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Abstract

Two privately-informed agents must take a joint action without resorting to side-

payments. Size and location of the support of each agent’s private types (their preferred

action) determine the degree of conflict. Under high conflict, it is too costly to elicit

agents’ information, which leads to an optimal constant allocation. Delegation arises

endogenously when there is conflict and asymmetry in the amount of private infor-

mation. The agent with more private information dictates the allocation within some

bounds. When supports overlap information is shared and sometimes ex-post ineffi-

cient actions are optimally taken. Welfare relative to the first-best is non-monotone in

conflict.

1 Introduction

In many situations, a pair of agents must take a common joint action. Examples

include managers of different divisions within a firm deciding over the characteristics

of a new product, members of a customs or monetary union deciding over common

tariffs or monetary policy or parties in a political coalition deciding on a common

political platform. Naturally, the preferred actions for each agent might be their private

information. How would they jointly determine the optimal action when utility is non-

transferable?

We study this as an ex-ante mechanism design problem where agents only care about

the distance of the action taken from their preferred actions, there are no transfers,

∗We would like to thank Manuel Amador, Francesco Nava, and Marco Ottaviani for their insightful
comments. Fuchs gratefully acknowledges the support from ERC Grant 681575, Grant PGC2018-096159-B-
I00 financed by MCIN/AEI/10.13039/501100011033, and Comunidad de Madrid (Spain), Grant EPUC3M11
(V PRICIT) and Grant H2019/HUM-5891.
†McCombs School of Business, UT Austin and Universidad Carlos III Madrid.
‡Department of Decision Sciences and IGIER, Bocconi University.
§McCombs School of Business, UT Austin.
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and possibly differing Pareto weights are put on agents. Suppose, as members of

Mercosur (a customs union), Argentina and Brazil must decide on a common external

tariff for steel. Assume Argentina’s preferred tariff (type) is known to lie in [0, 0.1]

and Brazil’s in [0.9, 1]. Each country, conditional on only knowing its own type and

the distribution of the other country’s type must be induced to reveal truthfully. The

distribution of types need not be symmetric. This asymmetry allows us to capture

two natural elements of this problem. The first is the ex-ante notion of conflict. For

example, if Argentina’s type is in [0, 0.1] and Brazil’s in [0.9, 1] it is a very different

situation than if both countries share the same support. The second is the sense in

which there can be more uncertainty about one country’s type relative to the other.

For example, suppose Argentina’s type is in [0, 0.01] while Brazil’s is in [0, 1].

With significant ex-ante conflict, the cost of eliciting truthful revelation is so high

that the optimal allocation is independent of actual realizations. More interestingly,

when there is sufficient asymmetry in the degree of private information and no overlap

in the type spaces, the optimal allocation endogenously assigns all decision rights to

the agent with the larger support. That is, the agent with more private information

can take its preferred action up to a cap. Thus, we have a model in which delegation

arises endogenously.

If there is some overlap on the supports of both agents’ type spaces then the optimal

allocation will elicit information from both agents. Yet, there will be a limit on how

much information can be extracted from certain realized types. Thus, the optimal

action may ex-post be constant over a subset of types. Also, similarly to the ex-ante

general properties, we may have regions in which the action is only locally responsive

to one of the agents’ reports. To illustrate, suppose Argentina’s preferred tariff is

in [0, 0.75] and Brazil’s is in [0.25, 1]. For all of Argentina’s types in [0, 0.25], the

country’s representative has certainty that Brazil’s optimal tariff is above. It is very

hard to provide incentives for truthful revelation because they have a strong incentive

to lie down. Thus the allocation will simply be unresponsive to Argentina’s realized

type below 0.25. Instead, for the types in (0.25, 0.75] Argentina’s representative must

contemplate that Brazil’s realized type could be above or below it. This possibility

relaxes the IC constraint and allows the allocation to locally depend on her report.

Lastly, even if stochastic allocations or money burning are not used, the action will

still be ex-post inefficient for some type pairs. This implies a second-order cost but it

has a first-order effect on the IC constraints and can thus be beneficial.

Related Literature

Our paper is related to the following three strands of literature: (i) communication,

(ii) delegation, and (iii) joint decisions without side-payments.
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First, within the literature on communication, our paper is related to Alonso, Des-

sein, and Matouschek (2008a,b). They compare centralized and decentralized coordina-

tion when agents have private information and communicate strategically. Goltsman,

Hörner, Pavlov, and Squintani (2009) study the value of commitment and stochastic

allocations in a principle-agent setting in which the agent has private information. Our

contribution is to study how the ex-ante degree of conflict (varying range of private

information) affects optimal communication mechanisms.

Second, there has been an extensive literature on delegation, pioneered by Holm-

ström (1977, 1984) and subsequently studied by Melumad and Shibano (1991), Dessein

(2002), Alonso and Matouschek (2008), Kováč and Mylovanov (2009), Amador and

Bagwell (2013, 2020), and Ambrus and Egorov (2017) among others. Although the

setting of our paper is technically different from the canonical delegation problem in

which an uninformed principal delegates control to an informed agent, we show that

one agent optimally and endogenously delegates decision rights to the other agent. To

the best of our knowledge, this is the first paper to endogenize delegation as an optimal

allocation within an organization without a predetermined hierarchy.

