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1 Introduction

The link between agricultural productivity and structural transformation has long been a central con-

cern of development economics (Nurkse, 1952; Lewis, 1954; Ranis and Fei, 1961; Schultz, 1964). Early

authors such as Johnston and Mellor (1961) and Jorgenson (1961)—echoed later by Mellor (1986),

Timmer (1988), and World Bank (2007)—argued that agricultural productivity growth was an essential

precursor for broader structural transformation and long-run economic growth. This early literature

held that productivity growth in agriculture could have the seemingly paradoxical effect of shrinking

the agricultural sector as a share of the total economy. Building on the insight that food is an essential

good for the poor, agricultural development economists generated a class of models in which countries

that are unproductive in agriculture must devote large shares of labor and other resources to meet

their food needs.1 However, the literature offers both theoretical and empirical challenges to this view

of the relationship between agricultural productivity and sectoral change. For example, Matsuyama

(1992) showed that in an open economy, increases in agricultural productivity can cause specialization

in agriculture via comparative advantage, while Bustos et al. (2016) show that the direction of local

structural transformation can depend on the factor bias of the technical change in agriculture.

This paper studies one of the most significant episodes of agricultural productivity change of the

past two centuries: the construction of India’s massive irrigation canal network. This network of

canals—artificial channels that carry water into dryland areas for application to crops, primarily

during the dry winter growing season—spans over 300,000 km and serves over 130,000 villages, nearly

one in four in India. Canals were historically the most important source of irrigation in India, and

even in the 21st century they are the second largest source of irrigation in India after groundwater,

providing water to agricultural regions with over a quarter billion inhabitants. In 2011, fully 57%

of rural Indians lived within 10 km of a canal.2

1Schultz (1953) referred to this phenomenon as the “food problem”. The same mechanism lies at the heart of
more recent work, which relies on non-homothetic preferences as the main driver of structural transformation (Gollin et
al., 2002, 2007; Alvarez-Cuadrado and Poschke, 2011; Comin et al., 2021). The link between agricultural productivity
growth and structural change also emerges in other models where productivity growth leads to endogenous changes
in the relative price of agricultural goods (Ngai and Pissarides, 2007).

2We study India’s network of major and medium canals, for which data is maintained by the national Ministry
of Water Resources. Smaller surface irrigation projects, such as channels diverting water from village tanks (small
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These canals are an ideal context for studying the long-run impacts of technical change in

agriculture because (i) they cause change in agricultural productivity with sharp boundaries that

are sustained for decades; and (ii) the majority of canals were built before 1980, allowing us to study

the spatial equilibrium that has emerged in the long run. Other agricultural interventions tend to

gradually diffuse across space, making it more difficult to study their effects in the long run.

Specifically, we ask how the agricultural productivity gains from canals affected development

and structural transformation at the local level. The distinctive features of our analysis are that

we study the long-run equilibrium, and we examine structural change at different geographic scales.

Much of the prior work has focused on a single geographic level of analysis, such as the village or the

county. But factor mobility depends on geographic scale and time horizon; for example, labor may

be highly mobile across villages but less mobile across states or language regions. We study how

canal irrigation has shaped the economy in the long run at the level of irrigated villages, connected

rural areas, and in the regional urban economy.

This approach requires detailed, high-resolution data. We combine microdata from business and

household censuses, administrative records, geospatial datasets, and satellite imagery to measure

irrigation, agricultural activity, living standards, and non-farm economic activity for all of India’s

600,000+ settlements (villages and towns). Our main outcomes were recorded in 2011–2013, over

40 years after the beginning of construction for the median canal and 30 years after the median

canal was declared complete. Enough time has passed since canal construction that we are arguably

observing the spatial equilibrium that has emerged in the long run.

We can think of canals as having effects at four different geographies: (i) direct effects in the

settlements that they serve with surface irrigation; (ii) indirect effects in nearby unserved settlements;

(iii) effects in regional urban markets; and (iv) diffuse effects across much broader geographies, such

as the entire country or world. We use distinct identification strategies to measure effects (i), (ii),

and (iii); like much of the literature on the effects of place-based policies, we are unable to provide

empirical evidence on universal effects.

artificial reservoirs) or streams to farmers’ fields are not included in this analysis.
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To measure direct effects on canal-irrigated areas, we use a regression discontinuity design (RDD)

that exploits the gravity-driven nature of canal water distribution, with elevation relative to the

nearest canal as the running variable. At the local level, canal placement is determined by engi-

neering constraints and topography, and water from canals only flows downhill, treating settlements

topographically below the canal. Settlements a short distance away but only a few meters higher

than the canal will thus experience little to no irrigation benefit and can serve as a control group

for the irrigation treatment.

The RDD analysis tests for long-run differences between places that have direct access to canal

irrigation and those that do not, but it does not account for spillovers into above-canal settlements.

For example, in the presence of local labor or goods market linkages, untreated settlements close

to canals could increase demand for both agricultural and non-agricultural labor. Alternately, canals

could recharge regional groundwater tables, increasing access to pump irrigation in the control

settlements above the canal.

To measure spillover effects, we compare settlements directly above canals to settlements that are in

the same district but are more distant from canals. This gives us three types of settlements — (i) below-

canal (or directly treated) settlements, which are directly treated with canal irrigation; (ii) above-canal

(or indirectly treated) settlements, which are exposed only to the spillover effects of canals; and (iii) dis-

tant settlements (or untreated settlements). Naturally, this setup only allows us to measure spillovers

that shrink with distance; if spillovers extend frictionlessly to the entire country or world, then they are

impossible to measure, given the kind of cross-sectional data that is available. We use entropy balancing

(Hainmueller, 2012) to re-weight the sample of distant and above-canal settlements, ensuring a compar-

ison of settlements with similar distributions of natural characteristics (climate, topography, and agri-

cultural potential). If there are important spillovers, the above-canal settlements will be substantially

different from distant settlements, even though neither group is directly treated with canal irrigation.

Finally, we consider the possibility that industry growth arising from canals occurs through concen-

trated production clusters, which could be overlooked by the analysis above. To address this possibility,

we draw on a hundred-year panel of town-level urban population — a variable that is consistently mea-
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sured across time and is available at high resolution.3 We use a difference-in-differences design that stud-

ies town growth before and after regional canals are built, following Callaway and Sant’Anna (2020).

The RDD analysis reveals sharply improved agricultural outcomes in the settlements directly

treated by canals. Treatment settlements have more irrigated acreage, increased land under cul-

tivation, a higher likelihood of growing water-intensive crops, and greater estimated yields.4 The

yield effects are observed almost entirely in the relatively dry winter (rabi) season: canals thus

improve water access in a second cropping season but generate no significant differences during

the summer monsoon (kharif ) growing season, when rainfall is much more plentiful. There are

no spillover effects on a range of agricultural outcomes: irrigation levels, yields, and land use in

above-canal settlements are highly similar to those in more distant settlements. The sharp differences

in agricultural outcomes between above-canal and below-canal settlements have been sustained over

many decades, making them a useful natural experiment for studying what happens to the rest

of the economy in the long run following a major increase in agricultural productivity.5

The agricultural changes brought about by canals cause substantial population growth in irrigated

regions, but ultimately little local structural change. Below-canal settlements have sharply higher pop-

ulation density, with minimal spillovers into above-canal areas. Below-canal, above-canal, and distant

settlements have highly similar shares of workers employed in manufacturing, services, and even in agro-

processing. There is evidently an increased demand for labor, as evidenced by higher population density

in canal-irrigated areas, but these highly agricultural settlements do not develop substantial non-farm

sectors. The town panel analysis also finds concentrated population gains in proximate urban areas in

the decades following canal construction. The net population movements are substantial in magnitude;

a back-of-the-envelope calculation suggests that India’s canal network has increased the population

of canal villages by nearly 32 million people and added 5–9 million people to canal-region towns.

Canals have heterogeneous effects on living standards. Using small area estimates from household

3Population is, in fact, the only such variable that is available in the era of canal construction.
4In the absence of high resolution directly-measured yield data, we use a satellite-derived proxy that estimates

biomass added in a village over the course of a growing season.
5Results are robust to a wide range of alternate specifications, including a regression discontinuity using distance

to the officially designated command area boundary of the canal.
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data (Elbers et al., 2003), we find that canals produce no significant consumption gains for the

roughly 70% of rural households who own little to no land. In contrast, households in the higher

quartiles of landholding show substantial increases in consumption in the directly-irrigated zone, with

effects increasing in the size of land holdings. There are no consumption spillovers into above-canal

settlements, suggesting the wealth effect is driven by higher returns to land.

We interpret our results in the context of a multi-sector, multi-location model that is closely

related to Matsuyama (1992) and Bustos et al. (2016) but captures two key features of our context.

First, we model labor as immobile across space in the short run and fully mobile in the long run.

Second, we assume that towns have productivity advantages in non-farm work relative to villages.

Our model highlights several insights from the empirical results. In the long-run spatial equilibrium,

increased demand for labor is met by an increase in the number of laborers, eliminating differences

in wages across space. Workers still benefit, but the gains are spread across a large linked labor

market, such that the local effect of any one canal is very small. Returns to land, the fixed factor,

remain higher – even in the long run. Structural transformation occurs entirely through the growth

of towns, rather than through the relative growth of the non-farm sector in rural areas.

This paper extends a substantial literature linking technical change in agriculture to structural

change. Our results can help to tie together Foster and Rosenzweig (1996, 2004b), who found in a

panel of Indian villages that the Green Revolution raised wages but inhibited local industrialization,

and Bustos et al. (2016), who found in Brazilian municipalities that innovations in soybean and

maize had divergent effects on structural change that depended on the changing factor intensity

of agriculture. These papers operate on different geographic scales. Brazilian municipalities are

ten times larger than Indian villages and incorporate regional towns; our paper measures outcomes

separately at both of these scales. Our results show that, in the long run, net population movement is

a central response to agricultural productivity gains and a key mechanism for structural change. Both

villages and towns gained population, but with little change in their non-farm production structure.6

6Our results also recall Bustos et al. (2020), who found that agricultural productivity gains drove urbanization
through the flow of land rents to cities. An example of this capital channel was discussed at length in the context
of colonial Bengal in Bose et al. (1993).

5



Canal-irrigated villages grew due to increased labor demand in agriculture, while the downstream

effects of those agricultural gains were concentrated in towns. Our results parallel the findings of

Hornbeck and Keskin (2015), who found in the U.S. that the tapping of the Ogallala Aquifer increased

agricultural productivity but had little effect on local rural non-agricultural activity in the long run.

Our results also echo Foster and Rosenzweig (2004a), who argued that agricultural productivity

shocks have substantially different effects on landowners and the landless, consistent with our findings.

There is also a large body of evidence on responses to transient agricultural productivity shocks

due to weather (Adhvaryu et al., 2013; Colmer, 2021). Emerick (2018) and Santangelo (2019) in

particular find that non-tradable employment increases in districts experiencing positive agricultural

productivity shocks, consistent with our model of demand-driven structural change. This paper

speaks less to this literature on transient shocks because we study how people adjust to large,

permanent changes in agricultural productivity.

Finally, we contribute to the literature on how labor flows respond to economic shocks. A rich body

of research documents how economic shocks can result in both temporary and permanent migration in

both high- and low-income countries (Greenstone et al., 2010; Allcott and Keniston, 2018; Imbert and

Papp, 2020). Much of the recent empirical work has aimed to study competition for workers between

the farm and non-farm sectors in models that shut down the labor mobility channel. This is partly for

the reason that mobility is typically lower in the short- to medium-run periods examined in prior studies.

Indeed, in an extension of their main results, Bustos et al. (2016) find that about one-third of the shift

out of agricultural employment in soybean areas occurred via migration, over only a 10-year sample

period. Our longer-run analysis suggests that the movement of people can be the primary adjustment

channel to agricultural change. Indeed, the very nature of structural transformation around the world

has involved the movement of billions of people from farms to cities, sometimes across large distances.7

Our results further highlight the high barriers to rural industrialization. Asher and Novosad

7While there is a widespread idea in the literature that permanent migration in India is rare, this idea is focused
on the set of rural men who migrate for work. Over 25% of women have changed residence at least once in their
lives, and lifetime migration rates for men approach 15% (Kone et al., 2018). Since we only observe population
density in the present, we cannot distinguish migration from other mechanisms of population change, but we find
suggestive evidence against fertility and mortality as primary channels for the population density effects of canals.
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(2020) and Burlig and Preonas (2021) find that major investments in rural roads and electrification

respectively have generated limited effects on non-farm activity in India.8 Faber (2014) finds that

highway construction through peripheral areas in China in fact caused deindustrialization. These

papers suggest that while infrastructure investments in rural areas may improve well-being, they often

do not cause substantial changes in in situ non-farm opportunities. Our results are also consistent

with long-run evidence that the Green Revolution had substantial positive effects on structural change

(Gollin et al., 2021); our analysis suggests that this process may have been driven by the growth

of urban areas, rather than in the rural areas directly experiencing agricultural productivity gains.

Finally, our work adds to a growing literature estimating the impacts of access to irrigation.

Sekhri (2014) shows that access to groundwater irrigation lowers poverty. Blakeslee et al. (2021b)

find that the drying up of wells induces agricultural households to provide more non-farm labor.

Jones et al. (2020) study canal irrigation in Rwanda using an elevation-based RDD, finding that

labor market frictions limit the returns and thus lower adoption of irrigation. In a concurrent paper,

similar to this one, Blakeslee et al. (2021a) study canals in India using an RDD exploiting the official

canal command area boundary. While they find similar reduced form effects on population density

and (lack of) structural change in canal-irrigated villages, their analysis does not consider spillovers

and is focused primarily on evaluating canals as infrastructure investments, rather than as drivers

of long-run agricultural change.9 We extend this literature by providing contrasting evidence on

long-run impacts for directly treated areas and indirect effects on proximate rural and urban areas.

The rest of the paper proceeds as follows: Section 2 provides context on the role of canals in Indian

agriculture. Section 3 develops a model of how canals may affect economic activities at different

geographic levels and time horizons. Sections 4 and 5 describe the data and our multiple empirical

strategies. Section 6 presents results, Section 7 discusses interpretation, and . Section 8 concludes.

8Asher and Novosad (2020) find that the main impact of roads is to provide access to non-agricultural labor markets
outside the village. This result is suggested by our model, where towns have productivity advantages for non-farm work.

9We show our elevation-based RDD results are consistent with those from this approach.

7



2 Context

As a semi-arid region with a highly variable monsoon climate, South Asia has long depended on

irrigation for its agricultural productivity. For much of history, this has primarily involved gravity flow

surface irrigation through canals of various types. At the end of the 19th century, India’s had 12 million

hectares of irrigated land — four times more than the United States and six times more than Egypt

(Shah, 2011). The British oversaw the construction of vast canal networks, often privately funded

and yielding high returns, until the end of the Raj in 1947. Canals were used to divert water from

India’s major rivers to its arid regions, where they facilitated settlement of otherwise uninhabitable

land, such as with the Punjab Canal Colonies (Douie, 1914). After gaining independence, the

Government of India prioritized canal-building as it sought to avoid mass hunger during a period

of high population growth (Mukherji, 2016). Later, canals were built to provide irrigation for the

input-intensive high-yielding varieties of food crops that powered India’s Green Revolution.

While groundwater eclipsed canals as India’s preeminent source of irrigation by the 1970s (Shah,

2011), surface irrigation remains critical to the livelihood of millions of farmers across India. In

recognition of the importance of canals, the central government launched the Accelerated Irrigation

Benefit Program (AIBP) in 1997, which spent more than $7.5 billion on improvement and completion

of large-scale irrigation projects (Shah, 2011). According to the most recent estimates, canals still

account for approximately one-fourth of the net irrigated area in India (Jain et al., 2019), although

estimates vary according to the methodology.

Figure 1 shows the distribution of official completion dates of India’s major and medium canals

according to India’s Ministry of Water Resources. A caveat to this figure is that the official

“completion date” is updated if a canal undergoes a substantial renovation. As a result, the older

dates (when India had fewer canals) mostly represent new canals, whereas many of the recent dates

in fact reflect rehabilitation projects on canals built several decades earlier.

Major canals are defined as serving 10,000 or more hectares while medium canals serve areas

2,000–10,000 hectares. Canals serving 2,000 hectares or less are termed minor canals and are not

included in this study. Construction rates increased following India’s independence in 1947, although
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post-independence canals are generally shorter than those constructed under the British Raj in

the 19th and early 20th century. By 2011, 51% of India’s 600,000 settlements were within 10 km

of a major or medium irrigation canal, with a median canal construction start year of 1972 and

completion year of 1980. Given that our primary outcomes are measured in 2011–2013, the canals

in our study are typically at least thirty years old.

