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Abstract

Financial markets are under constant threat of cyber attacks. We develop a
principal-agent model of cyber-attacking with fee-paying clients who delegate security
decisions to financial platforms. We derive testable implications about cyber attack
vulnerability and fees charged. We also characterize the form of cyber attack chosen
by attackers. Successful ransomware attacks are more likely than traditional attacks.
When security is unobservable, platforms underinvest in security. Welfare can im-
prove by targeting security investment through regulation (e.g. minimum security
standards), or by improving transparency (e.g. security ratings). Our results support
regulatory efforts to increase transparency around cyber security and cyber attacks.



In modern markets, financial institutions often act as online platforms to facilitate transac-

tions, store data, and provide advice; as their digital connectivity has grown, so to has their

vulnerability to cyber attacks. For example, the FinCyber Project details over 150 notable

incidents of cyber attacks and threats to global financial institutions since 2019.1 The impact

of cyber attacks is significant: in December 2021, attackers stole over $150 million from users

at cryptocurrency exchange Bitmart. In March 2021, U.S. insurance firm CNA suffered an

attack that disrupted client services and locked employees out of the network; two weeks

later, CNA paid $40 million in ransom to regain control.2 These instances exemplify two

common categories of cyber attacks: (i) conventional attacks that steal client assets or data

directly from the platform, and (ii) ransomware attacks that seize control of a platform’s

information technology system and hold it hostage until ransom payments are made.

Financial firms are especially susceptible to cyber risk because they not only sell services,

but also provide intermediation. Clients of financial firms seek to avoid direct loss of assets,

information, or access, while the platform wishes to maintain their business relationship with

the client to earn fees. This relationship raises questions about the dangers that cyber attacks

pose to financial institutions. Does the platform-client relationship impact cybersecurity

investment, and ultimately the vulnerability of platforms to breaches? Does the introduction

of ransomware technology improve or worsen the problem? Which platform types are most

affected by ransomware? How might a regulator improve welfare, and does its solution

depends on the type of attack (i.e., theft or ransomware)?

In this paper we construct a parsimonious model of the financial system with clients,

financial infrastructure providers, and cyber attackers. In our model, clients delegate security

decisions to these infrastructure providers, which we refer to as platforms. In turn, these
1Carnegie Endowment for International Peace: https://carnegieendowment.org/specialprojects/

protectingfinancialstability/timeline
2Bloomberg: https://www.bloomberg.com/news/articles/2021-05-20/cna-financial-paid-40-

million-in-ransom-after-march-cyberattack

1



platforms charge fees to their clients to arrange transactions and invest in security to protect

client assets. Clients wish to maximize successful transaction volume net of these fees by

allocating their transactions across several platforms. These platforms can be thought of as

securities or cryptocurrency exchanges, banks, or payment providers and networks.

In our model, platforms are aware of the threat from cyber attackers, and may choose to

invest in security to protect clients’ assets. Cyber attackers attack platforms to either to steal

client assets (e.g., the 2021 Bitmart theft) or disrupt client transactions until a ransom is

paid (e.g., the 2021 CNA breach). The likelihood of attacker success increases with effort but

decreases in platform security investment. Platforms, however, face diminishing returns to

investment (Goyal and Vigier 2014). The model resembles a traditional “attacker-defender”

game. However, unique to the financial setting, the defender (platform) is not the owner of

the assets requiring protection. Cyber attackers target client transactions and these losses

are borne primarily by clients (principal) and only partially by the platforms (agents) that

assume the defender role. Herein lies a key friction in our model, in the form of a classic

principal-agent problem: as cyber attackers target client transactions, these losses are borne

by clients and not the platforms that assume the defender role.

In equilibrium, platform vulnerability depends on the relative cost of security and the

value of the targeted asset to the attacker. The combination of a low cost of security and a low

value of the targeted asset can lead to “full security”, a state with zero expected breaches.

However, if the marginal cost of security is sufficiently high relative to the attractiveness

of the asset, the diminishing returns of security investment to the platform yields positive

expected breaches. Moreover, the likelihood of breaches increases in both the security cost

and target asset value dimensions. Our model predicts that, in the cross section, one would

observe a higher (expected) number of security breaches in industries where i) security is

more costly, or ii) the targeted assets have higher value to attackers. Interestingly, the size

of the market and the degree of competition have no impact on platform vulnerability, as an
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increase in the magnitude or concentration of assets at any one platform attracts attackers

but also increases the benefits to platforms from enhanced security.

Beyond the realm of conventional attacks that target client assets, our model allows

us to address the recent phenomena of ransomware attacks. In practice, ransom attacks

can take many forms, including the encryption of files or the take-over of critical systems.

By demanding a ransom payment from the platform, often using some form of cryptocur-

rency, the attackers change participants’ incentives within the model: instead of targeting

clients directly by attacking platforms with the intent to steal client assets, attackers block

transactions, thereby depriving the platform operator of transaction based-revenues.

Because clients rationally believe that platforms will pay ransoms to protect their assets—

as CNA did3—they ignore the degree to which a platform is vulnerable to ransomware

attacks. Consequently, in the ransomware case of our model, clients main concern is platform

fees. In equilibrium, we find that ransom attacks are more likely to be successful, driven by

a lower level of security investment (relative to the conventional attack equilibrium) that,

in turn, results in a lower fee to attract clients. We also show that measures like insurance

against ransomware attacks may increase the likelihood of these attacks by documenting the

willingness and ability of platforms to pay ransoms. Indeed, the FBI has cautioned against

paying ransoms for this very reason, as hackers target firms with cyber insurance policies in

anticipation that they are more likely to pay.4 We show that if platforms can commit to not

paying ransoms the incidence of successful cyber attacks is reduced.5

In our model, regulating a minimum security spending does not always reduce breaches

or improve welfare. When security levels are publicly observable, competition amongst

platforms leads to security investment that is constrained efficient; that is, identical to the
3Gavin Souter, Business Insurance, November 1, 2021: “CNA’s insurance won’t cover all of ransomware

loss”
4Bloomberg: https://www.bloomberg.com/news/articles/2021-05-20/cna-financial-paid-40-

million-in-ransom-after-march-cyberattack
5Alternatively, a regulator who is able to influence the underlying parameters of the model may improve

welfare by lowering the value of ransoms, such as by banning ransom payments by insurers (or ransom
payments itself), or increasing surveillance of cryptocurrency transactions. However, vulnerability will not
decline, as security spending also declines.
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social planner’s outcome in which they cannot dictate the attack intensity of the cyber

attacker. We take this constrained efficient outcome as the welfare benchmark throughout the

paper. Perhaps more realistically, when clients cannot observe platform security investment,

the resulting equilibrium does not achieve constrained efficiency. In this environment, a

regulator may achieve constrained efficiency through two channels. First, by regulating

security investment through appropriate minimum security standards, a regulator could

ensure platforms invest to the constrained efficient level. Second, a regulator may improve

transparency by requiring platforms to obtain a signal of security investment, similar to

security ratings offered by firms like BitSight and UpGuard.6 Such a policy appears palatable,

as the Securities and Exchange Commission in the U.S. is currently considering a proposal to

improve cybersecurity transparency through mandating cybersecurity disclosures by public

companies. A key goal, SEC Chair Gary Gensler argues, is to “strengthen investors’ ability

to evaluate public companies’ cybersecurity practices and incident reporting.”7

One additional highlight of our paper, in relation to the welfare implications of unobserv-

able security, is the importance of the interaction between the attacker and defender (the

platform) game, and the principal-agent problem. In our model, we show that security costs

and asset value (to the attacker) impact which attack mode–conventional or ransomware–that

an attacker will use in equilibrium. This choice is, in turn, affected further by the trans-

parency of security investment, but interestingly, only in the case of conventional attacks.

That is, security investment against ransomware attacks is independent of the transparency

of security investment, whereas conventional attacks lead to under investment in security

when that investment decision is unobservable. As a result of this under investment, it is

optimal for attackers to use conventional attacks for a larger region of the parameter space
6BitSight and UpGuard are two U.S.-based firms that provide third-party cyber risk management services

to firms and institutions. Both companies offer an assessment of a firm’s vulnerability to cyber attacks, which
is summarized by a numerical “security score”. These systems are similar in design to a credit ratings score.

7See SEC Statement on Proposal for Mandatory Cybersecurity Disclosures, March 9, 2022:
https://www.sec.gov/news/statement/gensler-cybersecurity-20220309
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when security investment is unobservable. Because conventional attacks under unobservable

security do not obtain constrained efficiency, welfare is thus lower.

The model is robust along several dimensions. First, similar results arise in a monop-

olist setting: the monopoly platform chooses the same welfare-maximizing level of security

investment as the aggregate security investment in the competitive equilibrium. However,

the monopolistic platform charges higher fees to clients. Second, when attackers are subject

to a budget constraint, or platforms face increasing marginal costs to providing security, the

probability of successful attacks may decrease as competition increases. These extensions of

our model suggest that, similar to other common reasons for competition policy, one regula-

tory response may be to increase financial market competition by breaking up monopolies,

or by supporting firm entry.

Related Literature. Our paper contributes to the literature on cyber crime. On the

surface, the incentives to commit cyber crimes are not different to the conventional crimes

studied in Becker (1968). Cyber crime is unique, however, in that securing information

systems is expensive relative to the cost of attacking—attackers often do not have to leave

the comfort of their own homes. In the context of Automated Telling Machines, a literature

in computer science (see e.g., Anderson (2001); Anderson and Moore (2006); Anderson et al.

