
DISCUSSION PAPER SERIES

 

DP17429
 

Improved Causal Inference on Spatial
Observations: A Smoothing Spline

Approach

Morgan Kelly

ECONOMIC HISTORY



ISSN 0265-8003

Improved Causal Inference on Spatial Observations:
A Smoothing Spline Approach

Morgan Kelly

Discussion Paper DP17429
  Published 03 July 2022
  Submitted 01 July 2022

Centre for Economic Policy Research
  33 Great Sutton Street, London EC1V 0DX, UK

  Tel: +44 (0)20 7183 8801
  www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research programmes:

Economic History

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on policy, but the Centre
itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage
discussion and comment. Citation and use of such a paper should take account of its provisional
character.

Copyright: Morgan Kelly



Improved Causal Inference on Spatial Observations:
A Smoothing Spline Approach

 

Abstract

With geographical observations, nearby places often have very similar treatments, controls, and
outcomes. In such cases, even with perfect identification, difference in differences and synthetic
controls return imprecise coefficients, while regression discontinuities and instrumental variables
are prone to severe bias and spurious significance. This paper shows how this may be remedied
by adding a spatial smoothing spline to the regression, something easily implemented in practice.
The spline allows spatial structure to be separated out as a nuisance variable while simultaneously
improving the bias-variance trade-off for the parameters of interest. For simulations and real
examples, including a spline causes a marked shrinkage of coefficients, while standard errors
change little for most types of cross-section but fall for panels.

JEL Classification: N/A

Keywords: N/A

Morgan Kelly - morgan.kelly@ucd.ie
University College Dublin and CEPR

Powered by TCPDF (www.tcpdf.org)



Improved Causal Inference on Spatial
Observations: A Smoothing Spline Approach

Morgan Kelly∗

Abstract

With geographical observations, nearbyplaces often have very sim-
ilar treatments, controls, and outcomes. In such cases, even with per-
fect identification, difference in differences and synthetic controls re-
turn imprecise coefficients, while regression discontinuities and in-
strumental variables are prone to severe bias and spurious significance.
This paper showshow thismaybe remedied by adding a spatial smooth-
ing spline to the regression, something easily implemented in practice.
The spline allows spatial structure to be separated out as a nuisance
variable while simultaneously improving the bias-variance trade-off
for the parameters of interest. For simulations and real examples, in-
cluding a spline causes a marked shrinkage of coefficients, while stan-
dard errors change little formost types of cross-section but fall for pan-
els.

1 Introduction

Natural experiments have become a cornerstone of empirical analysis in
economics and are frequently applied to geographical observations such
as cities, regions, and countries. However, when nearby places have similar
treatments, controls and outcomes, as they frequently do, these techniques
can return estimates of effect sizes that are imprecise at best, even when

∗University College Dublin and CEPR. I would like to thank Timothy Conley and Ben-
jamin Elsner for helpful conversations. Errors are mine.
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their identification restrictions are fully satisfied. In particular, difference in
differences and synthetic controls deliver reasonable confidence intervals
but coefficient estimates that can be far from true values; while instrumen-
tal variables and regression discontinuities ones are prone to spurious sig-
nificance and seriously biased coefficients. Because these are issues not of
identification but of estimation they extend to regressions using spatial ob-
servations more generally

It is, of course, well known that the standard errors of spatial regres-
sions need to be adjusted to reflect the fact that effective sample sizes can
be smaller than they appearwhenmany observations closely resemble their
neighbours. Although awide range of corrections has appeared in response,
in practice their estimates vary too widely to be of practical utility.1 How-
ever, even if the “true” adjustment were somehow known, the whole ex-
ercise of correcting standard errors ultimately comes down to wallpaper-
ing over the fact that the underlying spatial least squares estimates have a
poor bias-variance trade-off to begin with, reflecting their tendency to over-
fit noise.

If you take some towns dotted across a landscape and represent their
incomes by elevation on a map, you will generally find an undulating land-
scape where rich areas border on rich areas, and poor areas on poor ones.2
Now take some unrelated variable where neighbour again resembles neigh-
bour. If you regress one variable on the other, hills in one landscape will
often match either hills in the other, giving large positive coefficients, or
to hollows giving large negative ones. Even though unbiased, coefficients
from these regressions will thus have a large variance around the true value
of zero. What spatial standard error corrections aim to do is to inflate stand-

1These adjustments were pioneered by Conley (1999), and later contributions include
the large cluster methods of Bester et al. (2016), Ibragimov and Müller (2010) and Canay,
Romano and Shaikh (2017); and the principal components approach of Müller and Watson
(2021). However, not only do different adjustments give widely varying estimates, but even
minor changes to the tuning parameter (which must be set more or less arbitrarily by the
user) of an individual correction can change significance levels substantially, sometimes by
an order of magnitude. See Kelly, Mokyr and Ó Gráda (2023) for illustrations of this.

2This is Tobler’s First Law of Geography: “Everything is related to everything else, but
near things are more related than distant things.”
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ard errors sufficiently to give reasonable confidence intervals around shaky
coefficient estimates: to use two wrongs to make a (sort of) right.

Things are often a good deal worse. When two unrelated regressors
share similar directional trends (for instance, most indices of development
improve as you move away from the equator), coefficients can be severely
biased leading to confidence intervals that are centred on wrong values re-
gardless of standard error adjustment, and adding arbitrary polynomials in
longitude and latitude generally does little to remedy this.

In brief, then, even when identification restrictions are fully satisfied,
when applied to spatially correlated observations the effect sizes and con-
fidence intervals returned by instrumental variables, regression discontinu-
ities, difference in differences, and synthetic controlsmaybe less trustworthy
than might be hoped.

Given that these natural experimental techniques are so widely used on
spatial data, is there anyway tomake their resultsmore reliable? The simple
solution proposed here is to add a spatial smoothing term to the regression
in the form of a thin plate spline. This function has the remarkable property
that it gives the optimal least squares fit to any smooth surface of unknown
form subject to a second derivative penalty on overfitting whose weight can
be determined by cross-validation.

