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Abstract

A growing empirical literature documents a non-monotonic relationship between fi-

nance and growth. We investigate this finding in a Schumpeterian endogenous-growth

model with search frictions and congestion effects in credit and innovation markets.

Financial development eases the financing of innovation but exacerbates congestion

effects in R&D. Conversely, policies that promote R&D aggravate financial bottlenecks.

Once general equilibrium feedback effects are taken into account, the interplay between

the two congestion frictions generates a non-linear relationship between finance and

productivity growth. We show that, for a calibration chosen to mimic the actual US

economy, the interplay between credit and innovation frictions results in a negative im-

pact of finance on growth. This impact is however quantitatively small – consistent with

the observation that, in the last century, most developed economies have experienced

a widespread expansion of the financial sector yet almost constant, or slowly declining,

growth rates of GDP (save for financial crises, pandemics or wars).
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Some academic researchers, pharma executives, and other experts have de-

cried this explosion of [clinical] trials as a counterproductive glut motivated

more by the race for money than good science and warned that many of these

efforts may not finish because of a lack of participants.1 (Kaiser, 2018)

Introduction

A long tradition in economics, exemplified by Solow (1956) and anchored in the Age of En-

lightenment, views science and innovation as the main driving forces of long-run growth.

The role played by financial development in this process is not trivial. To be true, research is

costly so that, if inventions require investment in R&D beyond the means of innovators,

financial development affects growth positively. However, the link between finance and

grow is not one-way as financial institutions are costly to develop and maintain and their

profitability is, by essence, affected by growth prospects. Furthermore, the finance-growth

nexus cannot be linear as, over the last century, per-capita GDP in the United States has

been growing, except for historical accidents, at an average 2% annual rate while the devel-

opment of the financial sector has accelerated. Something is thus hindering, and maybe

even reversing, the contribution of finance to growth: our paper explores the possibility that

the interplay of congestion externalities in finance and in R&D might be the culprit.

Our formalization thus relies on the interaction between two frictional markets: the mar-

kets finance and ideas. In a world where innovation itself entails no friction or efficiency loss

and finance constitutes the sole friction firms encounter, removing the sole hurdle stand-

ing in the way of innovators necessarily enhances growth. This is the traditional mecha-

nism underlying many policy recommendations for financial liberalization.2 By contrast

with the utopian Solowian world in which innovations are instantly and freely provided to

researchers by a deus ex machina, R&D takes time and effort and its success rate is unpre-

dictable. Plus there is no presumption, unlike what is commonly assumed, that more sci-

ence and more research are always better for growth: there might be other bottlenecks and

congestion effects, interacting with those stemming from search-and-matching innovation

frictions, that might be exacerbated by financial liberalization. For instance, proliferation

1Emphasis added.
2They are akin to labor-market reform policies advocated on the basis of the Diamond-Mortensen-

Pissarides model: if search and matching frictions on the labor market as the sole hindrance to unemployment,
a "better" functioning labor market is all it takes to reduce unemployment.
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of clinical trials for checkpoint inhibitors in cancer immunotherapy might be "too much

of a good thing" (Kaiser, 2018). Similarly, seemingly further removed from growth theory

but in fact anchored in Jevons’ (1866) paradox, Braess (1968) warns that traffic could be im-

peded by the addition of a new road — a remark at the core of the “Lewis-Mogride position”

that postulates that punctual improvements in a road network often shift congestion to an-

other traffic node, thereby negating the original effort and possibly exacerbating overall road

congestion. Our starting point is thus that models that ignore research and innovation bot-

tlenecks adopt, without nuance, a Renaissance-inspired belief in the unlimited scope for

progress. Is it reasonable to assume that the more resources we pour into innovation the

faster we will grow on average? Shall we not eventually lack individuals with the ability to do

research?; or run out of the less skilled workers who provide infrastructure complementary

to research (e.g., building or maintenance)? Or patients to enroll into clinical trials? Our

answer is: possibly.

We investigate this conundrum in an endogenous growth model with search frictions in

both credit and innovation markets. In our world, all growth is innovation-led and, partly

in line with the Solowian view of the world, there is a fixed number of ideas ready to be

"fetched" by scientists. Entrepreneurs do not have the wealth (or ability) to self-finance in-

novation and need to look for financiers. We show that all else equal, there is a negative

relationship between growth and tightness in both innovation and credit markets. But once

all feedback effects are taken into account, financial deepening has a non-monotonic ef-

fect on long-run growth: after a certain threshold more finance, i.e. less tightness in credit

markets, increases congestion in the ideas market and growth might fall.

