
DISCUSSION PAPER SERIES

 

DP17315
 

Toward a General Theory of Peer
Effects

Vincent Boucher, Michelle Rendall, Philip Ushchev
and Yves Zenou

PUBLIC ECONOMICS



ISSN 0265-8003

Toward a General Theory of Peer Effects
Vincent Boucher, Michelle Rendall, Philip Ushchev and Yves Zenou

Discussion Paper DP17315
  Published 19 May 2022
  Submitted 18 May 2022

Centre for Economic Policy Research
  33 Great Sutton Street, London EC1V 0DX, UK

  Tel: +44 (0)20 7183 8801
  www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research programmes:

Public Economics

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on policy, but the Centre
itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage
discussion and comment. Citation and use of such a paper should take account of its provisional
character.

Copyright: Vincent Boucher, Michelle Rendall, Philip Ushchev and Yves Zenou



Toward a General Theory of Peer Effects
 

Abstract

There is substantial empirical evidence showing that peer effects matter in many activities. The
workhorse model in empirical work on peer effects is the linear-in-means (LIM) model, whereby it
is assumed that agents are linearly affected by the mean action of their peers. We provide two
different theoretical models (based on spillovers and on conformism behavior) that microfound the
LIM model and show that they have very different policy implications. We also develop a new
general model of peer effects that relaxes the assumptions of linearity and mean peer behavior
and that encompasses the spillover, conformist model, and LIM model as special cases. Then,
using data on adolescent activities in the U.S., we structurally estimate this model. We find that for
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also find that for many activities, individuals do not behave according to the LIM model. We run
some counterfactual policies and show that imposing the mean action as an individual social norm
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Abstract

There is substantial empirical evidence showing that peer effects matter in many activities.

The workhorse model in empirical work on peer effects is the linear-in-means (LIM) model,

whereby it is assumed that agents are linearly affected by the mean action of their peers. We

provide two different theoretical models (based on spillovers and on conformism behavior)

that microfound the LIM model and show that they have very different policy implications.

We also develop a new general model of peer effects that relaxes the assumptions of linearity

and mean peer behavior and that encompasses the spillover, conformist model, and LIM

model as special cases. Then, using data on adolescent activities in the U.S., we structurally

estimate this model. We find that for GPA, social clubs, self-esteem, and exercise, the

spillover effect strongly dominates, while for risky behavior, study effort, fighting, smoking,

and drinking, conformism plays a stronger role. We also find that for many activities,

individuals do not behave according to the LIM model. We run some counterfactual policies

and show that imposing the mean action as an individual social norm is misleading and

leads to incorrect policy implications.
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1 Introduction

Individuals interact in all kinds of ways. In particular, they imitate and learn from the behavior

of others, especially those close to them, such as their friends, neighbors, and colleagues. The

impact of these interactions on individual behavior is referred to as peer effects. The decisions

individuals take in the presence of peer effects generate externalities, and thus inefficiencies.

While there is substantial empirical evidence showing that peer effects matter in many contexts,

such as education, crime, program participation, obesity, environmentally friendly behavior,

and tax evasion,1 the overwhelming majority of research assumes that individuals are affected

by a linear function of the mean behavior of their peers and are silent about the underlying

behavioral foundation generating the estimated peer effects.

Indeed, most peer-effect studies use the standard linear-in-means (LIM) model. For example,

the criminal activity of an individual is assumed to depend on the average criminal activity of

the neighborhood where she lives. In education, each student compares herself with the average

performance of students in her classroom, and so forth. It is well-known that the game theory

foundation of the LIM model is a network model such that the best-reply function of each agent

is linear and proportional to the mean action of her peers.2 Moreover, it is now well recognized

that the LIM model can be equivalently microfounded by games assuming either conformist

preferences or positive spillovers.3

In this paper, we develop a new and general model that provides a microfoundation for the

LIM model that enables identification of the underlying behavioral foundation (conformism or

spillovers) and relaxes the assumption that agents are linearly affected by the mean action of

their peers. We show that these two models are of first-order importance for the policy impli-

cations of empirical studies of peer effects and that their policy implications are qualitatively

(and quantitatively) different. We then structurally estimate this model and highlight the mis-

takes made by the planner in recommending policies if it wrongly assumes LIM instead of more

general interactions.

First, we explore the differences between games of conformism and spillovers under the

familiar linear context. We develop two different theoretical models, based either on spillover
1See, e.g., Calvó-Armengol et al. (2009) and Sacerdote (2011) for education, Patacchini and Zenou (2012),

Damm and Dustmann (2014), and Lee et al. (2021) for crime, Dahl et al. (2014) for program participation,
Christakis and Fowler (2007) for obesity, Gillingham and Bollinger (2021) and Kyriakopoulou and Xepapadeas
(2021) for environmentally friendly behavior, and Fortin and Villeval (2007) for tax compliance and tax evasion.

2See, e.g., Patacchini and Zenou (2012), Blume et al. (2015), Boucher (2016), Kline and Tamer (2020) and
Ushchev and Zenou (2020). For an overview of the network literature, see Jackson (2008), Jackson and Zenou
(2015), Bramoullé and Kranton (2016), and Jackson et al. (2017).

3See, e.g., Blume et al. (2015) and Boucher (2016), among others.
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effects or conformism behavior, that microfound the LIM model and show that they have very

different policy implications. In the former, agents are positively affected by the spillovers that

they receive from their neighbors. We show that, at the Nash equilibrium, agents make too little

effort compared to the first best because they do not take into account the positive impact of

their effort on that of others linked to them. In the conformist model, agents obtain negative

utility from deviating from their neighbors’ actions and thus want to minimize the difference

between their action and that of their neighbors. We show that, at the Nash equilibrium, some

agents provide positive externalities to their neighbors if the latter’s effort is above their social

norm while others provide negative externalities to their their neighbors if the latter’s effort

is below their social norm. Thus, the former exert too little effort compared to the first best

while the latter exert too much effort. To restore the first best, in the spillover model, the

planner always wants to subidize all agents, while in the conformist model, the planner wants

to subsidize some agents (those who provide positive externalities) and tax others (those who

provide negative externalities). This implies that one needs to know the behavioral foundation

of the LIM model in order to derive adequate policies.

Second, we develop a new general model of peer effects that encompasses the spillover and

conformist models as special cases and relaxes the assumptions of linearity and mean peer

behavior of the LIM model. Instead of defining the social norm of each agent by the average

action of her peers, in this model, the social norm is defined by a CES function whose key

parameter is β. When β is equal to 1, we revert to the LIM model. When β is very large, agents

only care about the “most” active agents (i.e. the one exerting the most effort) in their network,

while when β is very negative, they only care about the “least” active agents in their network.

We show that, contrary to the linear case, the best-response function for the general model

with flexible β is not necessarily contracting. However, by relying on the literature on super-

modular games (Milgrom and Roberts, 1990b; Vives, 1990a) and by studying the structure of

the smallest and largest equilibria, we show that there always exists a unique Nash equilibrium.

Third, using data on teenagers in the United States from the National Longitudinal Survey

of Adolescent Health (AddHealth), we structurally estimate this general model. We proceed

in two independent steps. First, for each activity, we estimate which LIM model (conformist,

spillover, or general) matches best the data. Second, we estimate the value of β to determine the

relevant peer reference group. We find that for GPA, social clubs, self-esteem, and exercise, the

spillover effect strongly dominates, while for risky behavior, study effort, fighting, smoking, and

drinking, conformism plays a stronger role. We also find that for many activities, individuals
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do not behave according to the LIM model. Indeed, for GPA, self-esteem, exercise, and study

effort, individuals have peer preferences skewed towards more “active” agents, while for trouble

behavior at school, fighting and drinking, the peers that matter are the “least” active agents.

This confirms the fact that imposing the mean action as an individual social norm is misleading

and may lead to incorrect policy implications.

In order to quantitatively evaluate the policy implications in the context of our data, we

simulate each activity and counterfactual tax/subsidy policy that restores the first best. In

particular, we contrast the differences between a planner that uses the LIM model and one that

uses the general results obtained in our structural estimations. We show that the differences

are large, and, in general, with the LIM model, the planner tends to uniformly tax/subsidize

all agents in the network, while with the general model, it targets some key agents depending

on whether the spillover or the conformist model dominates, and the value of β. Consider, for

example, GPA, which is a spillover model for which β is much greater than 1, which means

that peer preferences are skewed toward students with the highest GPA. In contrast to the LIM

model, we find in our policy simulations that in the general model, there is a large mass at zero

because these individuals do not provide any positive spillover to their neighbors (they are not

the more active friends), and there is therefore little social value in subsidizing them. We also

show that some individuals obtain very large positive subsidies; this is when the social norm is

made up of very low-performing students, and thus it becomes valuable to give large subsidies

to the most active peers because they will generate large spillover effects.

We assume that the network is exogenous. Given the size of our sample (more than 70,000

individuals), this is a reasonable assumption, as it would be impossible to estimate a network

formation model due to its computational unfeasibility. Moreover, the literature on peer effects

with endogenous networks (Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee, 2016; König

et al., 2019; Johnsson and Moon, 2021; Houndetoungan, 2022) has shown that correcting for the

endogeneity of the network does not substantially change the estimation results. Houndetoungan

(2022), who found the largest difference in the literature, showed that the peer effect coefficient

was reduced by about 15 percent when he corrected for network endogeneity (from 0.306 (ex-

ogenous network) to 0.256 (endogenous network), a difference of 0.05; see his Tables 4 and 5).

Furthermore, the aim of our study is to illustrate the restrictive nature of the LIM model when

estimating peer effects. Even if we could control for network endogeneity, the resulting estimates

will likely change across activities, albeit only marginally, and will certainly not all converge to

the LIM model. Thus, the general conclusion from our policy exercises and the mistakes made
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by restricting the estimation to a simple reduced-form LIM model will remain unchanged.

Our study contributes to the literature on peer effects and on games on networks by providing

a general structural framework to study peer effects in a context in which peers do not necessarily

react to the average of their peers’ behavior, and that enables identification of the behavioral

foundation of the estimated peer effects. Even though the vast majority of papers have used

the LIM model to estimate peer effects, some have considered the maximum peers, namely the

leaders, shining lights, or high achievers (Carrell et al., 2010; Tao and Lee, 2014; Diaz et al.,

2021; Islam et al., 2021), some have included the minimum peers, namely the bad apples or

low-ability individuals (Bietenbeck, 2020; Hahn et al., 2020), and some have incorporated both

(Hoxby and Weingarth, 2005; Tatsi, 2017). However, none of these papers have developed a

general theoretical framework with different mechanisms (spillover or conformism) and different

peer-group references and tested which model and which peer group matters the most. Our

main conclusion confirms the fact that imposing the mean action as an individual social norm

is misleading and leads to incorrect policy recommendations.

2 Theory

2.1 Linear-in-means models

Consider n ≥ 2 individuals who are embedded in a network g. The adjacency matrix G = [gij ]

is an (n×n)-matrix with {0, 1} entries that keeps track of the direct connections in the network.

By definition, agents i and j are directly connected if and only if gij = 1; otherwise, gij = 0.4

We assume that the network is directed (i.e., gij and gji are potentially different) and has no

self-loops (i.e. gii = 0). Ni = {j | gij ∈ g} denotes the set of i’s neighbors. The cardinal of Ni
is di, the degree or the number of direct neighbors of individual i, so that di :=

∑n
j=1 gij = |Ni|.

Finally, Ĝ = [ĝij ] denotes the (n×n) row-normalized adjacency matrix defined by ĝij := gij/di

if di > 0 and ĝij := 0 otherwise.

Assume that each individual has at least one neighbor, namely di > 0 for all i. We will relax

this assumption in Section 3.5 Consider the following class of best-response functions:

yi = αi + λy−i, (1)

4We can easily generalize our results to directed and weighted networks.
5In the theory section, determining the best-reply functions for isolated individuals is straightforward. Thus,

we leave this discussion to the structural estimation section.
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where yi is the effort or outcome in some activity (such as education), αi = xiγ+εi
6 captures the

observable (xi) and unobservable (εi) characteristics of individual i, and y−i := f(G,y−i) for

some known function f(.), with y−i := (y1, . . . , yi−1, yi+1, . . . , yn)
T the vector of effort without

the effort of agent i.

In (1), individuals choose their effort yi as a function of their own characteristics αi and

also as a function of the effort of the other individuals y−i := f(G,y−i) in the population.

One particular form is when f(·) represents the average effort of i’s neighbors (excluding i).

Formally,

y−i := f(G,y−i) =

n∑
j=1

ĝijyj . (2)

The model in (1) with the norm y−i defined in (2) is referred to as the linear-in-means (LIM)

model and can thus be written as

yi = xiγ + λ

n∑
j=1

ĝijyj + εi. (3)

2.1.1 Microfoundations

The LIM model (3) corresponds to the best-response function of two, observationally equivalent,

types of social preferences: spillover or conformism.7

The spillover model

In this model, each agent i chooses effort yi ∈ R+ that maximizes the following utility function:

USi (yi,y−i,g) = αiyi −
1

2
y2i + θ1yiy−i, (4)

where y−i is defined in (2), αi = xiγ+εi captures the productivity (observable and unobservable

characteristics) of agent i, and 0 ≤ θ1 < 1 is the intensity of the spillover effect.

This utility function has two terms. First, αiyi − 1
2 y

2
i is i’s utility of exerting effort yi,

independently of peer effects. Second, θ1yiy−i captures the peer-group pressure faced by agent i

or, equivalently, the spillover effects of the social norm on own utility (Binder and Pesaran, 2001;

Brock and Durlauf, 2001; Glaeser and Scheinkman, 2002; Blanchflower et al., 2009; Boucher and

Fortin, 2016; Reif, 2019).

6xi is a (1× k) vector of k observable characteristics, and γ is a (k × 1) vector, so that xiγ =
∑l=k
l=1 xlγl.

7For the microfoundatons of the LIM model, there cannot be models other than the spillover and conformist
models because of the linearity of the best-reply function, which imposes that the utility has to be linear-
quadratic, and the fact that the average peers matter, which necessitates the social norm in the utility function
to be the average action of one’s neighbors.
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Denote λ1 := θ1 < 1. Then, the first-order condition is given by

yi = αi + λ1y−i (5)

or

yi = xiγ + λ1

n∑
j=1

ĝijyj + εi, (6)

which corresponds to the LIM model (3).8

The conformist model

For this second type of social preferences, each agent i chooses effort yi ∈ R+ that maximizes

the following utility function:

UCi (yi,y−i,g) = αiyi −
1

2
y2i −

θ2
2

(
yi − y−i

)2
, (8)

where θ2 ≥ 0 is the taste for conformity, and y−i : Rn+ → R+ is defined by (2) and determines

agent i’s social norm.

As for the spillover model, this utility function has two terms. First, αiyi − 1
2 y

2
i gives the

utility of exerting effort yi, independently of peer effects. Second, − 1
2θ2

(
yi − y−i

)2 is the price

individual i has to pay in terms of utility when not conforming to her social norm y−i (Akerlof,

1980, 1997; Kandel and Lazear, 1992; Bernheim, 1994; Fershtman and Weiss, 1998; Patacchini

and Zenou, 2012; Boucher, 2016; Ushchev and Zenou, 2020). In other words, each agent i pays

a utility cost of θ22
(
yi − y−i

)2 for not conforming to the behavior of their neighbors.

