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Abstract

We analyse optimal disease mitigation in a spatial model where disease spreads

within and between interconnected regions. We characterise optimal strategies and

emphasise the role of inter-regional coordination and policy targeting. Delegation of

policy to regional planners achieves targeting without coordination, while a centrally

determined uniform policy achieves coordination without targeting; both induce

inefficiencies. For strongly connected regions, policy coordination is paramount,

while for weakly connected regions, targeting becomes more important. Last, we

analyse the value of reductions in integration, such as travel restrictions. We show

that these may be non-monotone and sensitive to the underlying mitigation policy

in place.

Keywords: Economic epidemiology, mitigation, spatial epidemiology, regional so-

cial planners, travel restrictions.

JEL classification: C73, E61, I18, H75, R13.

∗We gratefully acknowledge constructive conversations on spatial economic models with Chryssi Gi-
annitsarou and Tony Yates. We are also grateful for detailed comments on metapopulation analysis from
Martial Ndeffo Mbah.

†Corresponding author: fmot2@cam.ac.uk.

1



1 Introduction

As the COVID-19 pandemic has spread across the world, it has had an undeniable detri-

mental impact on health, prosperity and social well-being. One of the main methods

used to control the spread of the disease has been the deployment of non-pharmaceutical

interventions (NPIs). These measures involve altering human behaviour to reduce physi-

cal proximity and disease spread. While classical epidemiological analyses generally take

human contacts and behaviour as exogenously given and constant over time, economic

epidemiology instead models behaviour and disease dynamics in an integrated manner.1

These studies typically consider a single isolated population and analyse the impact of

mitigation and control measures on the spread of a disease over time. Diseases, however,

spread not only over time, but also across space. This raises a number of important

conceptual and practical questions about how to formulate and implement optimal pub-

lic health measures. First, when a region’s disease dynamics are intertwined with those

of connected regions through travel or physical proximity, how does that influence the

optimal mitigation policy? Second, what are the costs and benefits of coordinating such

policies across regions? Third, how important is it to target mitigation policies to lo-

cal conditions and what are the costs and benefits of non-targeted policies implemented

across interdependent regions? Last, what is the value of reducing such interdependence,

e.g. by the restriction of travel between regions or countries? We show that the answers

to these questions depend on the degree of interconnectedness between jurisdictions in a

straightforward way.

The role of space plays an intuitive role in the mechanics of disease spread. Prox-

imally located individuals are more likely to physically interact and, thus, transmit an

infection. On the other hand, the migration or commuting of infected individuals can

allow for a disease to spread over large distances and be introduced to new regions. Yet,

spatio-temporal dynamics has attracted surprisingly little attention in the fast-growing

literature on economic epidemiology, especially that which seeks to provide practical pol-

icy advice. The relevance of the spatial aspect of disease spread, and how it conditions

mitigation strategies across jurisdictions, was evident during the COVID-19 pandemic.

Many countries allowed some inward and outward travel activity, while within-country

travel restrictions were often imperfectly enforced, if they existed at all. Many interlinked

countries have found themselves in different epidemiological conditions and have conse-

quently enacted different mitigation policies (Yarmol-Matusiak et al., 2021). On a more

local scale, some countries enacted policies at the state level. In the U.S., each state

imposed restrictions of varying severity, while some states experienced higher prevalence

1E.g., Acemoglu et al. (2021); Rowthorn and Toxvaerd (2020); Makris (2021); Toxvaerd (2019, 2020).
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of COVID-19 infections than others.2,3 Even further, mitigation policies may instead be

implemented at the county or city level. In England, following a national lockdown in

November 2020, a region-specific policy scheme was implemented, in which different parts

of the country were subject to different ‘tiers’ of COVID-19 restrictions.4 As the scale

becomes more local, individuals in neighbouring regions are more proximally located and

have increased interaction. This entails a higher level of regional connection, through

which a disease can more easily spread between regions.

In simple one-region homogeneous agent epidemic models, the issue of formulating

optimal disease mitigation and control policies is now better understood, with a number

of studies characterizing the use of lockdowns, treatment, vaccines and other measures

in different disease contexts such as SI, SIS, SIRS and SIR specifications. One of the

most robust results from this literature is that in equilibrium under decentralised decision

making, i.e., under laissez-faire, there is typically suboptimal mitigation from a social

perspective. As shown by Rowthorn and Toxvaerd (2020), the inefficiency of equilibrium

stems from a combination of uninternalised externalities (the externality effect) and the

fact that the decisions of non-atomistic individuals are conditioned by the fact that they

cannot individually influence aggregate disease dynamics (the smallness effect).

Moving to a metapopulation setting, a number of new issues arise. For simplicity,

consider a symmetric two-region SIR type model in which each region is connected to the

other region by mutual travel flows. In such a model, we make two central observations

that will help clarify our analysis and findings. Consider a situation in which one of the

regions is seeded with infections from an external source, while the other region is initially

fully susceptible. Our first observation is that because of the asymmetric seeding, the sub-

sequent disease dynamics will typically be imperfectly synchronised. The extent to which

the disease paths move in parallel, all else equal, depends on how strongly interconnected

the regions are. The stronger the coupling is, the more similar the disease dynamics

(Keeling and Rohani, 2008). The second observation is that when there are multiple

interconnected regions, there are necessarily policy spillovers in the sense that any mit-

igation implemented in one region will impact disease dynamics, welfare and mitigation

incentives in the other region. But note also that the importance of these two findings,

namely (i) synchrony and (ii) spillovers depends on the strength of interdependence be-

tween the regions. When regions are only weakly coupled, disease dynamics become more

asymmetric but policy spillovers become weaker. Similarly, as the coupling of regions

becomes stronger, disease dynamics become more symmetric but policy spillovers become

stronger. This will turn out to condition policy in important ways.

These two observations are reflected in socially optimal mitigation policies. Consider

2https://www.cleveland.com/metro/2020/03/50-states-of-coronavirus-how-every-state-in-the-us-has-
responded-to-the-pandemic.html

3https://www.nytimes.com/interactive/2021/us/covid-cases.html
4https://www.bbc.co.uk/news/uk-55078888
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a global social planner tasked with choosing economically costly mitigation policies in

the two regions with a view to maximise overall (global) social well-being. The optimal

policy chosen by such a social planner will have two central properties, namely that

it is (i) coordinated and (ii) targeted. Coordination simply means that the mitigation

policy implemented in either region is sensitive to the impact that it has on the disease

dynamics and welfare in the other region and vice versa. In other words, the optimal

policy internalises the inter-regional externalities of mitigation. Targeting simply means

the policy that is implemented is sensitive to regional differences in disease dynamics. As

the epidemic progresses differently in the two (interconnected) regions, optimal policy will

reflect those differences.

To tease out how those considerations depend on the interconnectedness of the regions,

we consider two departures from the globally socially optimal policy. First, we consider

the optimal policy chosen by a global social planner who is restricted to a uniform policy,

i.e., a mitigation path that is not targeted to the different regions. Note that this policy

is coordinated in the sense that the planner’s objective is still to maximise overall social

welfare and so is considering the effects that the policy in one region has on the welfare

of the other region. Second, we consider the policy that emerges when mitigation policies

are delegated to regional social planners who seek to maximise social welfare in each their

own region. In this case, the resulting policies are no longer coordinated (in fact, the two

regional planners are now playing a non-cooperative game and the resulting policies are

the equilibrium of this game), but the policies are still targeted, because they reflect the

different disease dynamics prevailing in the two regions.

The two alternative policy approaches, the uniform policy (non-targeted but coordi-

nated) and the delegated policy (targeted but uncoordinated), are both deviations from

the global social optimum and reflect different inefficiencies caused by ignoring the two

properties of the first-best policy. But these inefficiencies stem from the synchrony and

spillover effects discussed earlier and, as such, vary in strength with the strength of inter-

regional coupling. For weakly coupled regions, disease dynamics are relatively asymmetric

and thus an optimal targeted policy will induce different mitigation paths in different re-

gions. In addition, in this setting, policy spillovers will be weak and there is less need

for coordination. The upshot of this is that when regions are weakly connected, delega-

tion of policy to regional social planners performs relatively well, whereas a global social

planner restricted to uniform mitigation policies would perform poorly. Conversely, with

strongly coupled regions, disease dynamics are very similar in the two regions, while policy

spillovers are strong. Optimal policy will in this case induce similar mitigation paths in

both regions and the main concern becomes one of internalising the inter-regional effects

of regional mitigation policies. In this scenario, a uniform mitigation policy will perform

relatively well, whereas the outcome of delegating policy to regional policy makers will

perform relatively poorly, because they fail to account for inter-regional externalities.
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In terms of public health policy, our findings suggest that, in general, non-targeted

policies applied to similar and well-integrated neighbouring regions can go far in achiev-

ing desirable outcomes. In contrast, far-flung non-contiguous regions may benefit more

from delegated and therefore targeted policies, even if these are not coordinated with the

policies implemented in other regions.

Finally, we analyse the benefits of travel restrictions, interpreted as a reduction in

cross-region interdependence. We do so by computing the regional and total willingness

to pay for a reduction in the cross-region interaction rate. Including endogenous miti-

gation in the model results in a non-monotonicity of the willingness to pay, leading to

notable differences in the benefits of travel restrictions. In some cases, these differences are

substantial enough to result in net impacts of opposite signs. Furthermore, travel restric-

tions are more likely to be beneficial when mitigation policies are set by uncoordinated

regional social planners.

Related literature

Due to the COVID-19 pandemic, work involving the economic analysis of mitigation in

singular populations has been expanding rapidly. Relevant early work includes that by

Sethi (1978), Reluga (2010), Chen et al. (2011), Chen (2012) and Fenichel (2013), which

assesses socially optimal and equilibrium mitigation levels in SIS and SIR models. More

recently, Toxvaerd (2019, 2020) analyses equilibrium and socially optimal mitigation lev-

els when individuals are forward-looking with perfect foresight. Similarly, Makris and

Toxvaerd (2020) explore equilibrium and optimal mitigation levels when a pharmaceuti-

cal intervention is expected at a certain date. Makris (2021) and Acemoglu et al. (2021)

incorporate population heterogeneity into the SIR model, which they use to discuss equi-

librium and socially optimal mitigation levels in relation to the COVID-19 pandemic.

