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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) and Structural Vector Autoregres-

sions (SVAR) models play a complementary role in modern macroeconomic analysis.

In particular, DSGE model analysis relies on SVAR evidence for several purposes.

First, SVARs are employed to guide the construction of DSGE models. Indeed, the

empirical analysis of the transmission mechanism of a particular shock can provide use-

ful insights about what type of frictions should be included in the theoretical setting.

For instance, a hump-shaped response of consumption or investment to technology

shock estimated in a SVAR may be suggestive of the presence of habit-formation in

consumption or investment adjustment costs.

Second, SVARs are used as an empirical tool to validate economic theories (see

Canova (2007)). Validation essentially entails the comparison of the theoretical re-

sponses with those estimated in SVARs where the shock of interest is identified using

a limited set of restrictions implied by the DSGE model. If the empirical and theo-

retical impulse response functions are similar, under some reasonable criterion, then

the transmission mechanism of the shock implied by the DSGE is successfully vali-

dated. Otherwise, some features of the model must be modified. For example, Gal̀ı

(1999) investigates the response of hours to technology shocks estimated in a SVAR to

assess the empirical support of RBC and New Keynesian models (see also Christiano

et al. (2007)). Canova and Paustian (2011) assesses the validity of models with rule-

of-thumb consumers and show that, to match the SVAR response of consumption to

government spending shocks, an unrealistically high share of rule-of-thumb consumers

is required.

Third, SVAR models are used in impulse response functions matching estimation,

see Guerron-Quintana et al. (2017) and the vast literature cited therein. Within this

approach, the DSGE model parameters are estimated by minimizing the distance be-

tween the implied theoretical responses and the SVAR responses of a given shock of

interest.

In this paper, we urge the use of Structural Dynamic Factor Models (SDFM) as

empirical tool to complement DSGE models analysis. The most compelling reason

is that the log-linear solution of a DSGE model has a factor model structure. This

ensures consistency between the theoretical and the empirical model. Furthermore,

we also claim that the SDFM are better suited for this analysis than SVAR models

since the latter may be subject to two major issues which can seriously undermine the

comparison between the data and the theory.

First, there is no guarantee that the variables used in the SVAR contain the infor-

1



mation needed to estimate the shock and its impulse response functions. This problem

is often referred to as nonfundamentalness or informational deficiency (Forni et al.

(2019)). When the variables are not sufficiently informative, the theoretical responses

may differ substantially from those of the SVAR, not because the theory is incorrect,

but because the SVAR is incorrect. This problem has received much attention in

the literature and at least two solutions have been put forward. Fernández-Villaverde

et al. (2007) provides a verifiable condition to understand whether a set of variables

included in the DSGE admits a SVAR representation. Forni et al. (2019) provides a

DSGE model-based measure to assess whether a given VAR specification can be used

to estimate a single shock of interest and its impulse response functions. A third solu-

tion is suggested here: using a factor model in place of a VAR solves the problem, since

factor models are not affected by informational deficiency ((Forni et al., 2009),Forni

et al. (2020)).

But there is a second problem which the literature has largely ignored: the pres-

ence of measurement errors. Many macroeconomic variables, like GDP or prices, are

unquestionably measured with error. If this is the case, the impulse response functions

obtained from a SVAR are biased, see Lippi (2020). Not only, in presence of mea-

surement error, the methods discussed above to establish the consistency between the

SVAR and the DSGE model are no longer valid. The presence of measurement error,

apart from distorting the IRF itself, brings the problem of information back.1

To understand why the SDFM model performs well, notice that the log-linear rep-

resentation of the DSGE model postulates a VAR for the state variables in terms of

the structural shocks. So if the state variables were observed, the empirical strategy

closest to the DSGE model would be simply to identify structural shocks with a VAR

for the state variables. This is obviously unfeasible because the state variables are

generally not observed. The SDFM provides however a consistent estimator, the prin-

cipal components, of the factors. The factors are statistical objects with the property

of spanning the same space spanned by the state variables of the model. This implies

that using a VAR for the factors, as it is done in the factor model, is equivalent to

the best strategy, i.e. using a VAR for the states. This is the ultimate reason why the

factor model is successful in estimating the structural shocks and the impulse response

functions. With the factor model approach, on the one hand, the measurement error

is no longer an issue because the factors are free of measurement error; on the other

hand, the lack of information is not an issue, since the shocks are estimated using all

1A measurement error is often added to DSGE variables to be consistent with the data when

estimating the model using likelihood function techniques. This is perfectly fine. The problem with

the measurement error arises when using SVARs to compare impulse response functions.
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the relevant information, i.e. the information contained in the state variables of the

model.

We start off our analysis by illustrating theoretically the link between DSGE models

and factor models. Using artificial data generated from a modified version of the DSGE

model in Blanchard et al. (2013) we evaluate the validity of the factor model as a tool

for assessing DSGE models. The responses obtained using the SDFM are very accurate,

almost identical to the theoretical ones. On the contrary, when using SVAR models

accurate estimates are obtained only when there is no measurement error and the

variables are informationally sufficient for the shock.

As an application, we validate a New Keynesian theory of the transmission of

technology shocks. We focus on both news and surprise technology shocks. The

theoretical model is the same model used in the Monte Carlo simulations. The surprise

and news shocks are identified assuming that they are the only two shock driving TFP

in the long run. Furthermore, while the surprise shock affects TFP on impact, the

news shock does not. The identification is taken from Beaudry and Portier (2006) and

it is in line with the model’s restrictions.

As far as the news shock is concerned, the theoretical responses of real economic

activity variables are quite in line with the empirical ones. The model slightly over-

predicts the effects on consumption, but for GDP investment and hours the responses

are similar both in terms of shape and magnitude. However, the model does a poor job

in terms of inflation and interest rate. Indeed while in the data the shock generates

a large drop in both variables, in the model the two variables barely react. The

finding confirms those in in Kurmann and Otrok (2017) about the difficulty of the

New Keynesian model in generating the observed dynamics of inflation following a

news shock.

The theoretical dynamics of the surprise shock are similar to those estimated in

the factor model. The main inconsistency is again the larger response of consumption

in the model. Particularly striking is the response of hours. The model captures well

the change in the sign of the response, negative for the first quarters after the shock

and then turning positive. Unlike for the news shock, here the response of inflation in

the model is very similar to the empirical one.

We also compare our baseline validation with that performed using a SVAR. The

SVAR would lead to very different conclusions. As far as news shocks are concerned,

the estimated responses of real variables are much larger than those of the theoretical

model. So one would conclude, unlike using the factor model, that the DSGE model

actually underestimates the true responses. For the surprise shock, the SVAR evi-

dence suggests specifying the surprise shock as a temporary shock to TFP, opposite to
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the factor model evidence. The result is particularly interesting as it illustrates how

conclusions can be radically different using factor models or SVARs.