In this formulation, θ2 > 0 is the taste for conformity. This implies that the closer i’s effort

is to her social norm, the higher i’s utility is. In other words, while increasing the social norm

y−i decreases i’s marginal cost of effort, the effect on i’s utility is non-monotonic. When the

social norm is higher than i’s effort, such that y−i > yi, increasing the social norm decreases

i’s utility, since i’s effort moves further away from her social norm. When the social norm is

smaller than i’s effort, such that y−i < yi, increasing the social norm increases i’s utility.

8Since λ1 := θ1 < 1, there exists a unique Nash equilibrium given by

y = (I− λ1Ĝ)−1α, (7)

where y := (y1, y2, . . . , yn)
T is the vector of efforts, I is the identity matrix, and α := (α1, α2, . . . , αn)

T is the
vector of observable and unobservable characteristics.
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The first-order condition is equal to

yi = (1− λ2)αi + λ2y−i, (9)

where λ2 ≡ θ2
(1+θ2)

< 1. Using the fact that αi = xiγ + εi and that y−i is defined by (2), we can

write this equation as

yi = (1− λ2)xiγ + λ2

n∑
j=1

ĝijyj + (1− λ2)εi, (10)

which corresponds to the LIM model (3).9

Since γ is unknown, the predictions of the conformist model in (10) are observationally

equivalent to that of the spillover model in (6). Importantly, as we will see in Section 2.3, the

conformist model and the spillover model have very different policy implications.

2.1.2 A general model

Let us now provide a general model that embeds the two previous models as special cases. The

utility function for each individual i is now given by

Ui(yi,y−i,g) = αiyi + θ1yiy−i︸ ︷︷ ︸
benefit

− 1

2

[
y2i + θ2

(
yi − y−i

)2]︸ ︷︷ ︸
cost

. (12)

The best reply function of individual i is given by

yi =
1

(1 + θ2)
αi +

θ1
(1 + θ2)

y−i +
θ2

(1 + θ2)
y−i,

or equivalently

yi = (1− λ2)αi + (λ1 + λ2)y−i, (13)

where λ1 := θ1
(1+θ2)

and λ2 ≡ θ2
(1+θ2)

, with 0 < λ1 + λ2 < 1.10 Using the fact that αi = xiγ + εi

9Since λ2 ≡ θ2
(1+θ2)

< 1, there exists a unique Nash equilibrium given by

y = (1− λ2)(I− λ2Ĝ)−1α. (11)

10There is a unique Nash equilibrium given by

y = (1− λ2)(I− (λ1 + λ2)Ĝ)−1α. (14)
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and that y−i is defined by (2), we can write this equation as

yi = (1− λ2)xiγ + (λ1 + λ2)

n∑
j=1

ĝijyj + (1− λ2)εi. (15)

When λ1 = 0, we obtain the conformist model (see (9)), while when λ2 = 0, we revert to

the spillover model (see (6)). Without additional structure, λ1 and λ2 cannot be separately

identified, since γ has to be estimated. As we show in Section 3, following Boucher and Fortin

(2016), we use the isolated individuals (individuals who have no neighbor) to identify γ, which

in turn allows us to identify λ1 and λ2.

2.2 A model with general social norms

So far, following the LIM model, we assumed that peers operate through a linear and an average

effect, that is, the social norm y−i is the average effort of i’s peers. This is a strong assumption,

especially for empirical applications. The empirical literature has been partially addressing this

issue by not only looking at the effect of the average peer, but instead the minimum or maximum.

In this section, we provide a more general and flexible structure of peer preferences. That is,

we relax the assumption by considering a peer effect model that is not linear and for which an

agent’s peers are not necessarily the average effect.

2.2.1 A general social norm

For each individual i, we generalize the social norm y−i := f(G,y−i) given in (2) by considering

the following social norm:

y−i ≡ y(y−i, β) =

 n∑
j=1

ĝijy
β
j

 1
β

. (16)

We can easily see that the social norm in the LIM model defined in (2) is a special case of

(16) when β = 1, that is, y−i ≡ y(y−i, β = 1) =
∑n
j=1 ĝijyj . Our social norm is general, since

(16) allows for any β, that is, β ∈ [−∞,+∞]. We argue that this parameter, β, captures peer

preference. For example, if we set β = +∞, (16) becomes

y−i ≡ y(y−i,+∞) = max
j∈Ni
{yj},

9



that is, the social norm is defined with respect to the “most active agent” in the network (e.g.,

criminal leaders in crime). Under β = −∞, (16) becomes

y−i ≡ y(y−i,−∞) = min
j∈Ni
{yj},

that is, the social norm is defined with respect to the “least active agent” in the network. Other

possible values of β ∈ R capture a rich spectrum of intermediate cases. For example, when

β = 0, the social norm is defined as a Cobb-Douglas function, since we have

y−i ≡ y(y−i, 0) =
∏
j∈Ni

y
1/di
j =

n∏
j=1

y
ĝij
j .

2.2.2 A general model

Consider our general model, whose utility is given by (12) and where the social norm is equal

to (16). The first-order condition (13) can now be written as

yi = (1− λ2)αi + (λ1 + λ2)y(y−i, β), (17)

or equivalently

yi = (1− λ2)αi + (λ1 + λ2)

 n∑
j=1

ĝijy
β
j

 1
β

. (18)

The main difference with the LIM model (where β = 1) is that the first-order conditions

(18) are not linear anymore. Thus, when estimating (18), in particular, β, we can determine

whether the correct model is the LIM (i.e., β = 1) and, if not, which peers matter. We have the

following result.11

Proposition 1. Assume that the utility function of each individual i = 1, · · · , n is given by

(12), with 0 < λ1 + λ2 < 1 and 0 < λ1 < 1, and her social norm y−i ≡ y(y−i, β) has the CES

functional form (16). Then, there exists a unique Nash equilibrium.

The proof is not obvious because, contrary to the LIM model, the best-reply functions are

not linear; thus, we cannot just invert a matrix. First, for the existence of equilibrium, we use

the fact that the game is supermodular and solve for a fixed point theorem. To prove uniqueness,

we use the fact that there always exist a maximum and a minimum equilibrium and show that
11See Section A of the Online Appendix for a proof of Proposition 1, where we first demonstrate the existence

(Section A.1) and then the uniqueness of equilibrium (Section A.2).
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they are equal. To achieve this, we need to differentiate between concave and convex norms and

demonstrate this equality; thus, the equilibrium is unique. In fact, we show that the existence

and uniqueness of the equilibrium of this game is true for more general norms than the CES

one, as the following corollary demonstrates:

Corollary 1. Assume that the utility function of each individual i is given by (12), with 0 <

λ1 + λ2 < 1 and 0 < λ1 < 1, and her social norm y−i ≡ y(y−i, β) is an increasing function of

y, is homogeneous of degree 1, and satisfies the inequality ||y(z)||∞ ≤ ||z||∞ for any z. Then,

there exists a unique Nash equilibrium.

2.3 Spillover versus conformist effects: Policy implications

2.3.1 General results

It is important to understand which model microfounds the estimation of (3), as the policy

implications of the two models are different. In Appendix A.3, we determine the social optimum

(first best) for the spillover and the conformist model in the framework of the LIM model.

For the spillover model, compared to the Nash equilibrium, the first best has an extra term,

λ1
∑
j ĝijyj = λ1y−i, which is always positive. This implies that agents exert too little effort

at the Nash equilibrium ((5)) as compared to the social optimum outcome (Equation (A.29)).

Equilibrium interaction effort is too low because each agent ignores the positive impact of her

effort on the effort choices of others; that is, each agent ignores the positive externality she exerts

on her neighbors due to complementarity in effort choices. As a result, the market equilibrium

is inefficient.

For the conformist model, we show that the first best is given by (A.27) and is neither

exclusively larger or smaller than the Nash equilibrium effort, given by (9). Indeed, compared

to the Nash equilibrium, the first best has an extra term, λ2
∑
j ĝij(yj − y−j) = λ2(y−i − y−j),

which could be positive or negative. This means that, at the Nash equilibrium, when deciding

her individual effort, each agent does not take into account the effect of her effort on the social

norm of her peers, which creates an externality that can be positive or negative. Indeed, if

individual i has friends for whom yj > y−j (resp. yj < y−j), then when she exerts her effort,

she does not take into account the fact that she positively affects y−j , the norm of her friends,

which increases (decreases) the utility of their neighbors. In that case, compared to the first

best, individual i underinvests (overinvests) in effort, because she exerts positive (negative)

externalities on her friends.
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In Appendix A.4, we study the policy implications of the spillover and the conformist model.

In particular, in Appendix A.4.1 (for the LIM model where β = 1), we show that the policy

implications of the spillover and the conformist model are very different for the LIM model.

Indeed, consider a two-stage model where, in the first stage, the planner gives a per-effort

subsidy Smi (m = S for the spillover model and m = C for the conformist model) to each

agent i in the network, while in the second stage, the agents play the game described above.

If SSi = λ1
∑
j ĝijy

o
j = λ1y

o
−i

12 for the spillover model and SCi = λ2

1−λ2

∑
j ĝij(y

o
j − yo−j) =

λ2

1−λ2
(yo−i − yo−j) for the conformist model, then, in the second stage, each player will play her

first-best effort instead of the Nash-equilibrium effort. Thus, the first best is restored. This

implies that, in the spillover model, the planner needs to subsidize all agents in the network

while, in the conformist model, the planner will only subsidize agents whose neighbors’ effort is

above the average effort of their neighbors but will tax agents whose neighbors’ effort is below

the average effort of their neighbors. This implies, in particular, that the planner is more likely

to tax central agents (since their neighbors are more likely to have a lower effort) and to subsidize

less central agents.

In Appendix A.4.2, we generalize these results for the general model, for which β can take

any value. We show that to restore the first best, the planner needs to give to each agent i the

following subsidy (see Equation (A.36)):

SGi =
yoi − yNi
1− λ2

=
1

1− λ2

λ1∑
j

yoj
∂yo−j
∂yoi

+ λ2
∑
j

(yoj − yo−j)
∂yo−j
∂yoi

 .
We show that the policy implications in terms of tax/subsidies derived for the LIM model can

be qualitatively extended for the general case. For instance, in a star network, in the conformist

model, the planner will tax the star agent, while in the spillover model, she will subsidize this

agent. Let us illustrate this point when β = 1.

2.3.2 An example

Consider a star network in which n = 3 and agent i = 1 is the star. Set α1 = 2, α2 = α3 = 1,

so that the star is the most productive agent in the network.

The conformist model: Since α1 = 2 > 1 = (α2 + α3) /2, it is easily verified that the Nash
12A variable with the superscript o denotes its optimal value while a variable with the superscript N denotes

its Nash-equilibrium value.
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equilibrium in efforts is not optimal. Assume that λ2 < 1; we have

yN =
1

(1 + λ2)


2 + λ2

1 + 2λ2

1 + 2λ2

 , yo =
1

(1 + 4λ2)


2 + 5λ2

1 + 6λ2

1 + 6λ2

 ,

where yNand yo correspond to the Nash equilibrium and the social optimum, respectively. The

star agent overinvests compared to the first best
(
yN1 > yo1

)
. Indeed, since yN2 = yN3 < yN−2 =

yN−3 = yN1 , the externality term λ2
∑n
j=1 ĝij

(
yj − y−j

)
is negative, and the star, when deciding

her effort level, does not take into account the negative externalities she exerts on agents 2

and 3. For the peripheral agents 2 or 3, we obtain yN2 = yN3 T yo3 = yo2 ⇐⇒ λ2 T 1/2, so

that they may overinvest or underinvest in effort, depending on the value of λ2. However, the

externality term is always positive, since yN1 > yN−1, and thus agents 2 and 3 always exert positive

externalities on agent 1. As a result, to restore the first best, the planner should tax agent 1

(the most central agent) and subsidize agents 2 and 3 (the less central agents). Since y2 = y3,

it is easily verified that the subsidies per unit of effort are equal to SC1 = 2λ2

(1−λ2)
(yo2 − yo1) < 0

and SC2 = SC3 = λ2

(1−λ2)
(yo1 − yo2) > 0. The subsidies or taxes exactly correct for the externalities

exerted by the agents. We obtain13

SC =
λ2

(1 + 4λ2)


−2

1

1

 . (19)

The spillover model: We obtain

yN =
1

(1− λ21)


2 + λ1

1 + 2λ1

1 + 2λ1

 , yo =
1

(1− 4λ21)


2(1 + λ1)

1 + 4λ1

1 + 4λ1

 ,

where we assume that λ1 < 1/2. We see that, at the Nash equilibrium, all agents make too

little effort compared to the first best; that is, yNi < yoi , for all i = 1, 2, 3. It is easily verified
13Clearly, this result strongly depends on the productivity values. For example, if α1 = 0.5 and α2 = α3 = 1

so that the productivity of the central agent is the lowest, then to restore the first best, the planner now needs
to subsidize agent 1 (the star) and to tax agents 2 and 3 (the peripheral agents), since the former now exerts
positive externalities on agents 2 and 3, while the latter exert negative externalities on agent 1.
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that the subsidies that restore the first best are given by:

SS =
λ1

(1− 4λ21)


1 + 4λ1

2 + 2λ1

2 + 2λ1

 . (20)

To summarize, compared to the theoretical literature on peer/network effects, we have two

contributions. First, we propose a general model that encompasses the spillover and the con-

formist model as special cases, having shown that the policy implications of these two models

are very different. Second, and more importantly, we generalize the social norm so that the

mean norm is a special case of ours. This implies that the reference group can be the most

active, the least active, the mean peer, or any combination of them. In the following section, we

will (i) test for which model (conformist or spillover) is the most appropriate in the data and

(ii) estimate the value of β to determine the relevant reference group. We will implement these

estimations for different outcomes.

3 Structural Estimation

3.1 Empirical Strategy

The model has two main components: the nesting of conformity and spillover effects and the non-

linearity of the social norm. We are interested in structurally estimating (i) the peer preference

(or elasticity of substitution between a friend’s efforts, 1
1−β , of an individual’s social norm); (ii)

the intensity of the spillover effect, λ1; and (iii) the taste for conformity, λ2.

We can formulate the equilibrium effort of individual i, yi, by

yis = (1− λ2)xisγ + (λ1 + λ2)y(y−is, β) + ζs + εis. (21)

Equation (21) is the equivalent of the first-order condition (17), where, as above, αi := xiγ + εi

and εi := (1 − λ2)εi. As we have different schools in AddHealth, we added the subscript s to

denote each school s in our data. Thus, compared to (17), we control for school fixed effects,

ζs, which will absorb any factor that is common to all students within a given school, including

the effect of the school itself. We assume that εis, the error term, is such that E(εis|X,G) = 0

for all i, implying an exogenous network.
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For comparison purposes we will also provide results for the reduced-form LIM model (Equa-

tion (3)),

yis = xisγ + λy−is + εis, (22)

where yis is the effort or outcome in some activity (e.g., GPA), and y−is is the average effort

of i’s neighbors (excluding i), instrumented by their friends’ characteristics, x−is. That is, (22)

is estimated using instrumental variable, where the instruments for the social norm are agents’

characteristics, x−is (Bramoullé et al., 2009).

