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1 Introduction

“However we may conceal our passions under the veil, there is always some
place where they peep out” - La Rochefoucauld.

Inconsistencies in decision-making are often described as arising from a conflict between
opposing motives. In this paper we a formalize a common intuition about how motives
interact and fully characterize its testable implications. Our theory is consistent with a
variety of psychological foundations for the underlying conflict, and easy to apply empirically.

Suppose you observe a hiring manager’s choices between pairs of job applicants who differ
in gender, and have either an MBA or a PhD. You notice that:

1. They choose the woman when the candidates’ qualifications are the same,

2. They choose the man when the candidates’ qualifications differ.

Using A ≻ B to represent the choice of A from {A,B}, we can visualize these choices:

MBA PhD

Female

Male

The choices are intransitive and therefore inconsistent with standard utility maximization.
Nevertheless they form an intuitive “figure 8” pattern, suggesting two distinct attitudes
towards gender: favoring women when the candidates differ only in gender, but favoring
men when the candidates additionally differ in other respects.

We generalize the observation that decisions can reveal two distinct preferences. We study
preferences over bundles of binary attributes (Male/Female, Black/White, Aisle/Window),
and we assume that the decision maker has a positive, negative, or neutral implicit preference
for each attribute. We identify the direction of implicit preferences from behavior with
a “dilution” assumption: the influence of an implicit preference for an attribute increases
whenever that attribute is mixed with a superset of other attributes. In the example above,
the diagonal choice sets mix gender with qualification, strengthening the influence of the
decision maker’s implicit preference for men over women, causing the intransitivity.

The model can also be applied to data on evaluations such as willingness to pay, teachers’
grading decisions, or judges’ sentencing decisions, when each evaluation involves a definite
comparison. Suppose our manager is setting wages for pairs of new hires, one male and the
other female. In our model, the manager’s implicit preference for men over women will make
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the man’s wage sensitive to the woman’s attributes. For example, we would predict that a
male candidate would be assigned a lower wage when he is compared to a woman with the
same qualification, than when he is compared to a woman with a different qualification.

Section 2 presents our formal model. We assume a comparative utility function, whereby
the utility of a bundle x (which we will call the “target”), depends on another bundle z (its
“comparator”): we write u(x, z). We assume that implicit preferences over attributes are
separable and that an implicit preference’s strength of influence depends on both x and z,
according to a partial order over comparisons called influence-dominance.

Our core result is a representation theorem stating that a set of choices or evaluations has
an implicit preferences representation if and only if there does not exist a matching between
decisions, such that implicitly-preferred bundles are ranked higher in influence-dominated
decisions, and vice versa. Concretely, if someone implicitly prefers men, we should not
observe them choose women over men when the influence of implicit gender preferences is
strong, and men over women when the influence of implicit gender preferences is weak.

The theorem is general with respect to the influence-dominance relation. To apply it
we add two specific assumptions: (1) “Equivalence”: the influence of implicit preferences
depends only on which attributes are shared or not shared between target and comparator
(|x−z|); and (2) “Dilution”: an implicit preference more strongly influences decisions when its
attribute is mixed with a superset of other attributes.1 We also describe a third assumption
useful for some analyses of evaluation data, effectively assuming implicit preferences have
greater influence when an attribute is shared between x and z than when it is not. All three
assumptions are consistent with the psychological foundations that we introduce later.

Given these assumptions, the “figure 8” pattern illustrated above identifies an implicit
preference for men over women. Section 3 describes a number of other intuitive patterns in
choice (“right triangle,” “parallel triangles,” “square”) and in evaluation (“scissor,” “parallel
scissor”), and shows what they reveal about the decision maker’s implicit preferences. The
examples we provide are easy to test for in empirical applications.

Our definition of “implicitness” is thus behavioral, similar to decision-theoretic concepts
like complementarity or elasticity which are defined without reference to the underlying
psychology. However, we believe it captures a core intuition found in multiple distinct
literatures. To demonstrate this, Section 4 describes three distinct maximizing models,

1Example: Suppose the target is a female with a Harvard PhD. Let Comparison 1 compare her to a
male Harvard PhD, and Comparison 2 compare her to a male Harvard MBA. Dilution says that implicit
gender preferences have more influence in Comparison 2, because gender is mixed with qualification. Now
let Comparison 3 compare her to a male Yale MBA. The influence of implicit gender preferences strengthens
further, as gender is now mixed with qualification and college. Finally, let Comparison 4 be with a male
Yale PhD. Dilution does not rank Comparisons 2 and 4, because neither mixture is a superset of the other.
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which we call foundations, that exhibit implicit preferences in our sense.
The first foundation (ceteris paribus) is a decision maker who is subject to a set of rules

that apply in “all else equal” situations, and incurs a utility penalty if they break a rule.
When the penalty is infinitely large it represents a hard constraint, a special case of models
in which case the decision maker chooses from a subset of elements that are maximal by
some other set of rankings (e.g. Manzini and Mariotti (2007); Masatlioglu et al. (2012);
Cherepanov et al. (2013); Ridout (2021)). According to this model the choices above reveal
that the hiring manager prefers men over women, but is constrained by a rule penalizing the
choice of a man over an equally-qualified women.

The second foundation is a signaling model: the decision maker has intrinsic preferences
over bundles but also cares about others’ perceptions of those preferences. This foundation
relates to work on signaling, including self-signaling, excuse-driven behavior and “moral
wiggle room” (e.g. Bodner and Prelec (2003); Benabou and Tirole (2003, 2006); Norton et al.
(2004); Dana et al. (2006, 2007); Andreoni and Bernheim (2009); Exley (2016); Bursztyn et al.
(2022)). According to this model the figure 8 pattern above can be explained by a sincere
preference for men joined with a signaling motive to favor women. When choosing between a
man and a woman who additionally differ in qualification, the choice is less revealing about
gender preference, and so the signaling motives are weakened.

The third foundation is an implicit associations decision maker for whom some knowledge
is tacit. The model is based on Cunningham (2016) and relates to psychological theories
of implicit bias and unconscious judgment (e.g. Devine (1989); Greenwald and Krieger
(2006); Greenwald et al. (1998); Kahneman (2011); Rand et al. (2012)). In this model the
hiring manager is a composite of two rational agents, each with private information. The
pre-conscious brain associates men with high value—it has a “good feeling” about the male
candidate—but the conscious brain believes gender-based associations are irrelevant. When
candidates differ only on gender, the conscious brain can identify and ignore the pro-male
association, choosing the woman. But the more gender is mixed with other attributes, the
harder it is to disentangle relevant from irrelevant associations, leading it to choose the man.

The implicit preference in favor of male candidates revealed by the “figure 8” cycle can thus
be interpreted in three ways: (1) a sincere preference for men that is sometimes constrained
by rules; (2) a sincere preference for men that is sometimes obscured by signaling motives;
(3) an unconscious positive association in favor of men that loses its power when it becomes
accessible to conscious awareness.

Next we turn to applications. Section 5 provides guidance on using our framework in
practice, then section 6 applies it to two existing datasets. We find evidence of implicit
selfishness and implicit risk attitudes in choice data from Exley (2016), and implicit racism

3



in evaluation data from DeSante (2013).
We do not know of any prior theory which identifies implicit preferences from multiat-

tribute choice. Existing theories of menu-dependent preferences do not predict the figure 8
pattern, and Section 7 discusses how these types of models will not generally exhibit im-
plicit preferences in our sense.2 Nevertheless we think that the idea of implicit preferences
being revealed by more or less dilute decisions taps into a commonsense understanding of
decision-making, and that the patterns of behavior that we highlight have intuitive appeal.

A set of related theories are proposed by Manzini and Mariotti (2012) (MM) (“choice by
lexicographic semiorder”), Cherepanov et al. (2013) (CFS) (“rationalization”), and Ridout
(2021) (R) (“justification”). In these models the decision maker choose from a choice set the
element which maximizes their true preference from within the subset which are “justifiable,”
meaning that the element is undominated relative to at least one of a set of given relations.
The models differ on the nature of the relations: MM assume a single semiorder, CFS assume
multiple binary relations, and R assumes multiple complete orders. We regard this class of
models as complementary to ours. The most important difference is that these models treat
outcomes as “atomic” while we treat outcomes as bundles of binary attributes. Models with
atomic outcomes are more parsimonious, and those models give unambiguous predictions for
choice sets with 3 or more elements, which ours does not.

An advantage of using bundles of attributes, as we do, is that implicit preferences can be
identified from from binary choices.3 Additionally, linking implicit preferences to attributes
instead of atomic outcomes facilitates out-of-sample predictions: our hiring manager’s gen-
der bias can be predicted to carry over to choice between new candidates with different
characteristics. Finally, our model applies to both choice and evaluation, unlocking a wide
range of additional applications. This set of features makes our framework particularly well
suited to applied work, and we provide an extensive collection of identification tools that can
be implemented in existing datasets and new experiments. We demonstrate this with our
own applications, and our tools have recently been adopted by others: Barron et al. (2022)
apply our approach and find evidence of implicit gender bias.

There is an extensive psychological literature on implicit attitudes but as far as we know
ours is the only definition based on ordinary decision-making. In psychology the term “im-
plicit” is usually applied to cognition, attitudes, judgments, preferences, or knowledge that

2E.g. “salience” (Bordalo et al. (2013)), “relative thinking” (Bushong et al. (2020)), “magnitude effects”
(Cunningham (2013)), or “focusing” (Kőszegi and Szeidl (2012)). To the best of our knowledge the only
paper besides Cunningham (2016) which identifies a figure 8 pattern in choice is Cubitt et al. (2018),
studying intertemporal tradeoffs. See Section 7 for more discussion.

3With atomic elements binary choice will generally be uninformative: a cycle of the form a ≻ b ≻ c ≻ a
implies that there must exist some constraint on choice, but nothing more.
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are “outside conscious attentional focus” (Devine, 1989; Greenwald and Krieger, 2006), often
described as “automatic,” “unconscious,” “associative.” In dual-process theories (e.g., Kah-
neman (2011)) they are associated with the fast “System 1.” In contrast, explicit attitudes
are those that are stated or revealed deliberately. Psychologists have developed an array of
non-choice techniques, most notably, the Implicit Association Test (IAT) (Greenwald et al.,
1998), which uses response time to measure implicit associations. IATs have been widely
adopted, including within economics (e.g. Rooth (2010); Reuben et al. (2014); Glover et al.
(2017); Alesina et al. (2018); Carlana (2019)). However their interpretation and predictive-
ness remain controversial (Oswald et al., 2013; Greenwald et al., 2015).

A number of prior empirical studies share the intuition that underlying motives can be
revealed by observing comparisons that vary in how direct or transparent they are: Snyder
et al. (1979) on discrimination against the disabled, Norton et al. (2004); Uhlmann and Co-
hen (2005); Bohnet et al. (2016) on gender discrimination, Hodson et al. (2002) on racial
discrimination, Caruso et al. (2009) on body weight discrimination, Exley (2016) on excuses
for selfish behavior, Cubitt et al. (2018) on time discounting. Each paper uses identifica-
tion approaches tailored to their setting. We provide a formal foundation for the common
intuition, and empirical tools that can be broadly applied.

Our introductory example shows how we can identify implicit discrimination, a topic of
great recent interest.4 There are many other possible applications—this method could in
principle detect implicit preferences over any binary attribute—and there are many contexts
in which we might expect them. Figure 1 shows a variety of figure 8 cycles in different
domains, to illustrate implicit preferences that might reasonably be anticipated.

[Figure 1 here]

2 Model

This section proceeds as follows: (1) We define observable behavior as a “dataset” of in-
equalities between comparative utilities, written u(x, z) >

≥u(x′, z′). (2) We assume decision
makers are endowed with directional, additively separable implicit preferences on each at-

4Bertrand et al. (2005) and Bertrand and Duflo (2017) discuss the economic importance of implicit
discrimination, and the difficulty of measuring it. They mention that implicit discrimination will be more
pronounced in more “ambiguous” situations: our paper can be seen as formalizing this notion.

The economics literature highlights the distinction between taste-based (Becker, 1957) and statistical
(Phelps, 1972; Arrow, 1973) discrimination (of which the latter may be inaccurate: Bohren et al. (2021)).
Either type of discrimination can be implicit. Bohren et al. (2022) decompose discrimination into direct and
systemic components. For example direct discrimination early in a woman’s career contributes to systemic
discrimination later on, as she ends up with a weaker resume than an equally-able man. Our notion of
implicit discrimination is a form of direct discrimination; systemic effects can amplify its impact.
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tribute (κi ∈ {−1, 0, 1}). (3) We assume the strength with which an implicit preference
influences decisions obeys a given partial order across comparisons, (x, z) ⊒i (x

′, z′). (4)
We prove that a dataset admits an implicit preferences representation if and only if its in-
equalities obey a matching condition using the partial orders ⊒i. (5) We add assumptions on
⊒i, in particular that implicit preferences have more influence when an attribute is “diluted.”

We study preferences over bundles of n binary attributes: x ∈ X = {−1, 1}n, e.g. male
vs female, PhD vs MBA, aisle vs window, sugar vs sweetener, sooner vs later.5,6

We allow the utility of the bundle under consideration, x, to depend on a second bundle,
z, taking the form of a comparative utility function u(x, z) : X ×X → R. We will refer to x

as the target, z as the comparator, and (x, z) as the comparison. In principle comparators
could come from anywhere but we highlight two types of decision that are inherently com-
parative: binary choice between x and z, and joint evaluation, where the decision maker
simultaneously reports values for x and for z (e.g. willingness to pay).

We treat decisions as revealing inequalities between pairs of utilities.7 Formally, we define
a dataset D as a collection of m 4-tuples, (xj, zj,x′j, z′j)mj=1, with xj, zj,x′j, z′j ∈ X . Each
element of D represents a single inequality: u(xj, zj) >

≥u(x′j, z′j). By convention we order
inequalities such that the first m̄ are strict (with m̄ ≥ 1), and the remainder are weak:

u(xj, zj) > u(x′j, z′j) , 1 ≤ j ≤ m̄ (strict inequalities)

u(xj, zj) ≥ u(x′j, z′j) , m̄ < j ≤ m (weak inequalities).

Section 2.2 explains precisely how to construct a dataset from observed choices and evalua-
tions. In short: if we observe that x is chosen over z we treat this as u(x, z) > u(z,x). If
we observe that x is given a higher evaluation when evaluated alongside z than alongside z′

we treat this as u(x, z) > u(x, z′).
We next define an Implicit Preferences utility function, uI(x, z). Utility is the sum of

the explicit value, a standard utility function v(x) that depends only on x, and the implicit
value. The implicit value is a sum over x’s attributes, xi, weighted by (1) the decision maker’s

5Attributes do not need to be intrinsically binary, but our analysis will apply to data containing at most
two distinct realizations of each attribute.

6All vectors will be column vectors, indicated with a bold font, and xT will refer to the transpose of x.
Absolute values of vectors will be element-wise: |x|T =

(
|x1| . . . |xn|

)
. Inequalities between vectors will

be defined as:
x ≥ z ⇐⇒ xi ≥ zi for i = 1, . . . , n.

x > z ⇐⇒ xi ≥ zi for i = 1, . . . , n, and x ̸= z.

x ≫ z ⇐⇒ xi > zi for i = 1, . . . , n.

7This approach allows us to exploit results that give necessary and sufficient conditions for existence of
solutions to systems of linear inequalities. Chambers and Echenique (2016) discuss this general approach to
decision theory.
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implicit preference for that attribute, κi; and (2) the influence of the implicit preference,
θi(x, z), which depends on both x and z.

uI(x, z) =

explicit value︷︸︸︷
v(x) +

implicit value︷ ︸︸ ︷
n∑

i=1

xi κi︸︷︷︸
implicit
pref for i

θi(x, z)︸ ︷︷ ︸
influence

of i

, (1)

with v : X → R, κi ∈ {−1, 0, 1}, θi : X × X → R.8

A decision maker’s implicit preferences are either negative, neutral, or positive: κi ∈
{−1, 0, 1}. As the comparator z changes, each implicit preference’s influence on utility
can increase or decrease. For example, suppose attribute i represents gender, with xi = 1

denoting men, and suppose the decision maker implicitly prefers men (κi = 1). If the
influence of implicit preferences on attribute i increases (θi increases) then the utility assigned
to men will increase and the utility of women will decrease, all else equal.

We encode assumptions on the influence function with a set of partial orders. For each
attribute i there exists an influence-dominance relation, which is a partial order ⊒i over the
set of all comparisons (x, z) ∈ X ×X . Given two comparisons (x, z) and (x′, z′) we describe
(x, z) ⊒i (x

′, z′) as (x, z) influence-dominates (x′, z′) on attribute i. We then assume
that the influence function obeys this partial order:

Definition 1 (Influence-dominance). (x, z) ⊒i (x
′, z′) =⇒ θi(x, z) ≥ θi(x

′, z′).

If (x, z) ⊒i (x
′, z′) and (x′, z′) ⊒i (x, z), it follows that θi(x, z) = θi(x

′, z′).
Our representation theorem takes the set of influence-dominance relations ⊒i, i ∈ {1, ..., n}

as given, i.e. it holds for any assumptions on influence-dominance. Section 2.1 introduces
specific assumptions on ⊒i, motivated by theory, most importantly the Dilution assumption.

We can now define an Implicit Preferences Representation.

Definition 2 (Implicit Preferences Representation). A dataset D has an Implicit Prefer-
ences Representation if and only if there exists an explicit value function v : X → R, a vec-
tor of implicit preferences κ ∈ {−1, 0, 1}n, and a set of influence functions θ : X ×X → Rn

such that (1) uI(x, z) satisfies every inequality in D, and (2) θ obeys Influence-dominance.

We will also say that a given vector of implicit preferences, κ, rationalizes dataset D if and
only if D has an Implicit Preferences Representation with implicit preferences equal to κ.
Our main result, Theorem 1, allows us to characterize all κs that can rationalize a dataset.

8Our definition of a dataset only uses ordinal information—inequalities between utilities—so we could
without loss of generality (1) wrap uI(x, z) in a strictly increasing function (i.e. linearity is not important),
and (2) normalize θi to be non-negative.
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To state the theorem we need a few additional terms. First, our analysis makes use of
weighted subsets of the dataset, which we call cyclical selections :

Definition 3 (Cyclical Selection). Given a dataset D = {xj, zj,x′j, z′j}mj=1 a cyclical se-
lection is a vector of non-negative integer weights s ∈ Nm that select inequalities such that
each bundle appears equally often on the left- and right-hand sides. I.e., for every x ∈ X ,

m∑
j=1

sj1{x = xj}︸ ︷︷ ︸
appearances of x on LHS

=
m∑
j=1

sj1{x = x′j},︸ ︷︷ ︸
appearances of x on RHS

with sj > 0 for at least one j ∈ 0, . . . , m̄ (i.e., at least one strict inequality is included).

A cyclical selection consists of one or more sequences of inequalities that begin and end with
the same target (u(x, .) > ... > u(x, .)), so cannot be rationalized by standard preferences
u(x, z) = v(x).9

Our theorem will be stated in terms of a set of 1:1 matchings between inequalities in
a cyclical selection. Specifically we will be matching “wins” to “losses”, defined as follows.
Given an inequality u(x, z) >

≥u(x′, z′) we count a win for attribute i if the higher-ranked
bundle, x, has a positive realization of that attribute (xi = 1), and/or the lower-ranked
bundle, x′, has a negative realization (x′

i = −1). We define a loss as the reverse. For
attribute i and comparison (x, z), the score ci,(x,z) equals total wins minus total losses:10

Definition 4 (Score). Given a dataset D = {xj, zj, x′j, z′j}mj=1 and a cyclical selection s ∈
Nm the score vector, c ∈ Zn|X |2 represents for each i ∈ {1, . . . , n} and (x, z) ∈ X × X , the
net number of times that the attribute wins in s:

ci,(x,z) =
∑

j:(xj ,zj)=(x,z)

sjx
j
i︸ ︷︷ ︸

inequalities with (x,z) on LHS

−
∑

j:(x′j ,z′j)=(x,z)

sjx
′j
i︸ ︷︷ ︸

inequalities with (x,z) on RHS

.

In a cyclical selection each bundle appears equally often on the left- and right-hand sides, so
for each attribute i the sum of scores must equal zero:

∑
x,z ci,(x,z) = 0.

9E.g., an s that selects the single inequality u(x,x′) > u(x,x′′), constitutes a cyclical selection, as does
an s that selects the three inequalities u(x,x′) > u(x′,x), u(x′,x′′) > u(x′′,x′), u(x′′,x) > u(x,x′′).

10E.g., let Male = 1. We count one win for each man on the left-hand side or woman on the right-hand
side, and one loss for each woman on the left-hand side or a man on the right-hand side. An inequality has
two wins, two losses, or a win and a loss, per attribute. Total wins minus losses for i, (x, z) equal:∑

j:(xj ,zj)=(x,z)

sj1{xj
i = 1}+

∑
j:(x′j ,z′j)=(x,z)

sj1{x′j
i = −1} −

∑
j:(xj ,zj)=(x,z)

sj1{xj
i = −1} −

∑
j:(x′j ,z′j)=(x,z)

sj1{x′j
i = 1}.

