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1. Introduction

Financial networks are prone to systemic risk. The global banking system is characterised by strong
linkages between financial institutions. While global banking integration entails significant diversification
benefits for banks, interconnections between financial institutions can also amplify and spread financial
troubles as evidenced during the 2007-2009 Global Financial Crisis.

Over the last decades, scholars have demonstrated how the structure of relationships between banking
institutions can affect the transmission of financial shocks (Allen and Gale, 2000; Freixas et al., 2000).
Regulatory authorities have evolved from a microprudential approach focusing on the position of
individual intermediaries to a macroprudential one where more attention is being paid to relational
structures between banks (Basel Committee on Banking Supervision, 2013). Numerous studies have
explored how links between banks are being formed and have analysed the importance of network
structure for the resilience of financial systems (Allen and Babus, 2009; Glasserman and Young, 2016;
Battiston and Martinez-Jaramillo, 2018; Caccioli et al., 2018; Iori and Mantegna, 2018). Empirical studies
generally show that modern financial networks are characterised by the presence of a small group of highly-
connected intermediaries whose failure can result in the breakdown of the entire system.' It would
therefore appear that financial systems inevitably feature a few systemic actors and that they all share similar
vulnerabilities.

Empirical evidence on financial networks is mostly based on data documenting bilateral relationships
between financial institutions on individual countries’ interbank markets. Only a few studies have analysed
the network structure of international financial connections. In this paper, we study the resilience of a
major historical, global financial network: the sterling money market during the first globalization era of
1880-1914. During this period, international goods and financial markets were as integrated as in the late
twentieth century (O’Rourke and Williamson, 2002). The City of London was the centre of the global

financial system and its money market — the market for sterling bills of exchange — served as a global

1 See for example, Craig and Von Peter (2014), Boss et al. (2004), Upper and Worms (2004), Miller (2006), Wetherilt et al.
(2010), Soramaiki et al. (2007), Minoiu and Reyes (2013), Chinazzi et al. (2013), Fricke and Lux (2015a).



platform for short-term international lending and borrowing (Accominotti and Ugolini, 2020). Firms
located anywhere in the world used that market to obtain short-term funds from financial institutions, with
the guarantee of a London-based intermediary.

Our analysis is based on an original dataset of financial interlinkages between actors active on the
London money market during the year 1906, which we assembled from archival sources. The dataset
contains systematic micro-level information on the 23,493 bills of exchange re-discounted by the Bank of
England in 1906 and on all actors involved in their origination and distribution (see Accominotti et al.,
2021). Given the still opaque nature of most interbank connections today, empirical financial network
research is often based on estimated rather than observed data. Relationships between banks are typically
inferred from balance sheet or payments data (Furfine, 1999; Upper and Worms, 2004; Allen and Babus,
2009; Upper, 2011). Although researchers have produced interesting results based on estimated data,
several scholars have also questioned the reliability of this method (Upper, 2011; Mistrulli, 2011; Anand et
al., 2018).” One advantage of our historical database is that it is solely based on observed and systematically
recorded links between money market participants. Our approach therefore does not require making any
assumption to reconstruct interactions between money market actors.

Our dataset on the sterling money market in 1906 contains information on both bank-bank and bank-
firm relationships. Every bill of exchange transaction on the money market involved three different actors:
a.) a borrowing firm located anywhere in the world (borrower); b.) a London-based intermediary which
guaranteed that firm’s debt (guarantor); and c.) a bank or money market fund that lent cash to the
borrowing firm (lender). Therefore, each transaction embraced both a “firm-bank™ (borrower-guarantor)
relationship and a “bank-bank” (guarantor-lender) relationship. Since each bill of exchange recorded the
names of the borrower, guarantor and lender in the underlying transaction, we can reconstitute the precise

nature of interlinkages between actors on the bill market.

2 The Italian interbank network is one of the only networks for which complete transaction data have been available. See Tori
et al. (2008), Fricke and Lux (2015b), Iori et al. (2015), and Temizsoy et al. (2015).
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While banking network research is generally based on the analysis of dyadic relationships, network
science scholars have also stressed how this approach can be misleading when transactions involve more
than two actors (Bonacich et al., 2004; Estrada and Rodriguez-Velazquez, 2006; Battiston et al., 2020;
Bianconi, 2021). To analyse the many-body interactions typical of complex systems, authors have
recommended modelling these systems as higher-order interaction networks. We follow this approach here
and analyse “firm-bank-bank™ interactions in the money market network using the concepts of hypergraph
and hyperstructure. We represent the entire set of money market actors as a hyperstructure (an association
between adjacency and incidence matrices). We describe each sterling bill of exchange as a continuous
intermediation chain or the hyperedge of a hypergraph that connects three different nodes, each playing one
of the three roles (borrower, guarantor or lender) in the underlying credit transaction. This hyperstructure
approach allows us to preserve each chain’s internal structure and unity (Criado et al., 2010; Lucena-
Piquero et al., 2022). We propose a new method using a meso-level approach to analyse directed links
between nodes within each intermediation chain. One advantage of this approach is that it allows us to
consider the gatekeeping or bridging role that certain intermediaries play on the money market (Bonacich et
al., 2004). For example, a bank can be considered a gatekeeper or bridge if it lends to a firm and, then,
refinances itself by borrowing from another financial intermediary on the money market. Similarly,
intermediaries which guaranteed borrowers’ debts in order to allow them to borrow from other financial
institutions, acted as gatekeepers or bridges on the London money market.

We use simple simulation techniques in order to assess the systemicness of actors on the money
market and draw implications for the resilience of the system. Our main focus is on financial institutions’
substitutability.” Hence, we assess network disruptions by looking at the number of actors that would lose

market access if specific intermediaries were removed from the network. Our results provide an upper-

3 In 2013, the Basel Committee on Banking Supetvision (2013) and the Financial Stability Board (FSB) jointly published new
guidelines for the assessment of banks’ systemicness. The guidelines distinguished between five dimensions of systemicness: 1.
size (total size of the bank’s liabilities); 2. zuterconnectedness (network of contractual obligations which characterise the bank’s
activities); 3. substitutability (the bank’s importance as a provider of client services); 4. complexity (business, structural, and
operational complexity of the bank including its involvement in sophisticated activities such as derivatives or other off-balance-
sheet exposures); and 5. cross-jurisdictional activity (geographical dispersion of the bank’s activities). Assessing substitutability has
proved particularly difficult (Benoit et al., 2019), leading regulators to revise their guidelines on this aspect of systemicness (Basel
Committee on Banking Supervision, 2018).
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bound estimate of network fragility, as our methodology rests on the restrictive assumption that no other
financial relationship between actors can be formed besides those actually observed. In other words, we
assume that existing financial relationships cannot be replaced, so that an agent loses market access when
the intermediaries to whom she is currently connected default. When applying this methodology to modern
interbank markets, one typically finds that a few nodes are non-substitutable as removing them results in
a complete breakdown of the network (Propper et al., 2008).

Our main finding is that systemic risk in the sterling money market was remarkably low at the
beginning of the twentieth century. We find that the money market network was resilient even to the
removal of central nodes. Although our assessment of intermediaries’ systemicness constitutes an uppet-
bound estimate, we find that no single intermediary on the money market was highly systemic. Any node
removal could only generate limited damage to the network. The network’s various subsections were also
all robust to the removal of individual nodes as very few agents were strictly dependent on individual nodes
for their money market access. Our data also allows documenting the location of money market borrowers
at the city level. We study the network’s geographical systemicness and find that very few cities across the
wotld would have been cut off from the market had individual nodes been removed. Therefore, in contrast
to findings obtained on modern banking networks, our analysis of the historical sterling bill market reveals
that an international financial network featuring low systemicness could emerge even during a period of
high global economic and financial integration.

Our paper contributes to the empirical literature on financial network structure. Empirical studies of
modern financial systems have generally found that these networks exhibit a strong core-periphery structure
(sometimes referred to as a scale-free structure)* with a small group of highly-connected actors centralizing
flows and playing the role of hubs (Craig and Von Peter, 2014). This structure, which can be identified by

looking at several indicators such as the network’s degree distribution,” has important implications for the

*In theory, core-periphery and scale-free structures are not exactly equivalent. It is however difficult to distinguish between the two
types of structures in empirical investigations (Iori and Mantegna, 2018, p. 645).

5 The distribution of the nodes’ degrees in a network defines its hierarchy. A network is hierarchical if a small number of nodes
have a significantly higher degree than most other nodes in the network.
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vulnerability of financial systems. While core-periphery structures are generally robust to shocks on
random individual actors, they become very fragile when these shocks affect actors who are playing the
role of hub (Albert et al., 2000; Newman, 2003). This characteristic is known as the robust-yet-fragile property
of financial networks (Gai and Kapadia, 2010). The presence of a hierarchical structure appears to be a
common feature of all modern interbank networks and has been recently described as “a new ‘stylized
fact™ (Fricke and Lux, 2015a, p. 391).° Our paper however provides evidence that alternative network
structures can also emerge. We describe how a major historical financial network was characterised by the
absence of highly systemic hubs. While the money market network we study exhibits a structure that in
certain respects resembles that of scale-free networks, it also displays much stronger resilience to shocks
than these typical networks.

