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1 Introduction

1.1 Motivation

In a world with a large variety of products and hence feasible matches between buyers and products,

information can fundamentally affect the match between buyers and products. A notable feature

of the digital economy is that sellers, or platforms and intermediaries that sellers use to place their

products, commonly have information about the value of the match between any specific product

and any specific buyer. In particular, by choosing how much information to disclose to the buyer

about the value of the match between buyer and product, a seller can affect both the variety and

the prices of the products offered.

We analyze the interaction between information and choice in a classic nonlinear pricing envi-

ronment where the seller can offer a variety of products that are differentiated by their quality. We

characterize the information structure and menu of choices that maximizes the expected profits of

the seller. The buyer has a continuum of possible types—her willingness to pay for the quality.

In the absence of any information design, the optimal menu offers a continuum of qualities to the

buyer who then selects given her type as in Mussa and Rosen (1978). In this setting, we consider a

seller who can control the selling mechanism and the information structure, but cannot observe the

value or signal realization of the buyer. The selling mechanism could be any (possibly stochastic)

menu.

We derive the basic structure of the optimal information and mechanism (in Section 3). The

seller provides information in the form of a finite and monotone partition and consequently offers

the buyer a finite menu (Theorem 1). The optimal menu is thus short relative to the menu with

a continuum of choices in the absence of information design. The finiteness of the information

structure has a straightforward intuition. Screening some open set of types requires maximizing the

virtual surplus. By construction, distortions in the qualities from the profit-maximizing qualities

will only cause second-order distortions to the total virtual surplus. But bundling a small interval

of types into a single expected type causes a first-order decrease in the information rents. Hence,

screening an open set of types is never optimal because pooling the types, and consequently the

allocation, causes a first-order reduction in the information rents and only second-order distortions

on profits. Thus the optimal menu with information design is small relative to the (continuum)

menu in the absence of information design. But how small can the menu become?

We provide (weak) suffi cient conditions on the cost function and value distribution under which
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a single-item menu is optimal (Theorem 2 in Section 4). The marginal cost must be (weakly)

convex, and thus the cost function must be suffi ciently convex and, in particular, more convex than

quadratic costs. The value distribution must satisfy amodest right tail condition: The modest right

tail condition holds if the buyer’s expected valuation conditional on being above some threshold

does not grow too fast in that threshold. The modest right tail condition is satisfied if the density

is (i) uniform or linear, with any support; or, more generally, (ii) has a quasi-concave density which

is concave on its decreasing component. Under the conditions of Theorem 2, the single-item menu

may or may not involve some types being excluded, depending on the location of the support of

the values. If the lower end of the support is far from the upper end and close to zero, then the

single-item menu will lead to the exclusion of some types.

We report further results for the case where the cost function has a constant elasticity (in

Section 5). These results offer insight into the structure of the optimal information and menu

more generally, and, in particular, offer insight into the suffi cient conditions for a single-item menu

to be optimal as reported in Theorem 2. First, we provide a necessary and suffi cient condition

for the optimality of a single-item menu (in Proposition 10) depending only on the support of the

distribution and the elasticity of the cost function. In particular, a single-item menu is optimal if

the ratio of the upper bound of the support to the lower bound is less than the elasticity. Conversely,

if this condition fails, there exists a distribution with that support where a single-item menu is not

optimal. Note that this tight distribution-free condition will necessarily fail as the lower bound

approaches zero, while the modest right tail condition assumed in Theorem 2 is easily satisfied even

when the support includes 0. Second, we show that a single item menu will always be optimal for

high enough elasticity and will never be optimal for suffi ciently low elasticity, i.e., approach unit

elasticity which corresponds to linear costs (Proposition 12). This explains why a lower bound on

convexity of costs is required in Theorem 2. Note that a quadratic cost function has elasticity 2, and

thus Theorem 2 requires a more convex cost than quadratic. Third, we establish that if we relax

our maintained finite upper bound on values, the optimal menu is necessarily infinite (Proposition

11).

We provide a complete analysis of a model with only two values in Section 5. This analysis

provides intuition for our general results. If the probability of a high-value buyer is too large

relative to that of a low-value buyer, then the low-value buyer is excluded altogether and a single-

item menu is optimal. This effect is already present without information design. However, even

if the mass of low-value buyers is high enough, there will be no screening if the difference between
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values is not large enough. The reason is that the high-value buyer gains information rents from the

quality provided to the low value buyer. These information rents are eliminated if the two types are

pooled. The benefit of screening is that the high-value buyer receives the effi cient allocation. The

information rents grow linearly in the difference between high and low value whereas the effi ciency

gains are convex in the difference in values (for example, they are quadratic if the cost is quadratic).

Hence, when the difference in values is too small, there will be pooling instead of screening. The

critical ratio between the high value and low value below which pooling is optimal is increasing

in the cost elasticity because the effi ciency gains increase slower than the information rents. Our

distribution-free result on the optimality of a single-item menu (Proposition 12) follows immediately

from this observation. Conversely, if the difference between low and high values is large, there will

be screening without exclusion. It is the existence of a high value-low probability type that gives

rise to a failure of the modest right tail condition. If there is no upper bound on values in the

general model (as in Proposition 11), the upper tail of the distribution plays the role of a high

value-low probability type.

The binary type model also informs us about some of the welfare implications that come with

the control of information. When the ratio of the high value to the low value is suffi ciently large, the

standard nonlinear pricing solution is to screen and exclude the low value buyer from the market.

However, the optimal solution under information control is to pool the information and offer a single

item to the entire market. In either case, the buyers receive zero information rent but the profits of

the seller increases, and thus so will the social welfare. Thus, the ability to manage the information

of the buyer can be social welfare increasing, but admittedly it is the seller who benefits rather than

the consumers.

The above results are obtained in the setting first proposed by Mussa and Rosen (1978) where

the product of willingness to pay and quality generate the gross utility of the buyer. In Section

6 we extend our analysis to general nonlinear utility functions of the buyer. Here we establish

that all our previous results carry over entirely as long as willingness to pay and quality permit a

multiplicative separable representation. We then further weaken the payoff environment to allow

for general monotone and supermodular payoff functions. The final result, Theorem 3, establishes

that the disclosure of any open set remains a suboptimal information policy. Theorem 3 thus gener-

alizes Theorem 1, but with weaker implications. In particular, we show by means of two examples

that a monotone partition is not always an optimal information structure under supermodularity

conditions alone.
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Our setting reflects three notable features of the digital economy. We already mentioned the

fact that the sellers are well-informed about buyers’values. Our analysis considers the extreme

case where the buyer only knows the prior and the seller has access to all feasible signals. A second

notable feature is that the buyers have the ability to find which items are available at what price,

due to search engines and price comparison sites. Thus, personalized prices (or more generally

third-degree price discrimination) are not available, but menu pricing (or more generally second-

degree price discrimination) can occur. Finally, particular items, that is quality-price pairs, are

recommended to different buyers via recommendation and ranking services.

Our leading interpretation is that the seller can influence the information that the buyer has

about his value but does not observe that value. Although we will not pursue it formally in the

paper, an alternative interpretation of our model is that the seller does in fact observe the buyer’s

value but is unable, for regulatory or business model reasons, to offer prices for item that depend

on the buyer’s value. Thus, the seller cannot engage in perfect price discrimination (or third-degree

price discrimination). In fact, the seller is constrained to offer a common menu of items. However,

as long as all buyers are offered the same menu, he is allowed to credibly convey information

about buyers’values. Now the implementation of the optimal information structure and selling

mechanism is that the seller posts a menu and sends a signal to the buyer that recommends one

item on the menu. The resulting recommendation policy is one which we commonly observe on

e-commerce platforms. Namely, the seller does not engage in third-degree price discrimination, but

rather, among the range of possible choices, every buyer is steered to a specific alternative at a price

that is common to all consumers. This implementation makes sense in our model if we impose the

interim obedience constraint that recommendations are optimal for the buyer conditional on the

recommendation received.

Consistent with this interpretation, eBay personalizes the search results for each buyer through

a machine learning algorithm and determines a personalized default order of search results in a

process referred to as "Best Match," see eBay (2022). DellaVigna and Gentzkow (2019) provide

strong evidence that large chains price uniformly across stores despite wide variation in consumer

demographics and competition. Further, Cavallo (2017), (2019) documents that online and offl ine

prices are identical or very similar for large multi-channel retailers, thus confirming the adherence to

a uniform price policy. Related, Amazon apologized publicly to its customers when a price testing

program offered the same product at different prices to different consumers, and committed to never

"price on consumer demographics," see Weiss (2000).
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1.2 Related Literature

We consider a model of nonlinear pricing as first analyzed in Mussa and Rosen (1978). Similar to

Mussa and Rosen (1978), we focus on offering a menu of different qualities which can be produced

at an increasing and convex cost. Our analysis could similarly be applied to the setting of quantity

differentiation as in the model of Maskin and Riley (1984) with constant marginal costs (as we will

discuss in Section 6).

In our analysis, the seller can control the information and the mechanism. It therefore combines

Bayesian persuasion (Kamenica and Gentzkow (2011)) or information design more generally with

mechanism design tools. We thus offer a solution to an integrated mechanism and information

design problem in a classic economic environment. Perhaps surprisingly given the proximity of the

tools as highlighted in the recent work by Kleiner, Moldovanu, and Strack (2021), we are not aware

of any related work in optimal pricing that combines mechanism and information design. The

closest work in this sense is Bergemann and Pesendorfer (2007), who consider a seller with many

unit-demand buyers. There the seller can both choose the selling mechanism and the information

each buyer receives about their own value. Their main result, showing that sellers have each buyer

observe a finite and monotone partition about their value, relates to the current result. Because

unit demand allocation is a linear problem, they are able to establish the optimality of a coarse

partition by construction. Our nonlinear pricing analysis has to determine not only whether to

assign the object, but also at what level of quality. Thus, the current results on the cardinality of the

menu and the suffi cient condition for a single-item menu do not have a counterpart in Bergemann

and Pesendorfer (2007). Brooks and Du (2021), like Bergemann and Pesendorfer (2007), consider a

many-player, single-unit setting where both the selling mechanism and the buyers’information are

endogenous in some sense. However, there the seller is choosing the mechanism to maximize revenue

under the worst-case information structure, so it is as if an adversary picks the information structure.

Thus, the seller does not jointly design the information structure and selling mechanisms.

Our analysis is an instance of second-degree price discrimination. But the seller also creates

segments (or pools) within the market. In doing so, he makes items intended for other segments

less attractive to each buyer. In this sense, the seller is inducing partial third-degree price discrim-

ination. By contrast, Bergemann, Brooks, and Morris (2015) and Haghpanah and Siegel (2022)

explicitly allow full third-degree price discrimination, while also allowing discrimination within

each segment by offering quality-differentiated products. Roesler and Szentes (2017) consider the

buyer-optimal information structure with single-unit demand. Thus, the demand structure and the
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objective differ from the current work, but they share the focus on creating segmentations with a

single aggregate market. Anderson and Dana (2009) ask when second-degree price discrimination

is profitable in an environment where there is a priori a finite upper bound on the quality provided.

They provide conditions under which all types receive the same quality, namely the quality at the

upper bound. The condition can be stated in terms of log submodular versus log supermodular

preferences. By contrast, our environment is log supermodular everywhere, and hence there is no

reason to restrict the menu and offer a bunching solution in the sense of Anderson and Dana (2009).

Another explanation for pooling is that the distribution of values is "irregular" in the sense of

Myerson (1981). This would imply an interval over which buyers with different values were offered

the same quality, as established already in Mussa and Rosen (1978).

Loertscher and Muir (2022) consider a seller who offers fixed quantities of products of different

qualities. They show that bundling different qualities, or randomizing the quality assignment via

lotteries, can increase the revenue in the presence of irregular type distributions. Our results hold

for regular distributions as well as irregular ones.

Rayo (2013) considers a model of social status provision that shares some features with our

model. The utility function of the agent before any transfer is a product of his type (or an increasing

function of his type) and a social status which is equal to his expected type given some information

structure. Rayo (2013) then asks what is the optimal information structure to provide to the

agent by a revenue maximizing monopolist. Thus, the allocation in Rayo (2013) is an information

structure rather than a quality allocation. In consequence, the allocations all have the same constant

cost, namely zero. In addition, the information structure only affects the allocation and not the

expectation of the buyer regarding his own type. The main result, Theorem 1, is that the optimal

information structure—he restricts attention to deterministic information structures—has an interval

structure.

In Rayo (2013) and Loertscher and Muir (2022), distinct products are pooled and the buyer is

offered a correspondingly smaller choice set. In our model, the optimal information design pools the

types of the buyers and creates coarse information for the buyers. In turn, the coarse information

leads to an optimally short menu of choices. While the prediction of the optimal nonlinear pricing

problem is a continuum of choices—thus a very long menu—in many real-world application, the

cardinality of the menus is finite and the menu is often very short.



