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Abstract

We show that grounding low-frequency high-impact strategic decisions under uncertainty on the
development and test of theories is a foundational strategic choice of firms, and an important
determinant of performance. Our normative Bayesian model shows that decision-makers benefit
from comparing alternative theories and when theories are reliable (less uncertain) they should not
experiment and they should focus on their most plausible theory (highest prior). Otherwise, they
ought to experiment with their less reliable theories because they learn more. We also show that
the variability of the optimal experiment matches the variability of the prior. In particular, large
scale experiments may be overprecise and penalize radical new theories with more variable priors.
Overall, our framework explains how structured exploration improves strategic decisions by
reducing model mis-specification and why performance heterogeneity and competitive advantage
is created by exploring theories with higher variance.
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1 Introduction

We study the microfoundations of low-frequency high-impact (LFHI) strategic decisions which are
decisions under uncertainty that impact on firm performance and cannot be grounded on extensive
past data and algorithms (Choi & Levinthal, 2022). Examples are decisions about product or service
innovation (new markets or technologies), capital structure strategy (ownership and governance),
M&As (markets for control and firm boundaries), top talent and management team hiring (Camuffo,
Gambardella, & Pignataro, 2022).

LFHI decisions differ from high-frequency low-impact (HFLI) decisions which are routine decisions
within firms for which decision makers (DMs) can rely on past data. In LFHI decisions, DMs have
neither pre-defined, readily available decision problems to solve, nor context-specific past data to
ground strategic decisions on. Under these conditions, DMs first aim at increasing their knowledge of
the world by formulating and choosing decision problems, i.e. building theories about reality (framing
decisions) before they can solve them by choosing actions conditional on the theory they have selected.

This is consistent with the body of research that emphasizes problem definition (Nickerson & Zenger,
2004), theorizing (Felin & Zenger, 2017), and mental representations (Csaszar & Levinthal, 2016) in
strategic decision making, as well as with the definition of strategy as the smallest set of choices to
optimally guide other choices (Van den Steen, 2017).

Since DMs do not observe the “true” states of the world, they will never know whether their theories are
correct (type III error, Raiffa, 1968; Mitroff & Betz, 1972). They can only formulate and experiment
with alternative theories and ultimately choose the theory that they believe is more plausible.

In our model of LFHI decisions, DMs have prior probabilities on theories, and they can be more or
less confident about these probabilities depending on whether they expect that an experiment will
significantly change them. We show that DMs benefit from comparing two theories with different
priors. When the variability of both prior is low, DMs commit to the theory with the higher prior
(more plausible) and do not experiment. Otherwise, they experiment with the theory with the more
variable prior (less reliable). When this is the theory with the higher prior, DMs conduct a confirmation
experiment aimed at testing whether the posterior on this theory is not lower than the prior of the
other theory. Alternatively, DMs conduct a falsification test aimed at testing whether the posterior
on the theory with the lower prior is higher than the prior of the other theory.

We posit that theory exploration and knowledge accumulation are the foundations of strategic decision-
making under uncertainty. Our emphasis on theories and experiments, and the ”methodic doubt”
that encourages DMs to explore and test alternative theories, evokes the application of a scientific
approach to strategic decisions (Camuffo, Cordova, Gambardella, & Spina, 2020; Zellweger & Zenger,
2022). It also redirects strategy research back to its original mission of scientifically grounding top
management’s decision-making under uncertainty and reconnects strategy to decision science (Schlaifer
& Raiffa, 1961; Ansoff, 1965; Mason, 1969, Ansoff & Brandenburg, 1971; Ackoff, 1974).

Section 2 grounds the study in the strategy literature. Section 3 provides the microfoundations of
LFHI decisions. Section 4 presents our model. Section 5 provides an example (with two additional
examples in the Appendix). Section 6 discusses limitations and future research directions.

2 Motivating literature

This paper is theoretically grounded on the burgeoning literature that has recently questioned the
foundations of cross-firm strategic heterogeneity and competitive advantage, suggesting that they
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reside on how strategists navigate uncertainty (Alvarez & Porac, 2020).

A stream of strategy research parallels strategies to “theories” (Ehrig & Schmidt, 2022; Felin &
Zenger, 2017), i.e. abstract models of reality strategists envision to ground their business decisions.
Another stream suggests that strategists use mental representations, i.e. models of reality, to generate
predictions, shape profitable strategies (Csaszar & Levinthal, 2016) and affect strategic performance
(Csaszar, 2018). Another stream has underlined the importance of strategic problem definition as key
antecedent of strategic decisions (Nickerson & Zenger, 2004). According to this perspective, the core
of strategic decision-making is the imaginative act through which strategists recognize, discover or
create strategic problems (Nickerson & Argyres, 2018).

While this emergent literature has shifted the focus of strategy research from resources and capabilities
to strategists’ cognition and agency, we still lack an understanding of why different models of reality
(”theories”, ”mental representations” or ”strategic problems”) make a difference in terms of strategic
decision making, how strategists can develop them under conditions of fundamental uncertainty and
how these models of reality shape classic strategic decisions in terms of competitive positioning. This
paper represents a step in this direction.

At the same time. this paper is motivated by the literature on strategic experimentation, which sees
experiments as ways to elicit signals of an underlying state variable (Agrawal, Gans & Stern, 2021)
and, more broadly, as methods to collect information regarding future contingencies. Experiments
inform and redirect strategic decisions (Kerr, Nanda, & Rhodes-Kropf, 2014; Thomke, 2020; Koning,
Hasan, & Chatterji, 2022) and, conditional on their cost, can be thought of as real options (Trigeorgis &
Reuer, 2017), which strategists buy and exercise to learn about optimal strategies (Adner & Levinthal,
2004; Posen, Leiblein & Chen, 2018).