For work in economic epidemiology with spatial models, Rowthorn et al. (2009) and

Ndeffo Mbah and Gilligan (2011) study optimal pharmaceutical treatment allocation

strategies for SIS and SIRS metapopulation models. Birge et al. (2022) and Fajgelbaum

et al. (2021) use commuter metapopulation models of an SEIR disease with asymptomatic

infection to assess socially optimal targeted lockdown policies against COVID-19. Ace-

moglu et al. (2020) consider a network model with an SIR type disease framework and

characterise equilibrium mitigation levels and corresponding socially optimal testing poli-

cies. Bognanni et al. (2020) propose an SIR model in which myopic individuals choose to

mitigate. After introducing a metapopulation framework and calibrating the parameters

to the COVID-19 pandemic, they analyse the equilibrium and socially optimal levels of

mitigation.

In contrast to the existing literature, we propose a spatial epidemiological model in

4https://www.nytimes.com/2020/10/19/world/europe/coronavirus-manchester-britain.html
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which mitigation is determined both endogenously and dynamically. This framework

involves individuals who are not myopic, but rather forward-looking when making their

mitigation decision. Furthermore, to the best of our knowledge, this paper is the first

to analyse the costs of uncoordinated regional social planners and the benefits of travel

restrictions within an epidemiological framework of endogenous mitigation.

This paper is structured as follows. In Section 2, we outline the main components

of a metapopulation model with mitigation. We also provide a discussion of the disease

dynamics in the epidemiological benchmark where no mitigation is present. In Section

3, we discuss the determination of equilibrium mitigation under decentralised decision

making, along with the impact that one region’s mitigation levels have on a neighbouring

region’s best response. Section 4 first considers the socially optimal mitigation levels of

a global social planner. Then, we consider the case of mitigation under uncoordinated

regional social planners and the (constrained optimal) uniform policy. Section 5 contains

an extension in which we analyse the benefits of travel restrictions under the different

decision-making settings. Lastly, we present our conclusions in Section 6.

2 Model

We first set out the model of uncontrolled epidemic dynamics and subsequently introduce

the economic model of mitigation. Last, we briefly explain the dynamics of the disease

without mitigation.

2.1 Spatial SIR model

Consider a metapopulation SIR model of two coupled regions j = 1, 2 with homogeneous

continuum populations, each normalised to size N = 1. Time is continuous and at each

moment t ≥ 0, individuals in each region j can belong to either the set of susceptible,

infected, or recovered persons, represented by Sj(t), Ij(t), andRj(t) respectively. The pro-

portion of individuals in region j at time t in each disease compartment is then represented

by Sj(t), Ij(t), and Rj(t), where Sj(t), Ij(t), Rj(t) ∈ [0, 1] and Sj(t) + Ij(t) + Rj(t) = 1.

Thus, temporarily ignoring the prospect of mitigation, the two-region SIR disease dynam-

ics are given by

Ṡj(t) = −βSj(t)Ij(t)− εβSj(t)I−j(t) (2.1a)

İj(t) = βSj(t)Ij(t) + εβSj(t)I−j(t)− γIj(t) (2.1b)

Ṙj(t) = γIj(t) (2.1c)

where j ∈ {1, 2}, β > 0 is the transmission rate, γ > 0 is the recovery rate, and ε ∈ [0, 1]

captures the reduced force of transmission from infected individuals of the neighbouring

6



Figure 1: Flow diagram of disease compartment transitions in the metapopulation SIR
model. Solid lines denote transition flows between disease compartments. Dashed lines
denote disease-transmitting contact structure.

region. Figure 1 represents the mechanics of disease state transitions in this metapopula-

tion SIR model (2.1).5

Formulation (2.1) assumes that the cross-region transmission rate is symmetrical for

both regions. Alternatively, one could consider this cross-region interaction to be asym-

metric, such that region 1 has a stronger impact on region 2 than 2 has on 1, or vice

versa. However, at a given point in the epidemic, such a specification would be function-

ally similar to one region having more infected individuals than the other.

2.2 Mitigation

Each individual receives at every moment t ≥ 0 a health-related utility flow πτ corre-

sponding to their infection state τ at the time. We assume that being susceptible or

recovered is preferred to being infected. Furthermore, we allow for the possibility of

long-term adverse effects from undergoing infection, that extend beyond the moment of

recovery. Thus, πS ≥ πR ≥ πI . Additionally, each individual i in region j is able to

choose their mitigation level mi
j(t) ∈ [0, 1] at each moment in time. This mitigation level

can be interpreted, for example, as the proportion of an individual’s interactions that they

choose to forego. Choosing to mitigate comes at a personal cost c
2
mi

j(t)
2. However, doing

so reduces the number of contacts the individual makes with the rest of the population,

thus reducing their chance of engaging in a disease-transmitting interaction. Altogether,

5Note that the model can be extended to explicitly include an additional compartment for disease-
induced death. We forego this extension primarily for the sake of expositional simplicity. Furthermore,
particularly for pseudo mass-action transmission mechanics or low mortality rates, incorporating disease-
induced deaths into the model is effectively equivalent to the deceased individuals instead moving to the
recovered compartment (Keeling and Rohani, 2008).

7



the instantaneous net utility earned by individual i in infection compartment τj at time

t ≥ 0 is written as

ui(t) = πτ −
c

2
mi

j(t)
2 (2.2)

Note that, due to the quadratic form of the mitigation costs, the instantaneous utility

function is concave in the individual’s choice variable mi
j(t) ∈ [0, 1]. Throughout, the

future will be discounted at a rate ρ > 0.

We assume individuals to be self-serving and only interested in maximising their own

payoff. As a result, infected and recovered individuals will never mitigate. This is because

any measure of mitigation mi
j(t) > 0 is costly and only serves to reduce the risk of getting

infected, which these individuals do not benefit from. Thus, the decision problem of

choosing to mitigate is solely faced by susceptible individuals.

The aggregate mitigation efforts undertaken by the susceptible populations impact the

disease dynamics in each region by reducing the number of disease-transmitting interac-

tions. Let m̄j(t) denote the average mitigation level of susceptible individuals in region

j, calculated as

m̄j(t) ≡
∑

i∈Sj(t)
mi

j(t)

Sj(t)
(2.3)

Using m̄j(t), the metapopulation SIR model with mitigation is described by the equa-

tions

Ṡj(t) = − (1− m̄j(t)) βSj(t) (Ij(t) + εI−j(t)) (2.4a)

İj(t) = (1− m̄j(t)) βSj(t) (Ij(t) + εI−j(t))− γIj(t) (2.4b)

Ṙj(t) = γIj(t) (2.4c)

for j = 1, 2.

2.3 Uncontrolled disease dynamics

To set the stage for subsequent analysis, we first discuss the epidemiological benchmark

in which no individuals mitigate. This will act as a frame of reference when discussing

outcomes under endogenous mitigation.

As the SIR model is not analytically tractable, numerical methods and simulations

are the main tools for gaining insight into the model’s disease dynamics.6 However, there

are some basic epidemiological principles which can be derived from such models. One

of these principles, the ‘threshold phenomenon’, states that a disease can only invade

and spread in a population if its basic reproductive ratio (R0) is greater than 1 (Keeling

and Rohani, 2008). This basic reproductive ratio, which is one of the most important

measures used in epidemiological models, represents the average number of secondary

6Further details on the numerical solution methodology are provided in Appendix C.
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infections caused by an initial infection in an entirely susceptible population. In the case

of the symmetric metapopulation SIR model (2.1), we have

R0 ≡
β (1 + ε)

γ
(2.5)

If R0 ≤ 1, then any initial infection in a population will die out and fail to take hold. In

other words, an epidemic will not take place. To ensure initial infections are ‘successful’

(at least in the absence of mitigation) and to allow for more interesting analysis, we impose

the following assumption:

Assumption 1. β (1 + ε) > γ.

Throughout, we consider two specifications of the model: one where ε is low and one

where ε is high. This is to see how the results depend on the level to which regions

are inter-connected. In order to keep the two model specifications comparable in terms

of disease severity, the transmission rate parameter β is adjusted to maintain the same

basic reproductive ratio R0. The two model specifications are otherwise identical in all

parameter values.7 Furthermore, in each simulation, a small number of infections are

initially introduced into only region j = 1.

(a) Low ε. (b) High ε.

Figure 2: Disease dynamics without mitigation.

As illustrated in Figures 2 and 3, both the weakly and strongly coupled model spec-

ifications demonstrate characteristics that are common in SIR-type models. Infection

prevalence within each region is hump-shaped over time. During the initial growth phase

of the epidemic, infection prevalence grows more and more rapidly. During the peak

phase, infection prevalence stabilises and then starts to diminish. Infection levels con-

tinue to dissipate as the epidemic ends. In the long-run, infections disappear (Ij(t) → 0)

and the disease states are stable (Ṡj(t) ≈ İj(t) ≈ Ṙj(t) ≈ 0). The hump-shape pattern is

7For the disease dynamics parameters, we use R0 = 2.25 as this is similar to estimates made for
the COVID-19 pandemic (Kucharski et al., 2020; Wu et al., 2020). Additionally, we use a recovery
rate of γ = 1/7.5, which implies an average infectious period of 7.5 days. This is also close to some
estimates made for the COVID-19 pandemic (Byrne et al., 2020). The other parameter values used in
these simulations are: I1(0) = 0.001, I2(0) = 0, R1(0) = R2(0) = 0, (a) low ε = 0.025 (b) high ε = 0.25.
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(a) Low ε. (b) High ε.

Figure 3: Infection prevalence without mitigation.

also present in a region’s infection force, which is the rate at which a susceptible individual

incurs an infection. In the symmetric metapopulation model, the infection force in region

j is β (Ij(t) + εI−j(t)).

Some qualitative differences can be noted between the two model specifications. In the

case of strongly coupled regions, the initial injection of infections in region 1 immediately

spreads to region 2. Throughout the epidemic, the two regions are essentially symmetric,

as their disease states hold almost identical values. This is not so in the case of weakly

coupled regions. In this specification, it takes time for the infection to spread to the

second region. This asymmetry is maintained throughout the epidemic, as there is a

delay between region 1 and region 2’s infection peak. As can be seen in Figure 3, the

peak infection prevalence is slightly higher in region 2. This is due to the fact that as

the infection is initially introduced in region 1, the initial level of susceptibles is higher

in region 2 (i.e., S2(0) > S1(0)), allowing for a larger epidemic in the region (Keeling and

Rohani, 2008). These asymmetries will turn out to have interesting effects once disease

mitigation is introduced in the different regions.