Third, and closely related to those above, are the papers studying joint decisions

without resorting to transfers. The work on this area has focused mostly on the com-

mon support case. Moulin (1980) characterizes ex-post incentive-compatible alloca-

tions for a collective action when agents have single-peaked preferences. Martimort

and Semenov (2008) study an optimal continuous ex-post incentive-compatible alloca-

tion when a biased principal faces two agents. Myerson (1979) formulates a Bayesian

collective-decision problem without transfers and its Lagrangian when agents’ type

spaces are finite. Carrasco and Fuchs (2008) and Fleckinger (2008) study an interest-

ing but suboptimal Bayesian incentive-compatible allocation for two agents taking a

joint action.

Jackson and Sonnenschein (2007) and Carrasco, Fuchs, and Fukuda (2019) study

the repeated version of the case of the symmetric fully-overlapping supports without

side-payments. Although, as they show, repeated interactions can help reduce inef-

ficiency, we show that finding a partner with a lower amount of ex-ante conflict can

be more important from a welfare perspective than finding one with whom repeated

interactions are likely.

2 Model

Two agents, denoted by N := {1, 2}, take a common action a without using monetary

transfers. Each agent’s utility is a quadratic loss function between her favorite action

θi and the common action, i.e., −(a− θi)2. Each agent’s favorite action is her private
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information. Specifically, suppose that each agent i’s favorite action is drawn uniformly

from her type space Θi := [θi, θi] with 0 = θ1 < θ1 ≤ 1 and 0 ≤ θ2 < θ2 = 1. Define

Θ := Θ1 × Θ2 as the set of type profiles. The common action a is chosen from a

sufficiently large compact interval A which includes [0, 1].

An allocation is a measurable function a : Θ → A which associates, with a profile

of announcements θ ∈ Θ, the corresponding action a(θ) ∈ A. The two agents are

committed to an allocation, which maximizes the weighted sum of their (ex-ante)

expected utilities subject to the incentive-compatibility and monotonicity constraints

to be discussed below.

Our model can capture two types of situations. In the first, the two agents are

designing the optimal allocation in the absence of a planner. In this case, the weights

γ ∈ (0, 1) and 1 − γ represent each agent’s bargaining power in the design stage.

Alternatively, we can capture situations in which there is an actual principal or planner

that puts different weights on the payoffs of each agent.1

The allocation a satisfies agent i’s (Bayesian) incentive-compatibility (IC) con-

straint if she has an incentive to tell the truth when the opponent is expected to

be truthful:

−Eθ−i

[
(a(θi, θ−i)− θi)2

]
≥ −Eθ−i

[(
a(θ̂i, θ−i)− θi

)2]
for all θi, θ̂i ∈ Θi. (ICi)

The allocation is incentive-compatible if it satisfies each agent i’s incentive-compatibility

constraint.

The allocation a satisfies Monotonicity if

a is non-decreasing in each θi ∈ Θ. (Mon)

Thus, the optimal allocation solves:

max
a(·)∈A

−γEθ
[
(a(θ)− θ1)2

]
− (1− γ)Eθ

[
(a(θ)− θ2)2

]
(OBJ)

subject to (IC1), (IC2), and (Mon).

The Bayesian IC constraint (ICi) can be decomposed into the local IC constraint

and the expected monotonicity constraint. To see this, define agent i’s expected utility

from an allocation a when her type is θi and she announces θ̂i:

Ui(θi, θ̂i) := −Eθ−i

[
(a(θ̂i, θ−i)− θi)2

]
.

1As suggested by Alonso, Dessein, and Matouschek (2008b,a) it could be the CEO of a company that
puts different weights based on the profitability of each division.
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Define Ui(θi) := Ui(θi, θi). Now, the IC constraint (ICi) is decomposed into (i) the

local IC constraint: for all θi ∈ Θi,

Ui(θi) = Ui(θi) + 2

∫ θi

θi

(
Eθ−i

[a(τ, θ−i)]− τ
)
dτ ; (LICi)

and (ii) the expected monotonicity constraint:

Eθ−i
[a(θi, θ−i)] is non-decreasing in θi. (Ex-Moni)

Clearly, the monotonicity constraint (Mon) is stronger than (Ex-Moni) (for each i ∈
N). Thus, we solve (OBJ) under (LICi) and (Mon).

Using (Mon) simplifies our analyses and has a negligent effect on welfare. We

discuss this in detail in the Online Appendix. We also show there that our main

result is robust to allowing for stochastic allocations and money burning. Although

explicit money burning is not used, Proposition 1 shows that some optimal actions

entail ex-post inefficiency.

3 Endogenous Delegation

We present our main theorem. It establishes when the planner will forgo the elicitation

of information, when it will delegate the decision to one of the agents or when both

types will be consulted to determine the action.