3 Model

Our theoretical framework builds on a substantial literature modeling the effects of agricultural

productivity change on the non-farm sector (Johnston and Mellor, 1961; Matsuyama, 1992; Foster

and Rosenzweig, 1996, 2007; Bustos et al., 2016). Early models in this literature tended to predict

that an increase in agricultural productivity (crucially, in a closed economy) would lead to a decline

in the relative price of agricultural goods. This in turn lowers the returns to inputs used in this

sector and induces a movement of productive resources into non-agricultural sectors. This mechanism

lies at the heart of Johnston and Mellor (1961), Ranis and Fei (1961), and Jorgenson (1961), as

well as subsequent papers (Eswaran and Kotwal, 1993; Gollin et al., 2002; Restuccia et al., 2008;

Alvarez-Cuadrado and Poschke, 2011).

However, the relationship between agricultural productivity gains and structural transformation

has been shown to depend on assumptions relating to the openness to trade (Matsuyama, 1992),

the substitutability of agricultural and non-agricultural goods (Ngai and Pissarides, 2007), the factor

intensity of technological change (Bustos et al., 2016), and capital mobility (Foster and Rosenzweig,

2007; Bustos et al., 2020), among others. We deviate from existing models in the literature in two

key dimensions, which reflect our empirical context. First, we model an economy in which labor

flows freely across space in the long run, but not in the short run. This offers a contrast to many

models that allow for labor mobility across sectors but not across locations.10 Second, we allow for

spatial variation in non-agricultural productivity, such that larger settlements have a productivity

advantage in the production of non-agricultural goods.

10In this respect, we are most closely related to Foster and Rosenzweig (2007), who recognize the importance
of factor mobility – although in their case, the mobile factor is capital rather than labor.
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We model India’s rural economy as a large number of predominantly local sub-economies that

are embedded in a larger national economy; we focus on one such representative region. Each

rural region features an expanse of agricultural land, divided into villages, typically with a larger

market town that serves as an economic center.11 Agricultural land is in general privately owned

and managed. Most farms are small (Foster and Rosenzweig, 2017), and many landowners work

on their own land. Farms may also hire labor from a large pool of landless workers. These observed

features of the data give shape to our conceptual framework.

3.1 Model Setup

The model focuses on a rural region that is comprised of a single town and a set of surrounding villages.

Let V denote the number of villages, and let vi denote the ith village, i=1,2,...,V . In what follows,

we simplify to an environment where V =2. We designate the town as settlement i=0, and the two

villages as i∈{1,2}. The region is embedded in a national economy, which is comparatively large.

The economy produces two goods: an agricultural good a that is traded beyond the region and

a non-agricultural good c that is costlessly traded within the region and non-tradable beyond the

region. The non-tradable good might correspond to services, such as haircuts; but it could also

represent manufactured goods with low value per unit transport costs, such as bricks.12

Individuals consume the two locally produced goods, a and c, as well as a third good m: a traded

non-agricultural good that is only available from the rest of the economy. This represents a class

of goods that requires production capabilities that are not available within the rural economy (e.g.,

mobile phones) or perhaps some raw materials that are also unavailable locally (e.g., refined petroleum

products). The rural region pays for these “imported” goods through “exports” of its agricultural

production. We limit our analysis to the case where this economy is a net exporter of agricultural goods.

11The villages that surround each market town are mostly small; in 2011, the median village population in India
was 844. Most villagers work in agriculture. (The median number proportion of non-farm jobs in a village is 5
per 100 adults according to the 2013 Economic Census and 2011 Population Census).

12This reflects the fact that in much of non-urban India, villages and towns produce a mix of non-tradable services
(e.g., wholesale and retail trade, food service entertainment, government administration and public sector work,
construction, repair services, and personal care) and relatively non-tradable manufacturing (e.g., brick making, metal
fabrication, and carpentry). The vast majority of manufacturing firms in India have under five employees, and
are thus unlikely to be serving a very large market.
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We consider three periods. In the initial period, the region is in a long-run spatial equilibrium

with the rest of the country. Following the initial period, a canal is built that raises agricultural

productivity in village 1 but not village 2. During the second period, which describes the short run,

labor is mobile across sectors and settlements within the region, but not between the region and the

rest of the country. In the third period, which we call the long run, labor is also mobile across regions.

3.1.1 Preferences and utility

The representative consumer has preferences over the three consumption goods. These preferences

can be represented by a log linear utility function:

u(a,c,m)=α log a+β log c+(1−α−β)log m (3.1)

For simplicity, we use homothetic preferences; this is convenient for aggregation and does not

require us to address issues related to (for example) the distribution of land across households.

3.1.2 Production and trade

The agricultural good is produced on the village land, and the non-agricultural good can be produced

either in villages or in towns.

Each of the region’s villages has an endowment of land (Li) and labor (Ni), while the town has only

labor (N0). The regional economy has a labor force of N people, where Ni is the labor force of village

vi and N0 is the labor force of the town. Thus,
∑

iNi=N . The supply of land is fixed in all periods,

while the total regional labor force N is fixed only in the short-run following canal construction.

For simplicity, we assume that all land in the region is held by a single landowner, who resides in the

town and receives all land rents. All individuals supply one unit of labor to the market, inelastically.13

The agricultural technology is Cobb-Douglas, Yai =AiN
θ
ai
L1−θ
ai

, where Ai represents agricultural

productivity in village i, Nai and Lai denote land and labor in agriculture in settlement i, 0<θ<1,

and i∈{1,2}. The non-agricultural good is produced with a technology that is linear in labor:

13Because every individual in this model is a worker, including the landowner, we use the terms labor force and
population interchangeably.
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Yci =CiNci, i∈{0,1,2}, where Ci is the non-agricultural productivity term. We assume that due

to natural advantage or agglomeration economies, the town has the highest Ci in the region. Recall

that the traded good m is consumed but not produced within the region.

Since both the agricultural good and the manufactured good are traded frictionlessly with the

rest of the economy, the representative region is a price taker for these two goods. The relative price

pm is the price of this imported manufactured good in terms of agricultural goods, which are the

numeraire. The price of the non-tradable good pc is determined endogenously in the region and

depends on the productivity level for non-tradables. Because labor always moves frictionlessly across

settlements and sectors within the region, there is a single regional wage w.

3.2 Equilibrium

An equilibrium consists of an allocation of labor across settlements and sectors (N0, Na1, Nc1, Na2,

Nc2), prices (pc, pm), and the wage w.

Because the non-tradable good is frictionlessly traded within the region, and because the pro-

duction technology is linear in labor, the non-tradable good is produced in all periods only in the

settlement with the highest productivity level; by construction, this is always the town. Thus, the

non-tradable good will be produced only in the town and because the town has no land, it will

produce only the non-tradable good. We can dispense with location subscripts and define total

regional output of the non-tradable good as Yc=Y0=C0N0. Due to the zero profit condition, the

non-tradable price is fixed at pc=
w
C0

.

Because the economy faces no externalities or market imperfections, and because production is

fully competitive, the first and second welfare theorems hold, and we can solve the social planner’s

problem to arrive at the same equilibrium allocations that would obtain in a competitive equilibrium.

Moreover, since preferences are homothetic, we can focus on the problem of a representative consumer

who receives the average consumption allocation.
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3.2.1 Long-run equilibrium

In the long-run spatial equilibrium where labor is fully mobile across regions, workers have the same

utility (ū) everywhere. Because the region is a price taker for both goods a and m, utility is fully

determined by the wage and the price of the non-tradable good c. With all variables that affect the

local wage thus fixed, we can see that the long-run wage wLR does not depend on the agricultural

productivity of either village.

From the consumer’s problem, we know that the budget share for the non-tradable good is given

by the corresponding elasticity β in the Cobb-Douglas utility function. Total income for the regional

economy is the value of output. Since villages produce only a and the town produces only c, and

taking the agricultural good as the numeraire, this gives Y =Ya+pcYc=Ya+wLRNc, where total

agricultural output Ya=Ya1+Ya2. Expenditure on the non-tradable good is thus β(Ya+wLRNc), and

production value is pcYc=wLRNc. This gives the following condition for non-tradable employment:

N0=Nc=

(
1

wLR

)(
β

1−β

)
Ya. (3.2)

Agricultural production: Agricultural employment and output in each village are pinned down by

the price of the agricultural good and the regional wage wLR. Given the Cobb-Douglas production

technology, agricultural employment in each village is given by:

Nai=

(
θAi
wLR

) 1
1−θ

Li, i=1,2. (3.3)

This in turn gives output for each settlement of:

Yai=A
1

1−θ
i

(
θ

wLR

) θ
1−θ

Li, i=1,2. (3.4)

The total agricultural output is thus:

Ya=Ya1+Ya2=

(
θ

wLR

) θ
1−θ
[
A

1
1−θ
1 L1+A

1
1−θ
2 L2

]
. (3.5)
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Combining equations 3.2 with 3.5, we can solve for the non-tradable labor force:

N0=w
1
θ−1

LR θ
θ

1−θ

(
β

1−β

)[
A

1
1−θ
1 L1+A

1
1−θ
2 L2

]
. (3.6)

The non-tradable output is trivially Yc=C0N0, or:

Yc=Y0=C0w
1
θ−1

LR θ
θ

1−θ

(
β

1−β

)[
A

1
1−θ
1 L1+A

1
1−θ
2 L2

]
. (3.7)

This set of equations fully specifies the long-run equilibrium. Total population is given by

N=N0+N1+N2.

Comparative statics: Canal construction raises agricultural productivity in village 1 (A1). This

increases the demand for labor, causing the population of village 1 to increase until the marginal

product of labor is brought back to to the long-run wage wLR. There is no effect on the population

of village 2, as each village’s equilibrium population depends only on the wage, its own agricultural

productivity, and its endowment of land; none of these are affected by a change in agricultural

productivity in village 1. Land rents increase in village 1 only. The increase in population, along

with higher land rents, raises demand for the non-tradable good and thus the population of the

town. This implies a higher overall population in the region – an inflow of workers from outside

the region due to the construction of the canal.

3.2.2 Short-run equilibrium:

We now examine the short-run equilibrium following canal construction. There is no population flow

between the region and the rest of the country, but labor markets clear within the region. The region’s

population is fixed at the level of the initial period. Because labor does not flow across regions,

the wage is no longer pinned down by the national reservation utility ū and can deviate from wLR.

Let N0 be the initial long-run equilibrium population prior to the construction of the canal in

village 1. The equilibrium wage, conditional on this population level, is determined by the labor

market clearing condition: N0+N1+N2=N0. Plugging in the values of N0, N1, and N2 derived
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above, we get the following expression:

w
1
θ−1θ

θ
1−θ

(
β

1−β

)[
A

1
1−θ
1 L1+A

1
1−θ
2 L2

]
+

(
θA1

w

) 1
1−θ

L1+

(
θA2

w

) 1
1−θ

L2=N0.

This simplifies to:

w=N0θ−1
θ

[(
1

θ

)(
β

1−β

)
+1

]1−θ[
A

1
1−θ
1 L1+A

1
1−θ
2 L2

]1−θ
(3.8)

The change in the wage is given by

∂w

∂A1

=

[(
1
θ

)(
β

1−β

)
+1
]1−θ

θN0θ−1
A

θ
1−θ
1 L1[∑2

i=1

(
A

1
1−θ
i Li

)]θ .

This partial derivative is unambiguously positive; the increase in agricultural productivity in village

1 drives up the regional wage. The impact on population in village 2 is unambiguously negative;

the higher wage reduces agricultural employment and thus output in this village. The effect on the

non-tradable sector and thus the town population depends on parameter values. Intuitively, the higher

wage has a direct crowd-out effect on employment in the non-tradable sector, but an indirect crowd-in

effect through increased regional demand for the non-tradable good. The effect on village 1 is likewise

ambiguous, as the increased wage and increased agricultural productivity have countervailing effects.

The model illustrates the two major contributions of this paper. First, the long-run impacts of agri-

cultural productivity gains vary with geography: treated villages gain agricultural workers while non-

agricultural growth occurs in higher productivity urban areas. Second, the long-run impacts of agri-

cultural productivity shocks may be different from the short-run impacts due to the mobility of labor.

Because the irrigation canals that we study were built so long before the high-resolution data needed to

study their effects, the empirical analysis describes the long-run equilibrium after canal construction.
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4 Data

To study how canal irrigation affects local economic outcomes, we assemble recent high-resolution

data on the universe of firms, households, and settlements in India, building on data from the SHRUG

(Asher et al., 2021). Because the reclassification of rural villages into urban towns is an endogenous out-

come driven by population density and administrative discretion, we combine villages and towns into a

single dataset; we use the term ’settlements’ to include both categories. The dataset covers 590,000 set-

tlements (8,000 are towns; the rest are villages), which are nested in 5,000 subdistricts and 700 districts.

The 2011 Population Census provides demographic variables and data on cultivated and irrigated

land area in every village in India. The Census also records the three main crops grown in each

village, from which we create an indicator for villages that grow a water-intensive crop (cotton,

sugarcane, or rice).14 Since settlements are heterogeneous in size, our preferred measure of population

is density, which we define as inhabitants per km2.15

The 2012 Socioeconomic and Caste Census (SECC) is an asset census that was undertaken in

all of India to determine eligibility for means-tested programs (Asher and Novosad, 2020). From

SECC microdata, we generate the share of adults aged 20–65 who have completed primary, middle,

and secondary school, as well as predicted consumption per capita using small area estimation based

on the income and asset variables in the SECC.16 Because the SECC is recorded at the household

level, we can calculate these outcomes separately for landowners and landless households.

The 2013 Economic Census is a complete enumeration of all non-farm economic establishments in

India, which we use to measure non-agricultural economic activity for each settlement. We calculate

employment as a share of the 2011 Census adult population.17 We use the National Industrial

14Population Census data on agricultural outcomes are available only in villages; analysis of these outcomes
therefore excludes towns.

15We calculate population density as settlement population divided by the area of the settlement GIS polygon shape
(in km2) as opposed to the noisier area reported in the Population Census. See below for description of GIS data.

16The latter follows the methodology of Elbers et al. (2003) and is described in detail in Asher et al. (2021).
For a secondary measure of educational attainment, we use the settlement literacy rate from the Population Census.

17As the Population Census only reports age-disaggregated numbers for the population aged 0–6, we estimate
the population aged 0–17 by multiplying the 0–6 population by 18/7. We then subtract the estimated 0–17 age group
from the total population to get the adult population. This calculation reflects the fact that the Indian population
pyramid in 2013 is close to uniform for ages 0–30.
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Classification codes of firms in the Economic Census to calculate the share of the adult population

employed in manufacturing, services, and agro-processing.18

In the absence of directly-measured settlement-level agricultural productivity data, we use the

Enhanced Vegetation Index (EVI), a satellite-derived measure of biomass that has been widely used as

a proxy for agricultural productivity (Wardlow and Egbert, 2010; Kouadio et al., 2014; Son et al., 2014).

We calculate productivity for both the monsoon (kharif ) season, late May through early October,

and winter (rabi) season, late December through late March (Selvaraju, 2003). For each season, we

define productivity by subtracting the mean of the first six weeks of the season from the maximum

EVI value reached during the entire season following Rasmussen (1997) and Labus et al. (2002). This

measure has better prediction accuracy for yield than a raw biomass measure, as the latter may pick

up forest land, which registers as high biomass, but does not change as much as agricultural land

during the cropping season. We calculate the mean of this measure for years 2011–13 (corresponding

to our other outcome datasets), and log transform it to address outliers and simplify interpretation.19

Spatial data on canals and their command areas comes from the Ministry of Water Resources. The

India Water Resources Information System (WRIS), a part of the Management Information System

of Water Resources Projects of the Central Water Commission in India, provides geospatial data on

canals and their command areas.20 The command area is the engineers’ definition of the total area

that theoretically has access to irrigation water from a given canal, extending out from the canal and

ending at a boundary that is determined by a combination of canal flow, terrain, and soil type. The

WRIS provides dates of canal construction and completion; however, our research on individual canals

suggests that recent start and end dates in WRIS often represent canal rehabilitation efforts, rather

than new canal construction.21 It is therefore challenging to identify exact construction dates of recent

18Manufacturing employment contains NIC 2-digit codes 10–35 (excluding only the 3-digit code 131) while services
contains NIC 2-digit codes 36–93 and 131. Agro-processing is defined as a subset of manufacturing employment
codes, specifically NIC codes 10 and 12.