The remainder of the paper is organized as follows. Section 2 presents a theoretical

discussion of the consequence of the presence of measurement error and nonfundamen-

talness in SVAR. Section 3 presents the results of the simulations. Section 4 discusses

the results. Section 5 concludes.

2 DSGE and dynamic factor models

In this Section we discuss the relationship between DSGE models and Structural Dy-

namic Factor Models (DFM), and present the results of some Monte Carlo simulations.

2.1 The dynamic factor model

Let xt be a n-dimensional vector of economic variables. A rigorous definition of a

High-Dimensional Dynamic Factor Model requires that the vector xt is part of an

infinite-dimensional vector, so that we can make assumptions by letting n tend to

infinity, see Forni et al. (2000), Stock and Watson (2002a,b), Bai and Ng (2002). Here,

making reference to the version in Forni et al. (2009), we limit ourselves by recalling

the main features of the model.

We assume that the variables xit are co-stationary, possibly after detrending, and

can be represented as

xit = χit + ξit, i = 1, . . . ,∞, (1)

where the following assumption hold.

(DFM1) The variables ξit, called idiosyncratic components, are weakly correlated across

different i’s. The formal condition is an asymptotic one: the eigenvalues of the variance

covariance matrix of the ξ’s are bounded as n goes to infinity. The ξ’s are interpreted as

containing local-sectoral variables plus measurement errors, thus mainly measurement

errors for aggregates like consumption, GDP, the general industrial production index.

With this interpretation some cross covariance may occur among the ξ’s.

(DFM2) The variables χit are called the common components. Given t, the χ’s, for

i ∈ N, span a finite-dimensional space, whose dimension is r. This implies that there

exists an r-dimensional vector Ft, weakly stationary, such that

χit = λi1F1t + · · ·+ λirFrt = ΛiFt or χt = ΛFt, (2)

where χt is the n-dimensional vector of the χ’s and Λ, the factor loading matrix, is

n× r.
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The coordinates of Ft are called the static factors and (2) the static representation

of the common components. Moreover, the factors Ft are pervasive, in that all of them

affect, with a few possible exceptions, all the variables xit and have a non-singular

covariance matrix.

(DFM3) The idiosyncratic components are orthogonal to the factors at all leads and

lags. Thus ξit is orthogonal to χjs for all i, j, t and s.

We postulate that the common components χit and the factors Ft , are driven by a

q-dimensional vector of structural macroeconomic, or common, shocks ut, with q ≤ r.

Precisely:

(DFM4) The r-dimensional vector Ft has the VAR representation2

Q(L)Ft = εt = Sut, (3)

where Q(L) is a stable polynomial matrix of order p with Q(0) = I and S is a r × q

matrix of constants.

Equation (3) implies that the structural shocks belong to the information space

spanned by the VAR residuals, so that the factors are informationally sufficient for ut

(i.e. the structural shocks are fundamental for Ft).

By inverting (3) and using (2), we get the impulse response function representation

xt = ΛQ(L)−1Sut + ξt = Φ(L)ut + ξt. (4)

where Φ(L) is the matrix of structural impulse response functions.

2.2 Factor model representation of a DSGE model

Suppose that the data generating process is a DSGE model which admits the following

the state-space representation, known as the ABCD representation (see Fernández-

Villaverde et al. (2007)),

st = Ast−1 +But (5)

χt = Cst−1 +Dut (6)

where ut is a q-dimensional vector of structural shocks, χt is a n-dimensional vector of

economic variables, st is anm-dimensional vector of stationary state variables (q ≤ m),

A, B, C and D are conformable matrices of parameters, and B has a left inverse B−1

such that B−1B = Iq.

2The existence of a VAR representation for the factors is perfectly compatible with cointegration

among the variables in the panel, see Forni et al. (2020).
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From the ABCD representation we derive another representation to make explicit

and clear the link between the DSGE model and the factor model discussed in the

previous sub-section. From equations (5) and (6) we get

χt = Gft (7)

where G =
(
DB−1 C −DB−1A

)
and ft =

(
s′t s′t−1

)′
. The vector ft has the VAR

representation

ft = Ãft−1 + B̃ut (8)

with Ã =

(
A 0m

Im 0m

)
, B̃ =

(
B

0m

)
, Im is the m-dimensional identity matrix and 0m

a m × m matrix of zeros. Unlike representation (2)-(3), representation (7) is not

necessarily minimal (i.e., the representation of the model with the smallest number of

factors), since the covariance matrix of ft, Σf , may have reduced rank r < 2m. We

can easily derive the minimal representation. If (7) is not minimal, then there exist a

2m × r matrix P such that ft = PFt, where Ft has a nonsingular covariance matrix.

Equations (7)-(8) reduce to the minimal representation

χt = ΛFt (9)

Ft = QFt−1 + Sut (10)

where Λ = GP , Q = P−1ÃP , S = P−1B̃, P−1 being a left inverse of P . There are

two important remarks to notice about representation (9)-(10). First, Ft = P−1ft

spans the same information space as ft = (s′t s
′
t−1)

′, so that Ft contains all the relevant

information about the DSGE dynamics. Second, Ft follows the VAR representation

(10), where, in general, the residuals have reduced rank, i.e. q < r.

By inverting the VAR for Ft, we get the MA representation

χt = Φ(L)ut = Λ(I −QL)−1Sut, (11)

where Φ(L) is the matrix of impulse-response functions. Assuming that the economic

variables are observed with error, we obtain

xt = ΛFt + ξt = Φ(L)ut + ξt, (12)

where ξt is a vector of measurement errors. By comparing (4) and (12) it is seen that,

when the variables are observed with error, the linearized DSGE model has a factor

model representation with Q(L) = I −Q.

Notice that the existence of a factor model representation is always ensured inde-

pendently of the values of the parameters of the matrices A, B, C and D. This is not
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the case for the existence of a VAR representation for χ, see Section 3. This points to

the factor model as the natural empirical model to validate and complement DSGE

analysis.

In practice, one can compare the empirical impulse response functions estimated

with the factor model for a given shock to those of the DSGE. Under the null that

the DSGE is the DGP, the two should be similar. If not, this suggests some sort of

misspecification of the DSGE model.

