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Abstract

We study a repeated principal-agent model with transferable utility, where
the principal’s evaluation of the agent’s performance is subjective. Consequently,
monitoring is noisy and private. We focus on equilibria that are robust to small
payoff shocks. Existing constructions to support effort fail to be equilibria in
the presence of payoff shocks – there is no equilibrium where the agent always
exerts effort on the equilibrium path. Allowing the principal and agent to make
simultaneous cheap-talk announcements at the end of each period makes some
effort sustainable in a purifiable equilibrium. Payoffs arbitrarily close to fully
efficient ones can be achieved in equilibrium if players are sufficiently patient.
In contrast to earlier constructions, bonus targets are non-trivial and employee
self-evaluation is critical.

Keywords: Private monitoring, repeated games, relational contracts

1 Introduction
In many organizations, the tasks that employees must perform lack an objective, con-
tractible measure of performance. Thus, performance evaluation is subjective, and the
worker cannot observe the employer’s evaluation of his own performance. When coupled
with moral hazard, this noisy, private monitoring makes providing incentives difficult.
MacLeod (2003) and Chan and Zheng (2011) examine the role of formal contracts,
∗We are grateful to Marcin Pęski and to seminar audiences for very useful comments.
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where the principal has full commitment power, but cannot verifiably disclose her ob-
servation of performance. However, in many organizational settings, the assumption
of full commitment is a strong one, and relational contracts, that are enforced via re-
peated interaction, are more plausible.1 Levin (2003), Fuchs (2007) and Maestri (2012)
have examined the role of relational contracts in the context of subjective performance
evaluation. These contracts typically specify that the worker exerts effort, and that
the employer pays a bonus to the worker if and only if her subjective evaluation of the
worker’s performance is good. In order to provide incentives for the employer to truth-
fully disclose her evaluation, she is made indifferent between paying and not paying
the bonus. To achieve that indifference, the equilibrium must exhibit money burning,
for example by dissolving the relationship with some probability in the event that the
bonus is not paid. Such an equilibrium exhibits an inefficiency, because productive
relationships must be dissolved with positive probability. Fuchs (2007) shows that effi-
ciency can be enhanced by requiring the principal to report on the agent’s performance
only every T periods. As in Radner (1985) and Abreu, Milgrom, and Pearce (1991),
the extent of inefficiency decreases with T, and when both players become arbitrarily
patient, the equilibrium can attain full efficiency.2

Our paper begins with the observation that the equilibria so constructed are fragile,
and they do not survive if the principal is subject to small payoff shocks to her flow
revenues. In this case, equilibria where the principal is indifferent between paying the
bonus or not do not survive, because the principal strictly prefers to pay the bonus when
she learns that flow revenues in the relevant periods are high, and strictly prefers not
to pay it when she learns that they will be low. In consequence, she will condition her
bonus payment on the shock, and not on the agent’s performance. This breaks the link
between the agent’s effort and bonus payments, and destroys his incentive to provide
effort. More generally, we show that in any equilibrium of the perturbed game where the
agent’s choice of effort is deterministic, the agent will never exert effort. In particular,
because all the above mentioned equilibria in the literature exhibit deterministic effort
choices, none of them survive when there are payoff shocks.

Our first goal is to construct positive effort purifiable equilibria – equilibria of the
unperturbed game that are robust to small payoff shocks. In our equilibria, the agent’s
effort choices are random, and his continuation play depends non-trivially upon realized
effort. Consequently, the principal’s observations of output are informative, and affect
her continuation value. Additionally, we allow the principal and agent to make simul-

1Baker, Gibbons, and Murphy (2002) and Malcomson (2013) examine the circumstances under
which relational contracts are valuable in an organizational setting.

2Fuchs (2007) also shows that the class of optimal contracts, for any fixed discount factor, includes
one where the principal provides no incentive pay and no feedback, until the agent is fired.
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taneous cheap-talk announcements at the end of a period. The principal announces her
private signal of the agent’s performance, while the agent discloses his choice of effort.
Strict incentives for truth telling are provided by dissolving the relationship with higher
probability whenever the announcements “differ” – i.e., when the principal announces a
bad signal while the agent reports that he worked, or the other way around. When the
noise in monitoring is small and the discount factor is above a cutoff, we can construct
an equilibrium where the agent works with arbitrarily high probability and the efficiency
loss is close to zero. Moreover, both players have strict incentives for truth-telling and
the agent’s randomization is history-independent, so that the equilibrium is purifiable.

The reader might ask, why is it that we require cheap-talk announcements in addi-
tion to randomization by the agent? Previous work on the repeated prisoner’s dilemma
with private monitoring has constructed “belief-based equilibria,” where initial random-
ization by both players, coupled with two-sided private monitoring, suffices to provide
strict incentives in subsequent periods (Sekiguchi (1997), Bhaskar and Obara (2002)).
The difference arises due to the sequential nature of our stage game and since the
principal’s actions (bonus payments) are public, rather than private. The cheap-talk
announcements introduce an element of simultaneity that allows us to circumvent the
induction arguments that underlie our negative results. Of course, talk does not liter-
ally have to be cheap, and the same results would obtain if we allowed players to make
small simultaneous payments to each other.

For the case where the noise in monitoring is large, we explore equilibria where
announcements are made only every T periods. A difficulty arises – any equilibrium
that incentivizes truthful announcements with penalties for mismatched reports requires
the agent to shirk with positive probability in every period. We present two approaches
to resolving that difficulty. In the first, the agent randomly picks a single period of the
T -period block in which to shirk. In the second, he shirks either in all periods of the
block or in none. In the second approach, the agent must be indifferent between always
shirking and always working within each T -period block. The block equilibria based
on Abreu, Milgrom, and Pearce (1991) mentioned above, where penalties are imposed
only if all T signals are bad, do not satisfy that requirement. Instead, we introduce
a different construction that does yield the necessary indifference. Both approaches
achieve efficiency in the limit as the players become arbitrarily patient.

From a practical point of view, the types of small shocks to payoffs that we consider
would be present in nearly any economic application. For example, an employer’s indif-
ference between paying a bonus or not would be broken by whether or not she has a pen
and checkbook handy. That fragility motivates our focus on purifiable equilibria: the-
oretical predictions that are not robust to such small details are unlikely to accurately
describe real world behavior. The relational contracts that we introduce differ qual-
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itatively from existing constructions in the literature. In the block equilibria studied
previously, the agent gets a bonus at the end of the block except after extremely poor
sequences of outcomes that are improbable even under no effort. In some of our equi-
libria, the threshold to earn the bonus is at a level that the agent is likely to reach only
with consistent effort. We view that property as capturing more accurately how firms
set, for example, sales targets for their employees. Another distinctive feature of our
construction is the use of reports from the worker as well as from the employer. Many
firms incorporate that sort of employee self-evaluation in their performance reviews.

On the theoretical side, the paper demonstrates how incorporating cheap-talk re-
ports of private signals and incentivizing truth telling through penalties for disagree-
ment can be used to construct purifiable equilibria under private monitoring. That
technique may be useful more generally in constructing equilibria where players have
strict incentives to condition upon history in repeated games with private monitoring.
The belief-free constructions often used in that setting rely on players’ exact indiffer-
ence between punishing or not in order to provide incentives. Bhaskar, Mailaith, and
Morris (2013) discuss the difficulty of making those equilibria purifiable. Our technique
also provides an additional role for mixed strategies in repeated games: non-trivial ran-
domization by both players is required so that each player’s private information is a
predictor of the other’s announcement.

1.1 Related literature

There is a large literature on the repeated games with private monitoring that is relevant
that we will not do full justice to. Briefly, while the early literature used both “belief-
based" and “belief-free" approaches, most of the subsequent work has built on elements
of the belief-free equilibria pioneered by Piccione (2002) and Ely and Välimäki (2002).
Matsushima (2004) uses belief-free equilibria to show that block-strategy equilibria
can ensure asymptotic efficiency in the repeated prisoners’ dilemma when the players’
private signals are independent. Ely, Hörner, and Olszewski (2005) generalize belief-free
equilibria for a larger class of games. Sugaya (2020) proves a general version of folk
theorem for repeated private monitoring games. In the work on relational contracts
(Levin (2003), Fuchs (2007)), the availability of transfers makes it easier to achieve the
indifferences required for belief-free constructions, without any need for randomization.

The present paper differs from the literature on repeated games with private moni-
toring in three aspects. First, the stage game considered here has a non-trivial extensive
form, whereas the folk theorem of Sugaya (2020) obtains for simultaneous-move stage
games. Second, monitoring of the agent by the principal is private but the principal’s
actions are public. Third, and most important, is our insistence on equilibria that
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are robust to private payoff shocks and thus are purifiable. Nonetheless, we also build
on these previous approaches. Since the agent shirks with positive probability in ev-
ery period and his continuation strategy varies with realized effort, our construction
is “belief-based” in this respect. However, our equilibrium constructions may also be
viewed as modifications of “belief-free” approaches, since they require the principal to
burn money if she does not pay a bonus.

Cheap-talk plays an important role in our analysis. In their pioneering work on
repeated games with private monitoring, Compte (1998) and Kandori and Matsushima
(1998) prove a folk theorem by using cheap-talk announcements to coordinate behavior.
When there are two players, and signals are independent conditional on the action
profile, the equilibria that they construct have a “belief-free” flavor, in that each player
is made indifferent between her possible announcements. Cheap-talk plays a different
role here, since it is a way for providing strict incentives for truth-telling. Furthermore,
randomization by the agent plays an essential role in providing strict incentives, whereas
randomization plays no such role in this earlier work.

Finally, aspects of our construction are related to the idea in Rahman (2012), of
using agent randomization to check costly monitoring by the supervisor.