19We find similar results if we use different years (which is expected, given that we are studying equilibrium effects of
canals) or EVI levels rather than logs. See Asher and Novosad (2020) for more details on construction of the EVI measure.

20The database can be found at https://indiawris.gov.in/wris/.
21The WRIS database often reports construction dates only in terms of a 5-year planning period, meaning dates

are only known within a 5-year window. We augmented and verified dates from the database by manually searching
for canal construction dates reported in government documents, news articles, ministry reports, and academic papers.
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canals. Older construction dates appear to be more credible, as canal investments in the independence

period and earlier were more often new canals rather than maintenance of existing infrastructure.

Using settlement polygon GIS data from ML Infomap, we extract the distribution of elevation

in each settlement from Shuttle Radar Topography Mission (SRTM) raster data. Following Riley et

al. (1999) and Nunn and Puga (2012), we calculate the ruggedness of a location’s topography using

the Terrain Ruggedness Index (TRI); TRI measures ruggedness as the average square difference in

elevation between a pixel and its eight surrounding pixels. We take the average TRI value across all

pixels in a settlement to characterize ruggedness. Using these same data, we compute the distance

from every settlement centroid to the nearest canal, command area, river, and coast.

Using the same settlement polygons, we extract 10-day rainfall values from the Climate Hazards

Center InfraRed Precipitation with Station (CHIRPS) dataset (Funk et al., 2014). We calculate

the average of total annual rainfall from 2010-2014 as our rainfall measure. Similarly, we extract

monthly maximum daily temperature for each settlement from the Climate Hazards Center Infrared

Temperature with Stations (CHIRTS) dataset (Funk et al., 2019), then compute the average

maximum monthly temperature over the 2010-2014 time period as our temperature measure.

5 Empirical Strategy

Testing for the long-run impacts of increasing agricultural productivity is challenging for two reasons.

First, the placement of canals is endogenous: large, costly infrastructure investments tend to be

targeted to areas that are politically favored and have high returns to irrigation. Second, canals

can have different effects at different geographic scales. To overcome these challenges, we use three

empirical strategies, each of which isolates a different aspect of the effect of canals. To estimate the

direct effects on locations receiving increases in agricultural productivity, we exploit the gravitational

nature of canal irrigation, which creates arbitrary differences in irrigation availability in proximate

settlements directly above and below the canal. To test for the presence of spillovers into nearby

untreated locations, we use a matching estimator to compare both above- and below-canal settlements

to settlements that have similar geophysical characteristics but are further away from canals. Finally,

to test for effects on regional urban growth, we use a hundred-year panel of town populations and
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a difference-in-differences estimator.

5.1 Regression Discontinuity Estimates of the Direct Effects of Canals

Canals provide water to fields through a system of gravity-driven secondary canals, trenches, and

pipes. Because water delivery depends physically on gravity, fields must be at a lower elevation than

a canal in order to be irrigated with canal water; settlements above the canal will not benefit directly.

Our main identification strategy compares settlements close to canals with elevations that put them

either just above or just below the threshold that would give them access to canal water. For this

analysis, below-canal settlements are treated by canals and above-canal settlements serve as controls.

A settlement polygon is characterized in the data by a set of pixels with a distribution of elevation

values. We define the polygon elevation as the 5th percentile of the polygon pixel distribution; this

value strongly predicts the difference in canal irrigation between treatment and control areas (see

Appendix Figure A1).22 For each settlement, we also calculate the elevation of the canal at its nearest

point to the settlement.

Equation 5.1 describes the regression discontinuity design (RDD) specification, following Imbens

and Lemieux (2008) and Gelman and Imbens (2019):

yi,s=β0+β11{REL ELEVi,s<0}+β2REL ELEVi,s+

β3REL ELEVi,s∗1{REL ELEVi,s>0}+β4Xi,s+νs+εi,s,

(5.1)

where yi,s is an outcome in settlement i and subdistrict s and REL ELEVi,s is settlement elevation

minus canal elevation (such that a negative value means that the settlement lies below the canal,

and thus can receive its water), and Xi,s is a vector of geophysical controls (ruggedness, mean annual

rainfall, maximum annual temperature, distance to the nearest river, distance to the coast, and the

GAEZ crop suitability measure for irrigated rice and wheat).23 νs is a subdistrict fixed effect, which

22Results are similar if we use the 25th percentile or median elevation to define above/below canal thresholds
(Appendix Tables A3, A4, A5, and A6). We chose the 5th percentile in order to have a control group with close to
zero canal irrigation; when we estimate spillover effects below, interpretation is most straightforward if the above-canal
group experiences no direct treatment by canal water.

23We use these as proxies of agricultural fertility and potential returns to irrigation, which could have hypothetically
guided canal placement. As agriculture in India tends to use some inputs but not nearly as much as rich countries,
we use the intermediate input variables from the FAO GAEZ. We do not include any socioeconomic controls, because
they are available at the settlement level only after 1990, by which time they are plausibly affected by canals.
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restricts our above/below canal comparison to settlements in the same subdistrict. A subdistrict

consists of approximately 100 settlements, with a total population of about 250,000 people. Standard

errors are clustered at the subdistrict level to account for spatial correlation. In the absence of

spillovers to untreated settlements, the effect of canal irrigation is captured by β1, which is the

difference in outcomes between settlements just below and just above the canal. Appendix Figure A2

shows a map of a single district, along with its canal network, elevation profile, and the first stage

RDD graph showing the share of land irrigated by canal.

The main analysis sample includes settlements less than 10km of distance and 50m of vertical

elevation from the nearest canal.24 As our outcome data is from 2011 onwards, we exclude from

our analysis sample any settlements whose closest canal is listed as incomplete as of 2011. We

limit the sample to subdistricts that have at least one settlement in the treatment group and one

settlement in the control group. Settlements with elevation very close to the treatment threshold

have an ambiguous treatment status — for example, a settlement could have some of its land above

the canal (and thus not treatable with canal water) and some of its land below the canal (and

thus treatable). Inclusion of these settlements would bias RDD estimates toward zero; we therefore

exclude a “donut hole” of settlements within 2.5m in elevation of the nearest canal in either direction.

Finally, to avoid comparing lowland irrigated areas with rugged hilly areas, we impose a balance

restriction on the terrain ruggedness index. We allow a maximum 25% difference in mean ruggedness

between below-canal and above-canal settlements in a given subdistrict; if the percent difference

is greater, the entire subdistrict is dropped from the sample. Table 1 shows the sample size and

mean values for all variables used in our analysis after each stage of the sample selection. We use

the ruggedness-balanced sample (Column 4) for our primary analysis, but show robustness in the

Appendix to alternate sample definitions. The ruggedness-balanced analysis sample is representative

of the universe of settlements in India on most dimensions. Around half of agricultural land is

irrigated; about 60% of village land is dedicated to agriculture; there is approximately 1 non-farm

job for every 10 adults; and just under half of adults have completed primary school.

24It is rare that villages further than 10km from a major or medium canal branch show economically meaningful
access to canal irrigation, even if they are below the elevation of the canal.
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RDD validity requires that there are no pre-treatment differences at the threshold between

above- and below-canal settlements. Since canal infrastructure in India was built throughout the

19th and 20th centuries, and treatment status is determined at the settlement level, there are no

high-resolution socioeconomic or agricultural data available to test this assumption. However, we can

test for differences in time-invariant geophysical measures, which could proxy for natural advantages

that might have affected canal placement and economic outcomes. Table 2 shows estimates of

Equation 5.1 on geophysical fundamentals (with the specific outcome excluded from Xi,s in each

regression), demonstrating that there are no significant differences between above- and below-canal

settlements in ruggedness, distance to coast, average annual rainfall, or crop suitability for rice

or wheat. We do find small imbalances on temperature and distance to rivers. The temperature

difference is tiny in magnitude and would if anything make canal areas less productive. Canal areas

are 10% further from rivers; this makes sense given that they aim to provide irrigation water where

there is none. We control for all of these geophysical variables in all of the regressions below.

As a robustness check, we use a secondary regression discontinuity design that compares settlements

just inside and just outside of the canal command area.25 We define the running variable as the

distance between settlement centroid and command area boundary, defining it negatively inside the

command area.26 The estimation is otherwise similar to that above, but we additionally divide each

command area boundary into 10km segments and include a fixed effect for each segment, ensuring

that we are comparing settlements across the same stretch of each command area. Standard errors

are clustered by these segments. This strategy exploits the variation in the xy-plane, whereas the

primary (relative elevation) strategy exploits variation in the z-axis. The identifying assumption

is that settlements just inside and just outside the command area boundary would have similar

outcomes if the canal had not been built. While the command area definition may exploit finer details

of local topography, we prefer the relative elevation strategy, as boundaries of command areas may be

subject to some discretion by officials, who might have incentives to mark one settlement or another

25This is similar in design to the strategy used in concurrent work by Blakeslee et al. (2021a). Recall that the com-
mand area is the engineers’ definition of the total area that theoretically has access to irrigation water from a given canal.

26The analysis sample contains settlements within 25km of the command area boundary, and the donut hole
excludes those within 2.5km of the boundary. Results are similar with different exclusion criteria.
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as within the command area.27 We test for balance with this command area boundary strategy in

Table A2, finding no evidence for any imbalance, apart from a very small difference in temperature.

5.2 Testing for spillovers into above-canal areas

The regression discontinuity design exploits arbitrary differences in access to canal water in proximate

above- and below-canal settlements. Given that we are estimating long-run effects of canals, spillovers

in such a small geographic area are a distinct possibility. For example, if above- and below-canal

settlements are part of integrated labor markets (as they are in the model), then the labor market

effects of canal irrigation would be expected to diffuse across the treatment boundary. If labor

mobility was sufficiently high, we could estimate zero differences between these areas in the RDD

analysis even in the presence of substantial labor market effects of canals. More directly, canals

could recharge underground aquifers, improving access to pumped groundwater in above-canal areas.

To test for spillover effects, we define an alternative sample of control locations: distant settlements

within each district, which lie at least 15km from the nearest canal but have similar geophysical

characteristics. These settlements are at minimum 5 km further from the nearest canal than any

treatment or control settlement in the RDD sample. By comparing settlements directly above the

canal to these more distant settlements, we can test for the spillover effects of canals.

This strategy is predicated on the assumption that any mechanism driving spillovers is likely

to decay with distance from treated areas. If spillovers do not decay over distance, they are more

difficult to measure. For example, if landless labor were perfectly mobile across all of India, then

a new canal could have a small positive impact on wages in the entire country, but there would

be no control group against which such an effect could be measured. While we cannot rule out

universal effects like these, our empirical design will identify the existence of spillovers as long as

they have a non-zero gradient in distance. These spillovers point estimates will be biased downward

to the extent that the effects of canals extend into the distant control group.

We use entropy balancing (Hainmueller, 2012) to assign weights to settlements so that the

27In practice, many of the treatment and control areas are defined similarly under the two strategies, since the
command area is mechanically below the canal elevation.
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distributions (first, second, and third moments) of all geophysical variables in distant, above-canal,

and below-canal settlements are similar. Entropy balancing is a useful matching method because it

does not impose functional form assumptions on propensity weights and thus achieves better balance

than propensity-score matching.28 Following the literature, we enforce common support by dropping

outliers (the top and bottom 2.5% for each of the matching variables). As an alternate strategy, we

use coarsened exact matching (Iacus et al., 2012) to similarly define and weight a matched sample of

above-canal, below-canal, and distant settlements. This method discretizes the continuous geophysical

variables into bins and matches settlements exactly on the coarsened variables. Distant settlements

that do not perfectly match any above-canal settlements on these binned geophysical characteristics

are discarded, and the remaining distant settlements are re-weighted to match the characteristics

of the above-canal settlements. We test for spillovers using the following estimating equation:

yi,d=γ0+γ11{ABOVE CANALi,d}+γ21{BELOW CANALi,d}+Xi,d+νd+εi,d, (5.2)

where above-canal and below-canal settlements are defined as in Section 5.1. Distant settlements are

the omitted group. Xi,d is the same vector of time-invariant geophysical controls as in the RDD speci-

fication above. To compare to more distant villages, we use a district fixed effect νd instead of the sub-

district fixed effect in the RDD, and standard errors are clustered at the district level. The coefficient

γ1 describes the difference between above-canal settlements and distant settlements. If there are sub-

stantial spillovers from canal-irrigated areas into above-canal settlements, we expect γ1 to be non-zero.

Note the difference between γ2 here and the RDD estimate of β1 from Equation 5.1. The RDD esti-

mate describes the difference at the threshold between above- and below-canal settlements; γ2 is the esti-

mate of the average difference between below-canal settlements and distant settlements. If there are no

spillovers, and there is no relationship between the RDD running variable (elevation) and the outcome,

then we will find γ1=0 and γ2=β1. In practice, the RDD estimator β1 requires weaker assumptions

for causal interpretation than γ2 and is thus a better estimator of the direct effects of canal irrigation.

28See Athey and Imbens (2017) for more discussion matching methodologies, include entropy balancing. For
recent examples of empirical work using entropy balancing, see Basri et al. (2021) and Guriev et al. (2021).
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5.3 Town growth through time

Our model suggests that non-farm work may be concentrated in production clusters that have natural

advantages or agglomeration economies. The empirical strategies thus far measure differences between

canal-irrigated settlements, proximate non-irrigated settlements, and similar settlements farther away.

Structural change that is concentrated in towns may not be captured by these tests for two reasons.

First, whether a town is directly in the irrigation or spillover zone may be irrelevant for its prospects for

non-farm work. Second, the spillovers analysis above estimates average effects and is not well suited to

test for concentrated changes in a small number of towns in a sample mostly comprised of rural villages.

To test whether canals affect regional urbanization, we exploit variation in canal construction

dates and examine whether town growth changes following the construction of regional canals. The

available data (from the 2011 Population Census) records the population of each 2011 town in each

decade going back to 1901, beginning with the first decade in which the Census defined a location

to be urban.29 Such an analysis is not possible for any other outcome, because urban population

is the only variable available in a long panel spanning the many decades of canal construction.

To define whether a town is near a canal, we first draw a circle with a 20 km radius around each

town. We define canal treatment for town i in year t as the percentage of the circle area that is

overlapped by canal command areas. An alternate specification defines a binary treatment variable

that takes the value 1 if more than 20% of the circle is covered by canal command areas.30

Equation 5.3 describes a standard two-way fixed effect (TWFE) continuous treatment difference-

in-differences model to test whether town growth and emergence are affected by nearby canal

construction:

yi,t=α0+α1CANALi,t+ζi+νt+εi,t. (5.3)

Outcome yi,t is either an indicator for town existence, log(town population), or decadal growth

in town i in decade t, and ζi and νt are town and decade fixed effects, respectively. When yi,t

29We do not observe former towns which do not exist any longer, but given India’s rising urbanization, town
disappearance is very rare.

30Results are robust to alternate circle radius and threshold choices as shown in Appendix Table A16.
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represents population, we assign the population value 2000 to towns that do not yet exist — this

treats settlements before they become towns as if their size was just below the average population

at which towns first appear in the data.31 For the binary treatment, we use the estimator from

Callaway and Sant’Anna (2020), using the not-yet-treated towns as the control group and defining

treatment as the first decade when a town’s 20 km radius catchment area is more than 20% covered

by canal command areas. Standard errors are clustered at the subdistrict level.

6 Results

6.1 Direct Treatment Effects of Canals: Regression Discontinuity Estimates

We first report RDD estimates of the direct effects of canal access on irrigation outcomes, the

mechanism through which we expect all other equilibrium effects to occur. Panel A of Table 3 shows

that in canal-treated areas, 7.3 percentage points more of the land under cultivation is irrigated

(17% more than in control settlements), and 9.5 percentage points (297%) more land is irrigated by

canals. There are no discernible changes in other sources of irrigation. We test separately for effects

on tubewell use, which would suggest greater groundwater access (for example, if canals recharge

aquifers and find no effects in the RDD.

Panel B in Table 3 reports direct effects of canal access on agricultural outcomes. Canal-treated

settlements experience higher agricultural productivity, with effects concentrated in the relatively

dry winter (rabi) growing season. Treatment settlements have 7.3% higher values of satellite-derived

land productivity in the dry season; productivity effects are positive but much smaller in the wet

(kharif ) season (1.8%, p=0.051). As expected, canals are more important during the dry winter

growing season and only marginally affect productivity in the higher precipitation monsoon summer

season. Settlements below canals also cultivate 2.7 percentage points more of their total land area, a

5% increase over control settlements, and are also 5% more likely to list a water-intensive crop (rice,

cotton, or sugarcane) as one of their three primary crops. We find no evidence of increased capital

intensity in agriculture, as measured by the share of households owning mechanized farm equipment.