Our paper also makes a methodological contribution. While most studies of financial networks have
focused on interactions between financial intermediaries (bank-bank networks), a handful of papers have
also analysed bank-firm links alongside bank-bank links (De Masi et al., 2011; De Masi and Gallegati, 2012;
Lux, 2016; Silva et al,, 2018). These studies have however represented bank-bank and bank-firm
relationships as different types of dyadic links within a multilayer network and have therefore treated the
two types of relationships as different (albeit interconnected) networks. By contrast, our approach, which
consists in analysing interactions within chains of actors, allows us to model bank-bank-firm relationships
as part of a single, higher-order network. While hypergraphs have been used before in network science,
our paper is the first to our knowledge to apply this approach to financial networks. It is also the first to
our knowledge to model the direction of links between nodes in a hyperstructure. This approach allows us
to preserve the chains’ internal configuration and unity and explore how the failure of various types of

intermediaries could impact actors’ access to the money market. The methodology we develop here

¢ The core-periphery structure has been identified empirically in the case of various countries’ domestic interbank networks
such as Austria (Boss et al., 2004), Belgium (Degtyse and Gregory, 2004), Germany (Upper and Worms, 2004), Switzerland
(Sheldon and Maurer, 1998; Miiller, 2006), the United Kingdom (Wetherilt et al., 2010), or the United States (Soramiki et al.,
2007), as well as for country-to-country networks (Minoiu and Reyes, 2013; Chinazzi et al., 2013). Only a minority of empirical
studies have found evidence of less hierarchical structures with a weaker core-periphery structure. This is the case of the
domestic interbank networks of Italy (Tori et al., 2008; Fricke and Lux, 2015b), the Netherlands (Blasques et al., 2015), and
Mexico (Martinez-Jaramillo et al., 2014).
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constitutes an important contribution and could be adapted to study the resilience of other directed
networks characterised by the presence of chains of actors such as, for example, global supply chains
(Lucena-Piquero et al.,, 2022). Finally, our paper also contributes to the literature on the modern
international banking network (Espinosa-Vega and Solé, 2010; Minoiu and Reyes, 2013; Chinazzi et al,,
2013; Minotu et al., 2015; Hale et al., 2016; Cai et al., 2018).

The remainder of the paper is organised as follows. Section 2 describes our data and details our
empirical strategy. Section 3 presents descriptive statistics on the structure of the sterling money market
network. Section 4 presents our main results on intermediaries’ substitutability as well as several robustness

checks. Section 5 concludes.

2. Data and methodology

2.1. Data

Our empirical analysis is based on an original dataset of international financial interlinkages during the
first globalization (1880-1914). At that time, London was the unrivalled global financial centre and the
sterling-denominated bi// of exchange was the staple international money market instrument (Accominotti
and Ugolini, 2020). Our dataset was hand-collected from one archival source (the Bank of England’s
Discount 1 edgers) and includes information on 23,493 bills of exchange issued on the sterling money market
and discounted by the Bank of England during the calendar year 1906. A detailed discussion of the nature
and representativeness of these data can be found in our historical companion paper (Accominotti et al.,
2021).

Figure 1 here

7 The sterling bill market was an over-the-counter market and no systematic information was collected on transactions taking
place on that market. However, archival records allow reconstituting all relationships between actors involved in the origination
and distribution of bills purchased (re-discounted) by the Bank of England. Bills rediscounted by the Bank of England
represented only a small minority of all sterling bills issued. However, Accominotti et al. (2021) perform a series of cross-checks
and conclude that these bills were fairly representative of the whole market.
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The market for sterling bills of exchange was the world’s dominant money market in the early
twentieth century. As illustrated in Figure 1, any sterling bill transaction involved three actors: a borrower
(called the drawer, a firm), a guarantor (called the acceptor, an intermediary), and a lender (called the discounter,
generally a bank or money market fund). Borrowing firms located anywhere in the world and willing to
obtain short-term sterling funds could draw a bill on a London-based intermediary (an acceptor) with whom
they had a relationship. The intermediary accepted the bill by putting its signature on it and, in so doing,
agreed to repay the bill at maturity (typically, after three months) in the expectation that it would itself have
received payment from the borrower in the meantime. After obtaining the signature/guarantee of an
intermediary (acceptor), the borrower (drawer) could discount the bill to a UK financial institution willing to
lend funds on the money market (the discounter). For each sterling bill originated, our archival source
provides information on the identity of the borrower, guarantor and lender. We are therefore able to
document all borrower-guarantor (“firm-bank”) and guarantor-lender (“bank-bank”) relationships and
reconstruct the complete network of interlinkages between agents operating on the money market. Our
static network for the year 1906 contains 4,970 nodes, 1,680 (33.80%) of which were located in London.

The other nodes consisted of borrowing firms spread across the entire world.

2.2. Hyperstructure

Given the systematic presence of an intermediary (guarantor) between the borrower and lender in any
money market transaction, a simple network composed of pairwise relationships cannot account for the
complexity of interactions on that market. We therefore rely on network concepts and models recently
developed to analyse complex systems (Bonacich et al., 2004; Estrada and Rodriguez-Velazquez, 20006;
Battiston et al. 2020). To describe the three-role interactions between actors and preserve the integrity of
each borrower-guarantor-lender relationship, we depart from the standard dyadic-based graph and
represent the money market as a higher-order network. We analyse relationships between agents involved

in a sterling bill transaction using the concept of hyperstructure.
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Following Criado et al. (2010), we define a hyperstructure as a combination of an adjacency matrix (a matrix
recording the presence or absence of a dyadic link between each pair of nodes) and an incidence matrix (a
matrix recording the hyperedges to which each node belongs). To present their intuition, Criado et al.
(2010) give the example of a subway network. Such a network is composed of a set of subway stations (the
nodes) and a set of trunks connecting pairs of stations (the edges). Stations and trunks are grouped into
subway lines (the hyperedges). A passenger travelling between two stations separated by the same number
of trunks will face substantially different situations if these two stations are located on the same line or if
they are on two different lines. For instance, if each subway ticket is valid on one line only, interchange
will not be an option, and a passenger holding a ticket will only be able to reach stations located on the
corresponding line. Similarly, a money market borrower might only be able to reach a given lender via
certain credit intermediation chains. While the standard dyadic approach does not allow accounting for
these differences, hyperstructures do. Our analysis builds on Criado et al. (2010)’s intuition and extends it
to analyse non-symmetrical (directed) relationships within hyperstructures.

More formally, let us represent the money market network as a finite set of individuals V =
{i1, iy, i3 ...1n}. Each bill can be represented as a chain Cy, € {Cy, C,, C5 ... Cy,}, defined as a non-empty
set{a, b, c} € V in which there exist both a botrrower-guarantor relationship (aTh) and a guarantor-lender
relationship (bUc) so that C, = (aTbUc) V {a,b,c} € V A{T,U} € R, where: a, b, and ¢ indicate the
roles of (respectively) borrower, guarantor, and lender; T and U indicate (respectively) the borrower-
guarantor and guarantor-lender relationship; and R is the full set of relationships in the network. For any
node i, we indicate the chains to which i belongs as C. = (aTbhUc)V {a,b,c} €V Ai € {a, b, c}} We
represent the network of chains as a hypergraph H = (V, E): V Cy 3 Ey, where Ey, € {E1, E,, E3 ... Ep} is
a set of hyperedges. Our hyperstructure S will therefore be composed of the chains Cj (each of which

associates three linked nodes (a,b,c) Ai € {a,b,c}) and of the hyperedges E}, that integrate them.

8 Note that nodes’ specialization was not absolute. Each actor could play different roles in the vatious transactions in which it
was involved. In our data, however, such nodes playing more than one role are relatively rare.
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Representing the entire set of chains as a hyperstructure allows preserving these chains’ unity (captured by
their affiliation to a given hyperedge) and the specific ordering of nodes within each of them (captured by
the dyadic links between nodes). In addition, the concept of hyperstructure provides a flexible analytical
framework and allows characterising networks’ structural properties through simple social network

measures such as, for example, degree centrality measures.

2.3. Shock simulations

In order to measure the resilience of the money market network to shocks, we perform a simple node
removal simulation analysis.” While different types of financial contagion have been identified in the
literature, we focus specifically on default contagion (Battiston and Mattinez-Jaramillo, 2018)." We adopt
a straightforward approach for our shock simulations, which consists in measuring the damage caused by
node removals (defaults) to network connectivity."