Screening with Persuasion July 22, 2022 8

2 Model

A seller supplies goods of varying quality q ∈ R+ to a buyer. The buyer has a willingness-to-pay

(or value or type) v ∈ R+ for quality q ∈ R+. The utility net of the payment p ∈ R+ is:

u(v, q, p) = vq − p. (1)

The value v ∈ R+ is distributed according to F ∈ ∆([v, v̄]),with support 0 ≤ v < v̄ < ∞, with
strictly positive and non-vanishing density, except possibly at the upper bound (i.e., F ′(v) > 0 for

all v < v̄). The seller’s cost of providing quality q is c(q), where c : R+ → R+ is assumed to be a

(weakly) increasing and (weakly) convex function.

The seller can choose the information the buyer has about their value and a menu of qualities

and corresponding prices.

First, the seller chooses a signal (or information structure) s : R+ → ∆R+, where s(v) is a signal

realization observed by the buyer when the value is v. The buyer’s expected value conditional on

the signal realization s is denoted by:

w , E[v | s]. (2)

Since the utility is linear in v, w is a suffi cient statistic for determining the buyer’s preferences

when they observe signal s. We denote by G the distribution of expected values; supp(G) is the

support of G. We refer to s, or more directly the induced distribution G of expected values, as the

information structure. Second, the seller chooses a menu (or direct mechanism) with qualities q (w)

at prices p (w) :

M , {(q(w), p(w))}w∈suppG

where the mechanism has to satisfy incentive compatibility and participation constraints. Thus for

all w,w′ ∈ supp(G) :

wq(w)− p(w) ≥ wq(w′)− p(w′); (3)

wq(w)− p(w) ≥ 0. (4)

We refer to a mechanism as a pair (G,M) of information structure G and menu M . The seller’s

problem is to maximize expected profits, revenues minus cost:

Π , max
s:R→∆(S)
(q(w),p(w))

E[p(w)− c(q(w))].
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The expected social surplus and the buyer’s surplus are denoted by S and U , respectively:

S , E[q(w)w − c(q(w))]; U , E[q(w)w − p(w)]. (5)

We note that the direct mechanism M could also be expressed in terms of a simple indirect menu

where the seller chooses (Q, p) consisting of a set of qualities Q ⊆ R+ and a pricing rule p : Q→ R+.

Then the information structure can be expressed as a recommendation rule s : R+ → ∆Q.

3 Structure of the Optimal Mechanism

We now provide a complete characterization of the optimal mechanism for the general environment

with a continuum of values. The main qualitative feature is that the optimal information structure

partitions values into intervals. Subsequently, the buyer only learns to which element of the partition

their realized value belongs.

3.1 Finite and Monotone Partition

We say that the information structure G has interval structure if there exists some countable

collection of intervals {[xi, x̄i) | i ∈ I}, such that:

G−1(q) =

F−1(q), if q 6∈ ∪i∈I [xi, x̄i);∫ x̄i
xi
F−1(t)dt

x̄i−xi
, if q ∈ [xi, x̄i).

(6)

We define the intervals in the quantile space rather than the value space. In other words, G

has interval structure if it can be constructed from partitioning the space of quantiles and the

associated values into intervals—possibly countably infinite. There is either complete disclosure and

q 6∈ ∪i∈I [xi, x̄i), and then the buyer learns the value; or there is pooling and q ∈ [xi, x̄i), and the

buyer only learns that their value (and quantile) is somewhere in the interval q ∈ [xi, x̄i). We say

that G has a finite pooling interval structure if G has interval structure, I is finite and there is no

interval of full disclosure, that is, x̄i = xi+1 for all i.

Our first main result establishes that the optimal information structure is a finite pooling interval

structure. Here we have to add a qualifying remark. To the extent that some values may not receive

a positive quality in the optimal mechanism, there may be some multiplicity in the information

structure. For example, values which do not receive the good (they obtain quality zero) may or may

not be pooled. But it is without loss of generality for the optimal revenue to always pool all values
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that receive zero quality. Hence, we consider mechanisms (G,M) such that, if q(w) = q(w′) = 0 for

any pair w,w′ ∈ supp(G), then w = w′. In other words, all values who are not served a positive

quality are pooled in the same partition. Of course, this will not change the nature of the optimal

mechanism beyond disciplining the information provided to values who do not buy a positive quality.

Theorem 1 (Structure of the Optimal Mechanism)

In every optimal mechanism the information structure is a finite pooling interval structure and the

optimal quality q∗(w) is increasing in w on the support of G.

This first main result therefore establishes that every optimal mechanism consists of a finite

pooling information structure. In consequence, the optimal menu will contain only a finite number

of items; it is a short menu. This contrasts with a long menu with a continuum of items which

would be optimal in the absence of a choice regarding the information structure.

Corollary 1 (Finite Support)

The optimal information structure has finite support and the optimal menu offers a finite number

of qualities.

We will prove Theorem 1 in several steps. In the first step we write the payment p as a function

of the qualities q by applying the envelope theorem to the buyer’s utility maximization problem

(for example, as in Myerson (1981)).

The second step shows that there exists an optimal mechanism in which the optimal information

structure has interval structure. This step will be proven by showing that, given a menu of qualities

and prices, the seller’s maximization problem is linear in the quantile function of the expected

values. Hence, we can use recent results in Kleiner, Moldovanu, and Strack (2021) to characterize

the optimal information structure in terms of the extreme points of the set of quantile functions

that are a mean-preserving spread of the quantile function of values. We then proceed to show that

in every optimal mechanism the information structure has interval structure. This follows from

the fact that the policy and the information structure must be jointly designed. If the information

structure does not have an interval structure, it is possible to write it as a linear combination of

interval information structures, and each of one of these would have to be optimal. However, a

given vector q∗ cannot be optimal for more than one finite pooling information structure.

The third step shows that there is no interval of complete disclosure. This is the crucial step

where we compute the trade-off between information rents and effi ciency. We show that for small

enough intervals, pooling information and allocation always increases the seller’s profits.
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The third step proves that the number of qualities offered is discrete, but leaves open the

possibility that it is countably infinite. We then proceed in two additional steps to prove that the

optimal mechanism is indeed finite. However, the crucial step in which we compute the trade-off

between informational rents and effi ciency is the aforementioned third step.

3.2 Restating the Seller’s Problem

Before we can apply the envelope theorem as in the classic mechanism design literature, we need

to address the following challenge. The distribution of expected values may not be absolutely

continuous, so the resulting set of items of varying quality does not completely determine the

incentive compatible payments. We therefore extend the assignment of qualities to cover the entire

value space, [v, v̄], the support of the distribution F .

Lemma 1 (Extension of Policies)

For all individually rational and incentive compatible mechanisms (q(w), p(w)) defined on supp(G),

there exists a mechanism (q̂(w), p̂(w)) that is incentive compatible and individually rational for all

w ∈ supp(F ) with q̂(w) = q(w) and p̂(w) = p(w) for all w ∈ supp(G).

Proof of Lemma 1. To prove this lemma it is enough to consider the following mechanism.

For every w 6∈ supp(G) we define:

(q̂(w), p̂(w)) , arg max
(q,p)∈{(q(w),p(w)}∪{(0,0)}

{qw − p}.

Clearly, incentive compatibility and individual rationality will be satisfied. Hence, we assume that

q is defined for all w ∈ supp(F ) (rather than supp(G)).

We now provide the classic construction of the buyer’s surplus U , defined earlier in (5) in terms

of the qualities provided.

Lemma 2 (Buyer’s Surplus)

In every incentive compatible mechanism (G,M), the buyer’s surplus is:

U =

∫ v

v

q(w)(1−G(w))dw.

This is the standard representation of the buyer’s surplus, see Myerson (1981). As the seller’s

profits are equal to total surplus minus the buyer’s surplus, we can write the profits in an incentive
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compatible mechanism as follows:

Π =

∫ v

v

(wq(w)− c(q(w))) dG(w)−
∫ v

v

q(w)(1−G(w))dw, (7)

which depends only on q (and not p).

The distribution G of expected values is generated by the prior distribution F and a signal s.

By Blackwell (1951), Theorem 5, there exists a signal s that induces a distribution G of expected

values if and only if F is a mean-preserving spread of G. F is defined to be a mean-preserving

spread of G if ∫ ∞
v

F (t)dt ≤
∫ ∞
v

G(t)dt, ∀v ∈ R+,

with equality for v = 0. If F is a mean-preserving spread of G we write F ≺ G. We will frequently

use the fact that the distribution function F ≺ G if and only if G−1 ≺ F−1 (see Shaked and

Shanthikumar (2007), Chapter 3).

Hence, the seller’s problem can be restated in terms of G and q:

max
G,q

{∫ v

v

(wq(w)− c(q(w))) dG(w)−
∫ v

v

q(w)(1−G(w))dw

}
, (8)

subject to q being non-decreasing and F ≺ G.

We denote by (G∗, q∗) a solution to this problem.

3.3 Interval Structure

We now reformulate the seller’s problem in a way that it is linear in G−1. For any mechanism (G, q)

we can construct a random variable t uniformly distributed in the unit interval such that:

w = G−1(t).

If G is continuously distributed, then t = G−1(w), otherwise, t is constructed introducing random-

izations at every point of discontinuity of G. Similarly, we can write the quality q in terms of t,

which we denote by:

qt(t) , q(G−1(t)). (9)

Hence, we can describe the mechanism as (G, qt).

We can write (7) as follows:

Π =

∫ 1

0

G−1(t)qt(t)dt−
∫ 1

0

c(qt(t))dt−
∫ 1

0

qt(t)(1− t)dG−1(t).



Screening with Persuasion July 22, 2022 13

Integrating by parts the last term:

Π =

∫
G−1(t)(1− t)dqt(t)−

∫
c(qt(t))dt.

Note that qt(t) is non-decreasing, so dqt corresponds to the integral using qt as a measure.

We can now fix an optimal mechanism (G∗, q∗). The optimal information structure must satisfy:

Π = arg max
{G−1:G−1≺F−1}

∫ 1

0

G−1(t)(1− t)dq∗t (t)−
∫
c(q∗t (t))dt. (10)

Note that if we change the information structure, but keep q∗t constant, the expected production

cost
∫
c(q∗t (t))dt will not change.

The optimization problem (10) is an upper semi-continuous linear functional of G−1. The upper

semi-continuity can be verified by noting that every G−1 ≺ F−1 is upper semi-continuous. Hence,

if Ĝ−1 → G−1 (taking the limit using the L1 norm), we have that lim sup Ĝ−1(t) ≤ G(t) for all

t ∈ [0, 1]. Hence, lim sup
∫ 1

0
Ĝ−1(t)(1− t)dq∗t (t) ≤

∫ 1

0
G−1(t)(1− t)dq∗t (t).

Proposition 1 in Kleiner, Moldovanu, and Strack (2021) shows that the set {G−1 : G−1 ≺ F−1}
is a convex and compact set, and Theorem 1 shows that the extreme points of this set are given by

(6). Following Bauer’s maximum principle, the maximization problem attains its maximum at an

extreme point of {G−1 : G−1 ≺ F−1} and we can conclude:

Proposition 1

There exists an optimal mechanism (G∗, q∗) such that G∗ has interval structure.

We now prove that an optimal mechanism must have an interval structure. Suppose that there

exists an optimal mechanism (G∗, q∗) such that G∗ does not have interval structure. Then there

exists a collection of interval information structures G and a measure λ over these interval structure

distributions such that:

G∗−1 =

∫
G−1dλ(G−1).

Furthermore, since the functional (10) is linear in G−1, each of these interval information structures

must be optimal. Hence, there must exist two optimal mechanisms (G∗1, q
∗) and (G∗2, q

∗), with

G∗1, G
∗
2 having interval structure and G

∗
1(w) 6= G∗2(w) for some w. However, G∗1 and G

∗
2 must have

different supports, which we now show to be inconsistent with it being an optimal mechanism.
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Lemma 3 (G∗ and q∗ are Increasing in the Support)

Let (G∗, q∗) be an optimal mechanism with q∗(w) = 0 if and only if w ≤ ŵ. Then, G∗ is constant

in some interval (w1, w2) with ŵ ≤ w1 if and only if q∗ is constant in (w1, w2).

Proof of Lemma 3. We first prove suffi ciency. Suppose that in some interval (w1, w2),

q∗ is constant but G∗ is not constant in this interval (G∗(w1) < G∗(w2)). Consider the following

information structure:

G̃(w) =


max{G∗(w)− ε, 0}, if w ∈ (0, w1];

G∗(w2), if w ∈ (w1, w2];

G∗(w), if w > w2;

where ε is chosen such that: ∫ w2

0

G̃(w)dw =

∫ w2

0

G∗(w)dw.

Hence, this is a feasible information structure (G̃ is a mean-preserving contraction of G∗). Con-

ditional on w ≤ w1, the distribution G̃ first order stochastically dominates G∗ : for all w ≤ w1,

G̃(w) ≤ G∗(w). Conditional on w ≥ w2, both distributions are the same. Since q∗ is constant in

(w1, w2), this clearly generates higher profits when q∗(w1) 6= 0.

