentrated among the fraction of the population that has enjoyed sufficiently favorable

but not too unlikely deviations. The tradeoff between the growth advantage of the deviation and

its rarity is equivalent to the tradeoff between the benefit and cost of information in the rational

inattention problem.

An empirical researcher who samples agents proportionally to their wealth learns the joint

distribution of actions and states that coincides with that of the rationally inattentive decision

maker. Such an empirical researcher might be tempted to conclude that the agents acquire partial

information about the states in a cost-benefit calculation, even though the observed correlation

pattern stems from uninformed hedging and selection bias caused by the growth process itself.

Again, the information-acquisition expense from the rational inattention problem corresponds

to wealth concentration in the growth process:

Corollary 5. Asymptotically, almost all wealth is held by a fraction of population whose size shrinks

exponentially at rate Ip;q∗(θ;a).

Aggregate wealth becomes concentrated on the subpopulation that has experienced the optimal

large deviation in their sequence of actions. The members of this subpopulation have been blessed

by incredible luck, but present the appearance of having made entirely rational choices of actions

based on (partial) information about the realized sequence of states.

4.3 Optimal Hedging

The solution to the growth-optimal portfolio problem often involves hedging. This result is familiar

both from work on financial markets and from work on biological systems (Bergstrom (2014)). For a

simple illustration, suppose that an action matching the state gives a positive return, while an action

that does not match the state gives a gross return of zero. If states are idiosyncratically drawn,

growth is maximized by having all agents match the a priori most likely state. In contrast, this

strategy ensures bankruptcy or extinction in the aggregate risk case, where growth is maximized by

matching each state with probability equal to its prior probability. See Robson (1996) and Robson

and Samuelson (2011) for the evolutionary context.

Solving for optimal hedging is in general difficult. The equivalence between the growth-optimal

portfolio and the rational inattention problems allows us to transfer the methods derived for the

latter problem to the first one. To illustrate this, we use rational inattention insights to derive

sharp characterizations of the impact of public information and belief misspecification on growth

and inequality. The characterizations are based on an analysis of posterior beliefs. These naturally

arise in the rational inattention setting but their relevance for the growth process is less immediate.

Our baseline problem is the growth-optimal portfolio problem (7) in which agents have no

information beyond their prior. In our first application, we extend this baseline by letting agents

condition their actions on a public signal. The payoff states θt and public signals yt are drawn from a

known joint distribution p(θ, y), independently across periods. The agents optimize over stochastic
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choice rules α(a | y) that specify conditional action distributions for each signal realization y. The

growth-optimal portfolio problem with public information is then

max
α

Ep(θ,y) ln
(
Eα(a|y) e

u(a,θ)
)
.

We impose a regularity condition on the public signal. Let q∗(a | θ) be the sampled choice rule

in the baseline problem (7) without public information and define posterior distributions q∗(θ |
a) = q∗(a | θ) p(θ)

q∗(a) for each action in the support of α.9 We require that the public signal is not

too informative:

Regularity condition 1: The conditional state distribution p(θ | y) is in the convex hull of

q∗(θ | a), a : q∗(a) > 0, for each realization y.

We let V ∗ and V ∗∗ denote the growth rates achieved in the settings without and with informa-

tion, respectively. We continue to write α∗(a) for the optimal strategy in the baseline setting and

write α∗∗(a | y) for the optimal rule in the setting with public information; α∗∗(a) = Eα∗∗(a | y)
is the marginal action distribution.

Proposition 3. Under the regularity condition 1:

3.1 The provision of public signal increases the growth rate of wealth by the mutual information

between the payoff state and the signal:

V ∗∗ − V ∗ = I(θ;y).

3.2 The marginal action distribution is unaffected by the information provision:

α∗(a) = α∗∗(a) for all a ∈ A.

3.3 The provision of public information diminishes the exponential rate of wealth concentration.

In our second application, we keep the same baseline and compare it to a setting in which the

agents hold a biased prior belief p′ and receive no information beyond the prior. Letting α∗
p ∈ ∆(A)

be the optimal strategy for the prior p,

L
(
p, p′

)
= Ep ln Eα∗

p
eu(a,θ) − Ep ln Eα∗

p′
eu(a,θ)

is the reduction of the growth rate caused by the optimization for the misspecified prior p′ when

the objective prior is in fact p.

We require that the misspecification is not too large.

Regularity condition 2: The misspecified belief p′ is in the convex hull of q∗(θ | a), a : q∗(a) > 0.

9These posteriors can be interpreted in the growth context as the state distributions conditional on a dollar
randomly sampled at the end of any period originating from action a.
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Proposition 4. Under the regularity condition 2, misspecification of prior belief decreases the

growth rate of wealth by L (p, p′) = D (p ∥ p′).

The value of information and the loss from misspecification in a static single-person decision

problem depend on the specific payoff function. In contrast, the welfare implications of information

and misspecification are strikingly simple in the context of growth; they are independent of the

specific payoff function (under the regularity conditions). Moreover, the provision of (weak enough)

public information introduces correlation between actions and states in the growth-optimal portfolio

problem, but does not change the marginal action distribution. Thus, (weakly informative) public

persuasion campaigns are ineffective in achieving state-independent goals in this setting.

We use the next lemma to prove both propositions. Let the value function defined by V ∗(p) =

maxα Ep ln
(
Eα e

u(a,θ)
)
map each prior p to the optimal growth rate in the baseline setting.

Lemma 2. The value function restricted to the convex hull of optimal posteriors from the baseline

setting satisfies V ∗(p) = g(p)−H(p), where g is a linear function.

The lemma follows from the “locally invariant posteriors” property of Caplin et al. (2022).