More precisely, in any chain of the network, there is one node situated in position 1 (borrower), one
node situated in position 2 (guarantor) and one node situated in position 3 (lender). We simulate the
removal of individual nodes situated in position 2 or 3 of each chain (and thus playing the role of either
guarantor or lender) and assess how many actors would lose market access in case of their removal. A

given node {’s structural relevance is therefore measured through the number of money market actors that

are strictly dependent on i for their market access. A node is considered independent from i if it is

? Following Allen and Gale (2000), shock simulations have become a standard method to analyse default cascades within
financial networks (Gai and Kapadia, 2010).
10 Battiston and Martinez-Jaramillo (2018, pp. 7-8) identify four types of contagion in financial network: default contagion,
distress contagion, common assets contagion, and funding liquidity contagion. In this paper, we are interested in understanding
how dependent various actors were on specific intermediaries for their money market access and we therefore focus on default
contagion.
1 An alternative method consists in modelling default cascades as a function of interbank exposure. In that case, each node
receives a shock from its incoming links and spreads it to its outcoming links. In these types of simulations, the effect of one
bank’s default on another bank is generally assumed to be proportional to the bilateral exposure between the two banks
(Eisenberg and Noe, 2001; Miiller, 2006; Battiston et al., 2012a, 2012b; Acemoglu et al., 2015; Glasserman and Young, 2015).
This approach requires obtaining information on the magnitude of bilateral interbank exposures or to reconstruct this
information based on partial data. Our data do not allow us to construct weighted links between nodes in the network. We
therefore opt for a simpler node removal approach. This method has been used extensively in network analysis (Albert et al.,
2000; Newman, 2003; Cohen and Havlin, 2010; Li et al., 2015) and has also been applied to financial networks (Propper et al.,
2008). One advantage of this method compared to the fictitions defanlt algorithm initially developed by Eisenberg and Noe (2001)
is that it does not require making any assumption about how shocks propagate from bank to bank (Allen and Babus, 2009;
Upper, 2011).
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connected to other nodes that can grant it market access; or, in other words, if it has access to other paths
allowing it to participate into a full borrower-guarantor-lender chain. The number of nodes losing market

access when i is removed is an indicator of i’s degree of substitutability.

Figure 2 here

The hypothetical example presented in Figure 2 illustrates our methodology. The figure represents
four different chains corresponding to groups of agents involved in four different bills of exchange:
(A,B,C), (D,B,C), (D,B,F), and (D,E,F). Each chain involves a borrower (in position 1), a guarantor (in
position 2) and a lender (in position 3). For example, in the chain (A,B,C), A plays the role of borrower, B
the role of guarantor and C the role of lender. Each combination of two same-coloured arrows constitutes
a hyperedge that integrates the three nodes and their links included in the corresponding chain.

Let us now suppose that node C (a lender) defaults and is removed from the network. This would
result in the suppression of chains (A, B, C) and (D, B, C). As a result, node A (a borrower) would remain
isolated and be cut off the money market as the only path through which that node can access a lender is
path (A, B, C). By contrast, node D (another borrower) would still be able to borrow from the money
market even if lender C defaulted as there exist two alternative paths (D, B, F) and (D, E, F) connecting
that borrower to another lender (node F). This example illustrates the importance of preserving the
integrity of observed chains when performing our shock simulation analysis. Ignoring the compound
nature of relationships in the network would lead us to erroneous conclusions about the impact of
individual node removals. For example, a standard dyadic approach would have led us to conclude that
the suppression of node C has no impact on node A’s connectivity. This would have been inaccurate as
there exists in reality no chain (A, B, F) that could connect borrower A to the other lender (node F) in the
network.

When simulating the impact of a given node i’s removal, we first identify all chains in which i plays

the role of guarantor or lender and single out all nodes involved in these chains (the reference set). We
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then check whether these individual nodes are involved in other chains in the network. If an individual
node j is present in at least one other chain that does 7o involve i, it means that an alternative path exists
allowing j to access the money market even in the absence of i; in other words, j is not strictly dependent
on I for its market access. By contrast, if all chains to which node j belongs also include node i, then j
loses market access and becomes isolated when i is removed. Formally, consider a node i € (bUc) of the
chain C} = (aThUc). Any node j € CL A j # i has an alternative access to the money market if EIC}{: I &
clnject.

Our methodology assumes that an actor remaining isolated as a consequence of another node’s
removal cannot build new, alternative paths to access the market. This assumption leads us to bias our

results towards finding higher systemicness for lenders and guarantors, and against our hypothesis that the

sterling money market network featured few highly systemic intermediaries.

3. Descriptive statistics

3.1. Network demography

In this section, we provide descriptive statistics to characterise the money market network’s topology.
We start with its demography. On the sterling bill market, borrowers (bill drawers) could be located
anywhere in the world while it was a legal requirement for guarantors (bill acceptors) and lenders (bill

discounters) to reside in London.

Table 1 here

Intermediaries were most often specialized in one of these three roles, but a few agents were hybrid,
Le., they played different roles in the different bills in which they were involved. Table 1 shows the
distribution of money market actors according to their role and location. Borrowers were by far the most

11



numerous group, followed by guarantors and lenders.'”” While a large majority of borrowers (61.71%)
appear in one single chain of the network, this is only the case of 40.47% of the guarantors and of 17.93%
of the lenders. This distribution resembles a funnel-shaped structure in which the number of potential

individuals playing a given role is reduced at every stage of the transaction.

3.2. Network topology: method

To describe the network’s topology, we follow the standard approach consisting in measuring its #ode
degree distribution and in comparing it with that of zx// models, expressly simulated to display specific
properties (Craig and Von Peter, 2014; Martinez-Jaramillo et al., 2014). We compare the node degree
distribution of the observed network to that of 250 simulated random (Erdés-Renyi) networks and 250
simulated scale-free networks, each displaying the same number of nodes and hyperedges (and, thus, the
same number of agents and chains) as the observed network. To ensure comparability, we constrain our
simulations so that each individual borrower in simulated networks appears in the same number of chains
as in the observed network. We also ensure that the simulated and observed networks feature the same
number of borrowers, guarantors and lenders.

In a random network, every group of three nodes has the exact same probability of being connected
through a hyperedge. Comparing the observed network’s topology with that of simulated random networks
allows assessing whether link creation in the observed network is guided by any kind of non-random
relational dynamics (Iori et al., 2015; Chinazzi et al., 2013). In a scale-free network, by contrast, link creation
is governed by a specific process known as preferential attachment dynamics. When simulating scale-free
networks, we assume that individual actors have a greater tendency to establish links with well-connected
nodes than with weakly-connected ones. This relational dynamic is conducive to the core-periphery
network structure characteristic of most modern interbank systems (Martinez-Jaramillo et al., 2014; Tori

and Mantegna, 2018). Applied to our network, this structure would involve that a large number of

12 Note that the lenders (or discounters) in our dataset were mainly financial institutions (commercial banks, investment banks,
money market funds) which purchased bills of exchange and re-sold them to other investors. They were therefore wholesale
lenders and played an intermediary role on the money market (Accominotti et al., 2021).
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borrowers (forming the network’s periphery) are connected to a small number of lenders (forming the
network’s core) through the intermediation of guarantors. Simulated scale-free networks provide a useful

baseline to assess whether the sterling money market exhibited such a topology.

3.3. Network topology: metrics
We compare nodes’ degree centralities in the observed and simulated networks. In a hypergraph, a
node will be considered central if it has many hyperedges (i.e. belongs to a large number of chains) and/or
if it is connected to many other actors through its hyperedges (Kapoor et al., 2013; Battiston et al., 2020).
Any hyperedge (or chain) to which a given node belongs is said to be zncident to that node. All nodes sharing
a same hyperedge (belonging to a same chain) are said to be hyperedge-adjacent. Hence, we define a node i’s
degree centrality in terms of:
1) its in-degree Id;: the number of nodes to which it is connected through an input-arc (ie., an
incoming link):"
in
Idi= ) HG.D RNV eV
=i,
2) its hyperedge degree Hd;: the number of its incident hyperedges (i.e., the number of chains to which
it belongs):
Hd;=|{c,eE: iecCl}|vCi€eE
3) and its hyperedge-adjacent nodes degree HANd,;: the number of its hyperedge-adjacent nodes (i.e., the

number of actors to which node i is linked through a hyperedge):

HANd; = |{{j € EL:j e VNI VEL+ i € B

13 By construction, a node playing the role of borrower in all its chains is always situated at the beginning of these
chains and has an in-degree of zero.
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The hypothetical example presented in Figure 2 can be used to illustrate the three network degree
centrality metrics. In the case of node B in Figure 2 (a guarantor), Idg = 2 (B is connected with two
different nodes, A and D, by incoming links), Hdg = 3 (B has three incident hyperedges ot, in other
words, belongs to three different chains), and HANdp = 4 (B is connected to four different actors through

its hyperedges). For the six nodes represented in Figure 2, Table 2 reports the value of each of the three

network degree centrality metrics.

Table 2 here

3.4. Network topology: evidence

Using the three above-defined degree metrics, we now compare the topology of the observed network
to that of simulated benchmark networks. For each of the three metrics, Figure 3 shows the degree
distribution of the observed network versus that of the 250 simulated random networks and of the 250
simulated scale-free networks. The observed network’s degree distributions significantly differ from those
of simulated random networks. Therefore, we can rule out that link creation between actors on the money
market followed a random or near-random process. At the same time, the observed network’s nodes degree
distributions look much closer to those of simulated scale-free networks.'"* While the large majority of
nodes only appear in a small number of chains and are connected to a few actors only, the network also
contains a very small number of intermediaries (lenders and guarantors) that appear in a very large number

of chains and are connected to many other nodes through these chains.