While this literature provides a rationale for flexible strategies (McGrath, 2001), with experiments
enabling strategic adaptation to uncertain environments, it does not address how strategists can
leverage experimentation to cope with more fundamental uncertainty. To this aim, this paper explores
three developmental avenues. The first avenue connects strategic experimentation with the streams
of strategy research on theories, mental representations and strategic problems. If strategists choose
theories of reality to shape strategic actions, they need to define and experiment with them in order
to learn which theory to use. The second avenue points to the conditions under which strategists
experiment with their theories and with which theories they experiment. Recent studies show that
DMs learn more by experimenting when their priors are moderate and the experimentation cost is
sufficiently low (Che & Mierendorff, 2019). Furthermore, they show that DMs should experiment with
alternatives business ideas before committing (Gans, Stern & Wu, 2019). The third avenue calls for
distinguishing between uncertainty regarding the quality of DMs’ theories and uncertainty regarding
DMs’ strategies (Agrawal, Gans, & Stern, 2021; Gans, 2022).

Our framework elaborates on these three avenues. Particularly, we suggest that DMs should experi-
ment with alternative theories, and then follow the strategies (actions) that fit their most plausible one.
We suggest that experimenting with theories enhances learning to a greater extent than experimenting
with strategies.

Our study also refers to behavioral strategy (Lovallo & Sibony, 2018) and more specifically to the
literature about cognitive biases in strategic decision-making (Kahneman, Lovallo, & Sibony, 2019).
LFHI decisions are grounded on evaluative judgements and characterized by well-documented errors.
These errors can be systematic, when they derive from cognitive biases (Kahneman, 2011), or random
(“noise”) (Kahneman, Sibony, & Sunstein, 2021).
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While this literature aims at de-biasing and reducing ”noise” raising DMs’ awareness about their
heuristics and biases, we lack a more general approach through which strategists can navigate fun-
damental uncertainty and improve the overall framing of their decisions. Our framework provides a
rationale to form, test and update beliefs about theories so that strategists can be less exposed to
decision making biases and judgement noise.

Finally, recent research has emphasized that strategists cope with uncertainty selecting what to pay
attention to. For example Hanna, Mullainathan, & Schwartzstein (2014) model DMs’ behavior as
“learning through noticing”. DMs choose which input dimensions to attend to and subsequently
learn about them from available data. Similarly, “rational inattention” theory suggests that DMs,
characterized by memory/beliefs and limited attention resources, have to choose which information
to attend to and which information to ignore, optimally solving the trade-off between learning about
the current optimal action and the best predictors of future optimal actions (Maćkowiak, Matějka, &
Wiederholt, 2018). Furthermore, Ocasio’s (2011) attentional perspective and attentional engagement
concepts point to the criterion through which DMs select what to pay attention to and how much
intentional effort DMs make in doing that.

While this research has highlighted the importance of the cognitive processes through which strategists
focus on some variables and discard others, we still lack an understanding of how strategists ought to
make such choices in order to better frame their strategic decisions.

3 Microfoundations

3.1 Attributes and exploration domains

Since the seminal work of Savage and Wald, decision-making under uncertainty is modelled as the
resolution of a decision problem in which DMs have to choose among alternative courses of actions
whose consequences depend on contingencies outside the DMs control.1

Definition 1 (classical decision problem). A decision problem is a quartet (A,S,C, ξ) in which:

� A is a collection of available actions

� S is the space of all payoff-relevant contingencies called states of nature

� C is a collection of consequences

� ξ : A × S → C is a consequence function that details the consequence c = ξ (a, s) of action a
when state s ∈ S obtains

DMs confront (state) uncertainty when they ignore the true state of nature. Let pτ (s) ≡ p(s | τ),
or pτ for short, be the ”true” probability distribution with which states occur, indexed by τ . If
DMs know this probability distribution, they choose the action a ∈ A that maximizes the expected
utility Vτ (a) =

∑
s∈S u(ξ(a, s))pτ (s), where u(ξ(a, s)) is the utility of the consequence of action a in

state s, and the subscript τ denotes that V also depend on characteristics of the correct probability
distribution.2 The optimal action is a function of τ , i.e. a∗(τ). We can then write the optimal expected
utility as

Vτ =
∑
s∈S

u(ξ(τ, s))pτ (s) (1)

1See Gilboa (2009) and, for a strategy perspective, Hofer and Schendel (1978) and Mintzberg (1994).
2Formally, pτ ∈ ∆ (S) =

{
p ∈ RS+ :

∑
s p (s) = 1

}
where ∆ (S) is the set of all probability distributions on S.
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A classical decision problem presupposes that DMs know the relevant contingencies that form the state
space S and it abstracts from unforeseen contingencies. This is a demanding assumption especially
in the case of LFHI decisions in which DMs do not have sufficient data to know the states s ∈ S and
their probability distribution pτ (s) (Hansen, 2014; Hansen & Marinacci, 2016).

For this reason, in LFHI decisions, DMs start their exploration by identifying, through conjectures
and mental experiments, what they believe are relevant attributes for the decision.

Definition 2 (attributes). An attribute Xj is the set of all the alternative outcomes of one element
of a problem. A space of attributes X =

∏
j∈J Xj is the space of all the attributes j ∈ J that DMs

believe are relevant for their problem. An attribute Xj and a space of attributes X are maps D → X
that reduce the dimensionality of the exploration problem within the DMs’ domain D.

Definition 3 (domain). A domain is the set of all attributes D =
∏
j∈J Xj, J = {1, 2, ...N} that

DMs know or could be aware of at any given moment in time given their knowledge, experience or
reference points. It does not necessarily contain S. This depends on whether DMs are aware of all the
relevant contingencies for the consequences of their problem. Domains change as DMs learn.

Examples of attributes are the level of demand for a product, the quality of a technology, or the
degree of complementarity of an acquisition target. For instance, demand can be high or low, with
Xd = {high, low}, and similarly for quality of technology or complementarity. Suppose that DMs
focus on demand and technology to assess the potential of a new product. If the technology attribute
is Xt = {good, bad}, the space of all attributes is X = Xd×Xt = {(high, good), (high, bad), (low, good),
(low, bad)}. If the space of each attribute was a continuous measure over the non-negative real numbers
(e.g. number of customers and an index of the quality of the technology), then Xd = {x : x ∈ R+

0 },
Xt = {x : x ∈ R+

0 }, and X = Xd ×Xt = (R+
0 )2.