Theorem 1. For each (θ1, θ2), the optimal allocation a∗ satisfies the following.

1. Suppose θ2 ≥ θ1. If θ2 ≥
2−γ
1−γ θ1 − 1 and θ2 ≥

γ
1+γ θ1 + 1−γ

1+γ , then the optimal

allocation is the ex-ante optimal constant allocation: a∗(·) =
γθ1+(1−γ)(1+θ2)

2 . The

optimal allocation does not elicit agents’ information.

2. Suppose θ2 ≥ θ1. If θ2 ≤
2−γ
1−γ θ1−1, then the optimal allocation is the (constrained)

delegation allocation for agent 1:

a∗(θ1, θ2) =


1−γ
2−γ (1 + θ2) if θ1 ∈

[
θ1,

1−γ
2−γ (1 + θ2)

]
θ1 if θ1 ∈

[
1−γ
2−γ (1 + θ2), θ1

] .
The optimal allocation does not elicit agent 2’s information.

3. Suppose θ2 ≥ θ1. If θ2 ≤
γ

1+γ θ1 + 1−γ
1+γ , then the optimal allocation is the (con-
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θ1

θ2

1

1

0

θ2 = γ
1+γ

θ1 + 1−γ
1+γ

2(1−γ)
2−γ

θ2 = 2−γ
1−γ θ1 − 1

Information Sharing
(Both Types Matter)

No Information
(Constant Allocation)

Delegation
Agent 2

Delegation
Agent 1

1−γ
1+γ

1−γ
2−γ

(1− γ, 1− γ)

Figure 1: Classification of an Optimal Allocation

strained) delegation allocation for agent 2:

a∗(θ1, θ2) =

θ2 if θ2 ∈
[
θ2,

γθ1+1−γ
1+γ

]
γθ1+1−γ

1+γ if θ2 ∈
[
γθ1+1−γ

1+γ , θ2

] .
The optimal allocation does not elicit agent 1’s information.

4. If θ2 < θ1, then the optimal allocation a∗ depends on both types (θ1, θ2).

Figure 1 depicts Theorem 1: it illustrates, as θ1 and θ2 vary (i.e., as the agents’

ranges of private information vary), when the optimal allocation elicits no information

(i.e., the ex-ante optimal constant allocation is optimal); when the (constrained) del-

egation allocation for each agent is optimal; and when the optimal allocation elicits

both agents’ information.

The proof relies on the Lagrangian method: for the candidate optimal allocation

in each part, we construct the Lagrange multipliers of the constraints under which the

candidate allocation is derived from the first-order conditions. As the verification of the

Lagrange multipliers is long, computationally intense, and does not add much economic

insights, we provide a condensed proof in the Appendix. We direct the interested reader

to Online Appendix for detailed derivations.

Here, we provide a brief overview of its structure. For Part (1), the proof consists

of four steps. The first step rewrites the relaxed problem by substituting the local IC

constraints into the objective function. The second step formulates the Lagrangian.

Denote by Λi the Lagrange multiplier (which is a function of bounded variation) as-
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sociated with agent i’s local IC constraint. The third step examines the first-order

conditions. The fourth step substitutes a∗(·) = γEθ1 [θ1] + (1 − γ)Eθ2 [θ2] and find the

Lagrange multipliers (Λ1,Λ2) with the properties that the Lagrangian is concave in

allocations and that the first-order conditions lead to the constant allocation a∗.

The proof of Part (2) is similar. We consider the following relaxed problem: for

each agent i, the local IC constraint is imposed; and the allocation is required to be

monotonic in agent 2’s types given agent 1’s types. We start with the Lagrangian which

incorporates agents’ IC constraints. Denote by Λi the Lagrange multiplier associated

with agent i’s local IC constraint. Then, the problem is to maximize the Lagrangian

subject to the (relaxed) monotonicity constraint. Now, we explicitly incorporate the

(relaxed) monotonicity constraint using the Lagrangian approach again. Denote by B

the Lagrange multiplier associated with the monotonicity constraint on agent 2’s types

θ2 (for any given θ1). With this set-up, we formulate the first-order conditions, and we

find the multipliers (Λ1,Λ2, B) under which the Lagrangian is concave in allocations

and under which the first-order conditions are met for the delegation allocation. For

the proof of Part (3), exchange the role of agents 1 and 2.

Finally, for Part (4), we note first that the best allocation which depends on at

most one agent’s information is a constrained delegation allocation with possibly two

caps. Since this is a (continuous) ex-post IC allocation, to show that we can do better

using both agents’ information, it suffices to show that it is not even ex-post optimal,

i.e., that the optimal ex-post IC allocation depends on both agents’ types.2 Thus, we

characterize the optimal ex-post IC allocation and show it indeed depends on both

agents’ types when their type spaces overlap, establishing the result.