14 Note that the distribution of HANd; is significantly different in the observed and simulated networks. This is because, by
construction, in simulated networks, HANd; tends to mostly take even values. In random networks, the probability that a link
is formed is equal for each pair of nodes. Hence, a given actor is unlikely to be connected to the same node through more than
one chain. As a result, actors will tend to be connected to twice as many nodes as the number of chains to which they belong.
For example, any actor belonging to one single chain will be connected to exactly two nodes while most actors belonging to
two different chains will be connected to exactly four other nodes. In scale-free networks, by construction, a large majority of
nodes have a very low degree value and those actors are unlikely to belong to two different chains featuring the same nodes.
Only the small minority of actors exhibiting high degree values are likely to be connected to a given node through more than
one chain and to exhibit an odd HANd; value.
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Figure 3 and Table 3 here

Despite apparent similarities in degree distributions, the observed network differs from the scale-free
model in that its degree distribution is lighter-tailed. Table 3 shows that the most central node exhibits
lower degree centrality in the observed network than in simulated, scale-free networks. For each of the
three degree metrics, the table reports descriptive statistics on the maximum degree values in the 250
simulated random networks and 250 scale-free networks, and compares them with the maximum degree
value in the observed network. The results indicate that simulated random networks did not feature any
node that was as central as the observed network’s most central node. However, in all but one of the 250
simulated scale-free networks, the maximum values of Id;, Hd; and HANd; are greater than the
corresponding maximum values in the observed network. Therefore, the observed money market network

does not feature as highly central nodes (so-called mega-hubs) as typical scale-free networks.

4. Results

4.1. Absolute and local systemicness

We now explore the resilience of the sterling money market network through a more detailed analysis
of actors’ systemicness. In order to assess the absolute systemicness of money market intermediaries (i.e., nodes
playing the role of guarantor or lender), we perform shock simulations and remove them one by one from

the network. We then identify the chains impacted and count how many nodes remain isolated from the
network when a given intermediary is removed. We define a node i’s absolute systemicness AS; as the
percentage of the total number of nodes that lose market access when i is removed. We also compare each
node’s AS; to its market share MS;, defined as the percentage of nodes in the network which belong to a
hyperedge in which i is present (i.e., the percentage of nodes which are hyperedge-adjacent to i). The

formal definitions of AS; and MS; are provided in Algorithm 1.
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Algorithm 1 here and Table 4 here

In Table 4, we first compate the maximum values of absolute systemicness (max(AS;)) and market
share (max(MS;)) in the observed network and in the simulated random and scale-free networks. For
each of the two variables, the maximum value is higher in the observed network than in any of the 250
simulated random networks but lower than in any of the 250 simulated scale-free networks. This
indicates that all simulated scale-free networks featured at least one node that was more systemic than
the observed network’s most systemic node. Interestingly, the ratio between the median max(AS;) and
median max(MS;) appears to be higher for simulated networks than for the observed one. This invites

a more detailed analysis of the actual distribution of AS; and MS; in the different networks.

Figure 4 here

Figure 4 presents a scatter plot of the two vatiables for all actors playing the role of guarantor and/or
lender on the money market. We report the comparison for nodes in the observed network as well as in
one representative simulated random network and one representative simulated scale-free network."” Two
main features emerge from the figure. First, AS; is low for all individual actors i in the observed network.
Out of the 1,535 actors playing the role of guarantor or lender in the observed network, there are only two

whose removal impacts more than 4% of market participzmts.16 At the other end of the spectrum, 597

15 These two representative simulated networks have been generated using the same procedute as for the previous 250 random
and 250 scale-free networks. In the representative random network, max(Id;)=81, max(Hd;)=105, and max(HANd;)=196;

in the representative scale-free network, max(/d;)=1,667, max(Hd;)=3,334, and max(HANd;)=2,200: compare this with
mean and median values in Table 3. In the representative random network, max(A4S;)=0.543 and max(MS;)=3.219; in the
representative scale-free network, max(4S;)=26.685 and max(MS;)=43.514: compare this with mean and median values in

Table 4.

16 These two actors ate Union Discount Company (7.83%), a large money market fund of the City of London at the beginning
of the twentieth century, and Anglo-Foreign Banking Corporation (5.41%), a commercial bank specialised in foreign lending
through its activities as guarantor and lender for overseas firms and banks.
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actors have no impact at all. Second, AS; rises less than proportionately with MS;. Actors are situated on
the 45-degree line on the figure when their removal impacts 100% of their hyperedge-adjacent nodes.
Thus, the further to the right intermediaries are from the 45-degree line, the less dependent other nodes
are on them for their market access. The figure reveals that the most central nodes in the observed network
are situated well below the 45-degree line. This means that even the most highly systemic nodes in the
observed network were relatively substitutable as few actors depended exclusively on them for accessing
money market facilities. By contrast, in the simulated scale-free network, nodes with a high AS are also
situated closer to the 45-degree line indicating that they are much less substitutable. Overall, these results
indicate that the observed money market network featured less systemic actors than corresponding scale-

free networks with the same demography.

Figure 5 here

For each node i, we also measure its local systemicness LS; = AS;/MS;, i.e., the share of i’s hyperedge-
adjacent nodes which lose market access when i is removed (see Algorithm 1). Figure 5 plots the frequency
distribution of LS; across all nodes playing the role of guarantor and all nodes playing the role of lender in
the observed network. A large number of guarantors exhibit intermediate levels of local systemicness. For
48.64% of guarantors, LS; is situated between 20% and 50%. By contrast, only 36.55% of lenders display
such intermediate levels of local systemicness and 17.24% of them exhibit a LS; higher than 50%.'” Overall,
these results shed light on the differences between various types of intermediaries on the money market.
While lenders displayed on average higher absolute systemicness than guarantors, they exhibited relatively

lower levels of local systemicness.

Algorithm 2 here

17 Note that these locally-systemic lenders were small on average. The mean and median hyperedge degrees Hd; ate equal to
6.36 and 2.00, respectively, for the 25 lenders whose local systemicness LS; is greater than 50%.
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While the removal of individual nodes could not cause significant damage to the network, the
cumulative default of the most systemic intermediaries might nonetheless have led to its rapid breakdown.
Removing any actor from the network results in the disappearance of all chains in which it is involved. To
estimate the damage potentially caused by cumulative defaults, we present a measure of spare-chain connectivity
obtained by sequentially removing nodes from the network in the order of their absolute systemicness
(AS;). Figure 6 reports the percentage of chains Cj of the original observed network that are preserved
following the sequential removal of various numbers of nodes. Algorithm 2 formally details this procedure.
We also compare how the sequential removal of systemic nodes affects the number of chains in the

observed network versus in a simulated random network and a simulated scale-free network.

Figure 6 here

Removing the four most systemic nodes altogether from the observed network results in the
disappearance of 26.7% of its chains. The observed network still conserves 49.6% of its original chains
after the ten most systemic actors are removed and 6.9% after the removal of the fifty most systemic
intermediaries. By contrast, the removal of the four most systemic nodes from the simulated scale-free
network leads to the disappearance of as many as 82.9% of its chains and this network breaks down
completely after the seven most systemic actors are removed. The random network is (unsurprisingly)
much more resilient to the removal of its most systemic nodes than both the observed and scale-free
networks. However, while the random network collapses completely following the removal of its 158 most
systemic nodes, it takes the removal of 1,421 nodes for the observed network’s chains to all disappear.
This pattern indicates the presence on the money market of a significant number of intermediation chains
featuring agents weakly connected to the rest of the network.

Overall, these results indicate that the sterling money market network was much more resilient to

shocks than typical scale-free networks. It is also worth noting that, as stated above, our shock simulation
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methodology assumes that money market actors cannot build alternative paths to access the money market
when the chains in which they are involved disappear. This assumption leads us to overestimate individual
nodes’ systemicness. Despite this upwards bias however, we find that the money market network was not
subject to the robust-yet-fragile feature characteristic of most modern interbank networks (Gai and Kapadia,
2010). In the remainder of this section, we perform a number of robustness checks to corroborate this

finding.

4.2. Sampling bias

The entire set of links within a financial network is rarely observable in full. Our historical dataset
records information on a large, representative sample of sterling money market transactions for the year
1906 and documents all links between actors involved in these transactions. Yet, given the over-the-counter
nature of money market dealings, not all transactions were being recorded and links between money market
actors are therefore not all observable. Using incomplete data to infer the structure of a true network can
result in sampling biases as recently emphasized by the literature on ecosystems (Friind et al., 2016;
Henriksen et al., 2018). How do these sampling effects affect our conclusions about systemic risk on the
sterling money market?

In the absence of complete data, empirical network analysis is often based on a random sample of
nodes drawn from the true network. This method can however lead to underestimate the true network’s
resilience as highly systemic nodes are generally very few and the likelihood of randomly selecting them is
therefore low (Stumpf et al., 2005). By contrast, our observed money market network was built from a
sample of bills of exchange (money market transactions) each involving three different nodes. In other
words, the network was constructed from the sampling of chains rather than nodes. Since highly systemic
nodes are by definition present in a large number of chains, the likelihood of selecting those nodes is much
higher when the network is constructed from a sample of chains than from a sample of nodes. Hence, it
is plausible that our sampling method leads us to overestimate rather than underestimate the true money

market network’s resilience to shocks.
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Figure 7 here

In order to verify this intuition, we perform two types of checks. We first assess how maximum
absolute systemicness in the observed network evolves with sample size. We randomly-select subsections
of our observed network of vatious sizes and compute for each of them max(4S;) — i.e., the absolute
systemicness of the most systemic node in the network. We start with a sample that consists of 1,000
chains randomly selected from the observed network. We then add 1,000 additional (randomly-selected)
chains to the previous sample and repeat this procedure until all chains are included in the sampled
network. This leads us to generate eight sampled networks whose size gradually increases from 1,000 to
8,000 chains. For each sampled network, we compute max(A4S;). The procedure is then reproduced 100
times. Figure 7 reports max(AS;) for each of the eight sampled networks included in each of the 100
simulations. Fach black line corresponds to a set of eight sampled networks of increasing size. For any
given sample size, the red line reports the mean value of max(A4S;) observed across all 100 sampled
networks.