31Of the 7,526 towns present in 2011, only 1,502 existed in 1911. We find similar results if we use 1 for the
population of locations before they were urban, but we think that 2,000 is a better estimate of the population of
pre-urban settlements.
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The key question of this paper is how these major changes in agricultural productivity affect living

standards and the growth of the non-farm economy. Panel C presents estimates of the impacts of

canals on population density, non-farm employment, and predicted consumption. The only significant

effect is on population: by 2011, treatment settlements have 16% more people per square kilometer

than control settlements. This population gain could be the result of reduced out-migration, increased

in-migration, increased fertility, or reduced mortality. We do not have data on migration flows

or past mortality and fertility to distinguish these hypotheses directly. However, we can examine

whether there are contemporary differences in fertility and mortality in canal villages, respectively

proxied by the share of the population aged 0–6 and 70+. We find only a small 1.4% negative

effect on the young population share, which goes in the opposite direction of the population gain

(Appendix Table A1), and no effects on the 70+ population share.

Despite large gains in the productivity of the dominant economic sector in villages, we find

no significant difference in living standards between above- and below-canal villages. The point

estimate on log consumption is +0.008, with a 95% confidence interval of [−0.003,0.018]: we can

rule out even small effects. There is also no evidence of structural transformation as measured by

non-farm jobs per adult; nor do we find significant effects when we disaggregate employment into

manufacturing, services, and agro-processing, the sector with the strongest linkage to agricultural

production (Appendix Table A1). Total non-farm employment is higher than in canal settlements

(as would be expected given the increase in population) but the non-farm share of the economy

(the outcome of interest) is unchanged. Canal settlements have higher human capital (Panel D of

Table 3); we measure a small but precise increase in the share of the adult population that has

completed primary, middle, and secondary school, as well as the population literacy rate.

Figure 2 shows regression discontinuity binscatters of key outcomes in each of the categories

above, with outcomes residualized on fixed effects and geophysical controls, showing the treatment

effect at the RDD threshold, providing visual evidence of the effects of canals. Figure 3 plots the

coefficients and 95% confidence intervals for the RDD coefficients reported in Table 3, normalized

by the standard deviation of each variable in the control sample. The effect on population density
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is substantively larger than any other non-agricultural outcome.

The model in Section 3 suggests that the long-run spatial equilibrium will be characterized by

equalization of returns to mobile factors (such as labor), but not to fixed factors (such as land).

In the absence of high resolution data on wages and land rents, we proxy the returns to these factors

by estimating canal treatment effects on predicted consumption separately for landless households

(who own only labor) and for land-owning households (who own both land and labor).32

The results on land ownership are presented in Figure 4 and Table 4. Panel A of Table 4 shows a

decline in the share of the population that are landowners in canal settlements relative to control settle-

ments, with the average landholding size of landowners unchanged. This implies that the population

increase in below-canal settlements is disproportionately driven by an increase in the number of land-

less households. The consumption effects of canals are substantially different for landed and landless

households (Panel B of Table 4): there are no significant consumption effects for landless households,

but landowner consumption is 2 percent higher in below-canal settlements; this result is statistically

significantly different from the estimate for landless consumption at the 1% level. Partitioning landown-

ers by nationally-defined land quartiles, effects increase monotonically by quartile, with no significant

consumption effects on those owning <1 hectare of land (the 1st quartile), and a 2.7% effect on con-

sumption for those in the top quartile owning >4 hectares (Panel B).33 Both landless and landowning

households experience gains in educational attainment, but effects for landowners are two to three times

higher than for the landless (Table 4 Panel C). In short, the results are consistent with a model where

the agricultural productivity gains from canals draw in new landless labor until a spatial equilibrium

is reached, with equal landless wages in canal and non-canal areas, as we discuss further in Section 7.

6.1.1 Robustness

The RDD results are robust to alternate parameter choices. To show robustness, we replicate all of our

primary outcomes in Appendix Tables A3 through A6; the different panels of the table show the result

32The predicted consumption measure is based on the ownership of a wide range of assets, so these proxies should
be thought of as the real, rather than nominal, returns to labor and land.

33We define quartiles in the landholding distribution based on national data, to maintain consistent quartile
boundaries across settlements. The first quartile owns 0-1 hectare of land, the second owns 1-2 hectares, the third
owns 2-4 hectares, and the fourth owns more than 4 hectares.
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of different specifications for each outcome. In Panel A of each table, we return to the sample with

settlements in the donut hole (within 2.5 m of elevation of the canal) and those from subdistricts with

unbalanced ruggedness. Panel B shows results excluding the donut hole but balanced on ruggedness.

Panels C and D show results where settlement elevation is defined as the median pixel in the village

and the 25th percentile pixel, respectively, rather than the 5th percentile used in the main analysis. To

ensure that the variation is driven by arbitrary differences in elevation rather than potentially endoge-

nous decisions about precise canal placement, Panel E excludes settlements intersected by canals and

Panel F adds an additional control variable for distance from the settlement to the nearest canal. Panel

G estimates canal effects using the alternative command area boundary RDD described in Section 5.1,

where distance to the command area boundary is the running variable rather than relative elevation.

The results are highly consistent across all of the specifications; differences that appear in more

than one specification are noted here. Two out of the six estimates show small substitution away from

groundwater use in canal-irrigated areas; it is not surprising to find some substitution of this kind, but

the magnitude is small relative to the increase in canal irrigation.34 In the command area specification,

we find higher kharif productivity effects than in the rabi season; in all other specifications, rabi effects

are substantially higher. Some of the specifications show small increases in the use of mechanized

farm equipment. The structural transformation measures are highly robust: we never estimate more

than a 0.3 percentage point change in the non-farm employment share in any sector. The population

change effects are highly significant for all specifications except the estimate using median settlement

elevation to define treatment; as noted above, this is likely because many settlements whose median

pixel is above a canal in fact have substantial area that is irrigable by the canal.

Finally, we test for sensitivity of outcomes to different RDD parameter choices. Appendix Table A7

shows that treatment effects are highly stable in magnitude and significance across bandwidths

(Panel A), ruggedness balance restrictions (Panel B), and maximum distance to canal (Panel C).

34The implications of our findings are similar even if there is substitution away from groundwater — it would
still imply a reduction in productivity and irrigation cost in canal areas.

28



6.2 Estimates of spillovers of canals to above-canal settlements

We next study spillover effects by comparing both above- and below-canal regions to more distant

regions, matching on and controlling for geophysical features, as described in Section 5.2 and

Equation 5.2. In each regression in Table 5, the omitted category is the distant settlement. The

coefficient “below canal” is the difference between canal-treated settlements (as defined by relative

elevation) and distant settlements, an alternate estimator of the direct effect of access to irrigation.

The coefficient “above canal” is the difference between distant settlements and settlements that are

close to the canal but above it in elevation and hence non-irrigated. The “above canal” coefficient is

the coefficient of interest for studying spillovers. If canals affect the economy of unirrigated villages

in the vicinity of the canal, this coefficient will be different from zero.

We find no substantial spillover effects in the agricultural outcomes. Above-canal settlements

are marginally more likely to be irrigated by canals, but the effect is tiny and likely results from

imprecision in our elevation measure — some parts of above-canal villages can in fact be irrigated

by canal water due to topographical features not captured by our shortest distance measure. We

calculate a statistically insignificant 0.5–1 percentage point increase in groundwater irrigation, which

is slightly higher in above-canal areas, consistent with the marginal effect described in the robustness

section above. In short, substitution into groundwater appears to be small to negligible. We do find

statistically significant increases in water-intensive crops in above-canal areas, which may be due either

to small increases in water access or the diffusion of these crops from nearby canal-irrigated settlements.

Spillovers to non-agricultural outcomes are minimal. The spillover point estimate on population

density is positive but statistically insignificant and one tenth of the point estimate on the below-canal

indicator. We estimate tight zeroes for spillovers on non-farm employment shares. Consumption

spillovers are if anything negative for the landless (p=0.08). These results rule out the possibility

that rural settlements just outside the canal irrigation zone are developing substantial non-farm

sectors. We discuss our interpretation of these findings in light of all other results in Section 7 below.
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6.3 Difference-in-Difference Estimates of the Effects of Canals on Urban Growth

The empirical strategies used thus far are best suited for measuring broad changes that occur across

many settlements, and are either in the canal region or in direct proximity to it. But if canals

caused changes primarily in a small number of urban areas with market linkages to canal areas,

the estimates above might not have the precision to capture such a concentrated effect.

In this section, we use the long panel of town populations to test whether town growth responds

to regional canal construction. Figure 5 provides suggestive evidence that towns grow more quickly

after canals are built in their vicinity. For the set of towns that can be observed for 30 years before

and after a canal is built that satisfies the binary treatment definition above, we plot log population

of each town against the decade relative to the date of canal construction. There is a clear increase

in the rate of population growth in the 30 years following canal construction relative to the 30 years

preceding construction.

Table 6 shows difference-in-difference estimates from Equation 5.3 of the effect of canal construc-

tion on town growth. Odd-numbered columns show the binary treatment with the Callaway and

Sant’Anna (2020) estimator, and even-numbered columns use the canonical difference-in-difference

setup with a continuous treatment, which is the share of the town’s 20 km radius catchment area

that is in a canal command area.

Towns are more likely to appear (Columns 1 and 2) and are more likely to have larger populations

(Columns 3 and 4) following nearby canal construction. Alternately, overall population growth is

faster for canal-treated towns, with the continuous treatment estimate suggesting that a town entirely

surrounded by a canal command area would grow 7.2% faster than a similar town not treated at

all (Column 6). The number of post-treatment observations in the panel is too small to empirically

distinguish a functional form for the time path of the population change. In other words, it is

difficult to measure whether canals affect urban population growth in perpetuity, or whether they

result in a level change in population which is arrived at over several decades. We therefore consider

both of these possibilities when we discuss the magnitude of these estimates in the next section.
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7 Discussion

The three components of the empirical analysis, together with the model, help us generate an

understanding of how canals reshape the local economic geography. Canals create sharp spatial

discontinuities in agricultural productivity. In irrigated villages, the return to land rises, growers shift

to more water-intensive crops, and demand for labor rises. The increased demand likely puts upward

pressure on wages in the short run, but in the long run that we observe, workers are attracted by these

higher wages and the population grows until wages are again equalized across space. This migration

may take the form of in-migration from outside the region, but it could also occur through reduced

out-migration by workers or for marriage, lower mortality, or higher fertility. In the new equilibrium,

canal areas are more densely populated, but the returns to labor are equalized with non-canal areas.

The returns to land, the fixed factor, remain higher in irrigated areas even in the long run.

We see little evidence of small-scale industrialization or structural transformation in the rural areas

where canals contribute directly to agricultural productivity. Structural transformation does occur,

but new non-farm work opportunities are concentrated in cities. We think of these as production

clusters, which can take advantage of agglomeration externalities and natural advantages that make

them ideal locations for non-agricultural economic activity. The nature of the links between growing

urban markets and greater agricultural productivity in canal areas is difficult to explore further in

our empirical setting, where historical data is available only for town population, but the literature

suggests a range of potential mechanisms. Bustos et al. (2020) show that landowners in Brazil

invested land rents in urban areas that were connected by banking networks. Land rents could also

be used to finance migration, another channel for urbanization and wealth accumulation among

landowners (Clemens, 2014). Other linkages between greater agricultural output and non-farm

industry are suggested by Johnston and Mellor (1961).

We can conduct a back-of-the-envelope calculation to get an approximation of the scale of the net

population movement caused by canals. To conduct such an exercise, we make several simplifying

assumptions. First, we assume that our estimates are driven entirely by net population movement
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rather than by fertility or mortality.35 Second, we need to transform the urban treatment effects from

Table 6 into static changes in present-day urban populations. Column 3 suggests a static treatment

effect of 8.5%, i.e. that canal towns are 8.5% larger than they would be in the absence of canals.

Column 5 shows a decadal growth effect of 4.3%; compounding this by four decades (the median

treatment time in the sample data) would suggest that canals have made these towns 18% larger

today. We therefore use 8.5–18% for the range of urban treatment effects. Third, we assume that

these urban treatment effects apply to towns with populations less than 100,000; it seems doubtful

that canals have equally large treatment effects in India’s largest cities, which are widely diversified

with many sources of growth.36 Finally, to estimate rural population flows, we use the estimates

from Table 5, multiplying the below-canal and above-canal treatment effects on population (18%

and 2%, respectively) by the number of villages in below- and above-canal catchment areas.

Under these assumptions, our calculation suggests that India’s canals have drawn an additional

5–9 million people to cities and towns in canal regions, and an additional 32 million people to rural

canal regions. Canals have thus created substantial changes in India’s economic geography, even

if their long-run effects on the dispersion of wages have been limited.

Determining the extent of aggregate structural transformation driven by canals would require

knowing the counterfactual sectors of these population gains, which we do not observe. However,

we know that the vast majority of of urban migrants (85%) in 2001 came from rural areas; if people

who changed locations because of canals had the same provenance, then India’s canals would account

for 3–5% of India’s change in urbanization since 1951.

By studying the effects of irrigation at different geographic scales, our results unify some of the

findings in the prior literature. Foster and Rosenzweig (2004a) find that villages most exposed to the

Green Revolution shifted their production structure away from industry and toward agriculture, the

Matsuyama (1992) open economy result. But their study is limited to villages; the industrialization

35This assumption serves only to simplify the exposition; the changes in economic geography are important
whether driven by migration, fertility, or mortality.

36Indeed, Appendix Table A17 suggests that canals primarily affect the growth of smaller towns, by showing
the diff-in-diff estimate separately for different quartiles of city size in the decade before canal construction. Including
India’s big cities in our calculation would raise the urban population change number below by about 1.5x.
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that we measure is concentrated and occurs at some distance from the villages exposed to higher

agricultural productivity. Bustos et al. (2016) found that the direction of structural change depended

crucially on whether the technical change was labor-augmenting; the introduction of genetically-

modified soy freed up labor to work in industry. Crucially, the units of observation in that paper

are Brazilian municipalities, which have populations in the tens of thousands and incorporate the

equivalents of Indian villages and towns. Our results suggest that urban towns may be the key focal

point for structural change when it occurs.

A limitation of our analysis is that, with only limited data going back to the construction times of

canals, measuring the aggregate effects of canals is difficult and beyond the scope of this paper. For

example, if labor is sufficiently mobile, then canals could raise wages equally throughout the country,

such that there would be no relationship between distance to canals and wages. In our model, we treat

the agriculturally productive region as a small economy, but in India a very large share of land has

been irrigated with canals. It is therefore plausible that the labor-sending regions have also experienced

higher wages as a result. We therefore remain agnostic on the nature of aggregate spillovers.

Our results are relevant for policy even in the presence of some large-scale spillovers. Many

development policies seek to foster non-farm work in rural areas, hoping to mitigate the pull of

cities and create structural change in dispersed villages. Canals have caused large-scale population

movements and substantially increased land productivity, but there is little evidence of structural

change in treated rural areas. There are evidently important economic forces causing non-agricultural

work to be concentrated in cities; policy will be most effective when it recognizes this reality.

Our results shed light on several strands of the literature beyond structural change. Several papers

have suggested that increased labor demand in agriculture may deter human capital investment,

particularly among the poor or landless (Foster and Rosenzweig, 2004b; Shah and Steinberg, 2017).

In the context of canals, increased labor demand was met in the long run by net population growth,

mitigating these potentially adverse effects, such that human capital increased among both the

landed and the landless. This result recalls other scenarios where new economic opportunities

resulted in higher educational investments (Jensen, 2012; Heath and Mobarak, 2015; Adukia et al.,
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2020). Foster and Rosenzweig (2004b) suggest a mechanism for the effects on education: demand

for school investment among the wealthier land-rich could have resulted in more schools, which

ultimately provided benefits to the landless as well.

8 Conclusion

India’s canal systems provide an ideal testing ground for examining the geographic relationship

between agricultural productivity improvements and structural transformation. In the long run,

we find that spatial equilibrium was restored primarily through substantial changes in the size of

the landless population. Decades after canals were built, there are few differences in living standards

between landless workers in canal and non-canal settlements, and irrigated villages have similar

non-farm activity to unirrigated villages. However, structural transformation has taken place, with

towns emerging and growing disproportionately in canal regions.