We then turn to a normative analysis and compare the competitive equilibrium of our

model with the constrained efficient allocation. Following the search tradition, we derive a

set of "modified” Hosios conditions. In our model, firms are created at average economy-

wide productivity. Individual firms’ investment in R&D and more liquidity can boost aggre-

gate productivity. This externality, together with the congestion externalities standard in a

search and matching framework, is a source of inefficiency. We show that entry in finan-

cial and innovation markets is efficient once innovators and financiers are compensated

for their contribution to growth. Moreover, the social planner internalizes the interactions

between the two congestion externalities, i.e. that the marginal contribution of finance to

growth is lower when innovation markets are tighter.
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The remainder of the paper is organized as follows. After a literature review in the next

subsection, Section 1 illustrates the links between growth and finance in a simple partial

equilibrium model. Section 2 deals with this issue in a model with double search frictions

in the innovation and financial markets. Section 3, derives the constrained efficient alloca-

tion in our model. Section 4 assess the robustness of our main findings. Finally, Section 5

concludes.

Literature review

The finance-growth nexus has been the subject of an extensive empirical literature. If sub-

stantial historical evidence finds a positive effects of finance on growth (see e.g., King and

Levine, 1993, Levine, 1997, Rajan and Zingales, 1998 and Beck et al., 2000), more recent

studies (Popov, 2018, Arcand et al., 2015, Aghion et al., 2019) suggest the existence of non-

linearities. Specifically, it has been shown that, beyond a certain threshold, financial devel-

opment has no effect or could even be detrimental for growth. In theory (see Levine, 2005

and Aghion et al., 2018 and references therein), well functioning financial systems can pro-

mote growth by improving resource allocation, fostering innovation or by facilitating mon-

itoring and pooling of risky projects. At the same time, "too much finance"could lead to a

misallocation of talents to less productive sectors of the economy (Tobin, 1984) or an in-

crease in financial fragility (Minsky, 1974 and Rajan, 2005). Aghion et al. (2019) document

an inverted-U relationship between credit constraints and productivity growth at a sectoral

level in France. To account for this empirical observation, they propose a theory according

to which better access to credit facilitates innovation but at the same time allows less effi-

cient incumbent firms to remain longer on the market. In the same spirit, Malamud and

Zucchi (2019) propose a theoretical model where financing frictions affects differently en-

trant and incumbent firms and hence and the composition of growth. Our paper proposes a

different, and not necessarily exclusive, explanation for the non-linear relationship between

finance and productivity growth: the interplay between congestion frictions in the financial

sector and in the market of ideas.

In our model, financiers provide funds to entrepreneurs to invest in R&D. All else equal,

through this channel finance has a positive effect on growth. In this respect, our work con-

tributes to the literature on innovation-led growth (see e.g. Aghion et al. 2005, Laeven et al.,

2015, Chiu et al., 2017, Aghion et al., 2018). However, we depart from that literature in two
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important respects: i) we model bottlenecks in R&D by introducing search frictions in inno-

vation markets, in the spirit as Silveira and Wright (2010) ii) we incorporate search frictions

in financial markets. Our modeling of finance, borrowed from Wasmer and Weil (2004),

embraces the view of Jaffee and Stiglitz (1990) according to which credit markets are bet-

ter described as customer markets where borrowers have a single relationship with lenders.

Cipollone and Giordani (2019a) and Cipollone and Giordani (2019b) provide some recent

empirical support to a search and matching view of financial markets.

The advantages of our approach is twofold. First, in our model, the degree of financial

development, or credit market tightness, is endogenous. Better growth prospects induce

entry by financiers, thereby capturing a two-way feedback effect from growth to finance (see

Robinson, 1952 ). Second, the interaction between congestions in two markets, i.e. financial

and innovation, can generate a non-linear relation between finance and growth as observed

in the data.