By construction, as the number of chains increases, the maximum absolute systemicness in sampled
networks converges towards its actual value in the entire observed network (7.83%). In line with the
intuition presented above, we also find that max(A4S;) tends to decrease when sample size increases. This
finding is due to the fact that an incomplete network constructed from randomly sampling chains will tend
to disproportionately feature highly systemic actors. Hence, our sampling method leads us to overestimate

rather than underestimate actors’ systemicness on the money market.

Figure 8 here

Second, we check whether this finding obtained on the observed network also holds when considering

larger sample sizes and alternative network structures. We simulate 10 random networks and 10 scale-free
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networks featuring three times as many nodes and chains as the observed network (14,910 nodes and
26,664 chains). We then construct sampled subsections of these simulated networks as described above;
first, by randomly selecting 2,000 chains; and then, by successively adding 2,000 randomly-selected chains
to each sampled network until all 26,664 chains of the simulated network are included in the sample. We
repeat this procedure five different times for each of the 10 simulated network in order to obtain 50
simulations. At every stage, we compute max(A4S;) for each sampled network.

Figure 8 reports the results. They reveal that, for both types of simulated networks, maximum
systemicness tends to decrease as sample size increases. These results confirm that sampling biases lead us
to overestimate systemicness in the true network and can therefore not affect our main conclusion that

systemicness was relatively low on the sterling money market at the start of the twentieth century.

4.3. Group systemicness
We then investigate whether the sterling money market was resilient to shocks affecting specific
groups of money market intermediaries. For that purpose, we identify four different groups of
intermediaries in our network whose role has been described by contemporaries and financial historians
alike:
1. Discount houses: these 20 institutions were comparable to modern money market funds and
specialized in investing on the money market by purchasing large amounts of sterling bills
of exchange (King, 1936; Accominotti et al., 2021).
2. Anglo-foreign banks: these 45 institutions were UK-based multinational commercial banks
that intermediated credit through their many overseas branches (Jones, 1993);
3. Merchant banks (or acceptance houses): this group is composed of the top-10, globally-
renowned investment banks (merchant banks) of the London City. These banks
specialized in guaranteeing (accepting) bills of exchange on account of their domestic and

overseas clients (Chapman, 1984).
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4. Clearing banks: This group is composed of the 11 banks that dominated domestic

commercial banking in the United Kingdom (Sykes, 1926).

Table 5 here

To analyse the significance of these four groups for agents’ access to the sterling money market, we
remove each group G, € V from the network and compute their absolute systemicness AS¢, and their market
share MSg, :

The procedure is similar to that described in Algorithm 1, except that we now measure the joint
absolute systemicness of all nodes that belong to a given group G, rather than the systemicness of
individual nodes."” The results of these computations are shown in Table 5. It is evident that discount
houses (money market funds) were the overly dominant lenders on the money market with a combined
market share of 65.65%. If all these intermediaries had failed at the same time, 42.1% of agents would have
lost access to the sterling money market. While this would have represented significant damage for the
financial network, this also suggests that there existed alternative routes that allowed accessing London’s
financial facilities without going through these institutions. Absolute systemicness was lower for other
groups of intermediaries ranging from 5.7% for the UK clearing banks (domestic commercial banks) to
21.2% for the Anglo-foreign banks (UK-based multinational commercial banks). The relatively higher
systemicness of the latter group of banks arises from their joint activity as guarantors and lenders of short-
term funds for their overseas clients. Nevertheless, while the removal of each of these various groups
would have caused significant disruptions to the money market, no group of intermediaries was sufficiently
systemic for its removal to cause a complete collapse of the financial network and cut off all agents’ access

to that market.

18 Note that a given group G,’s absolute systemicness differs from the sum of absolute systemicness values of all individual
nodes that compose it. This is because all nodes of a given group are removed at the same time and these nodes often appear
in the same chains.
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4.4. Geographic systemicness

Borrowers on the London money market were located everywhere in the world and London financial
intermediaries often specialized along geographic lines (Accominotti et al., 2021). Therefore, it is possible
that certain geographical regions were strongly dependent on specific actors for their access to short-term
sterling credit facilities. For example, if all borrowers from a certain region accessed the money market
through the intermediation of one single London guarantor or lender, the failure of these intermediaries

would have resulted in an entire region being cut off from the London money market.

Figure 9 here

We thus exploit our data on money market borrowers’ geographical location to assess how dependent
individual cities were on specific London intermediaries. Our dataset includes 617 cities. In Figure 9, we
report the frequency distribution of these cities according to the number of borrowers they comprise.
Money market borrowers were scattered across the world and many of them were located in relatively
small cities. Hence, 53.65% of cities in the network featured only one borrower, while only 21.1% had five
or more borrowers. Table 6 reports the list of all cities in the network classified according to the number

of borrowers they featured.

Table 6 here

For each node i playing the role of guarantor or/and lender in the network, and for each city ¢ in our
database, we compute a ¢ty market loss rate CMLr; corresponding to the share of borrowers of city ¢ that

lose market access when i is removed from the network. CMLr; is formally defined in Algorithm 3.

Algorithm 3 here
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We consider that a money market intermediary i is geographically systemic with respect to a given city
¢ when CMLr; is equal or higher than 50% or, in other words, when more than half of that city’s borrowers
lose market access as a result of the intermediary’s failure. Out of the 1,535 guarantors and lenders in our
dataset, only 63 were geographically systemic for at least one city. Of course, cities featuring one borrower
only appear in one chain in the network and are by definition fully dependent on one guarantor and one
lender for their market access. For those cities therefore, the lender’s and guarantor’s city market loss rates

are both equal to 100% by construction.

Figure 10 here

In Figure 10, we focus on cities that comprise at least two borrowers. We represent relationships
between all these cities and intermediaries in a matrix form. A dot on the graph indicates that a given
intermediary is geographically systemic for a given city. The dot’s size varies according to the number of
borrowers present in that city while its color varies according to the intermediary’s level of systemicness
with regards to the city (measured through its city market loss rate). For example, looking at the interaction
of the first column and bottom line in the graph, we see that Boston featured 23 different borrowers on
the London money market and that 61% of them were dependent on one London intermediary (the
discount house Union Discount Company) for their market access.

Several London intermediaries that specialized in intermediating credit for borrowers located in
specific regions of the world were geographically systemic for specific cities in these regions. This is the
case, for example, of the Canadian Bank of Commerce (a multinational bank that specialized in the
financing of North American trade), on which borrowers in San Francisco, Pensacola, Toronto,
Wilmington, Paris (Texas), Vancouver, and Navasota were strongly dependent. Similarly, C Murdoch &
Co. (a merchant bank that specialized in guaranteeing bills for customers located in Africa) was a key

intermediary for most borrowers in Casablanca, Mogador, Tangier, and Saffi. At the same time, even the
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largest discount houses or money market funds of the London City (Union Discount Company, National
Discount Company, Alexanders & Co.) did not exhibit much geographical systemicness with regard to any
city in the world. Overall, the results reveal that, except for a few of them, cities did not depend on one

single intermediary for accessing the LLondon money market.

4.5. City vulnerability

Last, we measure to what extent each city in the network was vulnerable to shocks on London
intermediaries. A money market borrower was particularly vulnerable if its market access depended
exclusively on one single guarantor or lender. For example, a borrower might have been involved in five
different chains featuring five different lenders but only one guarantor. In that case, the borrower was
strictly dependent on one guarantor for its market access but did not depend on any specific lender. We
consider that a given borrower is vu/nerable when its market access depends on one single guarantor or
lender. We also distinguish between guarantor-vulnerable borrowers (i.e., borrowers that depend on one single
guarantor) and lender-vulnerable borrowers (i.e., borrowers that depend on one single lender).

For each city ¢, we compute both a guarantor-vulnerability rate VULg. (defined as the share of borrowers
of that city that depend on one single guarantor) and a lender-vulnerability rate VUL, (defined as the share
of borrowers of the city that depend on one single guarantor). The formal definitions of VULg, and VUL,

are provided in Algorithm 4."

Algorithm 4 here

Figure 11, Panel A, presents a scatter plot of cities’ VULg, against their overall number of borrowers.
Then, 40.0% of the cities appearing in at least two chains exhibit a guarantor-vulnerability rate of 100%,

indicating that each of their borrowers is dependent on one single guarantor. All of these highly guarantor-

19 Cities that appear in one single bill of the network have, by construction, a vulnerability score of 100%. Hence, we restrict
our sample to the 360 cities that appear in at least two bills.
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vulnerable locations were however small cities comprising 10 borrowers or less. At the same time, not all
small cities exhibited a high VULg.. Out of the 296 cities that featured 10 borrowers or less, 16.9% had no
guarantor-vulnerable borrower and 29.7% had less than half of their borrowers that were guarantor-
vulnerable. At the other end of the spectrum, no single city with more than 10 borrowers exhibited a

guarantor-vulnerability rate of 100%.

