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Abstract
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market good is greater than its population share. Furthermore, greater connectivity and homophily
in the social network will concurrently increase the prevalence of niche-market goods. If there is a
strategic agent who wants to promote a niche good, she will invest more in influencing activities
than one promoting mass-market goods. When individuals choose their degree of homophily, we
show that niche-market individuals exhibit greater homophily than mass-market ones. Finally, we
address the issue of political polarization by extending our model to competition on a line with three
different political ideologies (left, middle, and right). We show that the pairwise advantage of the
middle ideology can enforce amplification of the middle type when it is the more prevalent type or
counteract the amplification of the extremes when these are more prevalent.
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Abstract

We develop a model of competing diffusions of goods on a social network. There
are two types of goods and individuals: mass-market (more prevalent) and niche-
market. We start with a general threshold rule and show that multiple equilibria
prevail. Then, when everyone uses a single friend threshold, we find that there is
a unique stable steady state and show that the adoption of a mass-market good
is greater than its population share. Furthermore, greater connectivity and ho-
mophily in the social network will concurrently increase the prevalence of niche-
market goods. If there is a strategic agent who wants to promote a niche good, she
will invest more in influencing activities than one promoting mass-market goods.
When individuals choose their degree of homophily, we show that niche-market
individuals exhibit greater homophily than mass-market ones. Finally, we address
the issue of political polarization by extending our model to competition on a line
with three different political ideologies (left, middle, and right). We show that the
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1 Introduction

The process by which new ideas and behaviors spread through a population has long been
a fundamental topic of inquiry in the social sciences. One key question concerns how
network structure favors the spread and survival of some products, ideas, behaviors, and
technologies over others. In this paper, we address this question by studying the diffusion
of two competing horizontally differentiated “goods” (e.g., products, ideas, technologies,
languages, political beliefs) that propagate through a network of individuals.

We develop a dynamic network model of diffusion in which individuals choose which
good to adopt in each period depending on how many of their connections in the network
have adopted the same product in the previous period. Individuals are either a mass-
market type (type M) or of a niche-market type (type N), whereby each type exhibits
a preference for adopting their own type of good; hence, goods are horizontally differ-
entiated. The distinguishing feature of the mass-market good is that there is a greater
share of the population which is of type M . If we think of technology adoption, then an
established technology (with a set of generally appealing attributes) may correspond to
the mass-market, while a technology with a specialised set of attributes (that appeal to
a minority of the population) may correspond to the niche-market. In terms of language,
the majority and minority correspond to a mass- and niche-market, respectively.

In our model, agents are embedded in a network described by a degree distribution
(i.e., the distribution of the number of friends in the population)1 and a level of homophily
αM and αN for each type (tendency for each type to be connected to/friends with a person
who is the same type). We take a mean-field approximation to study the diffusion on
the network where, in each period, an individual draws her friends at random from the
population. The type of each friend is determined by the level of homophily of the
individual and the relative fraction of each type in the population. Each individual
observes the choices of her friends from the previous period and then chooses which good
to adopt in the current period. As in many contagion models, agents use a threshold rule
(denoted by d(k)), which, in our case, determines for each type of agent i = M,N how
many of their k friends need to have adopted their own-type good in the previous period
for i to adopt that same good.

We start with a general threshold rule whereby the only restrictions we impose are
that d(k) is less than 50% of the total number of friends and is weakly increasing in k.2

For example, in the case k = 1, an individual adopts the good that they observe from
their single friend. We find that at least one of three types of equilibria exist: either an
“extreme” niche-market or mass-market equilibrium, whereby only one good survives in
equilibrium, or a mixed equilibrium, by which both competing goods prevail in steady
state. A key quantity for determining the stability of extreme or mixed steady states is
the number of friends of individuals who adopt their preferred product when they observe
a single friend adopting it. Networks that are sparse with respect to this quantity (either
because everyone has few friends or there are very few people who use a threshold of a
single friend) exhibit these extreme steady states. On the other hand, denser networks
(with respect to this quantity) exhibit stable mixed steady states.

We investigate some of the properties of our general threshold model through simu-

1For an overview of the network literature, see Vega-Redondo (2007), Newman (2010), Jackson (2008),
and Jackson et al. (2017).

2This implies that agents are more inclined to adopt goods of their own type because they require
less than 50% of their friends to be using the product.
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lations of a regular network with no homophily across different values of the threshold
d(k) = d for all k. We identify three main properties. First, the competing diffusions
tend to confer an advantage to the mass-market good whereby the steady state (when it
is unique (d = 1) or is the unique mixed steady state (d = 2, 3, 4)) amplifies the mass-
market good. Furthermore, when both extreme equilibria exist, the basin of attraction for
the mass-market extreme is larger than the niche-market extreme steady state. Second,
denser networks support mixed steady-state equilibria. Moreover, the basin of attraction
for the mixed steady state when it emerges is large, suggesting a distinct phase transition
in the behavior of our model. Third, higher thresholds (in which case goods are closer
substitutes) favor the extreme steady states—that is, mixed steady-states are less likely
to exist and, when they do, have smaller basins of attraction.

Our simulations suggest that our model has a uniquely stable steady state when d = 1.
Thus, in the second part of the paper, we focus on the case whereby d(k) = 1 for all k and
when the homophily parameter is the same for both types, such that αM = αN = α. First,
we establish that there is indeed a unique stable steady state, which is either an extreme
type-M steady state or a mixed steady state. The sufficient conditions that determine
which steady state prevails form a comparison of the expected number of friendships in
the population with a threshold that is a function of the model parameters. When the
network is relatively disconnected, then the mass-market good is the only good that is
adopted/observed in steady state. Above this threshold, the niche good survives, but
the mass-market good is always amplified by the social network—that is, the fraction of
mass-market (niche) adoption is greater (less) than the fraction of mass-market (niche)
individuals. In this case, we find that increasing the connectivity or homophily of the
social network reduces the prevalence/amplification of the mass-market good.

In applications where the “good” is information or a norm of behavior, we are also
interested in the differences in the observational patterns between the two types, not
just their respective adoption decisions, since these observations may influence their
views/opinions about alternatives that they themselves do not adopt. Our second set
of results focuses on the systematic differences in the observational patterns for the two
types of individual. We find that systematic differences arise through a combination of
two forces: (i) systematic differences in what each type of individual observes and (ii)
differences in the type of content that each type of individual adopts in steady state. Intu-
itively, increasing homophily acts through both channels and increases the differences in
what people observe. However, less obviously, a more dense network (through an FOSD
shift in the degree distribution) or a larger niche market also increases the differences in
what people observe through the second channel—that is, the change to the steady state
adoption behavior.

We extend our framework to study two strategic decision-making settings. First,
we consider how two influencing agents (the “influencers”) can promote the prevalence of
each type of good. In our model, an influencer of one type directly spreads observations of
their product among consumers to influence their adoption decision. The niche influencer
is shown to be relatively more effective at changing the behavior of niche individuals than
the mass-market influencer is at changing the behavior of mass-market individuals. Since
the returns are higher for the niche influencer (and we assume that neither agent has
a cost advantage), in equilibrium, the niche influencer invests more.3 Second, we allow

3This result that the niche agents exert the largest effort to “replicate” themselves is reminiscent
of some results in the literature on cultural transmission of values, beliefs, and norms (e.g., Bisin and
Verdier, 2001; Bénabou and Tirole, 2006; Tabellini, 2008). For example, in Bisin and Verdier (2001), with
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consumers to make a costly investment to increase the degree of homophily amongst their
own connections because they value observing their own type of product. We demonstrate
that, when the society is not sufficiently well connected, a steady-state equilibrium with
zero homophily exists. However, if the cost of homophily effort is low enough, there also
exists another equilibrium with strictly positive homophily. Moreover, if the society is
sufficiently connected, then, in an equilibrium with positive homophily, the niche-type
consumers exhibit greater homophily than mass-market-type consumers.

In the final part of the paper, we extend our model to three goods located on a line,
“left,” “middle,” and “right,” motivated by classical models of differentiated competition
on a line in political economy (goods are political ideologies/policies) and industrial orga-
nization (goods are products). We assume that each agent always prefers her own type,
but the middle good has a pairwise advantage over the other two more “extreme” goods
(left and right). We find that this pairwise advantage is a potential source of amplifica-
tion for the middle type; in particular, when there is an equal fraction of consumers of
each type (or a greater fraction of the middle type than either extreme), the stable steady
state amplifies the middle. On the other hand, when the extreme types are more preva-
lent than the middle, then, in sufficiently dense networks, the extremes become amplified
relative to the middle. As above, steady states, whereby a type is not adopted, occur in
sparse networks. When the fraction of people of the middle type is less than either of
the extreme types, then the two sources of amplification (greater prevalence and pairwise
advantage) counteract each other. When this is true in sparse networks, we find that the
stable steady state is highly sensitive to changes in the underlying model parameters and
can dramatically shift between steady states where either the middle type of goods floods
the market or the extreme types flood the market for small changes in the underlying
parameters.

2 Related literature

Our model contributes to different strands of the literature.

2.1 Threshold models of contagion

There is a large body of literature across economics, sociology, applied mathematics,
computer science and epidemiology that has developed network models of contagion with
thresholds. In this literature, two types of models have emerged: those in which the
network is fixed and perfectly observed and those in which the network is random and
unknown.4

2.1.1 Fixed networks

Granovetter (1978) and Schelling (1978) were the first to formulate basic mathematical
models for the mechanisms by which ideas and behaviors diffuse through a population.

two types, parents can exert effort to influence the “replication” of their type in the society. However,
in these models, there is usually no homophily and no explicit network, so that everyone meets everyone
with the same probability, and the density of the network has not impact on the reproduction of a given
trait.

4For an overview of both literatures, see Kleinberg (2007), Jackson (2008), Easley and Kleinberg
(2010), Jackson and Yariv (2011), Jackson and Zenou (2015), Pastor-Satorras et al. (2015), and Wang
et al. (2019).
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Granovetter (1978) proposed the linear threshold model, in which an individual becomes
active if and only if the current absolute number of active neighbors is equal to or exceeds
the corresponding threshold. Watts (2002) developed a novel threshold model (later
named the Watts threshold model) that showed that it is the fraction instead of the
absolute number of active neighbors that matters.

In economics, the seminal paper is that of Morris (2000), which built on earlier work
by Blume (1993), Ellison (1993), and Young (1998). The basic idea is as follows. Consider
a model with two actions: 1 and 0. Each agent has a certain number of friends, and the
benefits of taking action 1 (e.g., adopting a new technology) increase as an increasing
number of these other individuals adopt it. In such a case, this agent takes action 1 once
a sufficient fraction of her neighbors (threshold) has taken action 1. Morris (2000) found
that “cohesive” groups act as a barrier to diffusion because everyone in a highly cohesive
group has most of their friends within the group; thus, no one in the group will adopt
until others in the group also adopt, making it hard for the technology to penetrate the
group. In this context, Morris (2000) showed how the possibility of contagion depends
on the network structure.5

There are more recent papers that have shown the importance of network structure
in contagion. Reich (2020) showed how the size of complementarities moderates the role
of group cohesion, while Jackson and Storms (2018) studied how coordination incentives
divide the population into “behavioral communities.” Similarly, Leister et al. (2022)
found that networks can be partitioned into communities, in which agents with high
“social connectedness” are more likely to adopt—that is, agents who have a high degree
and who are connected to agents from other communities who also adopt.

2.1.2 Random networks

There is also a body of literature on diffusion and contagion in which the network is not
known and thus random.6,7 This approach uses a mean-field approximation; that is, it
assumes that the role of interactions at any instant depends only on the fraction of agents
who have adopted. These are in essence models of diffusion through random meetings,
rather than diffusion through a fixed network (as in Section 2.1.1).

Let us explain how these network models of diffusion work using Jackson and Yariv
(2005, 2007, 2011). In these models, agents play a coordination game with their neighbors,
and the authors analyzed the dynamics using tools from game theory. As stated above,
instead of a known network of interactions, in the random network literature, it is assumed
that players are unsure about the network that will be in place in the future but have
some idea of the number of interactions that they will have. In particular, the set of
players is fixed, but the network is unknown when players choose their actions. A player
knows her own degree k, when choosing an action, but does not yet know the realized
network.

5See also Acemoglu et. al. (2011).
6See, for example, the work by Pastor-Satorras and Vespignani (2000), Newman (2002), and Alon et

al. (2004).
7These models are related to other literature that is more common in epidemiology based on mod-

els in the form Susceptible-Infected, which includes Susceptible-Infected-Susceptible (SIS), Susceptible-
Infected-Removed (SIR), and their many additional variants. These models help to quantify important
aspects of disease transmission. They typically do not have an explicit network structure and are based
on random matching derived from exogenously specified probabilities of being in particular states (for
an overview, see Bailey, 1975; Anderson and May, 1991; Jackson, 2008).
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Jackson and Yariv (2006, 2007) studied diffusion properties using the more tractable
mean-field analysis. Mean-field models are examples of the more general class of models
based on population-level arguments, which have proven to be tractable and yielded
valuable insights. These models require the same treatment of players with the same
degree and cost structure, regardless of their position in the network. They show that the
strategies of players for adopting an action over the other can be represented by threshold
functions, which depend on the degree k and on the cost of adopting. In particular, if the
game is of strategic complements, then they show that agents take action 1 over action 0
if the fraction of neighbors among their k friends taking action 1 is above this threshold.
Jackson and Yariv then showed how changes in network structure, captured by the degree
distribution, affect this equilibrium (see also López-Pintado, 2006, 2008, 2012; Jackson
and Rogers, 2007; Galeotti et al., 2010; Campbell, 2013; Sadler, 2020).8

In all these models (fixed and random networks), contrary to our approach, the authors
have not examined how the network affects the competition between two actions and
under which condition both actions survive in a stable steady-state equilibrium.9 There
is a recent strand of literature in computer science and epidemiology that studies these
issues, which we review next.

2.1.3 Contagion and diffusion with competing actions

There is a body of non-economic literature that has studied the “survival” of competing
actions or goods. The crucial concept is cross-immunity, namely the possibility that being
infected by one pathogen confers partial or total immunity against others. Depending on
the network topology, for some values of the parameters, it is possible to find a steady
state in which the two processes coexist, each having a finite prevalence.10

Two important papers in this strand of literature are those of Wei et al. (2012, 2013)
who examine the intertwined propagation of two competing “memes” (or viruses, ru-
mors, products, etc.) across interconnected agents by extending the susceptible-infected-
susceptible (SIS) model to construct a novel propagation scheme. One of the contributions
of this paper is to introduce the notion of composite network, which is defined as a single
set of nodes with two distinct types of edge interconnecting them (i.e., multiplex net-
works).11 This network is random, and it is assumed that all nodes are passive and follow
the same propagation model. They show under which condition on the topology of both
networks either one meme or both memes survive in the stable steady-state equilibrium.
This research has extended previous models that either studied a single epidemic on a
single topology (e.g., Pastor-Satorras and Vespignani, 2002; Wang et al., 2003; Ganesh
et al., 2005; Beutel et al., 2012; Prakash et al., 2012a) or studied two pathogens, but on
the same topology and under the assumption that the two viruses appear one after the

8These kind of models have been applied to explain contagious failures that spread among financial
institutions during a financial crisis (Allen and Gale, 2000; Elliott et al., 2014), breakdowns that spread
through the nodes of a power grid or communication network during a widespread outage (Asavathi-
ratham et al., 2001), and the course of an epidemic disease as it spreads through a human population
(Anderson and May, 1991).

9In Jackson and Yariv (2005, 2007), there are some parameter values for which the two actions survive
in steady state, but this was not the focus of their paper.

10For an overview, see Pastor-Satorras et al. (2015) and Wang et al. (2019).
11See Sahneh and Scoglio (2014) and Yang et al. (2017), who also extended the SIS epidemic model

to a model with a competing pair of viruses over a two-layer network, where network layers represent
the distinct transmission routes of the viruses.
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other (Newman, 2005).12

We contribute to these different strands of the literature by introducing horizontal
differentiated heterogeneity in the types of agents and goods, which impacts on the way
information is transmitted and on the equilibrium characterization. In particular, hor-
izontal differentiation results in agents’ threshold rules being defined with respect to
own-type, whereby differing systematically between individuals of different types. It also
naturally leads us to consider a wide variety of questions that do not necessarily arise
in this strand of literature. In particular, we address the following new issues: (i) the
tendency for equilibria to systematically favor one or other product with respect to the
relative proportion of types in the population, (ii) the differences in the conditions that
lead to one or other extreme equilibrium emerging, (iii) the endogenous emergence of ho-
mophily through strategic decisions by individuals and the consequences of homophily in
the dimension of differentiation, (iv) the impact of competing self-interested influencers
that engage in influence activity to increase the prevalence of each type, (v) the notion of
amplification (non-amplification) of a type of good in steady state relative to the share of
those types in the population, and (vi) an extension to three-types to analyze the factors
that drive political polarization.

2.2 Learning on networks

Our paper is also related to the literature on learning in networks (for an overview of
this literature, see Jackson, 2008; Goyal, 2012; Möbius and Rosenblat, 2014; Golub and
Sadler, 2016) and, more generally, to the literature on sequential learning, in particular the
papers by Banerjee (1993), Ellison and Fudenberg (1995), Banerjee and Fudenberg (2004),
and, more recently, Wolitzky (2018) and Tabasso (2019). In this literature, successive
generations of agents use information from either the experiences or observations of the
choices of earlier generations to guide their own decisions and form their own beliefs.
By looking at the convergence of this dynamic process, different authors have shown
the conditions under which there is a reinforcement of opinions over time, which may
lead to polarization in steady state. For example, Golub and Jackson (2010), using the
DeGroot model in which agents correct their heterogeneous initial opinions by averaging
the opinions of their neighbors, showed that if the network is strongly connected, then
all agents in the network will converge to the same norm such that there will be no
polarization of beliefs and opinions in the long run.

Compared to this strand of literature, our model is quite different. First, each indi-
vidual does not form an opinion by averaging the opinion of her neighbors, as is usually
the case in the learning-in-networks literature. Here, the process of making a recom-
mendation is based on homophily and on a (strong) preference for one’s own type of
content. Second, we study market rather than individual effects and thus can examine
under which conditions niche-market goods emerge. Finally, because of the tractability
of our model, we can also study the impact of influencers on steady-state equilibrium and
how individuals choose their degree of homophily and extend the model to three types of
goods or political ideologies.