We now prove necessity. Suppose that in some interval (w1, w2), q∗ is not constant (q∗(w1) <

q∗(w2)) but G∗ is constant in this interval. We can then consider the following variation:

q̃(w) =

q∗(v) if w 6∈ (w1, w2);

q∗(w1) if w ∈ (w1, w2).

We then have that (G∗, q̃) generates the same total surplus but generates less bidder surplus.

Hence, following Lemma 3 there can only be one optimal finite pooling interval information

structure. We thus conclude that there cannot be an optimal mechanism without a finite pooling

interval structure, as this would require that there would be multiple optimal finite pooling interval

structures. Thus we can conclude:

Proposition 2 (Necessity of Interval Structure)

In every optimal mechanism (G∗, q∗), the information structure G∗ has interval structure.

The proposition leaves open the possibility that there are intervals of complete disclosure.



Screening with Persuasion July 22, 2022 15

3.4 Optimality of Pooling

We next show that every interval is a pooling interval, and then in a second step that the number

of intervals is finite. We first provide an intuition and then provide the proof.

Suppose the seller pools the allocation of all values in interval [v1, v2], so that they all get the

average quality in this interval: how much lower would the profits be? To make the notation more

compact, we denote the virtual values by:

φ(v) , v − 1− F (v)

f(v)
. (11)

The revenue generated is the expectation of the product of the virtual values and the qualities:

R ,
∫ v̄

v

q∗(v)φ(v)f(v)dv.

We denote the mean and variance of the quality and virtual values in this interval by:

µφ ,
∫ v2

v1
φ(v)f(v)dv∫ v2

v1
f(v)dv

; µq ,
∫ v2

v1
q∗(v)f(v)dv∫ v2

v1
f(v)dv

; (12)

σ2
φ ,

∫ v2

v1
(φ(v)− µφ)2f(v)dv∫ v2

v1
f(v)dv

; σ2
q ,
∫ v2

v1
(q∗(v)− µq)2f(v)dv∫ v2

v1
f(v)dv

. (13)

The first step of the proof consists of showing that the revenue losses due to pooling the allocation

in the interval [v1, v2] are bounded by:

σφσq(F (v2)− F (v1)).

The total cost will also (weakly) decrease if the allocation is pooled because the cost function is

convex. Hence, pooling the allocation generates third-order profit losses when the interval is small

(since each of the terms multiplied are small when the interval is small).

If in addition to pooling the allocation we pool the information of the values in this inter-

val, we can reduce the buyer’s information rent. When only the allocation is pooled—but not the

information—then the quality increase that the pool gets relative to values just below the pool is the

quality difference µq − q∗(v1) priced at v1. After pooling the information, the price of the quality

increase is computed using the expected value conditional on being in this interval:

µv , E[v | v ∈ [v1, v2]]
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Hence, pooling the information increases the transfers for every value higher than v2 by an amount:

(E[v | v ∈ [v1, v2]]− v1)(µq − q∗(v1))(1− F (v1)).

Here the first two terms being multiplied are small when the interval is small. However, transfers

are marginally increased for all values higher than v2, which is a non-negligible mass of values

(i.e., (1 − F (v1)) is not small). In other words, pooling information increases the price of the

quality increase (µq − q∗(v1)) for all values higher than v2. Hence, pooling information generates a

second-order benefit which always dominates the third-order distortions.

Proposition 3 (Pooling Intervals)

The optimal information structure consists of pooling intervals only.

Proof of Proposition 3. Following Proposition 1, the optimal information structure consists

of intervals of pooling and intervals of full disclosure. We consider an optimal mechanism and an

interval (v1, v2) such that the optimal information structure is full disclosure in this interval (i.e.,

such that G∗(v) = F (v)). We expose a contradiction by proving that there is an improvement. It

is useful to write the interval (v1, v2) in terms of its mean and difference:

v̂ , v1 + v2

2
; ∆ , v2 − v1

2
.

So, we have that (v1, v2) = (v̂ −∆, v̂ + ∆) and we will eventually take the limit ∆→ 0.

Following Lemma 3, the qualities q∗(v) must be strictly increasing in this interval. We consider

qualities:

q̃(v) =

µq if v ∈ (v1, v2)

q∗(v) if v 6∈ (v1, v2)

The difference between the optimal policy and the variation is given by:

Π∗ − Π̃ =

∫ v2

v1

(φ(v)q∗(v)− c(q∗(v))) f(v)dv − (F (v2)− F (v1))
(
µφµq − c(µq)

)
. (14)

Note that we only need to consider the qualities in the interval [v1, v2] to compute the difference.

We can write this expression more conveniently as follows:

Π∗ − Π̃ =

∫ v2

v1

(φ(v)− µφ)(q∗(v)− µq)f(v)dv −
∫ v2

v1

(
c(q∗(v))− c(µq)

)
f(v)dv.
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The average production cost under µq is smaller than under q
∗ because the cost is convex, so the

second integral is positive (which is being subtracted). Furthermore, using the Cauchy-Schwarz

inequality, we can bound the first integral (and thus the whole expression) as follows:

Π∗ − Π̃ ≤ σqσφ(F (v2)− F (v1)). (15)

Finally, using the Bhatia-Davis inequality, we can bound the variances as follows:

σq ≤
√

(µq − q∗(v1))(q∗(v2)− µq),

and similarly for φ. We can then conclude that:

lim
∆→0

Π∗ − Π̃

∆3
≤ dq∗(v̂)

dv

dφ(v̂)

dv
f(v̂). (16)

We thus have that the effi ciency losses are of order ∆3.

We now consider the following policy:

q̂(v) =


q∗(v1), if v ∈ (v1, µv);

µq, if v ∈ [µv, v2);

q∗(v), if v 6∈ (v1, v2).

(17)

Note that here µv is the mean value in the interval [v1, v2]. We additionally change the information

structure so that all types in (v1, v2) are pooled. That is, the information structure is:

Ĝ(v) =


F (v1), if v ∈ (v1, µv);

F (v2), if v ∈ [µv, v2);

F (v), if v 6∈ [v1, v2).

(18)

Observe that the total surplus generated by (Ĝ, q̂) and by (G, q̃) is the same. Then, the difference

in the generated profits is equal to the difference in the expected buyer’s surplus:

Π̂− Π̃ = (µq − q∗(v1))(µv − v1)(1− F (v1)).

We conclude that:

lim
∆→0

Π̂− Π̃

∆2
≥ dq∗(v̂)

dv
(1− F (v1)). (19)

Here we used that (µv − v1)/∆→1, as ∆ → 0. The effi ciency losses are of order ∆2. We conclude

that for ∆ small enough, the new policy generates higher profits.
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Given the optimality of pooling intervals we introduce the following notation. The distribution

function G associated with any pooling interval structure is an increasing and piecewise constant

step function G given by:

Gk , G(wk), gk , G(wk)−G(wk−1). (20)

Moreover, given the pooled interval structure, we can relate the probability of each interval to the

underlying distribution of values, thus

gk = F (vk)− F (vk−1) , wk ∈ [vk−1, vk] .

Finally, the quality (and increment) allocated to value wk is denoted by

qk , q(wk); ∆qk , qk − qk−1. (21)

In a finite-item menu, the profits are given by:

Π =
K∑
k=1

gk (wkqk − c(qk))−
K∑
k=1

(wk+1 − wk)qk(1−Gk), (22)

where by convention wK+1 , wK . This is the discrete counterpart of (7). We can also express the

profits as follows:

Π =
K∑
k=1

wk∆qk(1−Gk−1)− gkc(qk), (23)

where G0 = 0.

3.5 Menu Convexity

Before we can prove the finiteness of the menu, we establish a qualitative property of the menu

that will support an argument for finiteness. Namely, we show that the menu will have increasing

quality increments, thus

∆qk+1 = qk+1 − qk ≥ qk − qk−1 = ∆qk,

for all k, whether k is finite or not.

Lemma 4 (Increasing Differences in Qualities)

In any optimal mechanism the quality increments ∆qk must be (weakly) increasing in k.
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Proof of Lemma 4. We fix a mechanism (G, q) and assume that there exists k̃ such that

∆qk̃ > ∆qk̃+1. We prove that the mechanism cannot be optimal.

We consider an alternative mechanism (G̃, q̃) that keeps the qualities the same:

q̃k = qk, for all k ∈ {1, ..., K}.

The alternative information structure is defined as follows. First, for all k 6∈ {k̃, k̃ + 1}, the
probabilities and expected values remain the same: w̃k = wk and g̃k = gk.Wemodify the information

structure as follows:

g̃k̃ = gk̃ + ε; g̃k̃+1 = gk̃+1 − ε; w̃k̃ =
gk̃wk̃ + εwk̃+1

gk̃ + ε
; w̃k̃+1 = wk̃+1.

Note that:

g̃k̃w̃k̃ + g̃k̃+1w̃k̃+1 = gk̃wk̃ + gk̃+1wk̃+1,

so this is clearly a mean-preserving contraction of G, and thus it is clearly feasible. The new

information structure will not be a partition, but for the purpose of the proof this is irrelevant

because we will prove that the stated mechanism is suboptimal. To keep the expressions more

compact, it is useful to introduce the following notation:

κ , w̃k̃ − wk̃ = ε
wk̃+1 − wk̃
gk̃ + ε

.

Note that when ε ≈ 0, κ ≈ ε(wk̃+1 − wk̃)/gk̃.
The difference in the profits generated by the original mechanism and the new mechanism are

given by:

Π− Π̃ =wk̃∆qk̃(1−Gk̃−1) + wk̃+1∆qk̃+1(1−Gk̃)−
(
w̃k̃∆qk̃(1− G̃k̃−1) + w̃k+1∆qk̃+1(1− G̃k̃)

)
− (gk̃ − g̃k̃)c(qk̃)− (gk̃+1 − g̃k̃+1)c(qk̃+1)

=− κ(1−Gk̃−1)∆qk̃ + wk̃+1∆qk̃+1ε+ εc(qk̃)− εc(qk̃+1)

≤− κ(1−Gk̃−1)∆qk̃ + wk̃+1∆qk̃+1ε− εc′(qk̃)∆qk̃+1

<∆qk̃+1

(
wk̃+1ε− κ(1−Gk̃−1)− εc′(qk̃)

)
The first inequality follows from the fact that c is convex, so c(qk̃)−c(qk̃+1) ≤ c′(qk̃)∆qk̃+1; the second

inequality follows from the fact that we are assuming (to reach a contradiction) that ∆qk̃+1 ≤ ∆qk̃.

Taking the derivative and evaluating at 0, we get:

d(Π− Π̃)

dε

∣∣∣∣∣
ε=0

<
∆qk̃+1

gk̃

(
− (wk̃+1 − wk̃)(1−Gk̃−1) + gk̃wk̃+1 − gk̃c′(qk̃)

)
.
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The quality provided to expected valuation wk satisfies the following first-order condition:

wk − c′(q∗k) = (wk+1 − wk)
1−Gk

gk
.

Using this first-order condition we have that:

d(Π− Π̃)

dε

∣∣∣∣∣
ε=0

<
∆qk̃+1

gk̃

(
− (wk̃+1 − wk̃)(1−Gk̃−1) + gk̃wk̃+1 + (wk̃+1 − wk̃)(1−Gk̃)− gk̃wk̃)

)
= 0.

Hence, (G, q) is not optimal.

3.6 Optimality of Short Menu

We now show that the optimal information structure consists of finitely many intervals.

Proposition 4 (Finite Pooling Interval)

The optimal information structure has a finite pooling interval structure.

Proof of Proposition 4. Since the space of values is compact, this is equivalent to showing

that there are no accumulation points of intervals. We consider three consecutive pooling intervals

that generate expected values wk−1 < wk < wk+1.

Lemma 4 implies that there cannot be any accumulation points, except possibly at some v̂

satisfying q∗(v̂) = 0. Hence, it is a decreasing accumulation point (that is, the limit of expected

valuations converges to v̂ from the right). We denote by f̄ and f the maximum and minimum

density in [v, (v̄ + v̂)/2]:

f , min
v∈[v,

(v̄+v̂)
2

]

F ′(v); f̄ , max
v∈[v,

(v̄+v̂)
2

]

F ′(v).

If such an accumulation point exists, we can find two consecutive pooling intervals, (vk−1, vk] and

(vk, vk+1], generating expected values wk < wk+1, satisfying gk < gk+1, and:

c′(q∗k+1)− c′(q∗k) <
√
f(1− F (vk−1))√
f̄(
√
f̄ +

√
f)

. (24)

Note that the qualities q∗k are monotonic, and so we must have that (qk+1 − qk) converge to 0 as
we take intervals close enough to v̂. So, we can take intervals close enough to v̂ such that (24) is

satisfied. Hence, we consider two intervals satisfying this inequality and reach a contradiction. We

recall that the density is not vanishing except at the upper bound v̄, so we must have that f > 0.
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Analogous to (11), we define:

φk , wk − (wk+1 − wk)
1−Gk

gk
,

and extend (12)-(13) in the natural way:

µw ,
gkwk + gk+1wk+1

gk + gk+1

; σ2
w ,

gk(wk − µw)2 + gk+1(wk+1 − µw)2

gk + gk+1

and analogously for µq, σq, µφ, σφ. Finally, Π̂ and Π̃ are defined in the same way as before.