The simplified statement of ci,(x,z) in Definition 4 exploits 1{xj
i = 1} − 1{xj

i = −1} = xj
i .
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If κi = 1 then we expect bundles with xi = 1 to be chosen over bundles with xi = −1

relatively more often when the influence of implicit preferences over attribute i is stronger.
Concretely, if someone implicitly prefers men, we should not observe a cycle of choices in
which women are chosen over men when the influence of implicit gender preferences is strong,
and men are chosen over women when the influence of implicit gender preferences is weak. We
do not directly observe influence, but we can rank it with ⊒i. Establishing a contradiction
entails finding a 1-1 matching between wins and losses that can be ranked according to
influence-dominance. Since wins and losses with the same comparison (x, z) have the same
influence (so can match to one another), it is enough to check for a matching between net
wins and net losses, that is, between scores. We now formally define such matchings:

Definition 5 (wins influence-dominate losses). Given a vector of scores for attribute i,
ci ∈ Z|X |2 we say wins influence-dominate losses for attribute i if there exists a
matrix of non-negative integers Mi ∈ N|X |2×|X |2 with:

∀x, z,x′, z′ ∈ X , (Mi,(x,z),(x′,z′) > 0) =⇒ (x, z) ⊒i (x
′, z′) (matches obey dominance)

∀x̄, z̄ ∈ X , ci,(x̄,z̄) =
∑

x,z∈X

Mi,(x̄,z̄),(x,z)︸ ︷︷ ︸
outflow: (x̄, z̄) dominates

−
∑

x′,z′∈X

Mi,(x′,z′),(x̄,z̄)︸ ︷︷ ︸
inflow: (x̄, z̄) dominated

(all scores matched)

The first condition says that (x, z) is only matched to (x′, z′) if (x, z) influence-dominates
(x′, z′). The second condition checks that all scores are matched: each positive score,
ci,(x̄,z̄) > 0 (where wins exceed losses) has a net outflow equal to ci,(x̄,z̄), and each nega-
tive score, ci,(x̄,z̄) < 0 has a net inflow equal to |ci,(x̄,z̄)|. Thus Mi can be thought of as a
matching between scores in ci.11 It may be that no matching exists, for example when some
comparison in the dataset is not related to any other by ⊒i.

We likewise say that losses influence-dominate wins for attribute i if there is an Mi

that satisfies the same conditions, but the last line in the definition sums to −ci,(x̄,z̄) instead
of ci,(x̄,z̄).

We can now show that the consistency of a dataset D with a vector of implicit preferences,
κ, depends on the existence of a matching between wins and losses for each attribute.

Theorem 1 (Rationalization by κ). A vector of implicit preferences κ ∈ {−1, 0, 1}n ratio-
nalizes dataset D if and only if there exists no cyclical selection s such that, (1) for every
attribute with a positive implicit preference (κi = 1), losses influence-dominate wins, and (2)

11Worked example. Let x = ( 11 ), z =
(−1
−1

)
, and z′ =

(−1
1

)
. Consider a cyclical selection with one

inequality: u (x, z) > u (x, z′). Let us assume (x, z) ⊒1 (x, z′). We have c1,(x,z) = 1 (a single win) and
c1,(x,z′) = −1 (a single loss). There exists a matching matrix for attribute 1 that matches the positive score
on (x, z) to the negative score on (x, z′): M1 = [ 0 1

0 0 ]. Hence, wins influence-dominate losses for attribute 1.

9



for every attribute with a negative implicit preference (κi = −1), wins influence-dominate
losses.

The proof is given in Section 9. We first show that the dataset and the influence-dominance
relations can be expressed as a system of inequalities in matrix form. Rationalizability
requires there exist vectors of explicit values v, and influences θ, that solve the system.
Motzkin’s Rational Transposition Theorem (Border, 2013), tells us that a solution exists if
and only if there is no weighting of the rows in the matrix that sums to zero. Finally, we
show that existence of the weighted sum is equivalent to our matching condition.

The set of implicit preferences that can rationalize the dataset are those not ruled out
by Theorem 1. To verify that a given κ can rationalize D one must in principle check all
cyclical selections in D. For simple datasets this is usually straightforward and may be
possible by visual inspection. For larger datasets the search may be simplified by using the
matrix representation of the problem. The next Corollaries follow immediately:

Corollary 1 (Representation). A dataset D has an Implicit Preferences Representation if
and only if there exists at least one κ ∈ {−1, 0, 1}n satisfying the conditions of Theorem 1.

Corollary 2 (Rationalization by standard preferences). A dataset D can be rationalized by
a standard utility function (i.e. κ = 0) if and only if it does not contain a cyclical selection.

Proof: if κ = 0 the matching condition is trivially satisfied for all i in any cyclical selection.

Our theory is falsified if the data cannot be rationalized by any κ ∈ {−1, 0, 1}n. We have
not found a necessary and sufficient condition for non-rationalizability simpler than checking
every κ. But there is a simple sufficient condition for a dataset to be non-rationalizable:

Corollary 3 (Falsification). A dataset D has no Implicit Preferences Representation if it
contains a cyclical selection s such that for every attribute, losses influence-dominate wins
and wins influence-dominate losses.

This arises when every win within the cyclical selection can be matched to a loss with equal
influence. No κ can rationalize such a pattern.12 We provide examples in Section 3.

2.1 Assumptions on Influence

We now add assumptions on the influence-dominance relations (⊒i) to tailor our representa-
tion theorem to applications. Our assumptions are all motivated by the foundational models

12The condition in Corollary 3 is sufficient because it implies a single cyclical selection that rules out every
possible κ vector. But it is not necessary: one can construct examples where no single cyclical selection
falsifies the model, but multiple cyclical selections exist that collectively do. See Web Appendix A.1.1.
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that we present in section 4. However we note that Theorem 1 is more general, and holds
for any set of partial orders ⊒i, i = {1, ..., n}.

In general, influence θi(x, z) can take |X |2 = 22n unique values, one per comparison (x, z).
Our first assumption, Equivalence, shrinks this set. We assume that influence depends only
on which attributes are shared (|xi − zi| = 0) and which are non-shared (|xi − zi| = 2).

Assumption 1 (Equivalence). For any x, z,x′, z′ ∈ X :

|x− z| = |x′ − z′| =⇒ (x, z) ⊒i (x
′, z′) and (x′, z′) ⊒i (x, z),∀i

Equivalence means that influence is identical between any two comparisons with the same sets
of shared and non-shared attributes. For example, θi (( Male

MBA ) , ( Female
PhD )) = θi (( Female

MBA ) , (Male
PhD )).

When we refer to the status of an attribute we will mean whether it is shared or non-shared.
Equivalence is a powerful assumption because |x−z| ∈ {0, 2}n, implying θi(x, z) can take

at most 2n unique values. Our hiring manager example has just two types of comparison:
the vertical choice sets with |x− z| = [ 02 ], and the diagonals with |x− z| = [ 22 ]. Thus there
are four choices but at most two unique θi values per attribute. This makes the figure 8
cycle a powerful tool for identifying implicit preferences.13

Equivalence implies θi(x, z) = θi(z,x). This sharpens the inferences we can draw from
choice data, because it implies implicit preferences on shared attributes are irrelevant for
choice. To see this, observe that uI(x, z)−uI(z,x) = v(x)− v(z)+

∑n
i=1(xi− zi)κiθi(x, z).

Shared attributes drop out because xi − zi = 0.
Our key assumption for identifying the direction of implicit preferences is that κi’s influ-

ence increases as additional attributes share status with i. We call it Dilution:

Assumption 2 (Dilution). For all i ∈ {1, . . . , n}, x, z,x′, z′ ∈ X , with δi := |xi − zi|

(|x′
i − z′i| = δi)︸ ︷︷ ︸

i has same status
in (x,z) and (x′,z′)

∧ {j : |xj − zj| = δi} ⊇ {j : |x′
j − z′j| = δi}︸ ︷︷ ︸

a superset of attributes share status with i
in (x,z) relative to (x′,z′)

=⇒ (x, z) ⊒i (x
′, z′)︸ ︷︷ ︸

(x,z) influence-dominates
(x′,z′) on i

Suppose x and z differ on gender. Dilution implies that an implicit preference favoring one
gender will have weak influence when x and z differ only on gender, becoming progressively
stronger as x and z differ on other attributes in addition to gender. Thus, in our hiring
manager example, implicit gender preferences have more influence in the diagonal choice sets
than in the vertical choice sets.

13Our signaling-choice foundation in Section 4 assumes a naïve observer, which implies Equivalence. A
sophisticated observer would adjust for the expected direction of signaling, which violates Equivalence.
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Assumptions 1 and 2 are sufficient for all of our analysis of choice data and a number
of identification results in evaluation data. In some evaluation examples, our conclusions
will depend on how the influence of an implicit preference κi changes when i changes status
(from shared to non-shared or vice versa). Dilution has nothing to say in such cases, but
there are often reasons to think that influence systematically varies with status. Our final
assumption formalizes this by designating a particular attribute k as “special,” in the sense
that the influence of i is always greater when i has the same status as k:

Assumption 3 (Dominance of attribute k). For all i ∈ {1, . . . , n} \ k, x, z,x′, z′ ∈ X ,

(|xi − zi| = |xk − zk|) ∧ (|x′
i − z′i| ≠ |x′

k − z′k|)︸ ︷︷ ︸
i has same status as k in (x,z)
different status from k in (x′,z′)

=⇒ (x, z) ⊒i (x
′, z′)︸ ︷︷ ︸

(x,z) influence-dominates (x′,z′)

We think in most cases it is natural to think of k as a shared attribute, capturing what is
“held constant” across comparisons. For the foundations based on signal extraction (signaling
and implicit associations) the intuition is that there is high uncertainty about the value of
attribute k, such that little can be learned about attributes that share status with k.

2.2 Choice and Evaluation as Datasets

We have defined a dataset as a set of inequalities between comparative utilities. We now
explain precisely how observations from choice and evaluation can be encoded in this format.

For binary choice we treat each bundle as the other bundle’s comparator, thus a strict
revealed preference for x over z implies a strict inequality, u(x, z) > u(z,x), and indifference
implies a pair of weak inequalities, u(x, z) ≥ u(z,x) and u(z,x) ≥ u(x, z). A choice cycle
x ≻ x′ ≻ x′′ ⪰ x would correspond to a dataset with m = 4, m̄ = 2: u(x,x′) > u(x′,x);
u(x′,x′′) > u(x′′,x′); u(x′′,x) ≥ u(x,x′′); and u(x,x′′) ≥ u(x′′,x).

We can encode data on continuous evaluations of bundles when each evaluated bundle
has a clear comparator. For example, when two bundles are evaluated simultaneously we
can treat each as the other’s comparator. We assume that evaluations are strictly increasing
in utility: y(x, z) = f(u(x, z)), f ′ > 0. We can then construct a set of inequalities sufficient
to represent the ordinal relationships between evaluations. We first rank each evaluation
(breaking ties arbitrarily), then enter an inequality for each pair of consecutive evaluations.
When two evaluations are equal we use two opposing weak inequalities. For example suppose
we observe the following joint evaluations of willingness to pay: y(x,x′) = $310, y(x′,x) =

$200, y(x,x′′) = $200, y(x′′,x) = $150. Then we would construct a dataset with m =

4, m̄ = 2: u(x,x′) > u(x′,x), u(x′,x) ≥ u(x,x′′), u(x,x′′) ≥ u(x′,x), u(x,x′′) > u(x′′,x).
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Graphical representation of inequalities. We will frequently use diagrams to visu-
alize sets of inequalities. An arrow from x to x′ shows the sign of the inequality, with the
entry and exit angles pointing towards each bundle’s comparator, z and z′. We use dashed
lines to indicate the location of the two comparators: the dashed lines run from x to z and
from x′ to z′. We give two examples below, where the first visualizes a single choice (the two
dashed lines are obscured by the solid line) and the second visualizes an inequality between
two evaluations of the same bundle with different comparators.

u
((Male

PhD

)
,
(Female

MBA

))
> u

((Female
MBA

)
,
(Male
PhD

))
u
((Male

PhD

)
,
(Male
MBA

))
> u

((Male
PhD

)
,
(Female

MBA

))

MBA PhD

Female

Male

MBA PhD

Female

Male

3 Canonical Examples

We now define a set of important classes of dataset, from both choice and evaluation, picked
to encompass those that are most useful for applications. We derive the implications of each
as a corollary of Theorem 1. The proofs are mechanical so we consign them to web appendix
A.1. All definitions are stated in terms of strict inequalities, however it is sufficient for each
of these results if at least one inequality in each cyclical selection is strict.

We assume throughout that the influence-dominance relation satisfies Equivalence and
Dilution (Assumptions 1 and 2). For evaluation examples we first derive their implications
without assuming Dominance of Attribute k (Assumption 3), and then show how adding it
refines the implications.

For choice, a cyclical selection consists of one or more intransitive cycles over target
bundles, of the form x ≻ . . . ≻ x. We begin with the right triangle, the shortest cycle (three
choices) that rules out some implicit preferences. It yields a disjunction over the implicit
preferences for all non-shared attributes in the cycle. Second, we discuss the figure 8, a four-
choice cycle that can unambiguously identify a single implicit preference. Third, we show
how pairs of parallel right triangles can refine identification relative to the single triangle.

For evaluation, a cyclical selection consists of one or more single inequalities with the same
target on the left- and right-hand sides, of the form u(x, z) > u(x, z′).14 We begin with the

14Because we construct evaluation datasets by ranking evaluations from highest to lowest (see section 2.2),
this inequality may not literally appear in the dataset. Instead we might have u(x, z) > u(x̄, z̄) in one
row and u(x̄′, z̄′) > u(x, z′) in another. But we can construct the intended cyclical selection by including
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convex scissor, a single inequality that yields a disjunction over the implicit preferences on
every attribute. Then we show how pairs of parallel convex scissors can refine identification.

Finally we present two examples that imply the existence of some implicit preference but
nothing more, and three examples that, if observed, would falsify our assumptions.

For each corollary we give a few concrete examples, in three dimensions. Attribute 1 is
always qualification (PhD = 1), attribute 2 is gender (Male = 1), attribute 3 is college (Yale
= 1). We state each example’s implications for κ and in natural language. E.g., κ1 = 1

means we learn κ1 is positive, κ1 ̸= 0 means we learn there is an implicit preference for
attribute 1 but not its sign, and so on. In natural language, we always state preferences
relative to the +1 pole of the attribute. +Male means an implicit preference favoring men
(relative to women), −Male means an implicit preference favoring women (i.e., against men),
and ±Male means we learn there is an implicit gender preference but not its sign.

Choice Examples.

Definition 6 (Right triangle). A right triangle is a choice cycle over three distinct bundles,
ordered x1 ≻ x2 ≻ x3 ≻ x1, in which (x1,x2) and (x2,x3) differ on distinct sets of attributes
(i.e., |x1 − x2| and |x2 − x3| are orthogonal).

Corollary 4. A right triangle implies at least one nonzero implicit preference favoring x3’s
realization of an attribute on which it differs from x1:∨

i:x3
i ̸=x1

i

(x3
iκi = 1).

MBA PhD

Female

Male

Harvard

Yale

x1 x2

x3

MBA PhD

Female

Male

Harvard

Yale

x1

x2x3

MBA PhD

Female

Male

Harvard

Yale

x1

x2

x3

(κ1 = 1) ∨ (κ2 = 1) (κ1 = −1) ∨ (κ2 = 1) (κ1 = 1) ∨ (κ2 = 1) ∨ (κ3 = 1)

+PhD ∨ +Male. −PhD ∨ +Male. +PhD ∨ +Male ∨ +Yale.
A single right triangle cannot unambiguously identify a single implicit preference, because
by construction, x3 and x1 must differ on at least two attributes.

In the first example, the matching works as follows: (1) a female MBA is chosen over a
female PhD, but rejected in favor of a male PhD (a dilution of the qualification attribute); (2)

every inequality that lies in between, giving us the sequence u(x, z) > . . . > u(x, z′). This is equivalent
to the single inequality, because every intermediate evaluation in the sequence appears on the RHS of one
inequality and the LHS of the next, so their wins and losses exactly cancel.
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a male PhD is rejected in favor of a female PhD, but chosen over a female MBA (a dilution
of the gender attribute). In both cases, wins influence-dominate losses, so the dataset cannot
be rationalized by (κ1 ≤ 0) ∧ (κ2 ≤ 0). Hence we obtain a disjunction: there must be at
least one implicit preference, favoring men, favoring PhDs, or both.

Definition 7 (Figure 8). A figure 8 is a choice cycle over four distinct bundles, ordered
x1 ≻ x2 ≻ x3 ≻ x4 ≻ x1. It must satisfy two conditions: (1) there are only two unique
vectors of differences |x1 − x2| = |x3 − x4| and |x2 − x3| = |x1 − x4|; and (2) the latter
comparisons differ on a superset of attributes: |x2 − x3| > |x1 − x2|.

Corollary 5. A figure 8 implies at least one nonzero implicit preference, favoring x4’s
realization of an attribute on which it differs from x3:∨

i:x3
i ̸=x4

i

(x4
iκi = 1).

MBA PhD

Female

Male

Harvard

Yale

x1 x3

x2 x4

MBA PhD

Female

Male

Harvard

Yale

x2 x1

x4 x3

MBA PhD

Female

Male

Harvard

Yale

x1 x3

x2 x4

(κ2 = 1) (κ1 = −1) (κ2 = 1) ∨ (κ3 = 1)

+Male. −PhD. +Male ∨ +Yale.

When x3 and x4 differ on a single attribute, we identify the existence of an implicit preference
on that attribute and its direction.

The figure 8 can be thought of as containing two preference reversals. In the leading
example, a female candidate is chosen over a man with the same qualification, but is re-
jected whenever the qualifications differ (which dilutes the gender attribute). One reversal
favors male MBAs, the other favors male PhDs. An implicit preference on the qualification
dimension cannot explain both, so there must be an implicit preference favoring men.

Definition 8 (Parallel right triangles). A pair of parallel right triangles is a cyclical selection
consisting of two right triangles x1 ≻ x2 ≻ x3 ≻ x1 and x̄1 ≻ x̄2 ≻ x̄3 ≻ x̄1, satisfing two
conditions: (1) identical signed differences on (x2,x3) and (x̄1, x̄2) (that is, x2 − x3 =

x̄1 − x̄2); and (2) opposing signed differences on (x1,x2) and (x̄2, x̄3) (that is, x1 − x2 =

−(x̄2 − x̄3)).
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Corollary 6. A pair of parallel right triangles implies at least one implicit preference, fa-
voring x3’s realization of an attribute on which it differs from x2:∨

i:x3
i ̸=x2

i

(x3
iκi = 1).

MBA PhD

Female

Male

Harvard

Yale

x1 x2, x̄1

x3, x̄2x̄3

MBA PhD

Female

Male

Harvard

Yale

x1

x2x3

x̄1x̄2

x̄3

MBA PhD

Female

Male

Harvard

Yale

x1

x6

x2, x̄1

x3, x̄2

x̄3

(κ2 = 1) (κ1 = −1) (κ1 = 1) ∨ (κ3 = 1)

+Male. −PhD. +PhD ∨ +Yale.

If x3 and x2 differ on only one attribute then we can infer that the decision-maker has an
implicit preference regarding that attribute and we can infer its sign (in contrast to the
disjunction inferred from a single right triangle). Parallel triangles achieve this by eliminat-
ing part of each individual triangle’s disjunctions. In particular, they eliminate attributes
that are non-shared in (x1,x2) and (x̄2, x̄3) (where the triangles disagree), leaving only the
attributes that are non-shared in (x2,x3) and (x̄1, x̄2) (where they agree). For instance, the
first example above consists of two right triangles that agree on the gender attribute, and
disagree on the qualification attribute, allowing us to isolate the implicit gender preference.

Examples without direct comparisons. So far the examples that unambiguously
identify a single implicit preference have all included “direct” comparisons with a single
non-shared attribute (e.g., between otherwise identical men and women). However a direct
comparison is not necessary: it is possible to observe multiple cycles that have no direct
comparisons but collectively rule out all but one implicit preference.15

Evaluation Examples. We now turn to evaluation data. In each case we first state what
can be derived using only Assumptions 1 and 2. Unlike with choice, we cannot ignore implicit
preferences on shared attributes, because the left- and right-hand sides of the inequality can
have different θis. This has two implications. First, in general we identify disjunctions
over implicit preferences on every attribute. Second, because Dilution does not restrict how
influence changes when an attribute goes from shared to non-shared, we sometimes draw
indeterminate conclusions about some implicit preferences. We show how Assumption 3 can
resolve such indeterminacies.

15E.g., our third figure-8 example above reveals (κ2 = 1) ∨ (κ3 = 1). If we observed another figure-8
revealing (κ2 = 1) ∨ (κ3 = −1), we could conclude that κ2 = 1.
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Definition 9 (Convex scissor). A convex scissor is a pair of evaluations of a single bundle
x with two different comparators: y1 = y(x, z1), y2 = y(x, z2). Two conditions must be
satisfied: (1) the evaluations are not equal (y1 ̸= y2), and (2) the second comparison differs
on a superset of attributes (|x− z2| > |x− z1|).