Next, we provide an incomplete yet intuitive argument for the structure of an

optimal allocation when the agents’ type spaces do not overlap (i.e., θ1 ≤ θ2), as

illustrated in Figure 2. This case highlights the situation in which there exists an ex-

ante high degree of conflict, and it is too costly to make an allocation dependent on

both agents’ information. Section 4 studies the case in which the agents’ type spaces

overlap and the optimal allocation elicits both agents’ information.

0

γθ1+(1−γ)(θ2+1)

2

1θ1θ2
×

0

γθ1+(1−γ)(θ2+1)

2

1θ1 θ2 0

γθ1+(1−γ)(θ2+1)

2

1θ1θ2
×

Figure 2: Classification of an Optimal Allocation: Delegation Allocation for Agent 1 (Left),
Constant Allocation (Middle), and Delegation Allocation for Agent 2 (Right).

2Note that, in our problem, an allocation a is ex-post IC if −(a(θi, θ−i) − θi)2 ≥ −(a(θ̂i, θ−i) − θi)2 for

all i, θi, θ̂i, θ−i.
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A planner, who has no access to the agents’ information, would choose the ex-

ante optimal constant allocation, which is the weighted average of the agents’ average

types: γEθ1 [θ1] + (1 − γ)Eθ2 [θ2]. The central panel of Figure 2 depicts the case in

which this allocation falls into the “gap” of the agents’ disjoint type spaces (precisely,

θ1 ≤ γEθ1 [θ1] + (1 − γ)Eθ2 [θ2] ≤ θ2). To get an intuition behind why the constant

allocation is optimal, start at the ex-ante optimal constant allocation and consider

making the allocation dependent on the agents’ types. Ideally, when agent 1’s type is

close to 0, the planner would move the action further to the left relative to when agent

1’s type is close to θ1. But if so, agent 1 would want to exaggerate downward. Since

the allocation is always above agent 1’s types, if the allocation depends on agent 1’s

types then the only incentive-compatible modification under monotonicity is to make

the allocation agent 1’s favorite actions. However, this is very costly for agent 2, thus

inefficient.

When the constant allocation falls into one of the agents’ type spaces, as depicted

in the left and right panels of Figure 2, we can improve upon the constant allocation.

To see this, suppose it falls into agent 1’s type space. Giving decision rights to type

θ1 between the ex-ante optimal constant and θ1 (the shaded region) is a Pareto im-

provement. As a result, on average, the allocation moves towards right. Since agent

2 is relatively further away, this change has a larger impact on the payoff. Thus, it is

optimal to compensate by granting more discretion to agent 1, i.e., setting the cutoff

(“×”) below the ex-ante constant allocation. Since the allocation is always below agent

2’s types, like in the case above, it is too costly to use agent 2’s private information.

Thus, the optimal allocation is the constrained delegation for agent 1.

3.1 Effect of Asymmetric Supports and Pareto Weights

on Delegation

In many business situations, CEOs delegate certain decisions to unique division man-

agers despite them having implications for other divisions. The model highlights that

the guiding principle combines the relative importance for the profitability of each

division together with the extent of private information.

We focus first on the relative extent of private information, and thus we assume

γ = 1
2 . In this case, the key observation is that the agent needs sufficiently larger

private information to be designated as the constrained delegate as reflected in Figure

1. Starting from the 45 degrees line, θ1 = θ2, which represents a situation of relatively

low conflict, we observe that the minimal difference in private information is sufficient

to grant some discretion to one of the agents. As conflict increases, i.e., as we move

north west in the figure, we need a larger informational asymmetry in order to observe
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delegation. In all cases, the agent with the largest uncertainty becomes the constrained

delegate. Also, the range of discretion given by the cutoff decreases as the degree of

conflict increases.

Next, we focus on the effect of Pareto weights. As the importance of profitability

of one division increases, the manager of the division will be more likely to have the

discretion over joint decisions. Furthermore, the range of discretion increases.

4 Information Sharing

As shown in Part (4) of Theorem 1, the optimal allocation incorporates both agents’

information whenever the two agents’ type spaces overlap. Since we do not have a

closed-form characterization of the optimal allocation in this case, it is hard to ana-

lytically provide properties of the optimal allocation. Yet, we show that the optimal

allocation generally exhibits ex-post inefficiency: ex post, an action associated with

high types is even higher than the agents’ types; and an action associated with low

types is even lower. We establish the result without requiring Monotonicity.

Proposition 1. Let θ1 = 1− ε and θ2 = ε for some ε ∈ [0, 12), and let γ = 1
2 .3 Let a∗

be an optimal allocation. For any θ1 ∈ [θ2, θ1], we have:
a∗(θ1, θ1) < θ1 if θ1 ∈

(
θ2,

1
2

)
a∗(θ1, θ1) > θ1 if θ1 ∈

(
1
2 , θ1

)
a∗(θ1, θ1) = θ1 if θ1 = 1

2

.

If θ1 = 1 and θ2 = 0, then a∗(0, 0) = 0 and a∗(1, 1) = 1.