2 The basic model
Time is discrete, and the horizon is infinite. There are two players, the principal and
the agent. The principal selects a base wage w, and in each period until the relationship
is terminated, the principal pays the agent w, and the agent chooses between exerting
effort (E) and shirking (S), with effort cost c > 0. The resulting output y, which is
privately observed by the principal, is stochastic and takes values in the set {G,B},
where G > B.3 We assume that Pr(y = G|E) = p and Pr(y = G|S) = q, satisfying
1 > p > q > 0, so that output is a noisy signal of the agent’s effort choice. After
observing y, the principal may choose to pay the agent an additional bonus. The
agent’s outside option is w̄; we normalize the principal’s outside option to 0.

Let ȳ and y denote the expected values of output when E and S are chosen, respec-
tively. We assume that ȳ− c > w̄ > y. Thus, it is efficient for the agent to be employed
and to exert effort (the inequalities imply that (p− q) (G−B) > c), but if the agent
shirks, then it is preferable to dissolve the relationship. Both players are risk neutral,

3Our analysis extends to any finite signal space Y . The proofs of our negative results hold in
that case. For our positive results, if we order the signals yn from lowest to highest likelihood ratio
Pr (yn|E) /Pr (yn|S), then we may focus on a binary partition of the signal space, {G,B}, where
G = {yn ∈ Y |n ≥ n̄} and B = {yn ∈ Y |n < n̄} for some cutoff n̄.
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and they do not face limited liability constraints. They maximize the discounted sum
of payoffs, with common discount factor δ ∈ (0, 1).

In the interest of precision, let us consider the following stage game Γ that is played
in every period, conditional on the relationship not having been terminated.

• The agent is paid the base wage w and chooses a ∈ {E, S}.

• The principal observes y ∈ {G,B} and decides whether or not to pay a bonus,
over and above the base wage w.

• The principal and agent observe the realization of a public randomization device
and simultaneously decide whether or not to terminate the relationship – the
relationship continues to the next period if and only if both parties want to
continue.

We denote the game that is repeated infinitely, conditional on non-termination, by
Γ∞.

The fundamental difficulty is that monitoring is imperfect and private. The principal
does not observe the agent’s action, and the agent does not observe the signal y.4 In
order to incentivize effort, the agent’s bonus payments (or his continuation value) must
depend upon the principal’s observation of output. However, because this observation is
private, the principal’s continuation value, net of the cost of the bonus payment, cannot
depend upon the signal that the principal observes. A solution to this problem, proposed
by MacLeod (2003) and Levin (2003), is to ensure that the principal is indifferent
between paying the bonus or not paying it. This indifference can be achieved via a
public randomization device that decrees that the relationship (which is profitable for
the principal) be dissolved with some probability whenever the bonus is not paid. In
other words, a part of the expected surplus from the relationship must be destroyed,
because the agent cannot be punished while simultaneously rewarding the principal. As
usual, that surplus destruction could also take the form of the principal burning money
or giving it to a third party that neither the principal nor the agent cares about.

The equilibrium is inefficient, because some surplus is destroyed. Fuchs (2007)
show that that inefficiency can be mitigated if the players are patient, by dividing the
interaction into blocks of T periods. The bonus is withheld only if the agent fails (that
is, output is B) in every period in the block, and this way of leveraging a single bonus
to incentivize effort in multiple periods reduces the loss in surplus. Fuchs (2007) also
shows that the most efficient equilibrium for a fixed discount factor is an efficiency

4In Section 5, we consider an extension where the agent gets a noisy signal of the principal’s signal.
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wage type equilibrium where the only feedback provided by the principal is when she
terminates the relationship.

The major problem with the block equilibrium (and also the one-period construc-
tion) is that it relies on the principal’s indifference between paying the bonus and not
paying it, and on her breaking this indifference according to the history of private
signals. Consequently, the equilibrium is fragile. In particular, if the value of the re-
lationship or the outside option to the principal is subject to small shocks that are
privately observed by the principal, then she will condition her bonus payment on the
realization of these shocks, and not upon output signals. This problem also arises in the
no-feedback efficiency wage construction – in any period t where the principal fires the
agent with positive probability, she must be indifferent between retaining the agent and
firing, and this indifference is untenable with shocks to the principal’s outside option.

We now make this argument more precise. Given a scalar ξ > 0 and λ ∈ (0, 1)
define the ξ-perturbed version of the stage game, Γ (ξ), as follows:

• The agent privately observes a random shock z1
t before he chooses his action, and

his cost of effort is c+ ξz1
t .

• Before the principal makes her bonus decision, the principal privately observes a
random shock z̃2

t . The principal’s payoff from high output is given by an auto-
regressive process; in period t it equals G+ ξz2

t , where z2
t = λz2

t−1 + (1− λ)z̃2
t .

• The agent privately observes a random shock z3
t after choosing effort but before

the quitting decision, and the value of his outside option is ξz3
t .

• The random variables z1
t , z̃

2
t , z

3
t are mutually independent. Each is independently

and identically distributed according to an atomless distribution µi, i ∈ {1, 2, 3},
with bounded support Z.

For completeness, the auto-regression is initialized as follows: in the first period,
z2

1 = z̃2
1 . We denote the repeated ξ-perturbed game by Γ∞ (ξ). Note that the principal’s

valuation of high output displays some persistence, although this may be arbitrarily
small. We elaborate on the reason for the persistence assumption after stating our first
negative result.

2.1 Impossibility

Our payoff shocks have bounded support, and by taking ξ to be small, their effective
range can be made arbitrarily small. Nonetheless, in their presence, it is impossible to
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sustain an equilibrium where the worker always exerts effort on the equilibrium path,
as the following proposition shows.

To make this precise, the following preliminaries are necessary. In the perturbed
game, in any period t, the agent alone observes his random shocks z1

t , z
3
t and his effort

choice at. The principal alone observes output yt and the shock to output value, z2
t .

Both parties observe the public events, such as the bonus payment and the realizations
of the public randomization device, which we denote by ωt ∈ Ω. Termination decisions
are also public, but since the game ends if one party chooses to terminate, we restrict
attention to histories where both parties have chosen to continue the relationship to
date. Let Ωt−1 denote the set of possible public histories at the beginning of period t.

Let σ = (σt)
∞
t=1 denote the strategy of the principal. A strategy for the principal

prescribes a bonus payment and a firing decision at all possible histories. Thus σt
consists of a pair (σ1

t , σ
2
t ). σ1

t : Ωt−1 × {G,B}t × Z → [0,∞) determines the bonus
payment. This depends upon the public history to date, the history of observed outputs,
and the current value of the shock to flow revenues, z2

t . σ2
t : Ωt−1 × [0,∞)× {G,B}t ×

Z × [0, 1]→ {F,R} determines the principal’s firing/retention decision, which is based
additionally upon the principal’s bonus payment this period and the realization of the
public randomization.5

Let ρ = (ρt)
∞
t=1 denote the strategy of the agent. A strategy for the agent prescribes

an effort choice and a quitting decision at all possible histories. Thus ρt consists of a
pair (ρ1

t , ρ
2
t ). ρ1

t : Ωt−1 × {E, S}t−1 × Z → {E, S} determines the agent’s effort choice.
This depends upon the public history to date, the agent’s history of effort choices, and
the current cost of effort. ρ2

t : Ωt−1× [0,∞)×{E, S}t×Z× [0, 1]→ {C,Q} determines
his quitting decision, which is based additionally upon her current period effort choice,
the principal’s bonus payment this period, the realization of the public randomization,
and the shock to the outside option.

Given the agent’s strategy ρ, the agent’s period 1 effort choice is said to be deter-
ministic in period 1 if ρ1

1 plays the same action â1 for almost all realizations of z1
1 .6

Defining recursively, the agent’s period t effort choice is deterministic in period t if

• for every s < t, his effort is deterministic in period s, and

• for every public history ωt−1 and the unique sequence of on-path private actions
5A player’s private history also includes past values of the payoff shock, but since these are payoff

irrelevant, neither player will condition on these in the perturbed game – see Bhaskar, Mailath, and
Morris (2013), Lemma 2.

6In other words, the agent’s effort choice is deterministic from the point of view of the principal,
who does not observe the agent’s payoff shock. From the point of view of the agent, his effort choice
will always be deterministic.
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along history ωt−1, strategy ρ1
t prescribes the same action for almost all realiza-

tions of z1
t .

Finally, ρ is a strategy where the agent’s effort choice is deterministic if his effort
choice is deterministic in every period.

Proposition 1. Consider the perturbed game Γ∞ (ξ) where ξ > 0 is arbitrary. In any
equilibrium where the worker’s effort choice is deterministic, the worker always shirks
when hired and the principal never pays a bonus.

The idea of the proof of this result (in the appendix) is the following. If the agent’s
effort choice is deterministic, then his continuation strategy on the equilibrium path only
depends upon the principal’s actions (bonus payments). Consequently, the principal’s
private signals do not affect her continuation value. However, the payoff shocks affect
the principal’s value from continuing the relationship, and she is almost never indifferent
between distinct bonus payments, where incentive compatibility requires that lower
bonuses are associated with a greater termination probability (or less future effort).

This result and its proof are quite different from those in Bhaskar, Mailath, and
Morris (2013). The most important difference is that the game considered here has
private monitoring, which raises new issues – the results in Bhaskar, Mailath, and
Morris (2013) assume public monitoring. The result only applies to equilibria where
the worker plays a pure strategy, but does not assume finite memory.

The proposition implies that the equilibria in Fuchs (2007) – the T -period block equi-
libria and the no-feedback efficiency wage equilibria – are not robust to payoff shocks,
no matter how small. A similar problem arises with other methods for maintaining
the principal’s indifference, such as various ways of burning money. For example, the
principal would be willing to condition the bonus payment on her private signal of out-
put if she is made indifferent between paying the bonus and contributing to charity.
Once again, though, incentive compatibility is destroyed by the slightest deviation of
the principal’s preferences from exact indifference, such as a small, privately known
variation in her valuation of the charity. It can be shown that Proposition 1 would ap-
ply in this version of the model as well. Thus the argument applies also to MacLeod’s
(2003) analysis of formal contracting with subjective performance evaluation.