Following the same steps as before, we have that:

Π∗ − Π̃

Π̂− Π̃
≤

√
(µq − q∗(wk))(q∗(wk+1)− µq)

√
(µφ − φk)(φk+1 − µφ)(gk + gk+1)

(µq − q∗(wk))(µw − wk)(1− F (vk−1))
.

We note that:

µφ − φk =
gk+1(φk+1 − φk)

gk + gk+1

, φk+1 − µφ =
gk(φk+1 − φk)
gk + gk+1

;

and the difference between other quantities can be written in an analogous way. We thus get that:

Π∗ − Π̃

Π̂− Π̃
≤ gk(φk+1 − φk)(gk + gk+1)

gk+1(wk+1 − wk)(1− F (vk−1))
.

We then note that:

gk + gk+1 ≤ f̄(vk+1 − vk−1); wk ≤
√
f̄vk +

√
fvk−1√

f̄ +
√
f

; wk+1 ≥
√
f̄vk +

√
fvk+1√

f̄ +
√
f

.

We also recall that gk < gk+1 and note that the optimal quality is given by φk = c′(q∗k) and

φk+1 = c′(q∗k+1). We thus get that:

Π∗ − Π̃

Π̂− Π̃
≤
√
f̄(c′(q∗k+1)− c′(q∗k))(

√
f̄ +

√
f)√

f(1− F (vk−1))
< 1,

where the second inequality corresponds to (24). Thus, we reach a contradiction with this being an

optimal mechanism.

4 Single-item Menu

So far, we have shown that the optimal mechanism generates a coarse menu that only offers a finite

number of items. By contrast, with complete disclosure of information to the buyer, the optimal

menu would typically offer a continuum of items. This leaves open the question of how coarse the

menu can become. In this section, we introduce suffi cient conditions that will guarantee that the

optimal menu consists of a single item.
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4.1 The Optimal Single-item Menu

Suppose that the seller were constrained to only offer a single item. Which item would he then offer

and at what price? The optimal single-item menu is found by solving the following problem:

(q∗, v∗) ∈ arg max
q,v

P[v′ ≥ v](E[v′ | v′ ≥ v]q − c(q)). (25)

We denote by µ∗ the expectation of v conditional on v exceeding v∗:

µ∗ , E[v′ | v′ ≥ v∗].

The single-item mechanism consists of selling quality q∗ at a price p∗ = µ∗q∗, which is sold to all

values higher than v∗. The buyer is only informed whether he should buy the good. Note that the

buyer is left with no surplus.

The first-order conditions for the optimal single-item menu are given by:

µ∗ = c′(q∗) and c(q∗) = v∗q∗, (26)

The first condition states that the quality is effi ciently supplied given that the (expected) valuation

of the buyer who buys the good is µ∗. The second condition states that the threshold v∗ is also

effi ciently chosen: given that q∗ units are going to be supplied, it is effi cient to sell to a buyer with

valuation v if and only if the utility he obtains from this quality is larger than the cost of producing

it. We note that the second equality might eventually be satisfied by some v∗ < v, which means

there is no exclusion.

The reason there are no distortions in the quality supplied and the threshold is that in a single-

itemmechanism there is zero buyer surplus. So these quantities are not distorted to reduce consumer

surplus. In general, when the optimal mechanism is a multi-item mechanism, both the thresholds

and the qualities provided are distorted to reduce the consumer surplus.

4.2 Single-item Menu Optimality

We say a distribution has modest tails if for all t ∈ [0, 1] :

E[v′ | F (v′) ≥ t] ≤ µ∗ + 2

(
1−

√
1− t

1− F (v∗)

)
(µ∗ − v∗). (MT)

The condition imposes an upper-bound on the conditional expected value of the tail of the distribu-

tion (i.e., values that are above some quantile t) based only on the threshold v∗ and the conditional
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mean µ∗ of the optimal single-item mechanism. Observe that the right hand side is equal to µ∗

when t = F (v∗), and thus the inequality holds with equality. The left hand side and right hand side

are both increasing in t. Thus the condition requires that the conditional expected value of the tail

does not increase too fast. The right hand side equals 3µ∗ − 2v∗ when t = 1, and so the condition

puts an upper bound on the support: v̄ ≤ 3µ∗ − 2v∗. From a technical perspective, the condition

guarantees that the distribution is a mean-preserving contraction of an appropriately constructed

distribution that has linear density. We give our second main result and then provide additional

interpretation of (MT).

Theorem 2 (Optimality of Single-item Mechanisms)

If the distribution satisfies (MT) and c′′′(q) ≥ 0, then the optimal mechanism is a single-item menu.

Theorem 2 shows that in a wide range of settings the optimal mechanism is a single-item menu.

Condition (MT) is stated in terms of v∗, which cannot be easily inferred from F without making

the explicit calculation. However, we can give stronger conditions that are easier to evaluate.

Distribution F satisfies (MT) if the density f is quasi-concave and it satisfies:1

f ′(v) < 0⇒ f ′′(v) ≤ 0. (QC)

This condition states that f must be concave when it is decreasing. For example, any distribution

with (weakly) increasing density satisfies (QC).

We prove Theorem 2 as follows. We first show that when the cost is quadratic and the density

is linearly decreasing, the optimal mechanism is a single-item mechanism. We then show that the

optimal mechanism is a single-item mechanism when the marginal cost is convex and the density is

linearly decreasing. Finally, we show that the distributions (MT) are mean-preserving contractions

of an (appropriately constructed) linearly-decreasing density, which we use to prove that the optimal

mechanism is a single-item mechanism.

4.3 Linearly-decreasing Density and Quadratic Cost

We analyze the optimal mechanism when the distribution of values is given by:

L(v; v, v̄) , (v − v)(2v̄ − v − v)

(v̄ − v)2
. (27)

1In fact, (QC) alone implies quasi-concavity. We explicitly require quasi-concavity only to make the condition

more transparent.
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The density of this distribution, which we denote by l(v; v, v̄), is linearly-decreasing with zero density

at the top of the support:

l(v̄; v, v̄) = 0.

We begin by proving that a single-item mechanism is optimal when the cost is linear-quadratic:

c(q) , αq +
βq2

2
+ γ. (28)

The fixed cost γ plays no role in the analysis and is added to the cost function only to simplify the

exposition of some arguments.

Proposition 5 (Linear Density and Quadratic Cost Environment)

The optimal menu with linearly-decreasing density and a linear-quadratic cost function is always a

single-item menu.

Proof of Proposition 5. Recall that in a finite-item menu, the profits can be written as in

(23). We consider the optimality conditions of the highest two intervals of an optimal mechanism.

For this, we define the profits from the highest two items:

ΠK−1,K(vK−1,∆qK−1,∆qK) ,
(
(gK−1 + gK)∆qK−1wK−1 − gK−1c(qK−2 + ∆qK−1) (29)

+gK (∆qKwK − c(qK−2 + ∆qK−1 + ∆qK))
)
,

which are the last two terms of the summations in (23). If the optimal mechanism is a multi-item

mechanism, the solution to the following problem:

Π∗K−1,K = max
vK−1 ∈ [vK−2, v̄],

∆qK−1,∆qK ≥ 0

ΠK−1,K(vK−1,∆qK−1,∆qK) (30)

must satisfy ∆qK−1, ∆qK > 0 and vK−2 < vK−1 < v̄, where qK−2 and vK−2 are parameters that are

kept fixed in the optimization problem.

Given the quadratic cost function, the optimality conditions for qK−1 and qK are:

∆qK−1 = max{wK−1 − α− βqK−2

β
− (wK − wK−1)gK

βgK−1

, 0} and ∆qK =
wK − α− βqK−1

β
. (31)

Hence, ∆qK−1 > 0 only if
wK − α− βqK−2

wK−1 − α− βqK−2

<
gK−1 + gK

gK
. (32)



Screening with Persuasion July 22, 2022 25

To write expressions that are compact, we define:

z , v̄ − vK−1

v̄ − vK−2

; κ , 3
vK−2 − α− βqK−2

v̄ − vK−2

.

Note that in an optimal mechanism we must have that κ ≥ 0, as otherwise the mechanism would be

offering a quality qK−2 whose marginal cost is higher than the value for all values v ∈ [vK−3, vK−2],

which is clearly suboptimal. Using these definitions, we have that (32) is satisfied if and only if:

(3− 2z + κ)

(1− 2z2

1+z
+ κ)

<
1

z2
. (33)

And, for every z satisfying (33), (29) can be written as follows:

Πz ,
(gK−1 + gK)(v̄ − vK−2)2

18β (1− z2)

(
(3− 2z + κ)z2

(
1− 2z +

4z2

1 + z
− κ
)

+

(
1 + κ− 2z2

1 + z

)2
)
.

(34)

Hence, Πz is equal to ΠK−1,K when (32) is satisfied. If the optimal mechanism is a multi-item

mechanism, there must exist z ∈ [0, 1] satisfying (33) that maximizes (34).

If z∗ maximizes (34) and satisfies (33) with strict inequality, then z∗ must satisfy the first- and

second-order conditions. However, there is no z∗ ∈ [0, 1] that satisfies the first- and second-order

conditions:
∂Πz

∂z

∣∣∣∣
z=z∗

= 0 and
∂2Πz

∂z2

∣∣∣∣
z=z∗
≤ 0.

Hence, there is no interior solution. This is a contradiction, so in the optimal mechanism∆qK−1 = 0.

We now deploy the argument for the optimality of a single-item menu beyond the quadratic

model. Towards this end, we define the solution to a restricted optimization problem for a linear-

quadratic cost function with parameters α and β:

(v∗(α, β),∆q∗K(α, β)) , arg max
0≤∆q,vK−2≤v≤v̄

ΠK−1,K(v, 0,∆q), (35)

where we define the optimal quantity for the last interval:

qK = q∗(α, β) , qK−2 + ∆q∗K(α, β).

Thus, we consider a restricted optimization problem where the seller takes as given the first K −
2 intervals and allocations. The restricted problem (35) is then to find an interval (vK−1, v̄] =

(v∗(α, β), v̄] and an allocation q∗K(α, β) so as to maximize the profits from all types in the given
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interval (vK−2, v̄]. This restricted maximization problem allows the interval (vK−1, v̄] to be a strict

inclusion of (vK−2, v̄]: that is, (vK−1, v̄] ( (vK−2, v̄]. In this case, all the types in the interval

(vK−2, vK−1] will receive the allocation qK−2. Now, from Proposition 5, we know that:

ΠK−1,K(vK−1,∆qK−1,∆qK) < ΠK−1,K(v∗(α, β), 0,∆q∗K(α, β))

for every ∆qK−1, ∆qK > 0. We add (α, β) as an argument because we will eventually vary these

parameters; we don’t add γ because the solution (v∗(α, β),∆q∗K(α, β)) evidently does not depend

on the constant γ.

4.4 Linearly-decreasing Density and Convex Cost

We now analyze the entire class of convex cost functions with c′′′ (q) ≥ 0. We assume that the

optimal mechanism consists of multiple items and reach a contradiction. We denote by ĉ(q) a

linear-quadratic cost function (as in (28)). We note that c(q) and ĉ(q) intersect three times at most.

Furthermore, if c (q) and ĉ(q) are equal at qualities q1, q2, q3, then the difference ĉ(q)−c(q) satisfies:

ĉ(q)− c(q) ≥ 0 ⇐⇒ q ∈ (−∞, q1] ∪ [q2, q3].

We use this for the following result.

Lemma 5 (Dominating Cost Function)

For every convex cost function with c′′′ (q) ≥ 0 and for every (qK−2, qK−1, qK) with qK−2 ≤ qK−1 ≤
qK, there exists (α, β, γ) satisfying c(qK−2) = ĉ(qK−2) and one of the following three conditions:

1. c(qK) = ĉ(qK); c(qK−1) = ĉ(qK−1); c(q∗(α, β)) < ĉ(q∗(α, β));

2. c(qK) > ĉ(qK); c(qK−1) = ĉ(qK−1); c(q∗(α, β)) = ĉ(q∗(α, β));

3. c(qK) = ĉ(qK); c(qK−1) > ĉ(qK−1); c(q∗(α, β)) = ĉ(q∗(α, β)).