3 Laissez-faire

In this section, we consider the case of mitigation under decentralised decision making,

i.e., laissez-fare, in which every individual independently and non-cooperatively chooses

how much to mitigate. In this setting, each individual i in region j is forward-looking

with perfect foresight, and has the goal of choosing their mitigation level mi
j(t) at each

moment in order to maximise their expected discounted utility. Infected and recovered

individuals will always choose not to mitigate. Let piτj(t) denote the probability of an

initially susceptible individual i being in infection state τj at time t ≥ 0. The susceptible

10



individual’s decision problem can then be written as

max
mi

j(t)∈[0,1]

∫ ∞

0

e−ρt
[
piSj

(t)
(
πS − c

2
mi

j(t)
2
)
+ piIj(t)πI + piRj

(t)πR

]
dt

s.t. ṗiSj
(t) = −

(
1−mi

j(t)
)
β (Ij(t) + εI−j(t)) p

i
Sj
(t)

ṗiIj(t) =
(
1−mi

j(t)
)
β (Ij(t) + εI−j(t)) p

i
Sj
(t)− γpiIj(t)

ṗiRj
(t) = γpiIj(t)

piSj
(0) = 1 , piIj(0) = piRj

(0) = 0

(3.1)

Since each individual is non-atomistic, their choice of mitigation level mi
j(t) has a negligi-

ble impact on the population’s average mitigation level m̄j(t) and thus aggregate dynam-

ics. Thus, the disease dynamics and infection prevalences are taken as exogenously given

in the individual’s optimisation problem.

The decision problem (3.1) of an individual i in region j is equivalent to maximising

the current-value Hamiltonian:8

H i
j = piSj

(t)
(
πS − c

2
mi

j(t)
2
)
+ piIj(t)πI + piRj

(t)πR

− λSj
(t)

(
1−mi

j(t)
)
β (Ij(t) + εI−j(t)) p

i
Sj
(t)

+ λIj(t)
[(
1−mi

j(t)
)
β (Ij(t) + εI−j(t)) p

i
Sj
(t)− γpiIj(t)

]
+ λRj

(t)γpiIj(t)

(3.2)

in which λτj(t) is the current-value costate variable of disease compartment τj.
9 As usual,

the current-value costate variable’s laws of motion is given by (Caputo, 2005)

λ̇τj(t) = ρλτj(t)−
∂H i

j

∂piτj(t)
(3.3)

For the costate variables of the laissez-faire decision problem, this yields

λ̇Sj
(t) = λSj

(t)ρ+
(
1−mi

j(t)
)
β (Ij(t) + εI−j(t))

(
λSj

(t)− λIj(t)
)

− πS +
c

2
mi

j(t)
2 (3.4a)

λ̇Ij(t) = λIj(t) (ρ+ γ)− λRj
γ − πI (3.4b)

λ̇Rj
(t) = λRj

(t)ρ− πR (3.4c)

Differentiating (3.2) with respect to mi
j(t) yields the necessary condition for maximi-

8This statement, along with the rest of the analysis in this paper, assumes an interior solution. If
the mitigation level that maximises the current-value Hamiltonian does not lie between 0 and 1 at any
time t ∈ [0,∞), the current-value Hamiltonian would need to be altered to include the relevant boundary
constraints (Seierstad and Sydsaeter, 1987).

9See Appendix A for discussion on the economic interpretation and transversality conditions of the
current-value costate variables.
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sation

∂H i
j

∂mi
j(t)

= −piSj
(t)cmi

j(t) +
(
λSj

(t)− λIj(t)
)
β (Ij(t) + εI−j(t)) p

i
Sj
(t) = 0 (3.5)

which, assuming piSj
(t) > 0, gives the condition10

mi
j(t) =

β (Ij(t) + εI−j(t))
(
λSj

(t)− λIj(t)
)

c
(3.6)

Let mi
j
∗
(t) denote the equilibrium level of mitigation taken by a susceptible indi-

vidual i in region j, being the solution to the necessary maximisation condition (3.6)

subject to mi
j(t) ∈ [0, 1] and the costate variables’ laws of motion (3.4). Since all

susceptible individuals in a given region are assumed to be identical, they all face the

same decision problem and therefore have the same solution for mi
j
∗
(t). Thus, we define

m∗
j(t) ≡ mi

j
∗
(t), ∀i ∈ Sj(t) as the mitigation level undertaken by all susceptible individ-

uals in region j. The disease dynamics in the laissez-faire setting are hence described by

the metapopulation SIR model with mitigation (2.4) in which m̄j(t) = m∗
j(t), for j = 1, 2.

These disease dynamics are illustrated in Figure 4.

(a) Low ε. (b) High ε.

Figure 4: Disease dynamics under laissez-faire mitigation.

As made clear in Figure 5, including endogenous mitigation under laissez-faire results

in a flattened infection prevalence. Infection levels during the peak of the epidemic are

lowered. However, the duration of the epidemic is extended, as infection prevalence is

higher towards the end of the epidemic. Overall, cumulative infections in all regions are

lower under laissez-faire mitigation than in the epidemiological benchmark (as Rj(∞) is

lower). Furthermore, the total welfare within each region is higher in the laissez-faire

setting.

Although the duration of the epidemic is extended when including mitigation, there

is no noticeable impact in these simulations on the timing of the epidemic peak, nor

the speed at which infections spread to the second region. This is due to the fact that

10As the decision problem is faced solely by a susceptible individual, it is only relevant when piSj
(t) > 0.
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(a) Low ε. (b) High ε.

Figure 5: Infection prevalence under laissez-faire mitigation (solid lines) and in the bench-
mark without mitigation (dashed lines).

(a) Low ε. (b) High ε.

Figure 6: Mitigation levels under laissez-faire mitigation.

infection prevalence (and, thus, risk of disease transmission) is low in the early stages

of the epidemic, resulting in correspondingly low mitigation levels. Once infection levels

increase and the disease starts to spread more rapidly, mitigation levels rise as well. It is

only then that mitigation’s impact on disease dynamics becomes noticeable.

As can be seen in Figure 6, in both the case of weakly and strongly connected regions,

the equilibrium mitigation levels in a given region exhibits a hump-shaped pattern, with

a peak occurring after the region’s peak infection prevalence (and, correspondingly, their

peak infection force). This is because, as seen in (3.6), the mitigation level m∗
j(t) at a

given time t depends on the region’s infection force β (Ij(t) + εI−j(t)) and the value of

avoiding infection
(
λSj

(t)− λIj(t)
)
. This latter term is positive (as we assume infection

is undesired) and increasing throughout the course of the epidemic. The reason for its

increasing nature is that if one avoids infection at the beginning, they still face a large risk

of getting infected later. However, if one manages to stay uninfected towards the end of the

epidemic, then they are more likely to exit the epidemic without ever becoming infected.

Remaining uninfected therefore becomes more valuable as the epidemic progresses and

the chance of a delayed future infection decreases. Thus, the equilibrium mitigation levels

mirror the region’s infection force curve, but occurs at a later time. These qualitative

patterns are similarly found in previous studies using single-population SIR models, such

as Makris and Toxvaerd (2020), Toxvaerd (2020) and Farboodi et al. (2021).
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3.1 Mitigation’s inter-regional strategic nature

One of the immediate questions that arises when considering endogenous mitigation in

a spatial model is what the inter-regional strategic effects are. In other words, how do

mitigation levels in one region impact the decision to mitigate in another region. To assess

this question, we consider a thought experiment in which individuals in region 1 are given

the same option to mitigate as before, but individuals in region 2 are not given the

opportunity to mitigate. As mi
−j(t) does not appear in the individual’s decision problem

(3.1) and the disease dynamics are taken as exogenously given, the optimality condition

(3.6) and costate variables’ laws of motion (3.4) still hold for susceptible individuals in

region 1. Let m̃∗
1(t) denote the equilibrium mitigation level of susceptible individuals in

region 1. The disease dynamics under this alternative setting, which we will henceforth

refer to as the ‘quasi-decentralised’ decision-making setting, are then described by the

metapopulation SIR model with mitigation (2.4) where m̄1(t) = m̃∗
1(t) and m̄2(t) = 0,

and are illustrated in Figure 7.

(a) Low ε. (b) High ε.

Figure 7: Disease dynamics under the quasi-decentralised setting.

(a) Low ε. (b) High ε.

Figure 8: Infection prevalence in the laissez-faire setting (solid lines) and the quasi-
decentralised setting (dashed lines).

Figure 8 shows that, relative to the quasi-decentralised setting, the laissez-faire setting

(in which mitigation takes place in both regions) results in a flattening of region 2’s

infection prevalence curve, and a marginal flattening of region 1’s infection prevalence

14



(a) Low ε. (b) High ε.

Figure 9: Mitigation levels in region 1 in the laissez-faire setting (solid lines) and the
quasi-decentralised setting (dashed lines).

curve. This flattening of infection prevalences results in similar changes to the infection

force experienced in region 1: lower values during the epidemic peak, but higher values

towards the end of the epidemic. The magnitude of these changes are also greater with

higher values of ε.

Region 2’s mitigation levels, as they do not appear in the objective function of sus-

ceptible individuals in region 1, do not have a direct impact on mitigation levels in region

1. Rather, they indirectly impact 1’s mitigation levels through altering the disease dy-

namics. As the decision to mitigate in region 2 results in a flattening of the infection

force in region 1, there is a corresponding impact on the mitigation levels in region 1.

This is demonstrated in Figure 9, in which mitigation in region 2 induces individuals in

region 1 to do less mitigation during the epidemic peak, but more mitigation towards

the end. The extent to which mitigation in region 1 changes is increasing with higher

values of ε. Thus, the inter-regional strategic impact of mitigation is not constant over

time. Higher mitigation levels in the neighbouring region induce lower mitigation levels

at home (strategic substitutes) during the growth and peak phases of the epidemic, but

induce higher mitigation levels at home (strategic complements) towards the end of the

pandemic.11

Compared to the laissez-faire setting, the quasi-decentralised setting results in more

cumulative infections and less social welfare in region 2. Additionally, there are marginally

more cumulative infections and marginally less social welfare in region 1. The inter-

regional impact on the cumulative infections and welfare in region 1, while still being

small compared to the intra-regional impact, is higher in the case of strongly connected

regions. This suggests that an individual’s decision to mitigate has a positive inter-regional

externality, which is larger in magnitude as ε increases.

11These results are robust to changing the region of initial infection. Furthermore, similar results are
found when using different approaches to altering region 2’s mitigation levels. For example, Appendix B
considers the impact of increasing a constant mitigation level in region 2.
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4 Centralised decision making

In this section, we consider mitigation under centralised decision making, in which a so-

cial planner aims to maximise overall social welfare. An individual’s decision to mitigate

exerts a positive externality on other individuals. By mitigating, one reduces their chance

of becoming infected and therefore of infecting others in the future, both within their own

region (intra-regional infection) and in the neighbouring region (inter-regional infection).