The limitations of our work arise from the impossibility of measuring labor flows directly in our

context; we observe higher population levels in canal areas, but the data do not tell us from where these

people came. Mobile laborers who settled in canal-irrigated settlements, changes in fertility, or changes

in exogamous marriage patterns could explain what we observe in equilibrium. Disentangling this

economic history is beyond the scope of this paper but would be valuable in completing the picture.

Many shorter term studies have found that rising agricultural wages can deter or delay indus-

trialization. Our study suggests that, in the long run, these effects may be tempered by changes in

the labor supply. Naturally, it is difficult to compare different contexts in different times and places.

Most of India’s canals were built in or before the License Raj era, when manufacturing investments

were significantly inhibited by the state, and firms could not rapidly respond to changes in labor

demand, potentially enhancing the role of mobile labor. Whether modern agricultural shocks will

be equally equilibrated by labor flows remains an important question for future research.

Mobile workers pose challenges for applied empirical researchers by violating assumptions of

population stability across treatment and control groups. Yet hundreds of millions of Indians report

living in places other than those of their birth, and tens of millions more migrated temporarily for

work on an annual basis. Our study suggests that these large, mobile populations are a powerful
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economic force that can affect policy outcomes substantially.
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Table 1: Summary statistics

All canal-area
All All canal-area settlements Ruggedness-balanced

India settlements minus donut hole analysis sample

Sample Size 589,950 245,531 132,969 91,465
Percent Treatment – 83 77 80

Means

Total irrigated area (share of ag. land) 0.464 0.584 0.518 0.536
Canal irrigated area (share of ag. land) 0.134 0.177 0.138 0.132

Tubewell irrigated area (share of ag. land) 0.196 0.264 0.225 0.242
Other irrigated area (share of ag. land) 0.142 0.158 0.175 0.179

Agricultural land (share of total village area) 0.577 0.666 0.626 0.644
Kharif agricultural production, EVI-derived (log) 7.560 7.739 7.710 7.688

Rabi agricultural production, EVI-derived (log) 7.231 7.370 7.290 7.292
Any water intensive crop grown 0.586 0.657 0.604 0.605

Mechanized farming equipment (share of households) 0.047 0.062 0.055 0.061

Population density (log) 5.065 5.678 5.488 5.524
Consumption (log) 9.726 9.755 9.750 9.760

Total non-farm employment (share of adult pop) 0.096 0.085 0.088 0.085
Services employment (share of adult pop) 0.066 0.058 0.059 0.058

Manufacturing employment (share of adult pop) 0.019 0.020 0.020 0.020

Primary school ed attained (share of adult pop) 0.471 0.498 0.490 0.495
Middle school ed attained (share of adult pop) 0.318 0.339 0.329 0.331

Secondary school ed attained (share of adult pop) 0.194 0.212 0.207 0.207
Literacy rate (literate share of adult pop) 0.561 0.577 0.576 0.579

Notes: There are 589,950 settlements included in the All India sample, which is every village or town recorded in the
2011 Population Census with a non-zero population. In the second column, the All canal-area settlements sample
includes towns and villages ≤10km from the nearest canal, and within 50m of the nearest canal in terms of elevation.
In the third column, removing the donut hole drops settlements ±2.5m in elevation from the nearest canal from the
sample. We then impose a balance criteria on ruggedness by dropping settlements from subdistricts in which there is
a ≥25% difference in average ruggedness between below-canal (treatment) and above-canal (control) settlements. The
resulting sample, with 91,465 settlements, is the ruggedness-balanced analysis sample and is our preferred sample used
in the RDD analysis. Note that the mean values reported for the ruggedness-balanced analysis sample also exclude
subdistricts that do not contain at least one settlement in each of the treatment and control groups. All mean values
are weighted by land area.
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Table 2: Balance in the regression discontinuity design

Ruggedness Annual rainfall Max monthly temp.
(TRI) avg. 2010-2014 (mm) avg. 2010-2014 (◦C)

Below canal 0.055 -1.085 0.038***
(0.061) (1.685) (0.007)

Control group mean 4.754 1167.092 32.163
Observations 91,465 91,465 91,465
R2 0.620 0.988 0.981

Distance to coast Distance to river Wetland rice Wheat
(km) (km) (GAEZ) (GAEZ)

Below canal -0.230 -2.097*** 0.002 0.002
(0.380) (0.430) (0.012) (0.004)

Control group mean 362.339 24.564 2.272 0.767
Observations 91,465 91,465 91,465 91,465
R2 0.999 0.876 0.923 0.983

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the regression discontinuity estimates for geophysical variables following Equation 5.1,
dropping each outcome variable from the list of controls for each result. The Terrain Ruggedness Index (TRI) is a
topographic measure of ruggedness, or how extreme elevation changes are in a given area, and was calculated following
Riley et al. (1999) and Nunn and Puga (2012). Annual total rainfall was extracted from the Climate Hazards Center
InfraRed Precipitation with Station data (CHIRPS) product produced by Funk et al. (2014). Average maximum
monthly temperature was extracted from the Climate Hazards Center Infrared Temperature with Stations (CHIRTS)
product released by Funk et al. (2019). Crop suitability measures are taken from the Global Agro-Ecological Zones
(GAEZ) model that estimates expected conditions for agricultural production based on climate, soil, and terrain
parameters. GAEZ model estimates made assuming gravity-fed irrigation and intermediate level inputs are used.
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Table 3: Regression discontinuity results for main outcomes

Panel A. Irrigation outcomes

Total irrigated area Canal irrigated area Tubewell irrigated area Other irrigated area
(share of ag. land) (share of ag. land) (share of ag. land) (share of ag. land)

Below canal 0.073*** 0.095*** -0.005 -0.006
(0.008) (0.007) (0.007) (0.005)

Control group mean 0.430 0.032 0.210 0.195
Observations 83,182 83,192 83,247 82,385
R2 0.61 0.38 0.47 0.63

Panel B. Agriculture outcomes

Agricultural land Kharif (monsoon) Rabi (winter) Water intensive Mechanized farm equip.
(share of village area) ag. prod (log) ag. prod (log) crops (any) (share of all HHs)

Below canal 0.027*** 0.018* 0.073*** 0.028*** 0.002
(0.005) (0.009) (0.012) (0.009) (0.002)

Control group mean 0.598 7.686 7.209 0.560 0.056

Observations 90,137 90,096 89,836 70,260 86,115
R2 0.61 0.82 0.70 0.73 0.30

Panel C. Non-farm outcomes

Population density Total emp. Services emp. Manuf. emp Consumption pc
(log) (share of adult pop.) (share of adult pop.) (share of adult pop.) (log)

Below canal 0.158*** 0.000 0.002 -0.001 0.008
(0.027) (0.002) (0.001) (0.001) (0.005)

Control group mean 5.241 0.089 0.058 0.020 9.744
Observations 91,465 85,342 85,342 85,342 86,842
R2 0.42 0.25 0.19 0.28 0.53

Panel D. Education outcomes

At least primary At least middle At least secondary Literacy
(share of adult pop.) (share of adult pop.) (share of adult pop.) (literate share of pop.)

Below canal 0.012*** 0.012*** 0.009*** 0.011***
(0.003) (0.003) (0.002) (0.002)

Control group mean 0.478 0.313 0.197 0.570
Observations 86,068 86,068 86,068 91,465
R2 0.57 0.56 0.53 0.58

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the regression discontinuity estimates following Equation 5.1 for all outcomes variables.
Each outcome variable is estimated separately, with the β1 coefficient of the estimate reported in the first row with
stars indicating its significance and the standard error below in parentheses. The control group mean (weighted by
land area), the number of observations with non-missing data for the particular outcome variable, and the adjusted
R2 for each regression estimate are also shown.
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Table 4: Regression discontinuity results for outcomes disaggregated by land ownership

Panel A. Land ownership overview

Land-owning HHs Avg. size of land holdings Avg. size of land holdings
(share of all HHs) (log hectares, all HHs) (log hectares, land-owning HHs)

Below canal -0.025*** -0.054*** 0.001
(0.005) (0.018) (0.013)

Control group mean 0.536 0.750 1.526
Observations 86,117 83,796 83,763
R2 0.460 0.460 0.500

Panel B. Consumption distribution

Consumption pc Consumption pc (log, land-owning HHs)
(log, landless HHs) (log, land-owning HHs) 1st quartile 2nd quartile 3rd quartile 4th quartile

Below canal 0.002 0.020*** 0.000 0.015** 0.019*** 0.027***
(0.006) (0.005) (0.008) (0.006) (0.006) (0.006)

Control group mean 9.604 9.811 9.739 9.764 9.810 9.902
Observations 83,802 83,760 73,552 76,856 77,546 74,865
R2 0.460 0.550 0.450 0.470 0.460 0.420

Panel C. Education attainment

At least primary, share of At least middle, share of At least secondary, share of
landless pop. land-owning pop. landless pop. land-owning pop. landless pop. land-owning pop.

Below canal 0.010*** 0.021*** 0.009*** 0.021*** 0.006** 0.018***
(0.004) (0.004) (0.003) (0.004) (0.002) (0.003)

Control group mean 0.433 0.518 0.270 0.353 0.161 0.003
Observations 83,639 84,064 83,639 84,064 83,639 84,064
R2 0.470 0.590 0.460 0.580 0.420 0.550

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the regression discontinuity estimates following Equation 5.1 for various outcomes pertaining
to land ownership. Panel A shows estimates for the share of households that are landowners, the average size of
land holdings for all households, and the average size of land holdings among land-owning households. Panel B
first shows estimates for consumption disaggregated by land ownership status. Panel B then shows estimates for
consumption by quartile, with each quartile of land-owning households separately estimated. The bottom (1st) quartile
are the land-owning households with total land holdings in the 0-25% range of the national distribution while the top
(4th) quartile are those in the top 75-100%. The quartile break points in ascending order are 1, 2, and 4 acres with
each quartile excluding the bottom and including the top of the range defining the bin. Note that all consumption
coefficients are in units of log consumption per capita, as they are throughout the paper.
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Table 5: Comparison to distant settlements

Panel A. Irrigation outcomes

Total irrigated area Canal irrigated area Tubewell irrigated area Other irrigated area
(share of ag. land) (share of ag. land) (share of ag. land) (share of ag. land)

Below canal 0.064*** 0.085*** 0.005 -0.016
(0.015) (0.010) (0.008) (0.010)

Above canal 0.010 0.007* 0.010 -0.007
(0.008) (0.004) (0.007) (0.005)

Control group mean 0.384 0.032 0.198 0.159
Observations 77,049 77,211 77,215 76,505
R2 0.62 0.20 0.41 0.78

Panel B. Agriculture outcomes

Agricultural land Kharif (monsoon) Rabi (winter) Water intensive Mechanized farm equip.
(share of village area) ag. prod (log) ag. prod (log) crops (any) (share of all HHs)

Below canal 0.014* 0.009 0.022 0.047** 0.006**
(0.008) (0.015) (0.019) (0.023) (0.003)

Above canal -0.004 -0.004 -0.029 0.039** 0.000
(0.008) (0.011) (0.019) (0.018) (0.002)

Control group mean 0.567 7.838 7.338 0.629 0.035
Observations 86,615 86,586 86,411 66,098 82,792
R2 0.56 0.88 0.57 0.71 0.31

Panel C. Non-farm outcomes

Population density Total emp Services emp Manuf. emp Consumption pc
(log) (share of adult pop.) (share of adult pop.) (share of adult pop.) (log, all HHs)

Below canal 0.182*** 0.002 0.003* 0.000 0.015*
(0.032) (0.003) (0.001) (0.002) (0.008)

Above canal 0.020 0.004 0.002 0.001 -0.005
(0.025) (0.003) (0.001) (0.002) (0.008)

Control group mean 5.504 0.086 0.053 0.021 9.626
Observations 87,756 80,546 80,546 80,546 83,262
R2 0.27 0.14 0.09 0.22 0.43

Panel D. Outcomes disaggregated by land ownership

Consumption pc Consumption pc (log) Middle school ed. Middle school ed.
(log, landless HHs) (log, land-owning HHs) (share of landless pop.) (share of land-owning pop.)

Below canal -0.006 0.021** 0.009** 0.028***
(0.007) (0.009) (0.004) (0.007)

Above canal -0.013* 0.004 0.002 0.008
(0.007) (0.009) (0.004) (0.005)

Control group mean 9.503 9.731 0.250 0.331
Observations 80,227 80,556 80,043 80,746
R2 0.37 0.43 0.43 0.53

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the spillover analysis estimates following Equation 5.2 for all outcomes variables. The
below-canal (directly treated) and above-canal (indirectly treated) settlements are compared to distant settlements far
from the canal within the same district. Distant settlements are defined as settlements more than 15km away from a
canal. Weights were calculating using entropy balancing to ensure distant settlements are comparable to above-canal
villages with respect to geophysical controls following Hainmueller (2012). The γ1 (above-canal) and γ2 (below-canal)
estimates are reported here, along with their significance and standard errors below in parentheses. The control
group mean, referring to the area-weighted mean of the above-canal settlements, is reported along with the number of
observations with non-missing data for each outcome variable and the adjusted R2 of the estimate.



Table 6: Effect of canals on town growth

Town Existence Population Growth
(pop. 5,000) (log) (decadal)

Command area in town catchment area 0.040*** 0.085*** 0.043**
(binary treatment) (0.014) (0.026) (0.020)

Share of town catchment area in command area 0.090*** 0.261*** 0.072***
(continuous treatment) (0.022) (0.051) (0.024)

Observations 21,636 46,932 21,636 46,932 19,833 43,021
R2 0.67 0.82 0.06
∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table shows effect of canal construction on town growth as estimated by Equation 5.3. Each column
reports the β1 values for an independent estimate of various outcomes. The outcome variable in columns 1 and 2 is the
existence of a town with population 5,000 or greater as the outcome variable. In columns 3 and 4 the outcome variable
is log population, while in columns 5 and 6 it is decade-on-decade population growth. For all estimates, we assume
that before a town appears in the time series, it is a settlement with a population of 2,000 (smaller than the population
required to be declared a town). The first row shows results using a binary indicator for canal construction and a
difference-in-difference estimator following Callaway and Sant’Anna (2020). For these estimates, a town is considered
as treated when 20% of its catchment area (i.e., within a radius of 20km) has been covered by a command area. The
second row shows results form a standard two-way fixed effect (TWFE) continuous treatment difference-in-differences,
in which the share of the town catchment area covered by a command area is the dependent variable.
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Figure 1: Canal construction through time

Notes: This plot shows the total length of medium and major canals constructed in India from 1850-2013. Any canals
with dates older than 1850 are coded as 1850 while any canals not completed before 2013 are not included. Note
that 217 of the 1442 total canal projects reported, or 9% of total canal length in the geospatial canals data, have an
unknown date of completion and are not included in this plot. Additionally, 236 projects totaling 22% of total canal
length in the data were not completed as of 2013 (the last date of our major outcomes) and so are not included in this
plot.
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Figure 2: Regression discontinuity binscatters for key outcomes
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Notes: Each figure shows the binned scatterplot relationship between an outcome of interest and the RDD running
variable (elevation relative to the nearest canal), after residualizing on the geophysical controls and subdistrict fixed
effects. Below-canal (directly treated) settlements have negative relative elevation and lie to the right of the zero
line, while above-canal (control) settlements have positive relative elevation and lie to the left of the zero line. All
regressions follow Equation 5.1. The regression discontinuity coefficient (Coef) for each variable is reported with stars
indicating the significance and the standard error in parentheses below. The control group mean is also reported (µc).
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Figure 3: Regression discontinuity results for main outcomes

Notes: This figure shows the regression discontinuity estimates for the main outcomes variables following Equation 5.1
and reported in Table 3. Blue points indicate positive, significant normalized treatment effects while gray points
indicate results not significant at the 95% level. The normalized treatment effect is calculated by dividing the
regression discontinuity coefficient by the standard deviation of the outcome variable in control settlements of the
analysis sample. Error bars indicate the 95% confidence interval for each estimate.