Our work is related to work by Wasmer and Weil (2004), Petrosky-Nadeau and Wasmer

(2015) and Chiu et al. (2017) who study, among others, the interactions between multiple

trading frictions. In particular, the latter paper also deals with innovation-led growth in the

presence of financial frictions though it restricts liquidity through a collateral constraint. In

addition, Berentsen et al. (2012) integrate a search-theoretic model of money into an en-

dogenous growth framework. They show that the welfare costs of inflation are larger taking

into consideration search frictions in the innovation process, while more efficiency in finan-

cial markets has a positive but limited effect on growth.

Empirically, Bloom et al. (2020) document a sharp decline in research productivity and

a substantial rise in research effort in many sectors. Gordon (2016) suggests that inequality,

education, demographic and fiscal factors are fours possible forces holding back productiv-

ity growth. In our model, search frictions in the innovation market aim at broadly capturing

hurdles in the production function of ideas, i.e. success in R&D requires both resources and

time. Our paper provides a theoretical explanation behind the empirical observation that

“ideas are getting harder to find”.
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1 Growth: a partial-equilibrium accounting framework

We start from a simple partial-equilibrium accounting framework of growth in which firms

need an exogenous amount of time and effort to finance innovation. We will endogenize the

required time and effort in the full model.

Assume that the life cycle of firms can be decomposed into four stages, illustrated by the

timeline in Figure 1:

Innovation
stage

Fund-raising
stage

Creation
stage𝑝𝑝(ϕ) 𝑞𝑞(θ)

𝑠𝑠

Production π π 1 + γ𝐴𝐴

Finance R&D

π𝐴𝐴 𝐴𝐴

Figure 1: Markets and transitions through different stages.

• First, a newly-created firm immediately produces flow output π (without the need for

workers), and suffers a concomitant flow production cost we set to π for simplicity.3 It

might be convenient to think of a firm as a robot or an automated production line.

• Second, a newly-created firm needs to find an intermediary (e.g., a bank or a venture

capitalist) before it can look for an upgraded blueprint for their production line . We

call p the instantaneous probability a firm meets a banker.

3All costs and benefits below are to be understood as deflated by average aggregate productivity, whose
endogenous growth rate will be determined below.
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• Third, after the firm has met its banker, it looks for an innovator who knows how to

upgrade its robot, but not its production cost, by a factor 1+γ, so that output net of

production cost is πγ after the upgrade. We call q the probability that the firms finds

an innovator.4

• Lastly, the upgraded firm is destroyed with an exogenous instantaneous separation

probability s.

The firm thus spends, in expectation, 1/p units of time looking for a bank, then 1/q units

of time looking for an innovator, and finally 1/s units of time producing at the upgraded

profit level until it is destroyed. The fraction of the firm’s expected lifetime spent at high

productivity is thus
1/s

1/p +1/q +1/s
= 1

1+ s/p + s/q
. (1)

This fraction equals 1 if there is no destruction (s = 0), or if meeting a bank and innovator

is instantaneous (p = q = ∞). As shown in the appendix, this fraction also measures the

steady-state proportion of firms who have met an innovator.

As a result, the growth rate of average productivity is simply the fraction of upgraded

firms times the magnitude of the productivity jump γ stemming from each innovation,

namely:

g = 1

1+ s/p + s/q
γ≤ γ. (2)

If credit and innovation are found instantly (i.e., if p = q =∞), the growth rate reaches the

growth rate of innovation γ, as in the Solow (1956) model. We will refer to γ as the potential

growth rate. If either credit or innovation is found with delay (p or q below infinity), the

growth rate falls short of its potential γ. Obviously, the growth rate is zero and the economy

stagnates if it is impossible to meet the bank required to find innovators (p = 0) or the inno-

vators themselves (q = 0). The positive relationship between g and p, given q , implied by

equation (2) is depicted in Figure 2 as an upward-sloping GG curve.

Figure 2 illustrates that in partial equilibrium, with p and q are taken as exogenous, the

positive effect of “financial liberalization” (higher p) on growth is strongest when p and g are

small because the GG curve flattens and tends asymptotically to γ/(1+ s/q) as p becomes

large. Put differently, more finance enables the economy to close the gap between actual

(g ) and potential (γ) growth which, by equation (2), is largest at low growth rates. These

4Thus all meeting probabilities are computed from the perspective of the firm.
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𝑔𝑔

𝑝𝑝

γ
1 + 𝑠𝑠/𝑞𝑞 GG

0

Figure 2: Growth and finance (p and q exogenous)

accounting results apply of course as well to changes in q given p: mitigate one of the two,

or both, factors that delay innovation, and growth rises in equilibrium.