Proof of Lemma 5. We begin by considering α, β, γ chosen such that:

ĉ(qK−2) = c(qK−2); ĉ(qK−1) = c(qK−1); ĉ(qK) = c(qK). (36)
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For this, we need to set the parameters α, β, γ as follows:

α =
c(qK)

(
q2
K−2 − q2

K−1

)
+ c(qK−1)(q2

K − q2
K−2) + c(qK−2)

(
q2
K−1 − q2

K

)
(qK − qK−1)(qK − qK−2)(qK−1 − qK−2)

β =
2(c(qK)(qK−1 − qK−2) + c(qK−1)(qK−2 − qK) + c(qK−2)(qK − qK−1))

(qK − qK−1)(qK − qK−2)(qK−1 − qK−2)

γ =
c(qK)qK−1qK−2(qK−1 − qK−2) + c(qK−1)qKqK−2(qK−2 − qK) + c(qK−2)qKqK−1(qK − qK−1)

(qK − qK−1)(qK − qK−2)(qK−1 − qK−2)

These are the coeffi cients one obtains from the interpolation of a second-degree polynomial.

Since ĉ is a linear-quadratic cost function and since c′′′ ≥ 0, we have that for all q ≥ qK−2:

c(q) ≤ ĉ(q) ⇐⇒ q ∈ [qK−1, qK ]. (37)

In other words, ĉ is equal to c at the qualities implemented by the mechanism and exhibits higher

costs at qualities that are in between these two qualities and lower cost outside this interval. If

q∗(α, β) ∈ [qK−1, qK ],

then we are in Case 1 of Lemma 5. We now show that, if q∗(α, β) 6∈ [qK−1, qK ], then we can find

different α, β, γ such that we are in Case 2 or 3 of Lemma 5.

Suppose that:

q∗(α, β) < qK−1, (38)

where (α, β) satisfy (36). We then need to find different parameters α, β. We consider parameters

α, β as a function of q implicitly defined as follows:

ĉ(qK−2) = c(qK−2); ĉ(qK−1) = c(qK−1); ĉ(q) = c(q).

We can write α, β, γ explicitly as before but replacing c(qK) with c(q) and qK with q. Since α, β, γ

are functions of q, we write α(q), β(q), γ(q) and observe that they are continuous functions of q

(while some of the denominators converge to 0 as q → qK−1 the limits exist). We also have that:

q∗(α(qK), β(qK))− qK < 0 and q∗(α(qK−2), β(qK−2))− qK−2 ≥ 0,

where the first inequality follows from (38) and the second inequality follows from the fact that q∗

by definition is larger than qK−2 (see (35)) . Thus, following the intermediate value theorem, there

exists a q̂ ∈ [qK−2, qK ] such that:

q∗(α(q̂), β(q̂)) = q̂. (39)
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Furthermore, note that qK > max{q̂, qK−1}, so we have that ĉ(qK) < c(qK). Thus, we are in Case 2

of Lemma 5.

Finally, if

q∗(α, β) > qK ,

we can find α, β, γ such that Case 3 is satisfied in an analogous way to the case when (38) was

satisfied. In particular, we consider parameters α, β as functions of q implicitly defined as follows:

ĉ(qK−2) = c(qK−2); ĉ(q) = c(q); ĉ(qK) = c(qK).

And we can show there exists q̂ such that q∗(α(q̂), β(q̂)) = q̂ and:

c(qK) = ĉ(qK); c(qK−1) > ĉ(qK−1); c(q∗(α, β)) = ĉ(q∗(α, β)).

This concludes the proof.

With this Lemma we can now extend the optimality result to convex cost functions.

Proposition 6 (Optimality of Single-item Menu with Linear Density and Convex Cost)

The optimal menu with linear decreasing density and c′′′ ≥ 0 is always a single-item menu.

Proof of Proposition 6. We now suppose that the optimal mechanism satisfies∆qK−1,∆qK >

0 and reach a contradiction. In the same manner as (29), we define:

Π̂K−1,K ,
(gK−1 + gK)∆qK−1wK−1 − gK−1ĉ(qK−2 + ∆qK−1) + gK (∆qKwK − ĉ(qK−2 + ∆qK−1 + ∆qK)) .

Now c (·) is the true cost function, which satisfied c′′′ (·) ≥ 0, and ĉ (·) is a linear-quadratic cost. So
Π̂K−1,K is computed as ΠK−1,K but using the linear-quadratic cost instead of the true cost. With

a linear-quadratic cost the optimal mechanism is a single-item menu and thus:

Π̂K−1,K(vK−1,∆qK−1,∆qK) < Π̂K−1,K(v∗K−1(α, β), 0,∆q∗K(α, β))

We now consider the three cases in Lemma 5.

If we take (α, β) so that the first case in Lemma 5 holds, then we have:

ΠK−1,K(vK−1,∆qK−1,∆qK) =Π̂K−1,K(vK−1,∆qK−1,∆qK); (40)

ΠK−1,K(v∗K−1(α, β), 0,∆q∗K(α, β)) >Π̂K−1,K(v∗K−1(α, β), 0,∆q∗K(α, β)); (41)
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We thus have that:

ΠK−1,K(vK−1,∆qK−1,∆qK) < ΠK−1,K(v∗K−1(α, β), 0,∆q∗K(α, β)),

which contradicts the assumption that the multi-item mechanism is optimal.

If we consider (α, β) that satisfy the cases 2 or 3 of Lemma 5, then the argument is analogous

but (41) will hold with equality and (40) will hold with strict inequality.

4.5 Distributions with Modest Tails

We now analyze distributions with modest tails. We begin with an important property of the

optimal single-item mechanism when the distribution has a linearly-decreasing density. For these

distributions, the first-order conditions (26) are necessary and suffi cient conditions for optimality

when c′′′ (·) ≥ 0.

Proposition 7 (Suffi cient Conditions for Optimality)

If c′′′ (q) ≥ 0, the distribution is L(v; v, v̄), and (q̂, v̂) satisfy the first-order condition (26), then

(q̂, v̂) solves (25), i.e. (q̂, v̂) = (q∗, v∗).

Proof of Proposition 7. When the distribution is linearly decreasing, we have that:

E[v | v ≥ v̂] =
2v̂ + v̄

3
.

Hence, if (q̂, v̂) satisfy the first-order condition (26) we have that:

2v̂ + v̄

3
= c′(q̂) and v̂ =

c(q̂)

q̂
.

We then have that:

v̄ = 3c′(q̂)− 2
c(q̂)

q̂
.

We now note that,

d

dq
(3c′(q)− 2

c(q)

q
) =

2

q
(c′′(q)q − c′(q) +

c(q)

q
) + c′′(q).

If c′′′(q) ≥ 0 we have that c′′(q)q ≥ c′(q). Hence, we have that:

d

dq
(3c′(q)− 2

c(q)

q
) > 0.
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Thus, there is a unique pair (v̂, q̂) such that the first-order condition is satisfied.

We now verify that the first-order condition is suffi cient for optimality. For this, we check

that the solution is always interior, and since there is only one point that satisfies the first-order

condition, this must be the optimum. We first note that q̄ ∈ {0,∞} is clearly never optimal. It
is also easy to see that v = v̄ cannot be an optimum as then the objective function of (25) is 0.

We finally note that v∗ = 0 is never optimal, which can be checked by noting that the first-order

condition with respect to the cutoff gives c(q∗) ≤ v∗q∗. Hence, the solution is always interior and it

must be the only point that satisfies the first-order conditions.

For a given distribution F , we now introduce two related distributions, one generated by a

linear decreasing density, and the other by a truncated version of the former. These latter two

distributions are constructed in such a way as to allow us to compare the profits from the optimal

mechanism under F (which we do not know) to the optimal mechanism under these two related

distributions. Jointly with a cost-dominating argument, we can then establish the optimality of a

single-item menu in a large class of environments.

Towards this end, we consider a distribution L(v; z, z) with a linearly-decreasing density where

the lower and upper bounds of the distribution L, namely z, z, are chosen to satisfy the following

properties relative to the distribution F and the optimal single-item threshold v∗ under F given by

(25):

L(v∗; z, z) = F (v∗) and EL[v | v ≥ v∗] = EF [v | v ≥ v∗], (42)

where the subscripts in the expectation indicate the distribution used to compute the expectation.

Namely, at the threshold v∗, L and F obtain the same quantile, and the conditional expectation

above the threshold v∗ are identical. To satisfy these conditions, it is necessary to set:

z =3EF [v | v ≥ v∗]− 2v∗ − 3(EF [v | v ≥ v∗]− v∗)√
1− F (v∗)

;

z =3EF [v | v ≥ v∗]− 2v∗.

We also consider the following distribution F̂ (v):

F̂ (v) =

L(v̂; z, z), if v ∈ [0, v̂];

L(v; z, z), if v ∈ [v̂, z];
(43)

where v̂ is chosen such that: ∫ ∞
0

vdF (v) =

∫ ∞
0

vdF̂ (v).
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In the proof of Lemma 6 we will show that indeed such a v̂ exists. Thus, F̂ (v) is constructed by

taking the mass of the lower tail of L(v; z, z) and moving it to 0. In other words, F̂ is equal to

L(v; v, v̄) for v ≥ v̂, and F̂ has an atom of size L(v̂; z, z) at v = 0.

We can now relate these three distributions in terms of stochastic orders.

Lemma 6 (Distribution Comparison)

Distribution F̂ is a mean-preserving spread of F and F̂ is first-order stochastically dominated by

L(v; z, z).

Proof of Lemma 6. We first compare L(v, z̄, z) with F. Note that:∫ 1

q
L−1(v; z, v)dv

1− q =µ∗ + 2

(
1−

√
1− q

1− F (v∗)

)
(µ∗ − v∗);∫ 1

q
F−1(v)dv

1− q =E[v | F (v) ≥ q].

Hence, (MT) implies that for all v′ ∈ [0,∞):∫ 1

F (v′)

F−1(v)dv ≤
∫ 1

F (v′)

L−1(v; z, v)dv. (44)

If the inequality is satisfied with equality for v′ = 0, we have that v̂ = z and, otherwise, v̂ > z

(where v̂ is used to construct F̂ in (43)). Otherwise, we will have that v̂ > z.

Since F̂ is constructed by taking the mass of the lower tail of L(v; z, z) and moving it to 0, it is

transparent that F̂ is first-order stochastically dominated by L(v; z, z). We have that (44) implies

that for all v′ ≥ v̂: ∫ 1

F (v′)

F−1(v)dv ≤
∫ 1

F (v′)

F̂ (v)dv.

We also have that by construction F̂ has the same mean as F . It then follows that for all v′∫ 1

F (v′)

F−1(v)dv ≤
∫ 1

F (v′)

F̂ (v)dv,

with equality for v′ = 0. Hence, F̂ is a mean-preserving spread of F (see Theorem 3.A.5 in Shaked

and Shanthikumar (2007)).

We can now conclude the proof by establishing the main result of this section, Theorem 2.

Final Step of the Proof of Theorem 2. We first verify that the optimal single-item mech-

anism when the distribution is L(v; z, z) is the same as when the distribution is F . By construction
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of L(v; z, z), the first-order condition that is satisfied for F is also satisfied for L(v; z, z). Following

Proposition 7, for the linearly decreasing density the first-order condition is suffi cient for optimality,

and thus (v∗, q∗) given by (25) do in fact form the optimal mechanism for L.

We have that L(v; z, z) generates at least as much profit as F̂ , and F̂ generates at least as much

profit as F . Since the optimal mechanism for distribution L(v; z, z) is a single-item mechanism, and

this mechanisms generates the same profit (by construction) under distribution F , this must also

be the optimal mechanism under distribution F .

5 Additional Results

In this section we first analyze the optimal mechanism when the distribution has binary support and

the cost is iso-elastic. Under these assumptions we can fully characterize the optimal mechanism,

and the binary model will serve as a stepping stone to give more results about the general model.

Second, we show that if the distribution has narrow support the optimal mechanism is pooling.

We then show that, if the distribution has unbounded support, the optimal mechanism consists of

infinitely many items. Finally, we offer the comparative statics of how the cost elasticity changes

the nature of the optimal mechanism.

5.1 Optimal Mechanism with Binary Values

Throughout this section, the values v of the buyer have binary support 0 < vL < vH , with proba-

bilities fLand fH respectively (of course, fL + fH = 1). We also assume that the cost function is a

power function:

c(q) = qη/η,

with η > 1.

The disclosure policy of the seller always contains two extremal policies: (i) the seller discloses

all information to the buyer and subsequently screens the different types through different qualities

the screening solution; or, (ii) the seller does not disclose any information and subsequently pools

all types and offers a single item for sale the pooling solution.

In between these two extremal disclosure policies, there is a large number of intermediate policies

that would generate different optimal selling policies. The seller could combine low and high values

in arbitrary proportions to create many intermediate values, and thus additional values to screen

and to match with suitable qualities. Our first result is that the stochastic combination of low and
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high values will never be optimal. Either the values will be completely disclosed, thus yielding the

screening solution, or completely pooled, thus yielding the pooling solution.

Proposition 8 (Complete Screening or Complete Pooling)

The optimal mechanism either exhibits complete screening or complete pooling.

This result with binary values generalizes appropriately to a case of continuum values as stated

in Theorem 1. Namely, the optimal information is a monotone partition that pools adjacent values.

The set of pooled values may be small or large but is never formed through stochastic combinations.