Mitigation’s externalities can correspondingly be broken into two components: the intra-

regional externalities and the inter-regional externalities. If the susceptible individual’s

decision to mitigate were instead centralised, these intra-regional and inter-regional exter-

nalities could be accounted for. We therefore consider two different spatial aggregations of

centralised decision making. Namely, where there is global decision making and regional

decision making.

4.1 Global social planner

Under centralised decision making, we first consider the scenario where the decision to

mitigate is fully coordinated between the two regions through a global social planner. In

this setting, the global social planner is able to set the level of mitigation taken by sus-

ceptible individuals in each location with the goal of maximising aggregate social welfare

across all regions. Unlike in the laissez-faire setting, the global social planner is able to set

all susceptible individuals’ mitigation efforts in both locations, and is thus able to directly

control the disease dynamics. The global social planner takes this into account in their

decision, and no longer takes the disease dynamics as given. Denoting the mitigation level

chosen by the social planner for susceptible individuals in location j at time t as mj(t),

the targeted global social planner’s decision problem is written as

max
m1(t),m2(t)∈[0,1]

∫ ∞

0

e−ρt

[
S1(t)

(
πS − c

2
m1(t)

2
)
+ I1(t)πI +R1(t)πR

+ S2(t)
(
πS − c

2
m2(t)

2
)
+ I2(t)πI +R2(t)πR

]
dt

(4.1)

subject to, for j = 1, 2,

Ṡj(t) = − (1−mj(t)) βSj(t) (Ij(t) + εI−j(t)) (4.2a)

İj(t) = (1−mj(t)) βSj(t) (Ij(t) + εI−j(t))− γIj(t) (4.2b)

Ṙj(t) = γIj(t) (4.2c)

Denoting the costate variable of disease compartment τj as λτj(t), the global social
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planner’s current-value Hamiltonian is

H = S1(t)
(
πS − c

2
m1(t)

2
)
+ I1(t)πI +R1(t)πR

+ S2(t)
(
πS − c

2
m2(t)

2
)
+ I2(t)πI +R2(t)πR

− λS1(t) (1−m1(t)) βS1(t) (I1(t) + εI2(t))

− λS2(t) (1−m2(t)) βS2(t) (I2(t) + εI1(t))

+ λI1(t) [(1−m1(t)) βS1(t) (I1(t) + εI2(t))− γI1(t)]

+ λI2(t) [(1−m2(t)) βS2(t) (I2(t) + εI1(t))− γI2(t)]

+ λR1(t)γI1(t)

+ λR2(t)γI2(t)

(4.3)

As before, the laws of motion for the current-value costate variables are derived as

λ̇τj(t) = ρλτj(t)−
∂H

∂τj(t)
(4.4)

which yields, for j = 1, 2:

λ̇Sj
(t) = λSj

(t)ρ+ (1−mj(t)) β (Ij(t) + εI−j(t))
(
λSj

(t)− λIj(t)
)

− πS +
c

2
mj(t)

2 (4.5a)

λ̇Ij(t) = λIj(t) (ρ+ γ) + (1−mj(t)) βSj(t)
(
λSj

(t)− λIj(t)
)

+ (1−m−j(t)) εβS−j(t)
(
λS−j

(t)− λI−j
(t)

)
− λRj

(t)γ − πI (4.5b)

λ̇Rj
(t) = λRj

(t)ρ− πR (4.5c)

Differentiating the current-value Hamiltonian (4.3) with respect tomj(t) and assuming

Sj(t) > 0 leads to the necessary conditions for optimality

mj(t) =
β (Ij(t) + εI−j(t))

(
λSj

(t)− λIj(t)
)

c
, j = 1, 2 (4.6)

We denote the socially optimal mitigation levels in region j under the targeted global

social planner setting as mG
j (t), being the solutions to the necessary optimality conditions

(4.6), subject to mj(t) ∈ [0, 1] and the costate variables’ laws of motion (4.5). The

resulting SIR disease dynamics for each region are then given by the metapopulation SIR

model with mitigation (2.4) where m̄j(t) = mG
j (t), for j = 1, 2.

Figure 10 shows the disease dynamics in the targeted global social planner setting.

Compared to the disease dynamics under laissez-faire, the globally optimal mitigation

policy results in a less severe epidemic, as cumulative infections are reduced in both

regions. Additionally, not only is aggregate social welfare higher (an unsurprising result
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(a) Low ε. (b) High ε.

Figure 10: Disease dynamics in the targeted global social planner setting.

(a) Low ε. (b) High ε.

Figure 11: Infection prevalence in the targeted global social planner setting (solid lines)
and the laissez-faire setting (dashed lines).

given the social planner’s objective), but social welfare within each region is higher as

well.

The improvements in cumulative infections and social welfare are approximately the

same across the low and high ε specifications. This is due to the fact that the basic

reproductive ratio is kept constant. Although mitigation in the stronger connected spec-

ification has a larger inter-regional externality, this is compensated by a reduction in

its intra-regional externality. Thus, the total externalities internalised by the global so-

cial planner are roughly of the same magnitude. This is also evidenced in the weakly

and strongly connected specifications showing similar impacts to infection prevalence and

mitigation levels, as seen in Figures 11 and 12, respectively. The internalisation of the

positive externalities from mitigation induces the global social planner to enact higher

mitigation levels than under laissez-faire. For the parameter values used in these sim-

ulations, this is true at all points during the epidemic (i.e., mG
j (t) ≥ m∗

j(t), ∀j, t). In

other words, when non-cooperative individuals are allowed to independently choose how

much they mitigate, they consistently exert less mitigation efforts than would be socially

optimal, resulting in a more severe epidemic with more cumulative infections.
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(a) Low ε. (b) High ε.

Figure 12: Mitigation levels in the targeted global social planner setting (solid lines) and
the laissez-faire setting (dashed lines).

4.1.1 Uniform mitigation policies

In the above formulation of the global social planner’s decision problem, we assume they

are able to ‘target’ their mitigation policy, in that they can impose different mitigation

levels to individuals in different regions at the same time. However, it may be the case

that the global social planner is unable to impose different policies in neighbouring regions

due to, for example, jurisdictional limitations or practical difficulties in implementation.

In this scenario, which we will henceforth refer to as the ‘uniform policy’ setting, the

global social planner would have the same objective function as before, but be limited by

the constraint that m1(t) = m2(t). Thus, denoting m(t) as the mitigation level imposed

in both regions at time t ≥ 0, the uniform global social planner’s decision problem is

max
m(t)∈[0,1]

∫ ∞

0

e−ρt

[
S1(t)

(
πS − c

2
m(t)2

)
+ I1(t)πI +R1(t)πR

+ S2(t)
(
πS − c

2
m(t)2

)
+ I2(t)πI +R2(t)πR

]
dt

(4.7)

subject to, for j = 1, 2,

Ṡj(t) = − (1−m(t)) βSj(t) (Ij(t) + εI−j(t)) (4.8a)

İj(t) = (1−m(t)) βSj(t) (Ij(t) + εI−j(t))− γIj(t) (4.8b)

Ṙj(t) = γIj(t) (4.8c)
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Similar to before, the uniform global social planner’s current-value Hamiltonian is

HU = S1(t)
(
πS − c

2
m(t)2

)
+ I1(t)πI +R1(t)πR

+ S2(t)
(
πS − c

2
m(t)2

)
+ I2(t)πI +R2(t)πR

− λS1(t) (1−m(t)) βS1(t) (I1(t) + εI2(t))

− λS2(t) (1−m(t)) βS2(t) (I2(t) + εI1(t))

+ λI1(t) [(1−m(t)) βS1(t) (I1(t) + εI2(t))− γI1(t)]

+ λI2(t) [(1−m(t)) βS2(t) (I2(t) + εI1(t))− γI2(t)]

+ λR1(t)γI1(t)

+ λR2(t)γI2(t)

(4.9)

for which the costate variables’ laws of motion are, for j = 1, 2,

λ̇Sj
(t) = λSj

(t)ρ+ (1−m(t)) β (Ij(t) + εI−j(t))
(
λSj

(t)− λIj(t)
)

− πS +
c

2
m(t)2 (4.10a)

λ̇Ij(t) = λIj(t) (ρ+ γ) + (1−m(t)) βSj(t)
(
λSj

(t)− λIj(t)
)

+ (1−m(t)) εβS−j(t)
(
λS−j

(t)− λI−j
(t)

)
− λRj

(t)γ − πI (4.10b)

λ̇Rj
(t) = λRj

(t)ρ− πR (4.10c)

Taking the first order condition of the current-value Hamiltonian (4.9) and solving for

m(t) yields

m(t) =
βS1(t) (I1(t) + εI2(t)) (λS1(t)− λI1(t)) + βS2(t) (I2(t) + εI1(t)) (λS2(t)− λI2(t))

c (S1(t) + S2(t))
(4.11)

We denote the socially optimal mitigation levels in the uniform policy setting asmU(t),

being the solution to the necessary optimality condition (4.11), subject to m(t) ∈ [0, 1]

and the costate variables’ laws of motion (4.10). The resulting SIR disease dynamics are

then given by the metapopulation SIR model with mitigation (2.4) where m̄j(t) = mU(t),

for j = 1, 2, and are illustrated in Figure 13.

Figures 14 and 15 illustrate that the impact of restricting the global social planner

to uniform policies depends on the magnitude of ε. When ε is high and the regions are

strongly connected, each region’s disease states develop almost in tandem. Consequently,

the socially optimal targeted mitigation levels are nearly equal between the regions. Thus,

the global social planner being restricted to uniform policies does not have a significant

impact on the mitigation levels imposed in each region.

When ε is low and the regions are weakly connected, there is differentiation in the

regions’ infection and optimal targeted mitigation levels. Thus, when restricted to uniform
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(a) Low ε. (b) High ε.

Figure 13: Disease dynamics in the uniform policy setting.

(a) Low ε. (b) High ε.

Figure 14: Infection prevalence under the global social planner’s uniform policy (solid
lines) and targeted policy (dashed lines).

policies, the global social planner sets mitigation levels by trading off between too much

mitigation in one region and too little in another, resulting in mU(t) generally being

between mG
1 (t) and mG

2 (t). There is a period, however, in which the uniform mitigation

level is below the two targeted mitigation levels. This occurs around the time when the

two targeted mitigation levels are equal (mG
1 (t) = mG

2 (t)). Correspondingly, the peak

mitigation level under the uniform policy is noticeably lower than the peak mitigation

level of either region under the targeted policy. These findings lead way to two insights.