3.2 Identification

We show in Appendix B how to formally solve for θ = [γ′, λ1, λ2, β]′ by deriving the appro-

priate generalized method of moment (GMM) estimator. Let us provide some intuition for the

estimation procedure. Equation (21) does not allow us to separately identify λ2 from γ or λ1.

However, we can consider two types of individuals in the data: (a) isolated and (b) non-isolated

individuals. Isolated individuals are individuals without friends, and there is thus no social

norm to consider in their actions. This separation allows us the break the estimation problem

into two parts and consequently identify λ2 and γ separately.

First, note that isolated individuals have a simplified version of the general first-order con-

dition (21), namely

yis = xisγ + ζisos + εis, (23)

where ζisos is the school fixed effect specific to isolated individuals.14 This equation is inde-

pendent of any social norm and, therefore, of β, λ1 and λ2. Thus, in our specification, the

identification of γ can be obtained from isolated individuals, under the independence assump-

tion of the error terms, E (εisxis) = 0.

Second, to identify θ̃ = [λ1, λ2, β], we require three further moment conditions. Let us

define three instruments, zis for non-isolated individuals that satisfy the moment conditions,

E (εiszis) = 0. First, we can identify (1 − λ2)γ, and thus λ2, given the result of γ from the

solution of isolated individuals. Consequently, our first instrument is the set of covariates, xis.

Secondly, if ŷs is the OLS predictor of ys, on the covariates, xis, then, given λ2, the identification

of λ1 comes from the moment y(ŷ−is, β) for non-isolated individuals—our second instrument.

Finally, the identification of β comes from the derivative of the social norm with respect to β,
14Identification does not allow us to estimated separate γs for isolated and non-isolated students. However,

we allowed the school fixed effect to differ for the two types of students.
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∂y(ŷs,β)
∂β = y′(ŷs, β)—our last instrument.15 The intuition behind this instrument is that the

slope of the social norm with respect to β should inform the directional movement of search

for the parameter that minimizes the objective function during the numerical simulation. Also

note that the choice of y′(ŷs, β) as a moment condition is justified by the fact that y′(ŷs, β)

is equal to the first-order condition for the nonlinear least-squares estimator in Section 5.8.2 of

Cameron and Trivedi (2005).16 Thus, the set of instruments for all non-isolated individuals can

be summarized by zis = [xis, y−is(ŷs, β), y′−is(ŷs, β)], with the assumption that E(εiszis) = 0.

Note that our additional moment conditions are evaluated at ŷs, the OLS predictor of

ys. While it is standard to use the entire matrix of observable characteristics as instruments,

namely ĜX (Bramoullé et al., 2009) when β = 1, this approach is not suitable for the general

model when β could be substantially different to 1. Indeed, suppose that β = +∞, so that

ȳ−i,s = maxj:gij,s=1 yj,s. While z̄i,s = maxj:gij,s=1 ŷj,s is likely a good predictor of ȳ−i,s, it may

well be the case that none of the maximum of characteristics of i’s friends, taken individually (i.e.,

maxj:gij,s=1 x
l
j,s, l = 1, ..., k), would be a good predictor of ȳ−i,s. Evaluating the instruments at

ŷs is therefore a simple and effective way to ensure strong instruments, irrespective of the value

of β.17

We therefore have four moment conditions, one from isolated individuals (E (εisxis) = 0) and

three from non-isolated individuals (E(εisxis) = 0, E(εisy−is(ŷs, β)) = 0, and E(εisy
′
−is(ŷs, β)) =

0). Notice that the moment conditions for γ and for (λ1, λ2, β), are not based on the same num-

ber of observations. The first set of moments characterizes isolated individuals (N1), while the

second set of moments characterizes non-isolated individuals (N2). As such, the two sets of mo-

ments can be considered to be coming from two different data sets (Angrist and Krueger, 1992;

Arellano and Meghir, 1992). Thus, the estimations for isolated and non-isolated individuals

are performed jointly using the sum of the GMM objective functions for both sets of moments,

leading to an observation-weighted average of the two sets of moment conditions (Arellano and

Meghir, 1992). For details, see Appendix B. Lastly, since the first-order condition is linear in

γ, we can use the model and the objective function to derive γ as a function of the three re-

maining parameters [λ1, λ2, β] for both isolated and non-isolated individuals (see Appendix B

for details). This allows us to concentrate the objective function around these remaining three

parameters, θ̃ = [λ1, λ2, β], which are numerically estimated.

15See Section A.5 of Appendix A for a formal derivation of ∂y(ŷ,β)
∂β

in the theoretical model.
16For an in-depth discussion of the optimal moment conditions for non-linear GMM, see also Section 6.3.7 in

Cameron and Trivedi (2005).
17The OLS predictor is simple and performs well in our context, but it is worth noting that more flexible

predictors could also be used, i.e., ŷi,s = f̂(Xs) for some function f̂ .
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3.3 Data description

Our analysis is based on a well-known database on friendship networks from the National Longi-

tudinal Survey of Adolescent Health (AddHealth). The AddHealth survey has been designed to

study the impact of the social environment (i.e., friends, family, neighborhood, and school) on

adolescents’ behavior in the United States by collecting data on students in grades 7–12 from a

nationally representative sample of more than 130 private and public schools in years 1994–1995.

AddHealth provides a wealth of information regarding student’s activities and outcomes. We

extracted a large number of the activities available in the in-school interview sample to test our

theory. For the purpose of studying peer effects, AddHealth data also record friendship infor-

mation, which is based upon actual friends’ nominations. Pupils were asked to identify their

best friends from a school roster (up to five males and five females). Our estimation sample

comprised over 70,000 students, from 134 schools.18

We use AddHealth data because it is one of the few datasets that provides both the exact

network of all students and has multiple activities, so we can illustrate our theory with different

values of β and consider their policy implications. Nonetheless, we acknowledge that AddHealth

poses some limitation in terms of network endogeneity. However, our aim is methodological,

as we want to illustrate the importance of having a microfoundation in estimating peer effect

models. Thus, we assume that the networkG is conditional exogenous. We do so due to the large

computational burden of controlling for network endogeneity and the negligible effect it should

have on illustrating our theory. Indeed, as stated in the introduction, most peer/network effect

papers find that the difference between controlling and not controlling for network endogeneity

is small.

In Section 3.4, we report the estimation results for 10 activities: (1) grade point average

(GPA), (2) social clubs, (3) self esteem, (4) risky behavior, (5) exercise, (6) study effort, (7)

fighting, (8) smoking, (9) drinking, and (10) trouble behavior.19 We also use a series of stu-

dents’ individual characteristics, such as age, gender, racial group, and mother’s education and

occupation. Summary statistics are presented in Table 1.

18The precise sample size varies by activity; for exact numbers, see Table 1.
19For an exact definition of each variable and further details on the variable construction, see Appendix C.
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Table 1: Summary Statistics

Activity GPA Clubs Self-esteem Risky Exercise Study effort Fight Smoke Drink Trouble

Activity 2.816 2.199 0.712 0.611 4.536 0.739 1.357 0.958 0.421 1.178
(0.807) (2.621) (0.190) (0.982) (2.445) (0.231) (2.143) (2.224) (1.152) (1.391)

Age 15.073 15.029 15.088 15.055 15.092 15.049 15.093 15.059 15.059 15.046
(1.686) (1.710) (1.689) (1.701) (1.688) (1.701) (1.688) (1.699) (1.699) (1.702)

Female 0.512 0.505 0.514 0.510 0.513 0.509 0.513 0.511 0.511 0.510
(0.500) (0.500) (0.500) (0.500) (0.500) (0.500) (0.500) (0.500) (0.500) (0.500)

Hispanic 0.163 0.173 0.156 0.163 0.156 0.165 0.156 0.163 0.163 0.165
(0.369) (0.378) (0.363) (0.370) (0.363) (0.371) (0.363) (0.369) (0.369) (0.371)

White 0.652 0.633 0.657 0.646 0.656 0.644 0.657 0.647 0.647 0.645
(0.476) (0.482) (0.475) (0.478) (0.475) (0.479) (0.475) (0.478) (0.478) (0.479)

Black 0.165 0.175 0.164 0.169 0.164 0.170 0.164 0.168 0.168 0.170
(0.371) (0.380) (0.370) (0.374) (0.370) (0.375) (0.371) (0.374) (0.374) (0.375)

Asian 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069
(0.254) (0.254) (0.254) (0.254) (0.254) (0.253) (0.254) (0.254) (0.254) (0.253)

Mother Ed. less than HS. 0.169 0.178 0.168 0.173 0.167 0.174 0.167 0.173 0.173 0.174
(0.375) (0.382) (0.374) (0.378) (0.373) (0.379) (0.373) (0.378) (0.378) (0.379)

Mother Ed. more than HS 0.425 0.412 0.425 0.419 0.425 0.418 0.425 0.420 0.420 0.418
(0.494) (0.492) (0.494) (0.493) (0.494) (0.493) (0.494) (0.493) (0.493) (0.493)

Mother Ed. none 0.098 0.106 0.099 0.102 0.100 0.102 0.100 0.102 0.101 0.101
(0.297) (0.308) (0.299) (0.303) (0.300) (0.303) (0.300) (0.302) (0.302) (0.302)

Mother Professional 0.207 0.202 0.208 0.205 0.209 0.205 0.209 0.206 0.206 0.205
(0.405) (0.402) (0.406) (0.404) (0.406) (0.404) (0.406) (0.404) (0.404) (0.404)

Mother Other Job 0.443 0.436 0.440 0.439 0.440 0.439 0.440 0.439 0.440 0.439
(0.497) (0.496) (0.496) (0.496) (0.496) (0.496) (0.496) (0.496) (0.496) (0.496)

Mother No Job 0.140 0.150 0.141 0.145 0.142 0.145 0.141 0.144 0.144 0.144
(0.347) (0.357) (0.348) (0.352) (0.349) (0.352) (0.348) (0.351) (0.351) (0.351)

Isolated Individuals 0.145 0.155 0.145 0.147 0.147 0.147 0.147 0.146 0.146 0.144
(0.352) (0.362) (0.352) (0.354) (0.354) (0.354) (0.354) (0.353) (0.353) (0.351)

Observations 69961 78735 71511 75149 71462 75799 71381 74584 74436 75847

Notes: Mean of variable by activity with standard deviations (in parenthesis) are reported. Excluded racial groups are “Native American” and
“Other.” For details on the activity and outcome variables, see Appendix C.
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Table 1 shows that activities are reported consistently across schools, with summary statistics

similar across standard demographic characteristics (e.g., age, gender, race). All activities are

based on increasing activity levels; for example, a higher value for risky behavior reflects an

increased level of activity; a higher value for self-esteem reflects an increased levels of self-esteem;

a higher value for exercise reflects a greater frequency of exercise. Importantly, 14–15 percent

of students did not report any friends, and we labeled them isolated.20 Lastly, the activity or

outcome values reported in Table 1 often included an outcome of zero (e.g., non-smokers never

smoke). Equation (16) is not defined for values of zero if peer preference is skewed to the least

active agent, β < 0. To avoid this computational error, we have added in the estimation a value

of 1 for each activity or outcome.21

3.4 Empirical results

We proceed in two independent steps. First, we test which LIM model (conformist, spillover, or

general) is the most appropriate one for each activity in the data. Second, we estimate the value

of β to determine the relevant peer reference group. The aim here is not to study the quantitative

impact of specific peer effects, but rather to illustrate the importance of using a generalised

theory of peer effects when trying to estimate their economic impact and, consequently, design

adequate policies that improve agents’ outcomes. Thus, to provide a broad view of our theory,

we pick from a wide range of activities documented in AddHealth. That is, we provide estimation

results for θ̃ = [λ1, λ2, β] for the 10 activities as described in Section 3.3.

3.4.1 Spillover, conformism, or general: Linear-in-means model

We start with the GMM results of (21), whereby we impose the social norm of the average peer,

β = 1. Henceforth, we refer to this as the general LIM model. Table 2 presents the results

for the λ’s of our four models, (i) the general LIM model, (ii) the spillover LIM model, (iii)

the conformist LIM model, and (iv) the reduced-form LIM model (see (22)). The spillover LIM

model refers to the case when λ2 = 0 and β = 1, whereas the conformism LIM model refers

to the case when λ1 = 0 and β = 1. The table also reports the objective value of each GMM

procedure, as well as the likelihood-ratio statistic, 2(Nk+N)(Qk(λ)−Q(λ1, λ2)), with k = C, S,

comparing the two separate models (spillover and conformist) to the general LIM model.22 This
20We follow Boucher and Houndetoungan (2021) in dropping individuals who are potentially falsely classified

as having no friends.
21For comparability, we did this for all activities. Results without adding 1 in instances where β > 1 are

comparable and available upon request.
22The test statistic is (approximately) distributed χ2.
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measure is a simple way of establishing the dominant drivers, spillover, conformism or both in

the estimation, as it compares the goodness of fit for a model with only one driver (conformism

or spillover) with the general LIM model that includes both effects. Complete results, including

estimates for γ, are presented in Tables A1–A4 in Appendix C.

Table 2 shows a clear distinction between the two models (conformist vs. spillover), with one

model usually preforming clearly better, as measured by the objective value. The general LIM

model, as it embeds both effects, spillovers, and conformism, has always the lowest objective

value. However, for GPA, social clubs, self-esteem, and exercise, the spillover effect dominates.

For risky behavior, study effort, fighting, smoking, and drinking, conformism plays a strong

role in determining outcomes. Lastly, for trouble behavior at school, neither effect dominates.

Also note, a negative spillover effect, λ1 < 0, is a dampening effect on the total peer effect

(λ1 +λ2) (see also (21)); that is, it must not be interpreted as a negative spillover effect, as long

as λ1 + λ2 > 0, which is always the case.

Table 2 also reveals substantial heterogeneity in the varying magnitude of peer effects across

different model specifications. To illustrate, we can compare the total peer effect in the general

LIM model, (λ1+λ2), versus the peer effect in the reduced form model, λ. For GPA, self esteem,

fighting, and smoking, the total peer effect across the general LIM model and the reduced-form

LIM model are almost identical. For the remaining activities, the estimate of λ in the reduced

form and (λ1 + λ2) in the general LIM model differ by various degrees: (i) roughly 10 percent

for social clubs, exercise, and trouble behavior; (ii) roughly 30 percent for risky behavior; (iii)

roughly 40 percent for study effort; and (iv) roughly 190 percent for drinking. However, as

shown in Section 2.3, the policy implications of each model significantly differ between the

conformism and the spillover model. Thus, simply comparing the total peer effects, (λ1 + λ2),

can be misleading. We return to this point in Section 4.