Proof. Caplin et al. (2022) observe that the rational inattention problem (8) is equivalent to

max
r

E [v(r) +H(r)−H(p)]

s.t.: E r = p,

where r ∈ ∆(∆(Θ)) is a random posterior and v(r) = maxa∈A Er u(a,θ) for a realized posterior r.

The term E [H(p)−H(r)] is the mutual information for the random posterior r. The constraint is

the Bayes plausibility condition.

Caplin, Dean and Leahy point out that the support of the optimal random posterior equals the

set of beliefs that support the tangent hyperplane of the concavification of v(r) +H(r) above the

prior belief. An implication, dubbed the locally invariant posteriors property by these authors, is

that if r∗ is the optimal random posterior for prior p, then the optimal random posterior for any

prior p′ in the convex hull of support of r∗ has the same support as r∗. Letting r∗(p) be the optimal

random posterior for prior p, this implies that E [v (r∗(p)) +H (r∗(p))] is linear in p. Thus, the

lemma holds with g(p) = E [v (r∗(p)) +H (r∗(p))].

The locally invariant posteriors property allows to reformulate our regularity conditions. They

are equivalent to requirements that information provision, respectively misspecification, are suffi-

ciently small so that they do not affect the set of actions that are chosen with positive probability.

Proof of Proposition of 3. The growth rate achieved under provision of the public signal y is a

convex combination of the growth rates achieved at priors p(θ | y):

V ∗∗ = EV ∗ (p(θ | y)) .
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Claim [3.1] follows:

V ∗∗ − V ∗(p) = EV ∗ (p(θ | y))− V ∗(p)

= H(p)− EH (p(θ | y))

= I(θ;y),

where the expectations are with respect to the signal y. The second equality follows from Lemma

2: Since the p(θ | y) are in the convex hull of the optimal posteriors of the baseline problem by the

regularity condition, V ∗(p) = −H(p) up to an irrelevant linear term. Indeed, the linear term in V ∗

does not affect the difference because E p(θ | y) = p(θ).

Claim [3.2] follows from the fact that the prior probability of reaching any of the posteriors, and

hence the probability of any of the actions, is unaffected by the signal provision. For Claim [3.3],

note that the signal provision decreases the rate at which wealth concentrates by I(θ;y) ≥ 0.

Proof of Proposition of 4. The growth rate Ep ln Eα∗(p′) e
u(a,θ) is a linear function of p, the graph

of which is a hyperplane tangent to V ∗(p) at p′. The linearity follows from the fact that it is an

expectation with respect to p and the tangency follows from the optimality of α∗(p′) at prior p′.

Thus, L (p, p′) is the error of the linear approximation of V ∗ around p′ evaluated at p. By Lemma

2, and since the linear term of V ∗ does not affect this error, L (p, p′) is the error of the linear

approximation of −H(p) around p′ evaluated at p. Thus, L (p, p′) = D (p ∥ p′), because Kullback-

Leibler divergence is a Bregman divergence associated with function −H (Bregman (1967)).

Cabrales et al. (2013) show that signal structures are ranked by mutual information in a class

of static investment problems. Barron and Cover (1988) establish that in the absence of our

regularity conditions, the characterizations derived here continue to be upper bounds on the value

of information and on loss from misspecification, respectively.10 Frick et al. (2021) provide a distinct

problem-independent characterization of the loss from misspecification.

5 Discussion

Beginning with Robson (1996), a large literature (discussed in Robson and Samuelson (2011)) has

examined models of biological growth subject to idiosyncratic or aggregate environmental risks.

The former are equivalent to the utility maximization problem (5) and the latter are equivalent

to the growth-optimal portfolio problem (7). The central finding of this literature, reflecting the

concavity of the log function that appears in (7), is that evolution will select for greater aversion

to aggregate than to idiosyncratic risk.

We can contribute to the above insight by making the period length δ explicit, effectively

changing u(a, θ) to δu(a, θ). The optimization under the idiosyncratic risk then becomes equivalent

10Our regularity condition is automatically satisfied in a special setting in which the investor’s wealth vanishes unless
she correctly guesses the state (the so-called horse race setting) because the optimal posteriors are fully informed in
this case. The value of information has been characterized for this special case by Kelly (1956).
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to

max
a∈A,q∈∆(Θ)

{
Eq u(a,θ)−

1

δ
D(q ∥ p)

}
,

and the optimization under the aggregate risk becomes

max
q∈∆(A)Θ

{
Ep,q u(a,θ)−

1

δ
Ip,q(a;θ)

}
.

Since the weight, 1/δ, of the two information-theoretic terms explodes as the period length vanishes,

the choices arising in both problems converge to the choices made in the expected utility maximiza-

tion maxa Ep u(a,θ) for generic priors p. Thus, there is a problem-dependent δ such that the optimal

choices under idiosyncratic and aggregate risk coincide for all δ < δ . Hence, the growth-optimal

portfolio involves no hedging when periods are sufficiently short. Robatto and Szentes (2017) and

Robson and Samuelson (2019) discuss alternative conditions under which optimal choices under

idiosyncratic and aggregate risk do or do not coincide.11

A natural extension of our setting would allow for serial correlations of the payoff states. While

the optimal choice for the serially independent aggregate states can be represented by the static

rational problem, we conjecture that the optimal choice arising under serial correlations can be

represented by the dynamic extension of the rational inattention problem studied in Steiner et al.

(2017). When the payoff states are serially correlated, then optimal hedging may involve endogenous

serial action correlations because wealth accumulation is enhanced by serial correlations of the

growth rates. Such serially correlated hedging may lead to endogenous inertia of behavior, relevant

for instance in the macroeconomic context of sticky prices.
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