12See also Buldyrev et al. (2010) and Prakash et al. (2012b) who studied multiple virus propagation
on a simple fair-play single network and the effects of cascades in inter-dependent networks, respectively.
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2.3 Strategic communication on networks

There is a strand of literature on strategic communication on networks that models
not only the spread of conflicting news or beliefs on a network but also the underlying
incentives of agents to acquire and communicate them (Hagenbah and Koessler, 2010;
Ambrus et al., 2013; Galeotti et al., 2013; Calvó-Armengol et al., 2015; Bloch et al., 2018;
Bénabou et al., 2020; Egorov and Sonin, 2020).

Compared to this literature, in our model, not only is communication not strategic
but the modeling of the network is richer (for example, the network is a tree in Bloch et
al. (2018) and Bénabou et al. (2020)). More importantly, because we consider a general
degree disribution, we are able to examine the impact of the density of the network on
the diffusion and survival of the different goods in the steady-state equilibrium. Fur-
thermore, in our model, agents do not learn mechanically; they make decisions, albeit
not strategic ones. Indeed, by prefering one action over the other, we can determine
the threshold in terms of the number of friends taking an action under which agents
choose the same action. Also, because the model is relatively simple, we can extend it
to introduce strategic agents that promote their types, endogeneize homophily, consider
three goods or ideologies, and study the condition under which “extreme” ideology ideas
“contaminate” the population and survive in the long run. These issues have not been ad-
dressed by the strategic-communication-on-network literature. Thus, we view our model
as complementary to this strand of literature.

3 General model

We follow the random-network literature (e.g., Jackson and Yariv, 2005, 2007, 2011) by
assuming that players are unsure about the network they are facing but have some idea
of the number of interactions that they will have. To fix ideas, think of choosing between
a new and an old software program, either of which is only useful in interactions with
other people who have also adopted the same software, but without being sure of whom
one will interact with in the future.

3.1 Model

There is a unit mass of individuals who are either of a mass-market type (type M) or
niche-market type (type N). Mass-market type individuals have a preference for main-
stream goods13 (e.g., an incumbent software program), while niche-market type individu-
als have a preference for more specialized goods (e.g., a new software program). A fraction
ρ > 1/2 of consumers is of the mass-market type M , while 1 − ρ is of the niche-market
type N . Goods are horizontally differentiated in the sense that neither good is clearly
superior to the other (e.g., a new and an old software program, where the new program
is not “better” than the old one, it is just different). The distinguishing characteristic of
the mass-market good is that there is a greater share of the population that is of type
M .

13We use the term “good,” but, as in the non-economic literature, we could have used the term “meme,”
which the Merriam–Webster dictionary defines as “an idea, behavior, style, or usage that spreads from
person to person within a culture.” The term was coined by the evolutionary biologist Richard Dawkins
in his 1976 book, The Selfish Gene. Dawkins argued that the meme is to cultural transmission what the
gene is to biological transmission.
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Time is discrete t = 1, 2, . . .. In each period, an individual draws at random a number
of friends k from a distribution {pk}, and she observes their choice of good during the
previous period.14 An individual draws each friend uniformly at random from the measure
of similar types with probability αj, for j = M,N , and draws a friend uniformly at
random from the population with probability 1 − αj. In other words, we take a mean
field approach,15 such that each agent re-draws her neighborhood in every time period
randomly from the population (subject to some propensity to be matched to neighbors
of their own type). As stated above, this corresponds to an approximation of a situation
in which individuals have a large group of friends K but only observe a subset k << K
of them at each period of time.16 The parameter αj measures the extent of homophily
in friendships, since higher αj means that individual j = M,N is more likely to have a
friend of the same type.17 When αj = 0 for j = M,N , all friendships are drawn uniformly
at random from the population (no homophily), and when αj = 1 for j = M,N , all
friendships are between individuals of the same type.

Agents use a threshold adoption rule to decide which good to use in each period. In
period t, we assume that an individual adopts her own type of good provided that at least
d(k) of her friends were using it during the previous period t−1; otherwise she adopts the
other good. The threshold is given by a discrete function d(k) in the number of friends k
of an individual for which we assume d(k) is non-decreasing, d(k) ≤ k/2 for each k > 1
and d(1) = 1.18 Importantly, the assumption d(k) ≤ k/2 for each k > 1 embodies the
notion of horizontal differentiation in our setting (i.e., agents are more inclined to adopt
goods of their own type because they require less than 50% of their friends have been
using the product in the previous period in order to choose it in the current period).

This process is similar to the threshold contagion models with binary actions de-
veloped both in economics and in other fields (see Section 2.1) whereby, in the case of
strategic complements, there is a threshold d(k) such that if more than d(k) neighbors
choose action 1, then the player prefers to choose action 1; otherwise, the player chooses
action 0. Observe that, in our model, the goods are substitutes; that is, an agent chooses
to adopt one or other in each period. For example, agents choose between a new and an
old software program but do not use both concurrently. However, agents may switch be-
tween using one and the other over time. This is consistent with many models of cascades
and diffusion in networks in that agents may switch multiple times (Blume, 1993; Ellison,
1993; Young, 2006; Montanari and Saberi, 2010; Adam et al., 2012), which means that
choices are not irreversible.19

14We assume that everyone interacts with at least one person, such that p0 = 0, and a positive fraction
interacts with two or more people, such that p1 < 1.

15A mean-field version of a model is a deterministic approximation of the statistical system where
interactions take place at their expected rates. See Vega-Redondo (2007) or Jackson (2008) for some
discussion of these techniques in network analysis.

16It should be clear that the results of the model would not be affected if, instead of having agents
living forever and making adoption decisions at each period of time, we had assumed that each agent
was active in terms of consumption only during one period (when young) and then inactive in the second
period (when old) in which each agent recommends to her k friends (who are young) the good she has
consumed in the previous period. See Section 3.4.4 for more details.

17One of the most observed behavior is the tendency for individuals to predominantly interact with
people who are similar to themselves. This particular tendency –known as homophily or assortativity–
has a rich intellectual history in sociology (see McPherson et al., 2001, for a review of the literature
documenting this tendency).

18Since k = 1, 2, · · · takes discrete values, d(k) is a discrete function.
19Examples of diffusion models where choices are irreversible include those by Watts (2002), Goyal et
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Denote by xM,t−1, the ex ante probability that a type-M individual observes a ran-
domly chosen friend adopting the type-M good in the previous period t − 1 and by mt,
the ex ante probability that a type-M individual adopts a good of type M in period t.
Similarly, define the ex ante probabilities xN,t and nt that a type-N individual observes
a friend adopting a type-N in period t − 1 and adopts goods of type N in period t,
respectively. The probabilities xM,t, xN,t may be written in terms of the probabilities of
each type adopting their own-type of good mt, nt, as follows:

xM,t = αMmt + (1− αM)(ρmt + (1− ρ)(1− nt)) (1)

xN,t = αNnt + (1− αN) ((1− ρ)nt + ρ(1−mt)) , (2)

where the probabilities mt and nt evolve according to20

mt = 1−
∑
k

pk

d(k)−1∑
j=0

(
k
j

)
(1− xM,t−1)

k−j (xM,t−1)
j (3)

nt = 1−
∑
k

pk

d(k)−1∑
j=0

(
k
j

)
(1− xN,t−1)k−j (xN,t−1)

j (4)

To understand these equations, consider first xM,t (expression (1)). In period t + 1,
a type-M individual observes a friend of the same type with probability αM who has
adopted a type-M good in the period t with probability mt. Otherwise, she observes
a friend uniformly at random from the population (with probability 1 − αM), and then
with probability ρ, the friend is of type M , while with probability 1 − ρ, she is of type
N . Each of these types has adopted a type-M good in period t with probability mt and
nt, respectively. One may similarly understand the relationship for a type N in (2).

Now, consider the evolution of the likelihood that a type-M consumer adopts good
M in period t in equation (3). In period t, a type-M consumer with k friends adopts
the type-N content only if she observes that at most d(k)− 1 of her friends had adopted
the type-N good in the previous period. With probability pk, a consumer finds k friends,
and the probabilities that each friend adopted type-M and type−N good in the previous
period are xM,t−1 and 1 − xM,t−1 respectively. The expectation of this quantity is given
by: ∑

k

pk

d(k)−1∑
j=0

(
k
j

)
(1− xM,t−1)

k−j (xM,t−1)
j .

Thus, the expression for adopting a type-M good by a type-M individual is 1 minus this
expectation. A similar explanation is true for nt (expression (4)).

al. (2019) and Campbell et al. (2020).
20Both of these equations can be equivalently represented as sums from d(k) to k, such that

mt =
∑
k

pk

k∑
j=d(k)

(
k
j

)
(1− xM,t−1)

k−j
(xM,t−1)

j

and

nt =
∑
k

pk

k∑
j=d(k)

(
k
j

)
(1− xN,t−1)

k−j
(xN,t−1)

j
.
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3.2 General characterization result

A steady-state equilibrium (n∗,m∗) satisfies nt−1 = nt = n∗ and mt−1 = mt = m∗. We
say that there is a mass-market equilibrium when x∗M = m∗ = 1 and x∗N = n∗ = 0 and
a niche-market equilibrium when x∗M = m∗ = 0 and x∗N = n∗ = 1. We say that there is
mixed-market equilibrium when ρ < x∗M < m∗ < 1 and 0 < x∗N < n∗ < 1.

Define the following positive values:

BN =
1− [αN + (1− αN) (1− ρ)] p1

1− (1− αM) (1− ρ)− [αM (1− ρ) + αNρ] p1
(5)

and

BM =
1− [αM + (1− αM) ρ] p1

1− (1− αN) ρ− [αM (1− ρ) + αNρ] p1
. (6)

Denote by k̂ ≥ 1 the largest k, such that d(k) = 1, and by
∑k̂

k=1 kpk the truncated
mean for all individuals for which d(k) = 1.21 We have the following result:

Theorem 1.

• If
∑k̂

k=1 kpk < BN , then the niche-market steady-state equilibrium is asymptotically

stable. Otherwise, when
∑k̂

k=1 kpk > BN , it is unstable.

• If
∑k̂

k=1 kpk < BM , then the mass-market steady-state equilibrium is asymptotically

stable. Otherwise, when
∑k̂

k=1 kpk > BM , it is unstable.

• If
∑k̂

k=1 kpk > max {BM , BN}, then there exists at least one mixed-market steady-
state equilibrium that is asymptotically stable.

The “extreme”good (either niche or mass) markets are always steady-state equilibria,
since if every agent chooses an extreme action, say niche, then everybody will choose the
same action. The key question we ask in Theorem 1 is if these steady-state equilibria are
(asymptotically) stable; that is, if a small fraction of agents adopts the other good, do the
dynamics of the system take it to the extreme good steady state? Consider the extreme
niche-market equilibrium and let us show under which condition it is stable. In a niche-
market equilibrium, independent of their type, all agents only observe others adopting
the niche good (i.e., x∗M = 0 and x∗N = 1) and so adopt a niche good themselves (i.e.,
m∗ = 0 and n∗ = 1). Suppose a small fraction of individuals in the neighborhood of this
steady state adopts the type-M good. These individuals are then potentially observed by
others in the following period. The conditions for the stability of this steady state can be
understood by whether, in expectation, the fraction of people adopting the alternative
good is increasing or decreasing. In the neighborhood of the niche-market steady state,
this is determined by the fraction of type-M individuals with a threshold of d(k) = 1
(and any niche individuals with a degree of 1), since all other individuals must observe
two or more people adopting for them to adopt themselves.

In other words, we look at all agents with threshold d(k) = 1 and thus consider the

mean number of friends among them, such that
∑k̂

k=1 kpk. If this truncated mean is small

21When k̂ =∞, d(k) = 1, for all k, and
∑∞

k=1 kpk = E[k], the expected or mean number of friends for
each individual.
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enough, the niche-market equilibrium is stable. The same reasoning applies for the mass-

market equilibrium. When
∑k̂

k=1 kpk is large enough, only a mixed-market equilibrium in
which both goods survive in equilibrium is possible. Thus, the presence (lack thereof) of
individuals with threshold d(k) = 1 is important for the stability of the extreme steady

states. In particular, smaller k̂ (more people who require at least two observations of
their own type) makes it easier to satisfy the condition for the extreme equilibria to be
stable.

More generally, Theorem 1 shows that if the truncated mean
∑k̂

k=1 kpk is smaller than
BM and BN ,22 then each individual extreme steady-state equilibrium, namely the mass-
or niche-market, is asymptotically stable. This provides a threshold on connectedness
beneath which niche- and mass-market goods cannot survive separately in equilibrium.

Interestingly, when
∑k̂

k=1 kpk > max {BM , BN}, then neither the niche-market nor the
mass-market extreme steady-state equilibrium is stable. In this case, only the mixed-
market equilibrium is stable. In other words, higher connectedness makes possible the
existence of both communities of niche- and mass-market goods because consumers of
both markets find a sufficient number of like-minded friends to whom they pass on their
type’s information and preserve their market share.

Let us provide more intuition on the results in Theorem 1. Assume that p1 = 0,
such that all agents have at least two friends, and no homophily (αM = αN = 0). Then,
since ρ > 1/2, BN = 1/ρ < 2 and BM = 1/ (1− ρ) > 2, where ρ is the fraction of

mainstream individuals. Thus, when the network is such that BN <
∑k̂

k=1 kpk < BM ,
only the mass-market goods will survive in steady state. Consequently, this mechanism
will tend to amplify the majority action. When there is homophily, this is not necessary
true, since BN = 1/ [(1− αM) (1− ρ)] and BM = 1/ [(1− αN) ρ], where the denominators
are respectively the probability that a friend of a type-M and type-N individual is of
the same type. Indeed, we see that αM and αN are negatively related to BN and BM ,
respectively, and that BN increases with ρ while BM decreases with ρ. When individuals
are not too homophilous, or when the fraction of mainstream individuals is not too large
(it has to be greater than 1/2), then we are more likely to have a niche-market or a
mass-market equilibrium. In this case, the threshold condition may be written as

k̂∑
k=1

kpk(Pr[friend same type]) ≶ 1.

If ε ≈ 0 individuals of a given type are choosing their own type in period t, then, in

period t + 1, approximately ε
∑k̂

k=1 kpk(Pr[friend same type]) choose it in the following
period. When this is bigger than ε, then, the dynamics move away from the extreme
steady state, which cannot be stable.

3.3 Simulations for a regular network

In Theorem 1, we provide sufficient conditions for the existence and asymptotic stability
of the extreme and mixed steady states. There are cases in which multiple steady states
are asymptotically stable, and so comparative static exercises are not always possible

22We cannot rank BM and BN , since they depend on αN and αM , and we make no assumption on
whether αN is greater or smaller than αM . However, when αN = αM = α, then BN > BM , since
ρ > 1/2.
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in the general framework that we consider.23 Indeed, as we show below, both extremes
may co-exist and so even comparative static exercises on the “highest” and “lowest”
steady states become problematic. Rather, in this section, we present what we feel are
informative simulations of the behavior of our system for a regular network (pk = 1
for some k). In particular, we are interested in understanding how features such as a
uniform threshold rule d(k) = d for all k and degree k of the regular network affect the
types/number/characteristics of asymptotically stable steady states that emerge and, in
the cases in which there are more than one, the relative sizes of the basins of attraction
for each.

Our first set of simulations considers a regular network with zero homophily αM =
αN = 0. When there is zero homophily, our system of two equations may reduce to a
single equation in which the relevant state is the fraction ht of the population adopting
the mass-market good, and a steady state is denoted by h∗. In each case, we consider
a grid of starting points for h0 and find the steady state to which each starting point
converges. The results are displayed in Figure 1. Each panel shows the set of steady
states reached and, for each set of starting values h0 that approach each state, the basin
of attraction. Each panel also shows these outcomes for different degrees k holding fixed
a given threshold rule d(k) = d for all k. We consider different values for the threshold
from d = 1 (panel (a)), d = 2 (panel (b)), d = 3 (panel (c)), to d = 1 (panel (d)). The
case d = 1 has a unique stable steady state indicated by the solid line. In the remaining
cases d = 2, 3, 4, both extreme steady states exist for all values of k, and the basins of
attraction for each are separated by the dashed line shown in the figures. We also see
that, beyond a threshold value of k, a mixed steady state also exists (as well as the two
extremes), in which case the basin of attraction for the mixed steady state separates the
basins of attraction for the two extremes.

It is possible for both extreme equilibria and a single mixed equilibrium to arise in
this setting. When d = 1, a unique stable steady state arises for all values h0 > 0 (panel
(a)). In this case, the uniquely stable steady state is the mass-market steady state in
low-degree networks; however, above a threshold degree, the unique stable steady state
becomes mixed and decreases as the degree increases. The uniqueness and tractability
of this case lends itself to further analysis, which we pursue in Section 4. The three
other cases d = 2, 3, 4 are all qualitatively similar to one another. Both extreme steady
states are always present, and then beyond a threshold degree a third mixed steady state
emerges.

We emphasize three properties of our system from these simulations. First, in all
cases, when the mixed steady state emerges, it has a large basin of attraction; that is, a
non-trivial set of starting points h0 ∈ (0, 1) results in the mixed steady state. Moreover,
in the cases where d > 1, the mixed steady state that emerges is strictly away from the
extremes (that is, unlike the case where d = 1, where the mixed steady state emerges close
to the mass-market extreme and gradually moves away as k increases). This suggests that
for d > 1, the system exhibits a phase transition whereby around a critical density kcrit,
the system distinctly changes behavior from always exhibiting extreme steady states to
exhibiting a mixed steady state with a non-negligible basin of attraction.

Second, the process of diffusion confers an advantage to the mass-market good. This
is evident in two features of the simulations. Indeed, across all simulations, the basin of
attraction for the mass-market steady state is larger than the niche-market steady state,

23In Section 4, we consider the case d(k) = 1 and show that there is essentially a unique steady state;
we are also able to obtain comparative static results.
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(a) d(k) = 1 for all k > 2 (b) d(k) = 2 for all k > 4

(c) d(k) = 3 for all k > 6 (d) d(k) = 4 for all k > 8

Figure 1: Steady states h∗ (solid black lines) as a function of k (pk = 1) for cases d(k) = 1, 2, 3, 4;
dashed line separates basins of attraction to extreme steady states, and the gray area gives the
basin of attraction to interior steady states
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and, when the mixed steady state exists, it amplifies the mass-market good relative to
the share of type-M people in the population, such that h∗ > ρ. This characteristic is
particularly pronounced in the case that d = 1, since all steady states exhibit the property
that h∗ > ρ, which we investigate further in Section 4.