2.3 Identification and estimation of the factor model

As already observed, Λ and Ft are not unique; however, under the above assumptions

χt = ΛFt = ΛQ(L)−1εt is unique. To get an MA representation with q orthonormal

shocks we observe that the covariance matrix of the VAR residuals can be represented

as Σε = VMV ′, where M is the q × q diagonal matrix having on the diagonal the

q non-zero eigenvalues of Σε and V is the r × q matrix having on the columns the

corresponding eigenvectors. Then, defining W = VM−1/2, vt =W ′εt and R = VM1/2

we get the representation

χt = ΛQ(L)−1Rvt. (13)

The above representation is a fundamental MA representation with orthonormal shocks.

Starting from the above representation we can get the structural shocks as ut = H ′vt,

where H is a q × q orthogonal matrix (see Rozanov (1967), pp. 56-7; see also Section

3.2 in Forni et al. (2009)). The corresponding matrix of impact effects S is obtained

as S = RH. Lastly, the determination of the matrix H can be obtained by imposing

restrictions on the impulse response functions of the χ’s, i.e.

Φ(L) = ΛQ(L)−1RH,

such as zero impact or long-run effects, just in the same way as in standard VAR

analysis. Of course, we can identify a single shock along with its impulse response

function by limiting ourselves to determining just a single column of the matrix H.

Coming to estimation, we first transform the variables to get a stationary vector

xt and estimate the number of static factors to get r̂. Then we estimate the static

factors themselves by means of the first r̂ ordinary principal components of the x’s,

and the factor loadings by means of the associated eigenvectors. Precisely, let Σ̂x be

the sample variance-covariance matrix of xt: our estimated loading matrix Λ̂ is the

n× r matrix having on the columns the normalized eigenvectors corresponding to the

first largest r̂ eigenvalues of Σ̂x, and our estimated factors are F̂t = Λ̂′xt.
3

3Notice that the factors Ft and the loadings Λ are not identified, since given any non-singular r× r
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Second, we set a number of lags p̂ and run a VAR(p̂) with F̂t to get estimates of

Q(L) and the residuals εt, say Q̂(L) and ε̂t.

As a third step, having an estimate q̂ of the number of dynamic factors, we obtain

an estimate of the non-structural representation (13). Let Σ̂ε be the sample covariance

matrix of ε̂t. We first estimate the matrices V and M , by computing the largest q̂

eigenvalues and the corresponding eigenvectors of Σ̂ε; then we compute R̂ = V̂ M̂1/2

and v̂t = M̂−1/2V̂ ′ε̂.

Finally, we obtain an estimate of H by imposing suitable identification restrictions

on the estimated impulse response functions. The estimates of the structural impulse

response functions is given by Φ̂(L) = λ̂Q̂(L)−1Ŝ, where Ŝ = R̂Ĥ. The structural

shocks are estimated as ût = Ĥ ′v̂t.

For the consistency of this estimation procedure see Forni et al. (2009), Proposition

3.

To get the confidence bands, we bootstrap the estimated VAR residuals ε̂t and use

Λ̂ and Â(L), along with the initial conditions F̂1, . . . , F̂p, to construct the artificial

series χ1
t . Then we add the estimated idiosyncratic components ξ̂t = xt− χ̂t to get the

artificial series x1t = χ1
t + ξ̂t and estimate the model to get the IRFs Φ̂1(L). We repeat

the procedure m times to get Φ̂j(L), j = 1, . . . ,m. Finally we take suitable percentiles

of the IRFs distribution for each horizon.4

2.4 Simulations

We assess the validity of the factor model as an empirical tool to validate DSGE models

using two simulations. More specifically, we investigate whether the factor model is

able to correctly capture the effects of the news shock using a version of the DSGE

model studied in Blanchard et al. (2013). To be consistent with the vast majority of

DSGE models we assume, unlike the original version, that information is perfect.

The economic model is a medium scale DSGE equipped with all the frictions that

are considered necessary to capture the persistence of macro data: habit persistence,

matrix M , we have χt = Λ∗F ∗
t , where Λ∗ = ΛM−1 and F ∗

t = MFt. Hence, strictly speaking, we do

not estimate Ft and Λ but a basis of the space spanned by Ft and the corresponding factor loading

matrix. This however is not a problem in the present context since we are only interested in the

product χt = ΛFt, which is identified.
4Estimation of the DFM entails the estimation of a VAR for the factors, which are stationary. One

might wonder if this does not lead to cointegration problems. The answer is no. The reason is that in

the DFM the spectral density matrix of the factors is singular. For singular vector variables, unlike the

standard non-singular case, (a) I(1) variables (in our case the cumulated sum of the factors) are always

cointegrated; despite this, (b) a (finite order) VAR for I(0) variables (in our case the factors) does

exist, except very special cases. For a broader discussion see Forni et al. (2020). The first simulation

in Section 2.4.1 can be regarded as an illustration of this point.
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adjustment costs to investment, sticky prices, sticky wages, etc. While we defer all

the details of the model to Appendix, the process for total factor productivity (TFP)

deserves a brief discussion here to understand how the news shock is defined and

modeled. We assume that TFP, denoted at, follows the process:

at = at−1 + Pt + Tt (14)

Pt = ϕPt−1 + ϵt−4 (15)

Tt = ρTt−1 + ηt (16)

where Pt is the news component of TFP and ϵt is the news shock with four periods

of anticipation. Tt is the surprise component of technology, driven by the surprise

shock ηt. A number of parameters is calibrated following Blanchard et al. (2013) and

Kurmann and Otrok (2017), see Table 2 in the Appendix. The parameters of the shock

processes are estimated, see Appendix and Table 3.

As mentioned above, the news shock and its IRFs are taken as our target for the

validation exercise.

2.4.1 Large samples

We first assess the performance of the DFM in large samples. First, from the DSGE

model we generate all states and stationary endogenous variables. TFP is taken in

first differences. The shocks are Gaussian i.i.d. with variance equal to the variance

resulting from the estimates of the DSGE model (see Appendix). To estimate the factor

model, we need a large number of time series. For this purpose, we generate additional

series. Each new series is constructed as a linear combination of the stationary model

variables (states and endogenous variables) with coefficients randomly drawn from a

uniform distribution with support between −1 and 1. We then add an i.i.d. Gaussian

measurement error ξit to each variable χit. The measurement errors are independent of

each other and independent of the variables. We scale the size of measurement errors

in such a way that the ratio ki = Var(χit)/Var(xit), the fraction of the variance of

the observed stationary series accounted for by the true series, is ki = 0.9. We apply

this procedure to get 100 artificial datasets of length T = 5000 and cross-sectional

dimension N = 2000.