Corollary 7. A convex scissor implies at least one nonzero implicit preference:

y2 > y1 (i) favoring x’s realization of an attribute that it does not share with z1,
(ii) disfavoring x’s realization of an attribute that it shares with z2, or
(iii) with indeterminate sign on any other attribute.

y2 < y1 (implies the reverse of y2 > y1)

Defining Υ = sgn(y2 − y1) ∈ {−1, 1}, we can write:∨
i:xi ̸=z1i

(xiκiΥ = 1) ∨
∨

i:xi=z2i

(xiκiΥ = −1) ∨
∨

i:z1i ̸=z2i

(κi ̸= 0).

MBA PhD

Female

Male

Harvard

Yale

x

z1z2

MBA PhD

Female

Male

Harvard

Yale

x z1

z2

MBA PhD

Female

Male

Harvard

Yale

x

z1

z2

y2 > y1 y2 < y1 y2 < y1

(κ1 ̸= 0) ∨ (κ2 = 1) ∨ (κ3 = 1) (κ1 = 1) ∨ (κ2 ̸= 0) ∨ (κ3 = −1) (κ1 = −1)∨ (κ2 ̸= 0)∨ (κ3 = −1)

±PhD ∨+Male ∨+Yale. +PhD ∨±Male ∨−Yale. −PhD ∨±Male ∨−Yale.

The shift of comparison from z1 to z2 changes influence for every attribute. Attributes that
are non-shared in both comparisons become more dilute, as the set of non-shared attributes
grows, so their implicit preferences have more influence. Attributes that are shared in both
comparisons become less dilute, because the set of shared attributes shrinks, so their implicit
preferences have less influence. Attributes that are shared in |x − z1| but non-shared in
|x − z2| are not restricted by Assumption 2 (Dilution), so we cannot sign their implicit
preferences. Assumption 3 (Dominance of attribute k) resolves the ambiguity:

Corollary 8 (Convex scissor with Dominance of attribute k). Suppose Assumption 3 holds.
Let Θ = 1 when k is shared (xk = z1k = z2k), and Θ = −1 when k is non-shared (xk ̸= z1k and
xk ̸= z2k). A convex scissor implies:∨

i:xi ̸=z1i

(xiκiΥ = 1) ∨
∨

i:xi=z2i

(xiκiΥ = −1) ∨
∨

i:z1i ̸=z2i

(xiκiΥ = −Θ) ,
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Next, we show that combining two scissors which are reflections of each other can refine our
identification of implicit preferences.

Definition 10 (Parallel convex scissors). A pair of parallel convex scissors is a dataset
consisting of two convex scissors, y1 = y(x, z1), y2 = y(x, z2) and ȳ1 = y(x̄, z̄1), ȳ2 =

y(x̄, z̄2), x ̸= x̄. Denote the signs of evaluation changes by Υ = sgn(y2 − y1) and Ῡ =

sgn(ȳ2 − ȳ1). Two conditions must be satisfied: (1) identical or opposing signed differences
on (x, z1) and (x̄, z̄1) (i.e., either x−z1 = x̄− z̄1 or x−z1 = −(x̄− z̄1)); and (2) identical
absolute differences on (x, z2) and (x̄, z̄2) (i.e., |x− z2| = |x̄− z̄2|).16

Corollary 9. A pair of parallel convex scissors imply at least one nonzero implicit preference.
There are many cases, which depend on the relationships between x, x̄,Υ, and Ῡ. The cases
are summarized in the following disjunction:∨

i:xi ̸=z1i

(
κi(xiΥ+ x̄iῩ) = 2

)
∨
∨

i:xi=z2i

(
κi(xiΥ+ x̄iῩ) = −2

)
∨
∨

i:z1i ̸=z2i

(
κi(xiΥ+ x̄iῩ) ̸= 0

)
.

MBA PhD

Female

Male

Harvard

Yale

x, z̄1

x̄, z1z2

z̄2

MBA PhD

Female

Male

Harvard

Yale

x z1

z2

x̄ z̄1

z̄2

MBA PhD

Female

Male

Harvard

Yale

xx̄

z1 z̄1

z2 z̄2

MBA PhD

Female

Male

Harvard

Yale

x

z1, z̄2

z2, z̄1

x̄

y2 > y1, ȳ2 < ȳ1 y2 > y1, ȳ2 > ȳ1 y2 < y1, ȳ2 > ȳ1 y2 < y1, ȳ2 > ȳ1

(κ2 > 0) (κ1 > 0) ∨ (κ2 ̸= 0) (κ1 < 0) (κ2 ̸= 0)

+Male. +PhD ∨±Male. −PhD ±Male.

Just like the pair of parallel right triangles, parallel convex scissors refine the implications
of their constituent scissors. This occurs when there are attributes with xiΥ = −x̄iῩ, in
which the terms associated with those attributes drop out of the disjunction. Intuitively,
the observed behavior cannot be explained by implicit preferences on those attributes if
evaluation moves in contradictory directions in the two scissors.

We can unambiguously identify an attribute’s implicit preference if we can eliminate all
other terms in the disjunction. The first and third examples show that Assumption 3 is
not required to accomplish this. In the fourth example, we learn there must be a nonzero
implicit preference on attribute 2, but Assumption 3 is needed to learn its sign.

16We also assume that the only information derived from the evaluations is the ranking of y1, y2 and
the ranking of ȳ1, ȳ2, i.e. we do not exploit the ranking of evaluations between scissors. In principle such
information could be used to extract additional information, but we do not model this for sake of brevity.
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Corollary 10 (Parallel convex scissors with Dominance of attribute k). Suppose Assumption
3 holds. Let Θ = 1 when k is shared (xk = z1k = z2k) and (x̄k = z̄1k = z̄2k), and Θ = −1 when k

is non-shared (xk ̸= z1k = z2k) and (x̄k ̸= z̄1k = z̄2k). A pair of parallel convex scissors implies:∨
i:xi ̸=z1i

(
κi(xiΥ+ x̄iῩ) = 2

)
∨
∨

i:xi=z2i

(
κi(xiΥ+ x̄iῩ) = −2

)
∨
∨

i:z1i ̸=z2i

(
κi(xiΥ+ x̄iῩ) = −2Θ

)
.

Suppose the dominating attribute k is shared (so Θ = 1). Then our second example implies
(κ1 = 1) ∨ (κ2 = 1), an implicit preference favoring PhDs, or men. Our fourth example
implies κ2 = 1, an implicit preference favoring men.

Examples without direct comparisons. It is straightforward to identify a single
implicit preference without ever observing a “direct” comparison (a comparison with only
one non-shared attribute). See e.g. our third and fourth examples of parallel convex scissors.

Other Examples. Finally we give five examples that are either inconclusive about implicit
preferences, or falsify our assumptions. An equilateral triangle and a non-convex scissor
are examples of datasets in which Dilution does not rank any of the comparisons. Thus
wins neither influence-dominate losses, nor vice versa. Corollary 2 tells us they cannot be
rationalized by standard preferences, but without further assumptions we cannot rule out
any other κ. A square cycle, a pair of opposing triangles, and a pair of opposing
scissors are examples of datasets in which each win can be matched to a loss with the same
shared and non-shared attributes and hence, by Equivalence, the same influence. Thus wins
influence-dominate losses and losses influence-dominate wins for all attributes. Corollary 3
tells us no κ can rationalize these datasets, given our assumptions on ⊒i.

Equilateral Square
Opposing
triangles

Non-convex
scissor

Opposing
scissors

x1

x2

x3

x1 x2

x3x4

x1

x2x3

x̄1

x̄2x̄3

xz1

z2
x z1

x2

x̄z̄1

z̄2

κ ̸= 0 Falsification Falsification κ ̸= 0 Falsification

4 Foundations

We now provide models of three types of decision maker that are consistent with our theory.
We briefly summarize how each conforms to our core intuition. In the ceteris paribus founda-
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tion, an implicit preferences is a true preferences that is constrained by a rule, which applies
when certain attributes are shared. Diluting the non-shared attributes can cause rules to
switch off, allowing the decision maker to express his true preferences. In the signaling
foundation, an implicit preferences is a true preference that is concealed due to a signaling
motive. When its attribute is diluted, the observer learns less about the decision maker’s
preference for that attribute, so he can more freely express his true preference. In the im-
plicit associations foundation, an implicit preferences is an unconscious positive or negative
association with an attribute, that the conscious brain would like to adjust for. The more
an the attribute is diluted, the harder it is to distinguish between possible associations, so
the less the decision maker can adjust for them.

To keep the discussion concise, for each foundation we provide the setup of the model and
state the main result, that the foundation implies an Implicit Preferences utility function
(i.e., consistent with (1)), with an influence function satisfying Equivalence and Dilution
(Assumptions 1 and 2). At the end, we provide conditions under which each foundation also
satisfies Assumption 3. Derivations and proofs are provided in web appendix A.2.

It will be useful to define the set of shared attributes for comparison (x, z):

S(x,z) = {i : |xi − zi| = 0}.

Non-shared attributes are those not in S. We suppress the superscript unless needed.

4.1 Ceteris Paribus Decision Maker

Suppose our hiring manager freely chooses whichever candidate they prefer, except when
comparing a man to an otherwise identical woman, in which case they are required to hire
the woman. We state a general model of ceteris paribus decision makers who are constrained
by rules that state they should favor certain attribute values “all else equal,” but otherwise
maximize menu-independent utility. Rules can be interpreted as internal to the decision
maker (e.g. a moral obligation or personal rule) or external (e.g. a bureaucratic rule).17

Multiple rules can compound or counteract one another, in which case “all else equal”
is taken to mean when all non-rule-governed attributes are equal. Suppose a manager is
supposed to both (1) prefer female candidates all else equal, (2) prefer Black candidates
all else equal. We will assume that the rules combine such that they must choose a Black
woman over a White man (otherwise equal), but when choosing between a White woman
and a Black man the decision is governed by whichever rule has more force.

17For example, job advertisements at the Norwegian School of Economics (NHH) routinely include the
sentence “In the event of equivalent qualifications, female applicants will be given preference.”
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Definition 11. A ceteris paribus utility function has the form:

uCP (x, z) = g(x)︸︷︷︸
true preferences

+
∑
i ̸∈S

xi λi︸︷︷︸
bonus or
penalty

1{∀j, (λj = 0) ⇒ (j ∈ S)}︸ ︷︷ ︸
=1 iff all non-rule-governed

attributes are shared

,

for some g : {−1, 1}n → R, and λ ∈ Rn.

When λi ̸= 0 we say attribute i is governed by a rule. Thus the bonus/penalty λi is applied
to a bundle if and only if (a) attribute i is non-shared (i ̸∈ S); and (b) every attribute that
is not governed by a rule (λj = 0) is shared (j ∈ S).

Applied to choice, λi is a bonus/penalty for choosing one bundle over another. Rules
could demand hiring a Black candidate, booking the cheapest flight, or ordering a low-calorie
meal. If λ = ∞ the rule is inviolable. Applied to evaluation, λi is a bonus/penalty applied
to reported values. For example, someone might give women higher scores when they are
compared to otherwise-identical men.

Proposition 1. uCP (x, z) implies an Implicit Preferences utility function satisfying Equiv-
alence and Dilution.

Consider again the manager who prefers male candidates but is penalized for choosing a man
over an otherwise identical women. Then, he will tend to favor men when gender is diluted
(causing the rule to switch off), implying an implicit preference favoring men. Note that the
implicit preference has the opposite sign to the penalty λi.

4.2 Signaling Decision Maker

Suppose the decision maker holds intrinsic values over attributes, but also has reputational
preferences. They care about the beliefs that some other person—perhaps their own future
self—holds over those intrinsic values. We represent their intrinsic values as g(x)+

∑n
i=1 xiwi,

where g(x) is assumed to be common knowledge, while wi terms (“weights”) are the decision
maker’s private information. We assume the observer holds mean-zero, independent Normal
priors over the weights, and forms posteriors ŵi based on the decision maker’s actions. The
core intuition is that the more other attributes share status with i, the less the observer
learns about wi, so the decision maker’s signaling incentives weaken.

The observer’s information differs between choice and evaluation, so we describe separate
models for each. We assume throughout that the bundles x and z are chosen by Nature and
are common knowledge (i.e., we abstract from strategic choice over choice sets).
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Signaling-Choice. When the decision maker chooses x over z the observer will update
their beliefs ŵi about the decision maker’s weights on non-shared attributes. We make two
assumptions, which amount to the observer expecting the decision maker to be indifferent
ex ante.18 First, the observer’s priors over all intrinsic values have identical mean, which we
normalize to zero: g(x) = 0, ∀x ∈ X . Second, we assume the observer is naïve, meaning they
are not aware of the decision maker’s reputational motives (otherwise they would expect a
particular bundle to be chosen). These are quite strong assumptions, but our conclusions
should extend to small deviations. We discuss their relevance to applications in Section 5.

We define a utility function uSC(x, z), interpreted as the utility of choosing x when the
observer knows the choice set was {x, z}. We assume that x and z are distinct, so there is at
least one non-shared attribute. We also assume that all preferences are expressed strictly.19

Definition 12. A signaling-choice utility function has the form:

uSC(x, z)︸ ︷︷ ︸
utility of

choosing x
from {x,z}

=
n∑

i=1

xiwi︸ ︷︷ ︸
intrinsic

value

+
n∑

i=1

λi︸︷︷︸
reputational
preference

for attribute i

·E

[
wi

∣∣∣∣ n∑
i=1

xiwi >
n∑

i=1

ziwi

]
︸ ︷︷ ︸

observer’s naïve posteriors
over weights when x is chosen

,

for some λ ∈ Rn and w ∼ N(0, diag(σ2
1, . . . , σ

2
n)) (observer’s priors over weights).

λi captures the decision maker’s utility of shifting the observer’s posterior over wi. The sepa-
rable setup implies the observer will only update about the weights on non-shared attributes.

Proposition 2. uSC(x, z) implies an Implicit Preferences utility function satisfying Equiv-
alence and Dilution.

Consider a hiring manager that prefers men but wants the observer to believe they prefer
women. When candidates differ on few attributes, the observer infers a lot about their
gender preferences from their choice. As additional attributes vary, the observer updates
less about gender, lowering the reputational cost of hiring a man. The implicit preference
has the opposite sign to its associated signaling motive λi: a motive to signal a preference
for women manifests as an implicit preference favoring men.

18If the observer had reason to believe the decision maker prefers one bundle over another, more dilute
comparisons can sometimes be more informative about an attribute rather than less. For example, choosing
a male PhD over a female MBA is plausibly less informative about gender preferences than choosing a
male PhD over a female PhD. But choosing a male PhD over a female Nobel prize winner is clearly more
informative, in the sense of posteriors being farther apart.

19It is possible to show that a decision maker would choose to express indifference, with its consequent
reputational effects, only if they received equal utility from expressing indifference or expressing either of
the two strict preferences, i.e. uSC(x, z) = uSC(z,x). Thus the function we derive for the 2-action world
correctly predicts behavior in a 3-action world, so the model can be applied to data containing indifferences.
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Signaling-Evaluation. In evaluation we assume the decision maker reports their utility
of two bundles, x and z, with a quadratic cost of inaccuracy. An observer then makes
inferences about the decision maker’s weights wi. Unlike the choice setting, we do not need
to assume the observer has constant priors over the intrinsic values, nor that they are naïve.

We define a signaling evaluation function, uSE(x, z), show that it corresponds to an
equilibrium strategy in a signaling game, and finally that it satisfies our assumptions.

Definition 13. A signaling evaluation utility function is:

uSE(x, z) = g(x) +
n∑

i=1

xiwi +
n∑

i=1

xiλi
σ2
i

1{i ∈ S}
∑

j∈S σ
2
j + 1{i ̸∈ S}

∑
j ̸∈S σ

2
j

for some g : {−1, 1}n → R, λ ∈ Rn, w ∼ N(0, diag(σ2
1, . . . , σ

2
n)).

Lemma 1. Reporting the value of yx = uSE(x, z), yz = uSE(z,x), is an optimal strategy in
a pure-strategy Perfect Bayes Equilibrium of a signaling game in which:

1. Player 1 first chooses yx and yz to maximize

U1 =−1

2

(
yx − g(x)−

n∑
i=1

wixi

)2
− 1

2

(
yz − g(z)−

n∑
i=1

wizi

)2
︸ ︷︷ ︸

quadratic loss from inaccuracy

+
n∑

i=1

λiŵi(y
x, yz)︸ ︷︷ ︸

reputational gain

.

2. Player 2 observes yx, yz and chooses ŵ to maximize U2 = −E

[∑n
i=1(ŵi − wi)

2

∣∣∣∣yx, yz],
with g(·) and λ common knowledge, and priors w ∼ N(0, diag(σ2

1, . . . , σ
2
n)).

λj captures the decision maker’s utility of shifting the observer’s posteriors over wj, while σ2
j

is the variance of the observer’s prior on wj. The final term in uSE captures how the decision
maker adjusts her evaluations to influence the observer’s beliefs. The adjustment to attribute
i is proportional to the observer’s uncertainty about wi (σ2

i ), and inversely proportional to
the total uncertainty about the weights on attributes with the same status as i.20

Proposition 3. uSE(x, z) implies an Implicit Preferences utility function satisfying Equiv-
alence and Dilution.

The intuition behind how signaling motives manifest as implicit preferences in evaluation is
very similar to the choice example, with the exception that the observer now updates about
both shared and non-shared attributes, because they observe distinct signals about both
bundles’ values rather than just their ranking.

20Unlike Signaling-Choice, we solved the model assuming a sophisticated observer. The quadratic loss
function means that player 1’s optimal strategy is independent of the observer’s priors on λ, so our solution
continues to hold if the observer has incorrect priors, including full naïveté (believing λ = 0).
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4.3 Implicit Associations Decision Maker

Finally we describe a decision maker made up of two agents, each with private information
relevant to the value of a bundle. This model is based on Cunningham (2016). The true
value of bundle x is given by:

f(x)︸︷︷︸
true value

of bundle x

= g(x)︸︷︷︸
known
by both

+
n∑

i=1

xi︸︷︷︸
known
by both

· λi︸︷︷︸
known
by first
agent

· πi︸︷︷︸
known

by second
agent

.

The first agent can be thought of as the pre-conscious brain, drawing on knowledge of
“associations” (λ ∈ Rn) between each attribute and true value, and the second agent can be
thought of as the conscious brain, which has access to “adjustments” (π ∈ Rn

+), high-level
contextual information used to adjust the value of each association.

Sequencing is as follows. The first agent reports expected values for x and z (E[f(x)|λ]
and E[f(z)|λ]). The second agent then makes decisions taking into account the first agent’s
estimates, plus its own private information (π), but without access to the underlying associ-
ations (λ). The theory predicts that the second agent’s estimate of x’s value will be affected
by a comparator z insofar as the comparison is informative about associations, λ.

The core intuition is that associations are generally informative (otherwise agent 2 would
just ignore agent 1’s estimates). However, agent 2 has access to contextual information that
leads her to adjust agent 1’s estimates. For example, let xi = 1 for men. The decision maker
might have an unconscious positive attitude toward men (λi > 0). However, the conscious
brain believes that in the current setting, gender associations are normatively irrelevant
(πi = 0), so she would like to adjust agent 1’s reports to account for this. Her ability to
apply this adjustment depends on the degree to which she can separately distinguish the
effect of λi from possible associations on other attributes.

Definition 14. An implicit associations utility function has the form:

uIA(x, z) = E
[
f(x)

∣∣∣π, E[f(x)|λ], E[f(z)|λ]
]
,

with
πi ∈ R+ & E[πi] = 1 (1st agent’s priors)

λ ∼ N(0, diag(σ2
1, . . . , σ

2
n)) (2nd agent’s priors)

π ⊥⊥ λ (independence of priors).

uIA represents the second agent’s best guess at the true value f(x).
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In this model the sensitivity of utility to attribute i will be proportional to a weighted
average of the adjustments (the πs) on all attributes with the same status as i. Thus a
dilution of attribute i can either increase or decrease influence depending on whether the
dilution increases or decreases that weighted average. This is inconsistent with Assumption
2. The foundation satisfies Assumption 2 in two special cases: (i) when at most one i has
either λi ̸= 0 or πi ̸= 1; or (ii) when there are exactly two attributes (n = 2). We adopt the
first assumption for the remainder of the section, which implies that there can be an implicit
preference for at most one attribute. For the second, a derivation is available on request.

Proposition 4. uIA(x, z) implies an Implicit Preferences utility function satisfying Equiv-
alence and Dilution if at most one attribute has a non-zero implicit association and/or non-
unitary adjustment factor:

∑n
i=1 1{(λi ̸= 0) ∨ (πi ̸= 1)} ≤ 1.

For intuition of how implicit associations can be interpreted as implicit preferences consider
the hiring manager that has a positive association with male candidates (λi > 0), but believes
gender is normatively irrelevant (πi = 0). When the candidates differ only on gender, the
influence of implicit preferences is low, as the second agent can directly detect and override
the influence of λi. As gender is diluted, the agent 1’s high valuation of a male candidate
could be explained by other possible associations, that might not be normatively irrelevant.
Agent 2 therefore only partially adjusts agent 1’s reports. Thus λi influences their decision,
increasing the utility of the man and manifesting as an implicit preference favoring men.
Note that there is only an implicit preference if both λi ̸= 0 and πi ̸= 1: the first agent must
have a nonzero implicit association and the second agent must want to adjust it.21

4.4 Dominance of Attribute k

Finally, we give sufficient conditions for Assumption 3 to hold in all foundations that apply
to evaluation (recall that the assumption is not relevant to choice).