Third, higher thresholds for adopting one’s own type of good (larger d) confers ad-
vantages to the extreme steady states. Specifically, it makes the threshold density for
the mixed steady state to exist greater and, when it does exist, the basin of attraction
for the mixed steady state is smaller. One way to interpret a higher threshold is that it
corresponds to a reduction in the amount of horizontal differentiation between the two
goods.24 This suggests that as the goods become closer substitutes, it becomes less likely
that both can concurrently exist. The reason for the lack of co-existence is that this
similarity tends to re-enforce the dynamics that lead to one or the other of the extremes.

3.4 Applications

We believe our model can fit a number of applications. Here, we provide some examples.

3.4.1 Adoption

There is a large body of literature on adoption and peer effects (for an overview, see
Munshi, 2008; Chuang and Schechter, 2015; Breza, 2016). Usually, the decision is binary
and is composed of whether or not to adopt a new technology or a new software (see, e.g.,
Leister et al., 2022). Our model could also be interpreted in the same way. Consider an
old mainstream technology or software program (mass-market good) that most people are
using and a new technology or software program (niche-market good), and agents have
to decide which one to adopt. Because we assume that goods are differentiated, the new
technology and the new software program are not “better” than the old ones; they are
just different. Also, we assume that the new and old technologies are substitutes, so that
they cannot be used together. For example, in many countries, farmers are encouraged
to adopt a new environment-friendly technology, which, in terms of production, is not
necessarily more efficient than the old one.

3.4.2 Language

Another application for our model is to think of “type” as a preference for a language
spoken. Consider, for example, a minority and a majority language and assume that
d(k) = 1, for all k, such that k̂ = ∞. Each agent is either born with a minority or a
majority language and strongly prefers to speak her own language. Thus, each agent will
choose her language in each period and stick to her preferred choice as long as at least
one person in her neighborhood speaks it. If nobody speaks her preferred language, then,
quite naturally, she switches to the other language in order to be able to communicate
with her neighbors.

24For example, the threshold for a type-N individual to adopt a type-M good is k − d, and so the
difference in the thresholds for each type to adopt the type-M good is given by k−2d, which is decreasing
in d.
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3.4.3 Political news content

Our model can be applied to news content by differentiating between mass-market and
niche-market news. Indeed, with the rise of social media, different views are flourishing.
Some people are promoting niche views that impact small groups within the popula-
tion. Others are discussing more mainstream ideas that influence a vast majority of the
population. A natural extension of our model to political ideologies is to consider a dis-
crete version of competition on a line using three types of content/views L (“left”), M
(“middle”), and R (“right”). In Section 5, we extend our model to include three polit-
ical ideologies whereby the central “middle” type has an advantage relative to the two
extreme types in pairwise comparisons. Our model can then be interpreted as a political
news content model. We show the conditions under which the social mechanism tends to
amplify the middle and those under which it will tend to amplify the extremes. In the
latter case, we describe this as polarization, that is, when the left and the right ideology
dominate the news market at the expense of mainstream ideology.

3.4.4 Irreversible choice

In some instances, switching may be quite costly after the initial adoption decision. In
such cases, individuals tend to stay with the same product for an extended period of
time. One may reinterpret our model for these types of goods. Instead of having agents
living forever and making adoption decisions at each period of time, one may assume
that each agent is active in terms of consumption only during one period (when young)
and then is inactive in the second period (when old). In the first period (when young),
each agent decides which good to consume based on the observations she makes about
the decisions made in the previous period by her connections. In the second period
(when old), following the information transmission described above, an agent may be
observed by a new set of connections (who are young) in the social network. In each
period of time, a new generation replaces the old generation with the same fraction
ρ of mass-market individuals and niche individuals.25 Thus, each period represents a
different set of people/consumers who observe a set of people who recently made a choice.
Mathematically, our model is equivalent, but the interpretation is different. Indeed, now
agents only make adoption/consumption decision once (when young). Also, a consumer
born in period t (young) has k ≥ 0 friends amongst the (old) consumers who consumed
a good in period t − 1.26 For example, in this interpretation of our model, agents will
decide to choose an occupation/labor supply/education (e.g., becoming a doctor) if they
have enough social connections with individuals from the previous generation who have
previously chosen this occupation/labor supply/education (e.g., enough connections to
doctors) and thus act as a role model for them.27

25Thus, we consider only intergenerational communication as information flows from one generation
to the other. Following Campbell et al. (2020), we could relax this assumption and consider both inter-
(old to young) and intragenerational (young to young) communication.

26We assume that friendships are formed uniformly at random between individuals in subsequent
periods. This means that there is no correlation between the number of friends an individual observes
(indegrees) and the number of people who observe that individual’s choice (outdegrees). Following
Campbell et al. (2020), we could relax this assumption by allowing for some correlation between indegrees
and outdegrees.

27There is empirical evidence for this. For example, Olivetti et al. (2020) showed that women’s labor
supply in the U.S. is strongly influenced by the labor supply of their friends’ mothers when they were
teenagers.
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4 Single threshold

To obtain a unique stable steady state, perform comparative statics exercises, and have a
tractable setting for investigating further extensions, we set d(k) = 1 for all k (this implies
k̂ =∞). This means that each individual of type j = M,N will adopt goods that are of
the same type as her own provided that she observes at least one connection adopting this
type of good in the previous period. Otherwise, in the event that she only observes the
other type of good, she adopts the other type of good. From an economic perspective,
this means that agents of a certain type have a strong preference for consuming and
recommending a good of the same type. Thus, for them to adopt another good, they
need all their friends to have adopted it in the previous periods. In the general model of
Section 3, this was not necessarily true. We also assume that homophily is the same for
all agents, such that αN = αM = α.

4.1 Main results

4.1.1 Model

The dynamics of our system form a special case of the general model of Section 3 whereby
d(k) = 1 for all k. The quantities xM,t, xN,t,mt, nt are defined as before and can be written
as follows:

xM,t = αmt + (1− α)(ρmt + (1− ρ)(1− nt)) (7)

xN,t = αnt + (1− α) ((1− ρ)nt + ρ(1−mt)) , (8)

where the probabilities mt and nt evolve according to:

mt = 1−
∑
k

pk [1− xM,t−1]
k (9)

nt = 1−
∑
k

pk [1− xN,t−1]k . (10)

Equations (7) and (8) are exactly the same as (1) and (2) when αN = αM = α. Similarly,
equations (9) and (10) are the same as (3) and (4) when d(k) = 1 for all k. Indeed,
consider the evolution of the likelihood that a type-M consumer adopts good M in period
t in (9). In period t, a type-M consumer adopts the type-N good only if every friend
in the previous period adopts the type-N good. Thus, the expression for adopting the
type-M good is 1 minus the probability that she only observes her friends adopting the
type-N good in period t− 1 (the summation term). A similar explanation is true for nt
(expression (10)).

4.1.2 Equilibrium

A steady-state equilibrium (n∗,m∗) satisfies nt−1 = nt = n∗ and mt−1 = mt = m∗.28

Writing n∗ and m∗, the implicit functions defined by the steady state conditions (by sub-
stituting the expressions for xM,t, xN,t and dropping time indexes in the above equations)

28Observe that when n∗ and m∗ are determined, we can calculate the steady-state values xN,t =
xN,t−1 = x∗N and xM,t = xM,t−1 = x∗M .
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are given by

n∗ = 1−
∑
k

pk [(1− α) ((1− ρ)(1− n∗) + ρm∗) + α(1− n∗)]k (11)

m∗ = 1−
∑
k

pk [(1− α)(ρ(1−m∗) + (1− ρ)n∗) + α(1−m∗)]k (12)

We assume that the starting point of the system is somewhere on the interior 0 <
m0, n0 < 1. Our analysis focuses on the steady state that occurs from any such point.
As we will show, this point will be unique and identical, given {pk}, α, ρ, for any starting
point on the interior. Associated with any steady state (n∗,m∗) are corresponding values
for x∗m and x∗n.

Define the prevalence of the mass-market good by

h∗ = (1− ρ)(1− n∗) + ρm∗, (13)

giving the steady-state probability that a randomly drawn individual in the population
adopts the mass-market good. Then, 1 − h∗ = ρ(1 − m∗) + (1 − ρ)n∗ gives the prob-
ability that a randomly drawn individual adopts the niche-market good. The quantity
h∗ measures the relative prevalence of each type of good. In this way, higher (lower) h∗

corresponds to the mass- (niche-) market, constituting a higher fraction of adoption.
Define the positive value

B :=

[
α + (1− α)(1− ρ)

1− p1α
1− p1(α + (1− α)ρ)

]−1
. (14)

Let E[·] denote the expectation operator over pk. We can now characterize our model’s
stable steady states.

Proposition 1. There is a unique stable steady-state equilibrium (n∗,m∗) for any starting
point 0 < m0, n0 < 1, which is characterized as follows:

1. If E[k] ≤ B, then x∗M = m∗ = 1, x∗N = n∗ = 0, and h∗ = 1.

2. If E[k] > B, then ρ < x∗M < m∗ < 1, 0 < x∗N < n∗ < 1 and ρ < h∗ < 1.

In the general model (Section 3), we found that it was possible to have multiple
stable steady-state equilibria (Theorem 1). In contrast, we find here that in the case
d(k) = 1, there is a unique stable steady-state mass-market equilibrium (Proposition 1,
part 1). The combination of these two results demonstrates that a necessary condition
for multiple stable steady-state equilibria is d(k) > 1 for some k.29

The main insights from Proposition 1 are that the social transmission of adoption
amplifies some goods at the expense of others, and this amplification confers a dispro-
portionate advantage to mass-market goods. We see that in all cases, the steady-state
pattern of adoption in the population overrepresents the mass-market goods relative to
the fraction of the population of this type. For low E[k] below the threshold B, the
mass-market good swamps that of the niche-market, and we end up with a steady-state
equilibrium for which x∗M = m∗ = 1 and x∗N = n∗ = 0, so that only mass-market goods
prevail in the market. If, instead, individuals observe a sufficiently large number of friends

29Observe that, in Proposition 1, we use a different concept of stability than in Theorem 1. That is,
starting at any interior values of m0 and n0, we examine which equilibria are globally stable.
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in expectation, so that E[k] is above B, then the niche-market good survives. However,
the steady-state fraction adopting the mass-market good exceeds the fraction of these
types in the population, such that h∗ > ρ. For networks above a minimum level of den-
sity given by B, the niche good can survive in a “sub-community,” but its share in the
population will still be below the population share ρ of the majority type.

To gain some intuition for this amplification mechanism, assume that every agent
takes her preferred action and has two neighbors at t = 0 and that there is no homophily
(α = 0). Then, the minority agents (population share 1 − ρ) will have two majority
neighbors with probability ρ2, and the majority agent will have two minority neighbors
with probability (1− ρ)2. Only these two populations will change their action in the next
period. Hence, the share of the majority agents will change by (1− ρ) ρ2−ρ (1− ρ)2 > 0.
Consequently, this mechanism tends to amplify the majority action.30

It is interesting that p1 plays such a prominent role in the formula for B. Indeed,
consider the case where p1 = 1 and hence the network degenerates to pairs of agents,
since all agents have only one link. In this case, without homophily (α = 0), we get
B = 1 and hence a knife-edge case (since E[k] = 1). This makes a lot of sense if we take
as a starting point at t = 0 again the case where each agent takes her preferred action. In
this case, minority agents with a majority partner will switch and vice versa, and the net
change in majority share is: (1− ρ) ρ−ρ (1− ρ) = 0. Thus, the amplification mechanism
fails exactly for pairs (whose share is governed by p1) but works otherwise.

Finally we examine how the threshold B is related to the primitives of the model.
First, B increases with the prominence of the mass market, as captured by ρ. Indeed,
when ρ increases, the fraction of type-M consumers increases, and an equilibrium with
m∗ = 1 and n∗ = 0 is more likely to emerge. An increase in homophily α reduces B;
hence, homophily decreases the burden placed on the niche consumers to sufficiently
socialize and perpetuate the niche good. Combining these insights, for a more niche
good (corresponding to larger ρ) to survive, it requires that homophily be greater in the
population.

4.1.3 Comparative statics

We can also study the comparative statics properties of the unique interior stable steady-
state equilibrium. In what follows, we denote k := mink{k : pk > 0} the maximum lower
bound in terms of degree to the support of {pk}.

Proposition 2. Assume E[k] > B. Then

1. an increase in the degree of homophily α increases both the probability a niche indi-
vidual receives and recommends niche-market content, such that n∗ and x∗N , respec-
tively, and decreases the prevalence of mass-market content h∗, with limα→1m

∗ =
limα→1 n

∗ = limα→1 x
∗
M = limα→1 x

∗
N = 1, and limα→1 h

∗ = ρ;

2. a first-order stochastic dominance (FOSD)31 change to the distribution of friend-
ships pk increases both the probability a niche individual receives and recommends

30This is a special case in which p1 = 0 and α = 0, such that B = 1/(1−ρ) > 2, and hence Proposition
1, part 1, applies, since E[k] = 2 < B.

31Consider the distributions {pk,1} and {pk,2}. The concept of first-order stochastic dominance cap-
tures the idea that {pk,1} is obtained by shifting the mass from {pk,2} to place it on higher values. Thus,
{pk,1} first-order stochastically dominates {pk,2} if

∑
k f(k)pk,1 ≥

∑
k f(k)pk,2 for all nondecreasing

functions f(k). Thus, it requires a higher expectation of all nondecreasing functions.
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niche-market content n∗ and x∗N and decreases the prevalence of mass-market con-
tent h∗, with limk→∞ x

∗
M = α + (1− α)ρ and limk→∞ x

∗
N = α + (1− α)(1− ρ);

3. an increase in ρ increases m∗, h∗, and x∗M , but decreases n∗ and x∗N .

First, we find increasing homophily α and increasing the density of the network in-
creases (reduces) the prevalence of a niche- (mass-) market good.32 Interacting with
similar individuals or more individuals helps propagate the niche-market good and in
part offsets the disadvantage that the social transmission mechanism confers on it vis-à-
vis the mass-market good. As homophily or density becomes extreme, α converges to 1
or k →∞, each type of individual adopts their own type of good, and the relative share
of goods is reflective of the share of types in the population.

In the case of type-M individuals, an increase in homophily α or the density of the
network has an ambiguous effect on the probability m∗ that type-M individuals adopt
type-M goods. Indeed, on the one hand, type-M individuals observe the decisions of
more individuals or more like-minded individuals, but, on the other hand, when ρ is not
too large, the increase in the prevalence of the niche good (from the aforementioned effect
above) reduces h∗. When α goes to 1 or k →∞, the first effect dominates the other, and
thus α has a positive impact on m∗, while when α is small or the network is relatively
sparse, the effect is the opposite.

Finally, when ρ, the fraction of consumers who are of the mass-market type M ,
increases, then quite naturally m∗ increases and n∗ decreases. The net effect is an increase
in the prevalence of the mass-market good h∗.

4.1.4 Differences in exposure between types

So far, we have focused on the steady-state adoption behavior of each type of individ-
ual within the population. In some applications, such as where the good composed of
information/media content and where an individual’s decision to adopt corresponds to a
choice about what that person shares with their friends, then a dimension of interest is
to understand the steady-state patterns of observation for individuals (i.e., what infor-
mation/media content they get to see) and the systematic differences in the population.
In this section, we consider a metric for the difference between what each type observes
about others’ choices; that is, the difference in the composition of goods observed by each
type of individual. This metric is defined as the difference in the probability that each
type observes the type-M good from a randomly chosen friend in steady state. It is given
by33

P ∗(m∗, n∗) = |x∗M − (1− x∗N) |,

where

x∗M = αm∗ + (1− α)h∗, (15)

x∗N = αn∗ + (1− α)(1− h∗). (16)

32Using a very different model (the susceptible-infected-susceptible (SIS) framework), Tabasso (2019),
who modeled the simultaneous diffusion of multiple pieces of information on a network, found a similar
result: Higher connectivity benefits predominantly the “meme” that is preferred by a minority of the
population.

33We could have a similar definition in terms of type N with P ∗(m∗, n∗) = |x∗N − (1− x∗M ) |. This will
lead to the same definition of sytematic differences given in (17).
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In particular, x∗M is the steady-state probability for an individual of type M of ob-
serving goods of type M , while 1 − x∗N is the steady-state probability that a type-N
individual observes goods of type M (equations (16) and (15)). By direct calculation, we
find that34

P ∗(m∗, n∗) = α (m∗ + n∗ − 1) . (17)

Observe that our measure of systematic differences P ∗(m∗, n∗) measures the divergence
between the two types of agent. In this section, we study the comparative statics of
P ∗(m∗, n∗) and so restrict the analysis to the cases where P ∗(m∗, n∗) is non-zero (i.e.,
α > 0). The closed-form expression in Proposition 1 allows us to directly see how
homophily and market composition determine whether or not the systematic consumption
differences P ∗(m∗, n∗) can be sustained in equilibrium. As a result, we will also assume
that E[k] > B so that P ∗(m∗, n∗) is non-zero.

Proposition 3. Assume α > 0 and E[k] > B. Then, an increase in homophily (increase
in α), an improvement in connectivity (through a FOSD change to the distribution of
friendships pk), or a larger niche market (smaller ρ) results in an increase in P ∗(m∗, n∗).

The first comparative statics result of this proposition shows that as each individual
observes more similar individuals (individuals are more homophilous, i.e., higher α), our
measure of systematic differences in the population increases. This captures both the
direct effect of homophily on P ∗(m∗, n∗) and the indirect effect through the changes to
the steady-state adoption probabilities m∗ and n∗. One can immediately observe from
the relationship in equation (17) that the direct effect is positive. The indirect effect
is somewhat less obvious, as homophily has a positive effect on n∗ but an ambiguous
effect on m∗ (Proposition 2). Nonetheless, the net effect is positive because the positive
effect on n∗ offsets any negative effects of homophily on P ∗(m∗, n∗) through m∗. This
result shows that greater homophily in the social network creates larger differences in the
patterns in what the types observe.

The second part of the proposition considers the effect of improved connectivity of
the network through an FOSD change to pk. Our measure of consumption differences
between types is a combination of the difference in who each type observes (as captured
by homophily α) and differences in the adoption behavior of each type (as captured
by m∗ + n∗ − 1). The effect of connectivity on P ∗(m∗, n∗) acts entirely through its
effect on the adoption behavior (through m∗ and n∗). In Proposition 1, we have seen
that when the network is not very connected, such that E[k] ≤ B, then every individual
adopts the mass-market good; this drives P ∗(m∗, n∗) to zero. When the network becomes
sufficiently connected, such that E[k] > B, then each type exhibits different adoption
behavior (m∗ 6= 1 − n∗), and as the network becomes better connected (by having an
FOSD change to pk), these differences become greater, thereby increasing the differences
between types. To summarize, conditional on the network being sufficiently connected,
denser networks increase the systematic differences P ∗(m∗, n∗).