(2013)) highlights the economic incentives of cyber security. They show that when banks

are liable for losses, security is higher. Hal Varian highlighted a similar incentive problem

with anti-virus software:8 customers are willing to spend $100 to protect their own systems,

but unwilling to spend even $1 to protect the systems of others. Other areas of computer

science and information technology have discussed the security investment problem in differ-

ent contexts: as a user’s responsibility (August and Tunca 2006); as a profit maximization

problem (Dynes et al. 2007); as a function of the importance of a vulnerability (Gordon and

Loeb 2002); in the presence of state actors with almost infinite resources (Anderson 2001).9

8www.nytimes.com/library/financial/columns/060100econ-scene.html
9See Manshaei et al. (2013) for a survey on the earlier economics of security literature.
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We contribute to this literature by modelling the principal-agent problem inherent in the

provision of security by platforms that manage client assets, transactions, and data.

Investigating the true costs of cyber crime has proven challenging (e.g., Anderson et al.

(2013), Biancotti (2017) and Paquet-Clouston et al. (2018)). Anderson et al. (2013) argue

that direct losses are equal to spending on security, but indirect losses (reputation) may be

larger. Moreover, Eisenbach et al. (2021) sheds light on the spillover effect of cyber attacks

on the U.S. financial system, where an attack on one of the major banks in the country would

negatively impact almost a third of the wholesale payment network between U.S. financial

institutions. Recent papers have sought to quantify some of these indirect and spillover costs.

Florackis et al. (2022) describe cyber risk at a firm level and show that increased cyber risk is

associated with higher equity returns. This suggests that firms, or industries, that are more

susceptible to cyber attacks will have higher costs of capital. Relatedly, Kamiya et al. (2021)

find evidence that following a successful cyber attack, the decrease in shareholder wealth

exceeds that of the out-of-pocket costs of the attack; Crosignani et al. (2022) document

the contagion effects of a large-scale attack, showing that the costs of such an attack reach

far beyond the targeted firm. Kotidis and Schreft (2022) highlight the importance of bank

contingency planning towards mitigating spillover effects when attacks continue over a period

of days. In our paper, we analyze the impact of cyber crime on welfare by accounting for

several key sources of welfare loss, including direct theft from market participants, the need

to invest in security, and the loss of business.

Recently, cyber attacks have shifted to use ransom-type threats. Foley et al. (2019)

estimate that 46% of all Bitcoin transactions are related to illicit activity, including the

payment of ransoms in ransomware attacks, and Paquet-Clouston et al. (2018) describe the

use of the Bitcoin network as a means to pay ransom in cyber attacks. Most recently,

August et al. (2022) examine the welfare implications of a ransom option to victims versus

conventional attacks, the outcome of which depends non-monotonically on the level of risk

of an attack. Laszka et al. (2017) model the response of an industry of firms to the threat
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of ransomware attacks. We contribute to the literature of ransom-based cyber attacks by

providing what is, to the best of our knowledge, the first model to analyze their impact on firm

security investment, platform vulnerability, and the subsequent welfare effects. Moreover,

our work i) contrasts the efficacy of ransomware attacks against traditional cyber attacks,

showing that, in equilibrium, ransomware attacks are more likely to succeed, and ii) evaluates

under what conditions attackers may prefer ransomware to conventional attacks.

From a mitigation perspective, cyber-insurance as a solution has been widely studied; see,

for example, Grossklags et al. (2008), Böhme and Schwartz (2010), Johnson et al. (2011),

Moore (2010) and Massacci et al. (2017) discuss solutions such as cyber insurance. Our

model suggests that cyber insurance is either ineffective; or worse it increases the overall

probability of successful attacks.

Finally, our model belongs to the broad class of attack and defender games in the eco-

nomics literature. This literature, however, focuses primarily on the structure of networks.

For example, Bier et al. (2007), Dziubiński and Goyal (2013), Goyal and Vigier (2014),

Acemoglu et al. (2016), Hoyer and de Jaegher (2016) and Kovenock and Roberson (2018)

analyze the incentives for attackers and defenders who expend resources to secure nodes and

the entire network. Duffie and Younger (2019) explores the repercussions of a cyber-run

on 12 of the largest U.S. financial institutions. In our paper, we depart from the network-

structure setup and assume a single point-of-failure or “weak point”. We do not model the

contagion that hacking in one institution could have on other institutions. The simplification

allows us to tractably study the principal-agent problem inherent in many financial market

applications, and one that is core to our particular attacker-defender game. In our model, it

is not only the service providers who fear an attack, but also clients that rely on the service.

Our analysis in the paper proceeds as follows. In Section 1, we lay out the basic model.

In Section 2 we outline the equilibrium. We extend the model in Section 3 to include the

case of ransomware. We examine unobservable security investment in Section 4. We explore

robustness checks in Section 5 and conclude in Section 6.
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1 Model

There are three dates t = 0, 1, 2, a single good, and three types of risk-neutral agents:

clients, platforms, and an attacker. At date 0 platforms invest in cyber security and set a

fee for transacting on the platform. At date 1 clients allocate their transaction needs across

platforms. At date 2 the attacker chooses the intensity with which to attack each platform.

Platforms. At t = 0, N ≥ 2 platforms indexed by i = 1, ..., N each simultaneously

invest si ≥ 0 in the security of their platform (e.g., hiring an information systems analyst,

implementing biometric identification and/or multi-factor authentication) and choose a fee

fi ≥ 0 per unit of transaction on the platform.10 Each platform maximizes its expected

profits

πi = (1− δi)fiQi − csi, (1)

where δi is the probability of a successful attack on platform i, Qi is the transaction volume

on platform i, and c is the cost of security investment. If the platform is successfully attacked,

we refer to it as having been breached. We assume that the platform receives the fee only

if the transaction is completed successfully, which occurs with probability 1 − δi.11 The

platform’s payoff therefore corresponds to the expected probability that it is not breached,

multiplied by the total fees it charges, net the cost of its security investment.

Following Goyal and Vigier (2014), an attack on platform i is successful with probability

δi = δ(ai, si) =
ai

ai + si
(2)

if si + ai > 0 and 0 otherwise, where ai is the attack intensity. A higher attack intensity

increases the probability of a breach, dδi
dai

> 0, while higher security lowers it, dδi
dsi

< 0.
10We consider the case of a monopoly platform in Section 5.
11This assumption can be viewed as either a refund requested by the client when the platform does not

adequately perform its function or a loss of future business by the client in reduced form.
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Clients. A mass M of identical clients indexed by m have exogenous transaction needs

Qm at t = 1.12 They simultaneously allocate their transactions across platforms, where

qim ≥ 0 is the transaction volume of client m on platform i and Qm =
∑N

i=1 qim. We

normalize Qm ≡ 1 without loss of generality. Thus, the total market size for all platforms is

M and the transaction volume of platform i is Qi ≡
∫M

0
qim dm. Each client maximizes her

expected utility

Um =
N∑
i=1

(1− δi)(1− fi)qim, (3)

where the client enjoys the value of successful transactions net of fees.

Attacker. We start the analysis with conventional attacks and turn to ransomware

attacks in Section 3. The attacker wishes to disrupt the clients’ transactions and steal a

portion of their value. The attacker chooses the attack intensity ai ≥ 0 at t = 2 to maximize

his payoff

πA = r
N∑
i=1

(δiQi − ai) , (4)

where r ∈ (0, 1] is the portion of the transaction the attacker is able to steal (his reward).13

We offer two interpretations of r. First, we can interpret r as the inherent ease of

stealing the asset or a recovery rate. For example, records of physical asset ownership

may have an ease parameter r = 0 as even if the records are stolen or corrupted, back-up

copies exist which prevent the transfer. Digital assets (e.g., crypto wallet addresses and

banking information) on centralized systems may have a higher r, by contrast, as digital

records of asset ownership may be accessed and transactions authorized and cleared before

the hacker can be intercepted. The 2021 attack on Bitmart, and other similar incidents at

cryptocurrency exchanges, are prime examples of realized attacks at venues where r may be

high and digital assets can be taken.
12Our approach effectively assumes that the demand for transactions is insensitive to cyber risk and

studies its effect on the supply side instead. It is similar in nature to the assumptions in Parlour (1998),
where investors transact in fixed size.

13While the reward r is exogenous, both the transaction volume Qi and the probability of a successful
attack δi are endogenous in our model.
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Second, we can interpret r as the relative value of data or assets that can be stolen or

the ease with which they can be monetized by the hacker. This interpretation reflects the

disparity between the transaction that the client wishes to complete, and the value of the

asset truly at risk. For example, personal data may offer a hacker the possibility of stealing

all of a client’s assets, but in practice the hacker may not be able to realize the full value of

the data before the platform recognizes the breach and denies access.14

Timeline. The game proceeds as shown in Figure 1.

Figure 1: Timeline of events.

t = 0

Each platform i chooses

security si and fees fi.

t = 1

Each client m allocates quantity

qim to each platform i.

t = 2

Attacker attacks each

platform i with intensity ai.

Definition 1 (Equilibrium.) An equilibrium of this game is given by a∗i , s∗i , f ∗
i , and q∗im

for all i = 1, ..., N and m ∈ [0,M ] and is found via backward induction:

1. At t = 2, the attacking strategy on platform i is a(Qi, si) = argmaxai πA, for any Qi

and si.

2. At t = 1, the transaction allocation strategy is qim(s, f) = argmaxqim Um subject to∑N
i=1 qim = Qm and the attacking strategies a(Qi, si), for any (s, f) ≡ {fi, si}Ni=1.

(Note that Qi(s, f) =
∫M

0
qim′(s, f) dm′ is independent of m because each client has zero

mass.)