Two further observations are in order. First, it suffices to assume that there are
shocks to the principal’s payoff, since shocks to the worker’s payoff play no role in
the proof. Second, the assumption that shocks to the principal’s flow payoff are auto-
regressive is important. If the shocks were i.i.d, a minor modification to the T -period
block strategy equilibrium, where we allow the principal to make a cheap-talk announce-
ment, would suffice. The principal could announce at the end of the block whether the
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agent had passed or failed the test, but both the payment of the bonus and the stochas-
tic termination of the relationship could be delayed by one period. This ensures that
the principal would be indifferent between paying and not paying the bonus, since she
has no private information about the payoff consequences of her announcement. The
assumption that shocks are auto-regressive ensures that the principal is never indifferent
between paying and not paying the bonus, no matter what the timing of these events.
For our positive results, we will not explicitly consider the perturbed game. Instead,
we will focus on constructing equilibria of the unperturbed game that are robust to
small payoff shocks, specifically on purifiable equilibria. This requires the following
definitions.

Let hit denote a generic history of public events and output signals observed by the
principal in period t at stage i, i ∈ {1, 2}. Let σ̃it(hit) =

∫
σi(hit, z

2)dµ2(z2) denote the
expected behavior of the principal at hit, taking expectations over the payoff shocks.
Similarly, given hit, a generic history of public events and efforts chosen by the agent
in period t at stage i, i ∈ {1, 2}, let ρ̃it(hit) =

∫
ρi(hit, z

j)dµj(zj) denote the expected
behavior of the agent at hit, taking expectations over the payoff shocks zj.7 Given a
sequence of perturbed games (ξk), ξk → 0, and a sequence of perturbed game strategies
(σk, ρk), the latter sequence converges to a strategy profile of the unperturbed game
(σ̃, ρ̃) if for each (i, t) and each private history hit, σ̃

k,i
t (hit) converges in distribution to

σ̃it(h
i
t) and ρ̃k,it (hit) converges to ρ̃it(hit).8
An equilibrium (σ̃, ρ̃) of the repeated game Γ∞ is purifiable if for any sequence

ξk → 0, there exists a sequence of equilibria (σk, ρk) of Γ∞ (ξk) such that the associated
behavior converges to (σ̃, ρ̃).

An equilibrium (σ̃, ρ̃) of the repeated game Γ∞ is a T -period block-strategy equilib-
rium if time can be partitioned into intervals of length T such that:

• If the relationship is in effect in the first period of a block, it is never terminated
until the end of the block.

• Bonus payments are made by the principal only in the last period of each block,
and

• The strategies within a block depend only upon the events within the block.
7j = 1 in stage 1 and j = 3 in stage 2.
8Bhaskar, Mailath, and Morris (2013) allow the shock distribution to vary along the sequence, and

distinguish between weak purification and a strong notion, Harsanyi purification. We do not make this
distinction since, for notational simplicity, the shock distribution is kept fixed. However, we note that
our negative results would hold for weak purification and our positive results would hold for Harsanyi
purification.

10



Block strategy equilibria are not purifiable, even if the agent’s effort is not deter-
ministic. In a block-strategy equilibrium, the agent’s play in each block is independent
of events in previous blocks. Consequently, the principal can be incentivized to make
distinct bonus payments as a function of her signals only by varying termination proba-
bilities at the end of the block. However, with payoff shocks, the principal will condition
her bonus payments on the shock realization and not on the output signals. The proof
is in the appendix.

Proposition 2. No effort can be sustained in any purifiable T -period block-strategy
equilibrium of Γ∞, for any finite T .

Our strategy will be to construct equilibria where players – in particular, the prin-
cipal – have strict incentives to condition upon their private signals. This ensures
robustness to any small payoff shocks. The equilibria require the agent to randomize
effort choices, and to shirk with positive probability in every period.9 In addition, we
will allow for simultaneous communication.

3 Adding cheap-talk
We modify the stage game Γ set out in the previous section by allowing the principal and
agent to make simultaneous cheap-talk announcements. Specifically, after the agent has
chosen effort and the principal has observed output, there is a cheap-talk stage within
the period where the parties announce their private information. We find that cheap
talk allows effort to be sustained in equilibrium. In this section, we construct a purifiable
equilibrium where the players make announcements every period, and we show that,
as long as the discount factor is above a cutoff, then that equilibrium is approximately
efficient when the noise in monitoring is small. For fixed noise, in the next section we
modify the equilibrium construction so that players make announcements only every T
periods; that construction will yield approximate efficiency when the players are very
patient.10

In the equilibrium that we construct, in each period the agent reports his action
choice â ∈ {E, S}, and the principal reports the output that she observed ŷ ∈ {G,B}.
As a function of the pair of announcements (â, ŷ), the principal makes a bonus payment

9Since this randomization does not depend upon private histories, payoff perturbations create no
problems.

10We note that our results still hold if making announcements has a small cost that may vary across
announcements. The reason is that in our constructions, players have strict incentives for truthful
reporting.
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to the agent, and the relationship is terminated with some probability. The relationship
is also terminated after any observable deviation.

We will first construct an equilibrium in which only the principal makes a report,
and she is indifferent between reporting good or bad signals. Then we will supplement
that construction with reports by the agent in a way that will provide the principal
with strict incentives for revealing her signal truthfully. The message exchange will also
give the agent strict incentives to report his action truthfully, but it will not affect the
qualitative properties of the baseline construction, because it will have only marginal
effects on actions and payoffs.

Our equilibrium requires the agent to choose both actions with positive probability.
Let σ ∈ (0, 1) denote the probability that he chooses E. If the principal reports outcome
G, then she pays a bonus τ . Otherwise the bonus is zero. If the principal reports B,
then the relationship is terminated with probability α. Let V P denote the principal’s
value from the relationship, and let V A denote the agent’s surplus continuation value
from the relationship, net of w̄. The following conditions must be satisfied:

(1− δ) (pτ − c)− δ (1− p)αV A = (1− δ) (qτ)− δ (1− q)αV A, (1)

(1− δ) τ = δαV P . (2)

The first condition guarantees that the agent is indifferent between action E and ac-
tion S, and the second condition guarantees that the principal is indifferent between
reporting G and reporting B.

Because both players are risk neutral and transfers are allowed, by a standard ar-
gument a most-efficient equilibrium can be found by setting V A = 0 and maximizing
V P subject to conditions 1 and 2. For V A = 0, equation 1 implies τ = c/ (p− q).

The principal’s payoff from playing the prescribed strategies is

V P = (1− δ)
(
σ (ȳ − pτ) + (1− σ)

(
y − qτ

)
− w

)
+δ (1− σ(1− p)α− (1− σ) (1− q)α)V P ,

which gives

V P =
(1− δ)

(
σ (ȳ − pτ) + (1− σ)

(
y − qτ

)
− w

)
1− δ (1− σ(1− p)α− (1− σ) (1− q)α)

,

where w is set so that V A = 0. Since the agent is indifferent between E and S, V A

can be computed by assuming that the agent plays any one of these two actions. If the
agent exerts effort, he receives w+ pτ − c. This is equal to w when w = w− qc/(p− q).
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It is most efficient to set σ = 1, yielding

V
P

=
(1− δ) (ȳ − pτ − w)

1− δ (1− (1− p)α)
.

Plugging in the value of α computed from condition 2 and the values of τ and w, and
solving for V P , gives

V
P

= ȳ − w̄ − (1− q)c
p− q

.

That is, V P in the most-efficient equilibrium is no higher than

max

{
ȳ − w̄ − (1− q)c

p− q
, 0

}
.

Assuming that ȳ−w̄−(1−q)c/(p−q) > 0, this V P can be attained in an equilibrium
by setting α to satisfy condition 2. Such an α ∈ [0, 1] exists when δ ≥ δ, where

δ ≡ c

(qc+ ȳ − w̄) (p− q)
.

We will now supplement the construction with a simultaneous exchange of messages,
which will provide both the agent and the principal strict incentives for reporting signals
truthfully, while keeping the agent indifferent between playing E and playing S. In order
to provide the agent with strict incentives for truth-telling, choose a slightly larger base
wage w, so that V A is strictly positive – it can be chosen to be arbitrarily small.

On top of the probability of termination α caused by the principal reporting B, we
add additional probabilities xij when the agent reports i ∈ {E, S} and the principal
reports j ∈ {G,B}. The values of xij must satisfy the following conditions:

pxEG + (1− p)xEB < pxSG + (1− p)xSB, (3)

qxSG + (1− q)xSB < qxEG + (1− q)xEB, (4)

pxEG + (1− p)xEB = qxSG + (1− q)xSB,
σ(1−p)

σ(1−p)+(1−σ)(1−q)xEB + (1−σ)(1−q)
σ(1−p)+(1−σ)(1−q)xSB

<
σ(1−p)

σ(1−p)+(1−σ)(1−q)xEG + (1−σ)(1−q)
σ(1−p)+(1−σ)(1−q)xSG,

(5)

σp
σp+(1−σ)q

xEG + (1−σ)q
σp+(1−σ)q

xSG
<

σp
σp+(1−σ)q

xEB + (1−σ)q
σp+(1−σ)q

xSB.

(6)
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The first two conditions guarantee strict incentives of the agent for truthful reporting.
The third condition maintains the agent’s indifference between playing E and playing S.
Finally, the last two conditions guarantee strict incentives of the principal for truthful
reporting.