Adding a spline term to a spatial regression offers two potential im-
provements. The first is that, by separating out the spatial correlation struc-
ture of the regression as a nuisance variable (although a very informative
one as we will see below), it may be possible to carry out more reliable in-
ference on the parameters of interest. The second is that because smoothing
splines are penalized least squares estimators (of a ridge form) these para-
meters can be estimated with a better variance-bias trade-off than ordinary
least squares ones. The procedure extends immediately to panels by adding
time to the spline as a third dimension.

Spline regressions are not new to economics, but have been largely ne-
glected for a generation. Shiller (1984) considered splines in the context
of smoothing priors; and Engle, Granger, Rice and Weiss (1986) added a
smoothing spline to linear regressions of electricity demand to capture sea-
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sonal trends of varying forms. Despite their elegance, simplicity and power,
splines never took off in economics, perhaps because of their excessive com-
putational burdens by the standards of the time.3 However, they have con-
tinued to be actively developed in statistics under the name Generalized
Additive Models (Hastie and Tibshirani 1990, Wood 2017) along with soft-
ware that makes their estimation extremely straightforward.4 Because their
results are fully interpretable, spline regressions more recently have be-
come a popular tool inmachine learningwhere their predictive power often
matches black box methods (James et al., 2021, 289–310).

To assess whether splines really do lead to more reliable estimates for
the sort of regressions that interest us, we need to run Monte Carlo simu-
lations. When it comes to spatial observations, generating empirically re-
alistic data is not trivial. Previous simulations in econometrics, such as
those used in the standard error correction literature mentioned above, are
largely confined to highly stylized AR1 processes on regular lattices. Here,
by contrast, we introduce empirically realistic correlation patterns based on
Matérn processes that are the basis of empirical geostatistics. To mimic the
spatial clumping of actual data, the simulated stochastic processes are sam-
pled at point patterns taken from real locations.

The simulations turn up consistent patterns that also appear in the ex-
ample regressions reported in the final Section. For cross-sectional regres-
sions, the coverage of least squares deteriorates as the spatial correlation
of observations rises, leading to spurious significance. When spatial trends
are added to the variables, coefficient estimates become severely biased and
coverage declines further. The performance of regression discontinuities
and instrumental variables (when there are superficially strong but spuri-

3Other nonparametric smoothers have attracted somewhat more interest, kernels espe-
cially (Härdle, 1990); besides a literature on nonlinear instrumental variables (Blundell and
Powell, 2001).

4All estimation here is done with the R package mgcv of Wood (2017). To add
a spline in longitude and latitude to a linear regression of y on x, the command is
gam (y ∼ x+ s (lon, lat)). The package can fit most distributional families in common us-
age including logistic, zero inflated Poisson, and ordered categorical; has extensive diag-
nostic and visualization tools; and extends to quantile regressions through the related qgam

package.
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ous instruments that proxy for spatial trends) is especially poor. In all cases,
adding a spline leads to accurate coverage and tight, unbiased coefficient es-
timates.

Aswewould expect, conventional panel regressions performbetter than
cross-sectional ones: locational dummies absorb a gooddeal of spatial struc-
ture, leading to unbiased coefficient estimates and decent confidence in-
tervals even when there are long distance trends. However, where least
squares estimates again fall down is in their bias-variance trade-off. Coeffi-
cients vary widely across simulations leading to effect sizes that can be sub-
stantially too big or too small with high probability. The shrinkage induced
by a spatio-temporal spline gives considerably tighter coefficient estimates
and accurate coverage, along with smaller standard errors.

When added to some well known empirical studies, splines cause the
same changes that we observe in the simulations. In cross sections, coeffi-
cients shrink markedly. Standard errors stay the same in standard regres-
sions, but rise somewhat for instrumental variables and a lot for regression
discontinuities. For panels, both coefficients and standard errors fall no-
tably. Moreover, for most examples analyzed, the splines add considerable
explanatory power suggesting that they may be picking up the effects of
important explanatory variables with a strong spatial (or spatio-temporal)
structure that have been omitted.

In brief, including a smoothing spline would appear to offer a simple
means to improve the reliability of cross-sectional and longitudinal regres-
sions on spatial data. Naturally, although splines improve estimation, they
still leave the identification necessary to move from regression coefficients
to causal effect sizes to be demonstrated by the user.5

The rest of the paper is as follows. Splines are introduced in Section 2.
Monte Carlo simulations to assess the reliability of spline regressions for
cross-sectional and longitudinal observations are presented in Sections 3

5One possible contribution of smoothing splines to improved identification may be in
absorbing some of the spillovers between locations that can cause spatial data to violate
SUTVA, but that is not explored here.
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and 4. Finally Section 5 takes some empirical studies to examine how their
results change when splines are added.

2 Smoothing Splines

This Section gives a brief overview of smoothing splines: more detailed
treatments may be found, for instance, in Hastie, Tibshirani and Friedman
(2008, Ch. 5) and Wood (2017, Ch. 5). Beginning in one dimension, there
are n observations (yi, xi) , i = 1, . . . , n generated by

yi = f (xi) + ei (1)

where f is an unknown smooth function and E (ei) = 0.
A starting point is to represent f as a sum of basis functions {hj}m+k+1

j=1

of a pre-specified form

f (xi) =
m+k+1∑
j=1

βjhj (xi) . (2)

allowing (1) to be fitted by least squares. An obvious choice of basis func-
tion might appear to the simple polynomial hj (xi) = xj−1i , but the value of
every observation then influences the entire estimated curve, even at points
distant from it. Better results can be obtained from a spline basis.