3.2 Models and theories

In using models and theories within a decision problem we adopt a recent approach in decision theory.3

DMs explore the space X through logical links (∧, ∨, ⊕, →, ↔). Logical links focus DMs on a subset
x ∈ X = {x, x}, where x is the complement of x, and they identify a family of probability distributions
PΘ = {pθ}θ∈Θ of the probability pθ of this subset of X, where pθ, parameterized by θ ∈ Θ, is a
shorthand notation for this probability, or pθ(x) ≡ p(x | θ) and µ(θ) is the likelihood of θ.4 Thus, θ
identifies a specific probability distribution of x, pθ(x), within the family PΘ. The set Θ identifies the
family of probability distributions, and it is defined by the DMs’s theory. DMs entertain a prior π
on Θ, which is the probability with which they believe that the ”true” θ belongs to Θ, or simply the
probability with which they believe that the theory is true.

Definition 4 (model). A model θ is the realization of a parameter (or vector of parameters) that
identifies a specific probability distribution pθ within a family of probability distributions PΘ = {pθ}θ∈Θ

on the space of attributes.

Definition 5 (theory). A theory is a family of probability distributions PΘ = {pθ}θ∈Θ. We call
theory PΘ or Θ interchangeably.

This definition epitomizes the notion of theory used by strategy scholars (e.g. Felin and Zenger, 2017).

3See Cerreia-Vioglio et al. (2013a, 2013b), Marinacci (2015), and Cerreia-Vioglio et al. (2020).
4Of course, DMs could use more logical links at the same time and focus on more subsets. We stay for simplicity

with the simpler case of a partition made of two elements of X.
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As an example, suppose that attributes are ”competence” of CEO and future ”growth” of the company,
with Xc = {high, low} and Xg = {γ : γ ∈ R}. In this case, X = Xc×Xg is a 2×R space with generic
element x = (i, γ), where i = (high, low) and γ ∈ R. Suppose that DMs develop the theory that a
competent CEO implies non-negative growth. This logical link is an implication (→) that reduces the
probability of the subset x = {(i, γ) : i = high and γ < 0} ∈ X.

DMs then focus on the coarser space X = {x, x}, where x is the complement of x, and they identify a
family of probabilistic models PΘ = {pθ(x)}θ∈Θ, where pθ(x) is the probability of x, and µ(θ), θ ∈ Θ,
is the likelihood of θ. DMs predict low pθ, and if the probablity of high pθ increases with θ (e.g. θ is
the expected value of pθ), the theory suggests that DMs only consider likelihoods µ(θ) such that θ is
”small”. For example, they pick Θ = {θ : θ < θ∗} where θ∗ is a threshold.

DMs may entertain different theories, which may stem from different logical links within the same
space of attributes or from different spaces of attributes. For example, DMs may predict that some
factors raise the competence of CEOs and their ability to sustain company growth. In this case, the
logical link is a conjunction (∧) and DMs focus on x = {(i, γ) : i = high and γ ≥ 0}. In this case, Θ
is a set of relatively ”high” θ. The case of different attributes is straightforward.

Table 1 is a ”truth table” in which the five basic logical links identify which element x ∈ X is true or
false when xc = high or xg = {γ : γ ≥ 0} are individually true or false. A belief on anyone of these
logical links will increase the joint (subjective) probability of all the true elements and lower the joint
(subjective) probability of all the false elements.

Table 1: Basic Logical Links

(xc = high; xg = {γ : γ ≥ 0}); T, F = true, false

inclusive exclusive
conjunction disjunction disjunction implication biconditional

xc xg xc ∧ xg xc ∨ xg xc ⊕ xg xc ⇒ xg xc ⇐ xg xc ⇔ xg
T T T T F T T T
T F F T T F T F
F T F T T T F F
F F F F F T T T

(and) (or) (not both) (if) (iff)

3.3 Value of theories

Once DMs fix Θ and µ(θ), they pick the action a that maximizes the classical subjective expected
utility criterion VΘ(a) =

∑
θ∈Θ v(a, θ)µ(θ), where v(a, θ) is the expected utility of the consequence of

action a and the subscript Θ denotes that V depends on the DMs’ theory, which sets the likelihoods
µ(θ) that they use to compute this expected value. The optimal action is a function of the theory,
and we write it as a∗(Θ). In turn, we can write the optimal expected utility of theory Θ as

VΘ =
∑
θ∈Θ

v(Θ, θ)µ(θ) (2)

To help intuition, take again our example where X = {x, x}, x = {(i, γ) : i = high and γ < 0}, DMs
predict that pθ(x) is small, and set for simplicity Epθ(x) = θ. In this case the expected utility v(Θ, θ)
is the average of the utilities that DMs enjoy under x and x weighted by the expected probabilities
θ and 1 − θ. The expected utility of theory Θ, VΘ, is the expected value of v(Θ, θ) across all models
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θ ∈ Θ weighted by the likelihood of each model µ(θ). A different logical link, possibly on a different
space of attributes, will focus on different x and x, a different probability pθ and θ = Epθ, a different
Θ and therefore a different µ(θ), producing a different VΘ.

In HFLI decisions, DMs can better approximate S and pτ . They have enough past information to
realize the relevant states, and to know pτ , or even if they do not know it, they can predict the
expected value of an action because any error that they make is just a random variation around pτ
(e.g., they do not know the variance of the distribution). In these cases, they do not need to develop
a theory because the distribution pτ is either known, or known up to a random error that does not
affect the predicted expected value.

In LFHI decisions, instead, past information is not available, and DMs have to perform a preliminary
step. They have to identify a theory, and then optimize actions. As we will see, this requires that
they experiment with alternative theories before they settle on one.5

3.4 Experiments

Through exploration of new attributes or different logical links, DMs identify partitions of the space
of attributes they focus upon, and identify different models θ and theories Θ. As they cannot conduct
experiments directly on their theories (that is on the prior π on the theory Θ), they run experiments
(mental or real) to update the probabilities µ(θ).