For σ strictly less than but close to 1, we can satisfy the five conditions as follows.
Set xSB = 0 and choose ε > 0. Then set

xSG = σε, xEB = rε, xEG = ε (σ − 1 + r) ,

where r ≡ p(1− σ) + qσ. Observe that xSB < xSG and xEG < xEB. Roughly speaking,
this construction provides incentives for truthful reporting by terminating the relation-
ship with higher probability when the reports mismatch; that is, when the agent reports
E while the principal reports B, or when the agent reports S and the principal reports
G.

As (1 − σ, V A, ε) ↓ (1, 0, 0), the principal’s expected payoff converges to V̄ P . It
remains to show that this equilibrium is purifiable. Both players have strict incentives
at the cheap-talk stage, and the principal has strict incentives at the bonus payment
stage. Also, it is common knowledge when the relationship is to be terminated, and
we can make the principal strictly prefer termination by specifying continuation play
where the agent always shirks. That strict preference ensures that at least one party
will choose to terminate with probability one.11 When the relationship is to continue,
both parties strict preferences not to terminate since V A and V P are strictly positive.
The only remaining question is showing that the agent’s random choice of effort can
be purified, which raises no problems, because that randomization is independent of
history. We therefore have the following proposition.

Proposition 3. Let 4 > 0. If δ > δ, then there exists a purifiable equilibrium with
cheap-talk such that the principal’s expected payoff is at least V̄ P −4.

Note that a necessary condition to sustain effort in such an equilibrium, δ < 1,
corresponds to the requirement ȳ − w̄ > (1 − q)c/(p − q), which is stronger than the
condition for effort to be efficient, ȳ− w̄ > c. Similarly, the principal’s maximum payoff
in this type of equilibrium, V̄ P = ȳ − w̄ − (1 − q)c/(p − q), is less than the available
surplus ȳ−w̄−c. The reason comes from the principal’s truth-telling constraint. When
the principal observes a good outcome y = G, she needs to be incentivized to tell the
truth, and so she must be nearly indifferent between paying the bonus τ = c/(p − q)
or not. That is, her expected loss in continuation payoff after not paying the bonus

11That result continues to hold if we add shocks directly to the instantaneous payoffs of choosing
“continue” or “terminate” instead of (or as well as) to the values of the outside options.
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must be roughly equal to the bonus, and so her payoff corresponds to paying the bonus
every period rather than only after a success. These payoff losses arise even in the
non-purifiable equilbrium of Levin (2003) where the worker chooses effort for sure, and
where there is no cheap-talk.

The additional costs imposed by the purifiability requirement are two-fold – first, the
worker must shirk with positive probability, and second, the relationship is dissolved
with a small probability (xij) when the cheap-talk announcements do not coincide.
Nonetheless, these costs can be arbitrarily small, since both the shirking probability
and the value ε that parameterizes the xij’s can be arbitrarily small.

Finally, as the noise in monitoring vanishes, efficiency is achievable, as the following
corollary shows.

Corollary 4. Let 4 > 0 and assume that δ > c/ (ȳ − w̄). Then there exists ε > 0 such
that for any p > 1− ε, there is a purifiable equilibrium such that the principal’s expected
payoff is at least ȳ − w̄ − c−4 and the total expected payoff is at least ȳ − c−4.

4 T -period block equilibria with cheap-talk
With non-vanishing noise, Fuchs (2007) shows that patient players can approach ef-
ficient outcomes by dividing play into blocks of T periods. At the end of the block,
the principal pays a bonus to the worker unless the outcome was B in all T periods.
We find that adding cheap-talk can deliver a similar efficiency result when we require
purifiability, but the equilibrium has qualitatively different features.

As in the one-period case in the previous section, we generate incentives for truth-
telling by penalizing mismatched reports. That approach requires nontrivial random-
ization by the worker.

Let us examine the conditions that must be satisfied in a T -period construction.
Suppose that the equilibrium requires the agent to choose E with high probability in
every period of the block. Then the play of E in any period t of the block must be
incentivized, meaning that the principal’s reporting decision must depend on whether
signal G or B is realized in that period. However, if the principal is to have strict
reporting incentives, then the t-th period signal must be informative of the agent’s
behavior (and hence his report). That link is possible only if the agent chooses both E
and S with positive probability in the t-th period of the block. In other words, both E
and S must be played with positive probability in each period of the block.

We present two approaches for constructing that period-by-period uncertainty in
purifiable T -period equilibria. In the first approach, the agent plays S in at most one
period of the block, but it could be any period. In the second approach, the agent plays
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S either in all T periods or in none. Both of those extreme approaches may be unrealistic
in applications, but it is straightforward to use them to construct intermediate cases
(where, for example, the agent may put in low effort for a week while unexpectedly
busy at home).

4.1 Shirking in one random period

In the first approach to constructing an efficient, purifiable T -period equilibrium with
cheap-talk, we start with a (possibly nonpurifiable) T -period equilibrium σ∗ of the
baseline environment with no cheap talk, with the property that in equilibrium the
agent exerts effort in every period. In particular, σ∗ specifies a “test” that maps the
principal’s observed signals to a bonus and a termination probability. We then augment
σ∗ roughly as follows: the agent randomly chooses a period tS in which to shirk, and
she announces tS at the end of the block. The principal simultaneously announces her
signal from each of the T periods. Then the announced period tS is “thrown out,” and
the test from σ∗ is run on the remaining periods. That rule, with some adjustments,
preserves the effort incentives from σ∗, and in order to provide incentives for truth
telling we use small adjustments to termination probabilities as in Section 3.

Formally, define a T -period review strategy σ∗ = (τ, χ) of the baseline game as
follows. As a function of the number of G signals n in the principal’s private T -period
history of signals hT ∈ {G,B}T , σ∗ specifies whether or not the agent passes the test,
χ (n) ∈ {0, 1}. If the agent passes, then the principal pays him the bonus τ . If the
agent fails the test, then the principal pays τ to charity.12 The agent’s strategy is to
play E in every period. A strict T -period review strategy equilibrium σ∗ = (τ, χ) is one
in which the agent has a strict incentive to play E in each period, and both players get
expected payoffs strictly above their outside options.

Next, define an augmentation of σ∗ = (τ, χ) as follows.

4.1.1 Actions and Reports

The horizon is divided into blocks of length T each. The agent chooses exactly one
period in which she plays S by a fair lottery over the T periods plus a fictitious (T +1)-
st period. In all other periods, the agent plays E. If the fictitious period T + 1 is
selected by the lottery, then the agent provides effort in all T periods.

At the end of each block, the agent reports to the principal the period tS that she
chose for playing S, and the principal reveals the signals that she obtained in the T

12We use payments to charity as the method of destroying surplus in order to simplify the exposition.
We could instead use a probability of terminating the relationship, in the same way as in other sections.
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periods of the block. The “signal” of the principal in the fictitious period T + 1 is
generated by public randomization. More precisely, if the agent plays S in one of the T
periods, then the public randomization generates in the fictitious period T + 1 a signal
in the way the signal would be generated by the agent’s action E in that period. If
tS = T+1, then the public randomization generates a signal in the way the signal would
be generated when the agent played action S. The reports are simultaneous, and the
realization of public randomization is observed after the reports. It is understood that
the agent must report action E in all but one of the T + 1 periods; in the remaining
period she must report action S.

4.1.2 Agent’s Review

Next, the agent is subject to the test χ. The period tS does not count for the review.
All other periods count, including the fictitious one if this is not the period in which S
was prescribed. The rule χ applied to the T periods that count determines whether or
not the agent passes the test. If the agent passes the test, then he is paid the bonus τ . If
the agent fails the test, then the principal pays τ to the charity. No matter whether the
agent passes or fails, he is paid an adjustment. The adjustment compensates the agent
for playing S in a later rather than an earlier period, or for not playing S at all (that
is, for choosing the fictitious period T + 1), so that the agent is indifferent regarding
the period in which he plays S. More precisely, the adjustment is (1− δtS−1)c/δT−1 if
tS ≤ T , and it is c/δT−1 if tS = T + 1.

4.1.3 Testing Principal’s Reports

Finally, the principal’s report is tested. More specifically, an ε is added to the agent’s
bonus, no matter what the outcome of the test. That is, the bonus becomes τ + ε if
the agent passes the test, and it is ε if the agent fails. This ε is next subtracted if the
principal’s report passes the following test:

(1) A period other than tS is drawn in a fair lottery over the remaining T periods
(including the fictitious period T + 1 if tS 6= T + 1).

(2) A fifty-fifty lottery chooses one of the two: (a) tS; or (b) the period chosen in
(1) (in which it is assumed that the agent reported E).

(3) If the signal reported by the principal and the agent’s action in the selected period
coincide, that is, they are {G,E} or {B, S}, then the principal passes. Otherwise, that
is, if they are {G,S} or {B,E}, then the principal fails.

With those definitions, we can present the result for the first approach to construct-
ing a robust, efficient equilibrium.
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Lemma 5. Fix δ and T , and suppose that σ∗ = (τ, χ) is a strict T -period review
strategy equilibrium of the game without cheap-talk. Then for high enough δ, there is
an augmentation of σ∗ that is a purifiable equilibrium of the game with cheap-talk.

The proof is in the appendix.

Proposition 6. Let 4 > 0. Then there exists T such that for high enough δ there is a
purifiable equilibrium in T -period block strategies with cheap-talk where the agent exerts
effort in at least T − 1 periods of the block, the principal’s expected payoff is at least
ȳ − w̄ − c−4, and the total expected payoff is at least ȳ − c−4.

Proof. The proposition follows from applying Lemma 5 to the strategies in Fuchs (2007),
plus the observation that when players become patient and T is high enough, a single
period of playing S in every block creates only a negligible efficiency loss, as well as it
has a negligible effect on the players’ payoffs.