Proposition 5. The Ceteris Paribus decision maker of Proposition 1 satisfies Assumption
3 if k is not governed by a rule. The Signaling-Evaluation decision maker of Proposition
3 satisfies Assumption 3 if σ2

k ≥
∑

i ̸=k σ
2
i . The Implicit Associations decision maker of

Proposition 4 satisfies Assumption 3 if σ2
k ≥

∑
i ̸=k σ

2
i .

21The sign of the implied implicit preference depends on λi(1 − πi). If πi > 1, the second agent wants
to amplify their implicit associations (they think the first agent is too conservative). This generates an
implicit preference with the opposite sign to λi. In our example, it would increase the value of men when
the candidates differ only on gender, weakening as gender is mixed with other attributes.
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5 Guidance for applications

We now discuss some practical guidance for applications of our theory.
Multivalued Attributes. Some attributes might take multiple values. For example,

we might observe job candidates with three different qualifications (MBA/PhD/JD) instead
of two. The data then need to be transformed to apply our theory. The appropriate transfor-
mation depends on the setting. Attribute values could be grouped together, or the dataset
partitioned to focus on parts of the attribute space. In our analysis of Exley (2016)’s data,
there are multiple lotteries with different win probabilities. We construct binary attribute
spaces around each probability, and analyze them separately.

Ambivalence in Choice Data. In choice data a consideration arises that we call
ambivalence. We recommend focusing on choice sets where participants are likely to be close
to indifferent, for two reasons. First, identification relies on observing intransitive choices,
which is unlikely when there is large variation in explicit values v(.). Second, our signaling-
choice foundation assumes the observer has equal priors over the utility of both bundles.

When there are multiple “non-ambivalent” attributes in the dataset we can group them
together so that their combination plausibly satisfies ambivalence. For instance, while a
hiring manager is unlikely to be close to indifferent between a candidate with a BA and
one with a PhD, they might plausibly be so between a BA with work experience, versus
a PhD without. Our analysis of Exley (2016)’s data in Section 6.1 faces this issue. The
basic attributes that vary in her experiment (e.g. higher and lower monetary amounts) are
unlikely to satisfy ambivalence, so we group them together in such a way as to restore it.

Within-subjects Data. The theory assumes we observe the revealed preferences of a
single decision-maker, that is, we observe within-subjects data. A concern in such datasets is
order effects: participants’ later decisions may be influenced by their earlier ones. The usual
experimental technique to minimize order effects is to spread decisions over time, intersperse
them with “filler” tasks or questions, or in other ways make their earlier decisions less salient
or harder to remember. This appears to have been successful in Exley (2016)’s experiments,
in which many participants reveal systematic within-subject inconsistencies.22

If order effects are a serious concern, the standard response is to collect between-subjects
data in which each participant makes only one or a small number of choices. This has
different implications for analysis of choice and evaluation data.

Between-subjects Choice Data. Establishing the presence of intransitivities in between-
22A related concern is experimenter demand effects: participants may guess what the experimenter is

looking for from the sequence of decisions they observe. Recent work that directly manipulates such beliefs
finds mostly modest effects (de Quidt et al., 2018; Mummolo and Peterson, 2018).
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subjects choice data is challenging, because intransitivity is difficult to distinguish from un-
derlying heterogeneity in preferences (similar to the Condorcet paradox in pairwise voting).
One (strong) remedy is to assume homogeneous preferences. Alternatively, one can test for
violations of the Triangle inequality (see Regenwetter et al. (2011)). If each participant makes
one choice, to establish the presence of at least one intransitive decision-maker in choice over
a, b, c, we would need to observe Pr(a ≻ b) + Pr(b ≻ c) + Pr(c ≻ a) > 2, i.e. the average
choice probability must strictly exceed 2/3. For four-element cycles the threshold increases
to 3/4. It may be hard to find a setting with sufficiently strong intransitive preferences to
satisfy such conditions (Müller-Trede et al., 2015).23

Between-subjects Evaluation Data. Our tools for evaluation data carry over well to
between-subjects data with some functional form restrictions. Our application to DeSante
(2013) is an example of such an analysis. Suppose we observe t = 1, . . . , T iid sampled
individuals’ evaluations of x with comparator z. We allow for heterogeneity in v(.) and
κ, with population averages v(x) and κ, while assuming θ is common and determined
only by the structure of the comparison.24 We also assume evaluations are affine in utility:
y(x, z) = a+ bu(x, z). Normalizing a = 0, b = 1, the mean evaluation is:

1

T

T∑
t=1

[
vt(x) +

n∑
i=1

xiκi,tθi(x, z)

]
−−−→
T→∞

v(x) +
n∑

i=1

xisgn(κi)|κi|θi(x, z). (2)

This is equivalent to the utility function of a representative agent with implicit preferences
κrep
i = sgn(κ̄i) and influence function θrepi = |κi|θi. Thus our usual tools can identify sgn(κ̄i),

the sign of the average implicit preference in the population. If sgn(κ̄i) is positive, we learn
that at least some part of the population has positive κi. If we also assume that implicit
preferences are aligned in the population (have weakly the same sign), we learn that sign.

6 Applications

6.1 Implicit Risk and Social Preferences (Exley, 2016)

Exley (2016) studies “the use of risk as an excuse not to give.” She conducts two experiments
in which participants choose between lotteries and sure payments, where the beneficiaries can
be either themselves, or charity.25 She uses those choices to construct certainty equivalents,

23As an example, the choice proportions in Snyder et al. (1979)’s experiment do not satisfy the criterion
and could be explained by heterogeneous, transitive preferences.

24We could easily allow heterogeneity of the form θi,t = αi,tθi, then we would identify sgn(E[κiαi]).
25In her second experiment the other beneficiary is another participant in the study, we use “charity”

throughout for brevity.
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such that each lottery to self, and each lottery to charity, is valued both in terms of money
to self and in terms of money to charity. She then tests for variation in these certainty
equivalents as the trade-off between self and charity varies. The dominant pattern is one in
which participants tolerate more risk when the risk favors them (high certainty equivalents),
and tolerate less risk when the risk favors charity (low certainty equivalents), relative to when
there is no trade-off between payoffs to self or to charity, suggesting implicit selfishness.

Reanalyzing Exley’s dataset, we confirm this interpretation: 51 percent of participants
reveal an implicit selfish preference. Our approach also yields new insights in the form of
implicit risk preferences. 30 percent of participants become more risk averse when risk is
diluted, while 15 percent become more risk tolerant. An important difference between our
approaches is that Exley analyses differences in average lottery valuations across compar-
isons, which can give a measure of how strongly implicit preferences influence behavior,
whereas we look for individual-level inconsistencies.26 That allows us to more precisely clas-
sify individuals, and distinguish heterogeneity from average behavior (e.g., distinguishing
implicitly risk averse and risk tolerant individuals).

Data. We need to do a little work to place Exley’s data in a binary attribute framework.
Web appendix A.3 provides a full description of the data structure, how we represent it
using binary attributes, and how we use the same assumptions as Exley’s analysis to impute
certain choices that are not directly observed. Here we provide a brief summary.

Exley’s dataset consists of an initial normalization choice to roughly calibrate the partic-
ipant’s exchange rate between money to themselves (“self”) and money to charity. It elicits
an amount $X payable to charity that is slightly preferred to $10 payable to self.

Each subsequent choice is between a safe payoff and a lottery paying a prize with proba-
bility P . Participants make four kinds of choices: (1) charity gets safe vs charity gets lottery;
(2) self gets safe vs self gets lottery; (3) charity gets safe vs self gets lottery; (4) self gets safe
vs charity gets lottery. For each question the participant chooses the highest safe amount
that they would accept (using a “choice list”). All four questions are repeated for seven
values of P : {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. We do not observe choices between pairs of
lotteries with different probabilities, so we perform separate analysis for each value of P .
Thus, each participant has seven separate opportunities to reveal their implicit preferences.

For each P , we can represent the data as four binary choices over two binary attributes,
which we label Risk ∈ {Safe, Risky}, and Social ∈ {Generous, Selfish}.27 The observed

26Exley does some individual-level analysis and reports “for 65% of the participants, the average difference
in their lottery valuations across contexts is in a self-serving direction.” That does not guarantee they exhibit
the “parallel triangles” necessary to identify implicit Selfishness in our setup.

27Bundles differ in prize, probability of winning, and recipient, which by themselves do not satisfy Am-
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choice sets are shown in black in the diagrams below. Not every choice set on this binary
space is observed in the data. Specifically, participants do not make choices between bundles
that only differ in Risk (the horizontal choice sets in the diagrams below). We need these
to detect implicit social preferences.28 Exley’s analysis faces a similar issue as she needs to
compare lottery valuations elicited in dollars to self to those elicited in dollars to charity. She
uses the participant’s value of X, plus a linearity in payoffs assumption, to do this. That
same assumption allows us to impute the choice (Generous, Safe) ≻ (Selfish, Safe), marked
in blue on the diagrams below (see Appendix). Because the choice lists are calibrated from
participants’ individual values of X, tilting payoffs to slightly favor Generous, we do not
observe the choices we would need to impute the opposing preferences.

Exley excludes from most of her analysis participants whose initial normalization choices
were censored or inconsistent, since their later choice lists cannot be properly calibrated. We
do the same. We pool the data from both of her experiments, giving us 86 participants.

Classifying Individuals by Implicit Preference Type. Given the choice sets we ob-
serve, there are three patterns of choice that can unambiguously identify an implicit pref-
erence. Panels (a) and (b) below show figure 8 cycles that reveal implicit preferences on
the Risk attribute. Panel (c) shows a pair of parallel right triangles that reveals an implicit
preference for Selfish. As noted above, we do not observe the opposing horizontal choice so
cannot detect implicit Generous preferences.

Generous Selfish

Risky

Safe

Generous Selfish

Risky

Safe

Generous Selfish

Risky

Safe

(a) Implicit pro-Risky (b) Implicit pro-Safe (c) Implicit pro-Selfish

Table 1 presents the empirical frequencies of each type of cycle, averaged over the 86 partic-
ipants and 7 values of P (602 observations). Overall, participants exhibit one of the cycles
of interest 33 percent of time, but at different frequencies. Only 5 percent of choices exhibit
pro-Risky cycles, 10 percent are pro-Safe, while 18 percent are pro-Selfish.

[Table 1 here]

bivalence (see Section 5). We construct binary attributes such that Safe bundles pay small prizes for sure,
while Risky bundles pay larger prizes with probability P . Selfish bundles pay small prizes to self, while
Generous bundles pay larger prizes to charity. See the Appendix for full details.

28Any pattern of choice in the choice sets that we observe can be consistent with entirely explicit selfish
preferences. E.g., those in panel (c) can be rationalized by (Selfish, Safe) ≻ (Selfish, Risky) ≻ (Generous,
Risky) ≻ (Generous, Safe), which always ranks Selfish above Generous.
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We begin by analyzing implicit risk preferences. We classify participants into one of four
categories, by counting their number of pro-Risky and pro-Safe cycles across the seven values
of P . The classifications are: Unknown (no type (a) or (b) cycles); Implicit pro-Risky (at
least one (a) cycle, no (b) cycles); Implicit pro-Safe (at least one (b) cycle, no (a) cycles); and
Inconsistent (at least one of each). Figure 2a plots the joint distribution of participant-level
cycle counts. Of the 86 participants, 39 do not reveal any implicit risk preferences, 26 are
implicitly pro-Safe, 13 implicitly pro-Risky, and 8 are inconsistent.

[Figure 2 here]

Implicit risk attitudes are prevalent in the sample, and tend to be implicitly risk-averse. This
could have important implications for real-world decisions. For example, an implicitly risk-
averse decision-maker might make more risk-averse choices when choosing between pension
plans with different attributes (where implicit risk preferences have high influence) than she
would when choosing between different variants of the same plan (where influence is lower).
That could have substantial implications for wealth at retirement.

However, relatively few participants exhibit more than one of these cycles. Of the con-
sistent participants, 11 exhibit two or more pro-Safe cycles, while 4 exhibit two or more
pro-Risky cycles. This suggests implicit risk attitudes may be weak at the individual level.

Turning to implicit Social preferences, we classify participants according to their number
of pro-Selfish cycles. They can be either Unknown (no (c) cycles), or Implicit pro-Selfish (at
least one (c) cycle). Figure 2b shows that 51% of participants (44 in total) are classified as
implicitly pro-Selfish, of whom 33 exhibit two or more pro-Selfish cycles. Implicit selfishness
is more widespread, and expressed more frequently, than either pro-Safe or pro-Risky implicit
preferences. However, we cannot assess the extent of inconsistency in this preference.

Statistical Analysis. Our analysis so far assumes behavior is deterministic, but in reality
some of the heterogeneity we observe is likely a result of errors, or noise in the data. We first
verify that the data are inconsistent with purely random behavior. Table 1 shows that the
frequency of each type of cycle is heterogeneous, and a joint test strongly rejects equality of
frequencies across types of cycle (p < .001). Additionally, we reject equality of each pair of
frequencies. We observe a strong systematic tendency toward pro-Selfish cycles, and a strong
tendency toward pro-Safe relative to pro-Risky cycles.29 In Web Appendix A.3.5 we perform
permutation tests to examine whether the data are consistent with homogeneous implicit

29We also simulate a large dataset where the switching point in each choice list is uniformly random. In
the simulated dataset, each type of cycle occurs with frequency .083 (well outside the 95% CIs for type (a)
and (c) cycles), and the frequency of at least one cycle is .25 (in the data the rate is 0.33, with 95% CI
[.278, .386]). Thus the observed behavior differs substantially from this random choice benchmark.
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preferences plus noise. We conclude that there is significant evidence of both systematic and
heterogeneous implicit preferences in the sample.

Web Appendix A.3.5 reports two more analyses. First, we ask whether implicit social
and risk preferences are correlated. They appear not to be: we find no meaningful difference
in the distribution of implicit risk preferences between those classified as implicitly selfish
or not. Second, Exley collected a small number of descriptive variables; we regress them on
our type classifications. We find (similar to Exley) that implicitly selfish participants are
significantly more likely to exploit “moral wiggle room,” in a task modeled on Dana et al.
(2007). Interestingly, so are implicitly risk averse participants, perhaps because the moral
wiggle room task directly leverages uncertainty about the consequences of one’s actions.

In sum, like Exley, we find substantial evidence of implicit selfishness. Our analysis
demonstrates the applicability of our method to experimental choice data, and how it can
extract new findings (implicit risk preferences) from data collected for another purpose.

6.2 Implicit Racial Discrimination (DeSante, 2013)

DeSante (2013) conducted an experiment on a US representative sample, in which partic-
ipants were asked to recommend state welfare payments for hypothetical applicants. The
paper asks whether people reward hard work in a “color-blind manner,” i.e. whether the re-
lationship between the applicant’s reported “work ethic” and the funds allocated to them is
the same for Black and White applicants. We reanalyze DeSante’s data using our framework,
to test for implicit racial preferences. Specifically, we will test whether participants tend to
award more money to applicants of one race, and less to the other, when the influence of
implicit racial preferences increases.

Participants were presented with two hypothetical application forms, constructed from
real applications, side-by-side. They were asked to allocate up to a total of $1,500 to the
two applicants, with the remainder going to to “offset the deficit.” We therefore interpret
the decision as joint evaluation.30

The key attribute of interest is the applicant’s Race ∈ {Black, White}, signaled by their
name (Latoya and Keisha for Black applicants, Laurie and Emily for Whites).31 Some
participants evaluate two applicants of the same race, while others evaluate one from each

30The budget constraint introduces a slight complication since, when it binds, a participant that wants to
assign a high value to one applicant is constrained to give less to the other. We expect this to make it harder
to detect implicit preferences as it particularly constrains allocations when the comparison set contains two
of the most implicitly-preferred applicants. In the data 31 percent of participants allocate the whole $1,500
to the two applicants.

31Simonsohn (2016) points out that names might signal something additional to race, e.g. socioeconomic
status. So we might be observing implicit preferences over SES instead of race.
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race. Second, in some conditions there is also an assessment of each applicant’s Work Ethic
∈ {Good, Bad}.32 When reported, this attribute is always non-shared. Third, there are
some less salient additional characteristics (e.g. the ages of the applicants’ children), which
are randomized independently of race and work ethic. These are not observed in the data, so
we will treat them as a third “background” attribute Children ∈ {c, c′} which always differs
within the comparison set, with no implicit preference attached to it.

Below we represent the data structure graphically. We observe some evaluations of bun-
dles with two attributes (Panel (a)), and some with three (Panel (b)). Each applicant is
evaluated alongside a Black comparator and a White comparator, who are otherwise iden-
tical to each other. For example, candidate (Black, Bad, c) is evaluated alongside (Black,
Good, c′) and (White, Good, c′). From these we can construct six convex scissors. We draw
the inequalities that would be implied by an implicit preference favoring White applicants.

c c′

Black

White

c c′

Black

White

Bad

Good

(a) Work ethic concealed (b) Work ethic revealed

Dilution (Assumption 2) does not rank the influence of implicit racial preferences between
comparisons within a scissor, because race switches status from shared to non-shared. In-
stead, we assume there is an attribute satisfying Assumption 3 that is shared in all com-
parisons (e.g., all applicants are women). Then, the influence of racial preferences is higher
when race is shared than non-shared. This is intuitive: many other attributes could explain
why evaluations are generally low or generally high when race is shared.

Given this setup an implicit pro-White preference will manifest as (1) higher evaluations
of Black applicants when compared to White comparators, than when compared to Black
comparators, and (2) higher evaluations of White applicants when compared to White com-
parators than when compared to Black comparators. In both cases evaluations are expected
to increase when the comparator switches from Black to White.

The experiment uses a between-subjects design, that is, each participant reports exactly
one pair of evaluations, corresponding to one of the comparison sets in the diagrams above.
We therefore cannot identify implicit preferences at the individual level. Instead we com-
pare mean evaluations between comparisons. Imposing linearity, we can interpret these as
revealing mean implicit preferences in the sample (see Section 5).

32The language in the experiment is “Excellent/Poor”, we use “Good/Bad” for compactness.
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[Figure 3 here]

Figure 3 presents the results. We group evaluations in pairs that correspond to the six
convex scissors. Under concealed work ethic the two scissors constitute a pair of parallel
convex scissors. Under revealed work ethic there are several ways to construct parallel
convex scissors. We examine them collectively.

We find positive differences in five out of six scissors (colored in blue), meaning that the
general pattern is consistent with an implicit preference favoring White applicants. Only
one is statistically significant but the average difference equals $34 and is highly significant
(p < 0.01). An F-test of the null that all six differences equal zero has a p-value of 0.08.

We can go further and estimate some parameters of interest directly (see web appendix
A.4 for details). The influence of implicit racial preferences is highest when race is shared,
while influence of work ethic is highest when race is non-shared. Denote higher influence
values by θHrace, θ

H
ethic and lower ones by θLrace, θ

L
ethic.33 Exploiting linearity (equation (2)) we

can identify 2 × κi

(
θHi − θLi

)
, which corresponds to the mean increase in evaluation of a

bundle with xi = 1 relative to a bundle with xi = −1, when influence increases from θLi to
θHi . In words, it measures the widening of the gap between Black versus White (or Good
versus Bad), when influence increases, which we interpret as driven by implicit preferences.

Table 2 presents our findings. When race switches from non-shared to shared the gap
between White and Black candidates increases by $71 (p = .02) in the Concealed work ethic
treatment, and by $66 (p = .08) in the Revealed work ethic treatment. We also find that
increasing influence of work ethic decreases the gap between Good and Bad candidates, by
$47, but this is not significant (p = .18).34 In conclusion, we find significant evidence of
implicit pro-White preferences, and modest evidence of implicit preferences over work ethic.

[Table 2 here]

7 Related Theories

Our identification of implicit preferences relies on inconsistencies in choice and in evaluation.
However inconsistencies could occur for other reasons. In this section we discuss leading
alternatives, and argue that each is unlikely or unable to produce the specific patterns in
choice and evaluation that we associate with implicit preferences.

Contingent weighting. Models of contingent weighting in multi-attribute choice allow
preferences to depend on the choice set, in common with our theory. For example in Kőszegi

33Note that the values of θHrace and θLrace will also differ between concealed/revealed work ethic treatments.
34Three out of the four convex scissors (the first, third, and fourth) are directionally consistent with an

implicit preference favoring Bad candidates (i.e. Bad candidates are penalized less when influence is high).
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and Szeidl (2012) sensitivity is positively related to the range of values on an attribute,
in Bushong et al. (2020) it is negatively related to the range, in Cunningham (2013) it is
negatively related to the average, and in Bordalo et al. (2013) it is (roughly) negatively
related to the proportional range (range divided by the average). However in most such
theories the sensitivity with respect to each attribute depends on the marginal distribution
of realizations of that attribute in the choice set, while in our model it depends on the joint
distribution across all attributes. Concretely, we are not aware of a contingent-weighting
model that can generate a figure-8 intransitivity, which we think epitomizes the conflict
between conflicting underlying preferences that motivates our theory.35

Complexity/inattention. Our identification comes from comparing decisions where
more or fewer attributes vary. If the former are more complex than the latter, we might
worry that inconsistencies are due to complexity variation, as in models of inattention (Sims
(2003), Caplin and Martin (2014), Woodford (2012)). It is intuitive that a decision-maker
could become less sensitive to an attribute in a more complex choice situation, however it
would be unusual for an increase in complexity to causes the preference for an attribute to
reverse, as necessary for the figure 8 choice pattern. An exception is Cubitt et al. (2018),
in whose model the decision maker puts less weight on each attribute when more attributes
vary, but treats money separately from other attributes. That model cannot generate strict
cycles over non-monetary attributes.36

Evaluability. A similar point applies to the literature comparing joint and separate
evaluation of outcomes: Hsee et al. (1999) give many examples. Most of these studies
find that people are more sensitive to an attribute when presented jointly (two bundles
simultaneously) than separately (one at a time). They argue that this increased sensitivity
is a general feature of joint evaluation, called “evaluability.”37 Again, this is a quite different
principle to that used in this paper. Increased/decreased sensitivity to an attribute could

35 Formally, suppose the utility function is entirely separable in each attribute, in the sense that it can
be written as u(x,A) =

∑
i ui(xi, {aji}mj=1), where aji is the ith attribute of the jth element of the choice

set, A. Then a figure-8 intransitivity could never occur because—using our leading example—the marginal
distribution of the gender attribute remains the same in all four choice sets, thus the difference in attribute-
utility (ui) between “Male” and “Female” must remain the same. Separability by attribute holds for each of
the models discussed above except Bordalo et al. (2013), but to the best of our knowledge that model is not
consistent with intransitive cycles in binary choices with two attributes (Ellis and Masatlioglu (2021)).