The range of x is partitioned into m + 1 intervals by choosing m points
l1, . . . , lm called knots. A kth order spline is a continuous piecewise poly-
nomial of order k that has continuous derivatives of order 1, . . . , k − 1 at
these knots. The truncated power basis parameterizes the spline at its knots
l1, . . . , lm as follows

g1 (x) = 1, g2(x) = x, . . . , gk+1 (x) = xk (3)

gk+1+j (x) = (x− lj)k+ , j = 1, . . . ,m.
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where x+ is max {x, 0}. To improve behaviour around end points, the natu-
ral power basis sets the spline to be a polynomial of order (k − 1) /2 outside
the knots. The coefficients β1, . . . βk can be solved through least squares by
minimizing  n∑

i=1

yi −
m+k+1∑
j=1

βjgj (xi)

2

. (4)

Typically k = 3, a cubic spline.
These regression splines require the number and position of knots to be

set by the user. A fully nonparametric solution is to find among all func-
tions f (x) with continuous second derivatives the one that minimizes the
penalized sum of squares

f̂ = arg min
f

n∑
i=1

(yi − f (xi))
2 + λ

ˆ
f

′′
(u) du. (5)

The least squares fit of f is traded off against an over-fitting penalty that rises
according to how wiggly (the technical term) the function is. In the case
where there is no penalty so λ = 0, f linearly interpolates the observations,
whereas when λ = ∞, f is the ordinary least squares line. Although the
solution to (5) lives on an infinite dimensional functional space, there exists
a unique solution which is the natural cubic spline basis with n knots, each
at an observation xi. The solution to (1) can therefore be written as

f (xi) =
n∑
j=1

βjgj (xi) . (6)

The estimation problem (5) then reduces to finding the parameters β that
minimize the penalized objective function

(y −Bβ)
′
(y −Bβ) + λβ

′
Ωβ (7)

where Bij = gj (xi) and Ωjk =
´
g
′′
j (u) g

′′
k (u) du. The regularization term,

which takes the ridge form β
′
Ωβ, acts to prevent over-fitting by imposing
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more shrinkage on the coefficients βj of the wiggliest basis functions gj ac-
cording to the size of the penalty parameter λ.

The penalized least squares coefficients are estimated as

β̂ =
(
B

′
B + λΩ

)−1
B

′
y. (8)

The smoother matrix is defined as Sλ = B
(
B

′
B + λΩ

)−1
B

′ so ŷ = Sλy.
Analogous to ordinary least squares, the effective number of parameters of
the smoothing spline is tr (Sλ). The penalty parameter λ can be estimated
by cross-validation or maximum likelihood (Wood, 2017, 255–269).

For spatial observations xi has two dimensions corresponding to the co-
ordinates in longitude and latitude of each observation xi = (si1, si2), and
the smoothing spline generalizes to two or more dimensions in the form
of the thin plate spline (Wood, 2017, 214–219). A practical limitation of
smoothing splines is that they require n knots, so that estimation is slow
and uses up all observations. However, a truncated eigen-decomposition
can be used to obtain a lower dimensional approximation of B that speeds
estimation and leaves degrees of freedom to estimate other model parame-
ters (Wood, 2003).

Such parameters appear when more is known about each location than
its spatial coordinates si1, si2 and outcome yi. These other covariatesX can
be included in the regression

y = f (s1, s2) +Xδ + e. (9)

Following Engle et al. (1986), define a new matrixW = (B,X) and coeffi-
cient vector γ′

= (β, δ)
′ . Letting Λ be the penalty matrix Ω bordered by an

appropriate number of zeroes, the solution is

γ̂ =
(
W ′W + λΛ

)−1
W ′y. (10)

It is straightforward to allow explanatory variables to have a non-linear im-
pact on y by including them as additional spline terms, but loss of degrees
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of freedommay start to become an issue for the precision of estimates when
datasets are small.

For longitudinal data with observations at times t = 1, . . . , T , the tem-
poral coordinates are measured in different units than the spatial ones so
that a thin plate spline in three dimensions is not appropriate. Instead the
surface can be fitted as the tensor product of two thin plate splines, in space
and time respectively (Wood, 2017, 227-238).

3 Cross-Sectional Simulations

We want to assess how smoothing splines affect regression estimates, and
this requires simulations of an empirically realistic structure. For spatially
correlated data, theworkhorse of geostatistics is theMatérn function, which
has the appealing property that the rate of decay in correlation can bemade
to vary between Gaussian and exponential by varying a smoothing param-
eter (Gneiting and Gutthorp, 2010). In practice spatial correlation tends to
fall off exponentially with distance, and in what follows we will generate
data as standard normal variables with mean zero and covariance between
sites si, sj at distance h apart equal to

Σij = ρ exp (−h/θ) + τ21ij (11)

where 1ij = 1 when i = j and zero otherwise.6 The parameter ρ gives
systematic correlation while τ2 represents idiosyncratic variability which
equals 1 − ρ for the standard normal variables here. The range parameter
θ controls how fast correlation decays with distance: correlation reaches
about 0.14 at distance 2θ (Gneiting and Gutthorp, 2010).

We will analyse cases where there is strong or weak spatial structure
in the variables, with and without systematic trends. The sites are located

6For instance, if we take Ttetse fly suitability from Alsan (2015), the likelihood function
is maximized with exponential falloff of range θ = 1750 km, and structure ρ = 1. For
Nazi vote share from Voigtländer and Voth (2012) the respective parameters are 125 km
and 0.55. If data are simulated with a slower than exponential decay, the increased spatial
structure exacerbates the distortions associated with least squares estimates while leaving
the performance of splines unchanged.
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on a unit square. In the strong case θ = 0.1, ρ = 0.9, whereas in the weak
case θ = 0.05, ρ = 0.5. In simulations where a spatial trend was added to
variables, it takes the form of two peaks on a northwest-southeast diagonal
fromWood (2003, 104).7

We will simulate three types of cross-sectional regression. The first is a
standard least squares regression of one simulated noise series on another.
Next there is a regression discontinuity where the explanatory variable is
set to zero for points in the left half of the sample space, and to one on the
right. Finally, there are simulations for instrumental variables regressions
where x and y are driven by a common confounder, and there is a strong
(but in some cases spurious) instrument for x.