Finally, in Proposition 3, we show that a decrease in ρ, the fraction of type-M indi-
viduals in the society, leads to an increase in P ∗(m∗, n∗). In this case, the more balanced
the population is (i.e., it is closer to a 50–50 mass-market–niche-market), the greater are
the differences between types.

34In the proof of Proposition 1, we show that m∗ + n∗ > 1; thus, we do not require the absolute value
notation in P ∗(m∗, n∗).
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4.2 Influencers

In this section, we analyze how strategic actors (“influencers”)35 may influence the preva-
lence of each type of good. In a number of contexts, there may be parties that wish to
promote some kinds of goods over others. For example, if we think of the application in
terms of technology adoption (Section 3.4.1), the strategic actors will be the ones that
push the adoption of their technology, such as a new environment-friendly technology.
If we think of language (Section 3.4.2) and, say, we are in an English-speaking country
(so the majority language is English), then some strategic actors, such as the French
Institute, will try to promote the French language (minority language). If we consider
the application in terms of political parties (Section 3.4.3), then the strategic actors will
be likely to be “partisan media” or “party propaganda.”

We address three questions: (i) Does the social network mechanism lead one or other
influencer (niche-market versus mass-market) to invest more in influencing activities?
(ii) Will banning influencing activities lead to more niche-market or mass-market goods
being adopted? (iii) Does influencing activity affect P ∗(m∗, n∗), the degree of difference
in what each type observes?

There are two strategic players (influencers), namely a mass-market player and a
niche-market player, whereby each makes up-front investment, eM and eN , respectively,
at cost C (·), where C ′ (0) = 0, C ′ (1− ρ) > 1, and C ′′ (·) > C, where C is a positive
constant that guarantees a certain level of convexity of the cost function. The aim of
these strategic actors is to increase the prevalence of their own respective good. This
means that the investment ei, i = M,N , from a strategic player of type i can change the
adoption of an individual of the same type only in the situation which she has exclusively
observed adoption of the other type. In other words, if a niche-market influencer invests
effort eN , then when a niche individual has only observed her friends adopting the mass-
market good in the previous period, she will be influenced by the investment effort and
adopt a niche good with probability eN (and the mass-market good with probability
1 − eN). The same reasoning applies to a mass-market influencer who exerts effort eM .
Clearly, when eN = eM = 0, we are back to the benchmark model.

Each influencer seeks to maximize the fraction of the population adopting her good
in the steady state subject to the costs of investment. This implicitly assumes that these
two strategic players are perfectly patient in the sense that they place zero weight on
the behavior on the path to the steady state. This assumption preserves a good deal of
tractability for the analysis while, we believe, still capturing the elements of the trade-offs
facing sufficiently patient players.

Under these assumptions, the benefits for each player may be captured by h∗ and
1 − h∗ for the mass-market and niche-market player, respectively, where h∗ = ρm∗ +
(1− ρ) (1− n∗). We assume that the costly investments are to spread additional ob-
servations of mass- or niche-market goods to their respective populations during each
period. The strategic players choose eM and eN , respectively, where ei represents the
fraction of the population that the player reaches. The dynamic equations that describe
the evolution of nt and mt are now given by

35We use the word “influencer” to denote a strategic actor of a given type that tries to influence
consumers of the same type to adopt the same type of good. Even though the term may be wrongly
interpreted because of its use in social media, it has to be clear that here it means “persuader,” namely
someone of a given type who is making a costly effort to “influence” the consumption decision of indi-
viduals of the same type.
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nt = 1− (1− eN) f (zN,t−1) (18)

mt = 1− (1− eM) f (zM,t−1) , (19)

where f(x) =
∑

k pkx
k, zN,t−1 := 1 − xN,t−1 = α(1 − nt−1) + (1 − α)ht−1, and zM,t−1 :=

1 − xM,t−1 = α(1 − mt−1) + (1 − α)(1 − ht−1). When eN = eM = 0, we are back to
equations (10) and (9). In steady state, these equations become

n∗ = 1− (1− eN) f (z∗N) (20)

m∗ = 1− (1− eM) f (z∗M) . (21)

We see that the investments eM and eN only appear in their own respective equations
for m∗ and n∗. Indeed, the direct effect of an investment ei only changes a consumer’s
behavior by reaching an individual of the same type who has exclusively observed adoption
of the other type.36 Clearly, if an individual of type i = M,N has observed at least one
friend adopting a good of the same type, then the strategic actor of the other type has
no impact on this individual. The cost function is in terms of the total mass of players
that each investment affects. We assume that the cost function is the same for the two
influencers; that is, it is equal to C (·) for both players. This implies that neither player
has a cost advantage in reaching a mass of players of their own type. The mass-market
influencer solves the following program:

max
eM
{h∗(eM , eN)− C(ρeM)} , (22)

while, for the niche influencer, we have

max
eN
{1− h∗(eM , eN)− C((1− ρ)en)} . (23)

The first-order condition for each player is37

C ′ (ρe∗M) =
f (x∗M)

∆
[1− α(1− eN)f ′(x∗N)] (24)

C ′ ((1− ρ) e∗N) =
f (x∗N)

∆
[1− α(1− eM)f ′(x∗M)], (25)

where

∆ =

(
α(1− (1− e∗N)f ′(x∗N))(1− (1− e∗M)f ′(x∗M))

−(1− α)(1− ((1− ρ)(1− e∗N)f ′(x∗N) + ρ(1− e∗M)f ′(x∗M)))

)
> 0.

Our first result establishes that there is a unique Nash equilibrium in effort choices by
the two players and that when there is no homophily, the niche influencer invests more
in influence activities, but the mass-market good is nonetheless more prevalent.

Proposition 4. There is a unique interior Nash equlibrium in investments (e∗M , e
∗
N) ∈

(0, 1)2. Moreover, when α = 0, the niche influencer puts in more effort than the mass-
market influencer, such that (1− ρ) e∗N > ρe∗M , and the fraction of the population for-
warding mass-market goods is greater than a half, namely h∗ > 1

2
.

36Note that an investment affects both steady state values m∗ and n∗ through a combination of the
direct and indirect effects of the investments.

37We provide a derivation of these conditions in Appendix B.
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The social network mechanism confers a benefit to mass-market content, and so it
is more likely that a niche-market individual only observes adoption of the mass-market
good than a mass-market individual only observing adoption of the niche good. Hence,
niche investments are relatively more likely to change the behavior of niche individuals
than mass-market investments are to change the behavior of mass-market individuals.
The returns are higher for the niche influencer. Since, by assumption, there are no cost
advantages to either influencer, in equilibrium, the niche influencer invests more.

Observe that since ρ > 1 − ρ, the result in Proposition 4 not only implies that the
niche influencer invests more than the mass-market influencer (i.e., e∗N > e∗M) but also
that the niche influencer affects a larger percentage of the total population, such that
(1− ρ) e∗N > ρe∗M , which requires the niche influencer to spend much more effort than
the mass-market influencer.

In the following proposition, we consider the impact of banning influence activities.

Proposition 5. When α = 0, the fraction of individuals adopting the niche good is higher
when there are influencers, namely h (0, 0) > h (e∗M , e

∗
N).

Proposition 5 shows that in the absence of homophily, banning influencing activities
increases (decreases) the steady state prevalence of a mass (niche) market good. Indeed,
the niche-market influencer invests more in equilibrium, and so, when she cannot persuade
her consumers, the shift in the steady state is towards more mass-market goods. This
unambiguously benefits the mass-market player because it results in a better steady state
and reduces its investment costs. On the other hand, the impact on the niche-market
player is ambiguous, as it may also benefit from the change: Although the steady state
worsens under the ban, it does not incur the costs of influencing activities.

Under our measure of systematic consumption differences P ∗(m∗, n∗) (see (17)), a
necessary condition for non-zero differences in what each type observes is a positive level
of homophily. In Proposition C1 in Appendix C.1, we consider this as an extension to the
impact of the influencers on P ∗(m∗, n∗). We show that P ∗(m∗, n∗) approaches its upper
bound α as influencing investments increase to their maximum values. Hence, it also
establishes that P ∗(m∗, n∗) increases as the costs of investment vary from prohibitively
expensive where it is banned to inexpensive where the investments approach their upper
bound e∗M = e∗N = 1. The second part of the proposition establishes that as the social
network becomes highly connected, it concurrently crowds out influencing activities and
increases P ∗(m∗, n∗).

We investigate these issues further in an example illustrated in Figure 2. The figure
shows the equilibrium investments by each strategic player and the level of P ∗(m∗, n∗)
at the equilibrium and in the case without influencers where eM = eN = 0. The network
is regular where pk = 1 for k ≥ 2; costs are parametrized by a cost function C(x) =
2x2, homophily is positive α = 0.1, and the mass/niche market parameter is ρ = 2/3.
First, we observe that the niche-market influencer invests more in equilibrium (as per
our result without homophily in Proposition 4) and that the equilibrium investments
by both players are decreasing in the connectivity of the social network. Second, our
measure of systematic differences P ∗(m∗, n∗) is greater under influencers than without
them (P (e∗M , e

∗
N) > P (0, 0)) and is increasing in the connectivity of the social network.

Finally, the impact of the influencers on P ∗(m∗, n∗) (P (e∗M , e
∗
N)−P (0, 0)) is decreasing in

the connectivity of the social network. Moreover, it is greatest in the case where the mass-
market steady state exists in the absence of influencers (where k = 2). As k decreases,
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Figure 2: Influencers and systematic consumption differences

the niche market player vigorously invests in influencing activities, as the steady state is
otherwise tending towards the mass-market steady state.

We see that influencing investments provides an influential channel for determining
systematic differences in what different types observe, P ∗(m∗, n∗), in addition to the
connectivity and homophily channels established in the baseline model. Moreover, it is
precisely in the settings where connectivity is low (and so P ∗(m∗, n∗) would otherwise be
small) that influencing activities are the most vigorously pursued and the impact is the
greatest. In our example, the endogenous response of the influencers largely offsets the
change in P ∗(m∗, n∗) that would otherwise have occurred at lower levels of connectivity
of the social network.

4.3 Homophily

In many environments, individuals have a great deal of discretion over who with whom
they interact/observe and share information. One factor that may affect the choice of
who to be connected with is the likely adoption decision of the other individual. In
particular, a common observation in many environments is that people tend to interact
with like-minded others (McPherson et al., 2001; Currarini et al., 2009). In this section,
we consider how the endogenous choice of homophily by individuals and the social network
mechanism affect the goods that are adopted.

We allow agents to make a costly investment to increase the degree of homophily
amongst their connections. We will assume it is costly to increase homophily. For an
individual i = M,N , the costs are given by kD(αi), where k is the number of friends.
We assume that D′(αi) > 0, D′(0) = 0 and D′′(αi) > F , where F is a positive constant
that guarantees enough convexity for the cost function. For tractability, we simplify the
network by only considering regular networks in which everyone has the same number of
friends k ≥ 2.
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We assume that agents maximize the expected number of friends that adopt the good
of their own type subject to the costs of homophily. For a mass-market individual, we
have

max
αM

{k [αMm
∗ + (1− αM)h∗ −D(αM)]} , (26)

while for a niche individual,

max
αN

{k [αNn
∗ + (1− αN)(1− h∗)−D(αN)]} . (27)

We note that the steady state quantities m∗, n∗, h∗ are all a function of the equilibrium
levels of homophily chosen, but each individual takes these quantities, as given as she has
no influence over them. Our steady-state equilibrium is determined by the solution to

n∗ = 1− [αN(1− n∗) + (1− αN)h∗]k (28)

m∗ = 1− [αM(1−m∗) + (1− αM)(1− h∗)]k , (29)

where h∗ = ρm∗ + (1 − ρ)(1 − n∗). In Proposition C2 in Appendix C.2, we prove that,
for a given pair of homophily levels αM and αN , there is a unique stable steady-state
equilibrium (m∗, n∗).

We denote the steady-state equilibrium as a function of the actions of niche and
mass-market individuals by m∗(αM , αN), n∗(αM , αN), h∗(αM , αN). An equilibrium is a
pair (α∗M , α

∗
N) that satisfies

α∗M = arg max
αM

{k [αMm
∗(α∗M , α

∗
n) + (1− αM)h∗(α∗M , α

∗
N)−D(αM)]} (30)

and

α∗N = arg max
αN

{k [αNn
∗(α∗M , α

∗
N) + (1− αN)(1− h∗(α∗M , α∗N))−D(αN)]} . (31)

The first order conditions are given by

D′(α∗M) = (1− ρ) [m∗(α∗M , α
∗
N) + n∗(α∗M , α

∗
N)− 1)] (32)

D′(α∗N) = ρ [m∗(α∗M , α
∗
n) + n∗(α∗M , α

∗
n)− 1] . (33)

Our first result (see Proposition C3 in Appendix C.2) shows that when the underlying
network is not well connected or the niche is particularly small, then there may be no
homophily in the choices of individuals.

The zero homophily equilibrium corresponds to a situation in which the mass-market
good is the only good adopted in the market. When this is the case, there are no returns
for an individual of either type from increasing their level of homophily because everyone
is sharing the same type of good. In this case, our measure of the difference in the
composition of goods seen by each type of individual, P ∗(m∗, n∗), is minimal and equal
to zero. The condition k ≤ 1

1−ρ demonstrates that it is a lack of connectivity in the
underlying network that allows this equilibrium to exist. The empirical prediction of the
model is that a lack of a homophily is associated with a lack of connectivity (or number
of friends) and small niche (high ρ). It is important to note that these results are driven
by the equilibrium prevalence of each type of good and not the difficulty of finding a
particular type of individual.

The following proposition characterizes the equilibrium level of homophily when the
underlying network is sufficiently well connected.
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Proposition 6. Suppose k > 1
1−ρ . Then, there exists an equilibrium with positive levels

of homophily for both types of individual. Moreover, the niche-type players exhibit greater
homophily than the mass-type agents, such that α∗N > α∗M .

In sufficiently well-connected networks, the mass-market good will not flood the mar-
ket, and so there is always some amount of benefit to connect with individuals who are
similar to oneself. Moreover, the niche individuals benefit the most from this because
it is relatively more difficult for these individuals to find people who adopt the type-N
good. Hence, in equilibrium, the niche individuals exhibit a greater degree of homophily
than mass-market individuals.

5 Application to political economy

In Section 3.4.3, we proposed an interpretation of the goods in our model in terms of
political news content as a decision over what type of content to forward on to one’s
friends. Here, we adopt this interpretation and extend our model to a three-type spectrum
of political ideologies by considering types L (“left”), M (“middle”), and R (“right”).
The key characteristic in this environment is that the middle type will have an advantage
in pairwise comparisons relative to the extreme types left and right. In this section, we
are particularly interested in understanding the amplification of the extremes relative to
the middle, or vice versa.

5.1 A model with three political ideologies

Time is discrete t = 1, 2, ... The population of mass 1 consists of a measure ρ of type M
and (1−ρ)/2 of types L and R each for 0 < ρ < 1. Each individual has k friends amongst
individuals in the previous period, where k is drawn from a distribution pk (where pk > 0
for some k ≥ 2), and to maintain tractability, we assume zero homophily (i.e., α = 0). In
each period, an individual receives a recommendation of content from each of her friends
from the previous period. She views all of these items and then recommends/forwards
the content that is the closest match to her type on to her friends in the next period. An
individual ranks products in the following manner depending on her own type:

Type Ranking
L L �M � R
M M � L ∼ R
R R �M � L

Each agent prefers her own type of news to any other type. Further, a type-L or a type-R
individual prefers the middle news content to news from the other extreme. On the other
hand, a type-M individual is indifferent to the news of types L and R. As in the model
in the previous section, any agent will recommend her own type of news if she receives
at least one recommendation of her type of news from her k friends. Otherwise, amongst
the content that she receives, she will follow her ranking (described above) in terms of
preferences of type of news content. Finally, in the event that a middle type only receives
type-L or a type-R content, and so is indifferent, then she will choose each with 50–50
probability. Once again, we study the stable steady state consumption bundles of each
type of individual and the resulting pattern of recommendations as t→∞.
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5.2 Steady-state equilibrium

As above, we assume a mean-field approximation; that is, each type in period t draws k
friends uniformly at random from amongst the consumers in the previous period t − 1.
Denote by yM,t the probability that a friend drawn uniformly at random from period t
recommends product M . Observe that yM,t is different to xM,t, as defined in the previous
sections (see (1) or (7)), because there is no homophily, and thus, all types are equally
likely to receive each type of news. Their type only matters when deciding which product
to recommend to their friends. Then, utilizing the symmetry of the problem, we can
write the probability of a friend recommending each of the other products by

1−yM,t

2
. The

probability yM,t evolves according to

yM,t =
∑
k

pk

(
ρ
[
1− (1− yM,t−1)

k
]

+ (1− ρ)

[
1−

(
1− yM,t−1

2

)k
−

[
1−

(
1 + yM,t−1

2

)k]])

=
∑
k

pk

(
ρ
[
1− (1− yM,t−1)

k
]

+ (1− ρ)

[(
1 + yM,t−1

2

)k
−
(

1− yM,t−1

2

)k])
,

where ρ
(

1− (1− yM,t−1)
k
)

is the probability that an individual is of type M and receives

at least one recommendation about her most preferred content (i.e., content of type M)
from k individuals drawn uniformly at random from the population at t − 1. The term

(1 − ρ)

[(
1+yM,t−1

2

)k
−
(

1−yM,t−1

2

)k]
is the probability that an individual is of type L or

type R and recommends the type-M content. In this last case, this can be written as the
probability that the individual (type L or type R) neither hears (i) about their preferred
content nor (ii) exclusively about their least preferred product (product R for a type-L
individual and product L for a type-R individual) from k individuals drawn uniformly at
random from the population at t− 1.

Our object of interest is the steady state of our dynamics determined by y∗M =
limt→∞ yM,t. Define

CLR = ρE[k] + (1− ρ)
∞∑
k=1

pkk

(
1

2

)k−1
(34)

CM =
1− ρ

2
E[k] +

1 + ρ

2
p1. (35)

In what follows, we denote k := mink{k : pk > 0} the maximum lower bound in terms
of degree to the support of {pk}.

Proposition 7. There is a unique stable steady-state equilibrium y∗M , which is charac-
terized as follows:

1. If CLR ≤ 1, then y∗M = 0; that is, there is a unique stable steady state for which
only the extreme news content L and R exist.