The formal proof is available in Online Appendix, in which we establish the result

by expressing the optimal allocation using the Lagrange multipliers. Here, we discuss

the outline of the proof, which consists of two steps. In the first step, denoting by Λi

the Lagrange multiplier associated with agent i’s local IC constraint, we can express

the amount of ex-post efficiency as

a(θ1, θ1)− θ1 = − Λ1(θ1)− Λ1(1− θ1)
1

1−ε − λ1(θ1)− λ1(1− θ1)
,

where λ1 is the derivative of Λ1. As in the proof of Theorem 1, this part of the proof

involves a lot of algebra. In the second step, although we do not have a closed-form

solution for the multiplier, we can still show that the amount of ex-post efficiency

is negative when θ1 <
1
2 and is positive when θ1 >

1
2 . The right panel of Figure 3

3The results are qualitatively robust to asymmetric supports and unequal weights.
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Figure 3: Illustration of the Optimal Allocation, when θ1 = 1 − ε and θ2 = ε for some
ε ∈ [0, 1

2
) and γ = 1

2
. The left panel illustrates the action (·, θ2) for each θ2 with ε = 1

4
.

The central panel depicts the optimal allocation a∗ with ε = 1
4
. The right panel illustrates

a∗(θ1, θ1) for θ1 ∈ [ε, 1− ε] for ε ∈ {0, 1
4
}.

depicts the actions a(θ1, θ1) for ε ∈ {0, 14}. When ε increases, while the first-term

in the denominator increases, the IC constraints of types close to θ1 and θ2 become

stronger (i.e., the Lagrange multipliers are increasing in epsilon). For the latter, this

is because with higher probability the agent knows that the other agent lies in the

particular direction. Thus, the value/need of distorting actions to achieve the incentive

compatibility is increasing in ε. Overall, the amount of ex-post inefficiency appears

quite insensitive to the degree of conflict measured by ε, as is observed in the right

panel of Figure 3. Note that some actions are ex-post inefficient even when θ1 6= θ2.

The intuition is best conveyed in a symmetric example with four types: {0.1, 0.4, 0.6, 0.9}.
Since, on average, they expect the other agent to be on the other side of 1

2 , the binding

constraints will be the central types wanting to pretend to be extreme. Now consider

perturbing the action after both announce 0.1 to a slightly lower value. If both types

had been truthfully reporting, this generates an inefficiency but since it is a small dis-

tance from their preferred action this only implies a second-order loss. On the other

hand, type 0.4 which was very tempted to report 0.1 is now very concerned because

if the other agent happens to be type 0.1 the action will be even further away from

her preferred action. This has a first-order effect on the IC constraint and can thus be

beneficial.

In practice, it may be unlikely to observe ex-post inefficient actions. Thus, it is

important to note that Theorem 1 continues to hold if one rules out ex-post inefficient

actions.

To gather some additional insight of the properties of the optimal allocation, con-

sider the left and central panels of Figure 3, where we illustrate the optimal allocation

for ε = 1
4 . It is important to highlight the differences between the ex-post types that

know that the other agent always lies in a particular direction, i.e., [0, θ2] for agent 1

and [θ1, 1] for agent 2, and those types that do not know whether the other agent is
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above or below. Call a former type a high-conflict type. In the illustrated example

in Figure 3, this corresponds to θ1 in [0, 14 ] and θ2 in [34 , 1]. Since it is very hard to

provide incentives for the high conflict types to report truthfully, the optimal allocation

becomes insensitive to their types when they fall in this region even under Bayesian IC

constraints. As a result, we have that a(θ) is constant in θ1 for θ1 ≤ 1
4 and similarly it

is constant in θ2 for θ2 ≥ 3
4 .4 This implies that when θ ∈ [0, 14 ]× [34 , 1], the allocation

is approximately constant. Furthermore, by symmetry the constant must equal 1
2 .

As can be observed in Figure 5, even when ε = 0 (and thus there are no high-conflict

types), it is still the case that it is very hard to provide incentives for types close to the

extremes which understand that the other agent most likely lies in one side of them.

As a result, again the optimal allocation responds to this by making the allocation less

sensitive to their types. Thus, although not strictly constant, the allocation is observed

to be very close to 1
2 when θ is in the vicinity of (0, 1) and (1, 0).

4.1 Welfare Effect of Increasing Conflict

Here, we ask how the social welfare changes with respect to the first-best as the degree of

conflict changes for γ = 1
2 . To measure the degree of conflict, we consider the following

parametrization of type spaces: Θ1 = [0, 1 − ε] and Θ2 = [ε, 1] with ε ∈ [0, 12 ]. When

ε = 0, the two agents’ type spaces coincide. When ε = 1
2 , they do not overlap. Thus,

the degree of conflict is increasing in ε. For reference, the parameter configuration we

study corresponds to the anti-diagonal line from (12 ,
1
2) (i.e., ε = 1

2) to (1, 0) (i.e., ε = 0)

in Figure 1.