3.4.2 Peer preferences with general social norms

Table 3 shows the results for the general model with estimated peer preferences, the βs. For

comparison purposes, the table also shows the general LIM model and reduced-form estimates

from Table 2. While we estimate all three versions: (i) the general model, (ii) the general

model only with spillovers imposing λ2 = 0, and (iii) the general model only with conformism

imposing λ1 = 0 for exposition purposes, we only show the model with the “best fit” (lowest

objective value) under the assumption of an unconstrained β.23

23Full results for spillover and conformism versions of the model are available upon request. Full results for
the general model can be found in Table A5 of Appendix C.
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Table 2: Structural estimation versus reduced form: Linear-in-means model

General model with β = 1 Spillover Conformism Reduced form

Activity λ1 λ2 Obj. Value λ1 Obj. Value L-R test λ2 Obj. Value L-R test λ

GPA 0.388 0.190 0.0026 0.519 0.0035 122.1 0.406 0.0085 814.4 0.589
(0.062) (0.042) (0.019) (0.019) (0.019)

Clubs 0.349 0.344 0.0023 0.612 0.0030 109.9 0.529 0.0040 259.0 0.638
(0.104) (0.070) (0.034) (0.030) (0.033)

Self-esteem 0.252 0.027 0.0027 0.270 0.0028 5.7 0.154 0.0035 110.9 0.289
(0.108) (0.072) (0.035) (0.034) (0.035)

Risky -0.185 0.492 0.0017 0.079 0.0067 752.9 0.467 0.0023 83.3 0.235
(0.069) (0.032) (0.037) (0.029) (0.034)

Exercise 0.181 0.021 0.0017 0.193 0.0017 2.8 0.094 0.0029 168.1 0.177
(0.060) (0.038) (0.021) (0.020) (0.022)

Study effort -0.017 0.322 0.0010 0.125 0.0027 258.6 0.315 0.0011 10.0 0.216
(0.084) (0.043) (0.040) (0.034) (0.041)

Fight 0.062 0.188 0.0013 0.172 0.0021 117.4 0.209 0.0013 10.6 0.254
(0.075) (0.043) (0.031) (0.028) (0.031)

Smoke 0.130 0.624 0.0009 0.442 0.0055 686.6 0.675 0.0013 66.6 0.732
(0.067) (0.035) (0.031) (0.028) (0.031)

Drink -0.177 0.626 0.0019 0.102 0.0084 964.5 0.601 0.0026 110.2 0.156
(0.072) (0.029) (0.044) (0.029) (0.043)

Trouble 0.225 0.251 0.0007 0.391 0.0012 61.8 0.374 0.0012 74.5 0.521
(0.115) (0.073) (0.041) (0.039) (0.042)

Notes: General Model results are for estimation of (21), Spillover are results for (21) but with restricting λ2 = 0, and Conformism are results when
restricting λ1 = 0. In addition, all three models are estimated with the average social norm, the restriction β = 1. All results control for school
fixed effects. Standard errors are reported in parentheses. In the case of the two LIM model likelihood ratio tests, 2(Nk +N)(Qk(λ) − Q(λ1, λ2))
with k = C, S, are also reported. Results for γ can be found in Appendix C.

21



Just two of the ten activities have marginal cases regarding the most appropriate general

model choice (spillover, conformism, or both). More specifically, consistent with the results of

the general LIM model, although the objective value is, by construction, always lowest for the

general model with both spillovers and conformism, the LR-ratio statistics between the general

model and the general model with only spillovers are 1.1 for self-esteem and 0.8 for exercise,

respectively. As the coefficient on λ2 for self-esteem and exercise are statistically zero, the

general model exclusively estimates spillover effects. Correspondingly, estimates of λ1 and β for

the general model with only spillovers are very similar to the general model reported here.

Table 3 shows that activities have varying degrees of peer preference. Overall we find a wide

range of values for β = [−415, 371]. Thus, peer preference does not necessarily conform to the

average peer, as per the assumption in the commonly used LIM model. For example, GPA, self

esteem, exercise, and study effort, have peer preferences skewed towards more “active” agents.

However, with the exception of GPA, peer preferences are still far from the “most” active

agent, defined by β = +∞. Trouble behavior at school, fighting and drinking are skewed towards

the “least” active agents, β = −∞, while social clubs, risky behavior, and smoking are close to

the LIM assumption of β = 1.

With varying degrees of peer preference, the resulting estimates on total peer effects, as well

as the magnitudes of spillover versus conformism effects, change in non-negligible ways across

activities. We find that the difference in total peer effects (λ1 + λ2) between the general model

(GM) and the general LIM model to be large for (i) trouble behavior at school (40 percent),

(ii) GPA and drinking (30 percent), (iii) study effort and fighting (20 percent), (iv) exercise

(30 percent), and (V ) self-esteem, risky behavior, exercise and smoking (10 percent).24,25 Only

for social clubs and self-esteem the total peer effects remain unchanged.

24Formally, the difference in peer preference reported is
∣∣∣∣1− λGM1 +λGM2

λLIM1 +λLIM2

∣∣∣∣.
25For some instances, differences are even larger when compared to the reduced-form estimation. Comparing

the general model peer effect to the reduced form and comparing between the two general models, the differences
for (i) drinking are 280 and 30 percent, (ii) study effort are 70 and 20 percent, (iii) risky behavior are 40 and 10
percent, (iv) exercise are 30 and 10 percent, (v) GPA 40 and 30 percent, and (vi) smoking 20 and 10 percent,
respectively.

22



Table 3: Structural estimation: Peer preferences (β)

Peer preferences with general β β = 1 Reduced form

Activity λ1 λ2 β Obj. Value λ1 λ2 Obj. Value L-R test λ

GPA 0.320 0.058 370.781 0.0014 0.388 0.190 0.0026 179.5 0.589
(0.061) (0.046) (114.860) (0.062) (0.042) (0.019)

Clubs 0.331 0.333 1.398 0.0022 0.349 0.344 0.0023 19.1 0.638
(0.108) (0.071) (0.167) (0.104) (0.070) (0.033)

Self esteem 0.284 0.010 22.282 0.0020 0.252 0.027 0.0027 110.1 0.289
(0.112) (0.073) (8.103) (0.108) (0.072) (0.035)

Risky -0.162 0.497 0.757 0.0016 -0.185 0.492 0.0017 9.6 0.235
(0.081) (0.032) (0.359) (0.069) (0.032) (0.034)

Exercise 0.210 0.012 8.143 0.0008 0.181 0.021 0.0017 122.2 0.177
(0.060) (0.038) (3.447) (0.060) (0.038) (0.022)

Study effort 0.021 0.340 3.904 0.0008 -0.017 0.322 0.0010 39.8 0.216
(0.087) (0.042) (1.389) (0.084) (0.043) (0.041)

Fight -0.081 0.123 73.578 0.0011 0.062 0.188 0.0013 19.1 0.254
(0.054) (0.044) (14.866) (0.075) (0.043) (0.031)

Smoke 0.208 0.649 0.692 0.0006 0.130 0.624 0.0009 40.7 0.732
(0.091) (0.035) (0.139) (0.067) (0.035) (0.031)

Drink -0.052 0.640 0.362 0.0018 -0.177 0.626 0.0019 14.5 0.156
(0.104) (0.029) (0.233) (0.072) (0.029) (0.043)

Trouble 0.291 0.000 -414.969 0.0005 0.225 0.251 0.0007 34.4 0.521
(0.708) (0.166) (148.975) (0.115) (0.073) (0.042)

Notes: Results under Peer preferences are for estimation of (21). We only report the best fit, namely the general model. We also report the best fit
of the general LIM model (β = 1) and the reduced form from Table 2 for comparison. All results control for school fixed effects. Standard errors are
reported in parentheses. In the case of the LIM model, likelihood ratio tests, 2(NLIM +N)(QLIM (λ1, λ2)−Q(λ1, λ2)), are also reported comparing
the general LIM model with β = 1 with the Peer preference outcome, β 6= 1. Results for γ can be found in Appendix C.
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Furthermore, comparing spillover versus conformism effects, across the general model (GM)

and the general LIM model shows substantial differences. For example, as peer preference

increases towards the most active agent for GPA (i.e., β = 371), the conformism effect mostly

disappears. That is, for GPA, the friends with the best academic success will influence one’s

outcomes through positive spillovers, while friends with average academic outcomes will have

no effect. Moreover, individuals do not try or succeed in conforming to their peers’ academic

outcomes. The same is true for trouble behavior, for which conformism plays no role, and there

is a skewed peer preference towards the least active agents instead.

To illustrate the effect of the size of β on each social norm, Figure 1 shows the density

distribution of social norms for non-isolated individuals from the standard LIM model and our

general social norm (see Equation (16)) with estimates of β from Table 3. The figures provide

a graphical illustration of the above findings by comparing (i) the density of the average social

norm commonly used in the LIM (i.e., y−i) and the social norm resulting from the general

model (i.e., y(y−i, β)) (see left panels of Figure 1) and (ii) the distribution of peer effects in the

LIM model (i.e., λy−i), the general LIM model (i.e., (λ1 + λ2)y−i), and the general model (i.e.,

(λ1 + λ2)y(y−i, β)) (see right panels of Figure 1). Estimates of β and λ’s for the general model

are from the left-hand side of Table 3. Estimates of β and λ’s for the general LIM model are

from the right-hand side of Table 3. Finally, estimates for λ for the LIM model are from the

column of the extreme right of Table 3.

We illustrate this with three activities of varying peer preference and peer effects, namely

risky behavior, study effort, and GPA. The full set of figures with all 10 activities can be found

in Appendix C.

The first row of Figure 1 shows the results for risky behavior, which has an estimate of peer

preference close to the average peer, namely β = 0.757. As the coefficient is close to one, the

density distribution of the individuals’ social norm is similar to the LIM model (panel (a)). The

right panel (panel (b)) also shows the result of varying estimates on the intensity of the peer

effect. Theses estimates differ substantially for the general model, compared to the reduced

form LIM model, which has considerably more mass to the left.

The second row shows the social norm for study effort, for which the coefficient is now above

one (i.e., β = 3.904). This leads to a slight skewedness towards the right for the general model

(panel (c)), but it is still small. However, unlike the result for risky behavior, the total peer effect

(λy−i) shows large variance across the three models, with the general model strongly skewed

toward higher peer effect outcomes (panel (d)).
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Lastly, the third row shows an example where peer preference is highly skewed towards

active agents (i.e., β = 370.781) for GPA outcomes. The distribution of the social norm is

skewed toward the right, with several distinct peaks, but still far from the “most” active agents

(panel (e)). Peaks appear because individuals might naturally have peers who do not achieve the

highest (4.0) GPA, but something just below it, such as from 3.0 to 4.0. In comparison, the LIM

model is perfectly hump-shaped following the average peer social norm. Panel (f) shows that

the intensity of peer preference across the three models greatly exacerbates differences between

the general model and the LIM models.

These three different examples highlight the importance of moving towards a general theory

of peer effects. There is a large range of peer preference estimates (i.e., the βs). These differences

translate into vastly different social norms that cannot be approximated by either the average,

the most active or the least active agents. That is, moving from the reduced form to a general

LIM model (with both spillover and conformism behavior) but without relaxing the functional

form of the social norm is not enough to provide a general theory of peer effects.

4 Policy implications

Returning to the discussion of policy implications from Section 2.3, we now illustrate the impor-

tance of microfounding a model of peer effects through our estimated activities. We proceed in

two steps. First, following the general estimation procedure, we simulate the Nash equilibrium

and the social optimum (first best) for the LIM spillover and conformist model. Second, we

simulate the Nash and social optimum for the general LIM model and the general model.

In Figure 2, we display the (kernel) density of the subsidies required for all non-isolated

individuals to reach the first best for each model (see Equation (A.36) in Appendix A). We use

the same three activities as in Figure 1; the results for all the other activities can be found

in Appendix C. In the left panels of Figure 2, we show the subsidies in the LIM spillover and

conformist models, while in the right panels, we show the subsidies in the general LIM model

(i.e., β = 1) and the general model (i.e., β can take any value).
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Figure 1: Social norms and peer effects (Examples)
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(f) Peer Effect (GPA)

Notes: Kernel density distribution of non-isolated individuals of (a) the social norms for the general model,
y(y−i, β), and the linear-in-means model, y−i, on the left-hand panel; and (b) peer effect from the general
model, (λ1 + λ2)y−i(y−i, β), the general LIM model, (λ1 + λ2)y−i, and the linear-in-means model, λy−i, on
the right-hand panel. Estimates of β and λ’s for the general model are from the left-hand side of Table 3.
Estimates of β and λ’s for the general LIM model are from the right-hand side of Table 3. Estimates for λ for
the linear-in-means model are from the right-most column of Table 2.

26



Technically, we simulate the best-response outcomes yi for all students within each school

based on their individual characteristics, estimated school fixed effects, and a truncated normally

distributed error term using the parameter estimates from Tables 2 and 3.26 We then proceed

in steps to find the social optimal outcome and subsidy. First, we guess an initial value of

the first best subsidy, Ŝ0, based on the Nash outcome using (A.36). Second, we compute the

subsidised Nash outcome yi with subsidy Ŝ0. Third, we recompute the first best subsidy Ŝ1

based on this new subsidised Nash outcome. Fourth, we repeat the second and third steps until

we have convergence of the first best subsidy. In the spillover model, with positive peer effects,

subsidies can potentially become unbounded if the cost of exerting effort is smaller than the peer

effect. To avoid such an issue, we limit the amount of subsidy such that the first best outcomes

never exceed the highest outcome observed in the data. Thus, subsidies are bounded for each

individual by Si ∈
[
min

{
ydatai

}
i
− yNi ,max

{
ydatai

}
i
− yNi

]
.

From the theory (see Appendix A.3), we know that the spillover model requires only positive

subsidies, while, in the conformist model, the planner can tax or subsidize agents. Consequently,

policy prescriptions are vastly different depending on the selected microfoundation. Consider

the left panels in Figure 2, where we compare the subsidies/taxes in the LIM spillover and

LIM conformist model. As predicted by the theory, to reach the first best (social optimum)

in the conformism model, the planner subsidizes some agents and taxes others, while in the

spillover model, all agents are subsidized. For both risky behavior and study effort, peer effects

are all driven by conformism (red dashed line in left panels of Figure 2), while GPA is almost

exclusively driven by spillover effects (blue solid line). However, picking between the conformism

(right dashed line) and spillover (blue solid line), subsidy schedules do not necessarily reflect

the correct policy intervention, as we have so far ignored the degree of peer preference.

Let us now focus on the right panels of Figure 2, in which we compare the policy that

restores the first best for the general LIM model (imposing β = 1) and the general model

with flexible peer preferences.27 We observe a wide range of results, which is consistent with the

large variation we obtained in the peer-preference estimates of β in Section 3.4. An activity that

has peer preferences close to the average peer (i.e., β = 1) displays similar subsidy schedules

between the general model and general LIM model (i.e., risky behavior). As peer preferences

skew towards more active or less active agents, policy prescriptions start to differ more (e.g.,

study effort, GPA).
26Errors come from the same normal distribution with mean zero, but truncation is individual specific, based

on the natural bounds of each outcome (e.g., the outcomes for GPA lie between 1 and 4.
27Note the general LIM model represents the full effect (spillover, conformism, or both) from the left panel.
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More specifically, in panel (b), for risky behavior, since peer preferences are close to 1 (β =

0.757), the general model policy implications seem to be similar to that of the general LIM

model. There is, however, one subtle difference: The general model mostly taxes individuals,

while the general LIM model does also subsidize a share of individuals, some of them with

relatively large subsidies. Indeed, since for risky behavior, the conformist model is the most

prominent one, and since peer preferences are slightly skewed toward the least active agents,

namely those agents who do not engage in risky activities, there is little use in subsidizing

individuals to increase their risky behavior. In other words, all individuals have a tendency to

put more weight on their least active peers, β < 1, when forming their social norm in the general

model. These least active agents already engage in no risky behavior. Therefore, to reach the

first best outcomes, it is optimal to tax the most risk-loving agents because it will induce them

to decrease their risky behavior. In contrast, in the general LIM model, as the social planner

tries to move individuals closer to their average peers’ risky behavior, it is beneficial to increase

some individuals’ risky behavior, as each friend’s behavior has an equal impact on one’s social

norm. Thus, the planner finds it optimal to subsidize some individuals to engage in more risky

behavior.