Figure 4: Land ownership outcomes

Notes: This figure shows the regression discontinuity estimates for various outcomes pertaining to land ownership,
following Equation 5.1 and reported in Table 4. Blue points indicate positive, significant normalized treatment effects,
red points indicate negative, significant normalized treatment effects, and gray points indicate results not significant at
the 95% level. The normalized treatment effect is calculated by dividing the regression discontinuity coefficient by the
standard deviation of the outcome variable in the control settlements of the analysis sample. Error bars indicate the
95% confidence interval for each estimate.
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Figure 5: Trend break in town population growth after canal construction

Notes: This figure shows the trend break that occurs in town population after canal construction. Towns are aligned
by period, where period 0 is the decade in which a command area first appeared in the town catchment area (defined
by the circle of radius 20 km). Period increment 10 indicates 1 decade after the command area appearance, while
period increment -10 indicates 1 decade before the first command area appearance.
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A Appendix Tables and Figures

Table A1: Regression discontinuity results for additional outcomes

Settlement is a town Population age 0-6 Population age 70+ Agroprocessing emp.
(likelihood) (share of pop.) (share of pop.) (share of adult pop.)

Below canal 0.010 -0.002*** 0.000 0.000
(0.007) (0.001) (0.000) (0.000)

Control group mean 0.024 0.140 0.037 0.007
Observations 91,465 91,465 86,111 85,342
R2 0.14 0.57 0.34 0.43

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the regression discontinuity estimates following Equation 5.1 for additional outcomes
variables. Each outcome variable is estimated separately, with the β1 coefficient of the estimate reported in the
first row with stars indicating its significance and the standard error below in parentheses. The control group mean
(weighted by land area), the number of observations with non-missing data for the particular outcome variable, and
the adjusted R2 for each regression estimate are also shown.
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Table A2: Balance in the regression discontinuity design using distance to command area boundary

Ruggedness Annual rainfall Max monthly temp.
(TRI) avg. 2010-2014 (mm) avg. 2010-2014 (◦C)

Inside command area -0.007 0.551 0.026***
(0.043) (3.315) (0.010)

Control group mean 3.602 1317.632 31.976
Observations 48,909 48,909 48,909
R2 0.640 0.990 0.990

Distance to coast Distance to river Wetland rice Wheat
(km) (km) (GAEZ) (GAEZ)

Outside command area 0.099 -0.701 -0.005 0.008
(0.457) (0.760) (0.016) (0.006)

Control group mean 467.522 23.429 2.704 1.188
Observations 48,909 48,909 48,909 48,909
R2 1.000 0.930 0.960 0.990

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the regression discontinuity estimates for geophysical variables using the alternate command
area boundary RDD, dropping each outcome variable from the list of controls for each result. This RDD specification
uses distance to the command area boundary as the running variable instead of relative elevation. The Terrain
Ruggedness Index (TRI) is a topographic measure of ruggedness, or how extreme elevation changes are in a given
area, and was calculated following Riley et al. (1999) and Nunn and Puga (2012). Annual total rainfall was extracted
from the Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS) product produced by Funk
et al. (2014). Average maximum monthly temperature was extracted from the Climate Hazards Center Infrared
Temperature with Stations (CHIRTS) product released by Funk et al. (2019). Crop suitability measures are taken
from the Global Agro-Ecological Zones (GAEZ) model that estimates expected conditions for agricultural production
based on climate, soil, and terrain parameters. GAEZ model estimates made assuming gravity-fed irrigation and
intermediate level inputs are used.
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Table A3: Regression discontinuity results for irrigation outcomes (robustness specifications)

Total irrigated area Canal irrigated area Tubewell irrigated area Other irrigated area
(share of ag. land) (share of ag. land) (share of ag. land) (share of ag. land)

Panel A: All canal-area settlements

Below canal 0.063*** 0.086*** -0.006 -0.009***
(0.002) (0.001) (0.000) (0.000)

Control group mean 0.435 0.070 0.214 0.158
Observations 230,114 230,165 230,257 228,287
R2 0.650 0.450 0.470 0.560

Panel B: All canal-area settlements, minus donut hole

Below canal 0.078*** 0.106*** -0.006 -0.009**
(0.002) (0.002) (0.000) (0.000)

Control group mean 0.387 0.051 0.181 0.161
Observations 122,187 122,246 122,313 120,714
R2 0.600 0.400 0.480 0.630

Panel C: Canal-area settlements balanced on ruggedness, using median settlement elevation

Below canal 0.053*** 0.071*** -0.007* -0.005
(0.002) (0.004) (0.000) (-0.001)

Control group mean 0.469 0.068 0.245 0.162
Observations 90,418 90,419 90,480 89,476
R2 0.640 0.500 0.500 0.620

Panel D: Canal-area settlements balanced on ruggedness, using 25th percentile settlement elevation

Below canal 0.073*** 0.102*** -0.014** -0.007*
(0.002) (0.003) (0.000) (0.000)

Control group mean 0.440 0.055 0.226 0.166
Observations 94,641 94,651 94,708 93,721
R2 0.650 0.450 0.500 0.620

Panel E: Main analysis sample, excluding villages intersected by a canal

Below canal 0.055*** 0.043*** 0.006 0.006
(0.001) (0.001) (0.001) (0.000)

Control group mean 0.410 0.048 0.204 0.165
Observations 60,803 60,787 60,826 60,361
R2 0.660 0.350 0.510 0.670

Panel F: Main analysis sample, additional control for distance to canal

Below canal 0.045*** 0.047*** 0.005 -0.001
(0.001) (0.000) (0.001) (0.000)

Control group mean 0.414 0.047 0.205 0.169
Observations 83,182 83,192 83,247 82,385
R2 0.620 0.410 0.480 0.630

Panel G: Command area boundary RDD

Inside command area 0.116*** 0.154*** -0.008 -0.019*
(-0.001) (-0.002) (-0.002) (0.002)

Control group mean 0.535 0.063 0.333 0.156
Observations 43,244 43,206 43,239 42,752
R2 0.730 0.510 0.570 0.520

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the regression discontinuity estimates following Equation 5.1 for irrigation outcomes using a
range of samples to test the robustness of our results using our main analysis sample presented in Table 3. Panel A
uses all settlements ≤10km from the nearest canal in distance and ±50m from the nearest canal in elevation. Panel B
removes all settlements ±2.5m from the canal. The samples in Panel C and D employ the same sample definition as
our main analysis sample, but instead of using the 5th percentile to parameterize settlement elevation, Panel C uses
the median elevation while Panel D uses the 25th percentile. Panel E uses the main analysis sample but excludes
settlements intersected by a canal branch, while Panel F keeps those settlements but adds an additional control for
distance to the nearest canal. Panel G shows the results of the regression discontinuity using the distance to command
area boundary specification.
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Table A4: Regression discontinuity results for agricultural outcomes (robustness specifications)

Agricultural land Kharif (monsoon) Rabi (winter) Water-intensive Mechanized farm equip.
(share of village area) ag. prod (log) ag. prod (log) crops (any) (share of all HHs)

Panel A: All canal-area settlements

Below canal 0.030*** 0.029*** 0.052*** 0.029*** 0.003**
(0.002) (0.003) (0.002) (0.001) (0.000)

Control group mean 0.594 7.744 7.272 0.698 0.043
Observations 242,138 242,195 240,398 193,838 231,547
R2 0.590 0.790 0.720 0.730 0.340

Panel B: All canal-area settlements, minus donut hole

Below canal 0.040*** 0.027*** 0.066*** 0.028*** 0.005**
(0.002) (0.003) (0.002) (0.001) (0.000)

Control group mean 0.564 7.734 7.238 0.671 0.039
Observations 131,005 131,002 130,591 101,579 125,349
R2 0.590 0.810 0.680 0.750 0.310

Panel C: Canal-area settlements balanced on ruggedness, using median settlement elevation

Below canal 0.020*** 0.025*** 0.039*** 0.012* 0.001
(0.002) (0.004) (0.003) (0.002) (0.000)

Control group mean 0.629 7.747 7.292 0.691 0.049
Observations 97,491 97,424 97,061 77,302 93,397
R2 0.610 0.820 0.730 0.740 0.350

Panel D: Canal-area settlements balanced on ruggedness, using 25th percentile settlement elevation

Below canal 0.028*** 0.034*** 0.061*** 0.023*** 0.002
(0.002) (0.004) (0.003) (0.001) (0.000)

Control group mean 0.612 7.737 7.273 0.667 0.048
Observations 101,914 101,871 101,590 80,405 97,498
R2 0.620 0.820 0.730 0.720 0.340

Panel E: Main analysis sample, excluding villages intersected by a canal

Below canal 0.019*** 0.001 0.041*** 0.023*** 0.001
(0.002) (0.002) (0.002) (0.001) (0.000)

Control group mean 0.594 7.745 7.248 0.648 0.046
Observations 66,670 66,656 66,513 52,385 63,457
R2 0.620 0.830 0.730 0.750 0.320

Panel F: Main analysis sample, additional control for distance to canal

Below canal 0.019*** -0.005 0.060*** 0.016* 0.001
(0.002) (0.002) (0.002) (0.001) (0.000)

Control group mean 0.593 7.736 7.244 0.649 0.047
Observations 90,137 90,096 89,836 70,260 86,115
R2 0.610 0.830 0.710 0.730 0.310

Panel G: Command area boundary RDD

Inside command area 0.025** 0.141*** 0.059* 0.026 0.007**
(0.000) (-0.002) (0.001) (-0.002) (0.000)

Control group mean 0.656 7.611 7.392 0.783 0.047
Observations 48,290 48,344 48,238 41,690 45,953
R2 0.720 0.810 0.790 0.770 0.360

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the regression discontinuity estimates following Equation 5.1 for agricultural outcomes using
a range of samples to test the robustness of our results using our main analysis sample presented in Table 3. Panel A
uses all settlements ≤10km from the nearest canal in distance and ±50m from the nearest canal in elevation. Panel B
removes all settlements ±2.5m from the canal. The samples in Panel C and D employ the same sample definition as
our main analysis sample, but instead of using the 5th percentile to parameterize settlement elevation, Panel C uses
the median elevation while Panel D uses the 25th percentile. Panel E uses the main analysis sample but excludes
settlements intersected by a canal branch, while Panel F keeps those settlements but adds an additional control for
distance to the nearest canal. Panel G shows the results of the regression discontinuity using the distance to command
area boundary specification.
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Table A5: Regression discontinuity results for non-farm outcomes (robustness specifications)

Population density Total emp. Services emp. Manuf. emp Consumption pc Consumption pc (log)
(log) (share of adult pop.) (share of adult pop.) (share of adult pop.) (log, landless HHs) (log, land-owning HHs)

Panel A: All canal-area settlements

Below canal 0.127*** -0.002 0.001 -0.001* 0.003 0.018***
(0.003) (0.000) (0.000) (0.000) (0.000) (0.001)

Control group mean 5.676 0.095 0.060 0.019 9.535 9.736
Observations 245,506 226,890 226,890 226,890 225,297 224,745
R2 0.480 0.260 0.200 0.240 0.470 0.590

Panel B: All canal-area settlements, minus donut hole

Below canal 0.195*** 0.002 0.003*** 0.000 0.008 0.025***
(0.003) (0.000) (0.000) (0.000) (0.000) (0.001)

Control group mean 5.499 0.097 0.059 0.019 9.536 9.727
Observations 132,969 123,496 123,496 123,496 122,037 121,311
R2 0.430 0.290 0.210 0.270 0.480 0.550

Panel C: Canal-area settlements balanced on ruggedness, using median settlement elevation

Below canal 0.026 -0.003* -0.003** -0.001* -0.001 0.008*
(0.008) (0.000) (0.000) (0.000) (0.000) (0.001)

Control group mean 5.796 0.090 0.057 0.019 9.542 9.757
Observations 99,086 92,479 92,479 92,479 91,015 90,847
R2 0.460 0.310 0.230 0.290 0.500 0.590

Panel D: Canal-area settlements balanced on ruggedness, using 25th percentile settlement elevation

Below canal 0.119*** 0.000 0.001 -0.001 0.004 0.019***
(0.006) (0.000) (0.000) (0.000) (0.000) (0.001)

Control group mean 5.685 0.091 0.058 0.019 9.550 9.757
Observations 103,543 96,664 96,664 96,664 94,961 94,883
R2 0.470 0.300 0.230 0.280 0.480 0.590

Panel E: Main analysis sample, excluding villages intersected by a canal

Below canal 0.111*** 0.000 0.002 -0.002** 0.007 0.011*
(0.004) (0.000) (0.000) (0.000) (0.000) (0.000)

Control group mean 5.568 0.091 0.057 0.018 9.543 9.743
Observations 67,546 62,369 62,369 62,369 61,478 61,492
R2 0.450 0.340 0.210 0.300 0.460 0.550

Panel F: Main analysis sample, additional control for distance to canal

Below canal 0.094*** -0.002 0.001 -0.002** -0.001 0.011**
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000)

Control group mean 5.570 0.090 0.056 0.019 9.550 9.748
Observations 91,465 85,342 85,342 85,342 83,802 83,760
R2 0.430 0.260 0.200 0.290 0.470 0.560

Panel G: Command area boundary RDD

Inside command area 0.254*** 0.002 0.001 0.001 -0.001 0.035***
(0.002) (0.000) (0.000) (0.000) (-0.001) (0.000)

Control group mean 6.308 0.085 0.058 0.020 9.516 9.767
Observations 48,909 45,098 45,098 45,098 45,029 44,657
R2 0.620 0.350 0.260 0.360 0.500 0.580

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the regression discontinuity estimates following Equation 5.1 for non-farm outcomes using a
range of samples to test the robustness of our results using our main analysis sample presented in Table 3. Panel A
uses all settlements ≤10km from the nearest canal in distance and ±50m from the nearest canal in elevation. Panel B
removes all settlements ±2.5m from the canal. The samples in Panel C and D employ the same sample definition as
our main analysis sample, but instead of using the 5th percentile to parameterize settlement elevation, Panel C uses
the median elevation while Panel D uses the 25th percentile. Panel E uses the main analysis sample but excludes
settlements intersected by a canal branch, while Panel F keeps those settlements but adds an additional control for
distance to the nearest canal. Panel G shows the results of the regression discontinuity using the distance to command
area boundary specification.
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Table A6: Regression discontinuity results for education outcomes (robustness specifications)

At least primary At least middle At least secondary Literacy
(share of adult pop.) (share of adult pop.) (share of adult pop.) (literate share of pop.)

Panel A: All canal-area settlement

Below canal 0.014*** 0.014*** 0.011*** 0.009***
(0.001) (0.001) (0.000) (0.000)

Control group mean 0.462 0.308 0.185 0.554
Observations 231,428 231,428 231,428 245,506
R2 0.580 0.560 0.530 0.600

Panel B: All canal-area settlements, minus donut hole

Below canal 0.020*** 0.019*** 0.015*** 0.013***
(0.001) (0.001) (0.000) (0.000)

Control group mean 0.447 0.294 0.176 0.545
Observations 125,287 125,287 125,287 132,969
R2 0.590 0.580 0.550 0.600

Panel C: Canal-area settlements balanced on ruggedness, using median settlement elevation

Below canal 0.007*** 0.005** 0.003 0.003*
(0.001) (0.001) (0.001) (0.001)

Control group mean 0.482 0.324 0.196 0.567
Observations 93,359 93,359 93,359 99,086
R2 0.590 0.570 0.540 0.610

Panel D: Canal-area settlements balanced on ruggedness, using 25th percentile settlement elevation

Below canal 0.012*** 0.011*** 0.009*** 0.008***
(0.001) (0.001) (0.001) (0.001)

Control group mean 0.475 0.317 0.192 0.564
Observations 97,455 97,455 97,455 103,543
R2 0.580 0.570 0.550 0.610

Panel E: Main analysis sample, excluding villages intersected by a canal

Below canal 0.008** 0.007** 0.006** 0.008***
(0.001) (0.001) (0.000) (0.001)

Control group mean 0.461 0.305 0.185 0.556
Observations 63,419 63,419 63,419 67,546
R2 0.580 0.560 0.530 0.590

Panel F: Main analysis sample, additional control for distance to canal

Below canal 0.005 0.006** 0.005** 0.006***
(0.000) (0.000) (0.000) (0.000)

Control group mean 0.465 0.308 0.187 0.558
Observations 86,068 86,068 86,068 91,465
R2 0.580 0.560 0.540 0.590

Panel G: Command area boundary RDD

Inside command area 0.021*** 0.021*** 0.020*** 0.019***
(-0.001) (-0.001) (0.000) (0.000)

Control group mean 0.471 0.322 0.186 0.562
Observations 45,941 45,941 45,941 48,909
R2 0.660 0.620 0.570 0.690