We study the welfare effect on conflict by measuring the relative social welfare loss

V − VFB
VFB

,

where V denotes the social welfare associated with an optimal allocation and VFB the

one associated with the first-best allocation (the weighted sum of the agents’ types)

for each ε. We normalize the welfare loss V − VFB by the first-best social welfare VFB

because VFB itself changes as the degree of conflict ε changes.

As highlighted before, in order to get information sharing it is important that types

do not know whether they are above or below the opponent’s. Thus, we compare the

social welfare under Bayesian and ex-post IC allocations. Specially, we consider the

phantom voter allocation (Moulin, 1980): The joint action is the median of the reported

types θ1 and θ2 and a “phantom” at 1
2 . As we show in Online Appendix, this is the

optimal continuous ex-post IC allocation.

4More generally, we observed numerically that even though sometimes derivatives of the allocation are
not exactly zero, the optimal allocation is almost insensitive to agents’ reports.
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As illustrated in Figure 4, under the ex-post IC constraints, the relative social

welfare loss is monotonically increasing in ε. In contrast, under the Bayesian IC con-

straints, the relative social welfare loss is not monotonic in ε. Intuitively, starting from

ε = 1
2 , as conflict decreases, the first-best welfare rapidly increases. In contrast, due

to the tight IC constraints, the social welfare increases at a slower rate under both

Bayesian and ex-post IC constraints when ε is close to 1
2 . Thus, both relative measures

decrease. When the degree of conflict is small enough, the fact that a large fraction of

types are not high-conflict types allows for more efficient information sharing under the

Bayesian IC constraints, and thus the social welfare catches up relative to the first-best.

This cannot be achieved under the ex-post IC constraints since, in this case, all types

are effectively high-conflict types. This results in a significant 20% point difference in

welfare loss when ε = 0.

0 0.1 0.2 0.3 0.4 0.5

-25

-20

-15

-10

-5

Figure 4: Welfare Effects of Increasing Conflict under Bayesian and Ex-Post IC Constraints

4.2 Fully Overlapping Case

Lastly, to relate to some prior literature, we consider the fully-overlapping case Θ =

[0, 1]2 with symmetric weights. The left panel of Figure 5 depicts the optimal allocation.

The central panel depicts the allocation suggested by Carrasco and Fuchs (2008) and

Fleckinger (2008), and the panel on the right depicts the special case of Alonso, Dessein,

and Matouschek (2008b) in which both agents must coordinate on an action. Related

to the discussions in Section 3, note that the three allocations share the property that

common actions are insensitive to the agents’ reports close to extremes and set to 1
2 .

In terms of welfare, the allocations in the center and right panels deliver the exact

same value − 1
21 which is strictly below that of the optimal allocation depicted on the

12



Figure 5: Allocations for the Fully-Overlapping Case

left panel. While the optimal allocation is approximately 5% inefficient, the other two

are about 14% inefficient. The allocation by Alonso, Dessein, and Matouschek (2008b)

can be obtained without commitment from the planner with just one round of com-

munication. The allocation in the center can be implemented dynamically by a series

of simple binary partitions of the type space. The fact that information is conveyed

dynamically also allows this allocation to be implemented without commitment. Yet,

even within the set of allocations without commitment neither of these are optimal.

A better communication protocol can be obtained by modifying the dynamic pro-

cess as follows. In the first stage the planner asks each agent which of these four

intervals they belong to: [0, 12 − c], [12 − c,
1
2 ], [12 ,

1
2 + c], and [12 + c, 1]. If the initial

partition reports do not coincide the principal takes the ex-post efficient allocation

given this information. If they do coincide, the mechanism then follows the dynamic

process described above with just two partitions. One can show that setting c to 0.0321

this communication protocol is IC and more efficient than either of the two described

above.5

Finally, the work by Jackson and Sonnenschein (2007) and Carrasco, Fuchs, and

Fukuda (2019) shows how, in the fully-overlapping case, repeated interactions can help

mitigate the conflict. Both mechanisms are arbitrarily close to efficiency when the

discounted number of decisions goes to infinity.Yet, Figure 4 shows that the relative

efficiency gains from reducing conflict can be twice as large as those from repeated

interactions in the low conflict (ε = 0) case. Thus, it might be more important to find

a partner with a low level of conflict than one with which one interacts repeatedly.

5 Conclusion

Although very parsimonious, our model can help us shed light into when a firm or

organization might assign exclusive decision rights to different members or divisions.

5More formally, c is the unique solution to 48c3 − 36c2 − 30c+ 1 = 0 in [0, 12 ].
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Agents for whom the decision has a higher impact or for whom there is a larger ex-ante

uncertainty of what they might prefer are more likely to be granted exclusive decision

rights. In this way we provide a theory of endogenous delegation.

Our model also helps understand when a CEO would consult its division managers

before making a decision versus act unilaterally. In particular, our model implies that

if she needs to make decisions over which it is clear that two divisions would have clear

diverging interests, then she would avoid a useless and conflicting meeting in which

she would not be able to gather any relevant information and rather dictate the terms

herself. Instead, when the situation is less conflictive, it will be possible to extract

valuable information and make better decisions. For this, it is important that the

agents do not know each other’s realized preferences, since, as we illustrated in Figure

4, there is a large gain from only requiring Bayesian IC instead of ex-post IC.