First, being able to tailor mitigation efforts to each region makes mitigation more effective

as a tool. This induces its increased use by the global social planner under the targeted

policy, explaining the lower peak mitigation level in the uniform policy setting. Second,

the period in which the uniform mitigation level is less than both targeted mitigation

levels highlights that, while a balancing between optimal targeted mitigation levels is

involved, it is not the only component involved in the uniform global social planner’s

decision process. As the social planner implements the uniform mitigation level, the

disease state paths differ from their paths in the optimal targeted setting. If the targeted

global social planner were instead faced with these altered disease state paths, they would

correspondingly update their optimal targeted mitigation levels. Indeed, as illustrated in

Figure 16, when one continuously reevaluates the optimal targeted mitigation levels along
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(a) Low ε. (b) High ε.

Figure 15: Mitigation levels under the global social planner’s uniform policy (solid lines)
and targeted policy (dashed lines).

the disease state paths of the uniform policy setting, mU(t) remains between the targeted

mitigation levels.12

(a) Low ε. (b) High ε.

Figure 16: Mitigation levels under the uniform policy (solid lines) and the optimal targeted
levels when evaluated along the uniform policy’s disease state path (dashed lines).

The impacts of the uniform policy restriction on the disease dynamics and infection

prevalence in each region is most easily seen in the case of weakly connected regions

(Figure 14a). Relative to the targeted policy, mitigation levels in region 1 under the

uniform policy are lower both leading up to and beyond the region’s infection peak. As

a result, infection prevalence in region 1 is ‘spiked’, in that it has a higher peak, but

also dissipates quicker. The opposite is true for region 2. As mitigation levels are higher

in region 2 during the epidemic’s growth phase, the uniform policy results in a flattened

infection prevalence curve with a longer duration epidemic. Overall, however, both regions

have more cumulative infections under the uniform policy. Also, as is naturally expected

given the uniform policy is a restriction on the global social planner’s toolset, aggregate

social welfare is lower than under the targeted policy.

12To find the reevaluated optimal targeted mitigation levels at time t ≥ 0, we solve for the targeted
global social planner’s decision problem as before, but set the initial disease state conditions (τj(0)) equal
to the disease state values under the uniform policy setting at time t ≥ 0, i.e. τUj (t). The initial mitigation
levels that the targeted global social planner chooses then correspond to the policy they would implement
at time t ≥ 0 if faced with τUj (t).
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As noted by Ndeffo Mbah and Gilligan (2011), a targeted disease control policy in

which individuals are subjected to different rules depending on where they live may be

viewed as socially inequitable. Thus, to counter such potential criticisms, the global social

planner may opt to resort to a uniform mitigation policy. Doing so, however, results in

less equality between the regions in terms of epidemic severity and social welfare. In

the uniform policy setting’s low ε specification, the region with the initial small shock of

infections experiences a noticeably higher peak level of infection. Correspondingly, the

difference between the two regions in the cumulative number of infections is increased

in this specification, with region 1 experiencing more infections over the course of the

epidemic. This is similarly reflected in the social welfare, for which the disparity between

the two regions is increased under the uniform policy for both ε specifications. The

inequality in outcomes under the uniform policy is also greater than when mitigation is

determined by laissez-faire. To summarise, although a uniform mitigation policy may be

viewed as a more socially equitable tool, it can instead result in more unequal outcomes,

both in terms of regional welfare and epidemic severity.

4.2 Delegated mitigation policies

We now turn to an alternate form of decision making, in which the decision to mitigate

is not aggregated to the global level, but rather delegated to the regional level. In other

words, mitigation levels are chosen in each region by a regional social planner, who does

so in order to maximise the social welfare within their region.

Unlike in the previous cases of the global social planner or laissez-faire, this ‘delegated

policy’ setting involves two uncoordinated social planners with differing objectives, for

whom their mitigation decision has a non-negligible impact on the disease dynamics faced

by the other social planner. Thus, the decision to mitigate by the regional social planners

is a continuous-time differential game.

Due to the lack of analytical tractability already inherent in the SIR epidemiological

model, we will focus on open-loop strategies. Open-loop strategies are Markovian (history-

independent) strategies in which a social planner’s choice of mitigation level depends solely

on the current time t. By contrast, closed-loop strategies are Markovian strategies which

depend on both the current time and disease states. As noted by Dockner et al. (2000),

open-loop solutions are a subset of closed-loop solutions, and would involve each player

announcing and committing to their mitigation policies at the start of the game. The

commitment that lies within open-loop strategies can reflect the far-sightedness of social

planners, who need to implement a mitigation policy to optimise welfare across an infinite

planning horizon.

Denoting the mitigation level chosen by the regional social planner in region j at time

23



t as mj(t), the decision problem for region j’s social planner is written as

max
mj(t)∈[0,1]

∫ ∞

0

e−ρt
[
Sj(t)

(
πS − c

2
mj(t)

2
)
+ Ij(t)πI +Rj(t)πR

]
dt (4.12)

subject to

Ṡj(t) = − (1−mj(t)) βSj(t) (Ij(t) + εI−j(t)) (4.13a)

Ṡ−j(t) = − (1−m−j(t)) βS−j(t) (I−j(t) + εIj(t)) (4.13b)

İj(t) = (1−mj(t)) βSj(t) (Ij(t) + εI−j(t))− γIj(t) (4.13c)

İ−j(t) = (1−m−j(t)) βS−j(t) (I−j(t) + εIj(t))− γI−j(t) (4.13d)

Ṙj(t) = γIj(t) (4.13e)

Ṙ−j(t) = γI−j(t) (4.13f)

Denoting the costate variable of disease compartment τk for the social planner of region

j as λj
τk
(t), region j’s social planner’s current-value Hamiltonian is

Hj = Sj(t)
(
πS − c

2
mj(t)

2
)
+ Ij(t)πI +Rj(t)πR

− λj
Sj
(t) (1−mj(t)) βSj(t) (Ij(t) + εI−j(t))

− λj
S−j

(t) (1−m−j(t)) βS−j(t) (I−j(t) + εIj(t))

+ λj
Ij
(t) [(1−mj(t)) βSj(t) (Ij(t) + εI−j(t))− γIj(t)]

+ λj
I−j

(t)
[(
1−m

j
(t)

)
βS−j(t) (I−j(t) + εIj(t))− γI−j(t)

]
+ λj

Rj
(t)γIj(t)

+ λj
R−j

(t)γI−j(t)

(4.14)
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The current-value costate variables’ laws of motion are then given by

λ̇j
Sj
(t) = λj

Sj
(t)ρ+ (1−mj(t)) β (Ij(t) + εI−j(t))

(
λj
Sj
(t)− λj

Ij
(t)

)
− πS +

c

2
mj(t)

2 (4.15a)

λ̇j
S−j

(t) = λj
S−j

(t)ρ+ (1−m−j(t)) β (I−j(t) + εIj(t))
(
λj
S−j

(t)− λj
I−j

(t)
)

(4.15b)

λ̇j
Ij
(t) = λj

Ij
(t) (ρ+ γ) + (1−mj(t)) βSj(t)

(
λj
Sj
(t)− λj

Ij
(t)

)
+ (1−m−j(t)) εβS−j(t)

(
λj
S−j

(t)− λj
I−j

(t)
)
− λj

Rj
(t)γ − πI (4.15c)

λ̇j
I−j

(t) = λj
I−j

(t) (ρ+ γ) + (1−m−j(t)) βS−j(t)
(
λj
S−j

(t)− λj
I−j

(t)
)

+ (1−mj(t)) εβSj(t)
(
λj
Sj
(t)− λj

Ij
(t)

)
− λj

R−j
(t)γ (4.15d)

λ̇j
Rj
(t) = λj

Rj
(t)ρ− πR (4.15e)

λ̇j
R−j

(t) = λj
R−j

(t)ρ (4.15f)

As only open-loop solutions are considered, the social planner for region j takes m−j(t)

as given during their optimisation, and selects mj(t) so as to maximise their current-value

Hamiltonian (4.14). Similar to before, differentiating (4.14) with respect to mj(t) and

assuming Sj(t) > 0 gives the necessary optimality condition

mj(t) =
β (Ij(t) + I−j(t))

(
λj
Sj
(t)− λj

Ij
(t)

)
c

(4.16)

Before continuing with the discussion of the outcomes in the delegated policy setting,

we will take a moment to compare the decision problem and corresponding solutions

with that of the targeted global social planner setting. The costate variables’s laws of

motion (4.15) and the optimality condition (4.16) in the delegated policy setting appear

almost identical to those of the targeted global social planner (4.5), (4.6). However, as

the utility flows earned in the opposing region are not considered by region j’s social

planner, their costate variables for the opposing region move differently to account for

this. Thus, for each disease state τ , the rate of change of the inter-regional costate

variable λj
τ−j

(t) contains the same components as its intra-regional counterpart, λj
τj
(t),

except for the utility flow earned by individuals in τ−j(t). Similarly, as discussed further

in Appendix A.1, the transversality conditions for the inter-regional costate variables

λj
τ−j

(t) do not value the continuation payoffs earned by the individuals in τ−j(t), unlike

their intra-regional counterparts.

We denote the (regionally) optimal open-loop mitigation levels in region j in the

delegated policy setting as mR
j (t), being the solution to the necessary optimality condition

(4.16), subject to mj(t) ∈ [0, 1] and the costate variables’ laws of motion (4.15). The

resulting SIR disease dynamics are then given by the metapopulation SIR model with
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mitigation (2.4) where m̄j(t) = mR
j (t), for j = 1, 2. Figure 17 illustrates the disease

dynamics in the delegated policy setting, whereas Figure 18 shows the infection prevalence

levels compared with those in the targeted global social planner setting.

(a) Low ε. (b) High ε.

Figure 17: Disease dynamics in the delegated policy setting.

(a) Low ε. (b) High ε.

Figure 18: Infection prevalence in the delegated policy setting (solid lines) and the tar-
geted global social planner setting (dashed lines).

As shown in Figure 19, the regional social planner generally imposes lower mitigation

levels than the global planner. This result makes intuitive sense, as the regional social

planner only internalises mitigation’s intra-regional externalities, whereas the global social

planner also internalises the inter-regional externalities.

Although the regional social planner’s mitigation levels are generally lower than those

of the global social planner, there is a period during the epidemic where this is not

the case. Starting near the beginning of the epidemic, the regional social planner imposes

stricter mitigation measures than the global social planner. This continues until mitigation

levels increase at their most rapid rate, after which the regional social planner enacts less

mitigation, and continues to do so into the infinite horizon. One possible explanation for

this comes from the inter-regional strategic nature of mitigation, discussed in Section 3.1.