3. At t = 0, (s∗, f∗) is a Nash equilibrium among the platforms. That is, (s∗i , f
∗
i ) =

argmaxsi,fi πi, given the choices of the other platforms (s−i, f−i), the allocation strate-

gies of clients qim(s, f), and the attacking strategies a(Qi, si).
14In an extended version of the model, an attacker may receive non-pecuniary benefits (e.g., from the

disruption of transactions), one could interpret r as a sum of financial gains and non-pecuniary benefits (i.e.,
a high value of r represents a combination of a high degree of financial and non-financial motivations). This
interpretation may be particularly relevant for some state-sponsored cyber attacks.
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4. Thus, q∗im = qim(s
∗, f∗) and a∗i = a(Q∗

i , s
∗
i ).

2 Equilibrium

Attack intensity. We first solve the problem in (4) to obtain the attacking strategy, which

is an attacking intensity on platform i for any security investment si and transaction volume

Qi:

a(Qi, si) ≡


√
sirQi − si if si ≤ rQi ≡ si

0 if si > si.

(5)

Intuitively, the attacker chooses to attack with positive intensity when the share of the

platform’s transaction volume that can be stolen, rQi, is high enough relative to the security

level si. Moreover, the attack intensity increases in the platform’s transaction volume Qi

and the share that can be stolen, r.

Using the attacking strategy a(Qi, si), the probability of a successful attack on platform

i reduces to a function of platform security investment and its transaction volume:

δ(Qi, si) ≡ δ(a(Qi, si), si) =


1−

√
si
rQi

if si ≤ si

0 if si > si.

(6)

Equation (6) highlights that a sufficiently high level of security investment, si ≥ si, deters

any attacks. The investment threshold required to deter all attacks, si, increases in r and

Qi, the components of the reward to the attacker from a successful attack (Equation 5).

Allocation of transactions across platforms. To maximize her utility, each client

allocates her transaction needs among the platforms offering the highest value

(1− δ(Qi, si)) (1− fi),
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which is the highest cyber risk-adjusted return net of fees. The client allocates zero to all

other platforms. We consider a symmetric equilibrium in which clients allocate their trans-

action needs equally across platforms with the best deal for clients. When n ≥ 1 platforms

within P offer the highest cyber risk-adjusted net return, then q∗im(s, f) =
1

n(s,f)
1{i∈P (s,f)}.

Security investment and fees. Given the the allocation strategy of clients, qim(s, f),

and the attacker’s intensity strategy, a(Qi, si), each platform chooses si and fi to maximize

the expected profits in Equation (1) subject to attracting a positive market share

(1− δ(Qi, si)) (1− fi) ≥ ζ, (7)

where ζ = maxj ̸=i (1−δ(Qj, sj)) (1−fj) is the best offer made by another platform. Compe-

tition for positive market share by platforms leads to a Bertrand-style ‘race-to-the-bottom’

competition in fees such that each platforms earns zero expected profit in equilibrium.15 At

equilibrium, lowering fees would make the platform more attractive to clients and would earn

the platform the entire market share; however, this platform would earn negative profits.

Similarly, increasing fees would result in the platform earning zero market share and therefore

zero profits.

We consider a symmetric equilibrium in which i) all platforms invest identically in se-

curity, s∗i = s∗, and offer identical fees, f ∗
i = f ∗; ii) clients allocate

∫M

0
q∗im = M

N
to each

platform, and iii) the attacker chooses the same intensity on all platforms, a∗i = a∗. We are

ready to state our first main result, which is proven in Appendix A.1.

Proposition 1 (Competitive Equilibrium for conventional attacks.) A symmetric equi-

librium exists and is unique. It is characterized by Equations (8)-(11).
15The dual problem in which each platform chooses si and fi to maximize (1− δ(Qi, si)) (1− fi) subject

to earning at least zero expected profits yields the same allocation.
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Solving the platforms’ problem, the equilibrium security investment is

s∗ =


rM
N

if 2rc ≤ 1

M
4c2rN

if 2rc > 1,

(8)

and the equilibrium fee is

f ∗ =


rc if 2rc ≤ 1

1
2

if 2rc > 1.

(9)

As shown in Figure 2 (shown in the Appendix), the equilibrium security investment s∗

and fee f ∗ exhibit a kink at 2rc = 1, which depends on the relative value of attacking r and

the cost of security c. Its importance is highlighted by the the same kink in attack intensity

a∗, where the attacker chooses not to attack when the value of 2rc is sufficiently low. The

corresponding attack intensity on a platform demonstrates a similar structure:

a∗ =


0 if 2rc ≤ 1

M
2cN

(
1− 1

2rc

)
if 2rc > 1.

(10)

Then (a∗, s∗) yields the equilibrium vulnerability as the probability of a successful attack is:

δ∗ =


0 if 2rc ≤ 1

1− 1
2rc

if 2rc > 1.

(11)

Equation (11) states that once the combination of r and c are low enough, 2rc ≤ 1,

platforms choose to secure client transactions fully (see also Figure 3a). In this case, the

combination of the cost of security c and the value of the asset to the attacker r are sufficiently

low such that the platforms choose a level of security investment that prevents attacking

completely. In this region, the cost of security does not factor directly into s∗ (Equation

8): for any marginal difference in c, investment is already such that δ∗ = 0, so no change
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in investment occurs. However, for a marginal increase in r, the increase in the value of

attacking requires greater security investment by the platform to maintain δ∗ = 0. Moreover,

fees increase only with the costs of security, c, and the reward, r.

When 2rc > 1, however, the combination of relative asset value to the attacker and the

cost of security are higher, so it is not optimal for platforms to invest in a level of security

that would eliminate all attacks. Instead, platforms maintain a constant optimal fee level

f ∗ = 1/2, and opt for a positive value of δ∗.

2.1 Comparative statics

Our model produces several results for how parameters affect the equilibrium. In particu-

lar, we emphasize the i) cross-section of market tightness (clients-per-platform), ii) cost of

security (relative to the unit marginal cost of attacking), and iii) the degree to which an

attacker can monetize the transactions they interrupt (e.g., by stealing valuable assets). In

what follows, we focus on the impact of these parameters on platform vulnerability (δ∗) and

fees (f ∗) because these variables have direct empirical counterparts. Proposition 2 provides

a summary of the comparative statics in (M/N, r, c), for all equilibrium values (δ∗, a∗, s∗, f ∗).

Proposition 2 (Comparative statics for conventional attacks.) The impact of marginal

increases in parameters (M
N
, r, c) on the equilibrium outcomes (δ∗, a∗, s∗, f ∗) are given in the

table below, where arrows indicate increasing or decreasing.

We start by investigating as the ratio, M/N . Higher market tightness reflects an increase

in the mass of client transactions at a (representative) platform. In equilibrium, market

tightness has no impact on the probability of a breach δ∗, nor on fees f ∗. The former is driven
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by counteracting investments in attack intensity and cyber security: the attacker earns more

per successful attack as the mass of transactions at each platform increases, leading to an

increase in attack intensity, while platforms respond with an increase in security to protect

the additional fees earned from a higher transactions volume.

Focusing on per-platform total investment, Equation (8) highlights that security s∗ in-

creases linearly in the mass of transactions (M) and decreases in competition (N), but this

implies that total market security per transaction, N
M

s∗, is invariant to changes in N and M :

platforms increase security linearly as M grows to protect those additional transactions, but

the aggregate security investment per transaction remains unchanged. Moreover, additional

venues induce each platform to reduce their security investment, as their share of total

transactions declines so that their security investment per transaction remains constant.

A key factor in the attacker’s choice is the value of transactions to the attacker, r. It

plays an important role in platform vulnerability, separating security investment into two

regions: investment under low r and high r. When r is low, the platform increases security

investment for any increase in r, funded via higher fees. Maintaining this level of security

keeps attacking from being profitable, ensuring a fully-secured platform. For platforms

that manage transactions with relatively higher value to the attacker r, however, platforms

favour competition in fees as r increases versus fully securing against attackers. Moreover,

this competition in fees does not merely halt security investment as r increases, but even

reduces it (see s∗ in Figure 2a) to to keep fees constant. The main driver of the reduction in

security investment is the reduction in its effectiveness: as the attacker increases its attack

intensity, any additional investment in security has decreasing returns on vulnerability, yet

the marginal cost of security is constant. Hence, when the attacker derives a relatively large

payoff from successful attacks (high r), equilibrium security levels are lower, all else equal.

Taken together, higher r coincides with greater platform vulnerability δ∗ (Figure 2a).

Following the discussion of the value of the transactions to the attacker, the marginal cost

of security also plays a key role in the platform’s investment decision (Figure 2b). Generally,
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when the cost of security is sufficiently low (2rc ≤ 1), security investment is invariant to

changes in c. At this level, a platform fully secures all transactions, and funds any marginal

increase in the cost of security through an increase in fees. Clients earn a higher utility

from security versus their disutility from fees at these cost levels. On the other side of the

threshold (2rc > 1), the convex nature of returns to security lead clients to prefer the risk of

successful attacks to higher fees. Hence, an increase in c leads to a drop in s, and an increase

in platform vulnerability (δ), while fees remain constant.

We also highlight the ambiguous sign of how the attack intensity a∗ changes in c. When

platforms respond to higher marginal security cost by decreasing security investment, the

impact on attack intensity is concave: a c closer to the threshold 2rc = 1 leads the attacker

to take advantage of the lower security investment by increasing its intensity. As c reaches

higher values, however, the marginal gain δ∗ from additional attack intensity is lower than the

marginal cost of attacking, leading the attacker to reduce their total investment in attacking,

as the marginal gains to lower attack spending exceed the foregone attack effectiveness.