The question arises of how to choose the observational points for sam-
pling the spatial stochastic processes. Possible choices include a uniform
grid, or a Poisson process. These tend to give fairly similar results but are
empirically unrealistic. In practice sites tend to clump together: cities, for
instance, are located disproportionately on coasts or large rivers. This clus-
tering can bemodelled, for example, by a Thomas process where imaginary
central points are laid down as a Poisson process, and then clusters of ob-
served points are set around each as a second Poisson process. However,
we then face the task of choosing suitable generating parameters.

What we do instead is to choose sites based on real world coordinates.
For the cross-sectional simulations here we take the location of 150 African
tribes (normalized to lie on the unit square) used by Alsan (2015) and oth-
ers. If we base the simulations on some other set of points, such as the
41 counties of England analyzed by Kelly, Mokyr and Ó Gráda (2023), or
the 48 capitals of the contiguous US states, the results are similar but not
identical, reflecting the different clustering patterns of the sampling points.
For simulations based on uniform grids or homogeneous Poisson processes,
standard least squares estimates perform less poorly than with these more
realistic patterns.

7Using the other trend surface given by Wood did not change the pattern of OLS results
materially, and left the spline ones effectively unchanged.
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95% Coverage Coef Estimate Coef RMSE Standard Error

Degree Spl OLS Cnly Spl OLS Ratio Spl OLS Spl OLS Cnly
High Spatial Correlation. No Trend.

0 0.92 0.64 0.82 -0.00 0.00 0.50 0.09 0.19 0.08 0.08 0.13
1 0.92 0.68 0.81 -0.00 0.00 0.56 0.09 0.17 0.08 0.08 0.11
2 0.92 0.71 0.79 -0.00 0.00 0.60 0.09 0.16 0.08 0.08 0.10

High Spatial Correlation. Trend.

0 0.90 0.34 0.58 0.03 0.22 0.29 0.09 0.17 0.08 0.08 0.14
1 0.90 0.35 0.56 0.03 0.21 0.32 0.09 0.16 0.08 0.08 0.12
2 0.90 0.38 0.55 0.03 0.20 0.34 0.09 0.15 0.08 0.08 0.12

Low Spatial Correlation. No Trend.

0 0.93 0.90 0.86 0.00 0.00 0.92 0.09 0.10 0.08 0.08 0.08
1 0.93 0.90 0.86 0.00 0.00 0.93 0.09 0.10 0.08 0.08 0.08
2 0.93 0.91 0.86 0.00 0.00 0.95 0.09 0.10 0.08 0.08 0.08

Low Spatial Correlation. Trend.

0 0.87 0.34 0.51 0.05 0.20 0.36 0.09 0.10 0.08 0.08 0.10
1 0.87 0.41 0.52 0.05 0.18 0.40 0.09 0.10 0.08 0.08 0.09
2 0.87 0.49 0.58 0.05 0.16 0.45 0.09 0.10 0.08 0.08 0.09

The dependent and explanatory variables are 150 observations of exponentially decay-
ing noise on a unit square. Strong spatial correlations have range θ of 0.1 and structure
ρ of 0.9, while weak ones have parameters 0.05 and 0.5. Degree is the degree of poly-
nomials in longitude and latitude added to each OLS regression. The true regression
coefficient is zero. Cnly denotes Conley standard errors with a rectangular kernel that
has a cutoff distance of 0.1. Ratio denotes the median absolute ratio of the spline to OLS
coefficient estimates in each regression. Trend denotes a spatial trend added to both
dependent and explantory variables.

Table 1: Monte Carlo simulations of cross-sectional regressions, using OLS
and splines.

In the simulations that follow, the dependent variable has mean zero
and standard deviation of one, as does the explanatory variable except in
caseswhere it is a binary treatment. The regression coefficients are therefore
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Figure 1: Coefficient estimates from Monte Carlo simulations for least
squares and smoothing splines, with and without spatial trends.

the number of standard deviations that y changes by on average when x
increases by one standard deviation, or one unit depending on the context.8

Each entry of Table 1 compares the performance of least squares, with
or without a Conley (1999) standard error adjustment, against a regression
that includes a thin plate spline in longitude and latitude. Successive rows
give results when no longitude and latitude controls were added to the
least squares regression, and then when they were included linearly and
quadratically. When trends are added to the simulation these are the diag-
onal hills fromWood (2003, 104) mentioned earlier.

It is immediately evident that, except when there is a weak spatial struc-
ture and no systematic trend, least squares has poor coverage and imprecise
coefficient estimates. In the first row, where there is high spatial structure
and no trend, with no longitude and latitude terms in the least squares re-
gression, the 95% confidence interval contains the true coefficient of zero
only 65 per cent of the time, which improves to 80 per cent with a Conley
adjustment, whereas the spline estimate has 92 per cent coverage.

8All tables report results for 1000 iterations: their statistics had effectively stabilized
within 200.

12



95% Coverage Coef Estimate Coef RMSE Standard Error

Degree Spl OLS Cnly Spl OLS Ratio Spl OLS Spl OLS Cnly
High Spatial Correlation. No Trend.

0 0.93 0.27 0.71 0.01 0.02 0.68 0.34 0.54 0.32 0.10 0.30
1 0.93 0.42 0.71 0.01 0.01 0.51 0.34 0.71 0.32 0.20 0.40
2 0.93 0.44 0.66 0.01 0.01 0.56 0.34 0.64 0.32 0.19 0.34

High Spatial Correlation. Trend.

0 0.93 0.32 0.74 0.02 0.11 0.69 0.34 0.54 0.32 0.12 0.33
1 0.93 0.41 0.71 0.02 0.30 0.44 0.34 0.71 0.32 0.22 0.46
2 0.93 0.40 0.64 0.02 0.43 0.43 0.34 0.64 0.32 0.22 0.38

Low Spatial Correlation. No Trend.