They change their prior π on Θ depending on their estimates of θ. In our example we set Θ = {θ :
θ < θ∗}. Suppose that DMs find θ close to θ∗ or even higher. They may start doubting about their
theory, and reduce their prior π. Alternatively, they may be confident about their theory, and reduce
their prior marginally or not at all. Similarly, they may lower their prior, or change it marginally,
if they find evidence of θ close to 0. In what follows we speak interchangeably of testing models or
theories. However, what we mean is that DMs test models but then use the information outcome of
the experiment to draw implications about their theories.

Changes in the prior π of the theory Θ from experimental evidence about models θ depend on behav-
ioral traits of DMs. DMs with greater ”methodic doubt”, or more generally who believe that their
theories are less reliable, are more likely to significantly update their priors on theory depending on
experimental outcomes.

Definition 6 (experiment). An experiment is a map f : Θ → ∆ (Y ) from models θ to probability
distributions f (y | θ), y ∈ Y , where f (y | θ) is the probability of receiving signal y under model θ.

An experiment determines a joint probability Pr on Y × Θ, where Pr (y, θ) = f (y | θ)µ (θ) is the
probability of observing y and that θ is the true parameter. The likelihood µ(θ) is the marginal, on
models, of this joint distribution, that is

Pr (θ) =
∑
y∈Y

Pr (y, θ) =
∑
y∈Y

f (y | θ)µ (θ) = µ (θ)

5DMs may be sensitive to the fact that they may not be working with the right theory. Their decision problem about
actions, which occurs after the decision to commit to a theory Θ, may then in any case consider the more general decision
criterion V φµ (a) =

∑
θ∈Θ φ (v(a, θ))µ(θ), where now θ, Θ and µ(θ) play the same role as s, S, and pτ in the classical

decision problem, and a is an action, again similar to the classical decision problem. Here φ is a strictly increasing and
continuous function (Klibanoff et al. 2005). If concave, φ accounts for a negative attitude toward the uncertainty over
the correct model θ. In what follows, we work for simplicity with the linear criterion. However, all our analyses below
apply under these more general specification as well.

6



The predictive distribution on signals is given by the marginal of Pr on signals,

Pr (y) =
∑
θ∈Θ

Pr (y, θ) =
∑
θ∈Θ

f (y | θ)µ (θ) = f (y)

Finally, the posterior distribution on models, denoted by µy, gives the probability of model θ upon
receiving signal y, or

µy (θ) = Pr (θ | y) = Pr (y | θ) Pr (θ)

Pr (y)
=

f (y | θ)µ (θ)∑
θ′ f (y | θ′)µ (θ′)

3.5 Choice of experiments

After the experiment the value of a theory upon receiving signal y is

Vf,Θ (y) =
∑
θ∈Θ

v (Θ, θ)µy (θ)

where subscripts f denotes that V now also depends on characteristics of the experiment f .

Before performing it, the expected value of experiment f on theory Θ is

Vf,Θ =
∑
y∈Y

Vf,Θ (y) f (y) =
∑
θ∈Θ

v (Θ, θ)
∑
y∈Y

f (y)µy (θ)︸ ︷︷ ︸∑
y∈Y f(y|θ)µ(θ)=µ(θ)

= VΘ

where the last step stems from the application of the Bayes theorem. This is important in that it
says that before running the experiment on a given theory DMs expect that the experiment yields the
same value of the theory expected before the experiment.

Therefore, experiments are worth only when DMs run them to compare more than one theory. If Θ̃
is the set of all theories identified by DMs, after the experiment the value of the optimal theory upon
receiving signal y is

Vf,Θ (y) = max
Θ∈Θ̃

∑
θ∈Θ

v (Θ, θ)µy (θ)

Before performing it, the expected value of experiment f is

Vf,Θ =
∑
y∈Y

f (y)Vf,Θ (y) =
∑
y∈Y

f (y) max
Θ∈Θ̃

∑
θ∈Θ

v (Θ, θ)µy (θ)

This value is greater than or equal to the value of the optimal theory without experimentation6

VΘ = max
Θ∈Θ̃

∑
θ

v (Θ, θ)µ (θ)

When a set of experiments F is considered, all with the same cost, the optimal choice of experiments
amounts to solve the (constrained) optimization problem

max
f∈F

Vf,Θ

6It is enough to observe that, for each θ ∈ Θ,
∑
y∈Y f (y)µy (θ) = µ (θ).
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Therefore DMs choose attributes, theories and experiments. Theory of framing decisions deals with
the ability to select attributes and logical links that lead to concentration of probabilities in a domain
(Cai & Lim 2022).Theory of the experiment deals with the ability to design experiments that yield
more precise outcomes at given cost. Better theories or experiments can produce quicker or greater
concentration of probabilities at lower cost. Better framing depends on both better theories of at-
tributes and their logical links and more informative or precise designs of experiments. DMs then
make decisions about actions on a set of states in which they have reduced uncertainty, and therefore
learned, to a greater extent.

4 A model of framing LFHI decisions

We develop a model of framing LFHI decisions that builds on the microfoundations discussed in the
previous section.

Without loss of generality, we assume that DMs consider two attributes X0 = {x0, x0} and X1 =
{x1, x1}, where xi and xi, i = 0, 1, represent two elements of the attributes.7

DMs posit a family of models or theory PΘ = {pθ}θ∈Θ over X0 ×X1, and we set for simplicity

Epθ (x0) = θ0 and Epθ (x1) = θ1

where, with a convenient abuse of notation, x0 ≡ {(x0, x1) , (x0, x1)} and x1 ≡ {(x0, x1) , (x0, , x1)}.
The parameter space is Θ = Θ0 ×Θ1, each parameter θ = (θ0, θ1) is a bidimensional vector, and the
joint likelihood is µ(θ0, θ1).

We make three assumptions to simplify the analysis.

Assumption 1. DMs can only run one experiment

Assumption 2. Attributes are independent under each θi. Therefore, the likelihood is a product
µ (θ0, θ1) = µ0 (θ0)µ1 (θ1)

Assumption 3. vi ≡ v(Θi, θi) = ln θi
1−θi ∼ N (µi, σ

2
i ), θi ∈ Θi, i = 0, 1

Assumption 1 avoids the complications of a continuation value. This assumption is not unrealistic.
On many occasions DMs only have one opportunity to test an important theory about their business
model, as in the example in the next section.