With these two possible forms of optimal disclosure policies, it is only necessary to consider

three selling strategies: (a) with zero disclosure, the values are pooled and a single item is sold to

the expected value; (b) with complete disclosure sell only to the high value; and, (c) with complete

disclosure offer a menu that screens and serves distinct values. We notice that under either (a) or

(b), the optimal menu consists of a single item.

If the seller pools the values, the profit is:

ΠP , max
q
{(fLvL + fHvH)q − c(q)} .

The buyer’s expected value is w = fLvL + fHvH and the seller provides the effi cient quantity qw
given the expected value and extracts the expected surplus.

If the seller serves the high value only, the profit is:

ΠH , max
q
{fH(vHq − c(q))} ,

and the seller offers a single-item qH at the effi cient level to the high value buyer. Relative to the

pooling solution, the profits are higher when there is a sale, but the probability of a sale is lower.

If the seller offers a menu (qL, qH), the profit is:

ΠM , max
qL,qH

{(fH(vHqH − c(qH)) + fL(qLvL − c(qL)))− fHqL(vH − vL)}.

Here the seller maximizes the difference between the total surplus (first term) and the information

rents (second term). The high value buyer is offered the effi cient quality qH while the low value is

offered a quantity qL below the effi cient level to reduce the information rents.

Using the fact that we restrict attention to cost functions that are power functions, we can

determine the optimal quantities explicitly in the screening solution:

qL = v
1

η−1

L (1−
(vH
vL
− 1)fH

fL
)

1
η−1 , and qH = v

1
η−1

H . (45)
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If the optimal allocation is given by a single item, then the quality level is given by the effi cient

solution, thus either

qw = (fLvL + fHvH)
1

η−1 , or qH = v
1

η−1

H .

As a consequence, the profit function under either policy can be expressed explicitly as follows:

ΠP =v
η
η−1

L

η − 1

η
(fL + fH

vH
vL

)
η
η−1 ; (46)

ΠH =v
η
η−1

L

η − 1

η
fH(

vH
vL

)
η
η−1 ; (47)

ΠM =v
η
η−1

L

η − 1

η

((
(1− fH vH

vL
)

η
η−1

(1− fH)
1

η−1

)
+ fH(

vH
vL

)
η
η−1

)
. (48)

We can now compare the revenue from the two disclosure policies: zero disclosure, and thus ΠP , or

complete disclosure, ormax {ΠH ,ΠM}. Toward a complete description of the optimal policy we first
observe that under complete disclosure the choice of the optimal menu”one or two items”depends

only on the values and frequencies, but not on the cost function for quality.

Lemma 7 (Screening with a One-item vs Two-item Menu)

With complete disclosure, a single-item menu yields higher profits than a two-item menu if and only

if

vL < vHfH . (49)

Lemma 7 provides a well-known trade-off in screening problems. Serving the low value increases

effi ciency but it also increases the buyer’s information rents. Hence, the quality offered to the low

value is distorted downwards. The distortion is increasing in the probability that the buyer has a

high value, and if this probability is too high, then the low value buyer is excluded completely and

offered zero quality. Thus, we can express the optimality of the one-item versus two-item menus

in terms of the ratio of the values vH/vL and the probability fH (of the high value) alone. The

exclusion condition (49) in fact holds for all convex cost functions provided with a marginal cost of

zero at quality q = 0 (that is, c′ (0) = 0).

In contrast to the classic screening problem, we allow the seller to disclose less information and

in the limit pool the values of the buyers. The benefit of pooling is that the seller can extract all

of the buyer’s expected surplus. The cost of pooling is that there are effi ciency losses associated to

providing the same quality to low and high values.
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We now characterize when pooling is used optimally. We define a threshold ratio r that deter-

mines when pooling is optimal:

r(fH , η) , {r ∈ R+ | ΠP ≥ max{ΠH ,ΠM} ⇐⇒ vH/vL ≤ r}. (50)

In other words, r(fH , η) is such that the optimal mechanism is pooling if and only if the ratio

between the high value and the low value, vH/vL ≤ r(fH , η), is below the threshold. The threshold

ratio r is a function of the primitives of the binary model, namely the prior probability fH of a high

value and the curvature of the cost function η:

r : [0, 1]× R+ → R+.

We now characterize r.

Proposition 9 (Optimality of Pooling)

The correspondence r(fH , η) as defined in (50) is not empty, it is single valued, and is increasing

in η and decreasing in fH , with r(1, η) = η.

Propositions 7 and 9 jointly give us a complete description of the optimal mechanism. Figure

1 illustrates the qualitative properties of the optimal mechanism for different values of (fH , vH).

Figure 1 also illustrates how the optimal mechanism changes with the power η of the cost function.

When η = 2, an explicit expression for the threshold function r can be given:

r(fH , 2) =

1 + 1√
fH
, if fH > 3−

√
5

2
;

f2
H−3fH+3

f2
H−fH+1

, if fH ≤ 3−
√

5
2
.

(51)

The threshold level for fH is given by (3−
√

5)/2 ≈ 0.38. Pooling is therefore optimal only when the

ratio between high and low value is suffi ciently small. When the distribution gives more weight to

the high value, pooling becomes less beneficial. We then see that offering a multi-item mechanism

is optimal only when the probability of the high value is relatively small.

Corollary 2 (Single-item Menu)

If η ≥ 2 and fH ≥ (3−
√

5)/2, then the optimal mechanism is a single-item menu.

In this case, we can provide predictions about when it is optimal to offer a single-itemmenu based

on the distribution of the values and not the difference between the values. This is because excluding

the low value is optimal when the difference between values is high enough, or the probability of

the high value is high enough. We already solved analytically for the quadratic cost function, and

then we can extend the result to η > 2 by observing the r(fH , η) is increasing in η.
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5.2 Narrow Support Distributions

We can now show that, if the support of the distribution is narrow enough, the optimal mechanism

will necessarily be pooling. When the distribution has binary values, this follows as a direct corollary

of Proposition 9.

Corollary 3 (Small Differences Between Valuations)

If the ratio between the high and low value is lower than η :

vH
vL

< η,

then the optimal mechanism pools both values.

We can extend the insight from the model with a binary value distribution to the general

environment with a continuum of values. We then replace the low and high value, vL and vH by

the lower and upper bound of the support of the distribution, thus v and v.

Proposition 10

Pooling is optimal for every distribution F with support in [v, v] if and only if

v

v
< η. (52)

Proof. Consider a distribution H with binary support in {v, v̄} such that the probability of v̄
is given by (µv−v)/(v̄−v) (where µv is the mean of F ). We then have that H is a mean-preserving

spread of F . But, following Corollary 3, the optimal mechanism when the distribution is H pools

all values. Hence, this must also be the optimal mechanism when the distribution is F. This proves

the suffi ciency part of the statement. The necessity part of the statement is straightforward because

if (52) is not satisfied, then there is a binary value distribution with support in {v, v̄} for which
pooling is not the optimal mechanism.

To gain some intuition, we consider the case in which vH/vL ≈ 1 and analyze whether pooling

or offering a two-item menu generates higher profits (note that when vH/vL ≈ 1 we will have that

vH/vL ≤ f−1
H so excluding the low value is not optimal). Of course, when vH/vL = 1, both selling

strategies are equivalent. With nearby values, it is suffi cient to consider a first-order approximation.

Let SM and SP be the total surplus generated when offering a two-item menu and single-item

menu that pools, and let ∆S be the difference:

∆S , SM − SP .



Screening with Persuasion July 22, 2022 37

It is possible to verify that:
∂∆S

∂vH

∣∣∣∣
vH=vL

= 0.

In other words, at a first-order approximation the gains are 0 when the difference in values is small.

As the cost is convex, small distortions around the socially optimal quantity generate only second-

order losses. Hence, offering the optimal quantity for the low-value type to the high value type as

well generates second-order losses when the ratio between both values is close enough to 1.

On the other hand, when the values are pooled, the information rent of the buyer is UP = 0.

By contrast, the information rents when offering a menu are:

UM = fHqL(vH − vL).

The information rent is the surplus that the high value buyer obtains when reporting to be of

low value. The information rent is proportional to the difference between values, and thus the

information rents increase linearly with vH .

We thus conclude that it is optimal to screen only when the ratio between the values is large

enough. The reason is that the effi ciency gains from a menu are convex in the difference of the

values while the information rents are linear. Hence, it is profitable to separate the high value only

when the high value is suffi ciently high enough relative to the low value.

We note that the optimality of pooling has implications for social welfare as well. When pooling

is optimal and when the optimal mechanism with complete disclosure would exclude the low value,

then the profits of the seller are higher under pooling. After all, the seller controls the amount of

information disclosed. Since the buyer receives zero information rent in either solution, it follows

that the social welfare also increases with pooling. With binary values, it further follows that

a buyer can never gain from the information policy of the seller, as pooling always removes any

residual information rent of the buyer. However, this result is special for the binary model, and

with more than two values, information control may increase the surplus of the buyer and the seller

simultaneously, and a fortiori increase the social surplus.2

2For example, with three values, vL = 1/3, vM = 1/2, vL = 1, and probabilities fL = 2/3, fM = 1/6, fH = 1/6,

it can be shown that the optimal mechanism pools type vL and vM . In this mechanism the buyer’s surplus is larger

than under complete disclosure.
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Figure 1: Illustration of the Optimal Mechanism for Binary Distributions

5.3 Unbounded Support

So far we have assumed that the support of values is bounded. We have shown that the optimal

information structure is a finite pooling information structure. We now examine what happens

when the distribution of values is unbounded.

Proposition 11 (Separation)

Suppose the support of values is unbounded (v̄ = ∞) and the cost is quadratic. Then, the optimal
mechanism consists of infinite pooling intervals.

To prove this proposition, we use the same arguments as before to show that the optimal

information structure will consists of pooling intervals and that there are no accumulation points

in the intervals. When the distribution of values has finite support this is enough to prove there

are finite intervals. Instead, when the distribution of values is unbounded, we now show that there

must be infinite intervals.

We assume that the optimal information structure consists of finite pooling information struc-

ture, and reach a contradiction. To stay consistent with the notation previously introduced, the last

interval is [vK−1,∞). We consider an alternative mechanism in which we separate the last interval
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in [vK−1,∞) = [vK−1, v
′) ∪ [v′,∞). The following definitions are useful:

gH ,
1− F (v′)

1− F (vK−1)
; gL ,

F (v′)− F (vK−1)

1− F (vK−1)
; (53)

vH , E[v | v ∈ [v′,∞)]; vL , E[v | v ∈ [vK−1, v
′]]; (54)

qL , ∆qK−1; qH , ∆qK−1 + ∆qK . (55)

We recall that the last two terms of the summation in (22) are written in (29), which corresponds

to the maximization of vK−1, ∆qK−1, ∆qK (while omitting the terms that do not depend on these

variables). When the cost is c(q) = q2, we can write the profit generated by the last two intervals

[vK−1, v
′); [v′,∞) as follows:

ΠK−1,K , arg max

v′ ∈ [vK−1, vK ]

qL, qH ≥ 0

(gK + gK−1) (gHvH(qH − qL) + qLvL − gHc(qH + qK−2)− gLc(qL + qK−2)) .

Hence we obtain a binary distribution model. We conclude with the following lemma.

Lemma 8 (Optimality Condition for the Two Highest Intervals)

Let vH , vL, and gH be defined as in (53)- (55) as a function of v′ ∈ (vK−1, v̄). An optimal mechanism

that consists of a finite number of pooling intervals must satisfy that for all v′, vH/vL ≤ r(gH).

However, when the distribution has unbounded support, one can separate a small enough tail

of the distribution, and thus it is better to separate the last two intervals than to pool them. This

is possible because by separating a small enough tail of the distribution one can generate a final

interval that has low enough probability, but whose expected value is high enough compared to the

previous intervals. For example, in Figure 2 we illustrate all the pair values of gH , gL, vH , vL that

can be generated when a Pareto distribution is partitioned into only two intervals. We can clearly

see that if the partition is done at a high enough value, the distribution of values generated is such

that a two-item mechanism is better than pooling.

5.4 Comparative Statics with Respect to the Cost Elasticity

Consider some fixed information structure s that generates values w1, ..., wK each with probability

g1, ..., gK . We recall that the virtual values are:

φk = wk − (wk+1 − wk)
1−Gk

gk
,



Screening with Persuasion July 22, 2022 40

Figure 2: Feasible Binary Distributions given Pareto Distribution of Values

where Gk =
∑k

i=1 gi and wK+1 = wK . Without loss of generality we assume that the virtual values

φk are strictly increasing (since any optimal information structure will satisfy this) and φ2 > 0 (if

φ1 ≤ 0, there is exclusion on the first interval).

We define:

u(x) ,


η−1
η
x

η
η−1 if x ≥ 0;

0 otherwise
(56)

If the cost is a power function c(q) = qη/η, the profits generated by this information structure are:

ΠM =
K∑
k=1

gku(φk).