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the regression discontinuity estimates following Equation 5.1 for education outcomes using a
range of samples to test the robustness of our results using our main analysis sample presented in Table 3. Panel A
uses all settlements ≤10km from the nearest canal in distance and ±50m from the nearest canal in elevation. Panel B
removes all settlements ±2.5m from the canal. The samples in Panel C and D employ the same sample definition as
our main analysis sample, but instead of using the 5th percentile to parameterize settlement elevation, Panel C uses
the median elevation while Panel D uses the 25th percentile. Panel E uses the main analysis sample but excludes
settlements intersected by a canal branch, while Panel F keeps those settlements but adds an additional control for
distance to the nearest canal. Panel G shows the results of the regression discontinuity using the distance to command
area boundary specification.
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Table A7: Regression discontinuity results for primary outcomes (sensitivity analysis)

Panel A. Regression discontinuity bandwidth

Bandwidth Total irrigated area Rabi (winter) Population Literacy Ruggedness Sample size
(m) (share of ag. land) ag. prod (log) density (log) (literate share of pop.) (TRI)

25 0.065*** 0.054*** 0.104*** 0.009*** 0.011 88,535
(0.009) (0.012) (0.024) (0.002) (0.055)

50 0.068*** 0.080*** 0.148*** 0.011*** 0.055 91,465
(0.008) (0.012) (0.023) (0.002) (0.061)

75 0.073*** 0.072*** 0.163*** 0.011*** 0.028 90,735
(0.008) (0.012) (0.023) (0.002) (0.068)

Panel B. Percent difference in ruggedness

Percent difference in ruggedness Total irrigated area Rabi (winter) Population Literacy Balance Sample size
(km) (share of ag. land) ag. prod (log) density (log) (share of pop.) (ruggedness)

10% 0.064*** 0.046*** 0.128*** 0.006** 0.017 54,914
(0.011) (0.016) (0.028) (0.003) (0.037)

25% 0.073*** 0.073*** 0.148*** 0.011*** 0.055 91,465
(0.008) (0.012) (0.023) (0.002) (0.061)

50% 0.074*** 0.068*** 0.165*** 0.011*** -0.073 116,695
(0.007) (0.011) (0.019) (0.002) (0.055)

Panel C. Distance to Canal

Max distance to canal Total irrigated area Rabi (winter) Population Literacy Balance Sample size
(km) (share of ag. land) ag. prod (log) density (log) (share of pop.) (ruggedness)

5 0.081*** 0.061*** 0.179*** 0.008*** 0.041 61,217
(0.011) (0.015) (0.027) (0.003) (0.054)

10 0.073*** 0.073*** 0.148*** 0.011*** 0.055 91,465
(0.008) (0.012) (0.023) (0.002) (0.061)

15 0.069*** 0.078*** 0.141*** 0.003 0.018 109,071
(0.007) (0.011) (0.020) (0.007) (0.047)

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table shows the sensitivity of our regression discontinuity estimated following Equation 5.1 to changes in
the construction of our sample. We show results for four primary outcomes and also for ruggedness, to test for balance
in our primary geographic fundamental variable as the sample changes. Each outcome variable is estimated separately
after one assumption has been changed to define the sample, with the β1 coefficient of the estimate reported in the top
row with stars indicating its significance and the standard error below in parentheses. The bolded parameters in each
panel indicate the values uses in our main analysis sample. These preferred values are used for the two parameters not
being tested in each panel. In Panel A, we modify the bandwidth of the regression discontinuity, where 50m would
include settlements that lie 50m above to 50m below the nearest canal. Here we test 25m and 75m bandwidths in
addition to our preferred 50m bandwidth. In Panel B, we modify the threshold allowed for the average difference in
ruggedness between below- and above-canal settlements in a subdistrict. We test 10% (more strict) and 50% (less
strict) in addition to our preferred 25% threshold. Lastly, in Panel C we modify the maximum distance a settlement
may lie away from the nearest canal to be considered treated by that canal. Here we test 5km and 15km in addition
to our preferred 10km.
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Table A8: Comparison to distant settlements for irrigation outcomes (entropy balance robustness
specifications)

Total irrigated area Canal irrigated area Tubewell irrigated area Other irrigated area
(share of ag. land) (share of ag. land) (share of ag. land) (share of ag. land)

Panel A. Entropy balance, no outliers dropped

Below canal 0.065*** 0.089*** 0.005 -0.018**
(0.015) (0.010) (0.007) (0.009)

Above canal 0.011 0.005 0.010 -0.005
(0.008) (0.003) (0.007) (0.005)

Control group mean 0.383 0.037 0.189 0.162
Observations 104,034 104,218 104,215 103,420
R2 0.60 0.18 0.40 0.76

Panel B. Entropy balance, 1% outliers dropped

Below canal 0.064*** 0.090*** 0.005 -0.019**
(0.016) (0.010) (0.007) (0.010)

Above canal 0.014* 0.007* 0.013* -0.006
(0.008) (0.004) (0.007) (0.005)

Control group mean 0.384 0.035 0.195 0.158
Observations 91,761 91,938 91,940 91,173
R2 0.60 0.17 0.40 0.76

Panel C. Entropy balance, 2.5% outliers dropped - preferred specification

Below canal 0.064*** 0.085*** 0.005 -0.016
(0.015) (0.010) (0.008) (0.010)

Above canal 0.010 0.007* 0.010 -0.007
(0.008) (0.004) (0.007) (0.005)

Control group mean 0.384 0.032 0.198 0.159
Observations 77,049 77,211 77,215 76,505
R2 0.62 0.20 0.41 0.78

Panel D. Entropy balance, 5% outliers dropped

Below canal 0.056*** 0.091*** 0.003 -0.028**
(0.017) (0.012) (0.009) (0.011)

Above canal 0.005 0.005 0.006 -0.007
(0.009) (0.005) (0.008) (0.007)

Control group mean 0.374 0.027 0.202 0.149
Observations 58,745 58,898 58,894 58,269
R2 0.65 0.17 0.44 0.79

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the spillover analysis estimates following Equation 5.2 for irrigation outcomes using a
range of samples to test the robustness of our main results presented in Table 5. The below-canal (directly treated)
and above-canal (indirectly treated) settlements are compared to distant settlements far from the canal within the
same district. Distant settlements are defined as settlements more than 15km away from a canal. Weights were
calculating using entropy balancing to ensure distant settlements are comparable to above-canal villages with respect
to geophysical controls following Hainmueller (2012). Panel A does not drop any outliers while Panel B drops 1%,
Panel C drops 2.5% (as in the main results in Table 5), and Panel D drops 5% outliers. The γ1 (above-canal) and γ2
(below-canal) estimates are reported here, along with their significance and standard errors below in parentheses. The
control group mean, referring to the area-weighted mean of the above-canal settlements, is reported along with the
number of observations with non-missing data for each outcome variable and the adjusted R2 of the estimate.
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Table A9: Comparison to distant settlements for agricultural outcomes (entropy balance robustness
specifications)

Agricultural land Kharif (monsoon) Rabi (winter) Water-intensive Mechanized farm equip.
(share of village area) ag. prod (log) ag. prod (log) crops (any) (share of all HHs)

Panel A. Entropy balance, no outliers dropped

Below canal 0.015* -0.002 0.040** 0.066*** 0.001
(0.009) (0.019) (0.020) (0.022) (0.003)

Above canal -0.004 0.004 -0.022 0.038** -0.001
(0.009) (0.015) (0.017) (0.017) (0.003)

Control group mean 0.562 7.760 7.329 0.648 0.038
Observations 115,189 115,385 115,130 88,596 110,612
R2 0.54 0.84 0.58 0.65 0.30

Panel B. Entropy balance, 1% outliers dropped

Below canal 0.018** 0.004 0.036* 0.068*** 0.004
(0.008) (0.019) (0.019) (0.022) (0.002)

Above canal 0.001 0.001 -0.019 0.050*** 0.001
(0.008) (0.014) (0.018) (0.017) (0.002)

Control group mean 0.564 7.798 7.328 0.637 0.037
Observations 102,304 102,306 102,075 78,513 98,014
R2 0.55 0.85 0.57 0.68 0.31

Panel C. Entropy balance, 2.5% outliers dropped - preferred specification

Below canal 0.014* 0.009 0.022 0.047** 0.006**
(0.008) (0.015) (0.019) (0.023) (0.003)

Above canal -0.004 -0.004 -0.029 0.039** 0.000
(0.008) (0.011) (0.019) (0.018) (0.002)

Control group mean 0.567 7.838 7.338 0.629 0.035
Observations 86,615 86,586 86,411 66,098 82,792
R2 0.56 0.88 0.57 0.71 0.31

Panel D. Entropy balance, 5% outliers dropped

Below canal 0.016* 0.016 -0.006 0.039 0.004
(0.009) (0.015) (0.023) (0.028) (0.003)

Above canal -0.004 -0.003 -0.033 0.046* 0.003
(0.008) (0.011) (0.023) (0.027) 0.002

Control group mean 0.585 7.876 7.378 0.602 0.035
Observations 66,083 66,064 65,953 49,163 62,952
R2 0.57 0.89 0.59 0.72 0.30

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the spillover analysis estimates following Equation 5.2 for agricultural outcomes using a
range of samples to test the robustness of our main results presented in Table 5. The below-canal (directly treated)
and above-canal (indirectly treated) settlements are compared to distant settlements far from the canal within the
same district. Distant settlements are defined as settlements more than 15km away from a canal. Weights were
calculating using entropy balancing to ensure distant settlements are comparable to above-canal villages with respect
to geophysical controls following Hainmueller (2012). Panel A does not drop any outliers while Panel B drops 1%,
Panel C drops 2.5% (as in the main results in Table 5), and Panel D drops 5% outliers. The γ1 (above-canal) and γ2
(below-canal) estimates are reported here, along with their significance and standard errors below in parentheses. The
control group mean, referring to the area-weighted mean of the above-canal settlements, is reported along with the
number of observations with non-missing data for each outcome variable and the adjusted R2 of the estimate.
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Table A10: Comparison to distant settlements for non-farm outcomes (entropy balance robustness
specifications)

Population density Total emp Services emp Manuf. emp Consumption pc
(log) (share of adult pop.) (share of adult pop.) (share of adult pop.) (log, all HHs)

Panel A. Entropy balance, no outliers dropped

Below canal 0.186*** 0.003 0.003** 0.000 0.011
(0.039) (0.003) (0.001) (0.001) (0.008)

Above canal 0.004 0.000 0.000 0.000 -0.013
(0.033) (0.003) (0.001) (0.002) (0.009)

Control group mean 5.507 0.092 0.057 0.021 9.634
Observations 117,006 107,341 107,341 107,341 111,329
R2 0.31 0.13 0.10 0.19 0.41

Panel B. Entropy balance, 1% outliers dropped

Below canal 0.203*** 0.003 0.003*** 0.001 0.014*
(0.030) (0.003) (0.001) (0.001) (0.008)

Above canal 0.030 0.003 0.001 0.001 -0.008
(0.024) (0.003) (0.001) (0.002) (0.007)

Control group mean 5.512 0.088 0.055 0.021 9.632
Observations 103,722 95,296 95,296 95,296 98,625
R2 0.27 0.13 0.09 0.20 0.42

Panel C. Entropy balance, 2.5% outliers dropped - preferred specification

Below canal 0.182*** 0.002 0.003* 0.000 0.015*
(0.032) (0.003) (0.001) (0.002) (0.008)

Above canal 0.020 0.004 0.002 0.001 -0.005
(0.025) (0.003) (0.001) (0.002) (0.008)

Control group mean 5.504 0.086 0.053 0.021 9.626
Observations 87,756 80,546 80,546 80,546 83,262
R2 0.27 0.14 0.09 0.22 0.43

Panel D. Entropy balance, 5% outliers dropped

Below canal 0.191*** 0.005 0.004*** 0.002 0.021**
(0.038) (0.003) (0.002) (0.002) (0.010)

Above canal 0.013 0.006 0.003 0.002 -0.004
(0.027) (0.004) (0.002) (0.002) (0.008)

Control group mean 5.472 0.081 0.050 0.020 9.619
Observations 66,924 61,313 61,313 61,313 63,279
R2 0.26 0.16 0.09 0.26 0.38

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the spillover analysis estimates following Equation 5.2 for non-farm outcomes using a
range of samples to test the robustness of our main results presented in Table 5. The below-canal (directly treated)
and above-canal (indirectly treated) settlements are compared to distant settlements far from the canal within the
same district. Distant settlements are defined as settlements more than 15km away from a canal. Weights were
calculating using entropy balancing to ensure distant settlements are comparable to above-canal villages with respect
to geophysical controls following Hainmueller (2012). Panel A does not drop any outliers while Panel B drops 1%,
Panel C drops 2.5% (as in the main results in Table 5), and Panel D drops 5% outliers. The γ1 (above-canal) and γ2
(below-canal) estimates are reported here, along with their significance and standard errors below in parentheses. The
control group mean, referring to the area-weighted mean of the above-canal settlements, is reported along with the
number of observations with non-missing data for each outcome variable and the adjusted R2 of the estimate.
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Table A11: Comparison to distant settlements for outcomes disaggregated by land ownership (entropy
balance robustness specifications)

Population density Total emp Services emp Manuf. emp Consumption pc
(log) (share of adult pop.) (share of adult pop.) (share of adult pop.) (log, all HHs)

Panel A. Entropy balance, no outliers dropped

Below canal 0.186*** 0.003 0.003** 0.000 0.011
(0.039) (0.003) (0.001) (0.001) (0.008)

Above canal 0.004 0.000 0.000 0.000 -0.013
(0.033) (0.003) (0.001) (0.002) (0.009)

Control group mean 5.507 0.092 0.057 0.021 9.634
Observations 117,006 107,341 107,341 107,341 111,329
R2 0.31 0.13 0.10 0.19 0.41

Panel B. Entropy balance, 1% outliers dropped

Below canal 0.203*** 0.003 0.003*** 0.001 0.014*
(0.030) (0.003) (0.001) (0.001) (0.008)

Above canal 0.030 0.003 0.001 0.001 -0.008
(0.024) (0.003) (0.001) (0.002) (0.007)

Control group mean 5.512 0.088 0.055 0.021 9.632
Observations 103,722 95,296 95,296 95,296 98,625
R2 0.27 0.13 0.09 0.20 0.42

Panel C. Entropy balance, 2.5% outliers dropped - preferred specification

Below canal 0.182*** 0.002 0.003* 0.000 0.015*
(0.032) (0.003) (0.001) (0.002) (0.008)

Above canal 0.020 0.004 0.002 0.001 -0.005
(0.025) (0.003) (0.001) (0.002) (0.008)

Control group mean 5.504 0.086 0.053 0.021 9.626
Observations 87,756 80,546 80,546 80,546 83,262
R2 0.27 0.14 0.09 0.22 0.43

Panel D. Entropy balance, 5% outliers dropped

Below canal 0.191*** 0.005 0.004*** 0.002 0.021**
(0.038) (0.003) (0.002) (0.002) (0.010)

Above canal 0.013 0.006 0.003 0.002 -0.004
(0.027) (0.004) (0.002) (0.002) (0.008)

Control group mean 5.472 0.081 0.050 0.020 9.619
Observations 66,924 61,313 61,313 61,313 63,279
R2 0.26 0.16 0.09 0.26 0.38

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the spillover analysis estimates following Equation 5.2 for various outcomes disaggregated
by landownership using a range of samples to test the robustness of our main results presented in Table 5. The
below-canal (directly treated) and above-canal (indirectly treated) settlements are compared to distant settlements far
from the canal within the same district. Distant settlements are defined as settlements more than 15km away from a
canal. Weights were calculating using entropy balancing to ensure distant settlements are comparable to above-canal
villages with respect to geophysical controls following Hainmueller (2012). Panel A does not drop any outliers while
Panel B drops 1%, Panel C drops 2.5% (as in the main results in Table 5), and Panel D drops 5% outliers. The γ1
(above-canal) and γ2 (below-canal) estimates are reported here, along with their significance and standard errors
below in parentheses. The control group mean, referring to the area-weighted mean of the above-canal settlements, is
reported along with the number of observations with non-missing data for each outcome variable and the adjusted R2

of the estimate.
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Table A12: Comparison to distant settlements for irrigation outcomes (coarsened exact matching
robustness specifications)

Total irrigated area Canal irrigated area Tubewell irrigated area Other irrigated area
(share of ag. land) (share of ag. land) (share of ag. land) (share of ag. land)

Panel A. Coarsened exact matching, no outliers dropped

Below canal 0.040*** 0.064*** -0.005 -0.015*
(0.012) (0.008) (0.009) (0.009)

Above canal -0.012 0.002 -0.001 -0.013*
(0.010) (0.006) (0.008) (0.007)