2.2 Welfare and Regulation

We next compare the allocation of the competitive equilibrium to welfare benchmarks. We

consider a social planner who maximizes utilitarian welfare that aggregates all agents’ profits

and utilities, yielding

W ≡
N∑
i=1

((1− δi)Qi − csi) , (12)

where we assume that the planner does not take into account the utility of the attacker.

This assumption can proxy for the attacker being a foreign agent, where the planner intends

only to maximize the welfare of its domestic constituents, thereby placing no value on the

welfare of agents outside of the home country. Alternatively, this may also proxy for the

social value that a society places on the welfare of those who gain through criminal means.
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Second Best. In the second-best problem, the planner cannot choose the actions of the

attacker. That is, a (constrained) planner takes the attacking strategy of the attacker as

given (as do private agents). We use the second-best allocation as the main benchmark

throughout the paper. One can show that the second-best outcome (SB) is identical to the

competitive allocation:

sSB = s∗, aSB = a∗, δSB = δ∗. (13)

It is intuitive that the constrained efficient outcome follows the competitive equilibrium,

given the nature of competitive platforms’ optimization problem. The competitive platform’s

optimal security choice can be seen as the value which maximizes consumer utility, subject

to its own zero profit condition. This is similar in nature to the planner’s problem, who

optimizes the expected value of transactions, minus the cost of security investment.

This result allows us to evaluate a common regulatory requirement for financial insti-

tutions: minimum industry security protocols and standards. A good example is the re-

quirement for all communications to be secured with 256-bit encryption technologies. The

previous encryption technology, 128-bit, would take roughly 1.02 ∗ 1018 years to crack and

256-bit encryption would take 3.06∗1056 years to crack, with today’s computational power.16

In the context of our model with perfect information, when clients are able to view plat-

forms’ security investment, industry standards or minimum required investments are either

irrelevant or inefficient. In the case where the required minimum investment is below the

equilibrium investment, the minimum investment is irrelevant. If enforcing and monitoring

the minimum investment is costly, then it could increase the costs of providing security

without improving or increasing security. In the case where the industry standard is above

the equilibrium investment, the minimum investment requirement is inefficient as it leads to
16See https://www.ubiqsecurity.com/blog/128bit-or-256bit-encryption-which-to-use/, “...even

a 128-bit key is secure against attack by modern technology. At its peak, the Bitcoin network ... per-
formed approximately 150 ∗ 1018 ≈ 267 operations per second. ...it would take the Bitcoin network over
70,000,000,000,000,000,000,000,000 years to crack a single AES-128 key.”
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over-investment in security. The minimum investment is above what customers are willing

pay given the value they derive from transacting and their potential losses.

In sum, the industry standard 256-bit encryption may be an example of over-investment,

as neither 128-bit nor 256-bit encryption is likely to be cracked within the useful lifetime of

the information being secured. However, we show in Section 4 that when clients are unable

to observe platform security investment, minimum security standards can play a useful role.

Having established the equilibrium and its constrained-efficiency property, we can express

welfare as a function of parameters in this economy:17

W SB =


M(1− rc) if 2rc ≤ 1,

M
4rc

if 2rc > 1.

(14)

Welfare is independent of the number of platforms N and a regulator gains no benefit

from increasing competition. Welfare is, however, decreasing in both r and c. Thus, a

regulator may be able to influence these parameters in the long-run. For example, regulators

could encourage investments in cyber security research or competition within the IT sector.

Investments in IT research, or encouraging competition within the IT sector may decrease the

cost of security, c, in the long-run. Such a decrease results in welfare gains for the economy.

Decreasing the value that an attacker can extract from the transaction r, can also increase

welfare. An decrease in r could represent a number of factors which discourage attacks,

for example, anti-money laundering controls that verify transactions, increased international

enforcement which removes criminal safe havens, or transactions which are reversible within

a specified period of time.

To conclude, a government which is able to influence both r and c in the long-run de-

creases realized attacks, accompanied by smaller total spending on IT security by financial

platforms.
17Welfare is the same in the competitive equilibrium and under monopoly, as we outline in Section 5.
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3 Ransomware

In this section we extend the model to ransomware attacks. High profile ransomware attacks

have proliferated in recent years, both inside and outside of the financial system. In March

of 2021, U.S. insurer CNA was forced to pay a ransom of $40M to regain control of their

systems. Similarly, ransom attack on Colonial Pipeline led to fuel shortages on the U.S. east

coast until a $4.4M ransom was paid.18

In this section, the attacker has access to ransomware (on top of the conventional at-

tacking method) at an initial date, t = −1, at which the attacker decides on either a ransom

attack or a conventional attack. This choice is based on the attacker’s expected profits. For

simplicity, we assume that the choice of attack mode is observable and that the attacker

commits to it (e.g., by incurring some unmodelled setup costs for either technology). Real

world examples of a commitment could include purchasing exploit kits or establishing an

infrastructure to receive ransom payments.19

At t = 2 the attacker again conducts their attack. If the attack is conventional, the

outcome is as presented in Section 2. In a ransom attack, however, the attacker can extract

a ransom of ρQi from each platform i if their attack is successful, where ρ ∈ [0, 1] represents

how much of a ransom an attacker can successfully extract as a share of the platform’s

business. A higher value of ρ could represent (i) platforms with a high value of cyber

insurance; (ii) platforms with large cash reserves; or (iii) platforms with low bargaining

power against ransom attackers. Thus, an attacker’s expected profit from a ransom attack

is

πA = ρ
∑
i

(δiQi − ai) . (15)

Clients facing a ransom attack have a modified utility function, depending on whether the

platform will pay a ransom or not. If the platform is successfully attacked and does not pay
18See https://www.bloomberg.com/news/articles/2021-06-04/hackers-breached-colonial-

pipeline-using-compromised-password
19See https://www.bloomberg.com/features/2020-dark-web-ransomware/ for a narrative example

from the press of the steps in establishing a ransomware setup.
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a ransom, clients do not realize the value of their transaction. Thus, clients at platforms that

do not pay ransoms have utility identical to the model in Section 1. Alternatively, clients

at platforms that pay ransoms to attackers realize their transaction’s utility regardless of

whether an attack is successful. These clients have a utility of

U = (1− fi)Qi, (16)

which is independent of δi. That is, when the platform pays a ransom, the clients’ trans-

actions occur regardless of whether the attack is successful. Thus, clients choose to pool at

the platform(s) with the lowest fees.

When faced with a ransom attack, the platform faces two choices (Figure 6). The first

is the choice of security si and fees fi at t = 0. The second is the choice of whether to pay

the ransom if successfully attacked at t = 2. A platform that pays a ransom earns the fees

from its transaction, fiQi, but loses the value of the ransom, ρQi. Alternatively, a platform

that does not pay the ransom does not earn fees, but also incurs a loss term LQi. The

loss term L represents several costs borne by a platform above and beyond the fees earned

on transactions. These include costs associated with a long-term shutdown of its systems,

reputational costs, the loss of all organizational data, and the costs of rebuilding IT systems.

Figure 6: Timeline of events with two attack types.
t = 0

Each platform i chooses

security si and fees fi.

t = 1

Each client m allocates quantity

qim to each platform i.

t = 2

Attacker attacks each

platform i with intensity ai.

If attack is successful, platform

chooses whether to pay ransom.
t = −1

Attacker chooses either a

ransomware or a theft attack.

The nature of the equilibrium depends on the relative magnitudes of L and ρ. For L < ρ,

there exists an equilibrium such that it is not optimal for platforms to pay ransoms. In
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this equilibrium, were the attacker to select ransoms, the platform would select s∗Ransom = 0

and f ∗
Ransom = 0. While the attacker could breach the platform, the platform would pay no

ransom, and thus the attacker would select a∗Ransom = 0, resulting in πARansom
= 0. In this

case no attacker would select ransoms, and only theft attacks would occur, identical to the

equilibrium presented in Section 2. Therefore, for the remainder of this section, we assume

that L ≥ ρ, so it is always optimal for a platform to pay a ransom once breached at t = 2.

Put another way, the platform is not able to credibly commit to not paying a ransom once

it has been successfully attacked.

Given that a platform pays the ransom at t = 2, it chooses si and fi at t = 0 to maximize:

πi = fiQi − δiρQi − csi s.t. (17)

1− fi ≥ ζ. (18)

The constraint is similar to the case of a conventional attack, whereby clients pool at plat-

forms that offer the highest utility.

Using backward induction, we solve for the equilibrium attack intensity at t = 2:

aRansom(Qi, si) =


√
siρQi − si if si ≤ ρQi ≡ s̃i

0 if si > s̃i,

(19)

where s̃i is similar to si and captures the value of a successful ransomware attack. We then

simplify the probability of a successful attack by inputting aRansom(Qi, si),

δRansom(Qi, si) = δ(aRansom(Qi, si), si) =


1−

√
si
ρQi

if si ≤ s̃i

0 if si > s̃i.

(20)
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At t = 0, the optimal security investment and fee of a platform are

s∗Ransom =


ρM
N

if 2c ≤ 1

ρM
4c2N

if 2c > 1,

(21)

f ∗
Ransom =


ρc if 2c ≤ 1

ρ(1− 1
4c
) if 2c > 1.

(22)

The resulting attack intensity and probability of a successful attack are

a∗Ransom =


0 if 2c ≤ 1

ρM(2c−1)
4c2N

if 2c > 1.

(23)

δ∗Ransom =


0 if 2c ≤ 1

1− 1
2c

if 2c > 1.

(24)

Finally, at t = −1, the attacker chooses its attack mode. The attacker compares the

expected profit to a conventional attack,

πA,Conv =


0 if 2rc ≤ 1

M(2rc−1)2

4Nrc2
if 2rc > 1.