2. If CM ≤ 1, then y∗M = 1; that is, there is a unique stable steady state for which only
the middle news content M exists.

3. Otherwise, when CLR > 1 and CM > 1, then 0 < y∗M < 1; that is, all three news
contents co-exist at the unique stable steady-state equilibrium. Moreover,

28



(a) if ρ ≥ 1/3, then y∗M > ρ;

(b) if pk > 0 for some k > 2, then there exist positive numbers ρ̄ and k̂ such that
if the extremes are sufficiently prevalent ρ < ρ̄ or the network is sufficiently
dense k > k̂, then the steady state amplifies the extremes y∗M < ρ.

This proposition shows that either the middle content or the extreme content may
be amplified in the unique steady-state equilibrium. In particular, it is possible for
either the extremes or the middle to dominate the market or for a mixed steady state to
emerge. A sufficient condition for a mixed steady state is a well-connected network E[k] >
max{ 2

1−ρ ,
1
ρ
}; hence, the steady states in which the middle or the extremes dominate may

only emerge in less well connected networks.
In the previous section, the prevalence of the mass-market type was an important

force for amplifying that type of good/content. In our three-type model, there is a new
force at work: The middle product M holds an advantage over the extreme products L,R
in pairwise comparisons. We can see the effect of this new force by considering the case in
which there are equal fractions of each type in the population (ρ = 1

3
), thereby shutting

down the prevalence force. In this case, the advantage in pairwise comparisons results in
the middle content being amplified. In a sufficiently sparse network where E[k] < 3−2p1,
then this advantage allows the middle to dominate the extremes, such that y∗M = 1. In
fact, for ρ ≥ 1

3
, the middle content is amplified because the middle is both more prevalent

in the population and has the advantage in pairwise comparisons.
In populations in which the middle type is less frequent than the extreme ρ < 1

3
, the

two forces are countervailing. Indeed, extreme types are more prevalent in the population,
but the middle content has an advantage in pairwise comparisons. In this case, either
the extremes or the middle content may be amplified depending on the strength of each.
We find that in sufficiently well-connected networks, or in networks with a sufficiently
large (resp. small) fraction of extreme (resp. middle) types, the extremes are amplified
relative to the middle.

Finally, the two threshold values CLR and CM reveal that the stable steady state is
highly sensitive to the connectivity of the network when ρ is small and when the network
is not well-connected, E[k] ≈ 2. To illustrate this sensitivity, define two threshold values
ρCL = max{ρ|CLR ≤ 1} and ρM = min{ρ|CM ≤ 1} and consider networks in which
almost everyone has two friends, such that p2 = 1 − ε and p3 = ε, where ε ≈ 0. In this
case, the threshold values are given by ρLR = ε

4+5ε
< ρM = ε

2
, and the difference (size

of the range where the stable steady state is between the extremes) is ε
(
1
2
− 1

4+ε

)
. We

can readily observe that as the network approaches one, where p2 = 1 (ε → 0), then
both thresholds approach 0. This suggests that for networks in which ρ is small and the
density of the network is such that E[k] ≈ 2, the steady state can change dramatically in
response to relatively small changes in network density.

Our model with three types of news content enables us to explore the phenomenon of
polarization of news content through the process of forwarding/recommendating content
to one’s friends. Our results show that this may occur in populations in which the middle
type is less prevalent than the extreme types and the network is sufficiently connected; as
ρ drops below 1/3, both the left and right groups, having measures (1−ρ)/2, continue to
embody a minority of the overall population. However, from Proposition 7, part 2(b), we
see that the portion of news that is propagated in steady state is above the left and right’s
population shares, with y∗M dropping below ρ. In other words, in a very connected world,
as society is predominantly comprised of partisan groups and the middle is shrinking,
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news of the moderate center quickly diminishes, while news of the two partisan groups
flood the economy. Thus, by introducing three types of news content, we are able to
explain under which conditions social media tends to polarize towards more extreme
content at the expense of more central content. Moreover, in networks that are not well
connected, then the shift from a steady state in which the middle content predominates
to one in which the extremes predominate may be dramatic. Small shifts in the fraction
of the middle type can lead to very different steady states.

To summarize, the pairwise advantage of the middle leads it to be amplified when
types are balanced (ρ large enough). If extremes are sufficiently more prevalent (ρ low
enough), then the extremes are amplified relative to the middle. This suggests that steady

state content goes through a transitory range in ρ where
∂y∗M
∂ρ

> 1; that is, steady state
y∗M grows faster than ρ.

5.3 Numerical simulations

We further illustrate Proposition 7 by conducting numerical simulations to evaluate y∗M
(the steady-state fraction of the middle ideology) for different numbers of friends k in a
regular network and different values of ρ, the fraction of individuals of type M .38 Figure
3 shows the steady state transition between y∗M = 0 and y∗M = 1 as ρ increases. For each
value of k, there is a neighborhood close to ρ = 0 and ρ = 1 where the steady states
y∗M = 0 and y∗M = 1 occur. Then, consistent with our observations from the previous
section, there is a region in between where the steady state transitions relatively“quickly”
between these two extremes, where

∂y∗M
∂ρ

> 1. Further, we see that the speed of this
transition becomes more rapid for lower values of k.

Figure 3: Steady-state values of y∗M for different numbers of friends k

38For these numerical simulations, we consider a regular network with p1 = 0, which implies that
E[k] = k ≥ 2.
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Figure 4 shows the transition of the steady state as k increases for different composi-
tions of the middle type in the population ρ. When the population is equally balanced
across types or contains more of the middle type than the extremes, such that ρ ≥ 1/3,
we are in the cases of Proposition 7, parts 2 and 3(a); that is, the middle mainstream ide-
ology dominates the market y∗M > ρ for any value of k and decreases towards a balanced
steady state y∗M → ρ in dense networks with large k.

On the other hand, for low ρ < 1/3, a non-monotonic relationship exists between k
and the steady state y∗M . At k = 2, the middle floods the market y∗M = 1; however, there is
a dramatic shift in the steady state for higher values of k. In these cases, for sufficiently
well-connected networks (k ≥ 4 for ρ = 1/6 and k ≥ 3 for ρ = 1/10), the extreme
ideologies dominate the market, such that y∗M < ρ. Indeed, in the case of ρ = 1/10, the
extremes may completely flood the market (i.e., y∗M = 0) such that the middle type of
content does not survive in networks where 3 ≤ k ≤ 9. This implies that the steady-state
value of y∗M is highly sensitive to changes in density when the network is relatively sparse
(low k).

Figure 4: Steady-state values of y∗M for different values of ρ

6 Conclusion

Using a mean-field approximation, we developed a social network diffusion model to
understand its role in promoting or suppressing particular types of goods. In a setting
in which everyone uses a single friend threshold, we found that there is a unique stable
steady state. Contrasting a niche and a mass-market good, we found that social networks
promote mass-market goods at the expense of niche ones. We showed that either greater
connectivity or greater homophily increase the prevalence of niche-market goods. We also
investigated how social networks affect the difference between types in the goods that each
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individual observes. The same forces that promote the prevalence of niche-market goods
tend to also increase these differences.

When we introduced strategic actors that influence consumers of the same type, we
found that this may be an additional channel for increasing the difference between types in
the goods that each individual observes. We also allowed consumers to choose the degree
of homophily amongst their connections and demonstrated that niche-market individuals
exhibit greater homophily than mass-market consumers.

Finally, we extend our model to a three-type political ideologies by considering types
left, middle, and right, with the middle having an advantage in pairwise comparisons.
We showed that when the prevalence of the middle content is quite small, then the more
extreme views of the left and the right will flourish and dominate the market.
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Appendix

A Proofs of the results in the main text

Proof of Theorem 1. The dynamics of the system are described by:

xt =
∑
k

pk

d(k)−1∑
j=0

(
k
j

)
(1− wn,t−1)k−j (wn,t−1)

j

yt =
∑
k

pk

d(k)−1∑
j=0

(
k
j

)
(1− wm,t−1)k−j (wm,t−1)

j

where

wn,t−1 = αn (1− xt−1) + (1− αn) [(1− ρ) (1− xt−1) + ρyt−1]

wm,t−1 = αm (1− yt−1) + (1− αm) [(1− ρ)xt−1 + ρ (1− yt−1)]

substituting in wn,t−1, wm,t−1 into the right-hand side and defining

fx (xt−1, yt−1) =
∑
k

pk

d(k)−1∑
j=0

(
k
j

)
(1− (αn (1− xt−1) + (1− αn) [(1− ρ) (1− xt−1) + ρyt−1]))

k−j

× (αn (1− xt−1) + (1− αn) [(1− ρ) (1− xt−1) + ρyt−1])
j

fy (xt−1, yt−1) =
∑
k

pk

d(k)−1∑
j=0

(
k
j

)
(1− (αm (1− yt−1) + (1− αm) [(1− ρ)xt−1 + ρ (1− yt−1)]))k−j

× (αm (1− yt−1) + (1− αm) [(1− ρ)xt−1 + ρ (1− yt−1)])j

we can write this system as[
xt
yt

]
=

[
fx (xt−1, yt−1)
fy (xt−1, yt−1)

]
= f (xt−1, yt−1)

where we note that fj (xt−1, yt−1) for j = m,n defines a C1 map R2 → R2 and define the
Jacobian matrix of the system by A :

A =

[
a11 a12
a21 a22

]
=

[
∂fx
∂xt−1

∂fx
∂yt−1

∂fy
∂xt−1

∂fy
∂yt−1

]

A1



Each element (see derivation in lemma C9) is given by

∂fx
∂xt−1

= (αn + (1− αn) (1− ρ))
∑
k

pk

(
− k!

(k − d (k)− 1)!d (k)!
(1− wn)k−d(k) (wn)d(k)−1

)
≥ 0

∂fx
∂yt−1

= − ((1− αn) ρ)
∑
k

pk

(
− k!

(k − d (k)− 1)!d!
(1− wn)k−d(k) (wn)d(k)−1

)
≤ 0

∂fy
∂xt−1

= − (1− αm) (1− ρ)
∑
k

pk

(
− k!

(k − d (k)− 1)!d (k)!
(1− wm)k−d(k) (wm)d(k)−1

)
≤ 0

∂fy
∂xt−1

= (αm + (1− αm) ρ)
∑
k

pk

(
− k!

(k − d (k)− 1)!d (k)!
(1− wm)k−d(k) (wm)d(k)−1

)
≥ 0

where the inequalities are strict for 0 < wj < 1 j = m,n.
A useful result is Theorem 4.11 on pg 221 from Discrete Chaos 2nd Ed. by Saber N.

Elyadi:
Theorem 4.11 Let f : G ⊂ R2 → R2 be a C1 map, where G is an open subset of R2,

X∗ is a fixed point of f , and A = Df(X∗). Then the following statements hold true:

1. If ρ(A) < 1, then X∗ is asymptotically stable.

2. If ρ(A) > 1, then X∗ is unstable.

3. If ρ(A) = 1, then X∗ may or may not be stable

Where ρ(A) = max {|λ1| , |λ2|} , and f and A are defined as they are above. Hence,
if ρ(A) < 1 (> 1) at a steady state X∗ = (x∗, y∗) of our system then the steady state is
asymptotically stable (unstable).

Lemma A1. If max {a11, a22} > 1 then ρ (A) > 1. Otherwise, suppose max {a11, a22} ≤ 1
and (1− a22) (1− a11) > a12a21 (< a12a21) then ρ (A) < 1 (> 1).

Proof. The characteristic equation for the 2× 2 matrix A is

λ2 − (a11 + a22)λ+ (a11a22 − a12a21)

with roots λ1, λ2

λ1 =
(a11 + a22) +

√
(a11 + a22)

2 − 4 (a11a22 − a12a21)
2

λ2 =
(a11 + a22)−

√
(a11 + a22)

2 − 4 (a11a22 − a12a21)
2

We know from lemma C9 that a11, a22 > 0 and a12, a21 < 0, hence, both roots are real
and ρ (A) = λ1. Now, note that if a11, a22 > 1 then this immediately implies λ1 > 1.
Now, suppose max {a11, a22} ≤ 1 and that

(1− a22) (1− a11) > a12a21

1− (a11 + a22) + (a11a22 − a12a21) > 0

(a11 + a22)
2 + 4 (1− (a11 + a22)) > (a11 + a22)

2 − 4 (a11a22 − a12a21)
(2− (a11 + a22))

2 > (a11 + a22)
2 − 4 (a11a22 − a12a21)

A2



which implies that

2− (a11 + a22) >

√
(a11 + a22)

2 − 4 (a11a22 − a12a21)

1 >
(a11 + a22) +

√
(a11 + a22)

2 − 4 (a11a22 − a12a21)
2

1 > λ1

the same steps apply for the case (1− a22) (1− a11) < a12a21 with the opposite inequality.

Returning to the main proof. In the niche market steady state (x∗, y∗) = (0, 1) ,
w∗n = 1, w∗m = 0 and the Jacobian is given by:

A (0, 1) =

[
(αn + (1− αn) (1− ρ)) p1 − (1− αn) ρp1

− (1− αm) (1− ρ)
∑k̂

k=1 kpk (αm + (1− αm) ρ)
∑k̂

k=1 kpk

]

If
∑k̂

k=1 kpk < Bn :

k̂∑
k=1

kpk <
1− (αn + (1− αn) (1− ρ)) p1

1− (1− αm) (1− ρ)− p1 [αm (1− ρ) + αnρ]

k̂∑
k=1

kpk <
1− (αn + (1− αn) (1− ρ)) p1

ρ+ αm − ραm − αmp1 + ραmp1 − ραnp1
k̂∑
k=1

kpk [(1− αm) (1− ρ) (1− αn) ρp1] <
[1− (αn + (1− αn) (1− ρ)) p1]

×
[
1− (αm + (1− αm) ρ)

∑k̂
k=1 kpk

]
a12a21 < (1− a11) (1− a22)

and we conclude by lemma A1 above that ρ (A) < 1 and so (using Theorem 4.11 above)
that the steady state is aymptotically stable. Similarly the same steps apply for the case

where
∑k̂

k=1 kpk > Bn to find that ρ (A) > 1 and the steady state is unstable.
In the mass market steady state (x∗, y∗) = (1, 0) , w∗n = 0, w∗m = 1 and the Jacobian

is given by:

A (1, 0) =

[
(αn + (1− αn) (1− ρ))

∑k̂
k=1 kpk − (1− αn) ρ

∑k̂
k=1 kpk

− (αm + (1− αm) ρ) p1 (1− αm) (1− ρ) p1

]
We note that the niche market condition is the same as the mass market condition with
the subscripts m,n switched and parameter ρ replaced by 1−ρ. Then, applying identical
steps to the above we establish the result.

Define the steady state relations x∗ (y) and y∗ (x) by:

x∗ = fx (x∗, y)

y∗ = fy (x, y∗)

In the above fx (x∗, y) is a continuous function that is increasing in x∗ and decreasing
in y and fx (0, 1) = 0; fx (1, 0) = 1. Hence, for each y ∈ [0, 1] there exists a non-empty
set x∗ (y) = {x : 0 ≤ x ≤ 1;x = fx (x, y)} .
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Define x∗ (0) = min {x : 0 ≤ x ≤ 1;x = fx (x, 0)} and x∗ (1) = max {x : 0 ≤ x ≤ 1;x = fx (x, 1)}.
By virtue of x∗ (0) being the minimum value of x that satisfies x = fx (x, 0) and fx (0, 0) >
0 we conclude that fx (x, 0) > x for all x < x∗ (0) , and by virtue of x∗ (1) being the maxi-
mum value of x that satisfies x = fx (x, 1) and fx (0, 1) < 0 we conclude that fx (x, 0) < x

for all x > x∗ (1). Now, ∂fx(x∗,y)
∂y

< 0 for 0 < y < 1 so fx (x∗ (0) , y) > x∗ (0) and

fx (x∗ (1) , y) < x∗ (1) and by the continuity of fx (x, y) in x and y and ∂fx(x∗,y)
∂y

< 0 then

for every x ∈ [x∗ (1) , x∗ (0)] there is a unique 0 ≤ y ≤ 1 such that x = fx (x, y).
Define a function g (x) : [x∗ (1) , x∗ (0)] → [0, 1] as the solution y to x = fx (x, y) for

each x ∈ [x∗ (1) , x∗ (0)] . The function g (x) is continuous in x on [x∗ (1) , x∗ (0)] and by
definition g (x∗ (1)) = 1, g (x∗ (0)) = 0. We can (similarly to g (x)) define a function h (y)
using fy (x, y∗) that is continuous on

[
y∗ (1) , y∗ (0)

]
and h (y∗ (1)) = 1, h

(
y∗ (0)

)
= 0

where the quantities are defined as they are above with x, y interchanged.
By definition any interior point (x∗, y∗) such that (x∗, g (x∗)) = (h (y∗) , y∗) is a steady

state of our system. We know that the points (x∗ (1) , 1) and (x∗ (0) , 0) lie on g (x) and are
connected by a continuous function in x and similarly the points

(
0, y∗ (0)

)
and (1, y∗ (1))

lie on h (y) and are connected by a continuous function in y. Hence, the graphs (x∗, g (x∗))
and (h (y∗) , y∗) are guaranteed to intersect on the interior of [0, 1]× [0, 1] provided that
they do not intersect on the boundary at (0, 1) or (1, 0). In the event that one or both do
intersect on the boundary then a sufficient condition to guarantee that they will intersect
on the interior is that the orientation of the slope at the exterior points is such that

dg

dx

dh

dy
> 1

where dg
dy

= a12
1−a11 ,

dh
dx

= a21
1−a22 . Hence, a sufficient condition for the existence of an

interior steady state is that each extreme steady state is unstable
∑k̂

k=1 kpk > Bm, Bn,
such that in the neighborhood of (0, 1) g (x) > h−1 (x) and in the neighborhood of (1, 0)
g (x) < h−1 (x).

Finally, we establish our result by showing that, under this condition, there is at least
one interior steady state where max {a11, a22} < 1 and

dg

dx

dh

dy
< 1

implying that
a12a21 < (1− a11) (1− a22)

In particular, the graphs (x, g (x)) and (h (y) , y) cross at least once in [x∗ (1) , x∗ (0)] ×[
y∗ (1) , y∗ (0)

]
. By virtue of g (x) , h (y) being functions (i.e. single valued) then if there

is a single point of crossing dg
dx

dh
dy
< 1 and dg

dx
, dh
dy
< 0 or in the case where there are multiple

points of crossing then at least one has the property dg
dx

dh
dy
< 1. Hence, by lemma A1 that

steady state is asymptotically stable.