Figure 11 here

Figure 11, Panel B, scatters cities’ VUL, . against their overall number of borrowers. On average, cities
appear to have been less exposed to the removal of lenders than guarantors. The share of cities with a
vulnerability rate of 100% is lower for lenders (31.9%) than for guarantors (40.0%).” In addition, while
16.7% of cities in the network feature no lender-vulnerable borrowers, only 13.9% of cities have no
guarantor-vulnerable borrower.

Overall, these findings indicate that lenders were on average more substitutable money market
intermediaries than guarantors. Borrowers obtained funds from a relatively diverse pool of lenders but had
their debts guaranteed by a more limited number of guarantors. At the same time, the 20 biggest lenders
on the money market had a significantly higher market share (85.35%) than the 20 biggest guarantors
(37.52%). Therefore, despite the greater market concentration in lending than in guaranteeing,
intermediaries playing the role of guarantors were less substitutable. This apparent paradox can be
explained by the specific nature of these two types of activities, which were performed by different types
of money market intermediaries (Accominotti et al., 2021). One implication of this market structure is that
the sterling money market did not feature very large and systemic hubs, and was less prone to the robust-

yet-fragile property characteristic of most present-day interbank networks.

20 Tt is worth noting however that two out of the 115 cities (Port Said and Amsterdam) that exhibit a vulnerability rate of 100%
with respect to lenders are middle-sized cities that featured 15 and 20 borrowers, respectively.

26



5. Conclusions

We rely on a new dataset assembled from archival records in order to reconstruct the network of
financial interlinkages in the dominant global money market of the first globalization era. This dataset
covers both “bank-bank” (lender-guarantor) and “bank-firm” (guarantor-borrower) relationships. We
represent the network of borrower-guarantor-lender intermediation chains as a hyperstructure and assess
financial network resilience through an original methodology that allows preserving the unity of these
higher-order structures. We apply simple shock simulation techniques and measure the effect of removing
individual nodes (or intermediaries) on the overall network. This allows us to measure to what extent
money market intermediaries were substitutable and to what extent borrowers across the world were
dependent on a few London agents for their access to the dominant global money market.

In modern interbank networks, shock simulations involving the removal of central nodes generally
resultin a complete breakdown of network connectivity. This is because present-day networks are generally
characterised by the presence of a few systemic and non-substitutable actors. Our findings however
indicate that the sterling money market of the first globalization era did not feature any highly-systemic
intermediaries, whose failure could have caused major damage to the network. These findings indicate that
a global financial network with a low level of actors’ systemicness can and did actually exist even at a time
of high international financial integration.

Our paper makes a methodological contribution. To the best of our knowledge, we are the first to
apply the hyperstructure approach to the study of financial networks. The methodology we develop here
could be applied to study the resilience of any directed network in which certain nodes are non-
substitutable and can potentially cause severe damage to connectivity. This is the case, for example, of
global supply chains or transportation networks (Lucena-Piquero et al., 2022).

Our results also have implications for financial regulators. The low systemicness of intermediaries on
the sterling money market at the beginning of the twentieth century arose from the specific characteristics
of the financial instruments (bills of exchange) used for money market transactions. These instruments

created incentives for money market agents to produce information on borrowers and discouraged the
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emergence of too large intermediaries (Accominotti et al., 2021). Nineteenth-century regulators were
adamant about the superiority of the bill of exchange from a supervisory viewpoint (Ugolini, 2017). This
suggests that supervisors aiming to improve the robustness of financial networks should pay close attention
to the microstructure of financial markets and encourage the use of instruments whose design provides

disincentives to concentration.
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Figure 1. Links encompassed in a bill of exchange

Drawer Acceptor Discounter
(Borrower) (Guarantor) | ——> (Lender)
L . ) , J
“Firm-Bank ” Relationship “Bank-Bank ” Relationship

Notes: This figure presents a schematic representation of the relationships between actors involved in the
origination and distribution of a bill of exchange. See Accominotti et al. (2021) for a detailed description of the
functioning of bills of exchange.
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Figure 2. Representation of chains

Position 1 Position 2 Position 3
Borrower Guarantor Lender

A Bg — C
O > @ O
— 0@

Notes: This figure presents a hypothetical example of a higher-order network involving four chains and six nodes.
The four chains are (A,B,C), (D,B,C), (D,B,F) and (D,E,F). Each combination of two same-coloured arrows
constitutes a hyperedge that associates the three nodes and their links in a given chain.
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Figure 3. Node degree distribution: observed versus null model networks
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Notes: For each of the three network degree centrality metrics, the figure shows the frequency distribution of nodes according to
their degree in the observed network (black line), in 250 simulated random networks (blue lines), and in 250 simulated scale-free
networks (red lines). Panel A repotts the frequency distribution of nodes according to their in-degree (Id;). Panel B reportts the
frequency distribution of nodes according to their hyperedge degree (Hd;). Panel C treports the frequency distribution of nodes
according to their hyperedge-adjacent nodes degree (HANd,;). The x-axis is in logarithmic scale. Nodes that only played the role of
botrower are excluded from panel A as, by construction, Id; = 0 for those nodes. See text.
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Notes: The figure reports the absolute systemicness (AS;) and market share (MS;) of each intermediary (guarantor or lender) in
the observed network as well as in one simulated random network and one simulated scale-free network. On the y-axis, a

node i’s absolute systemicness corresponds to the percentage of all nodes in the network that remain isolated when I is removed.

On the x-axis, a node I’s market share corresponds to the percentage of nodes in the network which are hyperedge-adjacent

to I). See text for a more detailed definition of these variables. Actors of the observed, random and scale-free networks are
represented in black, blue, and red, respectively. In each network, nodes that only played the role of guarantor are represented
by a dot, nodes that only played the role of lender are represented by a square, and nodes that played the role of both

guarantor and lender are represented by a triangle. Both axes are in logarithmic scale. See text.
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Figure 5. Local systemicness: guarantors and lenders
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Notes: The figure reports the frequency distribution of guarantors (left panel) and lenders (right panel) according to their

local systemicness (LSy). Values on the y-axis correspond to the percentage of guarantors/lenders whose LS; falls within any

given value range reported on the x-axis. See text.
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Figure 6. Spare Chain Connectivity
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reports the percentage of original chains that are preserved after sequentially removing a certain number of nodes.

Nodes ate sequentially removed in the order of their absolute systemicness (AS;). The x-axis is in logarithmic scale.
See text.
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Figure 7. Sampling effects and systemicness in the observed network
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Notes: The figure reports the outcome of simulations performed to assess the effect of sampling biases on maximum absolute
systemicness in the observed network. Each of the 100 black lines reports the maxinum absolute systemicness (max(AS;)) recorded
in eight randomly-sampled portions of the observed network. Sampled networks are increasing in size from 1,000 to 8,000
chains. The observed network contains 8,888 chains. The number of chains included in each sampled portion of the observed
network is reported on the x-axis and max(AS;) is reported on the y-axis. For any given sample size, the red line corresponds
to the mean of max(AS;) across all 100 sampled networks. The horizontal blue line crosses the y-axis at 7.83% (i.e., the
maximum value of AS; in the observed network). See text.
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Figure 8. Sampling effects and systemicness in random and scale-free networks
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Notes: The figure reports the outcome of simulations performed to assess the effect of sampling biases on maximum absolute
systemicness in random and scale-free networks. Each of the 50 blue (green) lines reports the maximum absolute systemicness
(max(4S;)) recorded in fourteen randomly-sampled portions of ten simulated random (scale-free) networks. Sampled networks
are increasing in size from 2,000 to 26,664 chains. Each of the ten simulated networks contains 26,664 chains. The x-axis reports
the number of chains included in each sample of the simulated random (scale-free) network. The y-axis reports max(A4S;) for
each sample. For any given sample size, the red line cortesponds to the mean of max(4S;) across all 50 sampled networks. See
text.
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Figure 9. Frequency distribution of cities according to their number of borrowers
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Notes: The figure reports the frequency distribution of cities according to the number of borrowers they feature.

Values on the y-axis correspond to the percentage of cities that comprise a number of borrowers falling within any
given value range reported on the x-axis. See text.
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Figure 10. Geographically systemic intermediaries
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Notes: The figure represents all intermediaries (guarantors and lenders) that were geographically systemic with
respect to cities that appear on the x-axis. All cities featuring at least two borrowers are included. An intermediary
is considered geographically systemic for a given city if more than 50% of borrowers of that city lose market access
as a consequence of its removal. For every city, geographically systemic intermediaries are represented by a blue
dot. The dot’s size varies according to the number of borrowers located in the city and its darkness varies according
to the intermediary’s cizy market loss rate (CMLt,) with regards to that city. On the x-axis, cities are ranked (from left
to right) according to their overall number of borrowers. On the y-axis, intermediaries are ranked (from bottom to
top) according to theit absolute systemicness (AS;). See text.
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Figure 11. City vulnerability
Panel A. Guarantor-vulnerability
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Notes: For each city with at least two bills in the network, the figure reports its overall number of borrowers (x-axis) and
the percentage of these borrowers that are guarantor-vulnerable (Panel A) and lender-vulnerable (Panel B) (y-axis). A borrower
is considered guarantor- (lender-)vulnerable if it is dependent on one single guarantor (lender) for its market access. Cities
that appeared in one single chain in the network are removed from the analysis as, by construction, 100% of their
borrowers were vulnerable. Each dot on the figure corresponds to one city. Several cities exhibit the exact same number
of overall and vulnerable borrowers, in which case their dots are superimposed. Superimposed dots appear darker on the
figure. See text.
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Algorithm 1: Absolute systemicness, market share, and local systemicness

Input:

Data as an edgelist E where each row is a chain (a bill in our case) and each column is a
role (three columns in our case). The set of chains (rows) in E is C, each row is unique in
E (no two chains are alike), and V is the set of agents in E.