(25)

and the expected profit of a ransom attack,

πA,Ransom =


0 if 2c ≤ 1

ρM(2c−1)2

4Nc2
if 2c > 1.

(26)
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Proposition 3 (Ransomware Equilibrium.) (i) Platforms are more often successfully

attacked when facing a ransomware attack than when facing a conventional attack, δ∗C ≤ δ∗R.

(ii) Consider the case in which both modes of attack are profitable, c > 1
2r

. Platforms invest

less in security when facing a ransom attack than when facing a conventional attack.

Ransomware changes the relationship between clients and platforms. When facing con-

ventional attacks, platforms compete not just over fees, but also over the successful probabil-

ity of an attack. When facing ransoms, however, clients are indifferent to the probability of a

successful attack, as long as they expect that platforms pays ransoms upon being breached.

Therefore, when platforms select their security investment against ransomware attacks, they

do not consider the competitive effect of increased security, only fees. The result is that,

for any values of r and ρ, platforms see more frequent breaches against ransom attacks,

compared to conventional attacks. When attackers could profitably attack using either of

the attack modes (c > 1
2r

), platforms invest less in security when facing ransomware attacks

than when facing conventional attacks (Figure 5b).20

This result informs real-world outcomes. Ransomware attacks are very common, and

many organizations willingly pay ransoms to regain access to their systems. The model

implies that this result is endogenous; organizations invest less in security and expect more

successful attacks when they can be resolved by ransoms, than when the attacks steal directly

from their clients.

Proposition 4 (Attack mode.) For r ≤ 1
2c

, the attacker only conducts ransom attacks,

regardless of ρ. Otherwise, the attacker conducts ransom attacks as opposed to conventional

attacks when ρ ≥ (2rc−1)2

r(2c−1)2
≡ ρ. The bound ρ increases in c.

20Alternatively, when platforms choose to fully defend against conventional attacks, the difference in
security spending is ambiguous. For some parametrizations, platforms may spend more to fully deter con-
ventional attacks and spend less to only partially deter ransom attacks. Similarly, when platforms fully
deter both types of attacks (c ≤ 1

2 ), security spending depends on the magnitudes of ρ and r. A platform
may need to spend more to fully deter conventional attacks than to fully deter ransom attacks (r > ρ), or
vice versa (ρ > r).
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From Section 2, the attacker does not engage in conventional attacks when r ≤ 1
2c

; the

same is not true for ransomware attacks, where the boundary is 1 ≤ 1
2c

(see Figure 5a). This

simple change in boundary conditions has sharp real-world implications. In conventional

attacks, the attacker only targets institutions with high values of r, where they can feasibly

steal a large proportion of the transaction. Examples of high r platforms can be limited,

as regulators are able to prevent transactions or limit the use of the proceeds of crime in

many markets. Thus, conventional attacks where the attacker actively steals transactions

are likely to be limited to certain high-value segments of the market.

With ransomware, the relative ability of the attacker to extract a ransom ρ is irrelevant

to whether the attack takes place. The only determinant of whether an attack can take

place with ransomware is the cost of security, c. Unlike r, it is likely that c is relatively

similar across industries and markets, due to common access to security providers and IT

talent. Thus, whereas conventional attacks should be concentrated among high r targets,

ransomware attacks should affect a broad array of industry participants.

When both ransomware and conventional attacks are potentially profitable, the choice of

attack type depends on the relative value of ρ and r. Ransomware attacks should be observed

for a broad group of institutions with lower values of r, or who are able to pay large ransoms

and have a high value of ρ. Alternatively, conventional attacks should be observed among

specific high-value targets with high values of r.

Figure 3b shows the regions under which the attacker optimally select ransomware or

conventional attacks, based on the cost of security c. For any values of r and c, there is a

minimum value of ρ, denoted ρ, such that if ρ ≥ ρ, the attacker prefers ransomware. This

minimum value ρ is increasing in the cost of security c, as long as the attacker possibly

willing to engage in conventional attacks (2rc ≥ 1). That is to say, that if security becomes

more expensive and c increases, a broader array of institutions should see conventional

attacks. Alternatively, if security becomes cheaper and c decreases, conventional attacks

should become more isolated compared to ransom attacks. Figure 3b summarizes the above

24



discussion on the impact of (r, c, ρ) on the choice to i) attack or not attack, and if attacking,

ii) whether the attack is conventional or ransomware.

In an environment where attackers use ransomware attacks, we derive the following

comparative statics from equations (21)-(24) and summarize them in Proposition 5 below.

Proposition 5 (Comparative Statics when Ransomware Attacks are possible.) The

impact of marginal increases in parameters (M
N
, ρ, c) on the equilibrium outcomes (δ∗, a∗, s∗, f ∗)

are given in the table below, where arrows indicate increasing or decreasing.

Proposition 5 shows that the impact of market tightness (M
N
) on a ransomware equi-

librium is similar to a conventional attack equilibrium: investments in security and attack

intensity (when positive) scale in market tightness, and this offsetting investment leads fees

and platform vulnerability to remain unaffected. Moreover, the cost of security influences

the ransomware equilibrium similarly to the conventional attack equilibrium, with one excep-

tion: fees in the ransomware equilibrium decrease in c when vulnerability is positive (2c > 1)

instead of remaining invariant.

When comparing the impact of the benefit to the attacker from the success of a conven-

tional attack (r) versus a ransomware attack (ρ), we look at their impact on the platform:

with a ransomware attack, the platform pays the ransom ρ instead of losing the fee, f ∗. Thus,

to avoid paying the ransom, security investment increases in ρ; because the attacker also

benefits more from a higher ρ, the attack intensity is also increasing in ρ. In equilibrium, we

find that the increases in security and attack intensity directly offset, leading vulnerability

to remain invariant in ρ.
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3.1 Welfare and Regulation

Similar to conventional attacks, the regulator’s second-best solution when dealing with ran-

somware attacks is identical to the competitive allocation. (As before, the difference is that

fees within the social planner’s solution are an arbitrary transfer.)

A regulator may then wish to influence welfare by modifying the model’s parameters in

the long run. When facing a ransomware attack, welfare is given by

W SB
Ransom =


M(1− ρc) if 2c ≤ 1,

M(4(1−ρ)c+ρ)
4c

if 2c > 1.

(27)

As before, competition is irrelevant to welfare, and welfare is decreasing in the cost of security.

Welfare is also decreasing in ρ, the value which the attacker can demand in ransom from

the platform. A regulator wishing to decrease ρ could undertake a number of interventions

that limit the size of ransoms or limit the ability to pay ransoms. Regulators could limit the

use of cyber insurance for ransoms, as insurance may encourage platforms to pay out using

the insurer’s funds rather than their own. Indeed, some insurers are now limiting the use of

their insurance products for ransoms.21

Regulators could also limit the usefulness of ransom payments, by strengthening interna-

tional enforcement or creating curbs on the use of anonymized cryptocurrencies. An example

of one such action is a September 2021 bulletin from U.S. Department of the Treasury’s Office

of Foreign Assets Control (OFAC) advising on the implications of paying ransoms to entities

who may be sanctioned by the U.S. government.22 Another is the use of offensive actions by

law enforcement and intelligence agencies against those perpetuating ransom attacks.23

21See https://www.insurancejournal.com/news/international/2021/05/09/613255.htm for an ex-
ample.

22See https://home.treasury.gov/system/files/126/ofac_ransomware_advisory.pdf
23See https://www.cbc.ca/news/politics/ransomware-critical-infrastructure-cse-1.6274982

for reporting on on such action.
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Another possibility would be to reduce losses from unpaid ransoms (L). If it becomes

unprofitable for compromised platforms to pay ransoms (L < ρ), it can become non-optimal

for attackers to engage in these attacks in the first place. For an example, a platform with a

redundant backup of critical data, or who is able to confine the attack to a smaller segment

of its systems, may suffer fewer losses if it chooses to not pay a ransom.

A decrease in the value of ρ when facing ransom attacks has different implications than

a decrease in r when facing conventional attacks. While welfare increases as ρ declines,

the amount invested in security declines but the probability of successful attacks remains

constant. That is, even if platforms are only able to pay lower ransoms, there should still

be an equal volume of successful attacks. This creates an issue if a government regulator

wishes to demonstrate successful intervention against ransomware. The regulator must be

cognizant that, for ransomware attacks, they may not see a decrease in successful breaches,

even if they reduce ransoms paid and increase welfare. The only way a regulator can reduce

the observed frequency of successful ransomware attacks is to decrease the security cost c.

4 Unobservable Security Investment

In this section, we examine a model with security investment which is unobservable by the

platforms’ clients. In reality, clients often have limited access to reliable information about

platforms’ cyber security practice. For example, publicly traded companies may report total

spending on IT infrastructure or cyber security in their financial reports, but often do not

provide more granular data. The model is similar to that of Section 1; however, clients

are unable to observe security investment by platforms. Attackers continue to observe the

security investments of platforms because of their sophistication.
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4.1 Conventional attacks

There are three dates, t = 0, 1, 2. At date 0, platforms set a fee for transactions and invest in

cyber security. At date 1, clients allocate their transaction needs across platforms. They are

able to observe the transaction fee but not the security investment. At date 2, the attacker

chooses the intensity with which to attack each platform.

Definition 2 (Equilibrium with unobservable security investment.) An equilibrium

of this game is given by a∗I,i, s∗I,i, f ∗
I,i, ŝ(f ∗

I,i)I,i and q∗I,im for all i = 1, ..., N and m ∈ [0,M ].