36A figure-8 with indifferences could come from inattention if sensitivity to an attribute goes to zero in
complex choices, though we are not aware of an inattention model with this feature.

37For example subjects were found to state a higher WTP for a dictionary with 10,000 entries when it
was evaluated alone, than when it was evaluated alongside a dictionary with 20,000 entries and a torn cover.
Kahneman and Frederick (2005) discuss a similar phenomenon: that subjects are generally more sensitive
to changes in within-subjects experiments than in between-subjects experiments. The theory is further
developed in Hsee and Zhang (2010). See Cunningham (2013) for a Bayesian rationalization of increased
sensitivity in joint evaluation.
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not generate a figure-8 cycle, by an analogous argument to footnote 35.
We can model separate evaluation in our framework as the evaluation of x with only

itself as comparator: y(x,x). Then, all attributes are shared (|x − x| = 0). In all of
our foundations this maximizes the influence of implicit preferences, which could lead to
decreased sensitivity to attributes where implicit and explicit preferences oppose one another.

Inference from the choice set. We assume that the attribute values of one bundle
are uninformative about the value of other bundles. If not then any pattern of choice could
be rationalized. The relevant question is what types of prior beliefs could generate the
patterns we observe and whether those beliefs seem realistic. Take our leading example: the
manager’s decisions could be rationalized if they (1) prefer women to men; but (2) believe
that qualifications are more valuable if they are typically male. Thus in the diagonal choice
sets they prefer the man not because he is a man but because he has the qualification
that men have. The explanation seems a stretch: it requires that the intrinsic value of an
attribute be opposite to its informational value (in this case, being male is a negative signal
about the person, but a positive signal about things that covary with maleness). Moreover,
in applications with familiar attributes the scope for learning from the choice set seems small.

8 Conclusion

Our paper is motivated by an assumption that is latent in a number of empirical papers:
that people sometimes hold two opposite preferences regarding an attribute and that one
preference—the implicit preference—has greater influence when the comparison mixes that
attribute with others. By formalizing the assumption we are able to give precise guidance
for inferring the direction of a decision maker’s implicit preferences from their decisions, in
a way that is applicable to many existing empirical datasets.

Some possible extensions to our framework include generalizing the representation the-
orem to weaken the separability assumptions, investigating alternative influence-dominance
relations, extending the attribute space to nonbinary attributes, and allowing for bun-
dles that are missing some attributes. For instance, we could add a “no hire” bundle
to the hiring setting. We conjecture that the influence of implicit gender preferences is
stronger in a choice between “hire a woman” and “no hire” than between “hire a woman”
and “hire a man.” Then, a manager that implicitly favors men might exhibit the cycle
Female ≻ Male ≻ No hire ≻ Female.

It is natural to ask how implicit preferences will be revealed in comparison sets larger
than two elements. In attempting to answer these questions we find that the predictions
of the different foundational models diverge. For example, in the context of choice we find
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that influence is most naturally interpreted as a property of a choice set in the implicit
associations model, because the more estimates are reported by the first agent, the more
the second agent can infer about her associations. But it is most naturally interpreted as
a property of the choice in the signaling and ceteris-paribus models, because the observer
or rule-setter’s information comes from what is chosen and what is not. When considering
binary choice sets the distinction does not matter, because when one bundle is rejected the
other is always chosen. Thus our general concept of an implicit preference, which is agnostic
about the underlying foundation, is limited to binary comparisons.

Our utility function is compatible with other theories about what affects implicit pref-
erences’ influence (θi), e.g. variation in time pressure, stated versus revealed preferences,
or moral wiggle room. A central advantage of our definition is that θi depends only on the
comparison (x, z); we not require any information beyond what is contained in the bundles
themselves, widening applicability and reducing degrees of freedom. To the extent that other
factors also predict variation in influence, we would expect the implicit preferences identified
using different assumptions to coincide.

We see rich scope for empirical applications, through data reanalysis as well as fresh
experiments, to systematically map out the existence, strength of influence, consistency, and
out-of-sample predictiveness of implicit preferences across many diverse domains. Our ap-
plications found evidence of implicit selfishness, implicit risk preferences, and implicit racial
bias. Figure 1 suggests some additional domains that we see as promising, including temp-
tation, embarrassing decisions, prejudice (in many settings), framing, and time discounting.
We particularly highlight the Framing example. There, we conceptualize a frame as an at-
tribute over which the decision maker has zero explicit preference but a nonzero implicit
preference. Thus they are indifferent between identical but differently-framed prospects, but
frames influence choice when mixed with other attributes. These, and other applications, we
leave to future research.
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9 Appendix: Proof of Theorem 1

To prove the theorem we will need to define several vectors and matrices that are indexed by
comparisons (x, z) ∈ X×X . This can quickly make the notation unreadable, so we introduce
a shorthand that we use whenever it does not generate ambiguity. We use δ = (x, z) to
represent a generic comparison (x, z), allowing us to write, e.g., Mi,(x,z),(x′,z′) as Mi,δ,δ′ .
Similarly, if (x, z) ⊒i (x

′, z′) we write δ ⊒i δ
′. The set of all δs is the same as the set of all

comparisons: δ ∈ X × X , which has |X |2 elements.
Each inequality in dataset D can written as:

v(xj) +
∑

xj
iκiθi(x

j, zj) ≥ v(x′j) +
∑

x′j
i κiθi(x

′j, z′j),

where the inequality is strict for j ≤ m̄. We can write the two functions, v(·) and θi(·) as
vectors v ∈ R|X | and θ ∈ Rn|X |2 , with elements vx = v(x) (one entry for each x ∈ X ), and
θiδ = θi(δ) (one entry for each i ∈ {1, ..., n} and comparison δ ∈ X × X ).

We can now state the problem as follows. The vector of implicit preferences κ rationalizes
D if and only if there exist vectors v and θ such that (1) every inequality in D is satisfied,
and (2) θ obeys influence-dominance, meaning δ ⊒i δ

′ =⇒ θiδ ≥ θiδ′ .
We can write D’s inequalities in matrix form with [ P̂ X̂ ] [ vθ ] ≫ 0 representing the m̄

strict inequalities, and [ P̄ X̄ ] [ vθ ] ≥ 0 representing the m − m̄ weak inequalities. Each row
corresponds to one inequality. The matrix P =

[
P̂
P̄

]
∈ Zm×|X | holds the coefficients on v,

with entries:
P j︸︷︷︸

row
j∈1,...,m

, x︸︷︷︸
column
x∈X

= 1{x = xj}︸ ︷︷ ︸
LHS of inequality

− 1{x = x′j}.︸ ︷︷ ︸
RHS of inequality

The matrix X =
[
X̂
X̄

]
∈ Zm×n|X |2 holds the coefficients on θ, with entries:

X j︸︷︷︸
row

j∈1,...,m

, iδ︸︷︷︸
column
i∈1,...,n
δ∈X×X

= xj
iκi 1{(xj, zj) = δ}︸ ︷︷ ︸

=1 if LHS of inequality j
has comparison δ

− x′j
i κi 1{(x′j, z′j) = δ}.︸ ︷︷ ︸

=1 if RHS of inequality j
has comparison δ

Finally we encode the influence-dominance relations ⊒i, i = {1, ..., n} as a matrix of coeffi-
cients on θ: Q ∈ Zn|X |4×n|X |2 . Q has one row for each combination of an attribute k and pair
of comparisons δ̄, δ̄′ (n|X |4 rows in total). A row has non-zero entries only if δ̄ ⊒k δ̄′. If so,
the row has entry +1 in the column that corresponds to attribute k and comparison δ̄, and
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−1 in the column corresponding to attribute k and comparison δ̄′:

Q kδ̄δ̄′︸︷︷︸
row

k∈{1,...,n}
δ̄,δ̄′∈X×X

, iδ︸︷︷︸
column

i∈{1,...,n}
δ∈X×X

= 1

{
(i = k)︸ ︷︷ ︸
column

corresponds to k

∧ (δ̄ ⊒i δ̄
′)︸ ︷︷ ︸

δ̄ influence-
dominates δ̄′

}
×
(

1{δ = δ̄}︸ ︷︷ ︸
= 1 if column

corresponds to δ̄

− 1{δ = δ̄′}︸ ︷︷ ︸
= 1 if column

corresponds to δ̄′

)
.

Then, the vector θ obeys influence-dominance if and only if Qθ ≥ 0. Putting the pieces
together, we can say that κ rationalizes D if and only if the following Condition holds:

Condition 1. There exists a real-valued vector [ vθ ] satisfying

[
P̂ X̂

] [v
θ

]
≫ 0 (all positive)[

P̄ X̄

0 Q

][
v

θ

]
≥ 0 (all non-negative).

Motzkin’s Rational Transposition Theorem (Border (2013)) tells us that Condition 1 will be
true if and only if our next condition, Condition 2, is false. Condition 2 expresses that a
non-negative-weighted sum of rows of

[
P X
0 Q

]
yields a vector of zeroes.

Condition 2. There exist integer-valued vectors p̂ ∈ Zm̄, p̄ ∈ Zm−m̄, q ∈ Zn|X |4 (with
p ≡

[
p̂
p̄

]
), satisfying:

p̂T
[
P̂ X̂

]
+ p̄T

[
P̄ X̄

]
+ qT

[
0 Q

]
=
[
pT qT

] [P X

0 Q

]
= 0T ,

p̂ > 0 (all non-negative, at least one positive)

p̄ ≥ 0, q ≥ 0 (all non-negative)

Loosely speaking, given implicit preferences κ, there exist vectors v and θ that can rationalize
the dataset if and only if there is no combination of rows in

[
P X
0 Q

]
), which exactly cancel.

We now prove that Condition 2 is equivalent to the condition given in the theorem:

Condition 3. There exists a cyclical selection s ∈ Nm in which, for every κi = 1, losses
influence-dominate wins, and for every κi = −1, wins influence-dominate losses.

Proof that condition 3 implies condition 2. We construct vectors p and q from the
cyclical selection s and matching matrices Mi, i = {1, ..., n}, to show [ pT qT ]

[
P X
0 Q

]
= 0T .

Let:
∀j ∈ {1, . . . ,m}, pj = sj

∀i ∈ {1, . . . , n}, δ, δ′ ∈ X × X , qiδδ′ = Mi,δ,δ′ .
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By the definition of a cyclical selection, p̂ > 0 and p̄ ≥ 0, and by the definition of a matching,
q ≥ 0. For each element of the vector pTP ∈ Z|X |, which is indexed by x, we can write:

m∑
j=1

pjPj,x =
m∑
j=1

sjPj,x =
m∑
j=1

sj
(
1{x = xj} − 1{x = x′j}

)
= 0.

Where the first equality follows from the definition of p, the second from the definition of P ,
and the third from the definition of a cyclical selection: each bundle x must appear equally
often on the left- and right-hand side. Thus [ pT qT ] [ P0 ] = 0T .

An element of the vector [ pT qT ]
[
X
Q

]
∈ Zn|X |2 , indexed by (iδ), can be expressed as:

m∑
j=1

pjXj,iδ︸ ︷︷ ︸
elements of X selected by p

+
n∑

k=1

∑
δ̄∈X×X

∑
δ̄′∈X×X

qkδ̄δ̄′Qkδ̄δ̄′,iδ︸ ︷︷ ︸
elements of Q selected by q

.

Using the definitions of X and Q we can write this as:∑
j:(xj ,zj)=δ︸ ︷︷ ︸

inequalities with
δ on LHS

pjx
j
iκi −

∑
j:(x′j ,z′j)=δ︸ ︷︷ ︸

inequalities with
δ on RHS

pjx
′j
i κi +

∑
δ̄′:δ⊒iδ̄′︸ ︷︷ ︸

Q rows where δ
influence-dominates

qiδδ̄′ −
∑
δ̄:δ̄⊒iδ︸︷︷︸

Q rows where δ
influence-dominated

qiδ̄δ (3)

Given p = s the first two terms equal κi multiplied by the score for that i, δ pair:∑
j:(xj ,zj)=δ

sjx
j
iκi −

∑
j:(x′j ,z′j)=δ

sjx
′j
i κi = κici,δ.

Take the last two terms of (3) and substitute qiδδ′ = Mi,δ,δ′ . We obtain:

∑
δ̄′:δ⊒iδ̄′

Mi,δ,δ̄′ −
∑
δ̄:δ̄⊒iδ

Mi,δ̄,δ =
∑

δ̄′∈X×X

Mi,δ,δ̄′ −
∑

δ̄∈X×X

Mi,δ̄,δ =

−ci,δ , κi = 1 (losses dominate wins)

ci,δ , κi = −1 (wins dominate losses)

= −κici,δ,

which uses Definition 5: the first equality follows from “matches obey dominance” and
the second from “all scores are accounted for.” Substituting into equation (3) we obtain
[ pT qT ]

[
P X
0 Q

]
= 0T , establishing Condition 2.
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Proof that condition 2 implies condition 3. We construct a vector s and matrices
Mi, i = {1, . . . , n} from the vectors p̂, p̄, q, and show that they satisfy Definitions 3 and 5:

∀j ∈ {1, . . . ,m}, sj = pj

∀i ∈ {1, . . . , n}, δ, δ′ ∈ X × X , Mi,δ,δ′ = qiδδ′1{δ ⊒i δ
′}

We can verify that sj > 0 for at least one j ≤ m̄ because p̂ > 0, and that sj ≥ 0 and
Mi,δ,δ′ ≥ 0 because p̄, q ≥ 0. To confirm that s is a cyclical selection we need to show that∑m

j=1 sj1{x = xj} =
∑m

j=1 sj1{x = x′j}. This follows because pTP = 0T (by condition 2),
with elements (indexed by x):

m∑
j=1

pjPj,x =
m∑
j=1

pj1{x = xj} −
m∑
j=1

pj1{x = x′j},

where the equality comes from the definition of P . We must finally verify that for each i with
κi = 1, losses influence-dominate wins, and for each i with κi = −1, wins influence-dominate
losses. I.e., we check that Mi satisfies the conditions of Definition 5. Observe that:

1. Matches obey dominance: ∀δ, δ′ ∈ X × X , (Mi,δ,δ′ > 0) =⇒ (δ ⊒i δ
′). This immedi-

ately follows because we constructed Mi from q as Mi,δ,δ′ = qiδδ′1{δ ⊒i δ
′}.

2. All scores are accounted for, i.e. for every δ ∈ X × X and i ∈ {1, . . . , n} with κi = 1:∑
δ̄′∈X×X

Mi,δ,δ̄′ −
∑

δ̄∈X×X

Mi,δ̄,δ =
∑

δ̄′:δ⊒iδ̄′

qi,δ,δ̄′ −
∑
δ̄:δ̄⊒iδ

qi,δ̄,δ (by construction of M)

= (qTQ)iδ (by definition of Q)

= −(pTX)iδ (by condition 2)

= −
∑

j:(xj ,zj)=δ

pjx
j
i +

∑
j:(x′j ,z′j)=δ

pjx
′j
i (by definition of X and κi = 1)

= −
∑

j:(xj ,zj)=δ

sjx
j
i +

∑
j:(x′j ,z′j)=δ

sjx
′j
i (by construction of s)

= −ci,δ (by definition of ci,δ)

So losses influence-dominate wins when κi = 1. The same argument will show that when
κi = −1, wins influence-dominate losses.
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10 Tables

Table 1: Frequencies of different cycles in Exley (2016) data

Cycle Frequency s.e. 95% CI

Implicit pro-Risky (a) .048 (.01) [.032, .073]

Implicit pro-Safe (b) .103 (.018) [.073, .144]

Implicit pro-Selfish (c) .181 (.024) [.139, .233]

This table shows the frequency of each type of the cycle in our analysis of Exley (2016). Standard
errors clustered at the participant level. Statistical tests: p

(
a = b

)
= .009, p

(
a = c

)
< .001, p

(
b =

c
)
= .019, p

(
a = b = c

)
< .001. Test against random choice benchmark: p

(
a+ b+ c = .25

)
< .001.

Table 2: Quantitative estimates using Desante (2013) data

Work ethic concealed Work ethic revealed

2× κrace

(
θHrace − θLrace

)
71.13** 66.16*

(30.21) (38.10)

2× κethic

(
θHethic − θLethic

)
-47.27
(35.33)

Participants 378 375

2×κrace

(
θHrace − θLrace

)
equals the increase in evaluation of White candidates, relative to Blacks,

when influence increases from θLi to θHi . Second row measures the same for Good relative to Bad
candidates. Standard errors clustered by participant in parentheses, ∗p < .1,∗∗ p < .05.
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11 Figures

Temptation Embarrassment Prejudice

Coke Pepsi

Diet

Regular

Magazine A Magazine B

Athletes
Issue

Swimsuit
Issue

Movie A Movie B

Sit with
disabled

Sit with
able-

bodied

Selfishness Framing Discounting

Cash Lottery

Charity

Self

Prospect A Prospect B

Frame Y

Frame X

∼ ∼
Pen Chocolate

Sooner

Later+$2

Temptation. The decision maker chooses between diet and full-sugar sodas. They explicitly prefer diet
soda, but reveal an implicit preference for the sugary option.
Embarrassment. The decision maker chooses between magazines, which may have a swimsuit issue or
a special issue covering famous athletes. They explicitly prefer the athletes issue but reveal an implicit
preference for the swimsuit issue. (Inspired by Chance and Norton (2009)).
Prejudice. The decision maker chooses between movies, which will be watched with an able-bodied or a
disabled person. They explicitly prefer to sit with the disabled person, but reveal an implicit preference for
sitting with the able-bodied person. (Inspired by Snyder et al. (1979)).
Selfishness. The decision maker chooses between a lottery and a safe amount, where the beneficiary is
themself or charity. They explicitly prefer to give to charity, but reveal an implicit preference for self. (In-
spired by Exley (2016)).
Framing. The decision maker chooses between prospects (A and B) framed in different ways (X and Y).
They are indifferent between differently-framed versions of the same prospect, but strictly prefer frame X
when the prospects differ. This reveals an implicit preference for frame X, but no explicit preference.
Discounting The decision maker chooses between a pen or a box of chocolates, either now, or with a
financially-compensated delay. They reveal an explicit preference for sooner rewards, but an implicit prefer-
ence for the delay. (Cubitt et al., 2018).

Figure 1: Figure 8 intransitivities applied to various domains.
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Panel (a) classifies participants according to their number of implicit pro-Risky and pro-Safe cycles. Cell size
and numeric labels indicate the number of participants in each cell, colors indicate the type classification.
Panel (b) classifies participants according to their number of implicit pro-Selfish cycles (the data structure
means that we do not observe pro-Generous cycles).

Figure 2: Type classifications in Exley (2016) data
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Each pair of points corresponds to one “convex scissor.” pro-White implicit preferences imply positive “Diffs”
(shown in blue). 95% confidence intervals clustered by participant. N = 753 participants, 1,506 evaluations.

Figure 3: Reanalysis of DeSante (2013) data
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A Web appendix to “Implicit Preferences”

For Online Publication Only

A.1 Derivations for Section 3

We use two tricks to simplify the derivation of the corollaries. First we show that we can
represent each of the cases with just three attributes without loss of generality. Second we
represent each dataset with a single row of a matrix, using a compressed version of the matrix
X that we derived in the proof of Theorem 1. With this row representation most derivations
become simple: we can see which realizations of κ are infeasible by observing whether some
combination of rows in Q (i.e. combination of ⊒i relations) rules them out.

Recall that we assume Equivalence throughout, which implies that comparisons with the
same difference |x− z| have the same influence θi,∀i.

Reduction to three attributes. All of our examples can be analyzed by partitioning
the set of attributes into three disjoint and collectively exhaustive “groups,” A,B,C, where
all attributes within a group are perfectly correlated, so we can represent them using three
grouped attributes, x = (xA, xB, xC).38 Since attributes are perfectly correlated within
groups, they will have identical differences in a given comparison (e.g. we have |xi − zi| =
|xj−zj|,∀i, j ∈ A), and all influence-dominance relationships will be shared. So, for example(
(x, z) ⊒i (x′, z′)

)
⇔
(
(x, z) ⊒j (x′, z′)

)
,∀i, j ∈ A. Therefore we can conduct all our

analysis using xA, xB, xC , where xAκAθA :=
∑

i∈A xiκiθi. Implications that we derive on a
grouped attribute will imply a disjunction over all attributes within the group (essentially,
because we do not know which attribute(s) within a group are responsible for the observed
behavior). That is: (xAκA = 1) =⇒

(∨
i∈A xiκi = 1

)
.