0 0.94 0.57 0.86 0.07 0.11 1.49 0.44 0.30 0.43 0.13 0.25
1 0.94 0.57 0.72 0.07 0.30 0.81 0.44 0.50 0.43 0.24 0.36
2 0.94 0.50 0.62 0.07 0.43 0.70 0.44 0.46 0.43 0.24 0.31

Low Spatial Correlation. Trend.

0 0.94 0.56 0.82 0.00 0.02 1.50 0.44 0.30 0.42 0.11 0.20
1 0.94 0.62 0.71 0.00 0.00 0.88 0.44 0.50 0.42 0.22 0.28
2 0.94 0.65 0.69 0.00 0.00 0.94 0.44 0.46 0.42 0.22 0.26

The simulations are done with the same locations and parameters as Table 1. The ex-
planatory variable is zero at sites to the left of a vertical line halfway across the space,
and one to the right.

Table 2: Regression discontinuities.

Most notably, if we compare the ratio of the two coefficient estimates,
the spline estimate is half as large on average (reflecting shrinkage due to
penalization), while the standard errors returned by both estimators are
similar, and about two thirds the size of Conley ones. When a quadratic in
longitude and latitude is added, coverage improves slightly to 70 per cent
but the precision of coefficient estimates does not improve.

Turning to a trend in both variables, the coverage of OLS is now 0.35, or
0.6 with a Conley adjustment; while the average bias in coefficient estimates

13



is 0.2 and does not improve as directional polynomials are added. In other
words, half the time a one standard deviation change in x will appear to
cause a change of more than 0.2 standard deviations in y, something that
does not occur once in the spline simulations.

The coefficients of the spline regressions are now a third of the least
squares ones on average. In the final two panels where there is weak struc-
ture, when there is no systematic trend the spline makes little difference
as we would expect, but a trend again causes OLS to perform badly. In
all cases, the spline estimates are reliable, giving correct coverage and tight
coefficient estimates. Figure 1 gives the distribution of the simulated coef-
ficient estimates for the least squares and spline regressions for data with a
high spatial structure. It is apparent that the spline estimates are consider-
ably tighter and remain unbiased even when a trend is added, in contrast
to the OLS ones.

3.1 Regression Discontinuities

Table 2 reports results for regression discontinuities. where the frontier is
a vertical line at 0.5 that splits the study area in half. Using a horizontal
line gave similar (but not identical, because the pattern of points on each
side of the boundary is different) results. With strong spatial structure and
no trend, OLS coverage is only 0.3 but increases to 0.45 as a quadratic poly-
nomial is added, while Conley stays around 0.7. The spline coefficient is
between 0.5 and 0.7 of the OLS one. Interestingly, when there is low spatial
structure in the observations, OLS continues to perform poorly with cover-
age of 0.6 while the Conley coverage falls from 0.8 to 0.7 as a quadratic is
included. In contrast to Table 1, the spline standard errors are now substan-
tially larger that the OLS ones (somethingwewill also see for real examples
in Section 5), and resemble Conley ones. For simulations where a trend is
added, the bias of OLS is 0.1 without a polynomial, but rises to 0.4 when a
quadratic is included.
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Structure 95% Cover. Coef Estimate Coef IQR Std Error

Space Trend Boot Unadj LS Spl LS Ratio Spl LS Unadj LS F

Instrumental Variables.

H N 0.83 0.86 0.75 0.00 0.01 0.64 0.49 0.77 0.25 0.26 24
H Y 0.80 0.82 0.33 0.06 0.40 0.39 0.27 0.37 0.14 0.13 93
L N 0.88 0.85 0.91 0.00 0.01 1.20 0.47 0.38 0.25 0.25 20
L Y 0.81 0.82 0.31 0.09 0.36 0.44 0.26 0.22 0.14 0.14 81

The simulations are carried out with the same locations and parameters as Table 1. To
deal with some extreme coefficients from the IV simulations, reported coefficient esti-
mates and standard errors are the median of simulated values, and the RMSE of coeffi-
cient estimates is replaced by inter-quartile range IQR. LS denotes standard IV estimates
without a spline term in the second stage. Boot denotes spline coverage estimated from
a semiparametric bootstrap, while Unadj uses unadjusted standard errors from the sec-
ond stage spline regression. F is the median value of the F statistic from the first stage
regression.

Table 3: Instrumental variables.

3.2 Instrumental Variables

The impact of including a spline term in IV regressions in shown in Table
3. The starting point is spatial noise simulations ηy, ηx, ηz with the same
parameters and locations as in Table 1. There is a confounding variable c
that can take two forms. Either it is also spatial noise, or else it is a trend
surface of the same form as previously. The regressions involve a dependent
variable y = ηy + c, an explanatory variable x = ηx + c + 0.5z, and an
instrument z which equals ηz when the confounder is spatial noise, and
equals ηz + c when the confounder is a trend. In other words, x and y are
connected only through the confounder. The instrument is valid when the
confounder is spatial noise, but spurious when c is a trend, even though it
will appear strong in first stage regressions that omit a spline, as we saw in
Table 1.

There are possible ways to estimate confidence intervals for the spline
regressions: either using the unadjusted values from the second stage re-
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gression and ignoring the fact that these are based on estimated values; or
by a bootstrap. Because the dependent variable is spatially correlated, the
bootstrap cannot simply be cased on random samples. Instead a semipara-
metric procedure is used where ŷ is the predicted value of y from the IV
regression, and ε is the vector of residuals which should be spatially un-
correlated, something that can be tested by comparing how the difference
between each residual and the average of its neighbours (which will be low
when there is autocorrelation) changes as the residuals are randomly per-
muted Wood (2017, 243). A new dependent variable for 500 bootstrap it-
erations is then computed as the sum of ŷ and a sample with replacement
from ε.

A feature of the IV simulations is that coefficients and standard errors
with extreme values were returned by several iterations of the least squares
simulations, and a handful of the spline ones. To prevent these outliers
from distorting the summary statistics, Table 3 reports the median of coeffi-
cient and standard error estimates, along with the interquartile range of the
coefficient estimates. The Table reports four estimates, with high and low
spatial structure, and with a noise or trend confounder.