Assumption 2 implies that attributes are more likely to come from different spaces.8 The Bayesian
values of the two frameworks can thus be separated. DMs can take advantage of this feature by
experimenting separately on each θi. In particular, an experiment that depends only on θi can be
written as fi (· | θi) and is easily seen to update only µi through µiy (θi).

9 As a result, an experiment
on θi changes only the value of Vf,Θi (y).

Assumption 3 specifies an expected utility over the probabilities θi of the elements xi of the two
attributes X0 = {x0, x0} and X1 = {x1, x1}, given theory Θi. Higher θi raises expected utility because,
given theory Θi, DMs envisage actions that generate a higher expected value vi when the expected
probability of xi is higher. The normal distribution enables us to work with a specific functional form,

7Section 3.2 shows that these two elements could be the outcome of a partition of a space of attributes made of more
elements that logical links combine and separate in two elements.

8Formally, this assumption implies VΘi =
∑
θi,θj

v(Θi, θi)µ(θi, θj) =
∑
θi,θj

v(Θi, θi)µ
i(θi)µ

j(θj) =∑
θj
µj(θj)

∑
θi
v(Θi, θi)µ

i(θi) =
∑
θi
v(Θi, θi)µ

i(θi), where i, j = 0, 1.
9That is µy (θi, θ1−i) = µiy (θi)µ

1−i (θ1−i).
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so that we draw the implications of our model in a simple and intuitive way. The normal distribution
is, however, flexible depending on the parameters µi and σi, where µi ≡ VΘ in (2), and σi accounts
for the variability of vi. DMs with high σi believe that their utility vi can be very different from the
expected value. This occurs, typically, when theories are ”novel”, ”ambitious” or ”ground-breaking”.

DMs commit to the theory with the highest expected utility. To do so, they can run an experiment to
update µi.

10 The experiment employs ni observations {yi1, yi2, ..., yini}. For example, yij = ln
sij

1−sij ,

j = {1, 2, ..., ni}, are observations on vi in ni randomly generated groups in which DMs observe xi
or x̄i. Depending on whether the experiment is mental or real, sij is the share of pseudo- or real
observations of xi (vs xi) in each group j. In our example in the previous section, the groups could
be different clusters of firms with similar characteristics, and DMs look for the share of cases in which
a competent CEO is associated with negative growth.

Let yi ∼ N (µi,
σ2
yi
ni

), where yi =
∑ni
j=1 yij
ni

is the sample mean, σ2
yi
≡ σ2

yi
ni

, and σ2
yi is the variance of

the experiment. It is natural to assume that the sample mean has the same expected value µi of the
process. Normal distributions are conjugate priors, and after the experiment, when DMs observe yi,
the update is

E(vi | yi) = (1− ωi)µi + ωiyi (3)

where ωi ≡
σ2
i

σ2
yi

+σ2
i
. Before the experiment, DMs expect that the experiment yields µi because, using

(3), the expected value of yi before the experiment is µi.

Without loss of generality we set µ0 > µ1. Thus, before running the experiment, Θ0 is the most
plausible theory, that is the theory with the highest prior. However, DMs benefit from questioning
their theories and doubt about the strength of their priors they hold on them. This occurs by testing
alternative theories. Specifically, DMs can either run an experiment on theory Θ1 to estimate whether,
updated by the experiment, its prior becomes higher than the prior on Θ0, or an experiment on Θ0

to estimate whether, updated by the experiment, its prior becomes smaller than the prior on Θ1.

Whatever experiment DMs conduct, before the experiment they choose an optimal threshold y∗i such
that if they observe yi > y∗i , they focus on theory Θi, otherwise they focus on theory Θj , j = 1, 2,
j 6= i. Experiments command a cost c > 0 that, for simplicity, we assume to be fixed and the same
for the two experiments. The net expected values of the experiments on Θi, i = 0, 1, are then

Vi = µi (1− Φ∗i ) + ωiσyiφ
∗
i + µjΦ

∗
i − c (4)

where Φ∗i and φ∗i are the cumulative and density standard normal distributions evaluated at
y∗i−µi
σyi

.

The first two terms of this expression are the expected values E(vi, yi ≥ y∗i ), which we obtain by
integrating (3) over yi ≥ y∗i and by using the property of the truncated normal distribution that
E(yi, yi ≥ y∗i ) = σyiφ

∗
i . The third term captures the fact that, if the experiment yields yi < y∗i DMs

focus on the alternative theory which yields expected utility µj . After the experiment DMs choose y∗i
to maximize Vi. The first order condition is

− ωi(y∗i − µi) + (µj − µi) = 0 (5)

It is easy to see that the second order condition for a maximum is satisfied.

DMs choose one of three available experiments:

10As noted in Section 3.4, DMs can only run experiments on models: higher µi indicates higher expected probability
θi of the subspace xi identified by the logical links of DMs’ theory, which is associated with a higher prior on the theory.
Similarly, DMs associate higher variability of models σi to higher variability of their priors on the theory.
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� f∅, no draw from X0 or X1 - that is, no experiment, and DMs stick to the most plausible theory
Θ0

� f0, a single draw from X0 - that is, an experiment with attribute 0 or theory Θ0

� f1, a single draw from X1 - that is, an experiment with attribute 1 or theory Θ1

Proposition 1 (choice of experiment). Let σ̃2
i be the value of σ2

i that yields Vi = µi and g : σ2
0 → σ2

1

the function σ2
1 = g(σ2

0) defined implicitly by V1 = V0. DMs choose experiments as follows:

�

(
σ2

1 < σ̃2
1 and σ2

0 < σ̃2
0

)
⇒ f∅, that is DMs do not experiment and pick theory Θ0

�

(
σ2

1 < g(σ2
0) and σ2

0 ≥ σ̃2
0

)
⇒ f0, that is DMs experiment with attribute 0 or theory Θ0,

and pick theory Θ0 or Θ1 depending on whether the experiment yields y0 ≥ y∗0
�

(
σ2

0 < σ̃2
0 and σ2

1 ≥ σ̃2
1

)
or
(
σ2

0 ≥ σ̃2
0 and σ2

1 ≥ g(σ2
0)
)
⇒ f1, that is DMs experiment with

attribute 1 or theory Θ1, and pick theory Θ1 or Θ0 depending on whether the experiment
yields y1 ≥ y∗1

The function g(σ2
0) increases with σ2

0 and σ2
0 ≥ σ̃2

0 ⇒ g(σ2
0) > σ̃2

1

Proof. Since y∗i is chosen optimally, σ2
i affects (4) only by increasing ωi. Thus, σ2

i < σ̃2
i ⇒ Vi < µi.