As noted then, increased levels of mitigation in the neighbouring region induce individuals

in the home region to mitigate less in the earlier stages of the epidemic, and more in the

end stages. Thus, as we transition from the targeted global social planner setting to the

delegated policy setting, the opposite is true. Region 2’s social planner lessens mitigation
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(a) Low ε. (b) High ε.

Figure 19: Mitigation levels in the delegated policy setting (solid lines) and the targeted
global social planner setting (dashed lines).

(due to no longer internalising the inter-regional externalities), inducing region 1’s social

planner to increase mitigation at the beginning of the epidemic, and decrease mitigation

towards the end. Of course, this is reciprocally true for region 1’s impact on region 2.

Thus, relative to the targeted global social planner setting, the inter-regional strategic

effect of mitigation causes an upwards pressure on a regional social planner’s mitigation

efforts at the beginning of the epidemic, resulting in higher mitigation levels.

Overall, for both specifications of ε, the delegated policy setting results in less social

welfare and more cumulative infections in both regions. The magnitude of this impact,

however, changes with ε. For strongly connected regions, the transition from the targeted

global social planner setting to the delegated policy setting has a larger impact in all

respects (mitigation levels, infections, and social welfare). This dependency is explained

by the fact that the inter-regional externalities and strategic effects are both greater when

ε is large.

4.3 Decision making delegation under uniform policies

Examples as to why a global social planner may be restricted to only implementing uni-

form mitigation policies across their jurisdiction are discussed in Section 4.1.1. However,

it may be the case that the uniform policy-restricted global social planner can impose

region-specific mitigation levels by instead delegating policy determination to the under-

lying regional social planners. These regional social planners would then impose mitiga-

tion levels specific to their respective jurisdictions. The question then arises as to when a

social planner would find such a delegation to be beneficial. To answer this, we compare

the outcomes of the uniform policy setting with those of the delegated policy setting,

which is presented in Figures 20 and 21.

In the case of low ε, the comparison between the delegated policy and uniform policy

settings (Figures 20a, 21a) looks similar to the comparison between the targeted global

social planner and uniform policy settings (Figures 14a, 15a). This is because, due to
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(a) Low ε. (b) High ε.

Figure 20: Infection prevalence in the delegated policy setting (solid lines) and the uniform
policy setting (dashed lines).

(a) Low ε. (b) High ε.

Figure 21: Mitigation levels in the delegated policy setting (solid lines) and the uniform
policy setting (dashed lines).

the regions’ weak coupling, the magnitude of mitigation’s inter-regional externalities and

strategic effects are low. Thus, the mitigation levels and disease state paths under the del-

egated policy are similar to those under the targeted global social planner. Furthermore,

as there is regional heterogeneity in the disease state dynamics caused by the low value of

ε, there is a high cost of resorting to uniform policies. As a result, cumulative infections

are lower and total social welfare is higher in the delegated policy setting than in the

uniform policy setting. Thus, if the regions under their domain are weakly connected, a

global social planner restricted to uniform policies would likely benefit from delegating

the mitigation decision making to the underling regional social planners.

For the high ε specification, the comparison of the delegated policy and uniform policy

settings (Figures 20b, 21b) instead looks like the comparison between the delegated policy

and targeted global social planner settings (Figures 18b, 19b). As the regions in this

specification are strongly connected, the inter-regional externalities are also high. This

means that the social welfare cost of delegating to uncoordinated regional social planners

is large. On the other hand, the regional homogeneity in disease state dynamics means

the cost of uniform policies is low. This is seen in the similarity in disease dynamics and

mitigation levels between the targeted and uniform policies of the global social planner.

Therefore, compared to the uniform policy setting, there are more cumulative infections
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and less social welfare under the delegated policy setting. Contrary to the specification of

low ε, when a global social planner’s underlying regions are strongly connected, they would

benefit from retaining the decision-making power and implementing a uniform mitigation

policy.

(a) Cumulative welfare.

(b) Cumulative infections.

Figure 22: Total cumulative welfare (a) and cumulative infections (b) for different values
of ε in the targeted global social planner (solid lines), uniform policy (dashed lines), and
delegated policy (dotted lines) settings.

Letting a global social planner set targeted policies is always the first-best setting; but

whether a particular value of ε entails that a delegated policy is preferred to a uniform
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policy depends on the values of the model’s other parameters. However, as illustrated

in Figure 22, there will be a threshold value of ε for which the welfare under the two

inefficient policy settings are equal. For values of ε less than this threshold, the delegated

policy results in higher welfare—approaching that of the first-best targeted global social

planner—whereas the uniform policy has a welfare cost that increases as ε → 0. On the

other hand, as ε → 1, the uniform policy results in welfare close to the first-best targeted

global social planner, while the delegated policy results in larger welfare costs. Similarly,

there is a threshold value of ε for which the cumulative infections are the same under the

two inefficient policy settings. Lower values of ε lead to the delegated policy resulting

in fewer infections, whereas higher values of ε lead to the uniform policy having fewer

infections. Again, when ε → 0, the delegated policy approximates the first-best outcome

while the uniform policy results in high societal costs. When ε → 1, the uniform policy

approximates the first-best outcome while the delegated policy has high societal costs.

5 Travel restrictions

So far, we have assumed that the individuals and social planners of this model are unable

to change the level of inter-regional interaction and, thus, take ε as given. What if instead,

travel restrictions could be imposed, thereby reducing ε and the degree of interaction

between regions? In this section, we calculate the decision maker’s willingness to pay

(WTP) for a marginal decrease in ε from a given level ε̂ ∈ (0, 1]. To do this, we compare

the regional and total welfare from a simulation where ε = ε̂ with that from a simulation

where ε = ε̂− 0.001. The welfare in region j for a certain value of ε is calculated as

Wj(ε) =

∞∫
0

e−ρt
[
Sj(t)

(
πS − c

2
m̄j(t)

2
)
+ Ij(t)πI +Rj(t)πR

]
dt (5.1)

and the total welfare is W (ε) = W1(ε) +W2(ε). The WTP in region j to decrease ε by

0.001 from ε̂ is WTPj(ε̂) = Wj(ε̂ − 0.001) −Wj(ε̂). The total WTP is then the sum of

the two regional WTPs.

As before, we adjust β for all simulations in this section in order to maintain a constant

basic reproductive ratio R0, irrespective of ε. Thus, a simulation using a value of ε will

have a transmission rate β(ε) = R0γ
1+ε

. This is done so that the severity of the disease is not

altered. In the case of travel restrictions, this entails that when ε is reduced, individuals

respond by replacing their ‘lost’ inter-regional interactions with additional intra-regional

interactions. Thus, the total number of interactions individuals maintain stays the same,

as does the disease’s basic reproductive ratio R0. In other words, we keep constant an

individual’s total number of contacts, such that a change in inter-regional connectedness

only influences the distribution of their contacts across the home and neighbouring region.
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If we did not make this adjustment, the calculated WTP to reduce ε would be biased with

the WTP to reduce the disease’s severity.

5.1 WTP without mitigation

Figure 23: Regional and total WTP to decrease ε by 0.001 in the mechanistic model with
no mitigation.

As a benchmark, the regional and total WTP in the case of the purely mechanistic

model with no mitigation is shown in Figure 23. Since there is no mitigation or decision

making in this setting, the change in welfare caused by a decrease in ε is entirely driven

by the resulting changes in the disease dynamics. As the severity of the disease remains

constant, only the epidemic timings are changed and, thus, entirely explain the WTP

curves.13 Namely, when ε is decreased and the regions become less interconnected, it

takes longer for the disease to meaningfully spread to region 2. As the epidemic and its

associated costs are delayed for the second region, this is beneficial due to discounting.

Hence, the WTP in region 2 is positive. Conversely, a lower ε means that the initial

infection in region 1 is effectively less ‘diluted’ and region 1 undergoes the epidemic sooner.

Again, due to discounting, this makes region 1 worse off and gives them a negative regional

WTP. In total, as the changes in the epidemic timing for region 1 are marginal compared

to the epidemic delay in region 2, the total WTP is positive for all ε̂. Furthermore,

the regional and total WTP are all monotone and experience their largest magnitudes

as ε̂ → 0. This is because for low ε̂, the difference in epidemic timings between the two

regions is more pronounced and an absolute change in ε of 0.001 is relatively larger. Hence,

the marginal decrease in ε has a larger effect. This is contrasted with larger values of ε̂,

in which the initial infection almost immediately spreads to region 2. Then, a marginal
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decrease in ε has a negligible impact on disease dynamics, and a correspondingly negligible

impact on welfare.

5.2 WTP with endogenous mitigation

Figure 24: Regional and total WTP to decrease ε by 0.001 with laissez-faire mitigation.

When considering the WTP in the model with endogenous mitigation in the laissez-

faire setting (Figure 24), the WTP curves exhibit similar qualitative traits compared to the

mechanistic benchmark model. This is because the epidemic timing effects from before are

still present. However, there are notable differences, particularly in the non-monotonicity

of the regional WTP. As before, when ε̂ is large, the WTP in region 1 is negative and

is increasing towards 0 as ε̂ → 1. However, as ε̂ becomes low and we move to the left

in the graph, the slope of region 1’s WTP curve changes sign and starts increasing with

smaller values of ε̂. This continues until the region’s WTP eventually becomes positive.

The reason for this can be found by applying the dynamic envelope theorem to the

individual’s current-value Hamiltonian (3.2).14 By doing so, we can calculate the WTP

of an individual i in region j to marginally decrease ε as

WTP ∗
j =

∫ ∞

0

e−ρt

[(
λSj

(t)− λIj(t)
)

×
(
1−m∗

j(t)
)
βpiSj

(t)

×
(
I−j(t)− Ij(t)

1 + ε
+

∂Ij
∂ε

(t) + ε
∂I−j

∂ε
(t)

)]
dt

(5.2)

13This can be seen by comparing the WTP for decreasing discount rates ρ (see Appendix D.1).
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Note that this formulation (5.2) is an integral of the product of three time-varying

factors. The first factor (
λSj

(t)− λIj(t)
)

(5.3)

captures the value of avoiding infection at time t ≥ 0. As noted in Section 3, this

expression is positive and increasing throughout the epidemic.

The second factor (
1−m∗

j(t)
)
βpiSj

(t) (5.4)

captures the rate of new infections per unit of effective infection prevalence, which is

the term (Ij(t) + εI−j(t)). As is the case for the first factor, this factor is also positive

∀t ∈ [0,∞).