It can be seen that the performance of regressions without a spline is
similar to theOLS ones in Table 1without polynomial termswhile the spline
ones perform slightly worse with coverage in the range 0.82 to 0.88 with
unadjusted standard errors, and slightly lower (except in the low structure
case) for bootstrap ones. The spline coefficients, moreover, are somewhat
biased upwards when there is a trend in the variables, but again far less
than standard least squares ones. The median first stage F statistics from
the spurious trend instruments are above 80, but including a spline as a first
stage check causes the apparent significance of the instruments to vanish.
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4 Panel Simulations

Turning to longitudinal simulations, the variable at each site now evolves
through time as an AR1 process with parameter α. If Wt is the vector of
values at the n sites in period t then

Wt+1 = αWt +
√

1− α2Zt+1 (12)

where the innovation vector Z ∼ N (0,Σ) has the same exponential covari-
ance matrix (11) as before. The

√
1− α2 term serves to make the process

stationary in time.
We consider simulations with high and low spatial structure using the

same parameter values as in Tables 1 and 2, but now with high and low
temporal autocorrelations of α = 0.9 and α = 0.5.

The longitudinal regressions include dummies for location and time pe-
riod. Locational dummies turn out to absorb long run directional trends ef-
fectively so we will not report simulations with added trend surfaces of the
type in the previous cross-sectional tables. For these panel simulations, the
sites are now the capitals of the 48 contiguous US states, again normalized
to lie on a unit square; and there are ten time periods.

4.1 Fixed Effects and Difference in Differences

Table 4 simulates four types of panel regression. In all cases the outcomes
are autocorrelated spatial noise of the form just described. As a benchmark
we start with a standard fixed effects regressionwhere the explanatory vari-
able is also spatio-temporal noise with the same generating parameters.
Next we consider zero-one treatments where half of the observations are
treated simultaneously, in period 6. In each iteration of the simulation, a
drawing of cross-sectional noise is first made and the 24 sites with the high-
est values are treated. When there is high spatial correlation, treated sites
will tend to cluster geographically, whereas they are more randomly dis-
persed when spatial structure is low.
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Structure 95% Cover Coef Estimate Coef RMSE Std Error

Space Time Spl OLS Spl OLS Ratio Spl OLS Spl OLS
Fixed Effects.

H H 0.91 0.89 0.00 0.00 0.61 0.06 0.10 0.06 0.08
H L 0.92 0.89 0.00 0.00 0.78 0.06 0.07 0.05 0.06
L H 0.90 0.95 0.01 0.00 0.78 0.07 0.08 0.06 0.08
L L 0.92 0.93 0.00 0.00 0.90 0.06 0.06 0.05 0.06

Simultaneous zero-one treatment

H H 0.88 0.91 0.00 -0.00 0.69 0.16 0.22 0.13 0.19
H L 0.90 0.89 0.00 -0.01 0.91 0.26 0.28 0.21 0.24
L H 0.87 0.95 -0.00 -0.01 0.96 0.19 0.20 0.14 0.20
L L 0.86 0.94 0.00 -0.01 1.19 0.30 0.25 0.23 0.24

Staggered zero-one treatment.

H H 0.92 0.93 -0.00 -0.00 0.58 0.09 0.16 0.08 0.15
H L 0.93 0.93 0.00 -0.00 0.83 0.17 0.21 0.16 0.20
L H 0.89 0.94 0.00 -0.00 0.77 0.12 0.15 0.10 0.15
L L 0.88 0.94 0.00 -0.01 1.03 0.22 0.21 0.18 0.20

Simultaneous variable treatment.

H H 0.90 0.87 -0.00 -0.00 0.75 0.09 0.12 0.07 0.10
H L 0.90 0.86 -0.01 -0.00 0.93 0.15 0.16 0.12 0.12
L H 0.89 0.94 -0.00 -0.00 0.91 0.10 0.11 0.08 0.10
L L 0.88 0.92 -0.01 -0.00 1.11 0.16 0.13 0.12 0.12

Here the sites are the coordinates of 48 US state capitals and there are ten time peri-
ods. The first column gives the strength of the spatial correlation, high or low, using
the same parameters as earlier. The second column gives the strength of temporal au-
tocorrelation, 0.9 or 0.5. The OLS standard error and coverage are based on clustering
by location.

Table 4: Panel regressions.

In the third set of simulations, the treatment is introduced sequentially.
There is a drawing of spatial noise at the start, and each period three more
sites are added to the treatment group in the order of their noise drawing.
For the final set of simulations, treatment varies across sites. A drawing

18



of spatial noise is taken, and from periods six to ten this is the treatment
administered at each site. Again, the higher the spatial correlation, themore
that the treatments of nearby sites will resemble each other.

For each of the treatments, four sets of results are reported according
to whether the observations have high or low spatial structure, and high or
low temporal autocorrelation. For the least squares results, standard errors
clustered by location are reported.

A spline to absorb both spatial and temporal correlation is now required.
Following Section 2, because space and time aremeasured in different units,
this is a tensor spline which is the outer product of a thin plate spline in
longitude and latitude, and a thin plate spline in time.

As Table 4 shows, the widely used Bertrand, Duflo and Mullainathan
(2004) clustering procedure works well everywhere in terms of coverage.
The difficulty with least squares comes instead from the imprecision of co-
efficient estimates, and the inflated standard errors needed to compensate
for this. If we look at the second panel, where half the observations are
treated at time six, when spatial and temporal correlation are both high, the
spline coefficients and standard errors are sixty per cent as large on average
as the least squares ones. For cases where the spatial correlation is low, the
difference is not as marked regardless of the strength of the temporal cor-
relation. However, in simulations where a staggered treatment is applied,
the spline estimates are noticeably more precise than the least squares ones,
except when both spatial and temporal structure are weak. In all cases, the
spline coefficients estimates come with considerably lower standard errors.