Proof of Proposition 1. We prove the result under heterogeneous homophily (αn, αm)
and lobbying efforts (en, em). Denote an ≡ 1−en and am ≡ 1−em. We first establish the
necessary and sufficient condition, E[k] > B, for there to exists a unique interior steady
state; no interior steady states exists when the condition is violated. We then show that
all steady states are globally stable.

A4



Define variables xt := 1− nt and yt := 1−mt, which yields the equivalent system:

xt = an
∑
k

pk [(1− αn)((1− ρ)xt−1 + ρ(1− yt−1)) + αnxt−1]
k , (A.1)

yt = am
∑
k

pk [(1− αm)(ρyt−1 + (1− ρ)(1− xt−1)) + αmyt−1]
k . (A.2)

Dropping time subscripts to focus on the steady state, the system can be written:

x = an
∑
k

pk [(1− αn)h+ αnx]k , (A.3)

y = am
∑
k

pk [(1− αm)(1− h) + αmy]k . (A.4)

where, at the steady-state, h∗ = H(x∗, y∗) := (1 − ρ)x∗ + ρ(1 − y∗). (A.3) and (A.4)
define implicit functions x(h) and y(h). The functions are continuous and monotone
increasing and decreasing over h ∈ [0, 1], respectively, with x(0) = 0, x(1) = 1, y(0) = 1
and y(1) = 0. We verify these properties below.

For uniqueness of an interior steady state, it suffices to show existence of at most one h∗

solving (A.3), (A.4) and h∗ = H(x(h∗), y(h∗)). For this, we show that (i) H(x(h), y(h))
is continuous, (ii) limh→0H(x(h), y(h)) ≥ 0, (iii) limh→1H(x(h), y(h)) ≤ 1, and (iv)
d3

dh3
H(x(h), y(h)) ≥ 0, which imply H(x(h), y(h)) crosses the 45-degree line at at-most

one unique point h∗ ∈ (0, 1). (i) follows immediately from x(h) and y(h) continuous. (ii)
and (iii) clearly hold for x, 1− y, ρ ∈ [0, 1].

To show (iv), we first show ∂3x
∂h3

> 0. Define f(z) :=
∑

k pkz
k, and note that ∂n

∂zn
f z ≥ 0

for all n ≥ 0. Then define zx := (1 − αn)h + αnx, giving ∂zx
∂h

= (1 − αn) + αn
∂x
∂h

, and
∂zx
∂h

= αn
∂2x
∂h2

. Repeated implicit differentiation of (A.3) gives:

∂x

∂h
− ∂zx
∂h

anf
′(zx) = 0, (A.5)

∂2x

∂h2
− αnan

∂2x

∂h2
f ′(zx)− an

(
∂zx
∂h

)2

f ′′(zx) = 0, (A.6)

∂3x

∂h3
−αnan

∂3x

∂h3
f ′(zx)−αnan

∂2x

∂h2
∂zx
∂h

f ′′(zx)−2
∂zx
∂h

αnan
∂2x

∂h2
f ′′(zx)−an

(
∂zx
∂h

)3

f ′′′(zx) = 0.

(A.7)
Now, (A.5) gives:

∂x

∂h
=

(1− αn)anf
′(zx)

1− αnanf ′(zx)
> 0,

the inequality holding by (1−αn)anf
′(zx) > 0, and by 1−αnanf ′(zx) > 0 holding where

equality (A.3) holds, for each h ∈ (0, 1), because anf((1−αn)h) > 0, anf((1−αn)h+αn) <
1 and f is convex. This verifies that x(h) is increasing and continuous, and establishes
that ∂zx

∂h
> 0. (A.6) gives:

∂2x

∂h2
=

(
∂zx
∂h

)2
anf

′′(zx)

1− αnanf ′(zx)
> 0,

the inequality holding by anf
′′(zx) > 0, and the above. (A.7) gives:

∂3x

∂h3
=

3αn
∂zx
∂h

∂2x
∂h2
anf

′′(zx) +
(
∂zx
∂h

)3
anf

′′′(zx)

1− αnanf ′(zx)
> 0,
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the inequality holding by ∂zx
∂h

> 0, f ′′(zx), f
′′′(zx) > 0, and by the above.

Still for (iv), we next show ∂3y
∂h3

< 0. Now define zy := (1− αm)(1− h) + αmy, giving
∂zy
∂h

= −(1 − αm) + αm
∂y
∂h

, and ∂zy
∂h

= αm
∂2y
∂h2

. Repeated implicit differentiation of (A.4)
gives analogous expressions to (A.5), (A.6) and (A.7) but with y’s in place of “x” and
zy’s in place of “zx”. However, (A.5) now gives:

∂y

∂h
=
−(1− αm)amf

′(zy)

1− αmamf ′(zy)
< 0,

the inequality holding by −(1 − αm)amf
′(zy) < 0, and by 1 − αmamf ′(zy) > 0 holding

where equality (A.4) holds, for each h ∈ (0, 1), because amf((1 − αm)(1 − h)) > 0,
amf((1−αm)(1−h) +αm) < 1 and f is convex. This verifies that y(h) is decreasing and
continuous, and establishes that ∂zy

∂h
< 0. (A.6) gives:

∂2y

∂h2
=

(
∂zy
∂h

)2
amf

′′(zy)

1− αmamf ′(zy)
> 0,

the inequality holding by f ′′(zy) > 0, and the above. Finally, (A.7) can be written:

∂3y

∂h3
=
∂zy
∂h

3αm
∂2y
∂h2
amf

′′(zy) +
(
∂zy
∂h

)2
amf

′′′(zy)

1− αmamf ′(zy)
< 0,

the inequality holding by the above.
It follows that:

d3

dh3
H(x(h), y(h)) = (1− ρ)

∂3x

∂h3
− ρ∂

3y

∂h3
> 0.

We have shown that H(x(h), y(h)) crosses the 45-degree line at at-most one unique point
h∗ ∈ (0, 1).

Before establishing the condition characterizing an interior steady state (where h∗ ∈
(0, 1)), first note that, setting y = 1−ρ on the right-hand-side of (A.4), and by x∗ ≤ 1−y∗
in the unique steady state, we have H(x∗, 1−ρ) < H(ρ, 1−ρ) = ρ, while setting y = 1−ρ
on the left-hand-side of (A.4) gives:

y = 1− ρ = am
∑
k

pk [(1− αm)(1−H(x, 1− ρ)) + αm(1− ρ)]k

> am
∑
k

pk [(1− αm)(1−H(ρ, 1− ρ)) + αm(1− ρ)]k = 1− ρ.

This implies that y∗ < 1−ρ for condition (A.4) to hold with equality, or equivalently m∗ >
ρ. n∗ > 0 when h∗ ∈ (0, 1) then follows directly from condition (A.3), or equivalently
m∗ > ρ.

We now derive the condition characterizing when the steady state is interior, that is,
h∗ ∈ (0, 1), which implies x∗(h∗) < 1 and equivalently n∗ > 0 (i.e. news of the niche
market persists in steady state). Remember:

∂

∂x
h =

(1− αn)an
∑

k kpk ((1− αn)h+ αnx)k−1

1− αnan
∑

k kpk ((1− αn)h+ αnx)k−1
;

∂

∂y
h = −(1− αm)am

∑
k kpk ((1− αm)(1− h) + αmy)k−1

1− αmam
∑

k kpk ((1− αm)(1− h) + αmy)k−1
.
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Note that:

lim
h→1

∂

∂x
h =

(1− αn)anE[k]

1− αnanE[k]
; lim
h→1

∂

∂y
h = −(1− αm)amp1

1− αmamp1
,

These give:

lim
h→1

d

dh
H(x(h), y(h)) = lim

h→1

[
(1− ρ)

∂

∂h
x− ρ ∂

∂h
y

]
=

(
(1− ρ)

(1− αn)anE[k]

1− αnanE[k]
+ ρ

(1− αm)amp1
1− αmamp1

)

When limh→1
d
dh
H(x(h), y(h)) < 1 then the unique steady state satisfies h∗ < 1 and is

therefore interior. Rearranging gives:

E[k] > B(αn, αm) :=
1

an

1− amp1(αm + (1− αm)ρ)

1− amp1(αm(1− ρ) + αnρ)− (1− αn)ρ
.

When αn = αm and an = am = 1 we obtain

E[k] > B := B(α, α) =

[
α + (1− α)(1− ρ)

1− p1α
1− p1(α + (1− α)ρ)

]−1
.

We next establish the steady state condition h∗ ≥ ρ when E[k] > B as a lemma.

Lemma A2. h∗ ≥ ρ

Proof of Lemma A2. We prove the lemma by showing that H(x(ρ), y(ρ)) ≥ ρ. Then,
given H(x(h), y(h)) crosses the 45-degree line at most once from above, the lemma follows.
The quantities x(ρ), y(ρ) are defined as:

f−1(x)− αx = (1− α)ρ

f−1(y)− αy = (1− α)(1− ρ)

where the left-hand side is an increasing concave function of its argument and is equal to
0 at 0. Hence, using the line defined by the points (y, (1− α)(1− ρ)) and (x, (1− α)ρ),
the following relationship holds

(1− α)(1− ρ) ≥ (1− α)[ρ− (1− ρ)]

x(ρ)− y(ρ)
y(ρ)

rearranging

x(ρ)

y(ρ)

1− ρ
ρ
≥ 1

which implies that H(x(ρ), y(ρ)) ≥ ρ thereby establishing the result.

With h∗ ≥ ρ by Lemma A2, ρ < x∗m follows as a corollary by writing x∗m = αm∗ +
(1 − α)h∗ and applying m∗ ≥ ρ, while x∗m < m∗ by the definition of x∗m and applying
m∗ > 1− n∗. Similarly, 0 < x∗n < n∗ by the definition of x∗n and applying m∗ > 1− n∗.

Toward establishing global stability, we next show the unique steady state is locally
stable, a necessary condition for global stability. Again allow αn 6= αm. For this, writing
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x∗(y) and y∗(x) the implicit steady-state solutions to (A.1) and (A.2), respectively, and
x∗−1(x) the inverse of the former. Then:

d

dm
n∗(m) · d

dn
m∗(n)

∣∣∣∣
(n∗,m∗)

< 1

⇔ d

dy
x∗(y) · d

dx
y∗(x)

∣∣∣∣
(x∗,y∗)

< 1

⇔ d

dx
y∗(x)

∣∣∣∣
x∗
>

d

dx
x∗−1(x))

∣∣∣∣
x∗
.

Implicit differentiation gives:

lim
x→1

dy∗

dx
=

−(1− αm)(1− ρ)amp1
1− ((1− αm)ρ+ αm)amp1

,

lim
x→1

dy

dx∗
=

(
lim
y→0

dx∗

dy

)−1
=

1− ((1− αn)(1− ρ) + αn)anE[k]

−(1− αn)ρanE[k]
,

the second equality following from the inverse function theorem. Then, it suffice for the
steady state (x∗, y∗) to be stable for:

limx→1
dy∗

dx
> limx→1

dy
dx∗

if E[k] > B,

limx→1
dy∗

dx
≤ limx→1

dy
dx∗

if E[k] ≤ B,

as then x∗(y) and y∗(x) must intersect at (x∗, y∗) such that d
dx
y∗(x∗) > d

dx
x∗−1(x∗), both

when (x∗, y∗) and when (x∗, y∗) = (1, 0). With algebra, the second strict inequality at
limits x→ 1 and y → 0 becomes:

E[k] >
1− amp1(αm + (1− αm)ρ)

1− amp1(αm(1− ρ) + αnρ)− (1− αn)ρ
= B(αn, αm).

We now show global stability, provided the starting point (x0, y0) is interior. Define
the dynamic system (xt, yt) = g(xt−1, yt−1) by equations (A.1) and (A.2) where it is
straightforward to verify that g is continuous in (x, y) ∈ [0, 1] × [0, 1]. The quantities
x∗(yt−1) and y∗(xt−1) give the unique interior fixed point of gz : [0, 1]→ [0, 1] for z = x, y
where x = gx(x, yt−1) and y = gy(xt−1, y); when there is more than one fixed point (this
may only occur when the argument is 0) then it is defined as the minimum. Define
x(xt−1, yt−1) = min{xt−1, x∗(yt−1)} and x̄(xt−1, yt−1) = max{xt−1, x∗(yt−1)} and similarly
define y(xt−1, yt−1), ȳ(xt−1, yt−1). We now show the following property of the dynamic
system.

Lemma A3. Suppose xt−1 6= x∗(yt−1) then gx(xt−1, yt−1) ∈ (x(xt−1, yt−1), x̄(xt−1, yt−1))
and, similarly, suppose yt−1 6= y∗(xt−1) then gy(xt−1, yt−1) ∈ (y(xt−1, yt−1), ȳ(xt−1, yt−1)).

Proof. We observe that g : [0, 1]2 → [0, 1]2, gx(xt−1, yt−1) and gy(xt−1, yt−1) are increas-
ing and convex in xt−1 and yt−1 respectively. Hence, if xt−1 < x∗(yt−1) then xt−1 <
gx(xt−1, yt−1) < x∗(yt−1) and if xt−1 > x∗(yt−1) then x∗(yt−1) < gx(xt−1, yt−1) < xt−1.
The same argument applies for the y coordinate completing the proof.
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Take the case where the steady state is interior: 0 < m∗, n∗, x∗, y∗ < 1. Define a line
segment ỹ1(x̃1) between the steady state (x∗, y∗) and point (1, 1) by ỹ1 = 1−y∗

1−x∗ x̃1 + y∗−x∗
1−x∗

for x̃1 ∈ [x∗, 1]. Now, define a second line ỹ2(x̃2) for x̃ ∈ [0, x∗] in the following way. For
each x ∈ [x∗, 1] find the point (x∗(ỹ1(x)),max{x∗−1(x), 0}); this point corresponds with
the south-west corner of the dashed box in Figure A1. First, x∗(ỹ1(x)) is continuous and
strictly decreasing in x for all x∗ ≤ x ≤ 1, x∗(ỹ1(1)) = 0 and x∗(ỹ1(x

∗)) = x∗. Second,
note that we have defined the y-coordinate equal to 0 when the inverse of equation (A.3)
x∗−1(x) gives a negative solution. Finally, there exists x̄ ≤ 1 such that x∗−1(x) > 0 for
x < x̄ and x∗−1(x) is strictly decreasing in x. The line segments ỹ1, ỹ2, x

∗(y) segment the
interior of (x, y) into four regions about the steady state as in the diagram below where
the regions are labeled A,B,C,D:

ỹ1

ỹ2

x∗(y)

y∗(x)

x

y

A

B
C

D

Figure A1: Four Segments

Now define a function L(x, y) : [0, 1]2 → < as follows:

L(x, y) =


y∗ − y if (x, y) ∈ A
y∗ − ỹ1(x) if (x, y) ∈ B
y∗ − ỹ1(x∗(y)) if (x, y) ∈ C
y∗ − x∗−1(x) if (x, y) ∈ D

(A.8)

The dashed box in Figure A1 defines one isoquant of L.
For any interior starting point (x0, y0) we can define X = {(x, y) : L(x, y) ≥ L(x0, y0)}

where X is a compact subset X ⊆ <2. Moreover, the function L(x, y) : X → < is
continuous in x, y and L(x, y) ≤ 0 with equality if and only if (x, y) = (x∗, y∗). We now
show the following two lemmas

Lemma A4. Suppose (xt−1, yt−1) ∈ (0, 1)×[0, 1] and xt−1 6= x∗(yt−1) then L(g(xt−1, yt−1)) >
L(xt−1, yt−1).

Proof. We construct the following upper x′′, y′′ and lower x′, y′ bounds from the value
L(xt−1, yt−1):

y′′ = y∗ − L(xt−1, yt−1)

x′′ = ỹ−11 (y′′)

y′ = max{x∗−1(x′′), 0}
x′ = x∗(y′′)
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We note that from the definition of L that (xt−1, yt−1) lies on the boundary of [x′, x′′]×
[y′, y′′] and L(x, y) > L(xt−1, yt−1) for any point on the interior (x, y) ∈ (x′, x′′)× (y′, y′′).

We also note that x∗(y) and y∗(x) cross at most once in (0, 1) × (0, 1) where
∣∣∣∂x∗∂y ∣∣∣ <

(
∣∣∂y∗
∂x

∣∣)−1 so y′ < y∗(x) < y′′ for all x ∈ [x′, x′′]. Now, by lemma A3 we have that
gy(xt−1, yt−1) ∈ (y, ȳ) ⊂ (y′, y′′) and for xt−1 6= x∗(yt−1) then gx(xt−1, yt−1) ∈ (x, x̄) ⊂
(x′, x′′) so g(xt−1, yt−1) ∈ (x′, x′′)× (y′, y′′) and hence L(g(xt−1, yt−1)) > L(xt−1, yt−1).

Lemma A5. Suppose (xt−1, yt−1) ∈ (0, 1) × [0, 1], xt−1 = x∗(yt−1) and yt−1 6= y∗(xt−1)
then L(g(g(xt−1, yt−1))) > L(xt−1, yt−1).

Proof. In this case gx(xt−1, yt−1) = xt−1 and using lemma A3 gy(xt−1, yt−1) ∈ (y, ȳ), hence,
L(g(xt−1, yt−1)) = L(xt−1, yt−1) and gx(xt−1, yt−1) 6= x∗(gy(xt−1, yt−1)). We now apply
lemma A4 to conclude that L(g(g(xt−1, yt−1))) > L(g(xt−1, yt−1)) = L(xt−1, yt−1)

To establish our result for an interior steady state and interior starting point (x0, y0)
we define X = {(x, y) : L(x, y) ≥ L(x0, y0)} and h(x, y) = g(g(x, y)). X is a compact
subset X ⊆ <2. Moreover, the function L(x, y) : X → < is continuous in x, y, L(x, y) ≤ 0
with equality if and only if (x, y) = (x∗, y∗), and h(x, y) is a continuous mapping X → X
by virtue of g having the same properties. By lemmas A4 and A5 L(h(x, y)) > L(x, y)
for all (x, y) ∈ X/(x∗, y∗) and L(h(x∗, y∗)) = L(x∗, y∗). The conditions of Lemma 6.2 of
Stokey and Lucas (1989) are satisfied for X and L as defined here, g = h and x̄ = (x∗, y∗).
Therefore, (x∗, y∗) is the globally stable steady state of h and hence g in X.