Moreover, as illustrated in Figure 3, a rise in the magnitude of the productivity jump γ

stemming from innovation always raises, given p and q , the growth rate — although the

growth gap g /γ entailed by finite p and q remains constant.

These partial equilibrium results are in line with those of a large literature but, as we

show in the next section, they are fragile. They ignore that credit and innovation bottlenecks

interact in equilibrium because both the ease of finding credit and the speed of innovation

depend on the relative numbers of banks, firms and innovators which have found it worth

their while to enter their respective markets. Keeping the probabilities p and q exogenous

when they are in fact the equilibrium reflection of endogenous market tensions is as mis-

leading as, say, evaluating the impact of a new bridge while ignoring that the removal of one

bottleneck will attract extra traffic that will in the end exacerbate road congestion down the

road. Building a bridge across the straight of Messina is of little use if Sicilian roads are not

upgraded.
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𝑔𝑔

𝑝𝑝

γ
1 + 𝑠𝑠/𝑞𝑞

GG

p

γ′
1 + 𝑠𝑠/𝑞𝑞 GG’

0

Figure 3: Larger innovation (p and q exogenous)

2 Equilibrium growth with credit and innovation frictions

To formalize these ideas, we turn the foregoing accounting framework into a bona-fide growth

model by introducing search-and-matching frictions in credit and innovation markets. The

matching probabilities p and q thus become endogenous and reflect market tensions, and

are determined in equilibrium together with the growth rate.

2.1 Market tensions and the growth rate

Assume, in the spirit of in Wasmer and Weil (2004), that both finance and innovation are

subject to search-and-matching frictions.

Suppose the probability p that a firm meets a banker depends negatively on the credit

market tension5 φ defined, from the firm’s standpoint, as the ratio of the number of firms

searching for banks to the number of banks searching for firms:

p = p(φ), p ′(·) < 0. (3)

with p(0) =∞ and p(∞) = 0. The reciprocal probability of a bank finding a firm, φp(φ), is

5Throughout the paper we will use the terms “tension” and “tightness” interchangeably.
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increasing in credit market tension φ.6

Assume, furthermore, that the probability a firm meets an innovator depends negatively

on the innovation market tension θ defined, again from the firm’s standpoint, as the ratio of

the number of firms searching for innovators to the number of innovators looking for firms:

q = q(θ), q ′(·) < 0, (4)

with q(0) =∞ and q(∞) = 0.

Using equation 2, the growth rate of productivity is therefore negatively related to both

credit and innovation market tensions:

g = γ

1+ s/p(φ)+ s/q(θ)
≤ γ. (5)

All else equal, the tighter the credit or innovation market, the fewer the firms with an up-

graded productivity, and the smaller the aggregate average rate of growth of productivity.

These are obviously partial equilibrium description as φ and θ are endogenous variables.

2.2 Equilibrium credit market tension under free entry

Equilibrium credit tension depends on the attractiveness of entry into the market and thus,

for bank and firm, on the balance of costs and benefits of operation. The costs flow from

expensive and time-consuming searches incurred while seeking a match, while the benefits

stem from the output upgrade afforded by the eventual match between firm and innovator,

namely:

q(θ)

r − g +q(θ)

(
πγ

r − g + s
− n

q(θ)

)
:= S[q(θ), g ;γ], (6)

where r is the (subjective) interest rate of risk neutral agents, and n denotes the flow cost of

searching for an innovator.7 The term in parenthesis on the left hand side is the expected

present discount value of the output upgrade enjoyed until the destruction of the firm, net

of search of the cost of searching for an innovator, and measured at the time bank and firm

6Those properties follow from assuming a constant-returns-to-scale matching function. See the appendix
for all mathematical details.

7We omit for simplicity from the arguments of the S(·) function variables for which we will not perform
comparative statics experiments.
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meet. It is discounted by a factor q/(r − g + q), which measures the expected value, at the

time of the meeting with the banker, of one unit of good at the random time of the meeting

with an innovator.8 The higher q(θ), the shorter and thus cheaper the search for an innova-

tor, and hence the higher the the expected discounted profits (Sq > 0). Similarly, the faster

the economy grows, or the larger the innovation, the larger the profits (Sg > 0 and Sγ > 0).