4.2 Synthetic Controls

Finally, Table 5 presents simulation results for synthetic control regressions.
Again the outcome y is allowed to have high or low spatial and temporal cor-
relation. The points are the capitals of the 48 contiguous states, and the in-
tervention now occurs in period 11 of 20 on a state that is chosen at random
each time. The Table reports effect sizes and standard errors using the syn-
thetic difference in differences estimator of Arkhangelsky et al. (2021): the
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Structure 95% Cover. Coef Estimate Coef RMSE Std Error

Space Time Spl Syn Spl Syn Ratio Spl Syn Spl Syn

Synthetic Controls.

H H 0.92 0.94 -0.03 -0.00 0.62 0.47 0.71 0.45 0.70
H L 0.93 0.94 -0.03 -0.02 0.90 0.62 0.68 0.58 0.67
L H 0.92 0.94 -0.04 -0.02 0.72 0.54 0.75 0.53 0.73
L L 0.92 0.94 -0.04 -0.02 1.05 0.78 0.72 0.72 0.72

The simulations are again based on 48 US state capitals with the same spatio-temporal
parameters as Table 4. The coefficient and standard errors for the synthetic con-
trol estimators are calculated using the synthetic difference in differences estimator of
Arkhangelsky et al. (2021).

Table 5: Synthetic controls.

original Abadie, Diamond and Hainmueller (2010) estimator gave similar
results. It can be seen that the coverage of the synthetic difference in differ-
ences is good but, again, the spline regressions return tighter estimates of
effect sizes and smaller standard errors, except in the final line where there
is little spatio-temporal structure when the results are almost indistinguish-
able as we would expect.

5 Regression Illustrations

We now present some examples of how smoothing splines can change the
parameter of interest in a variety of cross-sectional and longitudinal regres-
sions. Table 6 gives the coefficient and standard error for the main regres-
sion variable, along with the adjusted R2 for the least squares regression
and the smoothing spline. It is notable that for each sort of regression the
impact of the spline is in line with what the simulations above predict sug-
gesting that these are reliable.
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OLS Spline
Coef. SE R2 Coef. SE R2

Cross-sectional

Ambrus, Cholera. -0.44 0.09 0.38 -0.15 0.20 0.72
Chetty, Opportunity. -0.62 0.05 0.36 -0.25 0.03 0.79

Dell, Mita. -0.26 0.08 0.04 -0.14 0.29 0.10
Instrumental Variables, Stages 1 and 2

Acharya, Slavery. 0.40 0.04 0.49 0.13 0.05 0.88
-0.27 0.13 . 0.76 0.28 .

Autor, China. 0.95 0.10 0.44 0.97 0.04 0.45
-0.89 0.14 . -0.66 0.08 .

Panel

Abadie, Smoking. -15.60 8.71 0.87 -6.10 5.80 0.95
Donaldson, Railroads. 0.16 0.05 0.84 0.07 0.03 0.95

Fetzer, Brexit. 1.45 0.26 0.79 0.44 0.15 0.85
Stevenson, Divorce. -0.06 0.02 0.68 -0.01 0.02 0.78

OLSgives the original coefficient, standard errors (clustered for panels) and adjustedR2

reported for themain variable of interest in each study. Spline reports the same statistics
after a smoothing spline has been included. For the Abadie Smoking regressions, the
first set of coefficients and standard errors were computed using the synthetic difference
in differences of Arkhangelsky et al. (2021).

Table 6: Illustrative cross-sectional and panel regressions.

For cross-sectional examples, Table 6 uses the regression discontinuity
studies of Ambrus, Field and Gonzalez (2020) and Dell (2010), and the
Chetty et al. (2014) “Great Gatsby Curve” linking US income inequality
and social mobility. The IV studies are Acharya, Blackwell and Sen (2016)
on slavery andDemocratic support, andAutor, Dorn andHanson (2013) on
the China Shock. The longitudinal examples are and Abadie, Diamond and
Hainmueller (2010) on California’s tobacco control program, re-analyzed
by Arkhangelsky et al. (2021); Donaldson (2018) on the impact of Indian
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railroads on income; Fetzer (2019) on austerity and Brexit; and Stevenson
and Wolfers (2006) on unilateral divorce and female suicide.9

Looking at the cross-sectional results first, it can be seen that the spline
regressions have markedly lower coefficient estimates, while their standard
errors tend usually to be somewhat larger than the robust or clustered ones
originally used. The addition of the spline term tends to cause a consid-
erable rise in explanatory power suggesting that some important spatially
correlated variables may have been omitted from the regressions. Besides
the first stage of theAutor et al. regression in Table 6, an example of a spatial
study where splines have no impact is Kelly, Mokyr and Ó Gráda (2023).

For the longitudinal regressions, the shrinkage in estimated effect sizes
associatedwith the spline are substantial but, in contrast to the cross-sectional
regressions, standard errors also tend to fall considerably. This again is in
keeping with the simulations in Tables 4 and 5.

The estimated spline values from the Stevenson and Wolfers (2006) re-
gression are shown in Figure 2. These give the systematic correlation struc-
ture of the component of suicides that is not explained by the other vari-
ables: divorce, and fixed effects for time and location. There is a marked
downward trend, particularly after the mid-1980s and in the west, indicat-
ing the absence of important covariates thatwould explain these. The spline
fromAbadie et al (2010) is shown in the second panel and again indicates a
downward trend everywhere that accelerates in the early 1990s, that is not
explained by the existing variables in the regression.

9For the cross-sectional studies these are taken respectively from Table 3.4; Table 2.1;
and Table 5.1. For instrumental variables these are Table 2.1 and 2.2; and Table 2.1. For
longitudinal studies, these are Table 1.1; Table 4.1; Table 1, entry 1 (coefficients multiplied
by 100 are reported here); and Table 1.1. For the last study, the public replication files used
here gave somewhat different results than the published ones. Replications of Chetty et al.
and Stevenson and Wolfers omit Alaska and Hawaii.
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(a) Stevenson and Wolfers, Female Suicides.