To identify the news shock we impose the following restrictions: (a) the surprise

shock is the only shock having a non-zero impact effect on TFP, implying that the

news shock has a zero impact effect on TFP; (b) the news and the surprise shocks

are the only shocks affecting TFP 40 periods after the shock.5 These restrictions are

5Using longer horizons for identification does not change the results.
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sufficient to identify both technology shocks and are fully consistent with the model.

We normalize the size of the shock by imposing that the estimated and the theoretical

responses of TFP at horizon 40 are equal.

The test by Alessi et al. (2010), henceforth ABC, indicates 15 static factors in all

datasets. So, we set r = 15. We also set q = 7, the true number of common shocks. We

include 4 lags in the VAR for the factors, pF = 4. With this parameter specification,

we estimate the factors using the first 15 principal components, identify the shock as

described above and estimate the IRFs for all artificial data sets.

Figure 1 plots the results of the simulation. Between the blue dashed lines lies the

68% of the empirical distribution of the IRFs estimated with the DFM, the blue solid

line being the theoretical IRF. The DFM performs extremely well, with the theoretical

IRFs always laying within the confidence bands.6

2.4.2 Small samples

Turning to small samples, we set T = 235 and N = 228, which are the time-series

and cross-sectional dimensions of the dataset we will use in our empirical application.

The data are generated as above, but now for each dataset, we use the ABC test for

the number of static factors and the Akaike Information Criterion (AIC) to select the

number of lags in the VAR for the factors. As for the number of dynamic factors,

again we stick to the true number of factors q = 7.

Figure 2 reports the results. Again, the blue dashed lines include the 68% of the

empirical distribution of the IRFs estimated with the DFM, the blue solid line is the

theoretical IRF. The DFM performs well as before, with the theoretical IRFs always

laying within the confidence bands. Of course, the bands are much wider than the

large sample case.

3 Validation through SVAR models

As mentioned in the introduction, common practice in existing studies is to use SVAR

to complement DSGE analysis. In this section we spend some words to warn about

the potential danger of this practice arising from lack of information of the SVAR

specification and the presence of measurement error in the observable variables.

6Notice that the cumulated factors are cointegrated, since we have 15 variables driven by 7 shocks.

Estimating a VAR for the factors produces excellent results, as discussed in footnote 4.
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3.1 Potential pitfalls with SVARs

Assume that the true model is (11) and the data xt = χt are free of measurement

error. Let x̃t be a subset of xt used in a SVAR to estimate the shock of interest uit and

its impulse response functions. In order for the comparison between the theoretical

IRFs of uit with those obtained from a SVAR to be meaningful, it must be the case

that the structural shock and its impulse response functions can be obtained using

the appropriate combination of the Wold residuals and the Wold impulse response

functions of the VAR. In other words, x̃t has to be informationally sufficient (see

Forni et al. (2019)) for uit, or equivalently, uit must be fundamental for x̃t. When this

is not the case, obviously the comparison between the SVAR and the theoretical IRF

is meaningless.

Forni et al. (2019) show that x̃t is informationally sufficient for uit when the

unexplained-variance ratio in the regression of uit on the model-implied Wold inno-

vations, δi, is zero (exact sufficiency) or close to zero (approximate sufficiency). So,

when δi is close to zero, then one can use the SVAR estimated responses to validate

the DSGE. Furthermore, when δi is close to zero for all of the shocks in ut, then the

SVAR is able to recover all the elements in ut. This case is equivalent to the poor

man’s condition of Fernández-Villaverde et al. (2007) being satisfied.

Unfortunately, the absence of measurement error is an unrealistic assumption for

many macroeconomic aggregates, like prices or GDP. When some of the variables

are affected by measurement error, the results in Forni et al. (2019) and Fernández-

Villaverde et al. (2007) no longer hold. This means that there is no useful guide to

understand which variables are informationally sufficient for the shock of interest.

A second consequence is that, when variables are measured with error, the impulse

response functions obtained from the SVAR are biased, the error contaminating dy-

namically the effects of macroeconomic shocks. So, in presence of measurement error,

even the responses obtained from a SVAR which would be informationally sufficient

absent the measurement error, would deliver wrong IRFs.

The elementary example below is sufficient to give an idea of the consequences of

measurement errors for SVAR analysis. Let the economic model consist of only one

variable χt, one unit-variance structural shock ut and the structural equation

χt = (2.5 + 1.2L)ut (17)

Suppose that χt is measured with an error ηt, which is a white noise process with

σ2η = 2.31, orthogonal to the white noise ut at all leads and lags, so that we observe

xt = (2.5 + 1.2L)ut + ξt. (18)
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It is easily seen that

xt = (3 + L)vt, (19)

where vt is a unit-variance white noise. The question is: what is vt? For example, if

χt is the rate of change of productivity and ut the technology shock, can we say that

vt is just ut + eωt for some e, so that we can claim that, after all, vt is the technology

shock plus a measurement error? The answer is an emphatic no. From (18) and (19)

we obtain

vt =
2.5 + 1.2L

3 + L
ut +

1

3 + L
ξt. (20)

Thus vt is a moving average including all past values of ut and ξt, not a combination

of their current values only. The situation is much worse in multivariate models. Lippi

(2020) shows that, in general, the structural shocks estimated with the SVAR are not

only contaminated dynamically by the measurement error, they are also contaminated

by other structural shocks. For instance, what is supposedly estimated to be a tech-

nology shock, turns actually out to be a dynamic combination of the technology shock,

the measurement error and other non-technology shocks.

3.2 Simulations

We use few simulations to illustrate the problems discussed above. We use the same

DSGE model as in the previous section and the same identificantion conditions.

3.2.1 Large Samples

Simulation 1 - The first simulation exercise assesses the ability of SVARs to recover the

true impulse response functions in the most favorable case: informational sufficiency

and no measurement errors. Using the theoretical model, we generate 100 different

datasets with T = 5000 observations. Shocks are drawn from a Normal distribution,

with zero mean and variance equal to the estimated one. For each dataset we estimate

a VAR with 12 lags including the following seven variables: TFP, GDP, consumption,

investment, hours worked, inflation, interest rate. We follow the prevailing practice in

empirical VAR analysis and estimate the VAR in levels. Using these variables in the

DSGE model, the measure of informational sufficiency for the news shock is δ = 0.0096,

so that the information in the 7-dimensional vector used in the VAR is sufficient to

recover both the news shock and the corresponding IRFs. In Figure 3 we report the

68% bands of the empirical distribution of the estimated impulse responses (dashed

lines), together with the true ones (solid lines). As expected, the VAR does extremely

well. The theoretical responses always lie within the bands, which are extremely tight,
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owing to the large sample size.