Lastly, although it is natural that repeated interactions can improve welfare, our

work suggests that, to the extent possible, it might be more relevant to properly create

the teams or decision bodies to lower the degree of conflict. This can potentially, also

in relation to the idea of organizational culture, be seen as either molding the agents’

preferences or creating a more uniform organizational view of the world which helps

reduce conflict.
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A Proof of Theorem 1

A.1 Part (1)

Step 1. Consider the relaxed problem in which the monotonicity constraint is ignored.

Thus, the problem is to maximize the sum of the agents’ ex-ante utilities subject to

their local IC constraints. For agent 1, let the “reference” type of the local IC constraint

be θ1. For agent 2, let the “reference” type be θ2. After some algebra, the relaxed

problem can be rewritten as follows:

max
a(·)

γ
(
U1(θ1)− 2Eθ [(a(θ)− θ1)(θ1 − θ1)]

)
+ (1− γ)

(
U2(θ2) + 2Eθ

[
(a(θ)− θ2)(θ2 − θ2)

])
subject to U1(θ1) = U1(θ1)− 2

∫ θ1

θ1

Eθ2 [a(τ1, θ2)− τ1] dτ1 for each θ1 ∈ [θ1, θ1] and

U2(θ2) = U2(θ2) + 2

∫ θ2

θ2

Eθ1 [a(θ1, τ2)− τ2] dτ2 for each θ2 ∈ [θ2, θ2].

Step 2. To formulate the Lagrangian of the problem formulated in Step 1, we denote

by Λi the Lagrange multiplier associated with agent i’s (local) IC constraint. Theoret-

ically, the Lagrange multiplier Λi is a function of bounded variation. Without loss of

generality, we normalize Λi by setting Λ1(θ1) = 0 and Λ2(θ2) = 0.

We conjecture and verify in Step 4 a specific functional form of Λi, from the first-

order condition to be found in Step 3. In particular, the specific Λi is shown to have a

density function λi on [θi, θi]. With this in mind, we define the Lagrangian as

L :=γ
(
U1(θ1)− 2Eθ [(a(θ)− θ1)(θ1 − θ1)]

)
+ (1− γ)

(
U2(θ2) + 2Eθ

[
(a(θ)− θ2)(θ2 − θ2)

])
+

∫ θ1

θ1

(
U1(θ1)− U1(θ1) + 2

∫ θ1

θ1

Eθ2 [a(τ1, θ2)− τ1] dτ1

)
dΛ1(θ1)

+

∫ θ2

θ2

(
U2(θ2)− U2(θ2)− 2

∫ θ2

θ2

Eθ1 [a(θ1, τ2)− τ2] dτ2

)
dΛ2(θ2).
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After some algebra, the Lagrangian can be rewritten as:

L =− Eθ2
[
(a(θ1, θ2)− θ1)2

]
(γ − Λ1(θ1))− 2γEθ [(a(θ)− θ1)(θ1 − θ1)]

−
∫ θ1

θ1

Eθ2
[
(a(θ)− θ1)2

]
λ1(θ1)dθ1 + 2

∫ θ1

θ1

Eθ2 [a(θ)− θ1] Λ1(θ1)dθ1

− Eθ1
[
(a(θ1, θ2)− θ2)2

]
(1− γ + Λ2(θ2)) + 2(1− γ)Eθ

[
(a(θ)− θ2)(θ2 − θ2)

]
−
∫ θ2

θ2

Eθ1
[
(a(θ)− θ2)2

]
λ2(θ2)dθ2 + 2

∫ θ2

θ2

Eθ1 [a(θ)− θ2] Λ2(θ2)dθ2.

Step 3. We take the point-wise first-order condition for each a(θ). For any θ, the

first-order condition is

1

θ2 − θ2

{
γ
θ1 − θ1
θ1 − θ1

+ λ1(θ1)(a(θ)− θ1)− Λ1(θ1)

}
+

1

θ1 − θ1

{
−(1− γ)

θ2 − θ2
θ2 − θ2

+ λ2(θ2)(a(θ)− θ2)− Λ2(θ2)

}
+

(a(θ1, θ2)− θ1)(γ − Λ1(θ1))

(θ1 − θ1)(θ2 − θ2)
I(θ1 = θ1) +

(a(θ1, θ2)− θ2)(1− γ + Λ2(θ2))

(θ1 − θ1)(θ2 − θ2)
I(θ2 = θ2) = 0.

From now on, we find (Λ1,Λ2) such that the first-order conditions are satisfied at

a∗ = γEθ1 [θ1] + (1− γ)Eθ2 [θ2].

For the rest of the proof, we need to consider the following four cases: (i) θ1 < a∗ <

θ2; (ii) θ1 = a∗ < θ2; (iii) θ1 < a∗ = θ2; and (iv) θ1 = a∗ = θ2(= 1 − γ). However,

since the proof of each case is similar, here we only consider the first case.