1. At t = 2, the attacking strategy on platform i is a(Qi, si) = argmaxai πA, for any Qi

and si.

2. At t = 1, the clients’ beliefs about security investment are ŝI,i(f) = argmaxsi πi(f) for

any equilibrium in fees f ≡ {fi}Ni=1 and the attacking strategies a(Qi, si).

3. At t = 1, the transaction allocation strategy is qim(ŝI,i(f), f) = argmaxqim Um subject

to
∑N

i=1 qI,im = Qm, their beliefs regarding security strategies ŝI,i(f) and the attacking

strategies a(Qi, si), for any equilibrium in fees f.

4. At t = 0, (s∗, f∗) is a Nash equilibrium among the platforms. That is, (s∗i , f
∗
i ) =

argmaxsi,fi πi, given the choices of the other platforms (s−i, f−i), the allocation strate-

gies and beliefs of clients qim(ŝI,i(f), f) and ŝI,i(f), and the attacking strategies a(Qi, si).

At date 2, the attacker’s problem and its solutions are identical to those presented in

Sections 1 and 2. The attacker’s best response function a(Qi, si) is given by Equation 5, and

the probability of a successful attack δ(Qi, si) is given by equation 6.

At date 1, clients allocate their transactions over all platforms to maximize their utility.

They do so depending on their beliefs ŝi(fi) regarding security investment at each platform,

given fees. Consistent with sequential rationality, clients believe that each platform chose

security ŝi(fi) such that this value of security would maximize the platform’s profit, given
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observable fees fi.24 Given δ(Qi, ŝi(fi)) and fi, client utility at each platform is expressed as

Um(fi) =


(1− fi)qim if ŝi(fi) ≥ si

(1− δ(Qi, ŝi(fi)))(1− fi)qim if ŝi(fi) < si.

(28)

Clients again split their transactions equally over all platforms that offer the highest utility.

At date 0, platforms select fees to maximize their expected profits, given the best response

functions of all other agents. A platform’s expected profits are given by Equation 1. There

exists an equilibrium such that fees are given

f ∗
I =


2rc if 4rc ≤ 1

1
2

if 4rc > 1.

(29)

The equilibrium fee depends on security costs, c, and the percentage of the transaction that

can be stolen, r. For 4rc > 1, there exists an equilibrium such that each platform i believes

each other platform −i will charge f−i =
1
2
. Platform i then selects fi =

1
2

to maximize its

own profit. Alternatively, for 4rc ≤ 1 there exists an equilibrium such that each platform i

believes each other platform −i will charge f−i = 2rc, and in turn charges fi = 2rc.

All M clients then allocate their transactions equally over all N platforms. The resulting

security investment is:

s∗I =


rM
N

if 4rc ≤ 1

M
16rc2N

if 4rc > 1,

(30)

which results in a probability of a successful breach of

δ∗I =


0 if 4rc ≤ 1

1− 1
4rc

if 4rc > 1,

(31)

24We assume that clients hold these beliefs, regardless of whether they observe an on-equilibrium or off-
equilibrium fi. While many beliefs about off-equilibrium fi are possible, as Perfect Bayesian Equilibrium
does not impose a structure on off-equilibrium beliefs, this is one set that is economically meaningful.
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Proposition 6 (Security under unobservable security investment.) When 4rc > 1,

platforms invest less in security (s∗I < s∗) and experience more breaches (δ∗I > δ∗) when

clients do not observe the platform investment in security.

4.2 Minimum Security Standards

Welfare in the case with unobservable security investment is

W ∗
I =


M(1− rc) if 4rc ≤ 1

3M
16rc

if 4rc > 1.

(32)

The second-best level of welfare is unchanged and continues to be given by Equation

(14). Welfare in the competitive equilibrium with unobservable security investment is equal

to this value when 4rc ≤ 1. However, when 4rc > 1 welfare is lower in the unobservable

security investment case.

Since competition is unable to achieve the second-best under unobservable security in-

vestment, a regulator may be interested in taking actions to improve welfare. One common

suggestion is that a regulator establish minimum cyber security standards for financial in-

stitutions and other important service providers such as utilities. In practice, though many

security standards are voluntary “best practices”, government regulators have been able to

set standards in some areas. As one example, in November 2021, the U.S. OCC, Federal Re-

serve Board and FDIC established minimum reporting standards for cyber security incidents

at federally-regulated banking institutions.25

In our model, a regulator is assumed to be able to observe the security level of platforms

and can set minimum security standards. Consider a regulator who seeks to maximize

welfare, but is only able to set a minimum security value s such that si ≥ s is a constraint

of the platforms’ choices of security investment at t = 0.
25See, https://www.federalreserve.gov/newsevents/pressreleases/files/bcreg20211118a1.pdf
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A regulator is able to improve welfare by setting a value:

s∗ =


[0, rM

N
] if 4rc ≤ 1

M
4c2rN

if 4rc > 1.

(33)

When 4rc ≤ 1, the regulator is unable to improve welfare above the competitive value. In

this case, it does not harm welfare as long as it sets a security minimum no larger than than

the competitive value. When 4rc > 1, by contrast, the regulator sets a security minimum

equal to the competitive equilibrium value with perfect information. In this case, each

platform selects security equal to the minimum security and the second best is achieved.26

4.3 Ransomware

We extend the unobservable security investment setting to an attacker with access to ran-

somware. Similar to Section 3, attackers choose to attack with a conventional theft, or a

ransom attack in t = −1. As above, clients are unable to observe the platforms’ security

investment.

Unlike thefts, unobservable security investment does not impact the security investment

choices of platforms facing ransom attacks. Similar to Section 3, platforms with L ≥ ρ will

optimally pay ransoms, and their clients only consider the fees charged by the platforms. In

this case, equilibrium values of sIRansom, f I
Ransom, aIRansom and δIRansom are identical to those

given by Equations (21) through (24). Alternatively, platforms with L < ρ will optimally

select sIRansom = 0 and f I
Ransom = 0, and face no probability of a successful ransom attack.

Since unobservable security investment does not change the attacker’s expected profits

with ransomware, they are identical to those in Equation (26). From Section 4.1, the at-

tacker’s expected profit from a conventional attack under unobservable security investment
26Alternatively, a regulator can achieve the second best by setting a minimum fee. Such a regulator sets

a minimum fee of f∗ = 1 when 4rc > 1. While constrained efficient, such a policy may be undesirable to a
regulator as it transfers the entire client surplus to the platforms.
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is

πI
A,Conv =


0 if 4rc ≤ 1

M(4rc−1)2

16Nrc2
if 4rc > 1.

(34)

The attacker’s choice of attack mode, shown in Figure 3c, again depends on the relative

value of the underlying parameters. For 1
2
< c ≤ 1

4r
, conventional attacks are unprofitable

and attackers will only select ransoms. This region is similar in nature to the one under

perfect information, but occurs under a smaller parameter space. For 1
4r

< c ≤ 1
2
, ransom

attacks are unprofitable and attackers will only select conventional attacks. This region does

not occur under perfect information and represents an expansion of the parameter space

under which attackers will conduct thefts. For c ≥ max{ 1
4r
, 1
2
}, both attack modes are

potentially profitable. Attackers will select ransoms if and only if

ρ ≥ (4rc− 1)2

4r(2c− 1)2
≡ ρ

I
(35)

Comparing the value of ρ
I

to ρ under perfect information, we have ρ
I
≥ ρ. That is, when both

conventional attacks and ransom attacks are profitable, ρ must be higher under unobservable

security investment for attackers to select ransoms. Put another way, there is a wider

parameter space under which attackers select conventional attackers under unobservable

security investment. Figure 3d illustrates this difference by a darker region that indicates

a parameter space in which conventional attacks would be profitable, where none would be

in the case of observable security investment. Taken together, these insights generate the

following Corollary.

Corollary 1 (Welfare under Unobservable Security Investment) Under unobservable

security investment, welfare is (weakly) lower for all (r, c, ρ) when compared to the case where

security investment is observable.

Corollary 1 highlights the importance of security investment information towards improv-

ing overall welfare. While regions of the (r, c, ρ) parameter space may be identical across
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both information environments (i.e., when attack mode does not change across environ-

ments), there is a region illustrated by light and dark grey shading in Figure 3c in which the

ability of clients to observe of security investment by platforms can improve welfare. In this

region, publicizing security investments moves attackers from conventional to ransomware

attacks, the response to which by platforms achieves constrained efficiency.

The ability of regulators to increase transparency of platforms’ security investments may

not be far off, with firms like BitSight and UpGuard offering a numerical score–similar in style

to a credit ratings offered from the likes of Equifax–that describes the quality of a firm’s cyber

security. Moreover, BitSight publishes its industry average scores, which provides clients

with the ability to compare platform scores to the industry average, should the platform

acquire and publish their score. Thus, mandating security scores may be one such tool for

moving the market closer towards fully-observable security investment. Currently, the SEC’s

consideration to mandate disclosure of cybersecurity practices and incident reports would

reflect the spirit of our model’s prediction. The extent to which this policy may achieve the

intended goals, however, will depend on the ability of the target clientele—investors, in this

case—to infer security investment from this type of information.

5 Extensions

In this section we discuss three extensions to the model: (1) a monopolistic financial platform;

(2) an attacker which is limited by its own budget constraint; and (3) platforms which face

increasing marginal costs of investing in security.

5.1 Monopoly

In this section, we investigate the impact of platform competition on platform vulnerability

and fees by considering the setting of monopoly, N = 1. Similar to the competitive case, the
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monopolist platform chooses security s and fees f to maximize expected profit

πM = (1− δ)f Q− cs, (36)

where Q ≤ M is the transaction volume attracted by the monopolist.