Procedure:

1. Identify all agents [ in guarantor and/or lender role (subset Vi € V): {i} €
Ve, V{i}eV:Id; >0

2. FOR i in Vg, subset from E all rows where the agent i has the guarantor and/or
lender role. The result is the edgelist E;

3. Obtain the edgelist R; via the subtraction of the edgelist E; from E, so R; = E \ E;

4. Obtain the subset Vy,; of agents included in E; excluding i: Vp; = {j €V :j €
E3\{i}

5. Obtain the subset V; of agents who are included in Vp; but not in R; (i.e., the agents
who depend on i for market access): Vg; =V \{j €V :j €R;}

6. Compute the absolute systemicness of an agent U (AS;) as the proportion of agents of V;
in V less one (the agent i): AS; = (|Vg;|/(|V] = 1))

7. Compute the market share of an agent i (MS;) as the proportion of agents of V,; in V
less one (the agent i): MS; = (|Vpi|/(|V| — 1))

8. Compute the local systemicness of an agent i (LS;) as the proportion of agents of V; in
Vpi: LS; = (AS;/MS) = (IVsil /[ Vi)
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Algorithm 2: Spare chain connectivity

Input:

Data as an edgelist E where each row is a chain (a bill in our case) and each column is a
role (three columns in our case). The set of chains (rows) in E is C, each row is unique in
E (no two chains are alike), and V' is the set of agents in E.

The absolute systemicness AS for all guarantors and lenders Vi,

Procedure:

1. Otder (permute) Vi elements by decreasing absolute systemicness. The result is the
sequence of agents VAS.

2. FORi=1to|VAS|

IFi=1:Eg==E;Cr==C;Vp ==V

4. Obtain from E} all rows where i has the guarantor and/or lender roles. The result is
the edgelist Ej.

5. Redefine Eg as Eg without E; : Ex = ER / E;

6. Obtain the set of chains Cg; from the edgelist E.

7. Compute the spare chain connectivity SCC as the propotrtion of chains remaining in the

&

network after removing the agent i and all its predecessors in the VAS sequence. So,
SCC;i= |Cril / IC|
8. IF Ex = {} ENDFOR
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Algorithm 3: City market loss rate

Input:

Data as an edgelist E where each row is a chain (a bill in out case) and each column is a
role (three columns in our case). The set of chains (rows) in E is C, each row is unique in
E (no two chains are alike), and V' is the set of agents in E.

Data frame of borrowers by city. The set of borrowers is DR and the set of cities is CT.

Procedure:

1.

FOR c¢ in CT, subset from E all rows (chains) whose agents playing the role of
borrowers are located in city ¢. The result is the subset of agents and chains E, where
C. is the subset of chains in E; and DR, is the subset of agents in borrower role in E,

2. IF|C.| > 1:

3. Identify all actors I with guarantor and/or lender role in E. The result is the subset
Vot

4. FOR i in Vg, subset from E all rows (chains) where I has the guarantor and/or
lender role. The result is the subset of chains and agents E;

5. Obtain the subset of chains and agents R;; which are not included in E;: Ry =
E. \ Eci

6. Obtain the subset DR; of agents (borrowers) of E; who are not included in Rg; (i.e.,
the agents who depend on [ for market access): DR.; = E¢; \ R¢;

7. Compute the ¢ty market loss rate of a city ¢ for an agent [ (CMLry;) as the proportion

of the borrowers in city ¢ (i.e., of DR;) who depend on agent i for market access:

CMLre; = (IDR¢i|/IDR.])
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Algorithm 4: City vulnerability

Input:

Same as Algorithm 3.

Procedure:

1.

FOR c in CT, subset from E all rows (chains) whose agents playing the role of
borrowers are located in city ¢. The result is the edgelist E, where C, is the subset of
chains in E; and DR, is the subset of agents in borrower role in E,

2. IF|C.| > 1:
3. FOR i in DR, identify both subsets of agents in guarantor role Vg and in lender role

V. If |VGC| = 1, the borrower i is guarantor-vulnerable. 1f |VGL| = 1, the borrower I
is lender-vulnerable.

Define DR¢. € DR, as the set of guarantor-vulnerable borrowers in city ¢. Define
DR;. € DR, as the set of lnder-vulnerable borrowers in city C.

Compute city C’s guarantor-vuinerability VULg, as the proportion of the borrowers in
city ¢ who are guarantor-vulnerable: VULg. = (|[DRgc|/|DR.|). Compute city c’s
lender-vulnerability VUL, as the part of the borrowers in city ¢ who are lender-
vulnerable: VUL;. = (|DR;.|/|DR.|)
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Table 1: Profiles of agents on the sterling money market

e Tl oo
Pure Borrower (outside London) 3,290 66.20 -

Pure Borrower (in London) 145 2.92 8.63

Pure Guarantor 1,326 26.68 78.93
Hybrid (Borrower+Guarantor) 64 1.29 3.81

Pure Lender 61 1.23 3.63
Hybrid (Borrower+Lender) 35 0.70 2.08
Hybrid (Guarantor+Lender) 29 0.58 1.73
Hybrid (Borrower+Guarantor+Lender) 20 0.40 1.19
Total 4,970 100.00 100.00

Notes: This table presents the number of agents of different profiles on the sterling money market as well as their
share in the total population of agents and in the population of London-based agents. “Pure” refers to nodes
playing only one role (borrower or guarantor or lender) in the various bills in which they are involved. “Hybrid”
refers to nodes that play different roles in the various bills on which they appear. Note that any agent playing the

role of guarantor or lender had to be located in London. See text.
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Table 2: Degree centrality measures in a hyperstructure: an example

Hyperedge-adjacent

N(Tde In-degree Hyperedge degree nodes degree
0] dd)) (Hd;) (HANd,)
A 0 1 2
B 2 3 4
C 1 2 3
D 0 2 3
E 1 1 2
F 2 2 3

Notes: This table illustrates three network degree centrality metrics for nodes in a hyperstructure.
For each node A, B, C, D, E, F, in the hypothetical network represented in Figure 2, the table
reports their in-degree, hyperedge degree and hyperedge-adjacent degree. See text for the three degree
definitions.
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Table 3. Maximum node degree value in observed and simulated networks

Network Nb of

Measure type networks Min Max Mean Median
Maxitmarm Tn. Observed 1 357 357 357 357
degtee Random 250 77 97 85 84
(max(Id;)) Scale-Free 250 895 3555 2192 2020
Maximum Observed 1 900 900 900 900
iygliiedge Random 250 89 127 108 108
(max(Hd,)) Scale_Free 250 896 7666 3434 3100
Maximum Observed 1 1055 1055 1055 1055
fgjpaecﬁggo dos  Random 250 171 239 204 203
degree Scale-Free 250 1218 4417 2684 2566
(max(HANd,))

Notes: This table presents descriptive statistics (minimum, maximum, mean and median) on the maximum degtree
values observed in a. the observed network, b. the 250 simulated random networks, and c. the 250 simulated scale-free
networks. See text for the definition of the three degree values and for details on the simulations.
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Table 4. Maximum absolute systemicness and maximum market share in observed and
simulated networks

Network Nb of

Measure type networks Min Max Mean Median
Maximum Obscrved 1 7.828 7.828 7.828 7.828
Absolute Random 250 0.442 0.684 0.530 0.523
Systemicness

(max(AS,)) Scale-Free 250 9.297 68.554 31.967 29.070
Masimum Observed 1 21.231 21.231 21.231 21.231
Market Share Random 250 3.099 4.004 3.399 3.380
(max(MS;)) Scale-Free 250 16.312 76.533 53.815 53.547

Notes: This table presents descriptive statistics (minimum, maximum, mean and median) on the maximum values of
absolute systemicness and market share observed in a. the observed network, b. the 250 simulated random networks,
and c. the 250 simulated scale-free networks. See text for the definition of the two variables and for details on the
simulations.
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Table 5. Group systemicness

Number of Absolute Market share

'Grtoup oé" . impacted nodes systemicness (MSg )
intermediaries

(Vse, ) (AS¢,) o
Discount houses o 0
N0, 2094 42.1% 65.7%
Anglo-Foreign Banks 0 0
g 1053 21.2% 40.6%
Top-10 Merchant Banks 0 0
N=10) 569 11.5% 22.3%
Clearing Banks 281 5.7% 11.6%

(N=11)
Notes: For each of the four historical groups of intermediaries (discount houses, Anglo-foreign banks, top-10
merchant banks, and clearing banks), the table reports the number of nodes that remain isolated when the

entire group is removed from the network (|V5Gx |), the group’s absolute systemicness (ASg, ), as well as the group’s
market share (MSg, ). See text and Algorithm 1 for the formal definition of each indicator.
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Table 6. Demography of cities

Number of
borrowers
per city

Number of

cities in that City names

category

200+

2

London; New York.