The profits correspond to the expected utility that a risk-loving agent obtains when facing a lottery

that has payments equal to the virtual values {φk}k∈K . The relative risk aversion for x ≥ 0 is given

by:
u′′(x)x

u′(x)
=

1

η − 1
,

so the hypothetical risk-loving agent is more risk loving as η is closer to 1. For comparison, the

pooling information structure generates profits:

ΠP = u(µv).

We can now compare the profits generates by different information structures.
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Proposition 12 (Profit Comparisons as a Function of Cost Elasticity)

Consider some information structure s:

1. There exists ηs such that information structure s generates less profit than pooling if and only

if η ≥ ηs.

2. There exists ηs such that information structure s generates less profit than complete disclosure

if η ≤ ηs.

To prove this result, we first compare the profits generated by some menu and by the pooling

information structure. For this, we note that:∑
k∈K

gkφk = w1 and φK = wK .

We thus have that: ∑
k∈K

gkφk < µv and φK > µv.

That is, the expected value of the virtual values is strictly less than the expected value, and

the highest realization of the virtual values is higher than the expected value of the true values.

Following the Arrow-Pratt characterization of risk aversion: a more risk-loving agent (lower η)

always demands a lower certainty equivalent. Furthermore, in the limit η →∞ the agent becomes

risk-neutral, so pooling generates higher profit than s. We then conclude that there exists a unique

ηs such that:

ΠM ≥ ΠP ⇐⇒ η ≥ ηs.

This proves the first statement.

We denote by Π̂ the profits generated by complete disclosure:

Π̂ =

∫
u(max{φ(v), 0})f(v)dv,

where φ is defined in (11). We bound the ratio between the profits generated by s and complete

disclosure as follows:
ΠM

Π̂M

=

∑K
k=1 gku(φk)∫

u(φ(v))f(v)dv
<

1∫∞
φK

u(φ(v))
u(φK)

f(v)dv
.

We note that φK < v̄, so we have that: ∫ ∞
φK

f(v)dv > 0.
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We thus have that:

lim
η→1

ΠM

Π̂M

< lim
η→1

1∫∞
φK

u(φ(v))
u(φK)

f(v)dv
= 0.

The limit is obtained from observing that when η → 1, the exponent in (56) converges to infinity,

so the integrand diverges to infinity.

6 Discussion and Extensions

We stated our main results, Theorem 1 and 2, in the environment of nonlinear pricing first proposed

by Mussa and Rosen (1978). There, the buyer’s value is given by a multiplicatively separable

function of willingness-to-pay and quality and the seller’s cost of providing the quality is a general

increasing and convex cost of quality. The objective of this section is to describe how our two main

results extend to more general environments and determine which properties of the characterization

are specific to the environment described in Section 2.

Towards this end, we now consider a payoff environment where the buyer’s utility is nonlinear

in quality q and type v. In this nonlinear environment the variable v does not directly present the

value or (marginal) willingness-to-pay, and so we refer to v in this section as type v. We maintain

an increasing and convex cost function c (q) throughout:

u(v, q, p) , h(v, q)− p, (57)

where h is a strictly increasing function and supermodular in both arguments v and q.

In the general nonlinear environment we show that the optimal menu will remain short. Theorem

3 establishes that there will be no intervals with complete disclosure about the type, small or larger.

However, Theorem 3 does not provide a comprehensive characterization of the optimal information

structure. In particular, in the general nonlinear environment, the optimal information structure

is not guaranteed to be a monotone partition in the type v anymore.3 In Example 1 we provide

an instance where the optimal information structure is a non-monotone partition. Finally, we show

that in the absence of supermodularity, the short menu result may disappear. Indeed, Example 2

gives an instance where complete disclosure is optimal.

3In a sender-receiver setting different from ours, Candogan and Strack (2021) also note that the linearity is critical

in establishing a complete characterization of the optimal information structure.
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6.1 Nonlinear Marginal Utility

Suppose then that the utility function of the buyer is given by

u(v, q, p) , h(v, q)− p,

where the function h (v, q) permits a multiplicative separable representation

h (v, q) , hv (v)hq (q)

where hv (v) and hq (q) are continuous and strictly increasing functions: hv : [v, v] → R+ and

hq : R+ → R+. The function hv (v) immediately suggests that we define the value in terms of hv (v)

rather than v, and thus as long as hv is a monotone function, the function hv simply offers a new

label for the types v without any further complication. Thus suppose we have

h(v, q) = vhq(q), (58)

where hq (q) is a strictly increasing concave function. In this case, we can recover our original model

by defining:

q̂ , hq(q),

and writing the cost in terms of q̂:

ĉ(q̂) , c(h−1
q (q̂)). (59)

It is simple to verify that (given the assumptions we have made) ĉ will also be convex. Hence,

we recover our original payoff environment by considering an appropriate change of variables. The

above transformations generalize the multiplicatively separable environment with a continuum of

types v and qualities q.

Maskin and Riley (1984) analyzed a model of nonlinear pricing with concave utility and constant

marginal cost. We can then ask how the suffi cient conditions of Theorem 2 can be adapted to their

setting. Thus, we consider a model with non-linear utility

u(v, q, p) = vh(q)− p,

and constant marginal cost, c (q) = c · q for some constant c ≥ 0.

We recover the original model be defining:

q̂ = hq(q)
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and cost c(q̂) = h−1(q̂). The conditions of Theorem 2 then translate to this model as follows. First,

the modest-tail condition remains the same. This is because we just relabeled the quantities, which

of course, does not affect how we define values. Second, the condition requiring convex marginal

cost translates to:
∂h(q)

∂q

∂3h(q)

∂q3
≤ 3

(
∂2h(q)

∂q2

)2

A suffi cient condition for this is that the marginal utility is concave (i.e., h has negative third

derivative).

6.2 Nonlinear Utility in Type and Quality

We now return to the nonlinear model introduced earlier in (57). We shall assume that h (v, q) is

twice differentiable and given the supermodularity displays a positive cross-derivative. We assume

that the cross derivative is bounded away from 0. That is, for all v, q:

ε <
∂2h(v, q)

∂v∂q
<

1

ε
, (60)

for some ε > 0. For this nonlinear model, we can now establish that for any interval [v1, v2] ⊂ [v, v]

in the support of the type distribution F , complete disclosure of the type to the buyer cannot be

optimal. In consequence, the optimal information structure will always bundle types rather than

disclose them.
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Theorem 3 (Complete Disclosure is Never Optimal)

In every optimal mechanism, there is no interval [v1, v2] such that G∗(v) = F (v) for every v ∈ [v1, v2].

Proof of Theorem 3. We assume that G∗(v) = F (v) for every v ∈ [v1, v2], for some interval

[v1, v2], and reach a contradiction. Following the same arguments as in Lemma 3, q∗ must be strictly

increasing in this interval. To reduce the amount of notation we assume that the cost function is

identical to zero c(q) = 0 and that the buyer’s utility function is strictly concave in q; if the cost

is strictly increasing we can repeat the arguments by simply relabeling the buyer’s utility function

ĥ(q, v) = h(q, v)− c(q).
The virtual surplus is given by:

Φ(q, v) = h(v, q)− ∂h(v, q)

∂v

1− F (v)

f(v)
.

For any increasing quality function q, the seller’s profits are:∫
Φ(q(v), v)f(v)dv.

Analogous to the analysis in Section 3, we consider the profits generated by a mechanism that pools

the allocation. The difference between the optimal policy and the variation is given by:

Π∗ − Π̃ =

∫ v2

v1

Φ(q∗(v), v)f(v)dv −
∫ v2

v1

∫ v2

v1
Φ(q∗(w), v)f(w)dw

(F (v2)− F (v1))
f(v)dv. (61)

In other words, the values in [v1, v2] are randomly assigned some of the qualities that were allocated

in the optimal mechanism q∗(v).

We now prove that:

Π∗ − Π̃ ≤ 1

ε

(∫ v2

v1

q∗(v)vf(v)dv − (F (v2)− F (v1))µqµv

)
, (62)

where µv and µq are defined as in (12) (so here µv is the mean value in the interval [v1, v2]). For

this, we note that the function:

Ψ(v, q) , 1

ε
qv − Φ(q, v),

is supermodular. This follows from calculating the cross-derivative and using that the cross deriv-

ative of Φ is less than 1/ε (see (60)). Since q∗(v) is increasing, when (w, v) are independently

distributed according to F we have that (q∗(w), v) ≤PDQ (q∗(v), v), where the subscript PQD de-

notes the Positive Quadrant Dependence order (see Shaked and Shanthikumar (2007) Chapter 9).

We then have that:

1

F (v2)− F (v1)

∫ v2

v1

∫ v2

v1

Ψ(v, q∗(w))f(v)f(w)dvdw ≤
∫ v2

v1

Ψ(v, q∗(v))f(v)dv.
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which corresponds to (9.A.17) in Shaked and Shanthikumar (2007). Replacing the definition of

Ψ(v, q) and replacing (61), we obtain (62).

Using the Cauchy-Schwarz inequality, as in (15), and following the same steps as before, we

obtain that:

lim
∆→0

Π∗ − Π̃

∆3
≤ 1

ε

dq∗(v̂)

dv
f(v̂). (63)

Note that the right-hand-side of (62) is the same as the right-hand-side of (14) except for the fact

that the cost does not appear (which is not necessary for the argument) and instead of φ we have

v. This is the reason the derivative of φ does not appear in (63), while it does appear in (16). As

before, we conclude that the effi ciency losses are of order ∆3.

We now consider the following policy (17). We additionally change the information structure

so that all types in (v1, v2) are pooled, that is, the information structure is (17). Observe that the

total surplus generated by (q̂, Ĝ) and by (q̃, G) is the same. Then, the difference in the generated

profits is equal to the difference in the expected buyer surplus. We then have that:

Π̂− Π̃ =(1− F (v1))

(∫ v2

v1

(
h(v, µq)− h(v, q∗(v1))

)
f(v)dv

(F (v2)− F (v1))
−
(
h(v1, µq)− h(v1, q

∗(v1))
))

=
(1− F (v1))

(F (v2)− F (v1))

(∫ v2

v1

∫ v

v1

∫ µq

q∗(v1)

∂2h(y, q∗(z))

∂v∂q
dzdyf(v)dv

)
≥ε(µq − q∗(v1))(µv − v1)(1− F (v1)).

As in Section 3, we can then conclude that:

lim
∆→0

Π̂− Π̃

∆2
≥ ε

dq∗(v̂)

dv
(1− F (v1)).

Here we used that (µv − v1)/∆→1, as ∆ → 0. We thus have that the effi ciency losses are of order

∆2. We thus conclude that for ∆ small enough, the new policy generates higher profits.

The implications of Theorem 3 for the optimal information structure are notably weaker than the

characterization offered in Theorem 1. In particular, we do not claim that the optimal information

structure is given by a partition that is monotone and finite. The main implication of Theorem 1 is

that with the above assumptions on supermodularity and differentiability there will be no complete

disclosure of types anywhere. However, the pooling of types may be stochastic or not monotone in

the type v. Thus the optimal menu will be coarse in the sense that some values in the distribution

F will not appear in the support of the distribution G.

With weaker conditions on the differentiability and supermodularity than given by (60), the

result of Theorem 1 may fail as the next example illustrates.



Screening with Persuasion July 22, 2022 47

Example 1 (Weak Supermodularity) Suppose the buyer has the following preferences:

u(v, q, p) = min{q, v} − p, (64)

and the marginal cost of production of quality is normalized to zero. The buyer therefore has a

marginal value of quality equal to 1 until the quality reaches the level of their type v. Thus, higher

types have higher demand for quality. We claim that in this setting the seller can extract the full

surplus by offering a menu to the buyer that offers any level of quality at a per unit price of 1.

In this example, the optimal mechanism offers complete disclosure of values and a continuum of

qualities. Here, the marginal gains from higher quality or higher types are not bounded away from

zero (and the utility function is not differentiable everywhere) in contrast to the above condition

(60). In fact we have that
∂2h(v, q)

∂q∂v
= 0,

for almost every value-quality pair, which allows for full surplus extraction. Thus, we might consider

the above example as a knife-edge case.

Indeed, the next example strengthens the supermodularity condition. It will lead to an optimal

information structure that is a partition. However, the partition is not monotone anymore and the

optimal partition combines non-adjacent types.

Example 2 (Variation of Weak Supermodularity) Suppose there are three values vL, vM , vH .

The low and medium type have demand k < 1 with marginal values of 1 and 2, while the high type

has unit demand with marginal value of 3:

u (vL, q) = min{q, k};

u (vM , q) = 2 min{q, k};

u (vH , q) = 3 min{q, 1}.

The production cost is:

c(q) =

0 if q ≤ k;

1
2
(q − k) if q ≥ k.

We denote by fL, fM , fH the probability of each type and for the computations assume that fL = fH

and fL, fH < fM with fL < 1/6.