The last factor, which we term the infection differential effect, is(
I−j(t)− Ij(t)

1 + ε
+

∂Ij
∂ε

(t) + ε
∂I−j

∂ε
(t)

)
(5.5)

This factor expresses the reduction in effective infection prevalence at time t caused by a

reduction in ε and, unlike the first two factors, can be either positive or negative. The

infection differential effect captures the idea that, when evaluated along the equilibrium

disease state paths, a reduction in ε benefits an individual by reducing their interaction

with and susceptibility to infected individuals in the neighbouring region, but simulta-

neously increases their interaction with and susceptibility to infected individuals within

their own region. In general, if the neighbouring region has more infections than the

home region, then the infection differential effect is positive, and vice versa.15 In the

early stages of the epidemic, when I1(t) > I2(t), the infection differential effect is negative

(positive) for region 1 (2). This reverses later on when infections grow in region 2 and

I2(t) > I1(t). Furthermore, for large values of ε̂, infection levels in the two regions move

almost identically, so the infection differential effect is approximately zero. When ε̂ is low,

the difference between I1(t) and I2(t) can be large.

The infection differential effect is the main source of the different characteristics of the

WTP with endogenous mitigation. Relative to the mechanistic model, the inclusion of

mitigation alters the disease dynamics: epidemic durations are extended, but regional in-

fections still reach their peak prevalence at approximately the same time. Thus, compared

to the WTP in the mechanistic model, the period of positive infection differential effects

14See Caputo (2005, pp. 232–235) for a derivation of the dynamic envelope theorem in continuous-time
optimal control problems. Note that our result slightly differs from the one suggested by Caputo, in that

it includes the terms
∂Ij(t)
∂ε and ε

∂I−j(t)
∂ε . This is due to the fact that the equilibrium disease state paths

change in response to a reduction in ε, but the individual takes them as given and does not maximise

their current-value Hamiltonian with respect to them. Thus,
∂Hi

j

∂Ij(t)
,

∂Hi
j

∂I−j(t)
̸= 0.

15It should be noted that the infection differential effect’s additional terms
∂Ij
∂ε (t) and ε

∂I−j

∂ε (t) are

generally marginal in magnitude compared to the primary term
I−j(t)−Ij(t)

1+ε . Thus, it is mainly this
primary term that determines the sign and magnitude of the infection differential effect.
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(a) Discounted infection differential effect.

(b) Cumulative discounted infection differential effect.

Figure 25: (Cumulative) discounted infection differential effect for Region 1 under laissez-
faire mitigation (solid blue line) and the mechanistic model without mitigation (dashed
red line), when ε̂ = 0.005.

for region 1 starts at the same time, but lasts longer. When ε̂ is low, these extended ben-

efits are substantial enough to overcome the discounting effect and provide a net positive

WTP in region 1. This is demonstrated in Figure 25. By the end of the epidemic, the

cumulative discounted infection differential effect is positive in the laissez-faire setting,

whereas it is approximately 0 in the mechanistic model without mitigation.

In other words, a reduction in ε makes those in the initially infected region 1 worse

off at first, as they interact more with themselves and less with healthy individuals in

region 2. As the disease spreads to region 2 and infections decline in region 1, the travel

restrictions now provide a benefit, as susceptibles in region 1 now interact more with

the recovered individuals in their own region, rather than the infected individuals in the

neighbouring region. However, as people’s decision to mitigate extends the epidemic’s
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duration, this period of benefits lasts for a longer period of time. Thus, when regions are

weakly connected, even individuals in an initially infected region may benefit from travel

restrictions with initially uninfected regions.

The opposite effect occurs for region 2: reductions in ε under laissez-faire mitigation

leads to extended periods of costs when I2(t) > I1(t). This effect puts a downward

pressure for certain low values of ε̂, causing the WTP ∗
2 (ε̂) curve to become almost flat.

This is even more apparent when using a lower discount rate ρ, as it is easier for the

infection differential effect to overcome the discounting effect. Appendix D.2 shows that

for lower values of ρ, it is possible for WTP ∗
2 (ε̂) to become negative.

The combination of the infection differential effects in the two regions cause the total

WTP ∗(ε̂) to be approximately 0 for large values of ε̂, negative for a range of smaller ε̂, and

positive for very low values of ε̂. This differs from the predictions under the mechanistic

model, particularly in that the total WTP can be negative. Additionally, with lower values

of ρ, the non-monotonicity of the total WTP ∗(ε̂) curve is more pronounced (see Appendix

D.2), leading to a larger range and magnitude of negative WTP ∗(ε̂). This suggests that

if mitigation is determined endogenously by individuals, certain travel restrictions may

actually be detrimental to society as a whole. Furthermore, this can be more likely to

happen if low discount rates are used.

Similar results are found when observing the total WTP in the targeted social planner

setting, as shown in Figure 26. This is because the same effects from the laissez-faire

setting are present. Thus, when ε̂ is large, WTPG(ε̂) is approximately 0. For lower values

of ε̂, WTPG(ε̂) < 0. As we move further to the left of the graph and ε̂ → 0, WTPG(ε̂)

becomes positive. These results suggest that if a global social planner is setting mitigation

policies, they may be made worse off by imposing travel restrictions if they are not severe

enough.

In the delegated policy setting, Figure 27 shows that the regional and total WTP

curves have similar shapes compared to the laissez-faire and targeted global social planner

settings, but are generally shifted upwards. This is because there is an additional positive

effect in this setting: when ε decreases, not only do the disease dynamics change, but so

does the strategic setting between the regional social planners. As their regions become

less connected, they have less of an impact on each other, and the magnitude of the inter-

regional externalities decreases. This induces them to behave more closely to the global

social planner, resulting in better outcomes for both regions. Thus, there is a positive

bias in the WTP. With the exception of WTPR
1 (ε̂) for a range of small ε̂, the regional

and total WTP is positive, even for large values of ε̂.
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Figure 26: Total WTP to decrease ε by 0.001 in the targeted global social planner setting.

Figure 27: Regional and total WTP to decrease ε by 0.001 in the delegated policy setting.

6 Conclusion

In this paper, we use a metapopulation model to analyse the determination and impact of

mitigation on the spatio-temporal dynamics of an infectious disease. We consider both the

outcome of laissez-faire mitigation (which leads to uninternalised intra-regional externali-

ties) and delegated mitigation (which leads to uninternalised inter-regional externalities).

We emphasise the role of policy coordination and policy targeting, respectively, in achiev-

ing socially optimal outcomes. While lack of coordination or lack of targeting both induce

inefficiencies relative to the global social optimum, the magnitudes of these depend on
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the strength of coupling between regions.

Our analysis can be enriched in several different directions. First, our analysis has

focused on the case where only susceptible individuals can choose to mitigate, for the

sake of comparability with the laissez-faire outcome where only susceptible people have

an incentive to do so. Yet a social planner need not be restricted in this manner and may

choose to curtail the movement of all people, regardless of disease status. It’s clear that

our central insights carry over to this case, but with quantitative differences.

Second, we only consider travel restriction policies which are fixed throughout the

epidemic. In practice, governments do vary these over time as the epidemic and economic

conditions change and it would be interesting to explicitly analyse how to best go about

this. During COVID-19, it was clear that travel restrictions were not reciprocal or even

coordinated between countries, raising interesting questions of strategic behaviour in the

imposition of these over time.

Third, our analysis is based on the assumption that the underlying disease dynamics

are of the SIR type. But it is easily extended to richer environments, such as the more

general SEIRS model with pre-symptomatic infection and waning immunity. Again, many

of our conclusions will carry over to such a setting.

Fourth, our mitigation policy of choice can best be interpreted as measures such as

lockdowns or mandated social distancing, yet the insights would be valid also with other

control measures such as mass vaccination. An analysis of international vaccine rollout,

using our methodology, would speak to recent policy debates around vaccine nationalism

and global vaccine inequalities.

Fifth, as noted by Ndeffo Mbah and Gilligan (2011), implementing non-uniform poli-

cies may be considered inequitable and may cause local resistance to mitigation efforts

even if they achieve desirable aggregate outcomes. This was the case in Manchester, UK in

late 2020, where political leaders requested compensation from the central government in

return for cooperation in implementing robust “Tier 4” lockdown measures.16 This raises

the prospect of using inter-regional or even cross-country transfers to provide incentives

for disease mitigation.

Last, our analysis uses a relatively simple model of two symmetric regions. Expanding

the model to a network of many asymmetrically coupled regions may be more computa-

tionally complex, but would allow for richer spatio-temporal dynamics of disease spread.

This seems an avenue worth pursuing in future work.
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A Transversality conditions

The current-value costate variable λτj(t) has the economic interpretation of capturing the

shadow value of the disease state τj at time t (Caputo, 2005). As such, the transversality

conditions of λτj(t) in the case of a finite time-horizon ending at time T are

λSj
(T ) = VS (A.1a)

λIj(T ) = VI (A.1b)

λRj
(T ) = VR (A.1c)

where Vτ is the expected present value of utility earned (discounted to time T ) by an

individual in disease compartment τj at time T .

In the case of the infinite time-horizons considered in this paper, the corresponding

transversality conditions are

lim
T→∞

λSj
(T ) = VS (A.2a)

lim
T→∞

λIj(T ) = VI (A.2b)

lim
T→∞

λRj
(T ) = VR (A.2c)

For VR, an individual who is in the recovered compartment at time T will remain in

the recovered compartment for the rest of time. Thus, there is no uncertainty about their

future disease state or utility flows. VR can therefore be calculated as

VR =

∫ ∞

T

e−ρ(t−T )πRdt = πR

∫ ∞

T

e−ρ(t−T )dt =
πR

ρ
(A.3)

For individuals in the infected compartment at time T , their recovery and transition

to the recovered compartment occurs according to a Poisson process with rate γ > 0. Let

δ denote the amount of time after T at which the individual transitions to the recovered

compartment. The probability distribution function of δ is therefore fδ(t) = γe−γt. In

the period t ∈ [T, T + δ), the individual earns utility flows of πI . Once transitioning at
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time t = T + δ, the individual earns a net present value of VR. Thus, VI is calculated as

VI =

∫ ∞

0

fδ(t)

[
πI

ρ
+ e−ρt

(
πR

ρ
− πI

ρ

)]
dt

=

∫ ∞

0

γ

ρ
e−γt

[
πI + e−ρt (πR − πI)

]
dt

=
γ

ρ

∫ ∞

0

e−γtπIdt+
γ

ρ

∫ ∞

0

e−(γ+ρ)t (πR − πI) dt

=
πI

ρ
+

γ

ρ

πR

γ + ρ
− γ

ρ

πI

γ + ρ

VI =
1

γ + ρ

(
πI +

γ

ρ
πR

)
(A.4)

Lastly, individuals who are susceptible at time T have a chance of incurring the in-

fection at some time after T , which depends on the infection levels and their dynamics

beyond T . However, as πS ≥ πR ≥ πI , VS is bounded between VI and πS
ρ
. The former

assumes that the individual immediately becomes infected after T , whereas the latter

assumes the individual never incurs the infection.