Simulation 2 - In the second simulation, we use the same VAR specification but we

add measurement errors. Let χ̃it, i = 1, . . . , 7, be the 7 variables used in the previous

simulation, and let χit = χ̃it if χ̃it is I(0), χit = χ̃it − χ̃i,t−1 if χ̃it is I(1). We add a

stationary measurement error to each variable χit: xit = χit + ξit and cumulate those

series entering the VAR in levels. Thus, the measurement error is I(0) for variables

I(0) and I(1) for variables I(1). We scale the size of the measurement error by the

ratio ki =
V ar(χit)
V ar(xit)

= 0.9. As in the previous section, we generate 100 dataset of length

T = 5000. A VAR with 12 lags is estimated and the news shock is identified as before.

Figure 4 reports the 68% bands of the empirical distribution of the estimated IRFs

(dashed lines), together with the true ones (solid lines). The figure clearly shows that

there are important biases in the estimated IRFs, the true responses laying outside

the bands in many cases. The bias is particularly severe for hours worked at horizons

0 to 5 periods, and for the interest rate on impact.

Simulation 3 - We now assess the implications of information insufficiency for the

estimated SVARs. To do so, we consider a specification including TFP and investment

without measurement error. The specification is chosen only for illustrative purposes.

With this 2-dimensional vector, the informational sufficiency measure for the news

shock is δ = 0.96, meaning that a VAR with TFP and investment provides virtually

no information to recover the news shock. The simulations are identical to the previous

ones: 100 datasets of length T = 5000 and the same scheme to identify the news shock.

Figure 5 reports the 68% bands of the empirical distribution of the estimated IRFs

(dashed lines), together with the true ones (solid lines). The bias is huge and the

VAR responses are totally misleading. In particular, the VAR largely overestimates

the response of investment to the news shock. As for TFP, we observe the reverse:

the SVAR underestimate the true response although the bias is less severe than for

investment. When both problems are present (results not shown here), the results are

even worse.

3.3 Small Samples

We repeat simulations 2 and 3 using small samples, i.e. by setting T = 235 and

N = 228 and report the results in Figures 6 and 7. Again we show the 68% bands

of the empirical distribution of the estimated impulse responses (dashed red lines),

together with the true ones (solid lines). For the sake of comparison we also add the

68% bands of the empirical distribution obtained from the DFM (dashed blue lines).
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The distortions observed in large samples for the SVAR are present also in small

samples. In particular, in the 7-variable VAR all real economic activity variables are

overestimated. Similarly, In the 2-variable model, the responses of TFP and investment

are largely overestimated.

4 Application: Technology shocks in the New Keynesian

model

In this Section we validate the transmission mechanism of TFP news and surprise

shocks of the New Keynesian model discussed before. Kurmann and Otrok (2017)

show that the the New Keynesian model has an hard time in replicating the impulse

response functions of inflation and interest rate obtained in a SVAR model. Here we

revisit the application through the lenses of a factor model and we extend the analysis

to consider also the surprise technology shock.

The TFP process is the one presented in equations (14)-(16) and it is set in order to

match the empirical impulse response functions of the factor model, giving the model

the best chance to fit the data.

4.1 Data and number of factors

We consider the US quarterly dataset of Ng and McCracken (2016) over the sample

1960:Q1-2019:Q2 and add the TFP variables from Fernald (2012), that are needed to

identify the shocks. In total we have 228 series. All series have been transformed to

reach stationarity.

We start by testing for the number of static and dynamic factors. The ABC test

for the number of static factors delivers r = 5 or r = 10. The log version of the test

by Hallin and Lǐska (2007) for the number of dynamic shocks q, delivers q = 6. In the

baseline specification therefore we set r = 10 and q = 6. We use four lags in the VAR

for the factors, pF = 4.

4.2 Results

The factor model is estimated using the standard FGLR procedure described above.

We identify the news and surprise shocks using the same restrictions used above which

for clarity we report here. (a) The surprise shock is the only shock having a non-zero

impact effect on TFP, therefore the news shock has a zero impact effect on TFP. (b)

The news and the surprise shocks are the only shocks affecting TFP 40 periods after

the shock. These restrictions are implied by the model.
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Figures 8 and 9 report the results for the news shock. Black solid lines represent the

point estimates of the factor model, gray areas are the 68% confidence bands, purple

circled lines are the theoretical responses implied by the DSGE. For the news shock,

we normalize the size of the shock by imposing that the response of TFP at horizon

40 is the same in the two models, and equal to the empirical one. For the surprise

shock, we normalize the responses by imposing that the impact of TFP is the same in

the two models and equal to the empirical one.

As far as the news shocks is concerned, the theoretical responses of real economic

activity variables are quite in line with the empirical ones. The model slightly over-

predicts the effects on consumption, but for GDP, investment and hours the responses

are similar both in terms of shape and magnitude.

The model, consistently with the data, is able to generate the so-called news driven

business cycle. TFP is unchanged for the first four periods, slowly increasing after-

wards, but investment, consumption, GDP and hours immediately increase. Agents

anticipate future increase in TFP and this, due to the presence of habit persistence,

investment adjustment costs and variable capacity utilization, move the four variables

in the same direction, a necessary requirement for a shock generating cyclical fluctua-

tions.

However the model does a poor job in terms of inflation and interest rate. Indeed,

while in the data the shock generates a large drop in both variables, in the model the

two variables barely react. The result confirms the finding in Kurmann and Otrok

(2017), obtained using a SVAR, about the difficulty of the New Keynesian model in

generating the observed dynamics of inflation following a news shock.

The theoretical dynamics of the surprise shock, see Figure 9, match pretty well

those estimated in the factor model. Again, an inconsistency is represented by the

larger response of consumption in the model. Particularly striking is the response of

hours. The model captures well the change in the sign of the response, negative for

the first quarters after the shock and then turning positive. Unlike for the news shock,

here the response of inflation in the model is very similar to the empirical one.

We turn now the attention to the variance decomposition reported in Table 1.

According to the DSGE model, news shocks are dominant for fluctuations in real

variables while surprise shocks play a more modest role. The news shock explains

69% of GDP variance after eight quarters while the surprise shock only 15%. As in

Blanchard et al. (2013) the shock explains the bulk of consumption fluctuations while

it is less important for investment.

The picture is very different by inspecting the numbers obtained with the factor

model. Here the role of the two shocks is much more balanced, each of the shock ex-
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plaining around 30% of GDP fluctuations. Still, the news shock is more important than

the surprise shock for fluctuations in consumption and investment, but quantitatively

its role is more limited relative to the theoretical model. The news shock explains

around half of the fluctuations in consumption and about 40% of the fluctuations in

investment.