101-200

Calcutta.

51-100

Alexandria; Bombay; Buenos Aires; Colombo; Hamburg; Manchester; Memphis; New Otleans; Yokohama.

11-50

52

Amsterdam; Antwerp; Bahia; Barmen; Batavia; Belfast; Berlin; Bordeaux; Boston; Bradford; Bremen; Cairo; Chicago; Constantinople;

Copenhagen; Dallas; Galveston; Glasgow; Havana; Hong Kong; Houston; Iquique; Karachi; Kobe; Lima; Liverpool; Madras; Malaga;

Manila; Melbourne; Montevideo; Montreal; Norfolk; Para; Paris; Pernambuco; Philadelphia; Port Said; Rangoon; Riga; Rio de Janeiro;
San Francisco; Santos; Sao Paulo; Savannah; Shanghai; Singapore; Smyrna; St Petersburg; Stockholm; Sydney; Valparaiso.

6-10

50

Antofagasta; Arequipa; Augusta; Baghdad; Barbados; Beyrouth; Bilbao; Brussels; Bucharest; Casablanca; Dundee; Foochow; Fort Worth;
Frankfurt; Genoa; Goteborg; Guatemala; Guayaquil; Hankow; La Paz; Leeds; Leipzig; Lisbon; Manaus; Marseille; Montgomery;
Moscow; Oporto; Oruro; Paris (Texas); Patras; Penang; Pensacola; Port Elizabeth; Port of Spain; Punta Arenas; Rosario; Rotterdam;
Salonica; San Jose; Santiago; Shimonoseki; St Louis; Surabaya; Tientsin; Toronto; Valencia; Waco; Wilmington; Zurich.

2-5

172

Adelaide; Aden; Algiers; Alicante; Almeria; Amoy; Amritsar; Athens; Atlanta; Auckland; Baltimore; Bangkok; Barcelona; Bari; Basle;
Bassora; Birmingham (Alabama); Bogota; Braila; Brisbane; Brooklyn; Budapest; Campinas; Canton; Carrara; Cartagena; Castries; Cavalla;
Ceara; Cedar Rapids; Ceylon; Charleroi; Charlotte; Chiasso; Christchurch; Christiania; Cienfuegos; Cochabamba; Coimbatore; Cologne;
Como; Concepcion; Corfu; Corsicana; Crefeld; Curacao; Daitotei; Danzig; Demerara; Denia; Dunedin; Dusseldorf; Epernay; Fazilka;
Florence; Fremantle; Gainesville; Galatz; Gefle; Greenville; Grenada; Halifax; Hamilton; Helena (Arkansas); Herisau; Hiogo; Invercargill;
Iquitos; Jerez; Johannesburg; Jumet; Kalymnos; Kansas City; Keighley; Kristiansand; Labuan; Ladysmith; Laguna; Lahore; Langerfeld;
Las Palmas; Le Havre; Leghorn; Leicester; Little Rock; Lodz; Lyon; Macassar; Macon; Malmoe; Managua; Mangalore; Maracaibo;
Maranhao; Mauritius; Mayaguez; Mazagan; Medellin; Messina; Mexico; Milan; Minneapolis; Mobile; Mogador; Mosgiel; Muroran;
Nagasaki; Naples; Navasota; Neckarau; Newcastle; Newport; Nuremberg; Odessa; Oklahoma City; Orizaba; Palermo; Panama;
Parahyba; Paris (Arkansas); Passaic; Perth; Pforzheim; Ponce; Portland; Porto Alegre; Potosi; Prague; Puerto Gallegos; Quebec; Rio
Grande; Rustchuk; Saffi; San Antonio; San Juan; San Salvador; Sandakan; Seattle; Sevilla; Sherman; Sorata; St Etienne; St Gall; St
Vincent; Stanley; Sunderland; Syra; Tacna; Tangier; Teheran; Temple; Tenerife; The Hague; Townsville; Trieste; Tripoli; Troy; Tupiza;
Turin; Vancouver; Venice; Veracruz; Verviers; Vicksburg; Victoria; Vienna; Vostizza, Warsaw; Wellington; Yazoo City; Zante; Zanzibar.

331

Aarau; Abilene; Abo (Turku); Ada (Oklahoma); Aguadilla; Akyab; Albany (Australia); Albany (Georgia); Americus; Amotfors; Andros;
Ansbach; Antigua; Ardmore (Oklahoma); Arecibo; Arica; Ashgabat; Asuncion; Athens (Georgia); Aymeries; Bahama; Bamberg;
Barnaul; Barrow in Furness; Barry; Bassein; Bayonne; Bergen; Bermondsey; Bielefeld; Binche; Birmingham; Blackburn; Bocholt;
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Bochum; Bolivar; Bonham; Botosani; Bradford (New Zealand); Brenham; Brighouse; Broe; Brooketon; Broome; Brownwood,;
Brunswick; Burslem; Cadiz; Cairns; Calicut; Canaveral; Candia; Cape Town; Caracas; Cassel; Castlebar; Catacaos; Catania; Cathcart;
Cawnpore; Cephalonia; Cernobbio; Charleston; Chatlottetown; Chemainus; Chemnitz; Chickasha (Oklahoma); Church (Lancashire);
Cincinnati; Cochin; Colonne; Colquechaca; Columbus (Georgia); Comber; Coquimbo; Cordele; Corocoro; Corumba; Costa Rica;
Cuiaba; Cuthbert; Danville; Darwin; Dawson; Deerlijk; Dendetleeuw; Denton; Derby; Dewsbury; Dison; Dixon; Dordrecht; Dothan;
Drogheda; Dublin (Georgia); Dumbarton; Durban; Dyersburg; Emelghem; Enkhuizen; Espinho; Falkirk; Farmersville; Faro; Fortin;
Frangsund; Fray Bentos; Frederiksberg; Fredneks; Fredrikstadt; Funchal; Gais; Galle; Gamleby; Gandia; Gibraltar; Gisborne; Goort;
Gourdon; Govan; Granada (Nicaragua); Greenock; Greenwood; Grenada (Mississippi); Grimsby; Guerville; Guiria; Halberstadt;
Hanmore; Hatlingen; Heilbronn; Helsingborg; Henderson; Herberton; Hodeidah; Holstebro; Holzheim; Hoogezand; Hoorn; Howrah;
Huddersfield; Humacao; Indianapolis; Jacksonville; Jaffna; Jaragua; Jersey; Jesselton; Johanngeorgenstadt; Jonkoping; Kalmar; Kazan;
Keelung; Kerassunde; Kidderminster; Killik Aike; Kimberley; Kingston; Kirkcaldy; Klingenthal; Koenigsberg; Kuching; La Coruna; La
Plata; La Salada; Langesund; Larnaca; Launceston; Lawrencetown; Leigh on Sea; Lerwick; Limon; Llagostera; Lodelinsart; Lulea;
Lurgan; Maarssen; Maceio; Madeira; Madrid; Maffersdorf; Malta; Mantua; Marin; Marshalltown; Massena; Masterton; Matanzas;
Medan; Merida; Middlesbrough; Mirzapur; Mistley; Moji; Moltann; Monro; Mossel Bay; Mulheim; Munich; Muscat; Napier; Narva;
Natal; Nepal; Nessonvaux; Neustadt; Newbury; Newton; Norrkoping; Nuwara Eliya; Ollioules; Ootacamund; Opobo; Orlando; Otaru;
Ottignies; Ottumwa; Oude Pekela; Padang; Pahepe; Palafrugell; Partick; Paysandu; Peking; Pepinster; Petit-Goave; Piacenza; Pictou;
Pine Bluff; Pireus; Pisagua; Plano; Port Antonio; Puerto Cabello; Pyrgos; Quilon; Ravilloles; Rebstein; Remscheid; Reutlingen; Reval;
Risano; Rochdale; Rockhampton; Rome; Rouen; Roux; Roxburgh; Sacile; Saigon; Sains du Nord; Saint Martin; Salina; Samsoun; Santa
Anaj; Santa Fe; Santander; Saxon; Scheemda; Schiedam; Schomberg; Schonheide; Semarang; Seraing; Sfax; Shreveport; Simla; Sioux
City; Siveveghem,; Skelleftea; Skive; Soderhamn; St Anne’s Bay; St Avold; St Feliu de Guixols; St Fiden; St John (New Brunswick);
Strasbourg; Stromstad; Suakin; Sucte; Sulina; Sundsvall; Svendborg; Swansea; Sybadah; Szechwan; Szeged; Taipei; Tananarive;
Tandragee; Tarija; Taylor; Tellicherry; Terrell; Therezina; Thomasville; Thorn; Tiflis; Timaru; Tocopilla; Tokyo; Toowoomba; Tossa;
Traben; Trapani; Travancore; Trelleborg; Tsingtau; Uddevalla; Ulrichstal; Union Beach; Vevey; Vigevano; Villers; Vilvorde; Vyborg;
Wandesbek; Wanganui; Wantage; Werdohl; West Hartlepool; Whiteinch; Wiesbaden; Wilhelmsburg; Wilkes Barre; Winschoten;
Winterthur; Xanthi; Zaandam; Zofingen.

Notes: This table lists all cities in the network. Cities are classified into different categories according to the number of borrowers they feature. See text.
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