As an interior solution to the mitigation problem is assumed (mj(t) ∈ (0, 1), ∀t),
complete mitigation never takes place. As a result, there will always be at least some

interaction between susceptibles and infecteds and new infections will occur. The epidemic

will therefore always continue to evolve under endogenous mitigation, and will never be

halted. Thus, in the infinite horizon, herd immunity will eventually be achieved and the

infection prevalence will asymptotically disappear. In other words, if T is sufficiently

large, infections will be effectively eradicated and VS ≈ πS
ρ
. In the limit, we have

lim
T→∞

VS =
πS

ρ
(A.5)

A.1 Delegated policy setting’s costate variables

The current-value costate variables λj
τk
(t) in the regional social planner’s Hamiltonian

(4.14) are unique in that they depend not only on the disease state τk, but also on the

region j of the regional social planner. Recall that λj
τk
(t) captures the shadow value of

τk to regional social planner j. As the payoffs earned in the opposing region are not

valued by the regional social planner, λj
τ−j

(t)’s shadow value is solely based on disease

state τ−j’s implied impact on the disease dynamics and payoffs experienced in region j.

This is similarly reflected in the transversality conditions. For the finite time-horizon
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approximation, we have

λj
Sj
(T ) = VS (A.6a)

λj
Ij
(T ) = VI (A.6b)

λj
Rj
(T ) = VR (A.6c)

λj
S−j

(T ) = λj
I−j

(T ) = λj
R−j

(T ) = 0 (A.6d)

In the infinite time-horizon, the corresponding transversality conditions are

lim
T→∞

λj
Sj
(T ) = VS (A.7a)

lim
T→∞

λj
Ij
(T ) = VI (A.7b)

lim
T→∞

λj
Rj
(T ) = VR (A.7c)

lim
T→∞

λj
S−j

(T ) = lim
T→∞

λj
I−j

(T ) = lim
T→∞

λj
R−j

(T ) = 0 (A.7d)

B Impact of increased mitigation in region 2

To further assess the impact that mitigation levels in region 2 have on mitigation levels in

region 1, we consider an extension to the quasi-decentralised setting in which region 2’s

mitigation is set at a constant level y ∈ [0, 1]. Meanwhile, mitigation in region 1 is still

determined by laissez-faire. Let m̂y
1(t) denote the corresponding equilibrium mitigation

level of susceptible individuals in region 1. The disease dynamics in this scenario are then

described by the metapopulation SIR model with mitigation (2.4) where m̄1(t) = m̂y
1(t)

and m̄2(t) = y.

(a) Low ε. (b) High ε.

Figure 28: Equilibrium mitigation levels in region 1 for various mitigation levels in region
2 (m̄2(t) = y) and in the laissez-faire setting (m∗

1(t)).

Figures 28 and 29 show that when mitigation levels in region 2 increase, the impact

on mitigation levels in region 1 changes over the course of the pandemic. Namely, it

induces individuals to do less mitigation in the early stages of the epidemic, but more
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(a) Low ε. (b) High ε.

Figure 29: Absolute change in mitigation levels in region 1 for various mitigation levels in
region 2 (m2(t) = y) and under decentralised decision making (m∗

j(t)), relative to y = 0.

mitigation towards the end. Furthermore, the impact is greater when regions are more

strongly connected.

C Numerical solution methods

To obtain many of our insights, we rely on numerical solutions of the metapopulation SIR

model, both without mitigation (2.1) and with mitigation (2.4). This section details the

general steps we undertake to generate the simulations.

We solve the model numerically with Python using the odeint() and solve bvp() func-

tions from the ‘integrate’ module of SciPy. These functions require as inputs a system

of ordinary differential equations and boundary conditions, and returns a solution to the

ODEs. For the boundary conditions, the odeint() function only allows for initial value

conditions, whereas the solve bvp() function also allows for terminal value conditions.

Default options for each of these functions were used, with the exception of a stricter

tolerance level for the solve bvp() function of tol = 1e− 5.

To initialise the process, we create a time grid containing points for each day of

t ∈ [0, T ], resulting in a vector of size T + 1. This time grid is what we lay the solutions

to our ODEs on top of.

Uncontrolled epidemiological benchmark

First, we solve for the mechanistic epidemiological model without mitigation (2.1). For

this, we use the odeint() function with the following steps:

1. We create an initial guess for each disease state vector [τj(0), τj(1), . . . , τj(T )], for

which we set all elements to the initial value τj(0). The initial values we use are:

S1(0) = 0.999, I1(0) = 0.001, R1(0) = 0, (C.1a)

S2(0) = 1, I2(0) = R2(0) = 0 (C.1b)
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2. Using the initial values of the disease compartments (C.1), along with the differential

equations from (2.1), we run the odeint() function to obtain the value of each regional

disease compartment’s proportion along the time grid.

Endogenous mitigation

For the laissez-faire, targeted global social planner, and uniform policy settings, we use

the solve bvp() function to solve for 12 time-varying variables: 6 disease compartment

variables (τj(t)) and 6 current-value costate variables (λτj(t)). In the delegated policy

setting, we need to solve for 18 variables, as there are now 6 costate variables for each

region (λj
τk
(t)). Note that the mitigation levels do not need to be solved for by the

function, as they are calculated implicitly according to (3.6), (4.6), (4.11), and (4.16). We

complete this process with the following steps

1. First, we create an initial guess for each of the variables.

(a) For the disease compartments τj(t), we use the previous solutions from the

uncontrolled epidemiological benchmark as the initial guess.

(b) For the costate variables λτj(t), we use their terminal values, as given in (A.1).

In the case of the delegated policy setting’s costate variables λj
τk
(t), we use

their corresponding terminal values, as given in (A.6).

2. We then define the differential equations for the variables. The disease state vari-

ables’ differential equations are given by the metapopulation model with mitigation

(2.4), in which the mitigation level is calculated as the solution corresponding to

the setting that we are simulating (3.6), (4.6), (4.11), (4.16). Similarly, the costate

variables’ differential equations are defined as per the simulation’s setting, given in

(3.4), (4.5), (4.10), (4.15).

3. We specify the variables’ boundary conditions. In particular, the initial value con-

ditions of the disease states τj(0) and the terminal value conditions of the costate

variables (λτj(t), λ
j
τk
(t)), as detailed in Step 1.

4. Using these differential equations and boundary conditions, we run the solve bvp()

function to obtain the solutions for each of the time-varying variables under the

setting we are simulating. We then use these solutions to calculate the vector of

mitigation levels along the time grid.

After obtaining the results of the simulation, we perform a brief sanity check. Namely,

we ensure that the calculated mitigation levels indeed correspond to an interior solution

(mj(t) ∈ (0, 1)) and that each of the disease compartment variables have feasible values

(τj(t) ∈ [0, 1]). Given the approximate nature of numerical solution methods, we allow

for small deviations of up to 1e− 7 beyond these bounds.
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As discussed in Appendix A, we need to approximate the infinite horizon with a long

finite horizon of T . For our simulations, we use T = 200. To ensure this is a reasonable

approximation, we check the infection prevalences at the terminal date to ensure they

are sufficiently close to 0 (i.e., Ij(T ) < 1e− 4). Furthermore, we found that using larger

values of T did not noticeably change our results.

For the disease dynamics parameters, we use R0 = 2.25, γ = 1/7.5, and (a) low ε =

0.025 (b) high ε = 0.25, as discussed in Section 2.3. Additionally, we use a daily discount

rate of ρ = 0.05/365, which corresponds to a 5% annual interest rate. Finally, for the

payoff parameters, we use πS = πR = 0, πI = −1, and c = 1.

D WTP dependence on ρ [For Online Appendix]

D.1 Without mitigation

To assess whether the WTP to decrease ε in the case of no mitigation is purely driven

by the change in epidemic timings, we calculate and compare the WTP using different

discount rates ρ. The rest of the parameter values are the same as before, namely:

I1(0) = 0.001, I2(0) = 0, R1(0) = R2(0) = 0, R0 = 2.25, γ = 1/7.5, πS = πR = 0,

πI = −1 and c = 1.

As ρ → 0, individuals become more patient and place less value on the timing of utility

flows. They therefore become increasingly indifferent towards an epidemic’s timing, which

is what is altered when ε changes. As can be seen in Figure 30, WTP(ε̂) becomes negligible

as ρ → 0.17 This corroborates the idea that the WTP to decrease ε in the case of no

mitigation is purely a timing issue.

D.2 With endogenous mitigation

Figures 31–33 depict the WTP curves under the laissez-faire, targeted global social plan-

ner, and delegated policy settings, respectively. In all cases, the WTP curves’ non-

monotonicity caused by the inclusion of endogenous mitigation becomes more exaggerated

and apparent as ρ → 0. This is due to the fact that the lengthened epidemic durations

have a more noticeable impact through the infection differential effect when ρ is low.

Thus, the differences between the WTP in the mechanistic case and that under endoge-

nous mitigation are more pronounced for lower values of ρ.

17This is true except for the unique case of ε̂ = 0.001, in which decreasing ε to 0 entails entirely
disconnecting the two regions, such that the initial infection in region 1 cannot spread to region 2.
Hence, the calculated WTP in this case is the WTP to avoid the epidemic altogether in region 2.
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(a) ρ = 0.05/365.

(b) ρ = 0.01/365.

(c) ρ = 0.001/365.

Figure 30: Regional and total WTP to decrease ε by 0.001 in the mechanistic model with
no mitigation, using different discount rates ρ.
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(a) ρ = 0.05/365.

(b) ρ = 0.01/365.

(c) ρ = 0.001/365.

Figure 31: Regional and total WTP to decrease ε by 0.001 under laissez-faire mitigation,
using different discount rates ρ.
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(a) ρ = 0.05/365.

(b) ρ = 0.01/365.

(c) ρ = 0.001/365.

Figure 32: Total WTP to decrease ε by 0.001 in the targeted global social planner setting,
using different discount rates ρ.
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(a) ρ = 0.05/365.

(b) ρ = 0.01/365.

(c) ρ = 0.001/365.

Figure 33: Regional and total WTP to decrease ε by 0.001 in the delegated policy setting,
using different discount rates ρ.
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