Summing up, while the theory does a quite good job in terms of surprise shock

dynamics, it misses important features of the transmission mechanisms of news shock.

First, the response of nominal variables are at odds with those observed in the data.

Second, the model places too much importance on news shock.

4.3 SVAR results

For the sake of comparison, and to illustrate potential differences in the conclusions

about model validity, we compare the model responses to those estimated in a SVAR.

Figures 10 and 11 plot the SVAR responses (point estimates dashed yellow lines

and 68% confidence bands) and the model responses (lines with purple circles) for the

news and surprise shock, respectively. Using the SVAR, one would conclude that the

model substantially under-predicts the responses of real economic activity variables,

in particular GDP consumption and investment, to a news shock.

But even more strikingly, the SVAR estimates the surprise shock to be temporary,

instead of permanent. So, the SVAR evidence would suggest to specify a stationary

process for the surprise shock. In addition, the responses of real activity variables to

the surprise shock are much smaller than in the model, suggesting that the model does

a poor job in matching the dynamics of the surprise shock. The result is particularly

interesting in that it illustrates how conclusions can be radically different using factor

models or SVARs.

As for the variance decomposition (Table 1, bottom panel), the SVAR attributes a

disproportionally large role to to news shocks for business cycle fluctuations and a very

small role to surprise technology shocks. At an horizon of 8 quarters, the news shock

explains around 60% and 74% of the variance of GDP and consumption respectively,

while the surprise shock explains only around 8% of the variance of the two variables.

The former result is in line with DSGE predictions (but in contrast to what found with

the DFM).

5 Conclusions

There is, by now, a widespread agreement about the importance of using time series

models to validate and to guide the construction of DSGE models. The reason is that
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time series models are much less restricted than DSGE models and the comparison of

the empirical and theoretical impulse response functions might provide useful infor-

mation about the empirical support of the transmission mechanisms embedded in the

DSGE. To do so, the literature has largely relied on SVARs models.

In this paper, we argue that Dynamic Factor Models are better suited to be the

empirical counterpart of the DSGE model. The most compelling reason is that DSGE

models have a factor model structure. This ensures consistency between the theoretical

model and the empirical one. In addition, factor models are not subject to two major

problems: the information set misspecification, i.e. what variables to put in the VAR,

and measurement errors. The two can create important distortions in the estimation

of impulse response functions. This means that there is the risk of rejecting the model

using SVARs even when the model is true. We show this using a set of simulations.

As an application, we test a theory of news shocks in a medium-scale DSGE model.

We show that the model qualitatively matches the responses quite well, although

quantitatively tend to overestimate the empirical responses of GDP, consumption and

hours worked to the news shock.
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Tables

DSGE

DSGE

Variables News Surprise

h=0 h=4 h=8 h=40 h=0 h=4 h=8 h=40

TFP 0.00 0.32 7.90 71.88 100.00 99.68 92.1 28.12

GDP 30.94 57.99 67.58 82.98 14.37 17.53 18.05 12.96

Consumption 77.12 80.24 82.22 87.25 13.6 14.55 14.46 11.36

Investment 9.63 23.02 38.73 71.68 2.76 7.12 11.55 12.07

Hours 30.56 69.44 78.60 83.14 15.45 1.95 2.37 2.33

Inflation 1.14 2.42 2.23 6.26 8.31 16.37 18.01 11.01

Interest rate 0.12 0.72 1.09 2.68 0.76 3.49 5.72 5.69

Factor model

Variables News Surprise

h=0 h=4 h=8 h=40 h=0 h=4 h=8 h=40

TFP 0.00 4.19 3.61 36.59 77.77 67.08 65.95 38.98

GDP 4.80 10.79 29.83 33.24 43.90 35.73 37.82 32.58

Consumption 11.39 42.87 51.49 47.92 10.81 13.56 12.57 8.67

Investment 0.39 23.14 43.00 51.72 6.07 11.99 15.36 19.89

Hours 3.05 17.60 24.51 30.03 4.47 8.42 9.37 8.82

Inflation 55.44 61.71 59.92 46.90 15.01 14.89 13.20 10.18

Interest rate 44.66 34.65 28.49 31.46 0.40 5.97 4.88 6.10

VAR

Variables News Surprise

h=0 h=4 h=8 h=40 h=0 h=4 h=8 h=40

TFP 0.00 0.39 0.40 37.18 100.00 90.55 86.42 43.38

GDP 7.18 39.03 59.54 80.54 6.57 7.51 8.74 4.16

Consumption 54.51 66.51 74.08 82.92 2.32 6.71 7.15 2.10

Investment 6.65 30.48 43.73 63.69 0.23 4.32 5.73 4.12

Hours 0.04 13.72 29.72 33.90 17.47 4.10 2.62 5.25

Inflation 26.16 38.62 39.16 30.55 2.70 2.78 6.61 18.05

Interest rate 10.63 8.01 5.96 10.35 3.27 3.10 3.18 10.40

Table 1: Variance decomposition at horizon h.

20



Figures

0 10 20 30
0

0.5

1

1.5

TFP

true
F

0 10 20 30
0

0.5

1

1.5

2

GDP

0 10 20 30
0

0.5

1

1.5

2

Consumption

0 10 20 30
0

1

2

3

4

Investment

0 10 20 30
0

0.5

1

1.5

Hours

0 10 20 30

-0.02

-0.01

0

0.01

0.02

0.03

Inflation

0 10 20 30
-0.02

-0.01

0

0.01

0.02

Interest rate

Figure 1: Identifying a news shock - Factor model with r = 15, q = 7, pF = 4.

Bold line: true response. Dashed lines: 68% percentiles of the distribution of 100

simulations. N = 2000, T = 5000.
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Figure 2: Identifying a news shock - Factor model. Bold line: true response. Dashed

blue lines: 68% percentiles of the distribution of 100 simulations, DFM. The DFM

is estimated with q = 7, r chosen with ABC test, pF chosen with Akaike. Sample:

T = 235. k = 0.9.
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Figure 3: Identifying a news shock. 7-dimensional VAR (δ = 0.0086) with 12 lags, no

measurement error. Bold line: true response. Dashed lines: 68% percentiles of the

distribution of 100 simulations. T = 5000.
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Figure 4: Identifying a news shock. 7-dimensional VAR (δ = 0.0086) with 12 lags,

measurement error: k = 0.9. Bold line: true response. Dashed lines: 68% percentiles

of the distribution of 100 simulations. T = 5000.
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Figure 5: Identifying a news shock. 2-dimensional VAR (δ = 0.96) with 12 lags, no

measurement error. Bold line: true response. Dashed lines: 68% percentiles of the

distribution of 100 simulations. T = 5000.
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Figure 6: Identifying a news shock - Factor model vs 7-dimensional VAR (δ = 0.0086).