Note that S[q(θ), g ;γ] depends on two endogenous variables: the innovation market friction

and the growth rate, while the maximal potential growth rate, γ, is exogenous

Under Nash-bargaining between firm and bank, parties split the surplus of their match

according to their exogenous bargaining weights (ω,1 −ω). If entry in the credit market

is unfettered for both banks and firms,9 profits are driven to zero in equilibrium so that the

costs each party incurs to find a match must equal its share of the surplus of the the match:10

c

p(φ)
=ωS[q(θ), g ;γ], (7)

k

φp(φ)
= (1−ω)S[q(θ), g ;γ], (8)

where c denotes the flow search cost incurred by the firm to search for a bank, and k the flow

search cost of the bank.

These two free-entry condition immediately imply that, under Nash-bargaining, equi-

librium credit market tension equals

φ∗ = ω

1−ω
k

c
, (9)

so that the equilibrium probability a firm finds a bank is

p∗ = p

[
ω

1−ω
k

c

]
, (10)

which defines a vertical line PP at p = p∗ in (p, g ) space. The credit market is tight and the

matching probability correspondingly low when firm drive a hard bargain with banks (ω

8We assume throughout the paper that r > γ. This guarantees by equation (5) that r > g in equilibrium, so
that all discounted sums in the paper are properly defined.

9In order to fix the maximum scale of output without frictions, we keep the number of innovators constant,
in the same way as the number of workers is kept fixed, for instance, in Mortensen and Pissarides (1994) or in
Wasmer and Weil (2004).

10If bargaining fails, banks and firms remain in their unmatched status with zero value (their outside op-
tion) because of free entry. As a result, the surplus is simply by the expected present discounted value of the
output upgrade stemming from a match, given in expression (6).
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high), if their flow search cost c is low, or the banks’ search cost k is high — since all three

factors attract more firms and/or fewer banks to the credit market.

Credit market tightness, φ∗, and thus p∗, is independent of θ and g , as in Wasmer and

Weil (2004). Note that we will introduce below fixed search costs for banks which break

this simplicity and make equilibrium credit market tension dependent on the endogenous

growth rate.

2.3 Equilibrium growth rate

Now that we have computed the equilibrium credit-matching probability, we need to char-

acterized the equilibrium innovation-matching probability - since the growth rate depends

on both p and q .

To that effect, notice that the free-entry condition (7) can be inverted to yield a relation-

ship between the innovation-matching probability q , and the credit-matching probability p

and the growth rate g :11

q =
(r − g ) c

ωp +n
πγ

r−g+s − c
ωp

:=Q(p, g ). (11)

The spillover function Q(·, ·) summarizes the crucial interaction between credit and innova-

tion markets that was missing from the accounting, partial-equilibrium framework of sec-

tion 1.12 For each credit matching probability and growth rate, it provides the innovation

matching probability that is consistent with zero firm profits under free-entry. Unsurpris-

ingly, Qp < 0 and Qg < 0: if the firm finds a bank faster or the growth rate rises, the expected

profitability of the firms rises so that the probability of finding an innovator must fall con-

comitantly — else equilibrium profits would not be zero as free entry requires. For the same

reason, lower credit flow search costs c or an increase in the magnitude γ of the innovation

(which both raise the profitability of the firm) shift the spillover function Q(p, g ) down, and

thus lower q , for given p and g .

Using the information provided by the spillover function (11) into the definition of the

growth rate (5), we obtain a relationship between the growth rate and the credit matching

probability under free entry:

g = γ

1+ s/p + s/Q(p, g )
. (12)

11We could as well use the other free-entry condition (8) as it is implied by the combination of equations
(7) and (9).

12For simplicity, the dependence of Q on exogenous variables not shifted in the paper not spelled out.
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This equation defines in (p, g ) space a GG curve whose shape we will characterize shortly.

Its intersection with the PP curve, which is vertical at p = p∗ as derived in equation (10),

provides the equilibrium value g∗ of the growth rate and thus also, using equation (11), the

equilibrium innovation matching probability.

Before we proceed, it is useful to introduce two restrictions on parameters that guarantee

the existence of the equilibrium and will be imposed throughout the paper:

Condition 1 r > γ,

Condition 2 Ψ≤ω πγ

r−g 0+s
,

where g 0 ≡ γ
s
p +1 is the growth rate it would prevail in economy with frictionless innova-

tion markets andΨ≡ c
p .