(b) Abadie et al, Smoking.
Figure 2: The longitudinal spline components of female suicides from
Stevenson and Wolfers (2006), and of smoking from Abadie et al (2010).
The downward trend in suicides, particularly after themid-1980s and in the
west; and in smoking, particularly after the early 1990s, is evident and sug-
gests that important explanatory variables are absent from each regression.

23



References

Abadie, Alberto, Alexis Diamond and Jens Hainmueller. 2010. “Synthetic
Control Methods for Comparative Case Studies: Estimating the Effect of
California’s Tobacco Control Program.” Journal of the American Statistical
Association 105:493–505.

Acharya, Avidit, Matthew Blackwell and Maya Sen. 2016. “The Political
Legacy of American Slavery.” Journal of Politics 78:621–641.

Alsan, Marcella. 2015. “The Effect of the TseTse Fly on African Develop-
ment.” American Economic Review 105:382–410.

Ambrus, Attila, Erica Field and Robert Gonzalez. 2020. “Loss in the Time
of Cholera: Long Run Impact of a Disease Epidemic on the Urban Land-
scape.” American Economic Review 110:475–525.

Arkhangelsky, Dmitry, Susan Athey, David A. Hirshberg, GuidoW. Imbens
and Stefan Wager. 2021. “Synthetic Difference-in-Differences.” American
Economic Review 111:4088–4188.

Autor, David H., David Dorn and Gordon Hanson. 2013. “The China Syn-
drome: Local Labor Market Effects of Import Competition in the United
States.” American Economic Review 103:2121–2168.

Bertrand, Marianne, Esther Duflo and Sendhil Mullainathan. 2004. “How
Much Should We Trust Differences-in-Differences Estimates?” Quarterly
Journal of Economics 119:249–275.

Bester, C. Alan, Timothy G. Conley, Christian B. Hansen and Timothy J.
Vogelsang. 2016. “Fixed-b Asymptotics for Spatially Dependent Ro-
bust Nonparametric Covariance Matrix Estimators.” Econometric Theory
32:154–186.

Blundell, Richard and James L. Powell. 2001. Endogeneity in Nonparamet-
ric and Semiparametric Regression Models. In Advances in Economics and

24



Econometrics, ed. Mathias Dewatripont, Lars Peter Hansen and Stephen J.
Turnovsky. Cambridge: Cambridge University Press.

Canay, Ivan M., Joseph P. Romano and Azeem M. Shaikh. 2017. “Random-
ization Inference under an Approximate Symmetry Assumption.” Econo-
metrica 85:1013–1030.

Chetty, Raj, Nathaniel Hendren, Patrick Kline and Emmanuel Saez. 2014.
“Where is the Land of Opportunity? The Geography of Intergenerational
Mobility in the United States.” Quarterly Journal of Economics 129:1553–
1623.

Conley, Timothy. 1999. “GMM Estimation with Cross Sectional Depend-
ence.” Journal of Econometrics 92:1–45.

Dell, Melissa. 2010. “The Persistent Effects of Peru’s Mining Mita.” Econo-
metrica 78:1863–1903.

Donaldson, Dave. 2018. “Railroads of the Raj: Estimating the Impact of
Transportation Infrastructure.” American Economic Review 108:899–934.

Engle, Robert F., C.W. J. Granger, JohnRice andAndrewWeiss. 1986. “Semi-
parametric Estimates of the Relation Between Weather and Electricity
Sales.” Journal of the American Statistical Association 81:310–320.

Fetzer, Thiemo. 2019. “Did Austerity Cause Brexit.” American Economic Re-
view 109:3849–3886.

Gneiting, Tilmann and Peter Gutthorp. 2010. Continuous Parameter
Stochastic Process Theory. InHandbook of Spatial Statistics, ed. Alan E. Gel-
fand, Peter Diggle, Peter Guttorp and Montserrat Fuentes. Boca Raton:
CRC Press.

Härdle, Wolfgang. 1990. Applied Nonparametric Regression. Cambridge:
Cambridge University Press.

Hastie, Trevor andRobert Tibshirani. 1990. Generalized AdditiveModels. New
York: Chapman and Hall.

25



Hastie, Trevor, Robert Tibshirani and Jerome Friedman. 2008. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. Second ed.
New York: Springer.

Ibragimov, Rustam and Ulrich K. Müller. 2010. “t-Statistic Based Correla-
tion andHeterogeneity Robust Inference.” Journal of Business and Economic
Statistics 28:453–468.

James, Gareth, Daniela Witten, Trevor Hastie and Robert Tibshirani. 2021.
An Introduction to Statistical Learning. New York: Springer. 289–310.

Kelly, Morgan, Joel Mokyr and Cormac Ó Gráda. 2023. “The Mechanics of
the Industrial Revolution.” Journal of Political Economy . Forthcoming.

Müller, Ulrich K. andMarkW.Watson. 2021. Spatial Correlation Robust In-
ference. Working paper. Department of Economics Princeton University.

Shiller, Robert J. 1984. “Smoothness Priors and Nonlinear Regression.”
Journal of the American Statistical Association 79:609–615.

Stevenson, Betsey and Justin Wolfers. 2006. “Bargaining in the Shadow of
the Law: Divorce Laws and Family Distress.”Quarterly Journal of Econom-
ics 121:267–288.

Voigtländer, Nico and Hans-Joachim Voth. 2012. “Persecution Perpetu-
ated: The Medieval Origins of Anti-Semitic Violence in Nazi Germany.”
Quarterly Journal of Economics 127:1339–1392.

Wood, Simon N. 2003. “Thin Plate Regression Splines.” Journal of the Royal
Statistical Society. Series B 65:95–114.

Wood, Simon N. 2017. Generalized Additive Models. Boca Raton: CRC Press.

26