Bold line: true response. Dashed blue lines: 68% percentiles of the distribution of

100 simulations, DFM. The DFM is estimated with q = 7, r chosen with ABC test,

pF chosen with Akaike. Dotted red lines: 68% percentiles of the distribution of 100

simulations, VAR. The VAR is estimated with pV AR chosen with Akaike. Sample:

T = 235, N = 228. k = 0.9.
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Figure 7: Identifying a news shock - Factor model vs bivariate VAR (δ = 0.96).

Bold line: true response. Dashed blue lines: 68% percentiles of the distribution of

100 simulations, DFM. The DFM is estimated with q = 7, r chosen with ABC test,

pF chosen with Akaike. Dotted red lines: 68% percentiles of the distribution of 100

simulations, VAR. The VAR is estimated with pV AR chosen with Akaike. Sample:

T = 235, N = 228. k = 0.9.
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Figure 8: Identifying a news shock: DFM vs. DSGE. The DFM is estimated with r =

10, q = 6, pF = 4. Bold line: response from the DFM. Gray area: 68% bootstrapped

confidence intervals from the DFM.
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Figure 9: Identifying a surprise shock: DFM vs. DSGE. The DFM is estimated

with r = 10, q = 6, pF = 4. Bold line: response from the DFM. Gray area: 68%

bootstrapped confidence intervals from the DFM.
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Figure 10: Identifying a news shock: VAR vs. DSGE. The VAR is estimated with

pV AR = 4. Bold line: response from the VAR. Gray area: 68% bootstrapped confidence

intervals from the VAR.
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Figure 11: Identifying a surprise shock: VAR vs. DSGE. The VAR is estimated with

pV AR = 4. Bold line: response from the VAR. Gray area: 68% bootstrapped confidence

intervals from the VAR.
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Appendix

The model follows closely Blanchard et al. (2013). The representative household has

the utility function:

Et

[ ∞∑
t=0

βt
(
log (Ct − hCt−1)−

1

1 + ς

∫ 1

0
N1+ς

jt dj

)]
,

where Ct is consumption, the term hCt−1 captures internal habit formation, and Njt

is the supply of specialized labor of type j. The household budget constraint is

PtCt + PtIt + Tt +Bt + PtC(Ut)K̄t−1 = Rt−1Bt−1 + Yt +

∫ 1

0
WjtNjtdj +Rk

tKt,

where Pt is the price level, Tt is a lump sum tax, Bt are holdings of one period bonds,

Rt is the one period nominal interest rate, Yt are aggregate profits, Wjt is the wage of

specialized labor of type j, Njt. R
k
t is the capital rental rate.

Households choose consumption, bond holdings, capital utilization, and investment

each period so as to maximize their expected utility subject to the budget constraint

and a standard no-Ponzi condition. Nominal bonds are in zero net supply, so market

clearing in the bonds market requires Bt = 0.

The capital stock K̄t is owned and rented by the representative household and the

capital accumulation equation is

K̄t = (1− δ)K̄t−1 +Dt [1−G(It/It−1)] It,

where δ is the depreciation rate, Dt is a stochastic investment-specific technology

parameter, and G is a quadratic adjustment cost in investment

G(It/It−1) = χ(It/It−1 − Γ)2/2,

where Γ is the long-run gross growth rate of TFP. The model features variable capacity

utilization: the capital services supplied by the capital stock K̄t−1 are Kt = UtK̄t−1,

where Ut is the degree of capital utilization and the cost of capacity utilization, in

terms of current production, is C(Ut)K̄t−1 , where C(Ut) = U1+ζ
t /(1 + ζ).

The investment-specific shock dt = logDt follows the stochastic process:

dt = ρddt−1 + εdt.

εdt and all the variables denoted with ε from now on are i.i.d. shocks.

Consumption and investment are in terms of a final good which is produced by

competitive final good producers using the CES production function

Yt =

(∫ 1

0
Y

1
1+µpt

jt dj

)1+µpt
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which employs a continuum of intermediate inputs. Yjt is the quantity of input j

employed and µpt captures a time-varying elasticity of substitution across goods, where

log(1 + µpt) = log(1 + µp) +mpt and mpt follows the process mpt = ρpmpt−1 + εpt −
ψpεpt−1.

The production function for intermediate good j is

Yjt = (Kjt)
α (AtLjt)

1−α ,

where Kjt and Ljt are, respectively, capital and labor services employed. The technol-

ogy parameter at = log(At) follows the process

at = at−1 + Pt + Tt (21)

Pt = ϕPt−1 + ϵt−4 (22)

Tt = ρTt−1 + ηt (23)

where Pt is the part of TFP driven by the news shock ϵt−4 and Tt is the part of TFP

driven by the surprise shock ηt.

Blanchard et al. (2013) treat explicitly the constant term in TFP growth by letting

At = Γteat , but calibrate Γ = 1.

Intermediate good prices are sticky with price adjustment as in Calvo, 1983. Each

period intermediate good firm j can freely set the nominal price Pjt with probability

1 − θp and with probability θp is forced to keep it equal to Pjt−1. These events are

purely idiosyncratic, so θp is also the fraction of firms adjusting prices each period.

Labor services are supplied to intermediate good producers by competitive labor

agencies that combine specialized labor of types in [0, 1] using the technology

Nt =

[∫ 1

0
N

1
1+µwt
jt dj

]1+µwt

,

where log(1+µwt) = log(1+µw)+mwt and mwt follows the process mwt = ρwmwt−1+

εwt − ψwεwt−1.

The presence of differentiated labor introduces monopolistic competition in wage

setting as in Erceg, Henderson and Levin, 2000. Specialized labor wages are also sticky

and set by the household. For each type of labor j, the household can freely set the

price Wjt with probability 1 − θw and has to keep it equal to Wjt−1 with probability

θw.

Market clearing in the final good market requires

Ct + It + C(Ut)K̄t−1 +Gt = Yt.

Market clearing in the market for labor services requires
∫
Ljtdj = Nt.
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Government spending is set as a fraction of output and the ratio of government

spending to output is Gt/Yt = ψ + gt, where gt follows the stochastic process

gt = ρggt−1 + εgt.

Monetary policy follows the interest rate rule

rt = ρrrt−1 + (1− ρr) (γππt + γyŷt) + qt,

where rt = logRt − logR and πt = logPt − logPt−1 − π, π is the inflation target, ŷt is

defined below and qt follows the process

qt = ρqqt−1 + εqt.

The model is solved and a log-linear approximation around a deterministic steady-

state is computed.