Control group mean 0.405 0.031 0.207 0.173
Observations 38,369 38,432 38,432 38,114
R2 0.57 0.21 0.42 0.68

Panel B. Coarsened exact matching, 1% outliers dropped

Below canal 0.039** 0.069*** -0.016 -0.011
(0.016) (0.010) (0.013) (0.012)

Above canal -0.014 0.010* -0.013 -0.011
(0.012) (0.006) (0.012) (0.010)

Control group mean 0.453 0.022 0.257 0.180
Observations 21,220 21,250 21,251 21,071
R2 0.58 0.18 0.44 0.69

Panel C. Coarsened exact matching, 2.5% outliers dropped

Below canal 0.020 0.062*** -0.018 -0.020
(0.017) (0.011) (0.012) (0.013)

Above canal -0.018 0.005 -0.004 -0.016
(0.015) (0.008) (0.012) (0.011)

Control group mean 0.407 0.027 0.235 0.157
Observations 13,905 13,918 13,916 13,802
R2 0.59 0.22 0.45 0.68

Panel D. Coarsened exact matching, 5% outliers dropped

Below canal 0.016 0.057*** -0.011 -0.024
(0.020) (0.010) (0.013) (0.016)

Above canal -0.009 0.004 0.003 -0.017
(0.018) (0.008) (0.013) (0.014)

Control group mean 0.421 0.018 0.235 0.174
Observations 8,078 8,087 8,089 8,019
R2 0.60 0.20 0.47 0.69

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the spillover analysis estimates following Equation 5.2 for irrigation outcomes using a range
of samples to test the robustness of our main results presented in Table 5. Here we employ coarsened exact matching
(CEM) following Iacus et al. (2012), which discretizes continuous control variables into bins before drawing balanced
groups from across the coarsened distributions, instead of entropy balancing to ensure the distant settlements are
comparable to the above-canal settlements. Panel A does not drop any outliers while Panel B drops 1%, Panel C
drops 2.5%, and Panel C drops 5% outliers. The below-canal (directly treated) and above-canal (indirectly treated)
settlements are compared to distant settlements far from the canal within the same district. Distant settlements are
defined as settlements more than 15km away from a canal. The γ1 (above-canal) and γ2 (below-canal) estimates
are reported here, along with their significance and standard errors below in parentheses. The control group mean,
referring to the area-weighted mean of the above-canal settlements, is reported along with the number of observations
with non-missing data for each outcome variable and the adjusted R2 of the estimate.
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Table A13: Comparison to distant settlements for agricultural outcomes (coarsened exact matching
robustness specifications)

Agricultural land Kharif (monsoon) Rabi (winter) Water-intensive Mechanized farm equip.
(share of village area) ag. prod (log) ag. prod (log) crops (any) (share of all HHs)

Panel A. Coarsened exact matching, no outliers dropped

Below canal 0.010 -0.040*** 0.025 0.021 0.009**
(0.010) (0.013) (0.024) (0.015) (0.003)

Above canal 0.003 -0.002 0.008 0.010 0.004**
(0.009) (0.010) (0.021) (0.74) (0.002)

Control group mean 0.622 7.876 7.346 0.578 0.041
Observations 43,666 43,642 43,530 33,568 41,819
R2 0.58 0.75 0.61 0.74 0.24

Panel B. Coarsened exact matching, 1% outliers dropped

Below canal 0.016 -0.025 0.016 0.001 0.007*
(0.014) (0.017) (0.025) (0.015) (0.004)

Above canal 0.013 0.007 0.004 -0.003 0.004
(0.012) (0.015) (0.023) (0.014) (0.003)

Control group mean 0.669 7.933 7.533 0.496 0.049
Observations 24,714 24,693 24,641 19,201 23,680
R2 0.62 0.77 0.64 0.74 0.26

Panel C. Coarsened exact matching, 2.5% outliers dropped

Below canal 0.001 -0.031* 0.033 0.062*** 0.004
(0.010) (0.016) (0.034) (0.023) (0.003)

Above canal 0.000 -0.005 0.026 0.047** 0.004
(0.010) (0.015) (0.030) (0.022) (0.003)

Control group mean 0.665 7.908 7.416 0.562 0.054
Observations 16,371 16,372 16,331 12,768 15,646
R2 0.64 0.78 0.67 0.73 0.26

Panel D. Coarsened exact matching, 5% outliers dropped

Below canal 0.005 -0.027 0.045 0.006 -0.004
(0.012) (0.021) (0.035) (0.019) (0.005)

Above canal 0.006 0.002 0.055** -0.003 -0.003
(0.012) (0.019) (0.027) (0.017) (0.005)

Control group mean 0.663 7.916 7.460 0.561 0.054
Observations 9,203 9,208 9,187 7,126 8,851
R2 0.67 0.78 0.68 0.73 0.22

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the spillover analysis estimates following Equation 5.2 for agricultural outcomes using a
range of samples to test the robustness of our main results presented in Table 5. Here we employ coarsened exact
matching (CEM) following Iacus et al. (2012), which discretizes continuous control variables into bins before drawing
balanced groups from across the coarsened distributions, instead of entropy balancing to ensure the distant settlements
are comparable to the above-canal settlements. Panel A does not drop any outliers while Panel B drops 1%, Panel C
drops 2.5%, and Panel C drops 5% outliers. The below-canal (directly treated) and above-canal (indirectly treated)
settlements are compared to distant settlements far from the canal within the same district. Distant settlements are
defined as settlements more than 15km away from a canal. The γ1 (above-canal) and γ2 (below-canal) estimates
are reported here, along with their significance and standard errors below in parentheses. The control group mean,
referring to the area-weighted mean of the above-canal settlements, is reported along with the number of observations
with non-missing data for each outcome variable and the adjusted R2 of the estimate.
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Table A14: Comparison to distant settlements for non-farm outcomes (coarsened exact matching
robustness specifications)

Population density Total emp Services emp Manuf. emp Consumption pc
(log) (share of adult pop.) (share of adult pop.) (share of adult pop.) (log, all HHs)

Panel A. Coarsened exact matching, no outliers dropped

Below canal 0.113*** 0.003 0.004 -0.001 0.006
(0.028) (0.004) (0.002) (0.002) (0.013)

Above canal 0.039 0.007* 0.004** 0.001 -0.007
(0.025) (0.004) (0.002) (0.002) (0.009)

Control group mean 5.534 0.089 0.054 0.024 9.656
Observations 44,242 41,150 41,150 41,150 42,076
R2 0.30 0.10 0.08 0.13 0.39

Panel B. Coarsened exact matching, 1% outliers dropped

Below canal 0.113*** 0.000 0.003 -0.002 0.006
(0.040) (0.005) (0.002) (0.002) (0.011)

Above canal 0.074** 0.006 0.004** 0.000 -0.001
(0.034) (0.005) (0.002) (0.002) (0.010)

Control group mean 5.514 0.074 0.049 0.019 9.702
Observations 25,034 23,375 23,375 23,375 23,835
R2 0.31 0.11 0.08 0.18 0.38

Panel C. Coarsened exact matching, 2.5% outliers dropped

Below canal 0.088** 0.006 0.003 0.001 -0.003
(0.035) (0.006) (0.003) (0.003) (0.012)

Above canal 0.053 0.008 0.004 0.003 -0.004
(0.033) (0.006) (0.002) (0.003) (0.012)

Control group mean 5.595 0.082 0.052 0.022 9.691
Observations 16,569 15,372 15,372 15,372 15,729
R2 0.31 0.10 0.08 0.12 0.37

Panel D. Coarsened exact matching, 5% outliers dropped

Below canal 0.085* -0.005 0.003 -0.004 -0.016
(0.047) (0.006) (0.003) (0.004) (0.014)

Above canal 0.050 0.005 0.007*** 0.000 -0.020
(0.043) (0.006) (0.003) (0.003) (0.012)

Control group mean 5.489 0.073 0.050 0.016 9.711
Observations 9,312 8,666 8,666 8,666 8,907
R2 0.32 0.10 0.08 0.11 0.37

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the spillover analysis estimates following Equation 5.2 for non-farm outcomes using a range
of samples to test the robustness of our main results presented in Table 5. Here we employ coarsened exact matching
(CEM) following Iacus et al. (2012), which discretizes continuous control variables into bins before drawing balanced
groups from across the coarsened distributions, instead of entropy balancing to ensure the distant settlements are
comparable to the above-canal settlements. Panel A does not drop any outliers while Panel B drops 1%, Panel C
drops 2.5%, and Panel C drops 5% outliers. The below-canal (directly treated) and above-canal (indirectly treated)
settlements are compared to distant settlements far from the canal within the same district. Distant settlements are
defined as settlements more than 15km away from a canal. The γ1 (above-canal) and γ2 (below-canal) estimates
are reported here, along with their significance and standard errors below in parentheses. The control group mean,
referring to the area-weighted mean of the above-canal settlements, is reported along with the number of observations
with non-missing data for each outcome variable and the adjusted R2 of the estimate.

65



Table A15: Comparison to distant settlements for outcomes disaggregated by land ownership (coarsened
exact matching robustness specifications)

Consumption Consumption (log) Middle school ed. Middle school ed.
(log, landless HHs) (log, land-owning HHs) (share of landless pop.) (share of land-owning pop.)

Panel A. Coarsened exact matching, no outliers dropped

Below canal -0.010 0.019 0.018*** 0.035***
(0.011) (0.014) (0.006) (0.008)

Above canal -0.018* -0.002 0.008 0.014**
(0.009) (0.011) (0.005) (0.006)

Control group mean 9.516 9.762 0.256 0.348
Observations 40,600 40,869 40,522 40,906
R2 0.31 0.40 0.35 0.47

Panel B. Coarsened exact matching, 1% outliers dropped

Below canal -0.017 0.023** 0.011* 0.030***
(0.014) (0.012) (0.006) (0.008)

Above canal -0.022* 0.007 0.006 0.011
(0.012) (0.011) (0.005) (0.007)

Control group mean 9.543 9.807 0.259 0.353
Observations 23,024 23,189 22,980 23,215
R2 0.30 0.39 0.39 0.49

Panel C. Coarsened exact matching, 2.5% outliers dropped

Below canal -0.023 0.012 0.018** 0.021**
(0.017) (0.013) (0.008) (0.010)

Above canal -0.028 0.002 0.012* 0.004
(0.018) (0.012) (0.007) (0.009)

Control group mean 9.534 9.778 0.257 0.358
Observations 15,188 15,339 15,157 15,353
R2 0.30 0.38 0.37 0.47

Panel D. Coarsened exact matching, 5% outliers dropped

Below canal -0.013 0.021 0.008 0.024**
(0.017) (0.016) (0.010) (0.010)

Above canal -0.021 0.012 0.000 0.011
(0.015) (0.015) (0.011) (0.009)

Control group mean 9.561 9.798 0.267 0.352
Observations 8,589 8,667 8,569 8,671
R2 0.33 0.36 0.37 0.45

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the spillover analysis estimates following Equation 5.2 for various outcomes disaggregated by
land ownership using a range of samples to test the robustness of our main results presented in Table 5. Here we
employ coarsened exact matching (CEM) following Iacus et al. (2012), which discretizes continuous control variables
into bins before drawing balanced groups from across the coarsened distributions, instead of entropy balancing to
ensure the distant settlements are comparable to the above-canal settlements. Panel A does not drop any outliers
while Panel B drops 1%, Panel C drops 2.5%, and Panel C drops 5% outliers. The below-canal (directly treated) and
above-canal (indirectly treated) settlements are compared to distant settlements far from the canal within the same
district. Distant settlements are defined as settlements more than 15km away from a canal. The γ1 (above-canal) and
γ2 (below-canal) estimates are reported here, along with their significance and standard errors below in parentheses.
The control group mean, referring to the area-weighted mean of the above-canal settlements, is reported along with
the number of observations with non-missing data for each outcome variable and the adjusted R2 of the estimate.
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Table A16: Effect of canals on town growth (robustness specifications)

Town existence Population Growth
(pop. 5,000) (log) (decadal)

Panel A. 10km radius

Command area in town catchment area 0.036*** 0.068*** 0.075***
(binary treatment) (0.014) (0.026) (0.020)

Share of 0-10km band in command area 0.087*** 0.129** 0.229*** 0.183 0.058*** 0.054
(continuous treatment) (0.023) (0.064) (0.048) (0.134) (0.020) (0.049)

Share of 10-20km band in command area -0.052 0.057 0.004
(0.065) (0.147) (0.051)

Observations 21,444 33,780 33,780 21,444 33,780 33,780 19,657 30,965 30,965
R2 0.68 0.68 0.83 0.83 0.06 0.06

Panel B. 20km radius

Command area in town catchment area 0.040*** 0.085*** 0.043**
(binary treatment) (0.014) (0.026) (0.020)

Share of 0-20km band in command area 0.090*** 0.119* 0.261*** 0.236* 0.072*** 0.175***
(continuous treatment) (0.022) (0.063) (0.051) (0.135) (0.024) (0.060)

Share of 20-40km band in command area -0.039 0.034 -0.139**
(0.070) (0.155) (0.063)

Observations 21,636 46,932 46,932 21,636 46,932 46,932 19,833 43,021 43,021
R2 0.67 0.67 0.82 0.82 0.06 0.06

Panel C. 30km radius

Command area in town catchment area 0.040*** 0.086*** 0.050**
(binary treatment) (0.014) (0.027) (0.020)

Share of 0-30km band in command area 0.082*** 0.065 0.284*** 0.242** 0.053** 0.202***
(continuous treatment) (0.020) (0.051) (0.052) (0.112) (0.024) (0.056)

Share of 30-60km band in command area 0.024 0.059 -0.210***
(0.060) (0.129) (0.065)

Observations 21,372 59,016 59,016 21,372 59,016 59,016 19,591 54,098 54,098
R2 0.67 0.67 0.82 0.82 0.06 0.06

Panel D. 40km radius

Command area in town catchment area 0.024 0.055* 0.012
(binary treatment) (0.017) (0.029) (0.020)

Share of 0-40km band in command area 0.096*** 0.019 0.318*** 0.274*** 0.024 0.123**
(continuous treatment) (0.021) (0.044) (0.053) (0.094) (0.025) (0.051)

Share of 40-80km band in command area 0.109** 0.062 -0.143**
(0.054) (0.107) (0.061)

Observations 20,016 67,488 67,488 20,016 67,488 67,488 18,348 61,864 61,864
R2 0.67 0.67 0.81 0.81 0.06 0.06
∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table shows the effect of canal construction on town growth reported in Table 6 using various catchment
area radii around the town results. An additional analysis includes the command area coverage of a second, outer
band around each town as an additional independent variable. Panel B, using the 20km radius to define the town
catchment area, is presented in Table 6.
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Table A17: Town analysis split by size

Population (log)
1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

Population: < 7,428 7,429-13,742 13,743-27,365 27,366-1,116,3116

Command area in town catchment area 0.133 0.323** 0.271** 0.089
(binary treatment) (0.090) (0.129) (0.137) (0.062)

Observations 357 356 357 356
∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table shows the estimated effect of canal area on town growth by town size. Results follow Equation 5.3
and define the binary treatment in the same was as results in Table 6, where a town is considered to be treated when
20% of its catchment area (i.e., within a radius of 20km) has been covered by a command area. Towns are grouped
into quartiles using the town population at the time of treatment, with the population ranges used to define each
quartile shown in the table. A regression using the log of town population as the outcome variable is run for each
quartile independently, with the β1 for each regression reported here.

Figure A1: Calculating the relative elevation of each settlement

Notes: Each line in this figure uses a different moment of the distribution of elevation in a settlement polygon to
define the relative elevation between that settlement and the nearest canal. The elevation of the nearest canals is
parameterized by the elevation of the single closest point. Share of agricultural land irrigated by canal is on the y-axis.
Relative elevation is plotted on the x-axis, with negative relative elevation indicating settlements below the canal. We
select the 5th percentile to define settlement elevation.
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Figure A2: Relative elevation RDD empirical strategy

Notes: This figure illustrates our relative elevation empirical strategy using Bundi district in Rajasthan. Each polygon
is a settlement (village or town), with its elevation relative to the nearest point on the nearest canal colored orange for
settlements above the canal and purple for those below. Settlements that are more than 10km away from the nearest
canal (in distance) or within ±2.5m (in elevation) of the nearest canal are excluded (light gray on the map). The
inset plots the share of agricultural area that is irrigated by canal vs. the relative elevation for each settlement. The
discontinuity is clear, with settlements topographically above the nearest canal having a significantly larger share of
canal-irrigated area.
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