Applying Theorem 1 compactly. The proof of Theorem 1 shows how to represent
a dataset and influence-dominance relationship in terms of P , X, and Q matrices, and use
them to ask whether a given κ can rationalize the data. Condition 2 of the theorem tells us
the answer is no if and only if there exist vectors p, q such that [ pT qT ]

[
P X
0 Q

]
= 0. Condition

3 tells us that p is a cyclical selection and q is a matching.
In order to parsimoniously identify every κ that can be ruled out in this way, we will

write out the terms of the expression for an arbitrary κ, and ask for which κi values least
one term must be nonzero. However, in general the matrices can be very large. We use a
number of tricks to substantially compress them:

1. We can ignore P , since in any solution, p is a cyclical selection and P ’s rows always
38So, A ∪ B ∪ C = 1, . . . , n; A ̸= ∅, B ̸= ∅, C ̸= ∅; and A ∩ B = A ∩ C = B ∩ C = ∅. For example, if

A = {1, 2, 3} we might have xA = −1 ⇔ (x1, x2, x3) = (−1, 1,−1) and xA = 1 ⇔ (x1, x2, x3) = (1,−1, 1).
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sum to zero in a cyclical selection. Thus we focus on X and Q.

2. When the dataset consists of a single intransitive choice cycle, we can reduce its X

matrix to a single row by summing the individual rows. This is because p is a cyclical
selection and in a cyclical selection every bundle must appear equally often on the LHS
and RHS, meaning all pj terms must be equal.

3. As defined, X and Q have many columns, indexed by i, and (x, z). However, for each
i we can without loss of generality add together columns with identical differences
(|x − z| = |x′ − z′|)). Equivalence tells us they must have the same θi, and all that
matters for establishing whether wins have higher influence than losses is the net wins
or losses for each distinct realization of θi. (The intuition is the same as for why it is
sufficient to match scores rather than each individual win or loss). We therefore write
X and Q with one column per realization of |x−z|. We construct X by counting wins
and losses for each i and |x− z|, and we construct Q from the restrictions implied by
Assumptions 2 and 3.

4. Finally, many of the potential comparisons in X × X are never observed, so appear
in X as columns of zeros. We can ignore those columns. Similarly, Q will have many
rows that do not restrict any nonzero column in X. We eliminate those as well.

We name the compressed X and Q matrices X∗ and Q∗ and show them in Figure 4. Most
corollaries are easily verified by visual inspection of the Figure; we recommend the reader
use the matrix as a rubric to understand the results. One needs only to confirm that the
representation in X∗ is accurate, and then observe which combination of κ would be ruled
out by some combination of rows in Q∗. We include full proofs below for completeness.

Right triangle Let A = {i : x1
i ̸= x2

i }, B = {i : x2
i ̸= x3

i }, C = {i : x1
i = x3

i }. So A is the
set of non-shared attributes in |x1 − x2|, B is the set of non-shared attributes in |x2 − x3|,
A∪B is the set of non-shared attributes in |x1 −x3| (the “diagonal”), and C is the set that
are always shared. Because |x1 − x2| and |x2 − x3| differ on distinct attributes, A,B,C are
disjoint and collectively exhaustive. We have:

|x1 − x2| =
[
2
0
0

]
, |x2 − x3| =

[
0
2
0

]
, and |x1 − x3| =

[
2
2
0

]
.

The choice inequalities are u(x1,x2) > u(x2,x1), u(x2,x3) > u(x3,x2), and u(x3,x1) >

u(x1,x3). To construct the X∗ matrix we need to count wins and losses for each i and
|x− z|. Beginning with the first inequality, for each attribute i, the left-hand side gives us
a win if x1

i = 1 and a loss otherwise. The right-hand side gives us a loss if x2
i = 1 and a win
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Ῡ

[ 2 2 0

] ⊒
A

[ 2 0 0

]
         

−
1

0
1

0
0

0
0

0
0

         
Q

∗
=

[ 2 2 0

] ⊒
B

[ 0 2 0

]
0

0
0

0
−
1

1
0

0
0

[ 2 0 0

] ⊒
C

[ 2 2 0

]
0

0
0

0
0

0
1

0
−
1

D
om

in
an

ce
0

0
0

Θ
0

−
Θ

0
0

0

1
,[ 2 0 0

] 1,
[ 0 2 0

] 1,
[ 2 2 0

] 1
,[ 2 0 2

] 2
,[ 2 0 0

] 2,
[ 0 2 0

] 2,
[ 2 2 0

] 2
,[ 0 2 2

] 3
,[ 2 0 0

] 3
,[ 0 2 0

] 3,
[ 0 2 2

] 3,
[ 2 0 2

]
E

qu
ila

te
ra

lt
ri

an
gl

e
 

0
0

−
2κ

1
2
κ
1

0
0

2
κ
2

−
2κ

2
0

0
−
2
κ
3

2
κ
3

 
X

∗
=

N
on

-c
on

ve
x

sc
is

so
r

−
κ
1

κ
1

0
0

−
κ
2

κ
2

0
0

κ
3

−
κ
3

0
0

Fa
ls

ifi
ca

ti
on

0
0

0
0

0
0

0
0

0
0

0
0

Q
∗
=

em
pt

y

T
op

p
an

el
co

rr
es

po
nd

s
to

th
e

m
ai

n
C

or
ol

la
ri

es
.

(1
)

C
ol

um
ns

ar
e

la
be

le
d

by
at

tr
ib

ut
e

gr
ou

p
(i

∈
{A

,B
,C

})
,

an
d
|x

−
z
|
∈

{0
,2
}3

.
(2

)
R

ow
s

co
rr

es
po

nd
to

κ
i

m
ul

ti
pl

ie
d

by
ne

t
w

in
s

an
d

lo
ss

es
fo

r
th

at
ex

am
pl

e.
(3

)
Q

∗
in

cl
ud

es
on

ly
ro

w
s

th
at

re
st

ri
ct

at
le

as
t

on
e

ro
w

of
X

∗ .
(4

)
Fo

r
sc

is
so

rs
,

Υ
∈

{−
1
,1
}

eq
ua

ls
th

e
si

gn
of

th
e

ev
al

ua
ti

on
ch

an
ge

:
Υ

=
sg
n
(y

2
−

y
1
).

(5
)
Θ

∈
{−

1,
0,
1}

ca
pt

ur
es

th
e

si
gn

of
th

e
D

om
in

an
ce

of
at

tr
ib

ut
e
k

as
su

m
pt

io
n

(A
ss

um
pt

io
n

3)
.
Θ

=
0

if
th

e
as

su
m

pt
io

n
do

es
no

t
ap

pl
y,

Θ
=

1
if

in
flu

en
ce

is
hi

gh
er

fo
r

sh
ar

ed
at

tr
ib

ut
es

(k
is

sh
ar

ed
),

Θ
=

−
1

if
in

flu
en

ce
is

hi
gh

er
fo

r
no

n-
sh

ar
ed

(k
is

no
n-

sh
ar

ed
).

B
ot

to
m

p
an

el
sh

ow
s

th
e

ad
di

ti
on

al
ca

se
s

di
sc

us
se

d
un

de
r

“O
th

er
ex

am
pl

es
.”

A
tt

ri
bu

te
s
1,
2,
3

co
rr

es
po

nd
to

ho
ri

zo
nt

al
,v

er
ti

ca
l,

de
pt

h.
Q

∗
is

em
pt

y
as

⊒
do

es
no

t
re

st
ri

ct
an

y
ro

w
of

X
∗

fo
r

th
es

e
ex

am
pl

es
.

F
ig

ur
e

4:
M

at
ri

x
re

pr
es

en
ta

ti
on

of
co

ro
lla

ri
es

an
d

ex
am

pl
es

fr
om

Se
ct

io
n

3

51



otherwise. From the conditions defining the right triangle, we know that x1
A = −x2

A = −x3
A

while x1
B = x2

B = −x3
B and x1

C = x2
C = x3

C . We work through each inequality in turn.
Inequality 1 gives us two wins for A,

[
2
0
0

]
if x1

A = 1 and two losses if x1
A = −1. Thus the

entry in column A,
[
2
0
0

]
equals 2κAx

1
A, which in turn equals −2κAx

3
A by definition of x1 and

x3. All other attributes are shared so have zero net wins or losses (each win on the LHS is
canceled by a loss on the RHS and vice versa).

Inequality 2 gives us two wins for B,
[
0
2
0

]
if x2

B = 1 and two losses if x2
B = −1. Thus the

entry in column B,
[
0
2
0

]
equals 2κBx

2
B, which in turn equals −2κBx

3
B by definition of x2 and

x3. All other attributes do not vary and so have zero net wins or losses.
Inequality 3 gives us two wins for A,

[
2
2
0

]
if x3

A = 1 and two losses if x3
A = −1. Thus the

entry in column A,
[
2
2
0

]
equals 2κAx

3
A. Inequality 3 gives us two wins for B,

[
2
2
0

]
if x3

B = 1 and

two losses if x3
B = −1. Thus the entry in column B,

[
2
2
0

]
equals 2κBx

3
B. All other attributes

do not vary and so have zero net wins or losses.
Collapsing these entries to a single row we obtain “Right triangle 1” in Figure 4.
Because our dataset consists of a single cycle we can set p = 1 without loss of generality,

obtaining (after ignoring columns that equal zero):[
pT qT

] [
X∗
Q∗
]
=
[
−2κAx

3
A − q1 2κAx

3
A + q1 −2κBx

3
B − q2 2κBx

3
B + q2

]
,

where q1 is the coefficient on the first row of Q∗ and q2 is the coefficient on the second. There
exist q1, q2 ≥ 0 such that this vector equals 0 if and only if: (κAx

3
A ≤ 0)∧(κBx

3
B ≤ 0). Hence,

the data can be rationalized if and only if:

(
κAx

3
A = 1

)
∨
(
κBx

3
B = 1

)
⇔

∨
{i:x3

i ̸=x1
i }

(κix
3
i = 1),

where the last part follows from the definitions of A,B,x1,x3.

Figure 8 Let A = {i : x1
i ̸= x2

i }, B = {i : x1
i ̸= x3

i }, C = {i : x1
i = x4

i }. So A is the set of
non-shared attributes in |x1 − x2| and |x3 − x4|, B is the set of additional attributes that
are non-shared in |x2 −x3| and |x1 −x4| but were shared in |x1 −x2| and |x3 −x4|, A∪B

the set of all attributes that are non-shared in |x2−x3| and |x1−x4|, and C the set that are
shared in all comparisons. By construction, A,B,C are disjoint and collectively exhaustive.
We have:

|x1 − x2| = |x3 − x4| =
[
2
0
0

]
, and |x2 − x3| = |x1 − x4| =

[
2
2
0

]
.

As with the right triangle, we populate the matrix X∗ by calculating wins and losses for each
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i, |x − z| combination. In this case all comparisons are concentrated on just two |x − z|’s.
Following the same proof strategy as for the right triangle, we set p = 1 without loss of
generality. We obtain (after eliminating zeros):[

pT qT
] [

X∗
Q∗
]
=
[
−4κAx

4
A − q1 4κAx

4
A + q1

]
,

where q1 is the coefficient on the first row of Q∗. By the same argument as for the right
triangle, the data can be rationalized if and only if:

(
κAx

4
A = 1

)
⇔

∨
{i:x3

i ̸=x4
i }

(κix
4
i = 1),

where the last part follows from the definitions of A,x3,x4.

Parallel right triangles Let:

A = {i : x1
i ̸= x2

i } = {i : x̄2
i ̸= x̄3

i }

B = {i : x2
i ̸= x3

i } = {i : x̄1
i ̸= x̄2

i }

C = {i : x1
i = x3

i } = {i : x̄1
i = x̄3

i }.

In words, A is the set of attributes that are not shared in |x1−x2| and not shared in |x̄2−x̄3|,
B is the set of attributes that are not shared in |x2 − x3| and not shared in |x̄1 − x̄2|, and
C is the set of attributes that are always shared within any comparison.39 By construction,
A,B, and C are disjoint and collectively exhaustive.

We populate the second triangle’s row in X∗ by calculating the wins and losses for each
i, |x̄− z̄| combination. As for right triangle 1 we exploit the definitions of the triangle and
the sets A,B,C to express them in terms of x̄3.

When the dataset consists of a pair of parallel right triangles, a cyclical selection consists
of p1 ≥ 0 copies of the first and p2 ≥ 0 copies of the second, giving us (ignoring zeros):[

pT qT
] [

X∗
Q∗
]
=
[
−WA WA −WB WB

]
WA = 2κA(p1x

3
A + p2x̄

3
A) + q1 = 2κA(p1 − p2)x

3
A + q1

W2 = 2κB(p1x
3
B + p2x̄

3
B) + q2 = 2κB(p1 + p2)x

3
B + q2,

where q1 is the coefficient on the first row of Q∗ and q2 is the coefficient on the second. The
39Note that while C attributes do not vary within any comparisons, they might differ between the two

triangles, that is it could be that xC ̸= x̄C .
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second steps use the fact that x3
A = −x̄3

A, and x3
B = x̄3

B.40 Thus for a given p1, p2, the data
can be rationalized if and only if:

(
κA(p1 − p2)x

3
A > 0

)
∨
(
κB(p1 + p2)x

3
B > 0

)
.

When p1 = p2 (i.e. the cyclical selection contains an equal number of each cycle), the
disjunction collapses to (κB(p1 + p2)x

3
B > 0), so this condition must hold for the data to be

rationalizable. Once this condition holds, the data can be rationalized for all p1, p2, so no
further restrictions are obtained by considering other ps. Finally, using the definition of set
B we obtain the result, that a pair of parallel right triangles implies:∨

i:x3
i ̸=x2

i

(x3
iκi = 1).

Convex scissor without and with Dominance of attribute k. Let A = {i : xi ̸= z1i },
B = {i : z1i ̸= z2i }, C = {i : xi = z2i }. So A is the set of attributes that vary in the first
comparison, B is the set of additional attributes that varies in the second comparison but
not the first, A ∪ B the full set that vary in the second comparison, and C the set that do
not vary within either comparison. A,B,C are disjoint and collectively exhaustive.

We construct the scissor’s row in the X∗ matrix by counting losses and wins in the scissor’s
single inequality. If y2 > y1 we have u(x, z2) > u(x, z1). The left-hand side corresponds
to |x − z2| =

[
2
2
0

]
, giving us a win in column i,

[
2
2
0

]
if xi = 1 and a loss otherwise. The

right-hand side corresponds to |x − z1| =
[
2
0
0

]
, giving us a loss in column i,

[
2
0
0

]
if xi = 1

and a win otherwise. If y2 < y1 then the left- and right-hand sides of the inequalities are
switched. Thus, defining Υ = sgn(y2 − y1), we enter κixiΥ in the columns associated with
difference

[
2
2
0

]
, and −κixiΥ in the columns associated with difference

[
2
0
0

]
. Thus, we obtain

40The definition of the parallel right triangle, condition (1) (x2 −x3 = x̄1 − x̄2) allows us to pin down the
values of the non-shared attributes in these comparisons (set B): (x2

B = x̄1
B) and (x3

B = x̄2
B) (to see this note

that if x2
B −x3

B = 2, it must be that x2
B = 1 and x3

B = −1). Similarly, condition (2) (x1−x2 = −(x̄2− x̄3))
allows us to pin down the values of the non-shared attributes in these comparisons (set A): (x1

A = −x̄2
A)

and (x2
A = −x̄3

A). Finally, the definitions of A, B, and C imply x3
A = x2

A = −x1
A, x3

B = −x2
B = −x1

B ,
x̄3
A = −x̄2

A = −x̄1
A, and x̄3

B = x̄2
B = −x̄1

B . Substitution yields x3
A = −x̄3

A, and x3
B = x̄3

B .
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(setting p1 = 1 and ignoring zeros):[
pT qT

] [
X∗
Q∗
]
=
[

−WA WA −WB WB −WC WC

]
WA = κAxAΥ+ q1

WB = κBxBΥ−Θq4

WC = κCxCΥ− q3.

q1 and q3 are the coefficients on the first and third rows of Q∗, which correspond to the
Dilution assumption (Assumption 2), while q4 is the coefficient on Q∗’s fourth row which
captures the Dominance of attribute k assumption (Assumption 3). Θ encodes Assumption
3: Θ = 0 if the assumption does not apply, Θ = 1 if influence is higher for shared attributes
(k is shared), Θ = −1 if influence is higher for non-shared attributes (k is non-shared).

When Θ = 0, the data can be rationalized if and only if there is no q ≥ 0 such that
WA = WB = WC = 0, i.e. if and only if:

(κAxAΥ = 1) ∨ (κBxBΥ ̸= 0) ∨ (κCxCΥ = −1) .

When Θ ̸= 0, the data can be rationalized if and only if:

(κAxAΥ = 1) ∨ (κBxBΥ = −Θ) ∨ (κCxCΥ = −1) .

Expanding these expressions using the definitions of A,B,C,Υ and Θ gives the results.

Parallel convex scissors without and with Dominance of attribute k. The condi-
tions (1) and (2) imply |x− y1| = |x̄− ȳ1| and |x− y2| = |x̄− ȳ2|. Let:

A = {i : xi ̸= z1i } = {i : x̄i ̸= z̄1i }

B = {i : z1i ̸= z2i } = {i : z̄1i ̸= z̄2i }

C = {i : xi = z2i } = {i : x̄i = z̄2i }.

So A is the set of attributes that vary in each scissor’s first comparison, B is the set of addi-
tional attributes that varies in the second comparisons but not the first (which is nonempty
since the second comparisons differ on a superset of attributes), A∪B the full set that vary in
the second comparisons, and C the set that do not vary within any comparison. By construc-
tion, A,B,C are disjoint and collectively exhaustive. Since the values of x, x̄, sgn(y2 − y1)

and sgn(ȳ2 − ȳ1) are unrestricted, there are many possible combinations.
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When the dataset consists of a pair of parallel convex scissors, a cyclical selection consists
of p1 ≥ 0 copies of the first and p2 ≥ 0 copies of the second, giving us (ignoring zero elements):[

pT qT
] [

X∗
Q∗
]
=
[
−WA WA −WB WB −WC WC

]
WA = κA(p1xAΥ+ p2x̄AῩ) + q1

W2 = κB(p1xBΥ+ p2x̄BῩ)−Θq4

W3 = κC(p1xCΥ+ p2x̄CῩ)− q3,

where q1 and q3 are the coefficients on the first and third rows of Q∗, which capture the
Dilution assumption (Assumption 2), while q4 is the coefficient on Q∗’s fourth row which
captures Dominance of attribute k (Assumption 3) as before. Θ encodes Assumption 3.
Υ = sgn(y2 − y1) and Ῡ = sgn(ȳ2 − ȳ1) capture the direction in which each evaluation
changes when the comparator changes.

By a similar argument to the parallel right triangles, the strongest restrictions on κ will
be obtained when p1 = p2. This maximizes the number of terms in the disjunction that
become zero and drop out, and by so doing, reveals the set of restrictions that must hold in
every selection. In other words, we can without loss of generality consider only the cyclical
selection consisting of exactly one copy of each scissor (p1 = p2 = 1).

When Θ = 0 the data can be rationalized if and only if:

(
κA(xAΥ+ x̄AῩ) = 2

)
∨
(
κB(xBΥ+ x̄BῩ) ̸= 0

)
∨
(
κC(xCΥ+ x̄CῩ) = −2

)
.

When Θ ̸= 0 the data can be rationalized if and only if:

(
κA(xAΥ+ x̄AῩ) = 2

)
∨
(
κB(xBΥ+ x̄BῩ) = −2Θ

)
∨
(
κC(xCΥ+ x̄CῩ) = −2

)
.

Expanding the expressions using the definitions of A,B,C,Υ, Ῡ and Θ gives the results.
Note that in each case, the term corresponding to i ∈ {A,B,C} is eliminated if xiΥ = −x̄iῩ,

that is, if either (i) the second scissor has an opposite realization of xi but evaluation moves
in the same direction, or (ii) the second scissor has an identical realization of xi, but evalua-
tion moves in the opposite direction. Note also that some parallel scissors eliminate the term
involving attribute group B (the attributes about which a single scissor is indeterminate),
enabling us to draw precise conclusions without invoking Assumption 3.
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A.1.1 Corollary 3 is sufficient but not necessary for falsification

Corollary 3 says that to falsify the model it is sufficient but not necessary that the dataset
D contains a cyclical selection where losses influence-dominate wins and wins influence-
dominate losses. We show this condition is not necessary by providing a counterexample.