4.2 Shirking in 0 or T periods

In our second approach to constructing an efficient, purifiable T -period equilibrium with
cheap-talk, the agent randomizes between exerting effort in all T periods and shirking
in all T periods. That is, the agent must be indifferent between the two sequences –
“always E” and “always S” – at the beginning of the block.

The cheapest way to make the agent indifferent between the two sequences is to
punish the agent if and only if all signals in the block are B. However, if indifference
between the two effort sequences is achieved in this manner, then the agent strictly
prefers to choose E in the first period, and S in subsequent periods, to either of these
alternatives. The marginal reduction in the probability of T bad signals from exerting
effort in k + 1 rather than k periods13 is decreasing in k, because the probability of
having gotten at least one success already is increasing in k. If the worker weakly
prefers choosing E in all T periods over T − 1, then he must strictly prefer working in
1 period over “always S.” Conversely, if the punishment after the signal realization of
“all B” is increased, so as to deter this deviation, then the agent will find “always S” to
be inferior to “always E,” and will not randomize in the required manner.

In other words, if the agent is to be made indifferent between these two sequences,
and also deterred from deviating to other action sequences, then the agent must also
be punished after intermediate sequences of signal realizations – i.e., sequences where
some signals are good while the others are bad. Such punishment directly reduces the
efficiency of equilibria for any fixed discount factor. Nevertheless, as δ approaches 1,
there is a sequence of purifiable equilibria whose payoffs asymptote to efficient payoffs.

13That reduction is (1− p)
k

(1− q)
T−k − (1− p)

k+1
(1− q)

T−1−k
= (p− q) (1− p)

k
(1− q)

T−1−k.
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Proposition 7. Let 4 > 0. Then there exists T such that for high enough δ there is a
purifiable equilibrium in T -period block strategies with cheap-talk where the agent exerts
effort in all T periods or in none, the principal’s expected payoff is at least ȳ−w̄−c−4,
and the total expected payoff is at least ȳ − c−4.

The key idea is to set the cutoff number of good outcomes for paying a bonus at
an intermediate value, between fraction q and fraction p of the T periods. Then the
agent’s marginal benefit of choosing E in k + 1 rather than k periods – the increased
probability of reaching the cutoff times the amount of the bonus – is first increasing
and then decreasing in k. For low values of k, the total number of successes in the other
T − 1 periods is likely to be well below the cutoff, so one additional period of choosing
E will not make a big enough difference to matter, and for high k the cutoff is likely
to be surpassed already. That inverse U -shaped pattern of marginal benefits makes it
possible to set a cutoff and a bonus that satisfy two conditions: the average of all T
marginal benefits is c, and the average of the first k marginal benefits is below c for any
k < T . The first condition means that the worker is indifferent between “always E” and
“always S,” and the second condition means that both those choices are best responses.
Integer constraints mean that achieving those conditions generically requires two levels
of bonus, one for exactly hitting the cutoff and a slightly higher one for exceeding it.

To illustrate with a numerical example, suppose that the probability of success given
effort is p = 0.6, the probability of success given no effort is q = 0.4, and the length of
the block is T = 1000. For δ close to 1, the cutoff number of good outcomes to earn
a bonus is 572, between the mean 0.4 · 1000 = 400 given “always shirk” and the mean
0.6 · 1000 = 600 given “always work.” Bonuses of approximately 979.8c after exactly
572 good outcomes and 1034.7c after more than 572 good outcomes make both “always
work” and “always shirk” optimal for the agent.

The constructed equilibrium is as follows. Play proceeds in blocks of T periods.
Within a block, the agent chooses the same action every period, either E (probability
σ < 1) or S (probability 1 − σ). The base wage w in each period equals the worker’s
outside option, w̄. No announcements or bonus payments are made until the end of the
block. At that time, the agent announces his action â ∈ {E, S}, and the principal makes
an announcement about the number of periods n in which she observed a successful
outcome, y = G. Specifically, she announces n̂ ∈ {nL, nM , nH}, reflecting whether the
number of successes was low (below a cutoff n, to be defined below), medium (equal
to the cutoff), or high (above the cutoff). After an announcement (â, n̂), the principal
transfers τ (â, n̂) to the agent. Then the relationship is terminated with probability
α (â, n̂), based on the realization of a public randomization device. The relationship is
immediately terminated after an observable deviation.

Let bπN and Bπ
N denote the density and cdf of the binomial distribution with N
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draws and success probability π. More generally, let f [n|N, k] denote the probability
of getting exactly n successes in N periods, given that the agent works in k periods and
shirks in N − k periods:

f [n|N, k] ≡
n∑

n′=0

bpk (n′) · bqN−k (n− n′) .

Let F [n|N, k] be the corresponding cdf.
The proof of Proposition 7 relies on this lemma:

Lemma 8. There exists a T and a δ < 1 such that for every T > Tand δ > δ there
exist a cutoff n(T ) ∈ (qT, pT ) and transfers τH > τM > 0 such that

bpT (n) · τM + [1−Bp
T (n)] · τH − 1−δT

δT−1(1−δ)c

=
bqT (n) · τM + [1−Bq

T (n)] · τH
=

f [n|T, T − 1] · τM + [1− F [n|T, T − 1]] · τH − δ−δT
δT−1(1−δ)c

>

f [n|T, k] · τM + [1− F [n|T, k]] · τH − δT−k−δT
δT−1(1−δ)c

for all k ∈ {1, . . . , T − 2}. Further, Bp
T (n) tends to 0 and Bq

T (n) tends to 1 as T grows.

The lemma implies that, if we ignore the continuation value, then within a block
the agent is indifferent across working in all T periods or in 0 periods if he gets a bonus
of 0 when n < n, τM when n = n, and τH when n > n. Working in the last T − 1
periods is optimal as well, but working in the last k periods is strictly worse for any
k ∈ {1, . . . , T − 2}. (Note that conditional on working in k periods, working in the last
k periods is strictly optimal because the effort cost is discounted.) The work in the
proof of Lemma 8 lies in showing that we can find a cutoff n that makes intermediate
effort levels worse for the agent than the extremes, “always work” and “always shirk.”14

Once we have the cutoff n and transfers τM and τH , setting termination probabilities
to satisfy α(nL) = (1− δ) τH/V P , α(nM) = (1− δ) (τH − τM) /V P , and α(nH) = 0
makes the principal indifferent over her reports, given her continuation value V P > 0.

14Matsushima (2001) makes a similar argument in the context of collusion in a repeated multi-market
duopoly with imperfect monitoring. He shows that if defecting in all markets simultaneously is not a
profitable deviation, then neither is defecting in any strict subset of the markets – that is, the best
response is at one of the extremes. We additionally require indifference: that both extremes are best
responses.
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The remaining steps in the construction are to incorporate a positive continuation
value V A for the agent, endogenize V A and V P , and show how to purify the resulting
equilibrium. Taking the limit as δ → 1 then completes the proof of Proposition 7.
Details are in the appendix.

4.3 Qualitative properties

Qualitatively, the type of equilibrium used in the proof of Proposition 7, where the agent
randomizes between “always work” and “always shirk,” differs from the T -period review
strategies in which the relationship is not terminated as long as the outcome was G in at
least one period. Under the latter strategies, when T is high, the probability of missing
that cutoff is very low with or without effort, and so the size of the bonus necessary
to incentivize effort is very large. These equilibria thus feature a large, negative base
wage together with a bonus that is 1) much larger than the effort cost Tc, and 2) paid
with probability close to 1 regardless of the agent’s effort choices. In contrast, in the
purifiable equilibria that we construct, a negative base wage is not required, the bonus
is approximately equal to the effort cost Tc, and the cutoff is nontrivial. That is, the
agent reaches the cutoff with high probability after choosing “always work,” but with
very low probability after “always shirk.”

The equilibrium construction of our first approach, used in Proposition 6, builds on
the strategies in Fuchs (2007). It utilizes self-reports by the agent, but it shares the
negative wage and large bonus of the earlier work. We note, however, that it is possible
to construct a T -period review strategy equilibrium σ∗ = (τ, χ) of the baseline game in
which the wage is positive and the size of the bonus τ is close to Tc. The corresponding
rule χ specifies that the agent passes the test as long as the principal observes at least
n good signals, where n > 1 is nontrivial: always working ensures that the agent
passes the test with high probability, but always shirking means that the agent is very
likely to fail the test. The proof (available from the authors upon request) is based
on Matsushima’s construction of equilibria in repeated games of private monitoring
with conditionally independent signals. (Matsushima (2004), and see Ely, Hörner, and
Olszewski (2005) for a simplified version of the Matsushima construction.) We can
then build on these strategies (instead of the strategies in Fuchs (2007)) to construct
equilibria with properties similar to those of the equilibria constructed in Section 4.2,
in which the agent shirks in at most one period, instead of always shirking or always
exerting effort.

Given that result, our first approach as well as our second approach can produce
purifiable, virtually efficient T -period block equilibria with positive wages, bonuses of
realistic magnitudes, and nontrivial reviews. In the next section, we point out an
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additional advantage of those constructions.

5 Notes on Agent’s signal of Principal’s signal
In many (or even most) applications, the agent obtains some information regarding the
principal’s signals on top of her action. For example, even when the agent works very
hard, he may suspect (e.g. by observing the principal’s behavior) that the principal may
not appreciate his effort. The equilibria constructed in this paper are somewhat robust
with respect to the possibility that the agent obtains such a signal. To be concrete,
suppose that the agent obtains a private signal g with probability r > 1/2 when the
principal observes G, and she obtains signal b with the remaining probability. Similarly,
the agent obtains signal b with probability r if the principal observes B and she obtains
signal g with the remaining probability.