Proposition 1 Under the two parameter assumptions above the equilibrium exists.

Proof: The first assumption guarantees by equation (2) that r>g in equilibrium, so that

all discounted sums in the paper are finite. The second assumption ensures, by equation

(11), that Q is positive since it implies thatω((πγ)/(r −g 0+s)) <ω((πγ)/(r −g +s)). The con-

dition states that at the lowest possible value of tightness in the innovation market ( θ = 0)

a firm can enter and make more profits than the expected vacancy costs of entering in the

financial market (Ψ). •

Implicitly, the second condition defines a minimum p for which the equilibrium exists, we

denote this as pmi n . To characterize the shape of the GG curve, it is useful to establish what

happens for extreme values of p:

Lemma 1 The GG curve goes through the origin. It has an horizontal asymptote at g∞ > 0,

with 0 < g∞ < γ when p →∞.

When p = 0, it is impossible to meet a bank, and there is no growth since a firm can-

not by assumption finance the search for innovators on its own. When the match with a

bank occurs instantly (p = ∞), the difficulty of finding an innovator is the only brake to

growth so that, from the free entry condition (11), q = n(r − g + s)/(πγ) while, from (12),

g = γ/(1+ s/q) < γ. The asymptotical growth rate g∞ is the positive root of the quadratic

equation obtained by combining these two conditions, and the (positive) limit value of q

12



follows immediately. The following proposition enables us to gauge when the maximum

growth rate is achieved:

Proposition 2 (Maximum growth rate) Let µ = −Qp p/p > 0 denote the elasticity of q with

respect to p along the spillover function. Then g is maximum when the ratio of the expected

time spent looking for a bank over the the expected time spent looking for a firm equals to μ ,

i.e.,1/p/1/q =µ.

Proof: From equation (14), and the fact that Qg < 0, g is maximal when 1/p +1/Q(p, ..)

is minimal. Since there is, because of free-entry in the credit market, a negative spillover

between congestion in credit and innovation markets (Qp < 0), a one-percent increase in

1/p is associated with a one-percent fall in 1/q . These two conflicting effects balance out

in levels, and the growth rate reaches a maximum, when the condition of the proposition is

satisfied. It can be verified that this condition characterizes a global maximum.•

Proposition 2 is consistent with two possibilities. Either the GG curve is rising monoton-

ically from 0 to g∞ — in which case the maximum growth rate described by the proposition

is reached at the asymptote g∞ when p = ∞, i.e., when credit matching is instantaneous.

Or the GG curve is hump-shaped, first rising with p, then reaching above g∞ the maximum

described by 2, and finally declining towards the horizontal asymptote at g∞ .

In the benchmark symmetrical case when the flow cost of searching for a bank, c, equals

the flow cost ωn of searching for an innovator borne by the firm it is straightforward to es-

tablish that the GG curve is hump-shaped, i.e. the relation between finance and growth is

indeed non-monotonic as shown in the following proposition:13

Proposition 3 (hump-shaped GG curve) Suppose c =ωn. Then the GG curve is hump-shaped.

The growth rate is maximal and the total expected search time is minimal when expected

credit and innovation search times are equal 1/p = 1/q.

Proof: See the Appendix.•

13The remainder (1−ω)n of the cost of finding an innovator is borne, after Nash-bargaining, by the bank
the firm has met.
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The proof, provided in the Appendix, exploits the fact that, if the GG curve has a hump,

the growth rate, which depends negatively on the total expected search time 1/p+1/q , must

be insensitive to a first order to a change in p. For that to be the case, an infinitesimal in-

crease (decrease) in the expected credit search time 1/q must be met by an exactly offsetting

decrease (increase) in the expected innovation search time that leaves, therefore, 1/p +1/q

constant. In the symmetric case c = ωn, this occurs when 1/p = 1/q , i.e., when credit and

innovation expected search times are equal. This equality determines, through the spillover

function (11), the point on the GG curve at which the growth rate is maximal and total ex-

pected search time is minimal. The role played by relative search costs in this result will be

explained in more details in the the next subsection.