Consider a decision maker who satisfies Assumptions 1 and 2, choosing between bundles
with n = 4 attributes. On the left side of the diagram below we draw two figure-8 cycles, in
three dimensions, holding the fourth fixed. The first figure-8 has x4 = −1 and the second
figure-8 has x4 = 1. The first cycle rules out all κs with κ2 ̸= 1, while the second rules
out all κs with κ2 ̸= −1, so there exists no uI(x, z) that can rationalize the dataset. On
the right of the diagram we show the simplified matrix representation of the dataset (see
“Applying Theorem 1 compactly” above, note that only attribute 2 has nonzero columns in
X∗). Observe that no single cyclical selection (no weighted combination of rows of X∗) can
be matched to rows of Q∗ to obtain a row of zeroes.

x4 = −1 x4 = 1 2,

[
0
2
0
0

]
2,

[
2
2
0
0

]
2,

[
0
2
2
0

]
X∗ = 1st Figure-8

[
−4κ2 4κ2 0

]
2nd Figure-8 4κ2 0 −4κ2

Q∗ =

[
2
2
0
0

]
⊒2

[
0
2
0
0

]  −1 1 0
[

0
2
2
0

]
⊒2

[
0
2
0
0

]
−1 0 1

A.2 Proofs for Section 4 (Foundations)

In proving some of these results we make use of an additional lemma that we call “Sums and
Differences,” which we state and prove first. Recall also the definition of the set of shared
attributes: S(x,z) = {i : |xi − zi| = 0}.

Lemma 2 (Sums and Differences). Suppose we observe two linear combinations of n inde-
pendent Normal variables (“weights”), with +1 or −1 coefficients (“attributes”):

[
ȳx

ȳz

]
︸ ︷︷ ︸

y

=

[
x1 . . . xn

z1 . . . zn

]
︸ ︷︷ ︸

X


w1

...
wn


︸ ︷︷ ︸

w

xi, zi ∈ {−1, 1},w = N(0, diag(σ2
1, . . . , σ

2
n)),
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The Bayesian posterior for unobserved weight wi, given observed y will be:

E[wi|y] =

xi
σ2
i∑

j∈S σ2
j

ȳx+ȳz

2
, i ∈ S(x,z)

xi
σ2
i∑

j ̸∈S σ2
j

ȳx−ȳz

2
, i ̸∈ S(x,z)

.

The posterior for the weight on a shared attribute depends only on the sum ȳx+ ȳz, and the
posterior for the weight on a non-shared attribute depends only on the difference ȳx − ȳz.

Proof of Lemma 2. First we assume there exists at least one shared and one non-shared
attribute (i.e., x ̸= z and x ̸= −z). Given two multivariate Normals, a and b, with
covariance V ar [ ab ] =

[
Σa Σa,b

ΣT
a,b Σb

]
we can write the conditional expectation: E[a|b] = E[a]+

Σa,bΣ
−1
b (b− E[b]). In our case this implies:

E[w|y] = Σw,yΣ
−1
y y (4)

with components as follows:

Σy = XΣwX
T =

[ ∑
i x

2
iσ

2
i

∑
i xiziσ

2
i∑

i xiziσ
2
i

∑
i z

2
i σ

2
i

]
=

[∑
i∈S σ

2
i +

∑
i ̸∈S σ

2
i

∑
i∈S σ

2
i −

∑
i ̸∈S σ

2
i∑

i∈S σ
2
i −

∑
i ̸∈S σ

2
i

∑
i∈S σ

2
i +

∑
i ̸∈S σ

2
i

]

Σ−1
y y =

1

4
∑

i∈S σ
2
i

∑
i ̸∈S σ

2
i

(∑i∈S σ
2
i +

∑
i ̸∈S σ

2
i

)
ȳx +

(
−
∑

i∈S σ
2
i +

∑
i ̸∈S σ

2
i

)
ȳz(

−
∑

i∈S σ
2
i +

∑
i ̸∈S σ

2
i

)
ȳx +

(∑
i∈S +σ2

i

∑
i ̸∈S σ

2
i

)
ȳz


=

1

4

 ȳx+ȳz∑
i∈S σ2

i
+ ȳx−ȳz∑

i̸∈S σ2
i

ȳx+ȳz∑
i∈S σ2

i
− ȳx−ȳz∑

i̸∈S σ2
i



Σw,y = ΣwX
T =


x1σ

2
1 z1σ

2
1

...
...

xnσ
2
n znσ

2
n


Thus, given (4), we obtain:

E[wi|y] =
1

4

 ȳx+ȳz∑
i∈S σ2

i
+ ȳx−ȳz∑

i ̸∈S σ2
i

ȳx+ȳz∑
i∈S σ2

i
− ȳx−ȳz∑

i ̸∈S σ2
i

[xiσ
2
i

ziσ
2
i

]
=

xi
σ2
i∑

j∈S σ2
j

ȳx+ȳz

2
, i ∈ S

xi
σ2
i∑

j ̸∈S σ2
j

ȳx−ȳz

2
, i ̸∈ S

Where the last step uses xi + zi = 2xi1{i ∈ S} and xi − zi = 2xi1{i ̸∈ S}.
The same formula applies to the two special cases we initially ruled out, x = z and

x = −z. We cannot use equation (4) because X does not have full rank so Σy is not
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invertible. If all attributes are shared (x = z) we have a Normal updating problem with
a single observable, ȳx = ȳz, and each wi is updated in proportion to its share of the total

variance. So, E[wi|y] = xi
σ2
i∑n

j=1 σ
2
j

ȳx = xi
σ2
i∑

j∈S σ
2
j

ȳx + ȳz

2
. If all attributes are non-shared

(x = −z) then ȳx = −ȳz and we have E[wi|y] = xi
σ2
i∑n

j=1 σ
2
j
ȳx = xi

σ2
i∑

j ̸∈S σ2
j

ȳx−ȳz

2
. Thus both

correspond to the statement of the Lemma.

Proof Strategy for Propositions 1–5. To prove Propositions 1–4 we need to show util-
ity function defined in each foundation can be expressed as an Implicit Preferences utility
function (consistent with equation (1)), where θi(x, z) depends only on |x−z| (Equivalence,
Assumption 1) and weakly increases as more attributes share status with i (Dilution, As-
sumption 2). To verify Equivalence we will show that in each foundation, θi(x, z) can be
written as:

θi(x, z) =

θSi (|x− z|) , i ∈ S

θNi (|x− z|) , i ̸∈ S.

To verify Dilution we show that θi(x, z) is weakly increasing as the set of attributes that
share status with i grows. We can study the properties of θSi and θNi separately, since i does
not change status in a given dilution. We therefore need to show that θSi (|x − z|) weakly
increases as the set of shared attributes grows (in a superset sense), and that θNi (|x − z|)
weakly increases as the set of non-shared attributes grows.

To prove Proposition 5, for each foundation we write out θi(x, z) − θi(x
′, z′) and show

that the conditions of the Proposition imply it is weakly positive.

Proof of Proposition 1. First, note that uCP (x, z) can be rearranged to satisfy equation
(1) (using the fact that λi = sgn(λi)|λi|):

uCP (x, z) = g(x) +
n∑

i=1

xiλi︸ ︷︷ ︸
v(x)

+
n∑

i=1

xi (−sgn(λi))︸ ︷︷ ︸
κi

θi(x, z)

θi(x, z) =

{
θSi (|x− z|) = |λi| , i ∈ S

θNi (|x− z|) = |λi|(1− 1{∀j, (λj = 0) ⇒ (j ∈ S)}) , i ̸∈ S.

θi depends only on (x, z) through |x − z|. θSi is weakly increasing as the set of shared
attributes grows since θSi is a constant (rules are only applied to non-shared attributes). We
need to show that θNi is weakly increasing as the set of non-shared attributes grows. Let
(x′, z′) be a dilution of (x, z) with respect to attribute i. Consider the set of attributes
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that are shared under (x, z) and become non-shared under (x′, z′), i.e. D = {j : (j ∈
S(x,z)) ∧ (j ̸∈ S(x′,z′))}. If all of them are governed by a rule (∀j ∈ D,λj ̸= 0) then the
rule-applying function is unaffected, so θNi (|x′ − z′|) = θNi (|x − z|). If one or more is not
governed by a rule (∃j ∈ D : λj = 0), then 1{∀j, (λj = 0) ⇒ (j ∈ S(x′,z′))} = 0, so
θNi (|x′ − z′|) = |λi| ≥ θNi (|x− z|).

Proof of Proposition 2. First we derive an explicit solution for the observer’s posterior.

Lemma 3. Suppose a naïve observer sees the decision maker choose x from {x, z}, x ̸= z.
Their posterior over weight wi can be written as:

E

[
wi

∣∣∣∣ n∑
i=1

xiwi >
n∑

i=1

ziwi

]
= 1{i ̸∈ S} xiσ

2
i√∑

j ̸∈S σ
2
j

ϕ(0)

1− Φ(0)
,

where ϕ and Φ are the standard Normal density and cumulative density functions.

Proof of Lemma 3. The expectation of a Normally-distributed variable, b, conditioning
on another Normal variable, a, exceeding some threshold ā can be written as:

E[b|a > ā] = µb +
Cov(a, b)√
V ar(a)

ϕ( ā−µa√
V ar(a)

)

1− Φ( ā−µa√
V ar(a)

)
.

In our model each wi is Normally distributed, implying the difference in intrinsic utility
between x and z will also be Normal, and so given x is chosen over z we have:

E

[
wi

∣∣∣∣ n∑
j=1

wj(xj − zj) > 0

]
= E[wi] +

Cov(wi,
∑n

j=1wj(xj − zj))√
V ar(

∑n
j=1 wj(xj − zj))

ϕ(0)

1− Φ(0)

=
(xi − zi)σ

2
i√∑n

j=1(xj − zj)2σ2
j

ϕ(0)

1− Φ(0)

= 1{i ̸∈ S} xiσ
2
i√∑

j ̸∈S σ
2
j

ϕ(0)

1− Φ(0)
,

since (xi − zi) = 2xi × 1{i ̸∈ S} and (xi − zi)
2 = 4× 1{i ̸∈ S}.

Three things are worth noting. First, the observer divides attribution for the choice
among the weights wi on non-shared attributes, attributing more to those with larger variance
σ2
i . Second, the magnitude of the belief change on a given non-shared attribute i is decreasing

as the set of non-shared attributes grows, i.e. as the comparison becomes more dilute with
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respect to i. Third, they do not update at all about weights on shared attributes, since
choice is uninformative about those weights.

Using Lemma 3 and the fact that λi = sgn(λi)|λi|, we can rearrange uSC to satisfy (1):

uSC(x, z) =
n∑

i=1

xi

(
wi + λiσi

ϕ(0)

1− Φ(0)

)
︸ ︷︷ ︸

v(x)

+
n∑

i=1

xi (−sgn(λi))︸ ︷︷ ︸
κi

θi(x, z)

θi(x, z) =

θSi (|x− z|) = |λi|σi
ϕ(0)

1−Φ(0)
, i ∈ S

θNi (|x− z|) = |λi|σi

(
1− σi√∑

j ̸∈S σ2
j

)
ϕ(0)

1−Φ(0)
, i ̸∈ S.

θi depends only on (x, z) through |x − z|. We need to show that θS and θN are weakly
increasing as the sets of shared and non-shared attributes grow respectively. θS is a constant.
It is easy to see that θN increases as we add additional non-shared attributes.

Next, we show that reporting uSE is an optimal strategy in the signaling-evaluation game:

Proof of Lemma 1. Define the residual evaluations ȳx, ȳz, after subtracting components
which are common knowledge. We have:

ȳx = yx − g(x)−
n∑

i=1

xiλi
σ2
i

1{i ∈ S}
∑

j∈S σ
2
j + 1{i ̸∈ S}

∑
j ̸∈S σ

2
j

=
n∑

i=1

xiwi

Next, we show that player 1’s strategy yx = uSE(x, z), yz = uSE(z,x) is optimal assuming
that player 2’s strategy is:

ŵi(y
x, yz) =

xi
σ2
i∑

j∈S σ2
j

ȳx+ȳz

2
, i ∈ S

xi
σ2
i∑

j ̸∈S σ2
j

ȳx−ȳz

2
, i ̸∈ S

Taking first-order conditions of U1 with respect to yx and yz gives us the optimal reports:

yx(x, z) = g(x) +
n∑

i=1

xiwi +
n∑

i=1

λi
∂ŵi(y

x, yz)

∂yx

= g(x) +
n∑

i=1

xiwi +
n∑

i=1

xiλi
σ2
i

1{i ∈ S}
∑

j∈S σ
2
j + 1{i ̸∈ S}

∑
j ̸∈S σ

2
j

yz(z,x) = g(z) +
n∑

i=1

ziwi +
n∑

i=1

ziλi
σ2
i

1{i ∈ S}
∑

j∈S σ
2
j + 1{i ̸∈ S}

∑
j ̸∈S σ

2
j

.

Hence yx(x, z) = uSE(x, z) and yz(z,x) = uSE(z,x) as stated in the proposition.
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Next we show that player 2’s strategy is optimal, given player 1’s. Taking first order condi-
tions of U2, and using Lemma 2, we obtain the desired result:

ŵi(y
x, yz) = E[wi|yx, yz] = E[wi|ȳx, ȳz] =

xi
σ2
i∑

j∈S σ2
j

ȳx+ȳz

2
, i ∈ S

xi
σ2
i∑

j ̸∈S σ2
j

ȳx−ȳz

2
, i ̸∈ S.

Proof of Proposition 3. Using the fact that λi = sgn(λi)|λi| we can rearrange uSE(x, z)

in a form that satisfies (1):

uSE(x, z) = g(x) +
n∑

i=1

(wi + λi)xi︸ ︷︷ ︸
v(x)

+
n∑

i=1

xi (−sgn(λi))︸ ︷︷ ︸
κi

θi(x, z)

θi(x, z) =

θSi (|x− z|) = |λi|
(
1− σ2

i∑
j∈S σ2

j

)
, i ∈ S

θNi (|x− z|) = |λi|
(
1− σ2

i∑
j ̸∈S σ2

j

)
, i ̸∈ S.

θi depends only on (x, z) through |x − z|. It is easy to see that θS and θN are weakly
increasing as we add additional shared and non-shared attributes respectively.

Proof of Proposition 4. First, we show that utility takes a simple form:

Lemma 4. An implicit associations utility function can be written as:

uIA(x, z) = g(x) +
n∑

i=1

xiλiπ̄i(|x− z|)

π̄i(|x− z|) =


∑

j∈S πjσ
2
j∑

j∈S σ2
j

, i ∈ S∑
j ̸∈S πjσ

2
j∑

j ̸∈S σ2
j

, i ̸∈ S.

Proof of Lemma 4. Define f̂(x) = E[f(x)|λ]. Given agent 1’s prior on π, we have:

f̂(x) = g(x) +
n∑

i=1

xiλiE[πi] = g(x) +
n∑

i=1

xiλi.

Next, we define the residual value ¯̂
f(x) by subtracting the common-knowledge g(x). We

obtain ¯̂
f(x) = f̂(x)− g(x) =

∑n
i=1 xiλi. The second agent’s posteriors for each λi can then
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be derived using Lemma 2:

E[λi|f̂(x), f̂(z)] = E[λi| ¯̂f(x), ¯̂f(z)] =

xi
σ2
i∑

j∈S σ2
j

¯̂
f(x)+

¯̂
f(z)

2
, i ∈ S

xi
σ2
i∑

j ̸∈S σ2
j

¯̂
f(x)− ¯̂

f(z)
2

, i ̸∈ S

=

xi
σ2
i∑

j∈S σ2
j

∑n
i=1(xi+zi)λi

2
, i ∈ S

xi
σ2
i∑

j ̸∈S σ2
j

∑n
i=1(xi−zi)λi

2
, i ̸∈ S

=

xi
σ2
i∑

j∈S σ2
j

∑
j∈S xjλj , i ∈ S

xi
σ2
i∑

j ̸∈S σ2
j

∑
j ̸∈S xjλj , i ̸∈ S

where the final step uses xi − zi = 2xi1{i ̸∈ S} and xi + zi = 2xi1{i ∈ S}. The second
agent’s overall evaluation of bundle x will thus be equal to:

E[f(x)|π, f̂(x), f̂(z)] = g(x) +
n∑

i=1

xiπiE[λi|f̂(x), f̂(z)]

= g(x) +
n∑

i=1

x2
iπiσ

2
i

(
1{i ∈ S}∑

j∈S σ
2
j

∑
j∈S

xjλj +
1{i ̸∈ S}∑

j ̸∈S σ
2
j

∑
j ̸∈S

xjλj

)

= g(x) +

∑
i∈S πiσ

2
i∑

j∈S σ
2
j

∑
j∈S

xjλj +

∑
i ̸∈S πiσ

2
i∑

j ̸∈S σ
2
j

∑
j ̸∈S

xjλj

= g(x) +
∑
i∈S

xiλi

∑
j∈S πjσ

2
j∑

j∈S σ
2
j

+
∑
i ̸∈S

xiλi

∑
j ̸∈S πjσ

2
j∑

j ̸∈S σ
2
j

= uIA(x, z),

where we use the convention 1{i∈S}/∑j∈S σ2
j = 0 if there are no shared attributes, and equiv-

alently for the non-shared (this saves us from explicitly writing out the special cases of all
shared or all non-shared attributes). The third step uses x2

i = 1 and the fourth step uses a
switch of index labels.

Now we are ready to prove the Proposition. It states that at most one attribute has
either λi ̸= 0 or πi ̸= 1. Assign index t to this attribute. Our first goal is to show that the
functional form derived in Lemma 4 can be written in a form satisfying (1). Observe that
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π̄i(|x− z|) can be written as;

π̄i(|x− z|) =

1−
∑

j∈S(1−πj)σ
2
j∑

j∈S σ2
j

, i ∈ S

1−
∑

j ̸∈S(1−πj)σ
2
j∑

j ̸∈S σ2
j

, i ̸∈ S

=

1− (1−πi)σ
2
i∑

j∈S σ2
j
−

∑
(j∈S)∧(j ̸=i)(1−πj)σ

2
j∑

j∈S σ2
j

, i ∈ S

1− (1−πi)σ
2
i∑

j ̸∈S σ2
j
−

∑
(j ̸∈S)∧(j ̸=i)(1−πj)σ

2
j∑

j ̸∈S σ2
j

, i ̸∈ S

=

πi + (1− πi)
(
1− σ2

i∑
j∈S σ2

j

)
−

∑
(j∈S)∧(j ̸=i)(1−πj)σ

2
j∑

j∈S σ2
j

, i ∈ S

πi + (1− πi)
(
1− σ2

i∑
j ̸∈S σ2

j

)
−

∑
(j ̸∈S)∧(j ̸=i)(1−πj)σ

2
j∑

j ̸∈S σ2
j

, i ̸∈ S.

Substituting into the functional form derived in Lemma 4, and using the fact that λi(1−πi) =

sgn(λi(1− πi))|λi(1− πi)|, we obtain:

uIA(x, z) = g(x) +
n∑

i=1

xiλiπi︸ ︷︷ ︸
v(x)

+
n∑

i=1

xi sgn(λi(1− πi))︸ ︷︷ ︸
κi

θi(x, z)−B

θi(x, z) =

θSi (|x− z|) = |λi(1− πi)|
(
1− σ2

i∑
j∈S σ2

j

)
, i ∈ S

θNi (|x− z|) = |λi(1− πi)|
(
1− σ2

i∑
j ̸∈S σ2

j

)
, i ̸∈ S,

where:

B =
n∑

i=1

xiλi

[
1{i ∈ S}

∑
(j∈S)∧(j ̸=i)(1− πj)σ

2
j∑

j∈S σ
2
j

+ 1{i ̸∈ S}
∑

(j ̸∈S)∧(j ̸=i)(1− πj)σ
2
j∑

j ̸∈S σ
2
j

]

= xtλt

[
1{t ∈ S}

∑
(j∈S)∧(j ̸=t)(1− πj)σ

2
j∑

j∈S σ
2
j

+ 1{t ̸∈ S}
∑

(j ̸∈S)∧(j ̸=t)(1− πj)σ
2
j∑

j ̸∈S σ
2
j

]

+
∑
i ̸=t

xiλi

[
1{i ∈ S}

∑
(j∈S)∧(j ̸=i)(1− πj)σ

2
j∑

j∈S σ
2
j

+ 1{i ̸∈ S}
∑

(j ̸∈S)∧(j ̸=i)(1− πj)σ
2
j∑

j ̸∈S σ
2
j

]
= 0,

where the final step uses the facts that ∀j ̸= t, πj = 1 (so the first term equals zero) and
λj = 0 (so the second term equals zero). Thus we can see that uIA is an Implicit Preferences
utility function (satisfies equation (1)).

Finally, observe that θi depends only on (x, z) through |x− z|, and that θS and θN are
weakly increasing as the sets of shared and non-shared attributes grow, respectively.
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Proof of Proposition 5. Given the conditions in the Proposition, we need to show, for
two comparisons (x, z) and (x′, z′), where i and k share status in (x, z), and do not share
status in (x′, z′), that θi(x, z) ≥ θi(x

′, z′).

Ceteris Paribus. θi(x, z) can be written as:

θi(x, z) = |λi|
(
1− 1{i ̸∈ S(x,z)}1{∀j, (λj = 0) ⇒ (j ∈ S(x,z))}

)
Observe that (1) (i ∈ S(x,z)) ⇒ (1{i ̸∈ S(x,z)} = 0). (2) Since i and k share status in
(x, z), we have that (i ̸∈ S(x,z)) ⇒ (k ̸∈ S(x,z)). Since by assumption λk = 0, (k ̸∈ S(x,z)) ⇒
(1{∀j, (λj = 0) ⇒ (j ∈ S(x,z))} = 0) (i.e., if k is non-shared, the rules are turned off, because
k is not itself governed by a rule). Putting these together, we obtain that θi(x, z) = |λi|.
Therefore, we can write:

θi(x, z)− θi(x
′, z′) = |λi|1{i ̸∈ S(x′,z′)}1{∀j, (λj = 0) ⇒ (j ∈ S(x′,z′))} ≥ 0.