We claim that the optimal mechanism is to pool the low and the high types while separating the
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medium type. First we observe that if the three types were pooled, then only k units are sold at

a price of 2 per unit (i.e., thus a payment of p = 2k). Second, if the high type and the low type

are pooled, then k units are sold at price a price of 2k to the medium type and 1 unit at a price

2k + 3(1 − k)/2 to the pooled type. These two observations allow us to conclude that pooling the

three types is dominated by pooling the high and low type and separating the medium type. By

contrast, separating the three types is dominated by pooling the low and medium type. Moreover, if

k is suffi ciently close to 1, then pooling the three types is better than pooling the low and medium

and separating the high type. We can therefore conclude that the above non-monotone pooling can

be optimal.4

In this second example, the supermodularity was strengthened as higher types have a higher

marginal value for quality. Yet, without strictly increasing preferences for more quality every-

where, we showed that a non-monotone partitions arises as an optimal information structure. Thus,

monotonicity and supermodularity appear as important conditions for the optimality of monotone

partitions.

7 Conclusion

In the digital economy, the sellers and the digital intermediaries working on their behalf frequently

have a substantial amount of information about the quality of the match between their products,

the taste of the buyers, and ultimately the buyers’preferences. Motivated by this, we considered a

canonical nonlinear pricing problem that gave the seller control over the disclosure of information

regarding the value of the buyer for the products offered.

We showed that in the presence of information and mechanism design, the seller offers a menu

with only a small variety of items thus, a coarse menu. In considering the optimal size of the menu,

the seller balances conflicting considerations of effi ciency and surplus extraction. The socially

optimal menu would provide a menu with a continuum of items to perfectly match quality and

taste. By contrast, the profit-maximizing seller seeks to limit the information rent of the buyer by

narrowing the choice to a few items on the menu. We provided suffi cient conditions for a broad

class of distributions where this logic led the seller to offer only a single item on the menu. While

4This non-monotone partition is an example of a laminar partitional information structure as defined in Candogan

and Strack (2021). Namely, the convex hulls of any two partition elements are such that either one contains the

other or they have an empty intersection.



Screening with Persuasion July 22, 2022 49

we obtained our results in the model of nonlinear pricing pioneered by Mussa and Rosen (1978), we

showed that the coarse menu result remained a robust property in a larger class of nonlinear payoff

environments.

In our analysis, the seller chooses the level of quality endogenously to match the expected taste

of the buyer. In related work, McAfee (2002) matches two given distributions of, say, consumer

demand and electricity supply, and shows how coarse matching by pooling adjacent levels of demand

and supply can approximate the socially optimal allocation. In this analysis, a range of different

products are offered in the same class and with the same price. From the perspective of the buyer,

the product offered is therefore opaque, as its exact properties are not known to the buyer who

is only guaranteed certain distributional properties of the product. This practice is sometimes

referred to as opaque pricing, see Jiang (2007) and Shapiro and Shi (2008) for applications to

services and transportation and Bergemann, Heumann, Morris, Sorokin, and Winter (2022) for

auctions. Our analysis regarding the optimality of coarse menus would equally apply if we were to

take the distribution of qualities as given and merely determine the partition of the distribution

of the qualities. The novelty in our analysis is that the seller renders the preferences of the buyer

opaque to find the optimal trade-off between effi cient matching of quality and taste against the

revenues from surplus extraction.
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8 Appendix

Proof of Proposition 8. We can write (7) as follows:

Π =

∫ v

v

(
wq(w)− c(q(w))−

∫ w

v

q(t)dt

)
dG(w).

The maximization over G (fixing q) corresponds to a classic Bayesian persuasion problem. When F

has binary support, there exists an optimal information structure with binary support (see Kamenica

and Gentzkow (2011)).

We then have that the distribution of expected values will have support in {wL, wH} and the
probabilities will be gL, gH satisfying:

gLwL + gHwH = fLvL + fHvH .

Thus, the optimal mechanism will be either pooling, a two-item mechanism, or a single-item mecha-

nism in which the low type is excluded. The profits are given by (??)-(46), but replacing fH , vH , vL
with gH , wH , wL. To make the notation more compact, we define:

α , η

η − 1
. (65)

Clearly, if η ∈ (1,∞), α ∈ (1,∞). Hence, we analyze this range of parameters.

We now compute the derivatives respect to gH keeping wL fixed (hence, adjust wH so that the

mean of expected valuations remains constant). For the second derivative, we have that:

∂2ΠM

∂g2
H

=
(α− 1)α(wH − wL)2

(
g3
H(1− gH)−α−1(wL − gHwH)α−2 + wα−2

H

)
gH

> 0;

∂2ΠH

∂g2
H

=
(α− 1)αg−α−1

H (vH − vL)2(gHvH)α

v2
H

> 0

Hence, we will always have that in the optimum gH = fH or gH ∈ {0, 1}.We can then also conclude
that, if the mechanism offers one item with exclusion, then we must have that wL = vL. So, if the

mechanism offers one-item with exclusion we must have full disclosure. We now show that, if the

optimal mechanism offers two items, we must have that wL = vL.

We now compute the derivative of ΠM with respect to gH keeping wH = vH fixed (hence, adjust

wL so that the mean of expected valuations remains constant). The first and second derivative are
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given by:

∂ΠP

∂gH
=vαH −

(
wL − gHvH

1− gH

)α−1
(2α− 1)(vH − wL) + (1− gH)vH

1− gH
;

∂2ΠP

∂g2
H

=
2α(vH − wL) (wL − gHvH)α−2 (1− gH) ((2α− 1)(vH − wL)− (1− gH)vH)

(1− gH)α+1
.

We first observe that
∂ΠP

∂gH
|wL=vH= 0 and

∂ΠP

∂gH
|wL=gHvH= vαH .

Furthermore, ∂ΠP/∂gH = 0 is convex in wL and

∂

∂wL

∂ΠP

∂gH
|
wL=

vH (2(α−1)+gH )

2α−1

= 0.

So, the first-order condition must be satisfied by some wL <
vH(2(α−1)+gH)

2α−1
. From the second derivate,

we have that
∂2ΠP

∂g2
H

≤ 0 ⇐⇒ wL ≥
vH(2(α− 1) + gH)

(2α− 1)
.

Thus, the first- and second-order condition are never satisfied. We thus reach a contradiction, so

wL > vL is never optimal.

Proof of Proposition 9. Recall that the profits of the three strategies are given by (??)-

(46). Hence, the comparisons between selling strategies will only depend on vH/vL. Thus, for the

calculations, we can simply normalize vL = 1.

We first note that, for any (fH , vH) such that fHvH ≥ 1,

ΠH ≥ ΠP ⇐⇒ vH ≥
1− fH

f
η−1
η

H − fH
.

We thus get the following lemma.

Lemma 9 (Pooling vs Serving Only High Type)

For all (fH , vH) such that gHvH ≥ 1, it is optimal to pool types if and only if

vH ≥
1− fH

f
η−1
η

H − fH
.

We denote by f̃H the solution to:

1− f̃H
f̃
η−1
η

H − f̃H
, 1

f̃H
. (66)
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We thus get that:

v̂(fH , η) =
1− fH

f
η−1
η

H − fH
, for all fH ≥ f̃H .

In this segment v̂(fH , η) is decreasing in fH and increasing in η. Note that when vH = 1/fH , we

have ΠM = ΠH . Hence, v̂(fH , η) will be continuous at f̃H .

We now continue to analyze v̂(fH , η) in the segment vH < 1/f̃H . We define:

Π̃ , ΠM − ΠP .

Calculating the derivatives, we get:

Π̃ |vH=1= 0; (67)

∂Π̃

∂vH
|vH=1= −fHα < 0; (68)

∂2Π̃

∂v2
H

= (α− 1)αfH
(
fH(1− fH)1−α(1− fHvH)α−2 − fH(fH(vH − 1) + 1)α−2 + vα−2

H

)
> 0, (69)

where α is defined in (65). The last inequality can be verified as follows. If α < 2, then:

(1− fH)1−α(1− fHvH)α−2 > 1 and (fH(vH − 1) + 1)α−2 < 1.

On the other hand, if α > 2, then

(fH(vH − 1) + 1) < vH .

Hence, in either case Π̃ is convex with respect to vH .We have that (67)-(69) implies that: (a) there

exists a unique threshold vH at which ΠM generates higher profits than ΠP (hence confirming that

v̂(fH , η) exists also for fH ≤ f̃H), and (b) we have that, for vH such that Π̃ = 0, we must have that

∂Π̃/∂vH > 0.

We now show that v̂(fH , η) is decreasing in η (in the segment fH ≤ f̃H). The implicit function

theorem states that:
∂v̂(fH , η)

∂η
=

∂Π̃
∂η

− ∂Π̃
∂vH

.

We already proved the denominator will be negative, so we now prove that the numerator is negative.

Hence, we prove that, for any (fH , vH) such that Π̃ = 0, the numerator is also negative.

We define:

Π̃′ , log


(

(1−fHvH)α

(1−fH)α−1 + fHv
α
H

)
(fL + fHvH)α

 .
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This is a monotonic transformation of Π̃, which will help get more compact expressions. We now

check that:

∂2Π̃′

∂α2
=
fH(1− fH)α+1vαH(1− fHvH)α(− log(1− fHvH) + log(1− fH) + log(vH))2

(fH(1− fH)αvαH − (fH − 1)(1− fHvH)α)2 > 0

That is, Π̃′ is convex in α, and we note that:

Π̃′ |α=1= − log(1− fH + fHvH) < 0;

lim
α→∞

Π̃′ =∞ > 0.

Thus, Π̃′ = 0 for one α ∈ (1,∞), and Π̃′ is increasing in α whenever Π̃′ = 0. We can then conclude

that there exists a unique α ∈ (1,∞) such that Π̃ = 0, and Π̃ is increasing in α whenever Π̃ = 0,

and thus decreasing in η. Hence, following the implicit function theorem, v̂(fH , η) is increasing in η.

We now show that v̂(fH , η) is decreasing in fH (in the segment fH ≤ f̃H). We prove this

separately for the case η ≤ 2 and η > 2. We prove the case η ≤ 2 by appealing to the implicit

function theorem. We note that:

Π̃ |fH=0=0

∂Π̃

∂fH
|fH=0=vαH − 2α(vH − 1)− 1

∂2Π̃

∂f 2
H

=(α− 1)α(vH − 1)2

(
(1− fHvH)α−2

(1− fH)α+1
− (fH(vH − 1) + 1)α−2

)
> 0.

In this case, we can sign the last term when α < 2, then:

(1− fHvH)α−2

(1− fH)α+1
> 1 and (fH(vH − 1) + 1)α−2 < 1.

Hence, for a fixed vH , there exists fH such that Π̃ = 0 only if ∂Π̃
∂fH
|fH=0> 0. And we then have that

Π̃ = 0 implies that ∂Π̃
∂fH

> 0. Following the implicit function theorem, v̂(fH , η) is decreasing in fH .

We now prove that v̂(gH , η) is decreasing also for η > 2. For this, we define:

qP , (gLvL + gHvH)
1

η−1 ,

which is the quality sold in the pooling mechanism. Using the envelope theorem, we have that:

∂Π̃

∂gH
= vH(qH − qL)− (c(qH) + c(qL))− (vH − vL)qP ,
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where qH and qL are defined in (45). The objective function of ΠM and ΠP is linear in gH . So, at

any point such that Π̃ = 0, we have that,

∂Π̃

∂gH
> 0

if and only if

qLvL − c(qL)− (qPvL − c(qP )) < 0. (70)

The left-hand-side of the inequality is the difference between the intercept of ΠM and ΠP . We now

prove that (70) is satisfied at any point such that Π̃ = 0 when η ≥ 2.

We begin by noting that:

1 = arg max
q∈R

qvL − c(q).

We also note that qL < 1 < qP and the objective function is concave. To make the notation more

compact, we define:

δ , fH(vH − vL)

and note that qP = (1 + δ)1/(η−1). We also note that:

qL = (vL −
(vH − vL)fH

fL
)

1
η−1 < (1− δ)

1
η−1 < 1.

So, we have that:

qLvL − c(qL)− (qPvL − c(qP )) < (1− δ)
1

η−1vL −
(1− δ)

η
η−1

η
− ((1 + δ)

1
η−1vL −

(1 + δ)
η
η−1

η
).

We now show that the right-hand-side is less than 0. For this, we write this term as a ratio and

note that:
η(1− δ)

1
η−1vL − (1− δ)

η
η−1

η(1 + δ)
1

η−1vL − (1 + δ)
η
η−1

|δ=0= 1

and
∂

∂δ

(
(1− δ)

1
η−1vL − (1− δ)

η
η−1

(1 + δ)
1

η−1vL − (1 + δ)
η
η−1

)
= −2δ2(η − 2)η(1− δ)

1
η−1
−1(δ + 1)−

η
η−1

(η − 1)(δ − η + 1)2
< 0.

To check the inequality it is useful to recall that we are analyzing the range fHvH < vL, and so

δ < 1. Hence, for all δ > 0,
(1− δ)

1
η−1vL − (1− δ)

η
η−1

(1 + δ)
1

η−1vL − (1 + δ)
η
η−1

< 1.

This proves that

qLvL − c(qL)− (qPvL − c(qP )) < 0,

which concludes the proof.
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