Figure 4: Hump-shaped GG curve

To understand the intuition behind this result, illustrated in Figure 4, think of the prob-

lem of driving from the Italian mainland to Catania in Sicily. This involves confronting con-

gestion twice: first to cross the straight of Messina (currently by ferry) and second on Sicilian

roads to Catania. Suppose the cost of time waiting for a ferry is the same as the cost of time

driving on congested Sicilian roads (this hypothesis is analogous to our symmetrical cost

assumption). Will an increase in the number of ferries or the construction of bridge across
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the straight reduce total travel time to Catania? It all depends on relative congestion. If the

main bottleneck is on the mainland it will. If it is on Sicilian roads, it won’t. Total expected

travel time will be minimized when expected time spent on the continent and on the island

are equalized.

The GG curve is hump-shaped because a rise in p has two conflicting effects on growth:

on the one hand, by making financing easier, it increases the proportion of firms that can

search for innovators — which contributes to raising the growth rate. On the other hand,

as evidenced by the negative derivative Qp of the spillover function, a rise in p is associated

with a fall in q that contributes to lowering the growth rate — because easier credit attracts

more firms relative to banks, thereby raising the innovation market tension and lowering p

up to the point where zero profit are reestablished. Which of these two effect dominates

depend on the magnitude of p. When it is close to zero, the first effect dominates. When p

is large, the second effect dominates. This simple result can be generalized to the case when

c ̸=ωn, as established by the next proposition:

Proposition 4 (Hump-shaped GG curve general case) The GG curve is hump-shaped if

n2 < c

ω

[
(r − g∞)Π∞+n

]
, (13)

whereΠ∞ ≡ πγ
r−g∞+s .

Proof: See the Appendix •

This condition is always satisfied when n ≈ 0, with g∞ ≈ 0 and Π∞ ≈ πγ/(r + s). It is is

always violated if n →∞, since g∞ → γ andΠ∞ →πγ/(r −γ+s) — as the left-hand side goes

to infinity faster than the right-hand side. The condition above is trivially satisfied if the flow

costs of searching for the bank are greater than the flow costs of searching for innovators, i.e.

c >ωn.14

A simple approximation. To better grasp the gist of these results and why relative search

costs in the two markets play an important role it is useful to revert to some back of the

14This follows from c >ωn>ωn
[

n
[(r−g∞)Π∞+n]

]
, since the term in square brackets is a number smaller than

one.
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envelope calculations. For values of interest rates close to the growth rate of the economy,

r ≈ g , the free entry condition simplifies as

1/q +1/p = πγ

sn
+ (1− c

ωn
)(1/p).

The left-hand side of the expression captures total waiting time in the two markets, a quan-

tity that has a direct impact on growth. The equilibrium growth rate is then approximately

g = γ

1+ s(1/q +1/p)
= γ

1+ s(πγsn + (1− c
ωn ) 1

p )
:= g (p).

The two equations above make clear that the link between finance, i.e. 1
p , and growth is

directly related to the relative magnitude of search costs in the two markets since via its

impact on total waiting time. Specifically, gp > 0 i f f c/ω< n. Before we proceed, it is useful

to note that the non-negativity requirement on q imposes that

p ≧
c/ω

πγ/s
:= pmi n .

so that the equilibrium growth rate evaluated at the minimum p can be expressed as

g (pmi n) = γ/(1+πγω/c).

while for p →∞,

g (∞) = γ/(1+πγ/n).

We can then distinguish between three cases:

1. If c/ω < n, the growth rate is increasing in p. Its minimum value is g (pmi n), and its

maximum value is g (∞).

2. If c/ω> n, g is decreasing in p. Its minimum value is g (∞), and its maximum value is

g (pmi n).

3. If c/ω= n, g is independent of p, and it is equal to the following expression

g (pmi n) = γ/(1+ πγ

c/ω
) = γ/(1+ πγ

n
) = g (∞).

The intuition behind these results is the following. Increasing the probability of meeting

a financier always leads to a fall in q as per the free-entry condition. So the firm spends
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on average less time looking for credit, more looking for an innovation. When the cost of

looking for credit, corrected by the firm’s bargaining power, is lower than the cost of looking

for an innovation (case 1), the profit of the firms would fall if the total search time were

to stay the same or a fortiori increase. But that’s inconsistent with zero profits and some

firms will exit the market. As a result, the total search time falls and growth must rise. The

same explanation holds, mutatis mutandis, in case 2 and explains why, in case 3, the total

search time remains constant when p varies. In terms of our road traffic analogy, suppose

that bridge tolls are less expensive than road tolls on Sicily (case 1). Reducing traffic jams

on the first (cheaper) bridge intensifies traffic jams on the second (expensive) road, thereby

increasing the total cost of traveling. In the long-run, higher expenses will push some trucks

off the road and eventually ease traffic congestion on the whole route.