Step 4. We conjecture and verify Λ1(θ1) = γ and Λ2(θ2) = −(1 − γ). Then, by the

first-order conditions, there exist constants α1 and α2 such that

α1 =γ
θ1 − θ1
θ1 − θ1

+ λ1(θ1)(a
∗ − θ1)− Λ1(θ1), (1)

α2 =− (1− γ)
θ2 − θ2
θ2 − θ2

+ λ2(θ2)(a
∗ − θ2)− Λ2(θ2), and (2)

0 =
α1

θ2 − θ2
+

α2

θ1 − θ1
.

Since Expressions (1) and (2) are a linear first-order differential equation, one can
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show that Λ1 and Λ2 are:

Λ1(θ1) = γ
(θ1 − θ1)(2a∗ − θ1 − θ1)

2(a∗ − θ1)(θ1 − θ1)
, and

Λ2(θ2) = (1− γ)
(θ2 − θ2)(θ2 + θ2 − 2a∗)

2(a∗ − θ2)(θ2 − θ2)
.

It can be verified that Λ1(θ1) = γ and Λ2(θ2) = −(1− γ).

Finally, it can be seen that, once we substitute Λ1 and Λ2, the Lagrangian is a

concave function in a. By construction, the first-order conditions are satisfied at a∗.

The proof is complete.

A.2 Part (2)

The proof is similar to that of Part (1) except that we consider the relaxed monotonicity

constraint which requires the allocation to be monotonic in agent 2’s types given agent

1’s types. Here, we only report the Lagrange multipliers. Denote by k1 agent 1’s cap:

k1 =
1− γ
2− γ

(θ2 + 1).

For agent 1’s local IC constraint, the multiplier Λ1 is:

Λ1(θ1) =


γ

2

(θ1 − θ1)
(θ1 − θ1)

if θ1 ∈ [0, k1]

2θ1 − (1− γ)(1 + θ2)

2(θ1 − θ1)
if θ1 ∈

[
k1, θ1

] .
For agent 2’s local IC constraint, the multiplier Λ2 is:

Λ2(θ2) = −(1− γ)(θ2 − θ2)
2(θ2 − θ2)

(
1 +

k1 − θ2
k1 − θ2

)
.

For the Monotonicity constraint, denote by B the Lagrange multiplier associated

with the monotonicity constraint on agent 1’s types θ1 (for any given θ2). Then,

B(θ1, θ2) =


0 if θ1 ∈ [0, k1]

(1− γ)
(θ2 − θ2)(θ2 − 1)((1− γ)(θ2 + 1)− (2− γ)θ1)

(θ1 − θ1)(1− θ2)((1− γ)(θ2 + 1)− (2− γ)θ2)
if θ1 ∈

[
k1, θ1

] .
A.3 Part (3)

The proof is similar to that of Part (2), exchanging the role of agents 1 and 2.
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A.4 Part (4)

The proof of Theorem 1 (4) is in two steps. First, if an optimal allocation depends on

at most one agent’s information then the optimal allocation satisfies ex-post IC con-

straints, including Monotonicity. In particular, the optimal allocation which depends

on at most one agent’s information is a constrained delegation solution, which is also

continuous.

Second, below we find the unique optimal continuous ex-post IC allocation, which

can depend on both agents’ information. We show that this allocation depends on

both agents’ information and is better than the best allocation which depends on at

most one agent’s information.

The proof of this step is in four sub-steps. In the first sub-step, as Martimort and

Semenov (2008) characterize continuous and ex-post IC allocations in the uniform-

quadratic setting (see also Moulin, 1980), also in our setting of Θ, an allocation a is

ex-post IC and continuous if and only if

a(θ1, θ2) = min (x,max(θ1, y1),max(θ2, y2),max(θ1, θ2, z))

for some (x, y1, y2, z) with z ≤ y1, y2 ≤ x.

In the second sub-step, for an optimal continuous ex-post IC allocation, x and z can

be dropped. Thus, an optimal ex-post incentive-compatible and continuous allocation

a satisfies

a(θ1, θ2) = min (max(θ1, y1),max(θ2, y2),max(θ1, θ2)) for some (y1, y2).

Intuitively, if x < θ1, then the allocation a does not use agent 1’s information even

when both agents’ types lie in the common set [x, θ1], which is inefficient. Likewise,

if z > θ2, then the allocation a does not use agent 2’s information even when both

agents’ types lie in the common set [θ2, z], which is inefficient.

In the third sub-step, after some algebra, we can find the optimal (y1, y2). Namely,

the optimal ex-post incentive-compatible and continuous allocation a is

a(θ1, θ2) = min
(
max(θ1, 1− γ),max(θ2, γθ1 + (1− γ)θ2),max(θ1, θ2)

)
.

Now, by construction, the optimal continuous ex-post IC allocation a yields strictly

better social welfare than the optimal allocation that incorporates at most one agent’s

information. The proof of Part (4) is complete.
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