This also implies that increases in σ2
1 require decreases in σ2

0 to keep V1 = V0, which implies that g is
an increasing function of σ2

0. To complete the proof we show that g(σ̃2
0) > σ̃2

1, The value of g(σ̃2
0) is σ2

1

when V1−V0 = 0 and V0 = µ0 because it is evaluated at σ̃2
0. Using (4), obtain ω1 =

c+(µ0−µ1)(1−Φ∗1)
σy1

φ∗1
>

ω̃1 =
c−(µ0−µ1)Φ∗1

σy1
φ∗1

, where ω̃1 is ω1 evaluated at V1 = µ1, that is when σ2
1 = σ̃2

1, and the inequality

stems µ0 > µ1. Since ωi increases with σ2
i then g(σ̃2

0) > σ̃2
1. �

Figure 1 provides a graphical representation of Proposition 1.

Figure 1: Experimenting with X0 vs X1

σ2
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σ2
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σ̃2
1

σ̃2
0

g(σ̃2
0)
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experiment with X0

(theory Θ0)
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(theory Θ1)
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According to this Proposition, DMs conduct an experiment if Vi > µi, i.e. a necessary condition is
that the net expected value of the experiment Vi, defined by (4), is higher than the expected value of
the theory µi before the experiment. If no experiment yields a higher net expected value, DMs do not
run any experiment and focus on Θ0. If only one experiment (Θ0 or Θ1) yields a higher net expected
value, DMs will run that experiment. If both experiments yield a higher net expected value, DMs will
run the experiment on the attribute or theory i such that Vi > Vj .

Proposition 1 shows that DMs are more likely to experiment with theories with higher variability.
The intuition is they generate more sizable updates of their priors. In our case, the experiment with
theory Θ0 can update µ0 below µ1, or the experiment with theory Θ1 can update µ1 above µ0.

We call experiments on Θ0 confirmation experiment because DMs want to make sure that the more
plausible theory is indeed more plausible. We call experiments on Θ1 falsification experiment because
DMs conjecture that the alternative less plausible theory can be more plausible. In confirmation
experiments DMs doubt about their more plausible theory. In falsification experiments they test les
plausible innovative theories that can become more plausible. Moreover, they are more likely to run
these tests the more radical is the innovation (higher variability of theory).

Proposition 2 (optimal experiment). The optimal experiment implies σyi = σi.

Proof. From (4) ∂Vi
∂σyi

=

[
−(µj − µi)

y∗i−µi
σ2
yi

+ ωi

(
y∗i−µi
σyi

)2
+

σ2
i (σ2

i−σ2
yi

)

(σ2
yi

+σ2
i )2

]
φ∗i . By replacing y∗i −πi from

(5) the first two terms of this expression cancel out, which implies ∂Vi
∂σyi

= 0 iff σyi = σi. It is easy to

see that the second order condition for a maximum is satisfied. �

Proposition 2 shows that the variability of the optimal experiment ought to match the variability of
the prior. The insight of this Proposition is that the design of experiments ought to reproduce the
conditions postulated by the prior. Thus, if the theory has highly variable outcomes, the experimental
design (its outcomes) ought to reproduce such a wide range. In practice, this corresponds to designing
”biased” experiments that enable DMs to detect ”extreme” or ”surprising” heterogenous effects (Cao,
Koning & Nanda, 2021; Gans, 2022)

Proposition 2 warns against the overprecision of experiments. If σyi > σi, a larger ni sets σyi = σi.
However, further increases in the scale of the experiment will reduce the value of the experiment,
making the experiment overprecise. Since overprecision implies σyi < σi, which raises ωi, it is easy
to see from (5) that in a confirmation test this reduces too much the threshold y∗0. DMs become too
lenient towards accepting the more plausible theory. In a falsification test, the threshold y∗1 becomes
too high, making DMs overly inclined to accept the more plausible theory.

The issue is particularly relevant when DMs develop theories with highly variable outcomes (high σ1)
that they test against a more plausible theory. In these cases, DMs should choose large σy1

to mimic
the variability of the theory, and then possibly increase ni if σy1

> σ1. Otherwise, they penalize radical
new theories.

5 Luxottica

Founded by Leonardo Del Vecchio in 1961, today EssilorLuxottica is the world leader in the design,
manufacturing and distribution of ophthalmic lenses, frames and sunglasses. By the mid 1980s, Del
Vecchio had already managed to make the company a European leader in the design and manufacturing
of eyeframes for spectacles (Camuffo, 2003).
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At the time, Del Vecchio had two alternative theories of how the industry would work and Luxottica
should look like in the future. We can think of these two theories as sets of attributes, connected by
logical links and characterized by a prior.

The first theory was that people with eyesight defects represented a large, steadily increasing, global
market. Spectacles correct eyesight defects and across the world opticians are the key actors in the
market as they deploy ophthalmologists’ prescriptions and assemble lenses and eye frames. If you
control opticians, you control the market. The larger the market, the larger production volumes. The
larger production volumes, the lower unit production costs because of learning curves and economies
of scale. The lower the production cost, the lower the prices that can be charged. Given product
quality, lower prices allow further market penetration and market share.

This theory rested on a few attributes that Del Vecchio believed to be relevant for the market of
eyeglasses as medical devices, most notably ”opticians are key actors in this market” ({yes, no}),
”scale-based production generates efficiency” ({yes, no}), and ”growth and profitability” ({high, low}).
He connected them logically, for example positing that ”access to opticians and large scale in-house
production implies growth and profitability.” In the framework of Section 3.2, he partitioned X =
{x, x}, with x = {yes, yes, low}, and theorized a set of θ ∈ Θ such that, if higher θ lowers the expected
pθ(x), expected utility v(Θ, θ) increases with θ as in Assumption 3 of Section 4.