The agent’s signal about the principal’s signal introduces an additional difficulty
in constructing equilibrium strategies, because if the agent receives many good signals
of the principal’s signal, then he knows that he is likely to have already reached the
cutoff to earn a bonus, and so his incentives to provide effort deteriorate. Similarly, a
large number of bad signals may affect the incentives for exerting effort if he believes
that he will be unlikely to reach the cutoff.15 By continuity arguments, our equilibrium
strategies (that is, the strategies constructed for r = 1/2) are also equilibrium strategies
for r sufficiently close to 1/2. One can also sustain the equilibria for any r < 1 by raising
the stakes, both the bonus and the penalty for mismatched reports.

However, perhaps interestingly, the equilibria from Section 4.2 seem more robust
than the equilibrium from Proposition 6 based on Fuchs’ (2007) construction. Indeed,
it is difficult to incentivize effort when the agent obtained many signals which are g,
when she passes the test with just one G. Providing incentives is easier when passing
the test is nontrivial, as in our construction from Section 4.2. Therefore, sustaining
equilibria for a given r > 1/2 requires a higher increase in stakes in the former case
than in the latter one.

6 Concluding comments
Requiring robustness to small payoff shocks, such as are present in many economic
applications, has major consequences for relational contracting between a principal and
an agent. No equilibrium where the agent always exerts effort is robust to payoff shocks.

15See Chan and Zheng (2011) for an analysis of finitely repeated moral hazard with enforceable
contracts, where in each period the agent observes a signal regarding the principal’s signal.
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We have shown, however, that extending the basic interaction by allowing cheap-talk
can make effort sustainable.

We construct equilibria with realistic properties: the base wage is positive, the size
of the bonus paid to the agent for good performance in order to incentivize effort is
proportionate to the cost of effort, and the threshold for earning the bonus is set so
that the agent can likely reach it by exerting effort but not otherwise. The optimal
contracts previously studied in the literature, in contrast, feature bonuses that are
much larger than the actual effort cost and thresholds that are nearly certain to be
reached even without effort. Our construction also highlights the role of self review of
workers’ performance, and suggests a motivation for assigning the task of evaluating
an employee’s performance to a manager rather than to the firm owner who pays the
bonuses.

From the point of view of theory, our analysis focuses on the parts that timing and
communication play in purifiability. The simultaneity of the cheap-talk announcements
in our constructions is crucial. If instead one player reported after seeing the other’s re-
port, then the argument of Proposition 1 would apply, and effort could not be sustained.
On the other hand, our results do not rely on the assumption that announcements are
costless. Because players have strict incentives to make truthful reports in our con-
structions, those equilibria are robust to introducing small costs that may vary across
announcements.

Alternatively, allowing the agent’s effort to have persistent effects on output could
also make it possible to construct purifiable equilibria. For example, consider a T -
period block equilibrium where the agent is indifferent between working in all periods
or in none. As described in Section 4.2, the challenge in making such an equilibrium
purifiable is that working in an intermediate number of periods may be better for the
agent than the two extremes. That problem might be avoided if the probability of
generating a good signal is increasing not only in the agent’s current effort but in his
effort in preceding periods. In that case, an agent who begins the block by working gets
a higher expected return (in the form of an increased chance in passing the principal’s
end-of-block test) from effort in subsequent periods than does an agent who begins by
shirking, so that either extreme dominates mixing effort and no effort.
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7 Appendix

7.1 Proofs of negative results

7.1.1 Proof of Proposition 1

Assume that the agent’s strategy ρ is such that his effort choice is deterministic. We
may, without loss of generality, write his effort choices as a function, ρ1

t : Ωt−1 → {E, S}.
Thus, the agent’s on path effort choice is measurable with respect to the public history,
and the principal views the agent’s effort choice in any period t as deterministic. Fix
a public history ωt−1. Since the agent’s effort choice is deterministic, the past action
sequence is deterministic, and equals (â1, ..., ât−1). Consequently, the principal’s obser-
vation of output yt does not affect her continuation value from period t+ 1 onwards –
it only affects her flow payoff at date t, but not her beliefs about the agent’s continua-
tion strategy. Let period t + k be the first period in which the realization of yt affects
either the bonus payment or the principal’s termination decision. Suppose that the
principal makes two distinct bonus payments τ and τ ′ after private histories that only
differ with regard to yt, where τ gives rise to strictly greater expected discounted bonus
payments from principal to agent. Incentive compatibility for the principal implies that
the agent’s continuation strategy after τ must differ from that after τ ′, with τ ′ inducing
either lower effort or a greater termination probability. For almost all realizations of
z2
t+k, the principal either strictly prefers to pay τ or strictly prefers to pay τ ′. Thus the
set of values of the z2

t+k such that the principal conditions her bonus payment upon yt
is negligible. It follows that it is not optimal for the agent to exert any effort.

7.1.2 Proof of Proposition 2

Consider the perturbed game, and a period t at the end of the T -period block. Suppose
that the principal paid a bonus level τ (which could possibly be zero), and condition on a
realization of the public randomization device, θ. Conditional on the public event (τ, θ),
the agent’s quitting strategy in period t is a function ρ2

t (τ, θ) : {E, S}T × Z → {C,Q},
i.e. it specifies continue or quit depending upon his effort choices in the block and upon
the realization of his outside option. Similarly, the principal’s firing strategy in period
t is a function σ2

t (τ, θ) : {G,B}T × Z → {R,F}, i.e. it specifies firing or retaining
the agent depending upon output realizations in the block and upon the value to the
principal of high output. Observe that either player’s choice on whether to continue
or terminate the relationship only matters when the other player chooses to continue,
since the relationship terminates if one player chooses so. Suppose that the equilibrium
specifies that after (τ, θ), the relationship continues with positive probability, so that
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there exists some effort sequence and a non-negligible set of payoff shocks for which
the agent chooses C. Since output signals have full support, for any output sequence
in {G,B}T , the principal assigns positive probability to the agent continuing. Thus,
for almost any realization of the principal’s payoff shock z2

t , if it is optimal for the
principal to continue (resp. terminate) the relationship at some sequence in {G,B}T ,
it is optimal to continue (resp. terminate) at every other sequence in {G,B}T . In
other words, at any (τ, θ) where the relationship continues with positive probability,
the principal’s firing decision does not depend upon the output sequence in the block.

A similar argument establishes that at such a (τ, θ) (where the relationship contin-
ues with positive probability), the agent’s quitting decision does not depend upon the
sequence of effort choices within the block. This establishes that for any (τ, θ), the
probability that the relationship continues does not depend either upon effort choices
within the block, nor on the output sequence.

Now consider the principal’s choice between two distinct bonus values τ and τ ′. If
τ > τ ′, then the probability of terminating the relationship must be greater after τ ′.
The preceding argument has established that the principal’s continuation value from
choosing τ (or τ ′) does not depend upon the observed output sequence. Thus, if it is
strictly optimal to choose τ at some output sequence and some realization z2

t of her
payoff shock, then she will choose τ at every other output sequence for that same value
of z2

t . That is, the bonus payment does not depend upon the output sequence, and
consequently, it is not optimal for the agent to exert any effort.

This argument establishes that for any ξ > 0, the set of block strategy equilibria
where the agent chooses effort with positive probability is empty. Thus any block strat-
egy equilibrium of the unperturbed game that features positive effort is not purifiable.

7.2 Proving Lemma 5

We show first that the specified strategies are an equilibrium, and then that the equi-
librium is purifiable.

Proof. There are four sets of equilibrium conditions that must be verified.

The agent has strict incentives to shirk in one and only in one period:
The agent is happy to shirk in one period, because the period chosen by him does not
count in his review, and he saves on the cost of providing effort (in periods t ≤ T ), or
he is paid an adjustment (in periods t > 1), or both (in periods 1 < t ≤ T ). Shirking in
more than one period will affect the review. By definition of a T -period review strategy,
the bonus τ and test χ are such that the agent prefers to exert effort in every period
except the one chosen for shirking.
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The agent is indifferent across all T + 1 periods regarding the choice of
period for shirking: This follows because all periods (except the one selected for
shirking) equally matter for the agent’s review, and the adjustments (1 − δt−1)c/δT−1

for t ∈ {1, . . . , T} and c/δT−1 for t = T+1 make the saving on costs equal to c (in terms
of period 1) across all T +1 periods. In addition, the testing procedure has the property
that the chance of losing ε is independent of the choice of the period for shirking, given
the honest report of the principal.

The agent has strict incentives to honestly report the period in which he
has shirked: If the agent misreports the period in which he has shirked, he replaces
in the review a period in which he played E with a period in which he played S. So, a
misreport has the same effect on the review as taking action S instead of taking action
E. In contrast to taking S instead of taking E, the agent does not save on the cost
of effort by a misreport, but he reduces the probability of losing ε. However, this last
benefit is assumed to be very close to zero.

The principal has strict incentives to honestly report her signals: Testing
of the principal’s reports is designed such that from the ex ante perspective each pe-
riod (including the fictitious one) is chosen for comparing the agent’s action and the
principal’s signal with probability 1/(T + 1); in addition, the probability that action E
(or that action S) was taken in the chosen period is 1/2. The principal’s objective is
to report G or B that is consistent with the agent’s action (i.e., G if the action was E,
and B if the action was S). By receiving her signal, she updates her belief in favor of E
when the signal is G, and in favor of S if the signal is B. Thus, any misreport reduces
the probability of attaining the principal’s objective.

Of course, the principal correctly anticipates the agent’s strategy of playing S in
exactly one period. So, her computation of probabilities is contingent on the event that
the agent takes action S in exactly one period (possibly the fictitious one, that is, in
none) and contingent on all her T signals. This affects the probabilities assigned by the
principal to actions E and S in a given period, given the sequence of signals that she
obtained, but it does not change which of the two probabilities is higher. For example,
suppose that the principal obtained signals G in all T periods, and considers a period
t ∈ {1, . . . , T}. If the agent had randomized 50-50 between actions E and S in period
t, then the principal would have a chance of p for her report being consistent with the
agent’s action if she reported G, and she would have only a chance of q < p if she
reported B.