The client utility function remains unchanged but clients can only accept or reject the

fee and security investment offered by the monopolistic platform. A client accepts if and

only if (1 − δM)(1 − fM) ≥ 0. Hence, a client chooses to accept any fee fM ≤ 1 and attack

probability δM ≤ 1. Upon accepting (sM , fM), the monopolistic platform receives the total

mass of client transactions, Q = M .

The attacker’s strategy is identical to the competitive case, and is accounted for by the

monopolist in its security and fee decisions (see also Appendix A.6 for the proof). Thus, the

monopoly level of security is

sM =


rM if 2rc ≤ 1,

M
4rc2

if 2rc > 1

(37)

In comparison to the competitive equilibrium, sM equals the sum of s∗i (Equation (8))

across all N venues for all parameter values (r, c). Hence, vulnerability under monopoly is

δM =


0 if 2rc ≤ 1,

1− 1
2rc

if 2rc > 1

(38)

Equation (38) yields that δ∗i = δM , where δ∗i is the vulnerability at each platform i

in the competitive case. Hence, the security of transactions do not depend on the level of

competition, nor does “putting all one’s eggs in one basket” impact a client’s transaction vul-

nerability in our model. Similar to the competitive case, a monopolist invests to fully secure

the platform when product of marginal cost of security c and the value of the transaction to

the attacker r is sufficiently low; for higher joint values, platform vulnerability increases in
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r and c. Unlike the competitive case, the monopolist has the incentive to extract maximum

rent from its clients, fM = 1. We summarize the results in the following proposition.

Proposition 7 (Monopoly.) Monopoly (N = 1) features the same attacking intensity,

aM = a∗, security investment, sM = s∗, and success probability, δM = δ∗, as the competitive

equilibrium but fees are higher, fM > f ∗. Thus, the allocation is constrained efficient.

In monopoly clients intuitively face higher fees, as the monopolist extracts rents when

compared to the competitive case. Moreover, clients suffer pure rent extraction regardless

of the cost of security c or the value of the transaction to the attacker r, as the number of

realized security breaches is identical to the competitive case. The results of Propositions 1

and 7 imply that competition among platforms plays a key role in improving the expected

utility of clients by minimizing platform rent extraction without impacting vulnerability.

Proposition 7 also highlights that creating a “fortress-like platform” where a monopoly

invests to guard all client transactions does not benefit clients: the monopoly charges higher

fees while offering the same level of protection to each transaction. Since the monopolistic

allocation is constrained efficient, there is no role for regulation, however. In fact, an author-

ity who regulates maximum levels of fees or minimum levels of security investment either is

ineffective (when these bounds do not bind) or reduces welfare in the economy.

5.2 Attacker Budget Constraint

In this section we consider an attacker who is subject to a budget constraint for attacking.

This attacker represents an adversary who must strategically divide limited attention or

limited resources across potential targets. The model is identical to the one presented in

Section 1, with the exception that the attacker is subject to the constraint:

N∑
i=1

ai ≤ ā. (39)
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In symmetric equilibrium, there is an equal quantity at each platform, Qi =
M
N

. For a given

security investment, the attacker’s attacking strategy for platform i now depends on other

platforms as well and is given by

ai(si) =



√
sirM
N

− si if
∑N

i=1

√
sirM
N

− si ≤ ā and si ≤ s̄i
√
siā+

√
si
∑

j ̸=i sj − si
∑

j ̸=i

√
sj

√
si +

∑
j ̸=i

√
sj

if
∑N

i=1

√
sirM
N

− si > ā and si ≤ s̄i

0 if si > s̄i,

(40)

which has three segments. The first and third are identical to the equilibrium in Section

2 and represent cases where the attacker is unconstrained or where the attacker does not

attack. The second case is new and represents the case of scarce aggregate attention or

resources.

Given the attacker’s strategies, the platforms’ profit maximization is the same as in

Section 2. In a symmetric equilibrium, s∗i = s∗, the optimal security investment is

s∗ =



M
4c2rN

if 1 ≤ 2rc and M < 4ārc2

2rc−1
√

M
N

(M
N

(N−1)2−16āc)+M
N

(N−1)−4āc

4cN
if 1 ≤ 2rc and M ≥ 4ārc2

2rc−1

rM
N

if 1 > 2rc

(41)

and the optimal fee is

f ∗ =



1
2

if 1 ≤ 2rc and M < 4ārc2

2rc−1

M
N

(N−1)+
√

M
N

(M
N

(N−1)2−16āc)

4M
if 1 ≤ 2rc and M ≥ 4ārc2

2rc−1

rc if 1 > 2rc.

(42)
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The resulting response from the attacker is

a∗ =



M
2cN

(
1− 1

2rc

)
if 1 ≤ 2rc and M < 4ārc2

2rc−1

ā
N

if 1 ≤ 2rc and M ≥ 4ārc2

2rc−1

0 if 1 > 2rc

(43)

and the resulting probability of a successful attack is

δ∗ =



1− 1
2rc

if 1 ≤ 2rc and M < 4ārc2

2rc−1

4āc
M
N

(N−1)+
√

M
N

(M
N

(N−1)2−16āc)
if 1 ≤ 2rc and M ≥ 4ārc2

2rc−1

0 if 1 > 2rc

(44)

An interesting implication is that the level of competition, via N in reduced form, and market

tightness, M
N

, can matter for the allocation when the aggregate attention ā is limited.

5.3 Increasing Marginal Costs of Security

In this section we consider an increasing marginal cost of security, so the platforms’ new

profit function is

πi = (1− δi)fiQi −
cs2i
2
. (45)

(Everything else remains as in the model in Section 1.) The platforms are subject to the same

constraint as in Section 2, so the attacker’s strategy and the probability of successful attack

continue to be given by Equations (5) and (6). The platforms’ optimal security investment

is

s∗ =


(

M
4c2rN

) 1
3 if 1 ≤ 2r2cM

N

rM
N

if 1 > 2r2cM
N

.

(46)
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The optimal fee is

f ∗ =


1
4

if 1 ≤ 2r2cM
N

cr2M
2N

if 1 > 2r2cM
N

.

(47)

The optimal security investment is such that the optimal attack intensity is

a∗ =


(

rM2

2cN2

) 1
3 −

(
M

4rcN

) 1
3 if 1 ≤ 2r2cM

N

0 if 1 > 2r2cM
N

,

(48)

and the probability of a successful attack is

δ∗ =


1−

(
N

2r2cM

) 1
3 if 1 ≤ 2r2cM

N

0 if 1 > 2r2cM
N

.

(49)

Again, the degree of competition (and market tightness) affect the equilibrium allocations

in this extension, which contrasts with the main model.

6 Conclusion

With many in the financial sector still working from home, millennials trading using only a

smart phone, and seniors doing their banking in their dining room, the security of financial

platforms is critical. Large scale thefts of cryptocurrencies and platforms paying millions in

ransoms to cyber attackers highlights the problems. Thus far, the real risk and destabilizing

potential of the cyber security of the financial system has received insufficient attention.

To fill this gap, we construct a model of the financial system in which clients delegate

security decisions to platforms. The model allows us to understand the theft of assets, as well

as the more recent case of disruptions caused by ransomware attacks. When cyber attackers

seek to steal assets, the economic problem is a principal-agent-type problem between clients

and platforms: clients delegate security decision to an agent, and bear the losses if hacked.
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Ransomware changes the relationship between client and platform. When platforms bear

losses because their services are being disrupted until ransom is paid, they paradoxically

under invest in security. This leads to more security breaches because clients focus only on

fees and not on potential losses due to theft. Moreover, if security investment by platforms

is unobservable, this worsens welfare, and widens the scope of firms susceptible to attacks.

Our paper has a number of implications. First, regulators cannot improve welfare by

targeting security investment when security investment is observable, as the equilibrium

outcome is constrained efficient. Instead, regulators can affect welfare by reducing the cost

of security and by reducing the value of stolen data to attackers. For example, regulators can

create curbs on the use of cryptocurrencies or forbid the payment of ransoms to sanctioned

entities. If security investment is unobservable, a regulator may improve welfare by setting

minimum security standards, or targeting information opacity by requiring firms to obtain

and publish third-party security ratings (i.e., from cyber security rating firms such as BitSight

or UpGuard). We highlight that cyber insurance policies that insure against ransomware

attacks may cause unintended harm. While intuitively appealing, our results suggest that

making it more likely that high-value ransoms will be paid may reduce overall welfare and

security. The payment of ransoms make all platforms more susceptible to attacks and increase

the probability of an attack.

Our testable implications provide several directions for further study. For instance, does

an increase in publicly available information on platform security change the nature of, or

reduce the instances of attacks in certain industries? Does banning insurers from reimbursing

ransom payments lead to noticeably fewer (ransomware) attacks? Future work can also

consider the risk of contagion: is the security of each individual institution sufficient to

protect the financial system? Conversely, does a market with more platforms provide benefits

to diversification with respect to cyber attackers? With the importance of cyber security

to the functioning of the financial system, and the lack of work in the area, more academic

research is warranted.
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A Proofs

A.1 Competitive equilibrium

We solve for an equilibrium through backwards induction. First, at t = 2 the attacker
chooses ai to maximize πA that can be written as

πA = r

N∑
i=1

(
ai

ai + si
Qi − ai

)
. (50)

The first derivatives with respect to ai are set equal to zero, resulting in:

∂πA

∂ai
:

si
(ai + si)2

rQi − 1 = 0. (51)

The resulting a(Qi, si) and δ(Qi, si) are given by Equations (5) and (6).
Second, at t = 1 the clients allocate their transactions qim such that qim(s, f) = argmaxqim Um

with
∑N

i=1 qim = Qm for any si and fi and given a(Qi, si). The clients’ utility is

Um =
N∑
i=1

(1− δ(Qi, si))(1− fi)qim. (52)

A client’s utility is maximized by allocating qim > 0 to any group of platforms with the
highest (1− δ(Qi, si))(1− fi). Clients equally allocate qim amongst these platforms.