The second theory was that people with aesthetic needs represented an emerging and potentially
large and global market and that eyeglasses could become a design accessory that complements one’s
personal lifestyle. The final customer is the key actor in the market since eyewear reflects personal
style, identity and image. Access to designer brands and retail allow direct contact, profiling and
control of the final customer. Customers’ control allows high margins (premium prices) and global
supply chain efficiency (low cost). This leads to business growth and profitability which create the
conditions for a dominant competitive position and further investment.

In this case, Del Vecchio also focused on a few attributes that he believed to be relevant in the market
for eyeglasses as a style accessory, most notably ”end customers are key actors in the market” ({yes,
no}) and ”customers respond to fashion-based price differentiation” ({yes, no}). He connected them
logically with the attribute ”growth and profitability ({high, low}) , for example positing that ”access
to final customers and to designer brands implies growth and profitability,” yielding the same logical
structure of the previous theory.

Till the 1980s Del Vecchio had developed and consolidated his first theory, grounding Luxottica’s
strategy on it. In the late 1980s he had signals about the potential of the second theory. The first
theory was still more plausible, in that it was based on deeper experience and information. However,
he started to consider on which of the two theories Luxottica should ground its strategy.

He could run a confirmatory test on the first theory, prompted by the rise of eye surgery as a potential
substitute for spectacles. This experiment, by providing information on future demand for spectacles,
would allow to update the prior on the first theory, checking whether it remained more plausible than
the second one. Alternatively, Del Vecchio could conduct a falsification experiment on whether people
would actually use eyeglasses not as a medical or functional device, but as a style accessory. This
experiment would allow to update his prior on the second theory, checking whether it would become
more plausible than the first one.

Del Vecchio’s first theory was already proven, dominant in the industry, and therefore reliable. He
believed that eye surgery might represent a challenge, but unlikely to disrupt the market. In the
language of our model, this theory Θ exhibited low σ2.
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In contrast, the second theory (”eyewear”) was novel, unexplored, and contrarian to the dominant
thinking in the industry (Felin and Zenger, 2017). Not only were the odds of creating a new market
based on it less obvious, but for these reasons the theory was also less reliable. In the language of our
model, this theory Θ was characterized by comparatively lower prior π and higher σ2.

Consistently with our model, Del Vecchio experimented with the alternative theory (eyewear) to
check whether it could become more plausible, rather than experimenting with the original theory
(eye surgery) to check whether it could become less plausible.

For example, he noted that, since 1970 Optyl, a small Austrian producer, was thriving thanks to a
licensing agreement with Christian Dior. It was an early and isolated case, but strongly signalled
that eyeglasses and fashion could be coupled in meaningful and valuable ways. Similarly, Del Vecchio
turned his attention to his competitor Safilo not to learn about its ordinary actions, but intrigued by
a somewhat minor action: the 1984 acquisition of Optifashion, a small Italian producer who pioneered
the idea to connect eyeglasses and fashion becoming a portfolio of licensing agreements with fashion
brands like Missoni, Laura Biagiotti, Ferr‘e and Gucci. This provided a signal about the fact that
states related to ”eyewear” were becoming increasingly likely and potentially valuable.

Del Vecchio also conducted other relatively more precise (and costly) experiments, raising the bar of
acceptance of the alternative theory. For example, the first licensing agreement with Armani (in 1988)
and a few acquisitions of small sunglasses producers (Briko and Persol) were more stringent tests of
the higher plausibility of the eyewear theory.

These experiments updated his prior on the alternative theory, raising it up to the point that it became
more plausible.

Since then Luxottica’s strategies changed significantly into accelerated external growth through licens-
ing agreements with iconic fashion brands -like Armani, Bulgari, Chanel, Dolce & Gabbana, Prada and
Versace-, the acquisition of large retail chains like Lenscrafters and Sunglass Hut and the acquisition
of iconic brands like Persol, Ray Ban and, later, Oakley.

6 Conclusions

Our framework leaves several open questions for future research.

We do not provide a theory of how DMs identify, select, and combine attributes and logical links
to formulate and rank theories. Relatedly, it would be important to investigate the determinants
of learning speed. How quickly strategists explore alternative theories can represent a source of
competitive advantage.

Our analysis assumes identity between DMs and firms. Future research could develop the organiza-
tional implications of our framework, investigating how firms develop routines, design organizations
and build management systems that allow the framework to be effectively, consistently and efficiently
deployed across complex organizations. In addition, our framework has the potential to pull together
multiple streams of strategy research, unify its language and provide a common ground to boost its
rigor and impact.

Finally, our research program has the important implication for practitioners that they can lever many
economic and management theories. DMs hardly use them in practice because they focus on decisions
about actions rather than on framing decisions that relies on theories. Scientific knowledge provides
the basis to make strategists domains richer and allow them to better craft their theories.
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Appendix: Additional Cases

Mimoto

Mimoto is a start-up located in Milan that planned to launch a scooter-sharing service in early 2010s.
(See also Spina, C. & Fronteddu, A., 2022. A Scientific Approach to Creating a New Business:
MiMoto. INSEAD Case Study 6710.)

The default option was to launch the service and park the scooters in fairly populated areas of the city
to capture demand. However, the founders thought they could do better. They figured that, unlike
cars and bicycles, which are used by a vast share of the population, scooters face a more inelastic
demand. Some people like them, while others will never use them. Thus, they conjectured that first
they had to find the right target customers, and then identify locations where to park scooters in
which they are more likely to find the target customers.
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The focus on target customers provides the basis to identify the key attributes. For instance, Mimoto’s
founders excluded that they faced uncertainty about models of payment. Car- and bicycle-sharing
had already tested payment apps that were easily adaptable to the scooter-sharing business.