This is of course not the comparison that the principal is conducting. Instead, she
computes the probability of: (i) t being the period in which the agent shirked, (ii) t
being a period in which the agent worked and t being selected by the testing procedure,
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and compares these two probabilities. According to the testing procedure, she saves ε
with probability 1/2 contingent on each of these two events if her report in the event is
consistent with the agent’s action. The probability of the former event (i) is q/(Tq+p),
because if one of the actual T periods is selected for shirking, the probability of all
signals being G is qpT−1; if the fictitious period is selected, the probability of all signals
being G is pT ; and each of the T + 1 periods is selected with probability 1/(T + 1).
The probability of the latter event (ii) in turn is [(T − 1)q + p]/T (Tq + p), because
the probability of selecting one of the periods s ∈ {1, . . . , T}, s 6= t for shirking is
q/(Tq + p), and then selecting t by the testing procedure is 1/T ; and the probability
of selecting the fictitious period for shirking is p/(Tq + p), and then selecting t by the
testing procedure is 1/T . Since [(T − 1)q + p]/T (Tq + p) > q/(Tq + p), the principal
saves ε with a higher probability when she reports signal G in period t.

The proof for other sequences of the principal’s signals is analogous.

Purifiability: Since players have strict incentives except the agent’s decision in
which period to shirk, it is with no loss of generality to restrict attention to the shocks
z1
t that affect the agent’s cost of effort. Recall that the cost of effort has the form
c + ξz1

t , where ξ > 0. Let F 1 denote the cdf of the shock z1. For a given, sufficiently
small ξ, consider the strategy of the agent that prescribes action S in period t, if it has
not prescribed S in an earlier period, when

F 1(z1
t ) > 1− 1

T + 2− t
; (7)

the strategy prescribes action E otherwise.
A simple induction shows the probability of shirking in each period t ∈ {1, . . . , T}

under the prescribed strategy is 1/(T + 1). To provide the agent incentives for con-
forming to the prescribed strategy, we modify the adjustment paid contingent on the
period in which the agent shirks. For t ∈ {1, . . . , T}, let z∗t be such that z∗t satisfies
condition (7) in which inequality is replaced with equality. We specify the adjustment
by backward induction. First, we pick the adjustment for choosing the fictitious period
T+1 for shirking such that the agent with cost c+ξz∗T in period T is indifferent between
taking action E and taking action S. Next, we pick the adjustment for choosing period
T for shirking such that the agent with cost c + ξz∗T−1 in period T − 1 is indifferent
between taking action E and taking action S. This adjustment (multiplied by 1/δ) is
added to the adjustment in period T in order to keep the agent with cost c + ξz∗T in
period T indifferent. Continuing in this manner, we provide the agent incentives for
playing the prescribed strategy in all periods.
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7.3 Proving Proposition 7

To prove the proposition, we will first construct an equilibrium for a given T and
δ > δ(T ) for some δ(T ) < 1, and then consider the limit as δ and T grow.

Proof. Let T and δ be large enough that the hypothesis of Lemma 8 holds. Pick a
probability σ∗ close to 1, and in each block let the agent choose “always work” with
probability σ∗, and “always shirk” otherwise. Let σ (n, σ∗) denote the probability as-
signed by the principal to the event that the agent chose “always work” contingent on
observing n successes in T periods; σ (n, σ∗) is strictly increasing in n. Choose σ, σ̄
such that σ (n− 1, σ∗) < σ < σ (n, σ∗) < σ̄ < σ (n+ 1, σ∗).

We will slightly modify the strategies prescribed in the main text to make truth-
ful reporting strictly optimal (both for the principal after observing any number n of
successes, and for the agent after K = 0 or K = T ), preserving the feature that both
K = 0 and K = T are optimal for the agent. First, make the agent’s continuation
value V A strictly positive by slightly raising her base wage above w. Recall that the
prescribed termination probabilities, given the principal’s continuation value V P , are
α(nL, V

P ) = (1− δ) τH/V P , α(nM , V
P ) = (1− δ) (τH − τM) /V P , and α(nH , V

P ) = 0.
Facing these termination probabilities, the principal is indifferent across all reports.

For now, we will assume that the continuation values (after a block of T periods)
0 < V A < V P are fixed.

Pick a small ηP > 0, and define the following adjustments to the termination prob-
abilities: 4α (nL, E) = ηP · 1

σ
,

4α (nM , E) = 4α (nM , S) = ηP ,
4α (nH , S) = ηP · 1

1−σ̄ .
The adjustments for other reports (n̂, â) are zero. If the termination probabilities

are given by α
(
n̂, V P

)
+4α (n̂, â), then it is easy to verify that the principal strictly

prefers to report nL when n < n, strictly prefers nM when n = n, and strictly prefers
nH when n > n. For example, suppose that n > n. Then the additional termination
probability from a truthful announcement n̂ = nH is

(1− σ(n, σ∗)) · ηP ·
1

1− σ̄
≤ ηP ·

1− σ(n+ 1, σ∗)

1− σ̄
< ηP ,

which is strictly less than the additional termination probability from announcing n̂ =
nM , which is ηP , or from announcing n̂ = nL, which is

σ(n, σ∗) · ηP ·
1

σ
> ηP ·

σ(n, σ∗)

σ
> ηP .

In order to make the agent strictly prefer to report truthfully (ignoring for now the
agent’s continuation value), we can adjust the transfers slightly: if the agent announces
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E, then he gets a small penalty ηA > 0 if the principal announces n̂ = nL and a small
benefit otherwise. If the agent announces S, then he gets a small benefit if n̂ = nL and
penalty ηA otherwise. (We choose ηA small enough relative to ηP that the principal still
has strict preferences for truthful reporting.) Specifically,
4τ (nL, E) = −ηA and 4τ (nL, S) = ηA ·

1−Bq
T (n)

Bq
T (n)

,

4τ (nM , E) = 4τ (nH , E) = ηA ·
Bp

T (n)

1−Bp
T (n)

and 4τ (nM , S) = 4τ (nH , S) = −ηA.
Those levels are set so that after either K = 0 or K = T , truth-telling is optimal and

yields zero expected change in transfer. For example, after “always work,” reporting E
gives an expected change in transfer of

[1−Bp
T (n)] · ηA ·

Bp
T (n)

1−Bp
T (n)

−Bp
T (n) · ηA = 0,

while reporting S gives

− [1−Bp
T (n)] · ηA +Bp

T (n) · ηA ·
1−Bq

T (n)

Bq
T (n)

< 0.

After exerting effort is K = T − 1 periods, reporting E gives an expected change in
transfer of

[1− F [n|T, T − 1]] · ηA ·
Bp
T (n)

1−Bp
T (n)

− F [n|T, T − 1] · ηA,

which is strictly negative because F [n|T, T − 1] > Bp
T (n). Similarly, reporting S gives

− [1− F [n|T, T − 1]] · ηA + F [n|T, T − 1] · ηA ·
1−Bq

T (n)

Bq
T (n)

,

which is strictly negative because F [n|T, T − 1] < Bq
T (n). Before the adjustments to

the transfers, K = T −1 gave the same expected payoff as K = 0 or K = T , but now it
gives strictly less. The reason is that an interior value of K makes it harder to match
the principal’s report.

As long as the ηA is small relative to V A (ηA < δV A), then the agent strictly prefers
to pay ηA rather than to terminate the relationship. And, as we have already pointed
out, if ηA is small enough, then these small changes in transfers preserve the principal’s
strict incentives.

Because we raised the agent’s base wage so that V A > 0, the agent’s continuation
value is now affected by the possibility of termination. A further adjustment is neces-
sary to guarantee that termination probabilities will not change the agent’s incentives.
Specify transfers as

τ
(
n̂, â;V A, V P

)
≡ τ (n̂, â) + [α

(
n̂, V P

)
+4α (n̂, â)] · V A,
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and termination probabilities as α
(
n̂, â;V A, V P

)
≡ α

(
n̂, V P

)
+ 4α (n̂, â). Now the

agent’s incentives are just as before, because his total payoff at any announcement
(n̂, â) is

τ
(
n̂, â;V A, V P

)
− α

(
n̂, â;V A, V P

)
· V A = τ (n̂, â) .

Such an equilibrium is purifiable. Both parties have strict incentives at the cheap-
talk stage and in making specified transfers. The agent is indifferent between choosing
“always work” or “always shirk” at the start of each T -period block, but that random-
ization is history independent. It is common knowledge when the relationship is to
be terminated, and we can make both parties strictly prefer termination by specifying
continuation play where the agent always shirks. That strict preference ensures that at
least one party will choose to terminate with probability one.

The last step in constructing the equilibrium is to endogenize the continuation values
V A and V P , using a fixed point argument. To start, we define V A

0 = w − w > 0 and
V P

0 = ȳ − w − c. We next define V P
k for k = 1, 2, ... recursively as the total expected

principal’s payoff in the auxiliary setting in which each probability of dissolving the
relationship α(n, V P ) is computed using V P = V P

k−1:

α(n, V P
k )V P

k−1 = (1− δ)τ. (8)

Then, V P
1 < V P

0 , because V P
0 would be the principal’s payoff if the agent was playing

E with probability 1, and the relationship was not ever terminated. The agent plays
S with some probability, and the relationship is terminated with some probability.
However, the probabilities can be assumed arbitrarily small, because the probability σ∗
of playing S can be chosen arbitrarily small, the probability that the principal observes
n ≤ n can be chosen arbitrarily small by Lemma 8, and by construction so can be the
adjustments to the termination probabilities ∆α(n, V P ). Thus, the difference V P

0 −V P
1

can be assumed arbitrarily small. Suppose it is smaller than ε.
The difference V P

1 − V P
2 comes only from the fact that the probabilities α(n, V P )

are greater for V P
2 , because a smaller V P is used in the denominator of their definitions.