Third, each platform i assumes that amongst the other platforms −i, a different platform
j offers the highest value of (1−δ(Qj, sj))(1−fj), where (1−δj)(1−fj) = ζ and ζ > 0. Each
platform chooses si and fi to maximize its profits, taking the actions of the other platforms
(s−i, f−i) as given, such that (1− δi)(1− fi) ≥ ζ. The first-order conditions with respect to
si and fi are

∂πi

∂si
:

√
Qi

sir

fi
2
− c+

√
1

sirQi

λ(1− fi)

2
= 0, (53)

∂πi

∂fi
:

√
siQi

r
− λ

√
si
rQi

= 0, (54)

λ

(√
si
rQi

(1− fi)− ζ

)
= 0, (55)

where λ is a Lagrange multiplier. It can be shown that λ = 0 implies ζ < 0, which violates
the clients’ participation constraints. Thus, λ > 0 and

√
si
rQi

(1− fi) = ζ, which results in:
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si =


Qi

4c2r
if a∗i > 0

rQi if a∗i = 0,
(56)

fi = 1− ζ

√
rQi

si
. (57)

Finally, we impose symmetry among all platforms and invoke a zero profit condition to
solve for ζ∗. The equilibrium functions are piece-wise, depending on whether a∗ > 0 or
a∗ = 0, and are shown in Equations (8) through (11).

A.2 Proposition 2

Recall the functions for (s∗, f ∗, a∗, δ∗) from (8)-(11) respectively. Most of the comparative
statics follow by inspection. For s∗, for example, we see that, for 2rc ≤ 1, s∗ is independent
of c, and increases in M/N and r. For 2rc > 1, s∗ increases in M/N but decreases in c and
r. Consider f ∗ next. For 2rc ≤ 1, we can see that f ∗ is independent of M/N , and increases
in c and r. For 2rc > 1, f ∗ is independent of all parameters.

Next, for a∗, for 2rc ≤ 1, we can see that a∗ is independent of all parameters. For 2rc > 1,
a∗ increases in M/N and in r. To study how a∗ changes in c, we take the first derivative:

∂a∗

∂c
= −M(rc− 1)

2c3rN
(58)

Hence, ∂a∗

∂c
increases in c for rc ∈ (1/2, 1), and decreases in it for rc > 1.

Finally, for δ∗, we can see that, for 2rc ≤ 1, δ∗ is independent of all parameters. For
2rc > 1, δ∗ is independent of M/N , but increases in r and c.

A.3 Proposition 3

The are three regions, 0 < c ≤ 1
2
, then 1

2
< c ≤ 1

2r
, and then 1

2r
< c. When 0 < c ≤ 1

2
, δ∗ = 0

and δ∗Ransom = 0. When 1
2
< c ≤ 1

2r
, δ∗ = 0 and δ∗Ransom = 1− 1

2c
> 0. Finally, when 1

2r
< c,

s∗ = M
4c2rN

and s∗Ransom = ρM
4c2N

. Since 0 < r, ρ ≤ 1, then s∗ ≥ s∗Ransom. Further, δ∗ = 1− 1
2rc

and δ∗Ransom = 1− 1
2c

, since 0 < r ≤ 1, then δ∗ ≤ δ∗Ransom.

A.4 Proposition 5

In this proof, we show the comparative statics directions listed in the table of Proposition
5. Recall the equilibrium equations for (a∗, s∗, f ∗, δ∗). First, we examine s∗:
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s∗Ransom =


ρM
N

if 2c ≤ 1

ρM
4c2N

if 2c > 1,
(59)

By inspection, for all 2c ≤ 1, s∗ is invariant in (c, ρ) and increasing in M/N . For 2c > 1,
s∗ is invariant in ρ, increasing in M/N , and decreasing in c, as c2 is in the denominator.

Proceeding with f ∗ :

f ∗
Ransom =

ρc if 2c ≤ 1

ρ(1− 1
4c
) if 2c > 1.

(60)

M/N is not present in Equation 60, so f ∗ is invariant to M/N . Moreover, f ∗ is increasing
in ρ for all c, and i) increasing in c for 2c ≤ 1, and ii) increasing in c for 2c > 1, as the
first-order derivative equals ρ/4c2.

For a∗, we have:

a∗Ransom =

0 if 2c ≤ 1

ρM(2c−1)
4c2N

if 2c > 1.
(61)

a∗ is invariant to (M/N, c, ρ) for 2c ≤ 1, and increasing in (ρ,M/N) for 2c > 1. We then
take the piecewise derivative with respect to c for 2c > 1, and find that it equals ρM(1−c)

2c3N
.

Hence, for all c ∈ (0.5, 1), f ∗ is increasing in c, and (weakly) decreasing in c for c ≥ 1.
Finally, for δ∗, we have:

δ∗Ransom =

0 if 2c ≤ 1

1− 1
2c

if 2c > 1.
(62)

δ∗ is invariant to (M/N, c, ρ) at 2c ≤ 1 because a∗ = 0. For 2c > 1, only c is present, and by
inspection, δ∗ is increasing in c.

A.5 Unobservable Security Investment

The attacker’s problem at t = 2 and its solution are identical to those in the competitive
case.

The clients’ problem in t = 1 requires beliefs regarding platforms’ security investment.
As clients observe fee from each platform, we condition these beliefs on fees and denote
them ŝ(fi)i for each platform i. We assign clients the beliefs that each platform selects
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ŝ(fi)i = argmaxsi πi(fi). Clients then allocate transactions across platforms to maximize
their utility function, given fees and beliefs regarding security investment.

In t = 0, platforms select si and fi to maximize their profit function, given by Equation
1, such that,

(1− δ(ŝi))(1− fi) ≥ ζ (63)

Note that platforms do not control ŝi in the constraint directly, unlike how they control si.
There then exists an equilibrium among platforms given by Equations 29 and 30.

We note that, under the beliefs that each platform selects ŝ(fi)i = argmaxsi πi(fi),
clients who observe an off-equilibrium fi have no incentive to allocate transaction volume
to the deviating platform. Consider clients who observe some off-equilibrium fee, denoted
f ′
i and where 4rc > 1. These clients believe that the security value s′i is such that s′(f ′

i)i =

argmaxsi πi(f
′
i). The on-equilibrium f ∗

I = 1
2

results in an expected client utility of Um(f
∗
I ) =

1
8rc

. For any observed f ′
i , the inferred s′(f ′

i)i =
Qif

′2
i

4rc2
results in Um(f

′
i) =

f ′
i(1−f ′

i)

2rc
, which is

equal to 1
8rc

for f ′
i = f ∗

I = 1
2

and lower otherwise. The case when 4rc ≤ 1 is similar.

A.6 Monopoly

The monopoly case is also solved through backwards induction. The attacker’s problem at
t = 2 and its solution are identical to those in the competitive case with N = 1. At t = 1,
the clients’ utility functions are identical to the competitive case with N = 1. We assume
that the client has a reservation utility of 0, and therefore accepts any fee f ≤ 1 and attack
probability δ ≤ 1. Finally, the monopolist platform chooses s and f at t = 0 such that

(sM , fM) = argmax
s,f

πM = (1− δ)fQ− cs s.t. 0 ≤ (1− δ)(1− f) (64)

The first-order conditions are

∂π

∂s
:

√
Q

sr

f

2
− c+

√
1

srQ

λ(1− f)

2
= 0, (65)

∂π

∂f
:

√
sQ

r
− λ

√
s

rQ
= 0, (66)

λ

(√
s

rQ
(1− f)

)
≥ 0. (67)
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∂π
∂f

= 0 implies λM = Q, which in turn leads to the optimal security investment

sM =


Q

4rc2
if 1 ≤ 2rc

rQ if 1 > 2rc.
(68)

The inequality condition then results in a fee fM = 1.

B Figures
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Figure 2: Comparative Statics

(a)

(b)

The figures describe the equilibrium behavior of a∗ (dash line), s∗ (dash-dot line), and δ∗ (solid
line) in parameters r (top) and c (bottom). Parameter values set M = N , c = 2 (top) and r = 0.5

(bottom). A vertical dotted line indicates the attack/no attack threshold, 2rc = 1.
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Figure 3: Attack Incidence and Type

(a) Theft vs No Attack (b) Theft vs Ransomware (Observable)

(c) Theft vs Ransomware (Unobservable) (d) Observable vs Unobservable Security
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Figure 4: Ransomware Equilibrium Comparative Statics

(a)

(b)

The figures above describe the equilibrium behavior of a∗ (dash line), s∗ (dash-dot line), and δ∗ (solid line)
in parameters ρ (top) and c (bottom). Parameter values set M = N , c = 2 (left) and ρ = 0.5 (right). A
vertical dotted line indicates the attack/no attack threshold, 2c = 1.
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Figure 5: Vulnerability and Security Comparative Statics

(a)

(b)

The figures above compare the equilibrium behavior of s∗, and δ∗ in c across conventional (dash line) and
ransomware (solid line) equilibria. Parameter values set (M, r, ρ) = (N, 0.5, 0.5). A vertical dotted line
indicates the attack/no attack thresholds, 2rc = 1 (conventional) and 2c = 1 (ransomware).
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