In panel (d), study effort requires, in general, greater levels of subsidy to reach the social

optimum (the mean of the distribution of subsidies is larger for the general model). In the

LIM model, since study effort is driven by conformism, the social planner needs to tax high-

effort students. However, in the general model, since peer preferences are skewed towards the

right (i.e., β = 3.904), the social planner can implement more targeted polices that require less

taxation and overall higher utility outcomes. Thus, in the general model, while the social planner

still taxes some of the highest-effort students, the number of students who need to be taxed to

reach the first best are fewer while the number of students receiving a subsidy increases. This

results in higher overall study effort and also higher utility.
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Figure 2: First-best subsidies (Examples)
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(f) Peer Preference (GPA)

Notes: Kernel density distribution of non-isolated individuals of the subsidy required to reach the social optimum
for (i) the linear-in-means (LIM) spillover and conformist model using estimates from the left-hand panel of Table
2; and (ii) the general model and general LIM model using estimates from the right-hand panel of Table 3.
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Lastly, in panel (f), since GPA is driven by spillover effects, for the general LIM model,

the social planner gives every individual λyi, namely the social norm times the peer effect

(see (A.33)). In contrast, in the general model, since peer preferences are skewed towards the

most active agents (i.e., β = 370.781), there is a large mass at zero because these individuals

do not have any positive spillover effect (they are not the most active friends), and there is

therefore little social value in subsidising them. The general model also has some instance of

very large positive subsidies, which are cases where the social norm is made up of very low-

performing students. Indeed, from the social planner’s perspective, it is valuable to greatly

subsidize the most active peers, even if they are low-performing students. This is because,

within their friendship group, being the highest performer will generate large spillover effects

for their poorly performing peers. For example, take two groups, one where all peers have a

GPA between 3.3 and 3.8 and one where all peers have a GPA between 1.2 and 1.5. For both

of these groups, the social planner will give most subsidies to the peers with the highest GPA

because peer preferences are skewed toward the most active agents. A student with a lower

GPA (1.5) in the second group will receive a considerably higher subsidy than a student with

a higher GPA (3.8) in the first group. This is mechanical, since subsidies are capped by the

natural limit of 4.0 (the highest achievable GPA). Observe that since the model has mostly

spillover effects, no agent is taxed. More generally, policies are very different between the LIM

and the general model. In particular, compared to the LIM model, with the general model, the

planner gives no subsidy to a large share of agents because they do not have the highest GPA in

their peer group but does give larger subsidies; that is, the curve is flatter but more spread for

the general model, compared to the LIM model. In other words, with peer preferences skewed

toward high-GPA students, the most effective way of reaching the social optimum in the general

model is by subsidizing only a selected number of individuals.

5 Conclusion

Most papers that estimate peer effects use the LIM model, which assumes that impact on

outcomes is linear and that the mean peers’ outcomes matter. In this paper, we have argued

that to prescribe adequate policies, one needs to know which model microfounds the LIM model

and determine the correct peer reference group (or social norm). We have shown that two

possible models, one based on spillover effects and the other on conformist behavior, can provide

a microfoundation of the LIM model, and that the policy implications of these models are
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drastically different. We have also developed a general model that embeds these two models as

special cases and a general social norm for which the LIM model is a special case.

We structurally estimated this model for ten different activities and showed which model

mattered the most for each activity. We found that, for most activities, individuals did not

behave according to the LIM model; that is, their social norm was not the average outcome

of their peers. For example, for GPA, self-esteem, exercise, and study effort, we found that

individuals cared mostly about the more “active” agents among their peers, while for trouble

behavior, fighting and drinking, the peers that mattered were the “less” active individuals.

We then implemented some counterfactual policies; that is, we determined for each activity

the taxes/subsidies that would restore the first best. We found that in most cases, it was

optimal to target some individuals in the network. For example, for GPA, the most effective

way of reaching the social optimum would be to only subsidize a selected number of individuals

while, in the LIM model, the planner should give the same subsidy to most individuals. This

implies that by imposing the LIM model, the policy recommendations may be very wrong and

lead to inefficient outcomes.

More generally, our aim in this study was mainly methodological, as we wanted to show

the potential mistakes made by using the (reduced-form) LIM model. While we considered

a tax/subsidy policy that would restore the first best, other policies could be implemented.

For example, we could consider a policy for which the planner would either maximize (for

positive activities such as GPA or self-esteem) or minimize (for negative activities such as risky

behavior or drinking) total outcome (instead of welfare) under a budget constraint. Since in our

estimations, we show that the peer reference group greatly varies between different activities

and very rarely corresponds to the mean peers’ outcomes, the discrepancy between the LIM and

our general model in terms of policy recommendations would still be very large.

The takeaway from our study is that a tighter link between theory, econometric methods, and

data is necessary to deeply understand how peer effects work and which policy to recommend.
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Appendix

A Theory

A.1 Existence of Nash equilibrium

Define the social norm mapping y : Rn+ → Rn+ as follows:28

y(y) ≡



y1(y)

y2(y)

...

yn(y)


. (A.1)

As stated in the main text, the main technical complication compared to the standard linear

local-average model is that, in our model, the mapping y→ y of efforts into norms is non-linear.

In what follows, we adopt the following notations:

ymin(y) ≡ min{yi, y2, . . . , yn}, ymax(y) ≡ max{y1, y2, . . . , yn},

ymin(y) ≡ min{y1(y), y2(y), . . . , yn(y)}, ymax(y) ≡ max{y1(y), y2(y), . . . , yn(y)}.

Lemma 2. For any y ∈ Rn+, the following inequalities hold:

ymin(y) ≤ ymin(y) ≤ ymax(y) ≤ ymax(y). (A.2)

Proof. Observe that (i) the social norm mapping y(·) defined by (16) is monotone increasing

over Rn+, and (ii) y(t1) = t1 for any scalar t ≥ 0. Hence:

ymin(y)1 = y (ymin(y)1) ≤ y (y) ≤ y (ymax(y)1) = ymax(y)1,

which is equivalent to (A.2). This completes the proof.

We now provide two different proofs for the existence of equilibrium. The first one uses

the standard Brower fixed point theorem. The second one use monotonicity argument from

supermodular games (Milgrom and Roberts, 1990a; Vives, 1990b).
28For the ease of the presentation, the social norm of individual i is denoted yi(y) ≡ y−i ≡ y(y−i, β).
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A.1.1 Existence of equilibrium: A topological proof

For any θ > 0, we have: θ = λ/(1 − λ), with λ ∈ (0, 1). The best-reply (BR) mapping in the

game is given by (see (13)):

y = b(y) ≡ (1− λ2)α+ (λ1 + λ2)y(y). (A.3)

where b(y) denote the vector of best-reply functions. Let µ := λ1 + λ2 ∈ (0, 1). For each

i = 1, 2, . . . , n, define

α̃i :=
1− λ2
1− µ

αi and α̃ := (α̃1, α̃2, . . . , α̃n) . (A.4)

Then, the BR mapping (A.3) can be rewritten as follows:

y = b(y) := (1− µ)α̃+ µy(y). (A.5)

Let α̃min and α̃max be the productivity levels of the least productive agent and the most

productive agent, respectively, that is,

α̃min := min{α̃1, α̃2, . . . , α̃n}, α̃max := max{α̃1, α̃2, . . . , α̃n}.

Define a compact n-dimensional cube C ⊂ Rn++ by

C ≡
{
y ∈ Rn+ : α̃min1 ≤ y ≤ α̃max1

}
. (A.6)

Lemma 3. The best-reply mapping b(·) defined in (A.5) maps the compact cube C defined by

(A.6) into itself:

y ∈ C =⇒ b(y) ∈ C. (A.7)

Proof. Observe that (i) the best reply mapping (A.5) is monotone increasing over Rn+, and (ii)

y(t1) = t1 for any scalar t ≥ 0. Hence, for any y such that α̃min1 ≤ y ≤ α̃max1, the following

inequalities hold:

α̃min1 ≤ (1− µ)α̃+ µα̃min1 = (1− µ)α̃+ µy (α̃min1) = b (α̃min1) ≤ b(y),

b(y) ≤ b (α̃max1) = (1− µ)α+ µy (α̃max1) = (1− µ)α̃+ µα̃max1 ≤ α̃max1.
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Thus, we have:

α̃min1 ≤ y ≤ α̃max1 =⇒ α̃min1 ≤ b(y) ≤ α̃max1,

which, by the definition (A.6) of C, is equivalent to (A.7). This completes the proof.

Proposition 4. For any α ∈ R++, any λ ∈ (0, 1), any β ∈ [−∞,+∞], and any network g,

there exists an interior Nash equilibrium y∗.

Proof. Observe first that C is a convex compact subset of Rn, while b(·) is continuous over

C. Combining this with Lemma 3 and using Brower’s fixed point theorem, we conclude that

b(·) has a fixed point y∗ ∈ C. That y∗ is a Nash equilibrium follows immediately from the

fact that y = b(y) ⇐⇒ ∂Ui(yi,y−i)/∂yi = 0 for all i = 1, 2, . . . , n. Furthermore, because each

utility function Ui(yi,y−i) is quadratic and strictly concave in the own choice variable yi, the

second-order conditions hold automatically. Finally, because C ⊂ Rn++ by construction, y∗ ∈ C

is an interior equilibrium. This completes the proof.

A.1.2 Existence of equilibrium: A monotonicity-based proof

Let us provide an alternative proof of Proposition 4 based on supermodular games.

For each k = 0, 1, 2, . . ., define xk ∈ Rn+ and zk ∈ Rn+ as follows:

x0 := α̃min1, xk+1 := b(xk), k = 0, 1, 2, . . . (A.8)

z0 := α̃max1, zk+1 ≡ b(zk), k = 0, 1, 2, . . . (A.9)

The following Lemma states that the smallest and largest Nash equilibria can be obtained

by iterating the best reply mapping b(·).

Lemma 5. The smallest Nash equilibrium y∗ and the largest Nash equilibrium y∗∗ ≥ y∗ are

given, respectively, by:

y∗ = lim
k→∞

xk, y∗∗ = lim
k→∞

zk, (A.10)

where xk and zk are defined, respectively, by (A.8) and (A.9).

Proof. It suffices to prove that: (i) both limits, y∗ and y∗∗, exist; (ii) both y∗ and y∗∗ are Nash

equilibria; and (iii) for any Nash equilibrium ỹ, we have: y∗ ≤ ỹ ≤ y∗∗.

Step 1: The limits y∗ and y∗∗ exist.
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Let us prove by induction that, for any k = 0, 1, 2, . . ., the following inequalities hold:

xk ≤ xk+1 ≤ α̃max1, zk ≥ zk+1 ≥ α̃min1. (A.11)

Basis: For k = 0, we have:

α̃min1 = x0 ≤ x1 = (1− µ)α̃+ µα̃min1 ≤ α̃max1,

α̃max1 = z0 ≥ z1 = (1− λ)α̃+ λα̃max1 ≥ α̃min1.

In the second line we use that y (t1) = t1 for any scalar t ≥ 0, which is implied by (16).

Induction step: Assume that (A.11) holds for some integer k (for example, we have just

shown that they hold for k = 0). Then, using the monotonicity of b(·), we have:

xk+1 = b(xk) ≤ b(xk+1) ≤ b(α̃max1) ≤ α̃max1,

zk+1 = b(zk) ≥ b(zk+1) ≥ b(α̃min1) ≥ α̃min1.

Combining this with (A.8)–(A.9) yields

xk+1 ≤ xk+2 ≤ α̃max1, zk+1 ≥ zk+2 ≥ α̃min1.

Hence, if (A.11) holds for some integer k, the same is true for k+1. This completes the induction

step and proves that (A.11) holds for all k = 0, 1, 2, . . .

The inequalities (A.11) imply that {xk} is an ascending sequence bounded from above, while

{zk} is a descending sequence bounded from below. Hence, both {xk} and {zk} must converge.

This proves the existence of the limits y∗ and y∗∗.

Step 2: y∗ and y∗∗ are Nash equilibria.

By the continuity of b(·), we have:

y∗ = lim
k→∞

xk = lim
k→∞

xk+1 = lim
k→∞

b (xk) = b (y∗) ,

y∗∗ = lim
k→∞

zk = lim
k→∞

zk+1 = lim
k→∞

b (zk) = b (y∗∗) .

Hence, both y∗ and y∗∗ are fixed points of b(·). Thus, they are Nash equilibria (see proof

of Proposition 4 above).
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Step 3: y∗ = smallest equilibrium, y∗∗ = largest equilibrium.

As implied by Step 2, the set of Nash equilibria is non-empty. So, let ỹ be some Nash

equilibrium. We need to show that y∗ ≤ ỹ ≤ y∗∗. Due to (A.10), it suffices to prove instead

that, for any k = 0, 1, 2, . . . , we have:

xk ≤ ỹ ≤ zk. (A.12)

We proceed by induction.

Basis: we first prove (A.12) for k = 0. Because ỹ is a Nash equilibrium, it must satisfy

(A.3). Applying the function ymin(·) to both parts of (A.12), and using the Jensen’s inequality

for concave functions and Lemma 2, we get:

ymin (ỹ) ≥ (1− µ)α̃min + µymin (ỹ) ≥ (1− µ)α̃min + µymin (ỹ) .

Similarly, applying the function ymax(·) to both parts of (A.12), and using Jensen’s inequality

for convex functions and Lemma 2, we get:

ymax (ỹ) ≤ (1− µ)α̃max + µymax (ỹ) ≤ (1− µ)α̃max + µymax (ỹ) .

Hence, we have: ymin (ỹ) ≥ α̃min and ymax (ỹ) ≤ α̃max. This, in turn, implies that α̃min ≤

ỹi ≤ α̃max for all i = 1, 2, . . . , n, or, equivalently:

x0 = α̃min1 ≤ ỹ ≤ α̃max1 = z0. (A.13)

This proves (A.12) for k = 0. Note also that (A.13) implies that any Nash equilibrium

belongs to the cube C defined by (A.6).

Induction step: Let (A.12) hold for some integer k (for example, this is true for k = 0).

Applying the best reply mapping b(·) to all terms in (A.12) and using monotonicity of b(·), we

get:

b(xk) ≤ b(ỹ) ≤ b(zk).

Because ỹ is a Nash equilibrium, we have: b(ỹ) = ỹ. Combining this with (A.8) – (A.9), we

get:

xk+1 ≤ ỹ ≤ zk+1,
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which proves that (A.12) holds for k+1, hence for all k = 0, 1, 2 . . . This completes the induction

step, the proof of (A.12), Step 3, and thus the whole proof of Lemma 5.

Lemma 5 is very useful. Indeed, unlike the topological proof based on Brower’s fixed point

theorem, Lemma 5 allows to compute equilibria by iterating the best-reply mapping under

parameter values estimated from the data. Furthermore, we will see below that the best-reply

mapping b(·) is a contraction mapping over the whole Rn+; hence the equilibrium is unique

(y∗ = y∗∗) and can be obtained by successive iterations of b(·) no matter where we start.