Their theory was that ideal target customers have three features: they have to be young, with ability
to pay, and mobility needs. This translates into the following space of attributes:

Xy = {yes, no}; Xatp = {yes, no}; Xmn = {yes, no} X = Xy ×Xatp ×Xmn

Since all three conditions have to apply (conjunction), they partitioned X in two subsets:

x = {(y, y, y)} X \ x = all other 7 subsets

Based on this logic, they identified college students (CS) as their ideal target customer because they
satisfy all three criteria.

To outline the decision problem that would follow this exploration phase, consider this linear demand

Qz = γz − γ · P + εz

where Qz is demand in a given period of time (day) in a given location (“zone”) z of the city,
γz = γCSCSz + γOTOTz, CSz and OTz are, respectively, the number of college students and all other
customers in location z, γCS and γOT are weights of demand by CS and OT , P is price, γ is the
impact of price change, and εz is a random stochastic term.

The parameter γOT is the benchmark from the family of models P0 (with prior π0) about the use of
scooters by any generic individual in the population. The alternative family of models P1 (with prior
π1) is about γCS , and the theory of this alternative family of models is that γCS > γOT . Note that this
is equivalent to theorizing that demand for the service is more likely when all three conditions apply,
i.e. when x = {(y, y, y)}: in this case, college students represent the case of demand that corresponds
to the subset x = {(y, y, y)} of the space of attributes X.

Mimoto’s founders run experiments to update their expected value of γCS which is the model that
informs them about their prior π1 on the theory that ideal target customers have the three features
discussed above. The logic of the experiment is that customers have to find scooters nearby when they
need them, which implies that in order to test hypothesis about γCS founders have to compare the use
of scooters located near colleges, where they are more likely to find students, with the use of scooters
parked randomly in the city. If γCS > γOT , there has to be higher usage of scooters near colleges.

The experiment failed to show that parking near colleges raise demand. This prompted Mimoto’s
founders to go back to theory to find a new model. They figured out that the key attribute is not
mobility per sè. College students have regular class schedules that make their mobility predictable.
This implies that they can plan their mobility in advance, and therefore the scooter service suffers
from competition from private and public transportation. For instance, students can check public
transportation schedules and plan accordingly, or they get experience about private parking near
universities, such as knowing where to park at what time or subscribing to private parkings.

They revised their theory arguing that ideal target customers have to have these three features alto-
gether: young, ability to pay, unpredictable mobility needs. This led to a revised space of attributes

Xy = {yes, not}; Xatp = {yes, not}; Xumn = {yes, not} X = Xy ×Xatp ×Xumn

Since all three conditions have to apply, partition X in two subsets:

x = {(y, y, y)} X \ x = all other 7 subsets
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Now founders realize that the ideal target customers are young professionals (YP) who move unpre-
dictably during working hours, which changes the model specification of demand by location to

γz = γY PY Pz + γOTOTz

where Y Pz and OTz are the number of Y P and “others” (OT ) in z ∈ Z. The uncertainty is about γY P ,
and, in line with what we did for γCS , Mimoto’s founders now want to collect evidence on whether
γY P > γOT . The default theory is still that there is no ideal target customer, and scooters can be
parked randomly wherever customers leave them.

The design of the new experiments on γY P was similar to the previous one. Mimoto’s founders
re-parked used scooters downtown, where it is more likely to find young professionals, and compared
usage with a random allocation of scooters in the city. The experiment showed that parking downtown
yields higher average usage than the standard option.

Mimoto set on this theory (γY P > γOT ), which prompted them to solve a standard decision problem
about actions. Specifically, the actions are now choices of the number of scooters xz to be parked
in different locations z ∈ Z of the city, and the price of the service. Assuming monopolistically
competitive conditions, Mimoto chose these actions by solving the following problem

max
{P,xz}

E
∑
z∈Z

P min (Qz, xz)− c (xz)

where c(xz) is the cost of parking xz scooters in location z, Qz is the linear demand defined earlier
with γz = γY PY Pz + γOTOTz, and apart from a random error the expectation is over γY P > γOT ,
which is the theory on which Mimoto’s founders committed after the experiment.

In this program we assume that γOT , Y Pz, OTz, z ∈ Z, are given. Models γY P ∈ ΓY P = {γY P : γY P >
γOT } are equivalent to θ1 ∈ Θ1 in the text, and the likelihood µ(γY P ) is equivalent to µ(θ1). The
program yields optimal actions P and xz as functions of the theory ΓY P (and therefore likelihoods
µ(γY P )), γOT , Y Pz, and OTz, z ∈ Z. Given γOT , Y Pz, OTz, if founders estimate a higher probability
of higher γY P (that is, they find evidence about models with higher γY P ), they increase their optimal
choice of xz in locations with higher Y Pz, and expect higher returns to higher xz in these locations.

Mimoto succesfully implemented the strategy that we described in this section. Over the past decade
it succesfully expanded in Milan, and then in similar cities, Turin and Genoa. In 2020 Mimoto was
succesfully acquired by Helbiz a larger international smart mobility company.

Li Jalantuùmene (”The Gentlemen”)

Li Jalantuùmene (”The Gentlemen”) is a high-end restaurant opened in the early 2000s by the chef
Gegè Mangano in Monte Sant’Angelo in the Apulia region in Italy. Monte Sant’Angelo is a religious
site that grew large scale religious tourism and related restaurant and hospitality services.

Gegè focused on an alternative strategy: high-end cuisine. He developed and tested the theory that
exclusive dining experiences and, hence, perception of scarcity raise demand for high-end restoration.
He worked with two attributes: scarcity Xs = {yes, no} and demand Xd = {high, low}. The space
of attributes is X = Xs × Xd = {(y, h), (y, l), (n, h), (n, l)}. A high probability of (y, l) falsifies the
implication that scarcity raises demand.

His experiment was to reject, for some time, a sizable fraction of calls for reservations by claiming that
he was fully booked. The logic of the test was that rejections raise the sense of scarcity, and therefore,
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if scarcity matters, rejections raise the number of future calls, which is what he observed. The outcome
of the experiment allowed him to update downward the expected probability of (y, l) and raise his
prior about his theory that scarcity raises demand. He then pursued his high-end cuisine project
rather than the standard mass-tourism service. Today Li Jalantuùmene is a successful business.
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