Given that TFP is non-stationary, some variables need to be normalized to ensure

stationarity. We define ĉt as

ĉt = log(Ct/At)− log(C/A),

where C/A denotes the value of Ct/At in the deterministic version of the model in

which At grows at the constant growth rate Γ. Analogous definitions apply to the

quantities ŷt, k̂t, k̂t, ı̂t. The quantities Nt and Ut are already stationary, so nt =

logNt − logN , and similarly for ut. For nominal variables, it is necessary to take care

of non-stationarity in the price level, so: ŵt = log(Wt/(AtPt)) − log(W/(AP )), rkt =

log(Rk
t /Pt) − log(Rk/P ),mt = log(Mt/Pt) − log(M/P ), rt = logRt − logR, πt =

log(Pt/Pt−1)− π.

Finally, for the Lagrange multipliers: λ̂t = log(ΛtAt)−log(ΛA), ϕ̂t = log(ΦtAt/Pt)−
log(ΦA/P ). Φt is the Lagrange multiplier on the capital accumulation constraint. The

hat is only used for variables normalized by At.

The first order conditions can be log-linearized to yield

λ̂t =
hβΓ

(Γ− hβ)(Γ− h)
Etĉt+1 −

Γ2 + h2β

(Γ− hβ)(Γ− h)
ĉt +

hΓ

(Γ− hβ)(Γ− h)
ĉt−1 +

+
hβΓ

(Γ− hβ)(Γ− h)
Et[∆at+1]−

hΓ

(Γ− hβ)(Γ− h)
∆at
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λ̂t = rt + Et[λ̂t+1 −∆at+1 − πt+1]

ϕ̂t = (1− δ)βΓ−1Et[ϕ̂t+1 −∆at+1] + (1− (1− δ)βΓ−1)Et[λ̂t+1 −∆at+1 + rkt+1]

λ̂t = ϕ̂t + dt − χΓ2 (̂ıt − ı̂t−1 +∆at) + βχΓ2Et (̂ıt+1 − ı̂t +∆at+1)

rkt = ζut

mt = αrkt + (1− α)ŵt

rkt = ŵt − k̂t + nt

Log-linearizing the accumulation equation for capital and the equation for capacity

utilization, yields

k̂t = ut +
ˆ̄kt−1 −∆at

ˆ̄kt = (1− δ)Γ−1
(
ˆ̄kt −∆at

)
+
(
1− (1− δ)Γ−1

)
dt + ı̂t.

Approximating and aggregating the intermediate goods production function over pro-

ducers and using the final good production function yields

ŷt = αk̂t + (1− α)nt

Market clearing in the final good market yields

(1− ψ)ŷt =
C

Y
ĉt +

I

Y
ı̂t +

RkK

PY
ut + gt

C/Y , I/Y and RkK/(PY ) are all equilibrium ratios in the deterministic version

of the model in which At grows at the constant rate Γ.

Aggregating individual optimality conditions for price setters yields the Phillips

curve

πt = βEtπt+1 + κmt + κmpt

where κ = (1− θpβ)(1− θp)/θp.

Finally, aggregating individual optimality conditions for wage setters yields

ŵt =
1

1 + β
ŵt−1 +

β

1 + β
Etŵt+1 −

1

1 + β
(πt +∆at) +

β

1 + β
Et(πt+1 +∆at+1)−

−κw
(
ŵt − ζnt + λ̂t + κwmwt

)
where κw = (1−θwβ)(1−θw)

θw(1+β)
(
1+ζ

(
1+ 1

µw

)) .

The log-linear model is estimated using Bayesian methods. Some parameters were

calibrated using the mean values estimated in Blanchard et al. (2013) and some us-

ing the values used in Kurmann and Otrok (2017). Table 2 reports the calibrated

parameters.
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Variables used in the estimation are the growth rates of output, consumption,

investment and real wages, hours, the inflation rate and the federal funds rate. The

choice of priors is very close to the one used in Blanchard et al. (2013). Exception

is made for the AR coefficients of the shocks, assumed here to be Normal with mean

equal to 0 and standard deviation equal to 0.5 (0.4 for the coefficient ρ related to the

transitory technology component) and for σd assumed here to be distributed as an

Inverse Gamma with mean equal to 5 and standard deviation equal to 1.5.

We use a simulated annealing procedure to obtain the mode of the posterior dis-

tribution. Table 3 summarizes the priors and the mode estimates of the parameters.7

7Results using the mean of the posterior distribution are equivalent to those using the mode.
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Calibrated parameters

ζ (elasticity of k utilization) 2.07 BLL

χ (I adj. cost) 5.5 BLL

h (habit persistence) 0.75 KO

ς (inverse Frish elast.) 3.98 BLL

θw (W stickiness) 0.87 BLL

θp (P stickiness) 0.88 BLL

γπ (π in Taylor rule) 1.003 BLL

γy (Y gap in Taylor rule) 0.0044 BLL

µp (SS P markup) 0.3 BLL

µw (SS W markup) 0.05 BLL

α (coeff. in prod. function) 0.19 BLL

Γ (TFP growth) 1 BLL

ψ (G/Y) 0.22 BLL

δ (K depreciation) 0.025 BLL

β (discount factor) 0.99 BLL

Table 2: Calibrated parameters following results in Blanchard et al. (2013) (last col-

umn: BLL) or Kurmann and Otrok (2017) (last column: KO).
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Estimated parameters

Parameter Prior Mode

ρr (i smoothing) Beta(0.5, 0.2) 0.74

ρ (technology surprise) N (0.0 , 0.4) −0.05

ϕ (technology news) Beta(0.5, 0.2) 0.96

ρq (monetary) N (0.0 , 0.5) 0.24

ρd (I specific) N (0.0, 0.5) 0.66

ρp (P markup) N (0.0, 0.5) 0.87

ρw (W markup) N (0.0, 0.5) 0.97

ρg (G) N (0.0, 0.5) 0.99

ψp (MA in P mkup) Beta(0.5, 0.2) 0.63

ψw (MA in W mkup) Beta(0.5, 0.2) 0.98

σε (permanent tech.) IΓ(0.5, 1.0) 0.09

ση (temporary tech.) IΓ(1.0, 1.0) 0.76

σq (monetary) IΓ(0.15, 1.0) 0.20

σd (I specific) IΓ(5.0, 1.5) 4.91

σp (p markup) IΓ(0.15, 1.0) 0.13

σw (w markup) IΓ(0.15, 1.0) 0.37

σg (gov exp.) IΓ(0.5, 1.0) 0.48

Posterior value at mode -1324.64

Table 3: Parameter estimates - mode.

38