Corollary 2. If all the agents have the same productivity level α > 0, i.e., if α1 = α2 = . . . =

αn = α, then the equilibrium is unique and is given by

y∗ = α̃1 = y∗∗,

where α̃ := 1−λ2

1−µ α.

Proof. Using (A.8)–(A.9) and the identities y(α1) = αy(1) = α1, it is readily verified that,

when α = α1, we have: xk = α1 = zk for all k ≥ 2. Taking the limit on both sides under

k →∞ proves the result.

A.2 Uniqueness of Nash equilibrium

A.2.1 Uniqueness of Nash equilibrium for convex norms

Let || · ||∞ be the standard sup-norm over Rn:

||z||∞ ≡ max
i=1,2,...,n

|zi|, for all z = (z1, z2, . . . , zn) ∈ Rn.

We first prove a general uniqueness result for convex social norms, which does not require a

CES functional form (16) of the social norm mapping y(·).

Proposition 6. Let the social norm mapping y : Rn+ → Rn+ be any function which is (i) convex,

i.e., the inequality y((1− γ)x + γz) ≤ (1− γ)y(x) + γy(z) holds for any γ ∈ [0, 1] and for any

x, z ∈ Rn+; (ii) positive homogeneous of degree 1, i.e., the equality y(tz) = ty(z) holds for any

t ∈ R+ and for any z ∈ Rn+; and (iii) satisfies the inequality ||y(z)||∞ ≤ ||z||∞ for any z ∈ Rn+.

Then, (A.5), and hence (A.3), has a unique fixed point.
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Proof. Consider again the consecutive approximations, xk and zk, k = 0, 1, 2, . . ., to the mini-

mum equilibrium and the maximum equilibrium. Recall that xk and zk are defined by (A.8) and

(A.9), respectively. It suffices to prove that limk→∞(zk − xk) = 0, which will imply y∗ = y∗∗,

and hence uniqueness of equilibrium.

Using consecutively (A.8)–(A.9), (A.5), Jensen’s inequality (i) for convex functions, and

positive homogeneity (ii), we have for any k = 0, 1, 2, . . .:

0 ≤ zk+1 − xk+1 = µ (y(zk)− y(xk)) = µ (y(xk + zk − xk)− y(xk))

= µ
[
2y
(
1
2xk + 1

2 (zk − xk)
)
− y(xk)

]
≤ µ [y (xk) + y (zk − xk)− y(xk)] = µy (zk − xk) .

By combining this with the monotonicity of the sup-norm, we obtain:

z ≥ x =⇒ ||z||∞ ≥ ||x||∞ for any x, z ∈ Rn+.

This, with assumption (iii) of the Proposition, we get:

||zk+1 − xk+1||∞ ≤ µ||zk − xk||∞,

which, in turn, implies by induction:

||zk − xk||∞ ≤ µk||z0 − x0||∞ = µk(αmax − αmin) −→
k→∞

0.

Equivalently, we have: limk→∞(zk−xk) = 0, hence, y∗ = y∗∗. This completes the proof.

A.2.2 Uniqueness of Nash equilibrium for concave norms

We now prove a second general uniqueness result for concave social norms, which also does not

require a CES functional form (16) of the social norm mapping y(·).

Proposition 7. Let the social norm mapping y : Rn+ → Rn+ be any concave function, i.e., the

inequality y((1−γ)x+γz) ≥ (1−γ)y(x)+γy(z) holds for any γ ∈ [0, 1] and for any x, z ∈ Rn+.

Then, (A.3) has a unique fixed point.

Proof. Assume that, on the contrary, y∗∗ 6= y∗. Define

I ≡ {i | y∗∗i > y∗i } . (A.14)
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Because y∗∗ 6= y∗ and y∗∗ ≥ x∗, it must be true that I is non-empty.

For each i ∈ I, denote by τi the unique solution (in τ) to the equation:

τy∗∗i + (1− τ)y∗i = 0. (A.15)

Observe that τi < 0 for all i ∈ I.

Let j ∈ I be such that τj = max{τi | i ∈ I}. We have:

τjy
∗∗ + (1− τj)y∗ ≥ 0. (A.16)

To prove (A.16), assume first that i ∈ I. Then, because the left-hand side of (A.15) is

increasing in τ and because τj ≥ τi for all i ∈ I, we have:

τjy
∗∗
i + (1− τj)y∗i ≥ τiy∗∗i + (1− τi)y∗i = 0.

Assume now that i ∈ {1, 2, . . . , n} \ I. Then, y∗i = y∗∗i , and we have:

τjy
∗∗
i + (1− τj)y∗i = y∗∗i = y∗i ≥ 0.

This proves (A.16). By definition of τj , we also have:

τjy
∗∗
j + (1− τj)y∗j = 0. (A.17)

Let bj(·) be the jth component of the best-reply mapping defined by (A.3). Because y∗ and

y∗∗ are both Nash equilibria, we have:

bj(y
∗) = y∗j , bj(y

∗∗) = y∗∗j . (A.18)

Because the social norm mapping is concave, so is bj(·). Consider the following identity:

y∗ =
−τj

1− τj
y∗∗ +

1

1− τj
(τjy

∗∗ + (1− τj)y∗) . (A.19)

Because τj < 0, the coefficients −τj
1−τj and 1

1−τj in the right-hand side of (A.19) are non-

negative and sum up to one. Combining this with concavity of bj(·) and using Jensen’s inequality

for concave functions, we get:
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bj (y∗) ≥ −τj
1− τj

bj (y∗∗) +
1

1− τj
bj (τjy

∗∗ + (1− τj)y∗) ,

or, equivalently,

bj (τjx
∗∗ + (1− τj)x∗) ≤ (1− τj)bj (x∗) + τjbj (x∗∗) .

Using consecutively (A.18) and (A.17), we get:

bj (τjy
∗∗ + (1− τj)y∗) ≤ (1− τj)y∗j + τjy

∗∗
j = 0. (A.20)

However, using (A.16), the monotonicity of bj(·), and the definition (A.3) of the best-reply

mapping, we obtain:

bj (τjy
∗∗ + (1− τj)y∗) ≥ bj (0) = (1− λ)αj > 0,

which contradicts (A.20). This completes the proof.

It is now straightforward to prove Proposition 1, i.e., the uniqueness of the Nash equilibrium

of the game for which the utility function of each individual i = 1, · · · , n is given by (12) and

her social norm yi has the CES functional form (16).

Consider first the case when β ∈ (1,+∞]. In that case, the social norm mapping y : Rn+ →

Rn+ is a convex function. Proposition 6 shows that there exists a unique fixed point of the best-

reply functions (A.5), and hence (A.3), for any convex social norm mapping, which includes

the CES social norm when β ∈ (1,+∞]. This, clearly, implies that there exists a unique Nash

equilibrium of this game for β ∈ (1,+∞].

Consider now the case when β ∈ [−∞, 1]. In that case, the social norm mapping y : Rn+ → Rn+
is a concave function. Proposition 7 shows that there exists a unique fixed point of the best-reply

functions (A.5), and hence (A.3), for any concave social norm mapping, which includes the CES

social norm when β ∈ [−∞, 1]. This, clearly, implies that there exists a unique Nash equilibrium

of this game for β ∈ [−∞, 1].
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A.3 Social optimum (first-best) for the spillover and the conformist

model

Consider a standard welfare function Wm(y,g) =
∑
i U

m
i (yi,y−i,g), for m = S (spillover

model) and m = C (conformist model). For the general model, we denote the total welfare

by W(y,g) =
∑
i Ui(yi,y−i,g). The planner chooses the actions y1, y2, ..., yn of each of the n

agents that maximizes Wm(y,g) or W(y,g). This is the first best.

A.3.1 The general model

Let us first solve the general model in which agents’ utility is given by (12). The first best is

equal to:

yi = (1− λ2)αi + (λ1 + λ2)y−i + λ1
∑
j

yj
∂y−j
∂yi

+ λ2
∑
j

(yj − y−j)
∂y−j
∂yi

, (A.21)

where λ1 := θ1
(1+θ2)

, λ2 := θ2
(1+θ2)

,

y−j =


∑n
k=1 ĝjkyk if β = 1(∑n
k=1 ĝjky

β
k

) 1
β

if β ∈]−∞,+∞[,

(A.22)

and

∂y−j
∂yi

=

ĝji = ĝij if β = 1

ĝji

(∑n
k=1 ĝjky

β
k

)( 1
β−1)

yβ−1i > 0 if β ∈]−∞,+∞[.

(A.23)

The next proposition shows the existence and uniqueness of the first best outcome.

Proposition 8. Assume λ1 and λ2 are not too large. Then, the first best outcome is unique.

Proof. Let us restate (A.21) in vector-matrix form:

y = (1− λ2)α+ λ1F(y) + λ2G(y), (A.24)

where the mappings F(y) = (F1(y), F2(y), . . . , Fn(y)) and G(y) = (G1(y), G2(y), . . . , Gn(y))

are defined, respectively, as follows:

Fi(y) := y−i(y−i) +
∑
j

yj(y−j)
∂y−j(y−j)

∂yi
,
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Gi(y) := y−i(y−i) +
∑
j

(yj − y−j(y−j))
∂y−j(y−j)

∂yi
.

At the extreme case of λ1 = λ2 = 0, the fixed point condition (A.24) has a unique solution

yO = α. Furthermore, since the right-hand side of (A.24) is continuously differentiable with

respect to λ1, λ2, and at (λ1, λ2,y) = (0, 0,α), by the implicit function theorem, there exist

threshold values λ̂1 > 0 and λ̂2 > 0 of λ1 and λ2 respectively, such that (A.24) defines a

single-valued function yO(λ1, λ2) for all (λ1, λ2) ∈
[
(0, 0); (λ̂1, λ̂2)

]
. It remains to prove that

yO(λ1, λ2) is a unique solution to (A.24). We proceed by contradiction. Assume that there

exists a sequence (λk1 , λ
k
2) → 0, such that, for any (λk1 , λ

k
2) there exists ỹ(λk1 , λ

k
2) 6= yO(λk1 , λ

k
2).

Two cases may arise.

Case 1: the sequence ỹ(λk1 , λ
k
2) converges to α. This case is impossible, since it implies the

existence of two distinct branches of the fixed-point correspondence defined by (A.24), which

violates the implicit function theorem.

Case 2: the sequence ỹ(λk1 , λ
k
2) has a subsequence, which does not converge to α but

converges to some ξ 6= α. This leads to a contradiction, since both the left-hand side and the

right-hand side of (A.24) are continuous with respect to (λ1, λ2,y) at (λ1, λ2,y) = (0, 0, ξ).

Taking the limit on both sides of (A.24) under (λk1 , λ
k
2 , ỹ(λk1 , λ

k
2))→ (0, 0, ξ), we conclude that

y = ξ must be a solution to (A.24) in the extreme case of λ1 = λ2 = 0. But we have assumed

ξ 6= α, and (A.24) clearly has no solutions other than α, a contradiction.

This completes the proof.

The linear-in-means model (β = 1)

Consider the special case of the LIM model (β = 1). Then, using the fact that ĝji = ĝij and∑
j ĝij = 1, the first best is given by

yi = (1− λ2)αi + 2(λ1 + λ2)y−i − λ2y−j , (A.25)

where y−i =
∑
j ĝijyj .

The general social norm
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When the social norm y−i ≡ y(y−i, β) is given by (16), the first best is equal to:

yi = (1− λ2)αi + (λ1 + λ2)

 n∑
j=1

ĝijy
β
j

 1
β

+ λ1
∑
j

ĝij yj

(
n∑
k=1

ĝjky
β
k

)( 1
β−1)

yβ−1i

+ λ2
∑
j

ĝij

yj −( n∑
k=1

ĝjky
β
k

) 1
β

( n∑
k=1

ĝjky
β
k

)( 1
β−1)

yβ−1i .

(A.26)

A.3.2 The conformist model

Let us consider the conformist model in which the agents’ utility is given by (8).

The linear-in-means model (β = 1)

By assuming that λ1 = 0 in (A.25), we obtain:

yi = (1− λ2)αi + 2λ2
∑
j

ĝijyj − λ2
∑
k

ĝjkyk. (A.27)

The general social norm

By assuming that λ1 = 0 in (A.26), we obtain:

yi = (1− λ2)αi + λ2

 n∑
j=1

ĝijy
β
j

 1
β

+ λ2
∑
j

ĝij

yj −( n∑
k=1

ĝjky
β
k

) 1
β

( n∑
k=1

ĝjky
β
k

)( 1
β−1)

yβ−1i .

(A.28)

A.3.3 The spillover model

Let us now consider the spillover model in which the agents’ utility is given by (4).

The linear-in-means model (β = 1)

By assuming that λ2 = 0 in (A.25), we obtain:

yi = αi + 2λ1
∑
j

ĝijyj . (A.29)

The general social norm

By assuming that λ2 = 0 in (A.26), we obtain:

yi = αi + λ1

 n∑
j=1

ĝijy
β
j

 1
β

+ λ1
∑
j

ĝij yj

(
n∑
k=1

ĝjky
β
k

)( 1
β−1)

yβ−1i . (A.30)
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A.4 Policy implications of the spillover and the conformist model

Let us now determine the subsidies that the planner can give to each agent i in order to restore

the first best. For that, we add one stage before the effort game is played in which the planner

will announce the optimal subsidy Si to each agent i such that (using the general utility (12)):

Ui(yi,y−i,g) = (αi + Si) yi + θ1yiy−i −
1

2

[
y2i + θ2

(
yi − y−i

)2]
. (A.31)

A.4.1 Comparing the spillover and the conformist model for the linear-in-means

model (β = 1)

The spillover model

In (A.29), we show that there is too little effort at the Nash equilibrium as compared to

the social optimum outcome (first best). Equilibrium interaction effort is too low because each

agent ignores the positive impact of her effort on the effort choices of others, that is, each agent

ignores the positive externality arising from complementarity in effort choices. As a result, the

market equilibrium is not efficient.

As stated above, to restore the first best, the planner could subsidize the efforts of all agents.

Consider the utility (A.31) for the spillover model, that is, when θ2 = 0. We obtain:

USi (yi,y−i,g) =
(
αi + SSi

)
yi + λ1yiy−i −

1

2
y2i . (A.32)

where λ1 := θ1 and SSi denotes the optimal subsidy per effort in the spillover model. If29

SSi = λ1
∑
j

ĝijy
o
j = λ1y

o
−i, (A.33)

or in matrix form SS = λ1Gyo, then it is easily verified that, in the second stage, each player will

play her first-best effort instead of the Nash-equilibrium effort. Thus, the first best is restored.

The conformist model

The first best is given by (A.27), which is neither larger or smaller than the Nash equilibrium

effort. Indeed, compared to the Nash equilibrium, the first best has an extra term, λ2
∑
j ĝij(yj−

y−j) = λ2(y−i − y−j), which could be positive or negative. Ths means that, at the Nash

equilibrium, when deciding her individual effort, each agent does not take into account the

effect of her effort on the social norm of her peers, which creates an externality that can be
29All variables with the superscript o denote their optimal values, that is, the variables that maximize social

welfare.
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positive or negative. Indeed, if individual i has friends for whom yj > y−j (resp. yj < y−j),

then when she exerts her effort, she does not take into account the fact that she positively affects

y−j , the norm of her friends, which increases (decreases) the utility of their neighbors. In that

case, compared to the first best, individual i underinvests (overinvests) in effort, because she

exerts positive (negative) externalities on her friends.