For the case where the steady state is m∗ = 1 = 1− x∗, n∗ = 0 = 1− y∗ we define:

L̃(x, y) = −max{y, x∗−1(x)} (A.9)

Lemma A6. Suppose (xt−1, yt−1) ∈ (0, 1)×[0, 1] and xt−1 6= x∗(yt−1) then L̃(g(xt−1, yt−1)) >
L̃(xt−1, yt−1).

Proof. We note that from the definition of L̃ that (xt−1, yt−1) lies on the boundary of the
set {(x, y) : L̃(x, y) ≥ L̃(xt−1, yt−1)}. Moreover, L̃(x, y) > L̃(xt−1, yt−1) for any (x, y) such
that x > x∗(L̃(x, y)) and y < L̃(x, y). In the case that m∗ = 1 = 1− x∗, n∗ = 0 = 1− y∗
then y∗(x) < x∗−1(x) ∀x ∈ (0, 1), hence, y∗(x) < L̃(xt−1, yt−1) ∀x ∈ (0, 1). Now, by
lemma A3 gy(xt−1, yt−1) ∈ (0, L̃(xt−1, yt−1) and gx(xt−1, yt−1) ∈ (x∗(L̃(xt−1, yt−1)), 1).

Lemma A7. Suppose (xt−1, yt−1) ∈ (0, 1)×[0, 1], xt−1 = x∗(yt−1) then L̃(g(g(xt−1, yt−1))) >
L̃(xt−1, yt−1).

Proof. In this case, gx(xt−1, yt−1) = xt−1 and observing that yt−1 6= y∗(xt−1 we can
use lemma A3 to conclude that gy(xt−1, yt−1) ∈ (0, yt−1). Hence, L̃(g(xt−1, yt−1)) =
L̃(xt−1, yt−1) and gx(xt−1, yt−1) 6= x∗(gy(xt−1, yt−1)). We can now apply lemma A6 to
conclude that L̃(g(g(xt−1, yt−1))) > L̃(g(xt−1, yt−1)) = L̃(xt−1, yt−1) completing the proof.

To establish our result for the mass market steady state and interior starting point
(x0, y0) we define X = {(x, y) : L̃(x, y) ≥ L̃(x0, y0)} and h(x, y) = g(g(x, y)). X is
a compact subset X ⊆ <2. Moreover, the function L̃(x, y) : X → < is continuous in
x, y, L̃(x, y) ≤ 0 with equality if and only if (x, y) = (1, 0), and h(x, y) is a continuous
mapping X → X by virtue of g having the same properties. By lemmas A6 and A7
L̃(h(x, y)) > L̃(x, y) for all (x, y) ∈ X/(x∗, y∗) and L̃(h(1, 0)) = L̃(1, 0). The conditions
of Lemma 6.2 of Stokey and Lucas (1989) are satisfied for X and L̃ as defined here, g = h
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and x̄ = (1, 0). Therefore, (1, 0) is the globally stable steady state of h and hence g in
X.

Proof of Proposition 2. We use the multivariate implicit function theorem. Define
zx and zy as above; h = (1− ρ)x+ ρ(1− y). Write the system (A.3) and (A.4):[

gx(x, y)
gy(x, y)

]
=

[
x−

∑
k pk [(1− α)h+ αx]k

y −
∑

k pk [(1− α)(1− h) + αy]k

]
.

gx(x
∗, y∗) = 0 and gy(x

∗, y∗) = 0 then defines the steady state. The Jacobian of the
system is:

J =

[
1− ((1− α)(1− ρ) + α)f ′(zx) (1− α)ρf ′(zx)

(1− α)(1− ρ)f ′(zy) 1− ((1− α)ρ+ α)f ′(zy)

]
which has inverse:

J−1 =
1

|J |

[
1− ((1− α)ρ+ α)f ′(zy) −(1− α)ρf ′(zx)
−(1− α)(1− ρ)f ′(zy) 1− ((1− α)(1− ρ) + α)f ′(zx)

]
.

We know that |J | > 0 by stability of the steady state.
The comparative statics with respect to α is then given by:[

∂x∗

∂α
∂y∗

∂α

]
= −J−1

[
∂gx(x∗,y∗)

∂α
∂gy(x∗,y∗)

∂α

]
= −J−1

[
−ρ(1− (x∗ + y∗))f ′(z∗x)

(1− ρ)(1− (x∗ + y∗))f ′(z∗y)

]
=
−1

|J |
(1− (x∗ + y∗))

[
ρf ′(z∗x)(1− f ′(z∗y))

(1− ρ)f ′(z∗y)(1− f ′(z∗x))

]
.

Now, ∂
∂h
H(x(h∗), y(h∗)) < 1 from the proof of Theorem 1. Also from the proof of Theorem

1, we can write:

∂

∂h
H(x(h∗), y(h∗)) = (1− ρ)

(1− α)f ′(zx)

1− αf ′(zx)
+ ρ

(1− α)f ′(zy)

1− αf ′(zy)
.

Therefore, either f ′(zx) < 1 or f ′(zy) < 1 must hold for ∂
∂h
H(x(h∗), y(h∗)) < 1 to obtain.

By y∗ ≤ x∗ and y∗ < 1/2, h∗− (1−h∗) = (1− 2y∗) + 2(1− ρ)(x∗− y∗) > 0, and therefore
z∗x > z∗y . It must therefore be that f ′(z∗y) < 1. With |J | > 0, 1 > x∗ + y∗ and f ′(z∗x) > 0,

this gives ∂x∗

∂α
< 0, or equivalently ∂n∗

∂α
> 0. And, to show ∂h∗

∂α
< 0:

∂h∗

∂α
= (1− ρ)

∂x∗

∂α
− ρ∂y

∗

∂α

=
−(1− ρ)ρ

|J |
(1− (x∗ + y∗))

(
f ′(z∗x)(1− f ′(z∗y))− f ′(z∗y)(1− f ′(z∗x)

)
=
−(1− ρ)ρ

|J |
(1− (x∗ + y∗))

(
f ′(z∗x)− f ′(z∗y)

)
< 0,

the inequality following from f ′(z∗x)− f ′(z∗y) > 0⇔ z∗x > z∗y ⇔:

(1− α)h∗ + αx∗ > (1− α)(1− h∗) + αy∗

α(x∗ − y∗) > (1− α)(1− 2h∗),
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which holds by x∗ > y∗ ⇔ n∗ < m∗ and by h∗ > ρ > 1/2.
To show limα→1m

∗ = limα→1 n
∗ = 1, note that limα→1 f(zx) = f(x) and limα→1 f(zy) =

f(y). x − f(x) = 0 and y − f(y) = 0 both having solutions 1 and 0. By ∂m∗

∂α
> 0,

limα→1m
∗ = 0 is excluded. For limα→1 n

∗, limα→1 y
∗ = 0 implies that f ′(zy) = p1 < 1,

and therefore, limα→1
∂x∗

∂α
< 0, equivalently limα→1

∂n∗

∂α
> 0, which excludes limα→1 n

∗ = 0.
We now show the claim on FOSD shifts to {pk}. Any FOSD shift to {pk} can be

decomposed into multiple shifts in probability densities ε > 0 from pk′ to pk′′ for some
k′′ > k′. Then, given this ε, we can write the system:

x =

(
((pk′ − ε) [(1− α)h+ αx]k

′
) + ((pk′′ + ε) [(1− α)h+ αx]k

′′
)

+
∑

k 6=k′,k′′ pk [(1− α)h+ αx]k

)
,

y =

(
((pk′ − ε) [(1− α)(1− h) + αy]k

′
) + ((pk′′ + ε) [(1− α)(1− h) + αy]k

′′
)

+
∑

k 6=k′,k′′ pk [(1− α)h+ αy]k

)
.

The comparative statics with respect to ε is then given by:[
∂x∗

∂ε
∂y∗

∂ε

]
= −J−1

[
∂gx(z∗x,z

∗
y)

∂ε
∂gy(z∗x,z

∗
y)

∂ε

]
= −J−1

[
z∗k

′
x − z∗k

′′
x

z∗k
′

y − z∗k
′′

y

]
=
−1

|J |

[
(1− ((1− α)ρ+ α)f ′(z∗y))δx − (1− α)ρf ′(z∗x)δ

∗
y

−(1− α)(1− ρ)f ′(zy)δ
∗
x + (1− ((1− α)(1− ρ) + α)f ′(z∗x))δ

∗
y

]
.

where δx := zk
′
x − zk

′′
x > 0 and δy := zk

′
y − zk

′′
y > 0.

∂h

∂ε
= (1− ρ)

∂x

∂ε
− ρ∂y

∂ε

=
−1

|J |
(δx(1− ρ)(1− αf ′(zy))− δyρ(1− αf ′(zx))) > 0

⇔ δx
δy

1− ρ
ρ

>
1− αf ′(zx)
1− αf ′(zy)

. (A.10)

The right-hand-side of (A.10) is less than one at (z∗x, z
∗
y), which is shown in the proof of

Proposition 1. Now:

δ∗x
δ∗y
≥ z∗x
z∗y

=
(1− α)h∗ + αx∗

(1− α)(1− h∗) + αy∗

≥ (1− α)ρ+ αx∗

(1− α)(1− ρ) + αy∗
=

ρ

1− ρ

[
(1− α)1−ρ

y∗
+ αx

∗

y∗
1−ρ
ρ

(1− α)1−ρ
y∗

+ α

]
≥ ρ

1− ρ

where the first inequality follows from δx
δy

decreasing in k′′ and increasing in k′ upon

k′′ →∞, the second inequality follows from Lemma A2, and the third inequality follows
from x∗

y∗
1−ρ
ρ
> 1 which is shown in the proof of Lemma A2. Therefor the left-hand-side

of (A.10) is above one.
Finally, to show n∗ increases with FOSD shifts to {pk}, a decrease in h∗ decreases each

term in the right-hand-side of (A.3) (i.e. for each k). Moreover, an FOSD shift in {pk}
shifts probabilities to larger k, also decreasing the right-hand-side of (A.3). Therefore,
x∗ unambiguously decreases, or equivalently n∗ increases.
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For the last claim, the comparative statics with respect to ρ is then given by:[
∂x∗

∂ρ
∂y∗

∂ρ

]
= −J−1

[
∂gx(x∗,y∗)

∂ρ
∂gy(x∗,y∗)

∂ρ

]
= −J−1

[
−(1− α)(1− (x∗ + y∗))f ′(z∗x)
(1− α)(1− (x∗ + y∗))f ′(z∗y)

]
=
−1

|J |
(1− α)(1− (x∗ + y∗))

[
−f ′(z∗x)(1− αf ′(z∗y))
f ′(z∗y)(1− αf ′(z∗x))

]
.

x∗ ≥ y∗ implies x∗ ≤ 1− y∗, equivalently x∗ + y∗ ≤ 1. 1 − αf ′(z∗x) where equality (A.3)
holds, and 1− αf ′(z∗y) where equality (A.4) holds; see proof of Proposition 1. Therefore,
∂x∗

∂ρ
> 0 and ∂y∗

∂ρ
< 0, equivalently ∂n∗

∂ρ
< 0 and ∂m∗

∂ρ
> 0. ∂h∗

∂ρ
> 0 follows immediately

from the definition of h∗. Moreover:

∂x∗n
∂α

= α
∂n∗

∂α
− (1− α)

∂h∗

∂α
+ ρ(m∗ + n∗ − 1)

Each term of the right-hand-side is positive, giving ∂x∗n
∂α

> 0. Likewise:

∂x∗n
∂ε

= α
∂n∗

∂ε
− (1− α)

∂h∗

∂ε

Each term of the right-hand-side is positive, giving ∂x∗n
∂ε

> 0, and thus a First-Order
Stochastic Dominance change to the distribution of friend- ships pk increases x∗n. Next,
with m∗, n∗ → 1 as k →∞, we have:

lim
k→∞

x∗m = α + (1− α)ρ

lim
k→∞

x∗n = α + (1− α)(1− ρ)

Lastly:

∂x∗m
∂ρ

= α
∂m∗

∂ρ
+ (1− α)

∂

∂ρ
(ρm∗ + (1− ρ)(1− n∗))

= −α∂y
∗

∂ρ
+ (1− α)

(
−ρ∂y

∗

∂ρ
+ (1− ρ)

∂x∗

∂ρ

)
+ (1− α)(m∗ + n∗ − 1)

= −∂y
∗

∂ρ
+ (1− α)(1− ρ)

(
∂x∗

∂ρ
+
∂y∗

∂ρ

)
+ (1− α)(m∗ + n∗ − 1)

= −∂y
∗

∂ρ
+ (1− α)(1− ρ)

(
1

|J |
(1− α)(1− (x∗ + y∗))(f ′(z∗x)− f ′(z∗y))

)
+(1− α)(m∗ + n∗ − 1)

With ∂y∗

∂ρ
< 0, f ′(z∗x) > f ′(z∗y) and m∗ + n∗ > 1, each term on the right-hand-side is
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positive, giving ∂x∗m
∂ρ

> 0. Likewise:

∂x∗n
∂ρ

= α
∂n∗

∂ρ
+ (1− α)

∂

∂ρ
((1− ρ)n∗ + ρ(1−m∗))

= −α∂x
∗

∂ρ
+ (1− α)

(
−(1− ρ)

∂x∗

∂ρ
+ ρ

∂y∗

∂ρ

)
− (1− α)(m∗ + n∗ − 1)

= (1− α)
∂y∗

∂ρ
− α∂x

∗

∂ρ
− (1− α)(1− ρ)

(
∂x∗

∂ρ
+
∂y∗

∂ρ

)
− (1− α)(m∗ + n∗ − 1)

= (1− α)
∂y∗

∂ρ
− α∂x

∗

∂ρ
− (1− α)(m∗ + n∗ − 1)

−(1− α)(1− ρ)

(
1

|J |
(1− α)(1− (x∗ + y∗))(f ′(z∗x)− f ′(z∗y))

)
With ∂y∗

∂ρ
< 0, ∂x∗

∂ρ
> 0, m∗+n∗ > 1 and f ′(z∗x) > f ′(z∗y), each term on the right-hand-side

is negative, giving ∂x∗n
∂ρ

< 0.

Proof of Proposition 3. We construct the comparative statics of P ∗ with respect to
α, ε and ρ using the proof of Proposition 2, and establish their signs to be negative,
positive, and negative, respectively.

First:

dP ∗

dα
= (m∗ + n∗ − 1) + α

(
∂x∗

∂α
+
∂y∗

∂α

)
= (m∗ + n∗ − 1)

(
1 +

α

|J |
(ρf ′(z∗x) + (1− ρ)f ′(z∗y)− f ′(z∗x)f ′(z∗y))

)
,

so, dP ∗

dρ
> 0 if and only if:

|J | > −α(ρf ′(z∗x) + (1− ρ)f ′(z∗y)− f ′(z∗x)f ′(z∗z)). (A.11)

From the proof of Proposition 2 we may calculate:

|J | = 1− ((1− α)(1− ρ) + α) f ′(z∗x)− ((1− α)ρ+ α) f ′(z∗y) + αf ′(z∗x)f
′(z∗z),

and thus (A.11) is equivalent to:

1 > (1− ρ)f ′(z∗x) + ρf ′(z∗y).

To show this inequality, from the proof of Proposition 2 we have:

∂

∂h
H(x(h∗), y(h∗)) = (1− ρ)

(1− α)f ′(z∗x)

1− αf ′(z∗x)
+ ρ

(1− α)f ′(z∗y)

1− αf ′(z∗y)
< 1.

If we define g(z) ≡ (1−α)z
1−αz , a convex function which is increasing for z ≥ 0 and satisfies

g(0) = 0 and g(1) = 1, this can be written:

(1− ρ)g(f ′(z∗x)) + ρg(f ′(z∗y)) < 1.
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By Jensen’s inequality, we have:

1 > (1− ρ)g(f ′(z∗x)) + ρg(f ′(z∗y)) > g((1− ρ)f ′(z∗x) + ρf ′(z∗y)),

which implies 1 > (1− ρ)f ′(z∗x) + ρf ′(z∗y).
Second:

dP ∗

dε
= −α

(
∂x∗

∂ε
+
∂y∗

∂ε

)
=

1

|J |
(
(1− f ′(z∗y))δx + (1− f ′(z∗x))δy

)
=

(δx + δy)

|J |

(
1−

(
δy

δx + δy
f ′(z∗x) +

δx
δx + δy

f ′(z∗y)

))
.

From the Proposition 2, δx/δy ≥ ρ/(1 − ρ), or equivalently ρ ≤ δx
δx+δy

. With 1 >

((1− ρ)f ′(z∗x)) + ρf ′(z∗y) from above and f ′(z∗y) < f ′(z∗x), these give 1 > δy
δx+δy

f ′(z∗x) +
δx

δx+δy
f ′(z∗y), and thus dP ∗

dε
≥ 0.

Third:

dP ∗

dρ
= −α

(
∂x∗

∂ρ
+
∂y∗

∂ρ

)
=

(1− α)(1− (x∗ + y∗))

|J |
(
−(f ′(z∗x)− f ′(z∗y)))

)
< 0,

as f ′(z∗y) < f ′(z∗x) shown in the proof of Proposition 2.