Signaling-evaluation and Implicit Associations. Both foundations have very similar
influence functions. We can write:

θi(x, z)− θi(x
′, z′) = A× σ2

i

(
Z(x, z)− Z(x′, z′)

Z(x, z)Z(x′, z′)

)
where

Z(x, z) = 1{i ∈ S(x,z)}
∑

j∈S(x,z)

σ2
j + 1{i ̸∈ S(x,z)}

∑
j ̸∈S(x,z)

σ2
j

and where A = |λi| ≥ 0 in the Signaling-evaluation model and A = |λi(1 − πi)| ≥ 0 in the
Implicit Associations model. Observe that Z(x, z)Z(x′, z′) > 0. Finally, observe that since
k shares status with i in (x, z) and not in (x′, z′), and by assumption σ2

k ≥
∑

i ̸=k σ
2
i , we

must have Z(x, z)− Z(x′, z′) ≥ 0. Hence θi(x, z) ≥ θi(x
′, z′).

A.3 Appendix material for analysis of Exley (2016)

Data access: We accessed Exley’s replication data through the journal webpage, at https:
//doi.org/10.1093/restud/rdv051.

A.3.1 Data structure

Exley (2016)’s experiment proceeds in three steps:
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1. Normalization choice. For each participant she elicits using a choice list the smallest
sure payment $X ∈ {0, 2, . . . , 30} to charity (or to another participant – we refer to
both as “charity”) that is chosen over $10 for self.

2. Using X, she constructs a sequence of participant-specific simple lotteries. These pay
out with probability P ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. Self lotteries, denoted
by P S, pay $10 to self. Charity lotteries, denoted by PC , pay $X to charity.

3. She elicits, using choice lists, preferences between each lottery and 21 different sure
payoffs to self or to charity. We index these by t = 0, ..., 20. The sure payments are
Y S
t = (0, 0.50, ..., 10) for self lotteries and Y C

t = (0,X/20, ..., X) for charity lotteries.

Thus, a bundle in this experiment is characterized by three basic attributes: a Recipient
(Self or Charity), a Prize, and a Probability.

A.3.2 Assumptions

Exley’s null hypothesis, standard risk preferences, assumes two properties of utility. We will
make use of the same assumptions to do two things.

1. To represent the choice data in a space of two binary attributes: Social ∈ {Selfish,
Generous} and Risk ∈ {Safe, Risky} (Section A.3.3). We construct the space so that
an observer who believes Exley’s null hypothesis would expect the decision maker to
be close to indifferent in all choices, i.e. so ambivalence is satisfied (see Section 5).

2. To impute some choices that are not observed in the data (Section A.3.4).

The first property is linearity in payoffs, meaning that preferences over sure payoffs are
preserved under linear rescaling. So, if the participant is indifferent between $y for Charity
and $y′ for Self, she is also indifferent between $yL for Charity and $y′L for Self, for L ≥ 0.

Linearity in payoffs plays an important role in Exley’s analysis. Her tests involve compar-
ing certainty equivalents of Self and Charity lotteries, measured in terms of sure payments
to Self and Charity. To say that the participant values a given lottery more in dollars to
Self than in dollars to Charity, she needs to be able to rank certainty equivalents measured
in these units. Linearity in payoffs allows her to do so.

The second assumption is that preferences over bundles are preserved under linear rescal-
ing of probabilities, so we refer to it as separability in probabilities. If the participant is
indifferent between $y for Charity and $y′ for Self, she is also indifferent between $y for
Charity with probability p and $y′ for Self with probability p, for p ∈ [0, 1] (since all lotteries
have exactly one non-zero prize, the assumption does not require linearity in probabilities).
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A.3.3 Constructing a binary attribute space with “ambivalence”

We need to transform the data for two reasons. First, all else equal, we would expect the
participant to prefer Self over Charity, and prefer larger Prizes or Probabilities to smaller.
Therefore, choice sets that vary on only one of these dimensions at a time cannot satisfy
Ambivalence: we cannot expect the participant to be close to indifferent. Second, Prize and
Probability are multivalued, and so do not immediately fit into a binary attribute represen-
tation.

Define a binary variable c ∈ {0, 1} equal to one if the Recipient is Charity, and denote the
Prize by y and Probability by p. An observer who believes in Exley’s null hypothesis believes
that the decision maker’s utility has the following form (ignoring background wealth):

v(c, y, p) = π(p)v

(
y

1 + λc

)
Linearity in payoffs is captured by λ. The participant is indifferent between y to Self and
(1 + λ)y to Charity. Separability in probabilities is captured via the probability weighting
function π(p). Preferences between two same-probability lotteries do not depend on p.

To these, we add Constant Relative Risk Aversion (CRRA): v(y) = yα, which gives us
utility function (5).

v(c, y, p) = π(p)

(
y

1 + λc

)α

. (5)

Our approach amounts to selecting choices from the choice lists that can be described by
two binary attributes that plausibly satisfy ambivalence: Social ∈ {Selfish, Generous}, and
Risk ∈ {Safe, Risky}. We do the following:

First, we analyze preferences within a set of choice lists defined by a given lottery prob-
ability P . We cannot make comparisons across different P s, because we would not expect
ambivalence to be satisfied and because in any case such choices are not observed. Thus, we
construct a separate binary attribute space for each value of P . Such a space contains two
probability values: lotteries with probability P , and sure payoffs with probability 1.

Second, we divide up the Prize dimension, so that Self prizes are different to Charity
prizes, and sure prizes are different to risky ones, in such a way that ambivalence plausibly
holds. In essence we ensure that an observer who believed the participant maximizes (5)
would expect them to be close to indifferent.

Consider the self lottery (0, 10, P ) that pays $10 to Self with probability P . Equation
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(5) implies the following utilities are equal:

v (0, 10, P )︸ ︷︷ ︸
Self lottery

= v (1, (1 + λ)10, P )︸ ︷︷ ︸
Charity lottery

= v
(
0, π(P )

1
α10, 1

)
︸ ︷︷ ︸

Self sure payoff

= v
(
1, (1 + λ)π(P )

1
α10, 1

)
︸ ︷︷ ︸

Charity sure payoff

(6)

Our approach will be to focus on choices defined by two participant-specific scaling pa-
rameters, L and R(P ), such that Charity prizes are an L-multiple of self prizes, and sure
prizes are an R(P )-multiple of risky prizes. So, our binary attribute space consists of: (1)
the Self lottery paying $10 with probability P , (2) the Charity lottery paying $10L with
probability P , (3) the Self sure payment of $10R(P ), and (4) the Charity sure payment of
$10LR(P ). Ambivalence holds if L ≈ 1 + λ and R(P ) ≈ π(P )

1
α .

We calibrate L and R(P ) using the participant’s own revealed preferences. L is set using
the initial normalization choice in the experiment: L := X/10 (which is also the rate at which
Exley compares self and charity payoffs). Recall that X is the smallest payment to charity
that was chosen over $10 to self, from which we infer X/10 > 1 + λ > X−2/10. Linearity in
payoffs therefore implies that the participant can be expected to to have a slight preference
for a payoff LY to charity over Y to self, but is also close to indifferent.

We consider two possible values for R(P ), set using the participant’s own choices between
the self lottery and self sure payoffs. The first is based on the largest self sure payment that
the participant rejected, which we denote by Y (P S) and set R(P ) := Y (PS)/10. The second
is based on the smallest self sure payoff that they accepted, which we denote by Y (P S).
This gives us R(P ) := Y (PS)/10. Since R(P ) and R(P ) are close to one another, we assume
that the choices based on these parameters are informative about the same binary attribute
space, depicted in Figure 5a. Choice sets calibrated based on R(P ) allow us to observe cycles
in which (Selfish, Risky) is chosen over (Selfish, Safe) (Figure 5b). Choice sets calibrated
based on R(P ) allow us to observe cycles in which (Selfish, Safe) is chosen over (Selfish,
Risky) (Figure 5c). We assume that both preferences are close enough to indifferent that
ambivalence holds.

Note that Exley’s analysis uses the midpoints between just-rejected and just-accepted
payoffs to approximate certainty equivalents (i.e. points of indifference) of different lotteries,
which are the outcomes in her regression analyses. Our analysis uses the observed choices
only, so is expressed in terms of strict preferences.

The CRRA assumption implies that (the log of) (5) can be written as a separable function

of the binary attributes Social and Risk, weighted by ln
(
1+λ
L

)
and ln

(π(P )
1
α

R(P )

)
respectively.

A derivation is available on request.
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Generous Selfish

Risky

Safe

(a) Binary attributes

≺

(i)

≻
(ii)

(0, $10R(P ), 1)

(0, $10, P )

(1, $10LR(P ), 1)

(1, $10L, P )

(b) Calibration based on R(P )

≻
(i)

≻
(ii)

(0, $10R(P ), 1)

(0, $10, P )

(1, $10LR(P ), 1)

(1, $10L, P )

(c) Calibration based on R(P )

Panels (a) shows four bundles in our binary-attribute representation. Panels (b) and (c) display these bundles
in terms of (Recipient, Prize, Probability) where Recipient = 1 denotes Charity and Recipient = 0 denotes
Self. Choice sets marked in black are observed in the data. Choices labeled (i) follow from the calibration
of R(P ) and R(P ). Choices labeled (ii) are not directly observed in the data, but are imputed from the
calibration of L plus linearity in payoffs.

Figure 5: Binary attribute representation of Exley (2016)’s choice data

A.3.4 Imputing non-observed choices

Figures 5b and 5c include preferences on the upper horizontal choice set (labeled (ii)), which
are not observed in the data. But the observed calibration choice ($X to charity is preferred
to $10 to self), plus linearity in payoffs implies that $LY to charity is preferred to $Y to
self, for all Y ≥ 0. We use this to impute the ranking of the two Safe bundles.41

Our calibration of the binary attribute space is constrained by the lotteries that we
observe, whose prizes Exley also calibrated from X, that is, charity lotteries pay X = 10L

and self lotteries pay 10. Thus we cannot examine payoffs that vary in other proportions,
and therefore cannot observe or impute a choice set where (Selfish, Safe) ≻ (Charity, Safe).

A.3.5 Permutation tests

We perform two simple permutation tests that ask whether our data are consistent with dif-
ferent assumptions about noise in behavior. The starting point is the experimental dataset.
An observation is CiP where i ∈ (1, ..., 86) indexes participants and P ∈ (.05, .1, .25, .5, .75, .9, .95)

indexes lottery probabilities. C ∈ {0, 1, 2, 3} records what type of cycle was observed for
that participant-probability: 0 for no cycle, 1 for pro-Risky, 2 for pro-Safe, 3 for pro-Selfish.

Null hypothesis 1: homogeneity. The null hypothesis of our first permutation test
is that, conditional on P , the probability we observe a given cycle is the same for all par-
ticipants, i.e. that CiP is iid conditional on P . E.g., it could be that when P = 0.5, all

41We could in principle also use separability in probabilities to impute preferences on the lower horizontal
choice set. Then, we could construct a figure 8 based on the two observed diagonal choices and two imputed
horizontals. But this seems a stronger assumption since we never observe a direct choices between lotteries
to self and to charity. Additionally, it would mean we infer implicit preferences from only two decisions.
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participants have a 5% chance of a pro-Risky cycles, a 10% chance of a pro-Safe, cycle, and
an 18% chance of a pro-Selfish cycle. Our permutation test thus asks whether permuting in-
dices i within each probability P reproduces the same distribution over CiP . Intuitively, this
test asks whether variation in cycling behavior could be explained by a single representative
agent.

Null hypothesis 2: homogeneity conditional on a cycle. The null hypothesis of our
second permutation test is that, conditional on P , and conditional on a cycle being observed
the probability we observe a given cycle is the same for all participants, i.e. that CiP is iid
conditional on P and conditional on CiP ̸= 0. E.g., it could be that when for all participants,
P = 0.5, 15% of cycles are pro-Risky, 30% are pro-Safe, and 55% are pro-Selfish, but some
participants are more likely to cycle than others. Our test permutes indices i within each
probability P conditional on CiP ̸= 0. Intuitively, this test asks whether variation in cycling
behavior could be explained by heterogeneity in the likelihood of cycling, but otherwise
homogeneity in implicit preferences.

Basic testing approach:

1. We represent each participant in the sample according to their number of cycles of
each type (pro-Risky, pro-Safe, pro-Selfish). We then compute the fraction of partici-
pants exhibiting each possible combination. We call these the sample proportions.
For example, 20 percent of participants have no cycles (0, 0, 0). (Thus the dataset is
represented as a distribution over the simplex {c ∈ {0, ..., 7}3 : c1 + c2 + c3 ≤ 7}, since
at most one cycle can be observed per P ).

2. We duplicate the experimental dataset 10000 times, creating a population of 860,000
decision-makers that holds constant the frequency of each observed choice. We then
randomly permute rows of this dataset according to our null hypothesis to generated a
simulated population distribution of behavior under the null. We compute the fraction
of the population exhibiting each possible combination of cycles, and call these the
population proportions.

3. We compute the sum of squared differences between sample and population propor-
tions, this is our sample statistic of interest. A small value of this statistic implies
the sample distribution is similar to the population distribution.

4. Returning to the sample dataset with 86 participants, we generate 10,000 simulated
samples, by permuting rows according to the null assumptions. For each, we com-
pute the fraction of the simulated sample exhibiting each combination of cycles, and
call these the simulated proportions. We compute the sum of squared differences
between the simulated proportions and the population proportions, to obtain a 10,000
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draws of the simulated statistic.

5. The p-value of the test is simply the fraction of simulated statistics that are larger
than the sample statistic. A small p-value indicates that the sample statistic tends to
be larger than we would expect it to be under the null hypothesis.

We present our findings in Figure 6. We strongly reject Null hypothesis 1 (p < .001).
The main contributor to this rejection seems to be substantial excess mass at (0, 0, 0) in the
sample relative to that expected under the null: 20 percent of participants have no cycles
at all, whereas under the null only around 6 percent of participants should exhibit zero
cycles across all seven probabilities. We also find (slightly weaker) evidence against Null
hypothesis 2 (p = .065). Overall we conclude that there is evidence of both systematic and
heterogeneous implicit preferences in the sample.
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Figure 6: Permutation tests on Exley (2016) data

Left panel corresponds to Null hypothesis 1, right panel to Null hypothesis 2.

A.3.6 Other analyses

Next, we examine the relationship between implicit preference types. Since each participant
has seven opportunities (seven values of P ) to reveal their implicit preferences, they could
reveal an implicit social preference in some and an implicit risk preference in others. Table
A1 shows the full type classification. Overall we find no significant relationship between
implicit selfish and implicit risk preferences (p = .445).42

42A slight complication is that participants cannot exhibit more than one type of cycle for each P , so a
participant with strong pro-Selfish preferences may be less likely to also reveal their implicit risk preference.
We see some evidence of this – implicit pro-Selfish participants are slightly more likely to have “Unknown”
implicit risk preferences, and less likely to be inconsistent on the risk dimension (for which it is necessary
to observe at least two risk cycles). We perform an analysis that attempts to correct for the mechanical
relationship: for a participant exhibiting three pro-Selfish cycles there are four remaining “opportunities” to
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Table A1: Full classification of implicit preference types in Exley (2016)

Implicit Social Implicit Risk Preference
Preference Unknown pro-Safe pro-Risky Inconsistent Total

Unknown 17 13 6 6 42
pro-Selfish 22 13 7 2 44

Total 39 26 13 8 86

Notes: Pearson’s χ2(3) = 2.67, p = .445.

Finally, we examine the relationship between our implicit preference classification and a
small number of descriptives measured separately to Exley’s main experimental task. We
examine (1) whether the “charity” recipient was the American Red Cross (versus another
participant in the experiment, see footnote 25), (2) whether the participant exploited “moral
wiggle room” in a task modeled on Dana et al. (2007), and (3) participant female gender.
Exley analyzes these variables by testing whether participants with these characteristics have
larger differences between their cross-context lottery valuations, on average.

Table A2: Predicting descriptives using implicit preference types in Exley (2016)

(1) (2) (3)
Recipient is ARC Wiggler Female

pro-Selfish -0.128 0.172* 0.144
(0.103) (0.0934) (0.110)

pro-Safe 0.00463 0.229* 0.112
(0.123) (0.118) (0.128)

pro-Risky -0.0289 0.107 -0.125
(0.159) (0.142) (0.151)

Inconsistent 0.194 -0.0261 0.234
(0.148) (0.141) (0.202)

Constant 0.713*** 0.108 0.354***
(0.0919) (0.0674) (0.100)

Observations 86 86 86

Robust standard errors in parentheses. ∗p < .1,∗∗ p < .05,∗∗∗ p <
.01. Column (1) outcome equals one if the charity recipient is
the American Red Cross (versus another experimental participant).
Column (2) outcome equals one if the participant responded to
Moral Wiggle Room. Column (3) outcome equals one for female
participants.

In Table A2 we regress each of these indicators on our type classification variables. Sim-

reveal an implicit risk preference. We regress the number of pro-Selfish cycles on the fraction of remaining
opportunities that are pro-Safe and the fraction that are pro-Risky. Neither coefficient is significant and the
p-value of an F-test is 0.400. Results available on request.
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ilar to Exley, we find some evidence (not significant) that participants are less implicitly
selfish when the recipient is charity, versus when the recipient is another participant in the
experiment. Also similar to Exley’s findings, implicitly selfish participants are significantly
more likely to exploit moral wiggle room. Interestingly, those with an implicit pro-Safe pref-
erence are also significantly more likely to be do so, which may relate to the fact that the
task involves avoiding resolution of uncertainty about the outcome of a potentially selfish
choice. Finally we find no significant relationships with gender, though women are slightly
more likely to be classified as implicitly selfish and implicitly risk averse.

A.4 Appendix material for analysis of DeSante (2013)

Data access: We accessed DeSante’s replication data through the Harvard Dataverse:

DeSante, Christopher, 2013, “Replication data for: Working Twice as Hard to Get Half as
Far: Race, Work Ethic, and America’s Deserving Poor”, https://doi.org/10.7910/DVN/
AZTWDW, Harvard Dataverse, V2, UNF:5:EEexoDfcqPKwaPVr7DS6Ow== [fileUNF]

A.4.1 Regression analysis

Equation (2) tells us that under a linearity assumption we can learn about average implicit
preferences by comparing average evaluations between comparisons. We cannot identify v(.)

directly, but for a change in comparison from (x, z) to (x′, z′) we can identify κi (θ
′
i − θi).

In the case of our analysis of DeSante (2013) we observe evaluations of Black and White
candidates with varying work ethic and varying comparators. When race is shared, the
influence of race is high (θHrace) and the influence of work ethic is low (θLethic). When race is
non-shared, the influence of race is low (θLrace) and the influence of work ethic is high (θHethic).
We encode attributes such that White = 1, Good = 1 (and ignore the “children” attribute).

When work ethic is concealed, we observe the following mean evaluations:

y ((Black), (Black)) = v ((Black))− κraceθ
H
race

y ((Black), (White)) = v ((Black))− κraceθ
L
race

y ((White), (Black)) = v ((White)) + κraceθ
L
race

y ((White), (White)) = v ((White)) + κraceθ
H
race

From these we can identify v ((Black))−κraceθ
L
race, v ((White))+κraceθ

L
race, and κrace

(
θHrace − θLrace

)
.

Similarly, when work ethic is revealed we can identify various terms including κethic

(
θHethic − θLethic

)
.

In the tables we report estimates of 2× κrace

(
θHrace − θLrace

)
and 2× κethic

(
θHethic − θLethic

)
,

because these capture how the total gap between White and Black (or between Good and
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Bad ethic) changes as a result of the change in comparison.
Table 2 in the paper shows only the main coefficients of interest. For completeness we

report all coefficients here, in Table A3.

Table A3: Quantitative estimates using Desante (2013) data

Work ethic concealed Work ethic revealed

v
(
(Black)

)
− κraceθ

L
race 594.6

(13.12)

v
(
(White

)
) + κraceθ

L
race 550.6

(12.54)

v(
(
Black
Bad

)
)− κraceθ

L
race − κethicθ

L
ethic 475.9

(23.69)

v(
(
Black
Good

)
)− κraceθ

L
race + κethicθ

L
ethic 641.0

(22.92)

v(
(
White
Bad

)
) + κraceθ

L
race − κethicθ

L
ethic 486.6

(23.01)

v(
(
White
Good

)
) + κraceθ

L
race + κethicθ

L
ethic 656.8

(21.71)

2× κrace

(
θHrace − θLrace

)
71.13 66.16

(30.21) (38.10)

2× κethic

(
θHethic − θLethic

)
-47.27
(35.33)

Observations 756 750
Participants 378 375
R-squared 0.861 0.821

Attribute polarities encoded such that (White,Good) = (1, 1). Standard errors
clustered by participant. Note that θHrace, θ

L
race presumably differ between con-

cealed/revealed work ethic.
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