Contrary to the spillover model, the planner does not want to subsidize all agents in the

network. Consider the utility (A.31) for the conformist model, that is, when θ1 = 0. We obtain:

UCi (yi,y−i,g) =
(
αi + SCi

)
yi −

1

2

[
y2i + θ2

(
yi − y−i

)2]
. (A.34)

where SCi denotes the optimal subsidy per effort in the spillover model. Denote λ2 ≡ θ2
(1+θ2)

.

Then, if

SCi =
λ2

1− λ2

∑
j

ĝij(y
o
j − yo−j) =

λ2
1− λ2

(yo−i − yo−j), (A.35)

or in matrix form SC = λ2Ĝ
T (I − Ĝ)yo, in the second stage, each player will play her first-

best effort instead of the Nash-equilibrium effort. Thus, the first best is restored. This implies

that the planner restores the first best and subsidizes (taxes) agents whose neighbors make

efforts above (below) their social norms. In other words, it is necessary to subsidize agents who

exert effort below that of their neighbors and to tax those who exert effort above that of their

neighbors.

Consequently, the policy implications of the two models are very different. In the spillover

model, the planner subsidizes all agents in the network. In the conformist model, the planner

subsidizes only agents whose neighbors’ effort is above the average effort of their neighbors but

taxes agents whose neighbors’ effort is below the average effort of their neighbors. This implies,

in particular, that the planner is more likely to tax central agents (since their neighbors are

more likely to have a lower effort) and to subsidize less central agents.

A.4.2 Comparing the spillover and the conformist model for the general model

Consider now the general model where β can take any value and the utility of each individual i

is given by (A.31). We can perform the same exercise and determine the optimal subsidies that

restore the first best. In the general model, the Nash equilibrium in effort is given by (17), i.e,

yNi = (1− λ2)αi + (λ1 + λ2)y−i,
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while the first best is equal to (A.21), i.e,

yoi = (1− λ2)αi + (λ1 + λ2)y−i + λ1
∑
j

yj
∂y−j
∂yi

+ λ2
∑
j

(yj − y−j)
∂y−j
∂yi

.

As above, let us add one stage before the effort game is played in which the planner will

announce the optimal subsidy Si to each agent i such that the utility is given by (A.31). It is

straightforward to see that the subsidy given to each individual i that restores the first best is:

SGi =
yoi − yNi
1− λ2

=
1

1− λ2

λ1∑
j

yoj
∂yo−j
∂yoi

+ λ2
∑
j

(yoj − yo−j)
∂yo−j
∂yoi

 . (A.36)

In particular, for the spillover model (λ2 = 0), we have:

SG,Si = λ1
∑
j

yoj
∂yo−j
∂yoi

, (A.37)

while, for the conformist model (λ1 = 0), we obtain:

SG,Ci =
λ2

1− λ2

∑
j

(yoj − yo−j)
∂yo−j
∂yoi

. (A.38)

Since ∂yo−j
∂yoi

> 0 (see (A.23)), for the spillover model, the planner wants to subsidize all agents in

the network. For the conformist model, this is not always true since it depends on the difference

between yoj and yo−j . This implies that the planner will subsidize agents who exert effort below

that of their neighbors and tax those who exert effort above that of their neighbors. Thus, the

policy implications from the previous section qualitatively extend to the case when β can take

any value.

A.5 Derivative of the social norm with respect to β

Let us calculate ∂y(y−i,β)
∂β . Remember that general social norm is defined as (see also Equation

(16)),

y−i ≡ y(y−i, β) =

 n∑
j=1

ĝijy
β
j

 1
β

.
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Denote by Y (β) :=
∑n
j=1 ĝijy

β
j . We have (assuming that Y (β) 6= 1),

 n∑
j=1

ĝijz
β
j

 1
β

:= Y (β)
1
β = exp

(
[lnY (β)]

1

β

)
.

Thus,

∂y(y−i, β)

∂β
=

∂

∂β

[
Y (β)

1
β

]
=

∂

∂β

[
exp

(
[lnY (β)]

1

β

)]
= exp

(
[lnY (β)]

1

β

)
1

β

(
∂ [lnY (β)]

∂β
− lnY (β)

β

)
.

Observe that lnY (β) = ln
∑n
j=1 ĝijy

β
j , so that

∂ [lnY (β)]

∂β
=

∑n
j=1 ĝijy

β
j ln yj∑n

j=1 ĝijy
β
j

.

Thus

∂y(y−i, β)

∂β
= exp

(
[lnY (β)]

1

β

)
1

β

(
∂ [lnY (β)]

∂β
− lnY (β)

β

)
= Y (β)

1
β

1

β

(∑n
j=1 ĝijy

β
j ln yj∑n

j=1 ĝijy
β
j

−
ln
∑n
j=1 ĝijy

β
j

β

)

=
1

β

 n∑
j=1

ĝijy
β
j

 1
β (∑n

j=1 ĝijy
β
j ln yj∑n

j=1 ĝijy
β
j

−
ln
∑n
j=1 ĝijy

β
j

β

)
.
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B Additional Details Structural Estimation

Weighted Average GMM

Given the moment conditions are based on two distinct groups, we follow the estimation strategy

of Arellano and Meghir (1992). Formally, let ŷ be the OLS predictor of y (or any exogenous

predictor of y, i.e., an object that is only a function of x), and let y′is denote the derivative

of yis with respect to β. Further, define the set of instruments as zi = [xi, yis(ŷ, β), y′is(ŷ, β)].

Given the two orthogonality assumptions on the error term: (1) E (εizi) = 0 for all non-isolated

individuals, and (2) E (εixi) = 0 for all isolated individuals. The orthogonality conditions

follows directly from the assumption that E (εi|Z,G) = 0 for all i as ŷ is only a function of x.

Then, the method of moments estimator θ = [γ′, λ1, λ2, β]′ is the solution of,

Q(θ) = h1(θ)W1h
′
1(θ) + h2(θ)W2h

′
2(θ),

where

h1(θ) =
1

N1

N1∑
i=1

[yi − (1− λ2)xiγ − (λ1 + λ2)yis(y−i, β))]zi

and

h2(θ) =
1

N2

N2∑
i=1

[yi − xiγ]xi

for non-isolated and isolated individuals, respectively. Note, N1 is the number of non-isolated

individuals and N2 is the number of isolated individuals . Note, the identification of θ relies

on both moment conditions so we need to ensure that both are asymptotically not-negligible,

i.e. limN1+N2→∞
N1

N1+N2
= r1 ∈ (0, 1) (which is equivalent to limN1+N2→∞

N2

N1+N2
= r2 ∈ (0, 1)).

Concentrated GMM

For estimation purposes, as the moment functions are linear in γ, we can concentrate the

objective function around [λ1, λ2, β]. Taking the first order condition of Q(θ) with respect to

γ, we obtain (after long, but straightforward algebra):

γ̂(λ1, λ2, β) =

[
(1− λ2)2

N2
1

X′1Z1W1Z
′
1X1 +

1

N2
2

X′2X2W2X
′
2X2

]−1
×[

(1− λ2)

N2
1

X′1Z1W1Z
′
1(y1 − (λ1 + λ2)φ1(y−i, β)) +

1

N2
2

X′2X2W2X
′
2y2

]−1
,

where for any (row) vector ai = (xi, zi,wi,yi), the matrix A1 = (X1,Z1,W1) is obtained by
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staking ai for all non-isolated individual i, and A2 = (X2,Z2,W2) is obtained by staking ai for

all isolated individual i.

The concentrated objective function is therefore Q̃(θ̃) = Q̃([λ1, λ2, β]) = Q([γ̂′(λ1, λ2, β), λ1, λ2, β]),

where θ̃ = [λ1, λ2, β]. The function is minimized numerically in Section 3.4.
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C Data and Results

C.1 Additional Data Details

AddHealth provides a wealth of information regarding student’s activities and outcomes. We

extract a large number of the activities available in the in-school interview sample to test our

theory. In total, we are left with 10 activities that have potential testable peer effects and peer

preferences: (1) grade point average (GPA), (2) social clubs, (3) self esteem, (4) risky behavior,

(5) exercise, (6) study effort, (7) fighting, (8) smoking, (9) drinking, and (10) trouble behavior.

These variables are constructed as follows,

1. GPA is the average across four disciplines: English, Mathematics, History, and Science

(questions S10a-S10d). The lowest possible GPA is 1.0 and the highest is 4.0.

2. Social clubs refers to the number of social clubs a student belongs to at school (question

S44A1-S44A33). The data list up to 33 possible clubs a student can join.

3. Self esteem is based on the average of six questions asking the individual how much they

agree or disagree with a certain statement. The selected statements are, (1) “I have a lot

of good qualities” (question S62h); (2) “I have a lot to be proud of” (question S62k); (3) “I

like myself just the way I am” (question S62m); (4) “I feel like I am doing everything just

right” (question S62n); (5) “I feel socially accepted” (question S62o); and (6) “I feel loved

and wanted” (question S62p). We code statements from zero to 1 corresponding to no to

strong self-esteem.

4. Risky behavior is based on the average of seven statements regarding risky behavior in

the past 12 months. These questions are, (1) “smoke cigarettes?” (question S59a); (2)

“drink beer, wine, or liquor?” (question S59b); (3) “get drunk” (question S59c); (4) “race

on a bike, on a skateboard or roller blades, or in a boat or car?” (question S59d); (5)

“do something dangerous because you were dared to?” (question S59e); (6) “lie to your

parents or guardians?” (question S59f); and (7) “skip school without an excuse” (question

S59g). The variable reflects average usual frequency of all events during a given week.

Values range from 0 to 6 in the data, we recode these to frequency measures from zero to

7 (nearly everyday).

5. Exercise refers to the number of times per week the student exercises to a sweat (question

S63). Values range from 0 to 4 in the data, we recode these to frequency measures from
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zero to 7.5 (more than 7 times).

6. Study effort is in regards to how hard a students tries to do her school work well (question

S48). We code statements from zero to 1 corresponding to no effort to trying hard.

7. Fighting is in regards to the number of times the student got into a physical fight in the

past 12 months (question S64). Values range from 0 to 4 in the data, we recode these to

frequency measures from zero to 7.5 (more than 7 times).

8. Smoking asks the number of times the student smoked in the past 12 months (question

S59a). Values range from 0 to 6 in the data, we recode these to frequency measures from

zero to 7 (nearly everyday).

9. Drinking is in regards to the number of times the student drank in the past 12 months

(question S59b). Values range from 0 to 6 in the data, we recode these to frequency

measures from zero to 7 (nearly everyday).

10. Trouble behavior is based on the average of 4 statements of “Since school started this

year, how often have you had trouble:” (1) “getting along with your teachers?” (question

S46a); (2) “paying attention in school?” (question S46b); (3) “getting your homework

done?” (question S46c); and (4) “getting along with other students?” (question S46d).

The variable is recode from zero to five equivalent to an answer of “never” to “everyday”

at school.

C.2 Detailed Estimation Results

The following provides detailed estimation results for all estimations presented in Tables 2 and

3.
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Table A1: General LIM Model Estimation

GPA Clubs Self esteem Risky Exercise Study effort Fight Smoke Drink Trouble

Age -0.018 -0.010 -0.002 0.049 -0.129 -0.016 -0.072 0.180 0.108 -0.009
(0.003) (0.013) (0.001) (0.006) (0.009) (0.001) (0.009) (0.016) (0.011) (0.006)

Female 0.167 0.127 -0.046 -0.392 -1.404 0.079 -0.912 -0.050 -0.381 -0.167
(0.010) (0.029) (0.003) (0.022) (0.050) (0.004) (0.043) (0.033) (0.026) (0.019)

Hispanic -0.089 0.471 -0.004 0.318 -0.100 -0.023 0.393 0.123 0.378 0.165
(0.014) (0.079) (0.003) (0.031) (0.036) (0.005) (0.043) (0.058) (0.044) (0.028)

White 0.041 0.197 -0.009 0.239 0.214 -0.039 -0.001 0.516 0.190 -0.103
(0.013) (0.063) (0.003) (0.029) (0.034) (0.005) (0.038) (0.061) (0.039) (0.026)

Black -0.150 0.577 0.033 0.123 -0.108 -0.017 0.254 -0.342 0.220 0.182
(0.017) (0.090) (0.004) (0.033) (0.041) (0.005) (0.047) (0.065) (0.048) (0.032)

Asian 0.294 1.254 -0.037 0.405 -0.331 -0.015 0.194 0.378 0.530 0.200
(0.021) (0.144) (0.004) (0.044) (0.048) (0.006) (0.051) (0.078) (0.063) (0.037)

Mother Ed. less than HS. -0.089 -0.026 -0.027 0.108 -0.122 -0.014 0.092 0.154 0.121 0.094
(0.012) (0.040) (0.003) (0.020) (0.030) (0.004) (0.032) (0.051) (0.030) (0.023)

Mother Ed. more than HS 0.188 0.486 0.008 -0.050 0.181 0.003 -0.180 -0.198 -0.038 -0.114
(0.012) (0.053) (0.002) (0.015) (0.024) (0.003) (0.026) (0.042) (0.023) (0.019)

Mother Ed. none 0.022 0.380 -0.010 0.241 -0.147 -0.028 0.201 0.431 0.301 0.045
(0.017) (0.080) (0.004) (0.035) (0.046) (0.006) (0.051) (0.079) (0.049) (0.033)

Mother Professional 0.067 0.295 0.001 0.058 0.088 -0.004 0.087 0.067 0.128 -0.030
(0.011) (0.050) (0.002) (0.019) (0.030) (0.004) (0.031) (0.051) (0.030) (0.022)

Mother Other Job -0.040 0.111 -0.008 0.086 -0.017 -0.022 0.120 0.237 0.075 0.043
(0.009) (0.036) (0.002) (0.016) (0.025) (0.003) (0.026) (0.044) (0.024) (0.019)

Mother No Job -0.124 -0.029 -0.022 0.131 -0.004 -0.013 0.241 0.178 0.057 0.142
(0.016) (0.063) (0.004) (0.029) (0.041) (0.005) (0.045) (0.068) (0.041) (0.032)

1− λ2 0.810 0.656 0.973 0.508 0.979 0.678 0.812 0.376 0.374 0.749
(0.042) (0.070) (0.072) (0.032) (0.038) (0.043) (0.043) (0.035) (0.029) (0.073)

λ1 + λ2 0.577 0.694 0.279 0.307 0.202 0.305 0.250 0.754 0.449 0.476
(0.020) (0.035) (0.036) (0.037) (0.022) (0.041) (0.032) (0.032) (0.042) (0.043)

β 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
- - - - - - - - - -

Observations 69961 78735 71511 75149 71462 75799 71381 74584 74436 75847

Notes: Detailed estimation results for the general LIM model presented in Tables 2 and 3. Age, female, hispanic, white, black, asian, mother’s
education less than high school, mother’s education more than high school, mother’s education non, mother professional occupation, mother other
job, mother no job make up the covariates, xi for estimating γ.
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Table A2: Spillover LIM Model Estimation

GPA Clubs Self esteem Risky Exercise Study effort Fight Smoke Drink Trouble

Age -0.018 -0.015 -0.002 0.039 -0.128 -0.014 -0.069 0.154 0.085 -0.008
(0.002) (0.009) (0.001) (0.003) (0.008) (0.001) (0.007) (0.008) (0.005) (0.005)