Proof of Proposition 4. The proof of Proposition 1 shows that there is a unique lo-
cally stable steady state m∗(eN , eM), n∗(eN , eM) for any pair (eN , eM) ∈ [0, 1)× [0, 1). We
now proceed to establish that ∃C such that C ′′ > C each player’s objective is concave,
the first order condition is sufficient for the optimal effort choice and the best responses
functions are continuous. The second derivative of each player’s objective are:

ρ
∂2m∗

∂e2M
− (1− ρ)

∂2n∗

∂e2M
− ∂2C(ρeM)

∂e2M
(A.12)

(1− ρ)
∂2n∗

∂e2N
− ρ∂

2m∗

∂e2N
− ∂2C((1− ρ)eN)

∂e2N
(A.13)

Hence, a sufficient condition for concavity under the condition C ′′ > C is that the magni-
tude of ∂2m∗

∂e2M
,∂

2n∗

∂e2M
,∂

2m∗

∂e2N
,∂

2n∗

∂e2N
are bounded. In each case, the second derivative is a bounded

term (given by 1
|J |2 where |J | is the determinant of the Jacobian of the system of equations

given in equation B) multiplied by a second term that is a sequence of product, addition
or subtraction operations involving α, ρ, em, en, f(zn), f(zm), f ′(zn), f ′(zm), f ′′(zn), f ′′(zm)
and the first derivatives ∂m∗

∂em
, ∂n

∗

∂em
,∂m

∗

∂en
,∂n
∗

∂en
. All these terms are themselves bounded and

so the entire term comprises a finite sequence of product, addition and subtraction oper-
ations will also be bounded. The best response of each player may be written as

ρ
∂m∗

∂em
− (1− ρ)

∂n∗

∂em
− ρC ′(ρem) = 0 (A.14)

(1− ρ)
∂n∗

∂en
− ρ∂m

∗

∂en
− (1− ρ)C ′((1− ρ)en) = 0 (A.15)
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and via the implicit function theorem we find that:

∂BRm (en)

∂en
= −

ρ ∂2m∗

∂em∂en
− (1− ρ) ∂2n∗

∂em∂en

ρ∂
2m∗

∂e2m
− (1− ρ)∂

2n∗

∂e2m
− ρC ′′ (ρe∗m)

∂BRn (em)

∂em
= −

(1− ρ) ∂2n∗

∂em∂en
− ρ ∂2m∗

∂em∂en

(1− ρ)∂
2n∗

∂e2n
− ρ∂2m∗

∂e2n
− (1− ρ)C ′′ ((1− ρ)e∗n)

The same argument that bounded the value of the second derivatives also bounds ∂2m∗

∂em∂en

and ∂2n∗

∂em∂en
. It is then straightforward to observe that for δ < 1 ∃C such that∣∣∣∣∂BRm (en)

∂en

∣∣∣∣ , ∣∣∣∣∂BRn (em)

∂em

∣∣∣∣ < δ

and hence the best response functions are continuous and there exists a unique Nash
equilibrium (e∗m, e

∗
n) where they coincide. We can verify that the equilibrium will be

interior by first observing that for any em ∈ [0, 1] the right-hand side of equation (25) is
positive and the marginal costs of investment go to zero for e = 0 so BRn(0) > 0. Second,
we observe that when en > 0, the right-hand side of equation (24) is strictly positive and
so BRm(en) > 0 for en > 0. These two observations rule out any equilibria where either
player invests 0. Finally, our assumption on the convexity of the cost function guarantees
that en = 1 or em = 1 is not part of an equilibrium.

First, observe in equation (A.18) that a steady state is increasing in the mass-market
investment em and decreasing in the niche investment en.

We now proceed to establish that the niche-market player invests more than the mass-
market player when α = 0. In this case, the steady state relationships for m,n and h
may be written as:

n∗ = 1− (1− en) f (h∗) (A.16)

m∗ = 1− (1− em) f (1− h∗) (A.17)

h∗ = ρ− ρ (1− em) f (1− h∗) + (1− ρ) (1− en) f (h∗) (A.18)

First, for ρem = (1 − ρ)en = µ and h∗ = 1
2

the right-hand side of equation (A.18)
is greater than 1

2
. Then, using the properties of the right-hand side of equation (A.18)

(mapping [0, 1] → [0, 1], continuous, positive first and third derivatives) shown in the
proof of Proposition 1 we may conclude that h∗(µ

ρ
, µ
1−ρ) > ρ.

Second, observe in equations (A.16), (A.17) and (A.18) that a steady state is increasing
in the mass-market investment em and decreasing in the niche investment en. Now, to
establish the results by way of contradiction, suppose (1− ρ) e∗n < ρe∗m. The two points
above then imply that the steady state h∗(e∗m, e

∗
n) > 1

2
. However, this is a contradiction

of the first order conditions for each player (equations (24) and (25)), where, h∗(ρe∗m, (1−
ρ)e∗n) > 1

2
⇒ (1− ρ) e∗n > ρe∗m. Therefore, we conclude that (1− ρ) e∗n > ρe∗m.

To show that h∗ > 1
2
, by way of contradiction suppose this was not the case h∗ < 1

2
.

The first order conditions of the two players equations for the case α = 0 simply to:

C ′ (ρe∗m) =
f (1− h∗)

∆
(A.19)

C ′ ((1− ρ) e∗n) =
f (h∗)

∆
(A.20)
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These immediately implies that (1− ρ) e∗n < ρe∗m if h∗ < 1
2

which contradicts our earlier
result (1− ρ) e∗n > ρe∗m. Thus establishing that h∗ > 1

2
.

Proof of Proposition 5. Choose any A such that ρe∗m < A < (1− ρ) en. Now write

ñ (h,A) = 1 −
(

1− A
1−ρ

)
f(h) and m̃ (h,A) = 1 −

(
1− A

ρ

)
f (1− h). We can find ∂ñ

∂A

and ∂m̃
∂A

as 1
1−ρf(h) and 1

ρ
f (1− h) respectively and can conclude that the function H =

ρm̃ (h,A) + (1− ρ) ñ (h,A) is decreasing in A because ∂H
∂A

= f (1− h) − f(h) < 0 for
h > 1

2
. Now, we can conclude (using the properties of H shown in Proposition 1)

that the value h∗ (A,A) that satisfies ρm̃ (h∗, A) + (1− ρ) (1− ñ (h∗, A)) = h∗ is also
decreasing in A. Finally, to establish the result, we note that ρe∗m < A < (1− ρ) e∗n
and so increasing en from A

1−ρ to e∗n and decreasing em from A
ρ

to e∗m will reduce h so

h∗ (e∗m, e
∗
n) < h∗ (A,A) < h∗ (0, 0).

Proof of Proposition 6. Define α̂m(αn) as the implicit solution for αm in equation
(32) and α̂n(αm) as the implicit solution for αn in equation (33). For sufficient convexity
of D both are continuous functions [0, 1] → [0, 1]. Hence there exists a point on [0, 1] ×
[0, 1] where equations 32 and 33 are satisfied. Moreover, when E[k] > 1

1−ρ we have

α̂m(0), α̂n(0) > 0 and α̂m(1), α̂n(1) < 1 such that the equilibrium is interior. Finally, the
returns to homophily for a niche individual shown on the right-hand side of equation 33
is greater than the returns to homophily for mass-market individuals shown in equation
32 since ρ > 1

2
. This immediately implies that the niche individuals will exhibit greater

homophily α∗n > α∗m in equilibrium.

Proof of Proposition 7. We work with the properties of the function yM,t (yM,t−1).
First, observe that there are fixed points at 0 and 1 where yM,t (yM,t−1) = yM,t−1. Second,
the derivative is given by:

∂yM,t

∂yM,t−1
=

∑
k

pk

(
ρ
[
k (1− yM,t−1)

k−1
]

+ (1− ρ)

[
k

2

(
1 + yM,t−1

2

)k−1
+
k

2

(
1− yM,t−1

2

)k−1])
> 0

We find that the function yM,t (yM,t−1) is increasing for all yM,t−1 ∈ [0, 1]. Taking limits,
we also find:

lim
yM,t−1→0+

∂yM,t

∂yM,t−1
(yM,t−1) = ρE[k] + (1− ρ)

∞∑
k=1

pkk

(
1

2

)k−1
= CLR

lim
yM,t−1→1−

∂yM,t

∂yM,t−1
(yM,t−1) = p1 +

1− ρ
2

(E[k]− p1) = CM .

Third, consider the curvature

∂2yM,t

∂y2M,t−1
=

∑
k

pk

(
−ρ1

2

[
k (k − 1) (1− yM,t−1)

k−2
]

+ (1− ρ)

[
k (k − 1)

4

(
1 + yM,t−1

2

)k−2
− k (k − 1)

4

(
1− yM,t−1

2

)k−2]
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(A.22)

This expression is increasing in yM,t−1 for all yM,t−1 ∈ (0, 1), is positive as yM,t−1 → 1− by
pk > 0 for some k > 2 and negative as yM,t−1 → 0+. Hence there exists a threshold value
ŷM,t−1 such that the function yM,t (yM,t−1) is concave for yM,t−1 < ŷM,t−1 and convex for
yM,t−1 > ŷM,t−1 for yM,t−1 ∈ (0, 1). Given these properties and yM,t(y) = y for y = 0, 1
we conclude that a stable steady state equilibrium exists and is unique for y∗M ∈ [0, 1].
Moreover, we have the following mutually exclusive cases:

1. y∗M = 0 if CLR ≤ 1,

2. y∗M = 1 if CM ≤ 1,

3. 0 < y∗M < 1 otherwise.

where C ≡ p1 + 1−p1
γ

> 1, where γ = 1− ρ. We now proceed to the final two components
of the Proposition. We first develop the following lemma.

Lemma A8. If pk > 0 for some k > 2, then yM,t (ρ) > ρ for all ρ ≥ 1/3.

Proof. Starting with the condition:

yM,t (ρ) =
∑
k

pk

[
ρ
[
1− (1− ρ)k

]
+ (1− ρ)

[(
1 + ρ

2

)k
−
(

1− ρ
2

)k]]
> ρ, (A.23)

Now consider the term:

ρ
[
1− (1− ρ)k

]
+ (1− ρ)

[(
1 + ρ

2

)k
−
(

1− ρ
2

)k]
(A.24)

We show this term is weakly positive for all k ≥ 2 and ρ ≥ ρ and holding strictly for
some k where pk > 0. With some algebra, this term can be rearranged to:

ρ+ (1− ρ)

[(
1 + ρ

2

)k
−
(

1− ρ
2

)k
− ρ (1− ρ)k−1

]
(A.25)

Which is strictly positive whenever:(
1

2

)k((
1 + ρ

1− ρ

)k
− 1

)
>

ρ

1− ρ
.

and equal to zero whenever the condition holds with equality. For k = 1 the relationship
holds with equality. Now taking the derivative of the left-hand side with respect to k we
find: [

ln

(
1 + ρ

1− ρ

)
+ ln

(
1

2

)](
1

2

)k (
1 + ρ

1− ρ

)k
− ln

(
1

2

)
(A.26)

Which is strictly positive for all ρ ≥ 1
3
.
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By the above lemma, yM,t (ρ) > ρ for ρ ≥ 1
3
, and thus, combined with the other

characteristics of yM,t(yM,t−1) introduced above, yM,t(yM,t−1) will pass the 45-degree line
to the right of ρ.

We now show the final statement of the proposition. This follows from noting that:

lim
ρ→0+

CLR =
∑
k=1

k

(
1

2

)k
< 1 (A.27)

provided that pk > 0 for some k > 2, hence there will be steady state below ρ in this
neighborhood.
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B Derivation of the first-order conditions for “influ-

encers” (Section 4.2)

Taking the derivative of equations (22) and (23) with respect to eM and eN respectively
produces the following first order conditions for each player:

ρ
∂m∗

∂eM
− (1− ρ)

∂n∗

∂eM
− ρC ′(ρeM) = 0 (B.1)

(1− ρ)
∂n∗

∂eN
− ρ∂m

∗

∂eN
− (1− ρ)C ′((1− ρ)eN) = 0 (B.2)

We use the multivariate implicit function theorem to find the partial derivatives of the
steady-state quantities with respect to the investments. Define zx and zy as in the proof
of Proposition 1, that is, zx := (1− α)h + αx and zy ≡ (1− α) (1− h) + αy, where
x ≡ 1 − n and y := 1 − m, which are defined in equations (A.1) and (A.2). Also,
h = (1−ρ)x+ρ(1−y) and aN ≡ 1−eN and aM ≡ 1−eM . Then, the system of equations
(20) and (21) can be written as:[

gx(x, y)
gy(x, y)

]
=

[
x− aN

∑
k pk [(1− α)h+ αx]k

y − aM
∑

k pk [(1− α)(1− h) + αy]k

]
.

where gx(x
∗, y∗) = 0 and gy(x

∗, y∗) = 0 defines the steady state. The Jacobian of the
system is:

J =

[
1− ((1− α)(1− ρ) + α)aNf

′(zx) (1− α)ρaNf
′(zx)

(1− α)(1− ρ)aMf
′(zy) 1− ((1− α)ρ+ α)aMf

′(zy)

]
which has inverse:

J−1 =
1

|J |

[
1− ((1− α)ρ+ α)aMf

′(zy) −(1− α)ρaNf
′(zx)

−(1− α)(1− ρ)aMf
′(zy) 1− ((1− α)(1− ρ) + α)aNf

′(zx)

]
.

The determinant |J | > 0 by stability of the steady state. The comparative statics with
respect to aM and aN are then given by:[

∂x∗

∂aM
∂y∗

∂aM

]
= −J−1

[
∂gx(x∗,y∗)

∂aM
∂gy(x∗,y∗)

∂aM

]
= −J−1

[
0

−f(zy)

]
(B.3)

=
f(zy)

|J |

[
−(1− α)ρaNf

′(zx)
1− ((1− α)(1− ρ) + α)aNf

′(zx)

]
; (B.4)

[
∂x∗

∂aN
∂y∗

∂aN

]
= −J−1

[
∂gx(x∗,y∗)

∂aN
∂gy(x∗,y∗)

∂aN

]
= −J−1

[
−f(zx)

0

]
(B.5)

=
f(zx)

|J |

[
1− ((1− α)ρ+ α)aMf

′(zy)
−(1− α)(1− ρ)aMf

′(zy)

]
. (B.6)

It is straightforward to observe that ∂x∗

∂aN
= ∂n∗

∂eN
, ∂x

∗

∂aM
= ∂n∗

∂eM
, ∂y

∗

∂aN
= ∂m∗

∂eN
and ∂y∗

∂aM
= ∂m∗

∂eM
and so we may substitute the relationships in equations (B.6) and (B.4) into the first
order conditions in equations (B.1) and (B.2) for the respective partial derivatives. Re-
arranging and defining ∆ ≡ |J | establishes equations (24) and (25) in the main text.
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C Additional results

C.1 Influencers (Section 4.2)

Recall that k := mink{k : pk > 0}. We have the following result:

Proposition C1. When α > 0, then, Polarization P (e∗m, e
∗
n)→ α as e∗m → 1 and e∗n → 1.

e∗m → 0, e∗n → 0 and P (e∗m, e
∗
n)→ α as k →∞.

Proof. To establish the first result, it is straightforward to observe that as em, en → 1 then
the solution to the system of equations 20 and 21 goes to m∗ = n∗ = 1 and polarization
P (e∗m, e

∗
n) = α(m∗ + n∗ − 1) → α. To establish the second result, we observe that when

f(x) = xk then limk→∞f(x) → 0 for all x < 1 so again the solution to the system of
equations 20 and 21 goes to m∗ = n∗ = 1 and polarization P (e∗m, e

∗
n) = α(m∗+n∗−1)→ α

for k → ∞. Finally, we note that this also implies that limk→∞h
∗ = ρ and so the right

hand side of equations A.19 and A.20 goes to zero. This establishes that the equilibrium
investments e∗m, e

∗
n also go to zero in this limit.

C.2 Homophily (Section 4.3)

We have the following results:

Proposition C2. For a given pair of homophily levels αm and αn, there is a unique
stable steady-state equilibrium (m∗, n∗).

Proof. The proof of Proposition 1 includes the case of different homophily parameters
αm, αn.

Proposition C3. There exists an equilibrium with zero homophily if and only if k ≤ 1
1−ρ .

Proof. When E[k] ≤ 1
1−ρ then m∗(0, 0) = h∗(0, 0) = 1 and n∗(0, 0) = 0. Moreover,

this satisifies the first order conditions given in equations (32) and (33). To show the
converse, suppose there is an equilibrium with zero effort. This implies that the right-
hand side of equations (32) and (33) are 0. The only steady state where this is possible
is m∗ = 1, n∗ = 0 which from Proposition 1 implies our result.

C.3 Useful Lemma

Lemma C9. The sign of the partial derivatives of the mapping f are

∂fx
∂xt−1

≥ 0

∂fx
∂yt−1

≤ 0

∂fy
∂xt−1

≤ 0

∂fy
∂yt−1

≥ 0

where a sufficient condition for the inequality to be strict is wn,t−1, wm,t−1 6= 0, 1.
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Proof. First, we present a useful result for the first derivative of a function of the form:

f (d (k) , w) =
∑
k

pk

d(k)−1∑
j=0

(
k
j

)
(1− w)k−j (w)j

=
∑
k

pk

d(k)−1∑
j=0

k!

(k − j)!j!
(1− w)k−j (w)j

Taking the first derivative we find:

∂f

∂w
=
∑
k

pk

d(k)−1∑
j=0

k!

(k − j)! (j − 1)!
(1− w)k−j (w)j−1 − k!

(k − j − 1)!j!
(1− w)k−j−1 (w)j

Consider two consecutive terms in the sum j = z, z + 1. For j = z

k!

(k −−1)! (z − 1)!
(1− w)k−z (w)z−1 − k!

(k − z − 1)!z!
(1− w)k−z−1 (w)z

and for j = z + 1

k!

(k − z − 1)! (z)!
(1− w)k−z−1 (w)z − k!

(k − z)! (z + 1)!
(1− w)k−z (w)z+1

where the second term for j = z cancels out the first term for j = z + 1. Hence, the
evaluation of the summation

d(k)−1∑
j=0

k!

(k − j)! (j − 1)!
(1− w)k−j (w)j−1 − k!

(k − j − 1)!j!
(1− w)k−j−1 (w)j

results in only second term for the upper limit j = d (k)− 1, note that the first term for
the lower limit is 0. The derivative is given by:

∂f

∂w
(d (k) , w) =

∑
k

pk

(
− k!

(k − d (k))! (d (k)− 1)!
(1− w)k−d(k) (w)d(k)−1

)

Using the chain rule we evaluate ∂fx
∂xt−1

= ∂fx
∂wn,t−1

∂wn,t−1

∂xt−1
and ∂fx

∂yt−1
= ∂fx

∂wn,t−1

∂wn,t−1

∂yt−1
where

the above result can be used to evaluate

∂fx
∂wn,t−1

=
∑
k

pk

(
− k!

(k − d (k))! (d (k)− 1)!
(1− wn,t−1)k−d(k) (wn,t−1)

d(k)−1
)

and we can readily observe that:

∂wn,t−1
∂xt−1

= −αn − (1− αn) (1− ρ) < 0

∂wn,t−1
∂yt−1

= (1− αn) ρ > 0
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Thus, for 0 < wn,t−1 < 1 ∂fx
∂wn,t−1

< 0 and hence

∂fx
∂xt−1

> 0

∂fx
∂yt−1

< 0

Similarly,

∂fy
∂wm,t−1

=
∑
k

pk

(
− k!

(k − d (k))! (d (k)− 1)!
(1− wm,t−1)k−d(k) (wm,t−1)

d(k)−1
)

and

∂wm,t−1
∂xt−1

> (1− αm) (1− ρ)

∂wm,t−1
∂yt−1

< −αm − (1− αm) ρ

so, for 0 < wn,t−1 < 1 ∂fy
∂wm,t−1

< 0 and hence

∂fy
∂xt−1

< 0

∂fy
∂yt−1

> 0
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