More specifically, from 8,

α(n, V P
2 )− α(n, V P

1 ) =
(1− δ)τ
V P

1

− (1− δ)τ
V P

0

= (1− δ)τ V
P

0 − V P
1

V P
0 V

P
1

,

where τ = τH , τH − τM , or 0. Therefore, these expressions are of order ε. In addition,
α(n, V P ) > 0 only in the small probability event when the agent plays S, or the agent
plays E but the principal observes n ≤ n. Thus, the difference V P

1 −V P
2 is smaller than

Mε2 for some constant M .
By induction, we obtain that V P

k − V P
k−1 ≤Mk−1εk. This implies that (V P

k )∞k=0 is a
Cauchy sequence if ε is sufficiently small. Let V P be the limit of this sequence. This
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limit can be assumed as close as we wish to V P
0 by choosing sufficiently small ε. A

similar argument applies to the sequence (V A
k )∞k=0, and yields V A. Therefore V P and

V A are endogenous continuation values with the desired property.

7.4 Proving Lemma 8

Lemma 8 follows from this lemma:

Lemma 9. Given a large enough T , there exists an n, which depends on T , such that

1.
bpT−1 (n− 1) · (p− q) · T ≤ [1−Bp

T (n− 1)]− [1−Bq
T (n− 1)]

and
bpT−1 (n) · (p− q) · T > [1−Bp

T (n)]− [1−Bq
T (n)] ;

2. (n− 1)/T , n/T , (n+ 1) /T are strictly between q and p;

3. Bp
T (n) tends to 0 and Bq

T (n) tends to 1 as T grows.

Proof. For large T , the binomial distributions Bp
T and Bq

T are approximately normal,
with means pT and qT and variances Tp(1− p) and Tq(1− q), respectively. First, look
for a solution x (not necessarily an integer) to the equation

φ

(
x− pT√
Tp(1− p)

)
(p− q) · T = Φ

(
x− qT√
Tq(1− q)

)
− Φ

(
x− pT√
Tp(1− p)

)
, (9)

where Φ is the standard normal cdf and φ is the density. For large enough values of T ,
there is exactly one solution of (9) in the interval (qT, pT ).

Indeed, the LHS of (9) is strictly increasing on the closed interval [qT, pT ]. Its value
at x = qT is close to 0, and its value at x = pT is arbitrarily large for large T . The
RHS increases between qT and x(T ) that solves

φ

(
x− qT√
Tq(1− q)

)
/φ

(
x− pT√
Tp(1− p)

)
=
√
q(1− q)/

√
p(1− p) (10)

(from a value close to 1/2 to a value close to 1), and decreases between x(T ) and pT
(from a value close to 1 to a value close to 1/2). To satisfy (10) x(T )/pT and qT/x(T )
must be bounded away from 1. Since the value of the LHS of (9) at any x(T ) with
this last property is close to 0 (for large enough values of T ), the LHS intersects the
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RHS at an x ∈ (x(T ), pT ). At the intersection, the LHS is increasing and the RHS is
decreasing.

Since Bp
T (n) converges to Φ

(
n−pT√
Tp(1−p)

)
, Bq

T (n) converges to Φ

(
n−qT√
Tq(1−q)

)
, and

bpT−1(n) · (p− q) · T “converges” to φ

(
n−p(T−1)√
(T−1)p(1−p)

)
(p− q) · T , bpT−1(n) · (p− q) · T

“intersects” Bq
T (n) − Bp

T (n) close to x. Formally, take as n the smallest integer n
such that bpT−1(n) · (p− q) · T > Bq

T (n) − Bp
T (n), and then bpT−1(n − 1) · (p− q) · T ≤

Bq
T (n− 1)−Bp

T (n− 1).

Finally, note that Bp
T (n) ≈ Φ

(
x−pT√
Tp(1−p)

)
tends to 0 as T grows. Indeed, the LHS

of (9) is equal to 1 at
Tp− [(lnT − lnC)Tp(1− p)]1/2 ,

where
C =

2πp(1− p)
p− q

,

but the RHS is smaller than 1 everywhere. So x solving (9) is smaller than Tp −
[(lnT − lnC)Tp(1− p)]1/2. Therefore

Φ

(
x− pT√
Tp(1− p)

)
< Φ

(
− [(lnT − lnC)Tp(1− p)]1/2√

Tp(1− p)

)
= Φ

(
− [(lnT − lnC)]1/2

)
,

which tends to 0 as T grows.

In turn, Bq
T (n) ≈ Φ

(
x−qT√
Tp(1−p)

)
tends to 1 as T grows, because x(T ) < x and

qT/x(T ) is bounded away from 1.

We can now prove Lemma 8.

Proof. The two equalities in the lemma can be rewritten as

[Bq
T (n− 1)−Bp

T (n− 1)] · τM + [Bq
T (n)−Bp

T (n)] · (τH − τM) = 1−δT
δT−1(1−δ)c,

[F [n− 1|T, T − 1]−Bp
T (n− 1)] · τM + [F [n|T, T − 1]−Bp

T (n)] · (τH − τM) = 1
δT−1 c.
(11)

Observe that for any n,

[F [n|T, T − 1]−Bp
T (n)] = bpT−1 (n) · (p− q) .

That is, the increase in the likelihood of getting at least n + 1 successes from exerting
effort in all T rather than in T − 1 periods is given by the probability bpT−1 (n) that
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exactly n out of the first T − 1 periods yield successes (given effort in each period),
times the increase p− q that effort generates in the probability of a success in the T -th
period.

Observe also that

lim
δ→1

1− δT

δT−1 (1− δ)
c = Tc and lim

δ→1

1

δT−1
c = c.

Thus, equalities (11) can be rewritten as

[Bq
T (n− 1)−Bp

T (n− 1)]

T
· τM +

[Bq
T (n)−Bp

T (n)]

T
· (τH − τM) = c−, (12)

bpT−1 (n− 1) · (p− q) · τM + bpT−1 (n) · (p− q) · (τH − τM) = c+, (13)

where c+ > c−, and for δ close to 1 both these numbers are close to c. By Lemma 9, the
expression multiplying τM in (12) is no smaller than that in (13), and the expression
multiplying τH − τM in (12) is smaller than that in (13). In addition, the differences
between the expressions multiplying τM and τH − τM do not depend on δ. So, if we
set τH − τM = 0 and τM > 0 such that (12) is satisfied, then we have that the LHS of
(13) is strictly less than c+; if in turn we set τM = 0 and τH − τM > 0 such that (12)
is satisfied, then we have that the LHS of (13) is strictly greater than c+. This implies
the existence of some intermediate τM > 0 and τH − τM > 0 such that both equalities
are satisfied.

It remains to show that τH and τM make exerting effort in k ∈ {1, . . . , T − 2} periods
suboptimal; that is, that

[Bq
T (n− 1)− F [n− 1|T, k]] · τM + [Bq

T (n)− F [n|T, k]] · (τH − τM) <
δT−k − δT

δT−1 (1− δ)
c.

(14)
The interpretation of that inequality is that the increase in the expected payment from
exerting effort in k periods rather than in 0 periods is less than the cost of that additional
effort.

For any n, we can rewrite

[Bq
T (n)− F [n|T, k]] =

∑j=k−1
j=0 [F [n|T, j]− F [n|T, j + 1]]

=
∑j=k−1

j=0 f [n|T − 1, j] · (p− q) .

Thus,

[Bq
T (n− 1)− F [n− 1|T, k]] · τM + [Bq

T (n)− F [n|T, k]] · (τH − τM)
=∑j=k−1

j=0 4T
n (j),
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where

4T
n (j) ≡ (f [n− 1|T − 1, j] · τM + f [n|T − 1, j] · (τH − τM)) (p− q)

is the marginal increase in the expected payment when the agent exerts effort in
j + 1 periods rather than in j periods. That marginal transfer is increasing with
f [n− 1|T − 1, j] and f [n|T − 1, j]. By Matsushima’s (2001) Lemma 2, those densi-
ties are single-peaked: first increasing and then decreasing in j. For large T , the pdf
f [·|T − 1, j] of the number of successes for a given j is approximately normal and cen-
tered at the mean pj+q(T−j). Thus, the marginal transfer is highest at approximately
j (n) ≡ (n− qT ) / (p− q) < T , and by part 2 of Lemma 9 it decreases symmetrically
as j moves away from that value.

That is, the marginal transfer 4T
n (j) is single-peaked. Conditional on working in j

periods and shirking in T − j periods, discounting implies that it is optimal to shirk
in the first T − j periods. Thus, by construction, the marginal transfer at k = T − 1,
4T
n (T − 1), is equal to c/δT−1: the agent is indifferent between exerting effort in T − 1

periods or in T periods, because the additional expected transfer exactly offsets the
effort cost. As we decrease k, the marginal transfer first increases, until the peak near
k = j (n), and then decreases. For k near 0, therefore, 4T

n (k) must be strictly below
δT−k−1c
δT−1 , to offset the values strictly above that level at k near T −1. Thus, 4T

n (k) starts
strictly below δT−k−1c

δT−1 for low k, then increases and eventually crosses above δT−k−1c
δT−1 , and

stays above that level up until k = T − 1. It follows that for any k ∈ {1, . . . , T − 2},
the sum of the marginal transfers up to k,

j=k−1∑
j=0

4T
n (j),

is strictly less than the right-hand side of (14) when δ is close to 1: the agent prefers
k = 0 to any other k < T − 1, because the total increase in the expected transfer is less
than the total increase in effort cost.
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