Female 0.151 0.136 -0.046 -0.275 -1.390 0.066 -0.828 -0.005 -0.236 -0.149
(0.006) (0.018) (0.002) (0.007) (0.020) (0.002) (0.018) (0.015) (0.008) (0.011)

Hispanic -0.083 0.336 -0.003 0.210 -0.099 -0.020 0.356 0.089 0.234 0.146
(0.011) (0.045) (0.003) (0.016) (0.035) (0.003) (0.034) (0.029) (0.019) (0.021)

White 0.040 0.149 -0.009 0.152 0.213 -0.033 -0.004 0.360 0.109 -0.093
(0.011) (0.042) (0.003) (0.015) (0.033) (0.003) (0.032) (0.029) (0.017) (0.020)

Black -0.137 0.406 0.033 0.050 -0.106 -0.010 0.234 -0.292 0.114 0.160
(0.013) (0.052) (0.003) (0.018) (0.040) (0.004) (0.039) (0.033) (0.022) (0.024)

Asian 0.269 0.927 -0.036 0.217 -0.329 -0.008 0.154 0.202 0.231 0.176
(0.015) (0.070) (0.004) (0.022) (0.046) (0.005) (0.043) (0.037) (0.026) (0.027)

Mother Ed. less than HS. -0.084 -0.039 -0.026 0.066 -0.120 -0.009 0.092 0.115 0.041 0.083
(0.009) (0.028) (0.002) (0.011) (0.029) (0.003) (0.027) (0.024) (0.013) (0.017)

Mother Ed. more than HS 0.169 0.390 0.008 -0.034 0.179 0.003 -0.160 -0.119 -0.020 -0.101
(0.007) (0.023) (0.002) (0.009) (0.023) (0.002) (0.020) (0.020) (0.010) (0.014)

Mother Ed. none 0.011 0.295 -0.010 0.179 -0.145 -0.022 0.199 0.348 0.172 0.046
(0.014) (0.051) (0.004) (0.019) (0.045) (0.004) (0.042) (0.038) (0.021) (0.026)

Mother Professional 0.057 0.229 0.001 0.034 0.088 -0.003 0.069 0.038 0.049 -0.023
(0.009) (0.029) (0.002) (0.011) (0.029) (0.003) (0.025) (0.023) (0.013) (0.017)

Mother Other Job -0.038 0.077 -0.008 0.059 -0.016 -0.018 0.104 0.165 0.047 0.037
(0.008) (0.024) (0.002) (0.009) (0.024) (0.002) (0.021) (0.020) (0.011) (0.014)

Mother No Job -0.115 -0.031 -0.021 0.101 -0.004 -0.012 0.217 0.155 0.052 0.131
(0.013) (0.044) (0.003) (0.016) (0.040) (0.004) (0.037) (0.033) (0.018) (0.024)

λ1 0.519 0.612 0.270 0.079 0.193 0.125 0.172 0.442 0.102 0.391
(0.019) (0.034) (0.035) (0.037) (0.021) (0.040) (0.031) (0.031) (0.044) (0.041)

β 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
- - - - - - - - - -

Observations 69961 78735 71511 75149 71462 75799 71381 74584 74436 75847

Notes: Detailed estimation results for the spillover LIM model presented in Table 2. Age, female, hispanic, white, black, asian, mother’s education
less than high school, mother’s education more than high school, mother’s education non, mother professional occupation, mother other job, mother
no job make up the covariates, xi for estimating γ.
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Table A3: Conformism LIM Model Estimation

GPA Clubs Self esteem Risky Exercise Study effort Fight Smoke Drink Trouble

Age -0.019 -0.009 -0.002 0.045 -0.142 -0.016 -0.075 0.186 0.099 -0.012
(0.004) (0.017) (0.001) (0.006) (0.008) (0.001) (0.008) (0.015) (0.009) (0.006)

Female 0.185 0.121 -0.050 -0.377 -1.489 0.078 -0.928 -0.053 -0.372 -0.179
(0.010) (0.034) (0.002) (0.018) (0.028) (0.003) (0.029) (0.036) (0.024) (0.017)

Hispanic -0.110 0.545 -0.004 0.309 -0.107 -0.023 0.402 0.122 0.368 0.178
(0.017) (0.087) (0.003) (0.029) (0.038) (0.005) (0.041) (0.061) (0.042) (0.029)

White 0.048 0.260 -0.010 0.227 0.230 -0.039 -0.001 0.535 0.180 -0.113
(0.016) (0.077) (0.003) (0.027) (0.036) (0.004) (0.039) (0.062) (0.038) (0.028)

Black -0.184 0.710 0.037 0.125 -0.119 -0.016 0.261 -0.359 0.210 0.203
(0.019) (0.098) (0.004) (0.032) (0.044) (0.005) (0.046) (0.067) (0.047) (0.033)

Asian 0.341 1.504 -0.041 0.401 -0.345 -0.014 0.194 0.384 0.515 0.212
(0.021) (0.132) (0.004) (0.043) (0.050) (0.006) (0.052) (0.083) (0.061) (0.039)

Mother Ed. less than HS. -0.098 -0.034 -0.030 0.101 -0.130 -0.014 0.096 0.153 0.110 0.102
(0.014) (0.051) (0.003) (0.019) (0.031) (0.004) (0.032) (0.055) (0.029) (0.025)

Mother Ed. more than HS 0.226 0.578 0.009 -0.041 0.194 0.003 -0.186 -0.217 -0.030 -0.128
(0.011) (0.044) (0.002) (0.014) (0.025) (0.003) (0.025) (0.045) (0.022) (0.020)

Mother Ed. none 0.041 0.416 -0.011 0.235 -0.152 -0.028 0.201 0.427 0.294 0.042
(0.021) (0.095) (0.004) (0.033) (0.048) (0.006) (0.051) (0.083) (0.047) (0.037)

Mother Professional 0.087 0.355 0.002 0.058 0.091 -0.004 0.088 0.068 0.120 -0.036
(0.014) (0.056) (0.003) (0.019) (0.032) (0.004) (0.031) (0.055) (0.029) (0.025)

Mother Other Job -0.043 0.125 -0.009 0.080 -0.018 -0.022 0.124 0.245 0.070 0.048
(0.012) (0.044) (0.002) (0.015) (0.026) (0.003) (0.026) (0.046) (0.023) (0.021)

Mother No Job -0.140 -0.040 -0.023 0.125 -0.008 -0.013 0.247 0.184 0.055 0.150
(0.019) (0.080) (0.004) (0.028) (0.043) (0.005) (0.045) (0.072) (0.039) (0.034)

λ2 0.406 0.529 0.154 0.467 0.094 0.315 0.209 0.675 0.601 0.374
(0.019) (0.030) (0.034) (0.029) (0.020) (0.034) (0.028) (0.028) (0.029) (0.039)

β 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
- - - - - - - - - -

Observations 69961 78735 71511 75149 71462 75799 71381 74584 74436 75847

Notes: Detailed estimation results for the conformism LIM model presented in Table 2. Age, female, hispanic, white, black, asian, mother’s education
less than high school, mother’s education more than high school, mother’s education non, mother professional occupation, mother other job, mother
no job make up the covariates, xi for estimating γ.
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Table A4: Reduced Form Estimation

GPA Clubs Self esteem Risky Exercise Study effort Fight Smoke Drink Trouble

Age -0.025 -0.022 -0.003 0.033 -0.146 -0.013 -0.056 0.095 0.076 0.004
(0.002) (0.008) (0.001) (0.003) (0.009) (0.001) (0.008) (0.008) (0.004) (0.005)

Female 0.147 0.219 -0.052 -0.216 -1.392 0.054 -0.758 0.010 -0.171 -0.143
(0.006) (0.019) (0.002) (0.007) (0.022) (0.002) (0.018) (0.016) (0.009) (0.012)

Hispanic -0.074 0.259 -0.001 0.108 -0.081 -0.014 0.186 0.021 0.120 0.094
(0.012) (0.036) (0.003) (0.013) (0.037) (0.003) (0.033) (0.030) (0.016) (0.022)

White 0.044 0.094 -0.009 0.072 0.220 -0.023 -0.096 0.164 0.037 -0.089
(0.011) (0.033) (0.003) (0.012) (0.035) (0.003) (0.031) (0.029) (0.015) (0.021)

Black -0.100 0.236 0.027 -0.011 -0.035 0.005 0.141 -0.148 0.028 0.080
(0.014) (0.040) (0.004) (0.015) (0.042) (0.004) (0.038) (0.037) (0.018) (0.025)

Asian 0.194 0.555 -0.027 0.056 -0.269 0.006 -0.045 0.075 0.025 0.103
(0.015) (0.047) (0.004) (0.018) (0.048) (0.004) (0.043) (0.040) (0.021) (0.028)

Mother Ed. less than HS. -0.081 -0.058 -0.019 0.031 -0.072 -0.001 0.100 0.070 0.006 0.065
(0.010) (0.030) (0.002) (0.011) (0.030) (0.003) (0.027) (0.025) (0.013) (0.018)

Mother Ed. more than HS 0.138 0.351 0.005 -0.017 0.181 0.002 -0.094 -0.004 -0.010 -0.078
(0.008) (0.025) (0.002) (0.009) (0.024) (0.002) (0.022) (0.020) (0.011) (0.015)

Mother Ed. none -0.043 0.216 -0.007 0.123 -0.031 -0.010 0.243 0.274 0.080 0.055
(0.015) (0.045) (0.004) (0.017) (0.047) (0.004) (0.041) (0.038) (0.020) (0.027)

Mother Professional 0.034 0.212 0.003 0.024 0.115 -0.001 0.041 0.037 0.018 -0.003
(0.010) (0.031) (0.003) (0.011) (0.031) (0.003) (0.028) (0.026) (0.013) (0.019)

Mother Other Job -0.046 0.049 -0.007 0.050 0.012 -0.014 0.074 0.099 0.040 0.026
(0.008) (0.025) (0.002) (0.009) (0.026) (0.002) (0.023) (0.021) (0.011) (0.015)

Mother No Job -0.109 -0.035 -0.019 0.077 0.011 -0.009 0.172 0.088 0.049 0.139
(0.013) (0.040) (0.003) (0.015) (0.042) (0.004) (0.037) (0.035) (0.018) (0.025)

λ 0.589 0.638 0.289 0.235 0.177 0.216 0.254 0.732 0.156 0.521
(0.019) (0.033) (0.035) (0.034) (0.022) (0.041) (0.031) (0.031) (0.043) (0.042)

Observations 69961 78735 71511 75149 71462 75799 71381 74584 74436 75847

Notes: Detailed estimation results for the reduced form presented in Table 2. Age, female, hispanic, white, black, asian, mother’s education less
than high school, mother’s education more than high school, mother’s education non, mother professional occupation, mother other job, mother no
job make up the covariates, xi for estimating γ.
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Table A5: General Model Estimation

GPA Clubs Self esteem Risky Exercise Study effort Fight Smoke Drink Trouble

GPA Clubs Self esteem Risky Exercise Study effort Fight Smoke Drink Trouble
Age -0.015 -0.007 -0.002 0.049 -0.131 -0.015 -0.077 0.176 0.104 -0.016

(0.003) (0.013) (0.001) (0.007) (0.009) (0.001) (0.009) (0.016) (0.012) (0.005)
Female 0.159 0.128 -0.046 -0.392 -1.404 0.079 -0.903 -0.058 -0.383 -0.152

(0.009) (0.028) (0.003) (0.022) (0.050) (0.004) (0.043) (0.036) (0.026) (0.016)
Hispanic -0.099 0.466 -0.003 0.321 -0.100 -0.024 0.394 0.126 0.381 0.155

(0.013) (0.078) (0.003) (0.032) (0.036) (0.005) (0.041) (0.060) (0.045) (0.024)
White 0.040 0.196 -0.010 0.242 0.215 -0.040 -0.004 0.523 0.192 -0.101

(0.011) (0.062) (0.003) (0.029) (0.034) (0.005) (0.036) (0.064) (0.040) (0.021)
Black -0.156 0.576 0.034 0.128 -0.099 -0.019 0.264 -0.342 0.226 0.172

(0.015) (0.089) (0.004) (0.033) (0.041) (0.006) (0.044) (0.068) (0.050) (0.028)
Asian 0.300 1.250 -0.037 0.413 -0.333 -0.017 0.170 0.393 0.541 0.177

(0.020) (0.143) (0.004) (0.045) (0.047) (0.007) (0.048) (0.083) (0.066) (0.031)
Mother Ed. less than HS. -0.088 -0.026 -0.026 0.110 -0.117 -0.015 0.105 0.147 0.122 0.086

(0.011) (0.040) (0.003) (0.020) (0.029) (0.004) (0.030) (0.054) (0.031) (0.019)
Mother Ed. more than HS 0.192 0.488 0.008 -0.050 0.181 0.003 -0.186 -0.216 -0.037 -0.114

(0.011) (0.053) (0.002) (0.015) (0.024) (0.003) (0.024) (0.045) (0.023) (0.021)
Mother Ed. none 0.022 0.376 -0.009 0.242 -0.143 -0.029 0.203 0.417 0.304 0.045

(0.015) (0.079) (0.004) (0.035) (0.045) (0.006) (0.048) (0.082) (0.050) (0.034)
Mother Professional 0.064 0.294 0.001 0.059 0.082 -0.005 0.074 0.068 0.129 -0.024

(0.010) (0.050) (0.002) (0.020) (0.029) (0.004) (0.029) (0.054) (0.031) (0.017)
Mother Other Job -0.043 0.108 -0.008 0.086 -0.021 -0.022 0.117 0.238 0.074 0.041

(0.008) (0.036) (0.002) (0.017) (0.024) (0.003) (0.024) (0.046) (0.025) (0.018)
Mother No Job -0.125 -0.031 -0.021 0.130 -0.005 -0.014 0.245 0.176 0.055 0.135

(0.015) (0.063) (0.004) (0.029) (0.040) (0.005) (0.043) (0.072) (0.042) (0.050)
1− λ2 0.942 0.667 0.990 0.503 0.988 0.660 0.877 0.351 0.360 1.000

(0.046) (0.071) (0.073) (0.032) (0.038) (0.042) (0.044) (0.035) (0.029) (0.166)
λ1 + λ2 0.379 0.664 0.294 0.336 0.222 0.361 0.041 0.857 0.588 0.291

(0.014) (0.037) (0.039) (0.049) (0.023) (0.045) (0.010) (0.056) (0.074) (0.542)
β 370.781 1.398 22.282 0.757 8.143 3.904 73.578 0.692 0.362 -414.969

(114.860) (0.167) (8.103) (0.359) (3.447) (1.389) (14.866) (0.139) (0.233) (148.975)
Observations 69961 78735 71511 75149 71462 75799 71381 74584 74436 75847

Notes: Detailed estimation results for the general model presented in Table 3. Age, female, hispanic, white, black, asian, mother’s education less
than high school, mother’s education more than high school, mother’s education non, mother professional occupation, mother other job, mother no
job make up the covariates, xi for estimating γ.
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C.3 Additional Figures

The following provides all additional examples of Figures 1 and 2 that are omitted in the main

text.
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Figure A1: Social Norms and Peer Effects (2)
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Figure A2: First Best Subsidies (1)
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Figure A3: First Best Subsidies (2)
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