2.3.1 Comparative statics

Let us look at some qualitative comparative statics. In the following we will evaluate the

equilibrium effects of lower search costs for financiers, higher search costs for firms and an

increase in the productivity jump. We show that once general equilibrium effects are taken

into account the results deviate from what shown in Section 1, i.e. the relationship between

finance, innovation and growth is non-monotonic.

More finance A lower search cost k for banks reduces equilibrium credit market tension

φ by encouraging bank entry. This raises the equilibrium credit matching probability p∗,

thereby shifting the PP curve to the right with an unchanged GG curve. The effect on the

equilibrium growth rate is positive, left of the hump of the GG curve, if p is initially small

and the increase in k is small enough. Right of the hump, however, if p is initially small, a

rise in p lowers the growth rate.

Higher search costs for firms, c, have too a benign effect on equilibrium credit market

tension. However in this case, the probability of a match in the innovation market increases.

In equilibrium, higher costs discourage firms entry in both markets and innovation tension

θ decreases .15 Graphically, the GG curve shifts upward and the PP curve to the right. The

final effect on growth is positive.

15Here we assumed that p = p0φ
−η , so that c

p = c1−η
p

(
ωk

1−ω
)η

, and hence q and p are increasing in c.
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Table 1: Parametrization

Parameter Value Parameter Value

r 3.5% 1/φ 0.06
s 4% γ 0.023
ω 0.5 c 0.166
π 2.75 n 0.331

k 2.758

Larger innovation What happens if the productivity jump γ due to innovation increases?

Such an increase has two counteracting effects: a direct positive effect on g and an indi-

rect negative effect through a tightening in the innovation market. Higher benefits from the

output upgrade incentivize entry in the financial markets from both firms and banks thereby

leaving the equilibrium financial market tightness unchanged. At the same time, more firms

will find profitable to search for innovators thereby creating congestion in that market and

impinging on growth. Graphically, the GG curve could shift either upward or downward,

depending on parameters values.16 Thus, differently from our partial equilibrium example,

the final effect on the equilibrium growth rate is non monotonic.

2.3.2 A simple numerical exercise

The purpose of this subsection is to evaluate the equilibrium properties of our model with a

simple calibration exercise. Table 1 summarizes our parametrization.

The basic unit of time is one year. The risk-free rate, r, is 3.5% and the separation rate,

s, is set to an annualized 4%, as in Petrosky-Nadeau and Wasmer (2015). We assume a sym-

metric bargaining power for banks and firms, ω=.5. The target durations in credit markets

(for creditors) and innovation markets (for firms) are, respectively, slightly below 1 months

and 2 years, respectively. The first number together with our target for credit market tight-

ness, φ, implies a duration in credit markets for firms slightly above 1 year, as in Wasmer

and Weil. While the second number is in line with the average time for patent approvals for

2020 according to data published by the USPTO. The productivity jump, γ is set to target an

annual growth rate, g, of 2%. For simplicity, we assume that the flow costs of searching for

banks, c equals the flow cost of searching for innovators borne by the firms,ωn, while k is set

16For the calibration outlined in the subsection below, an increase in the productivity jump has positive
effect on equilibrium growth.
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Table 2: Lower frictions in credit and innovation markets

Benchmark Low credit Low innovation Low frictions
frictions frictions in both markets

g 2.00% 2.00% 2.07% 2.12%
1
q 2 yr 3.4 yr 1.03 yr 1.75 yr

to target a fraction of employed in the financial sector over total employment of 6% accord-

ing to the Bureau of Labor Statistics data for 2020. The value for π is chosen to normalize

total discounted output net of production costs to 1. Finally, tightness in innovation market,

θ, is set to match the fraction of employed in scientific research and development services

over total employed of 0.5% in 2020 (BLS)

Table 2 reports the equilibrium growth rate and duration in the innovation market pre-

dicted by our model in 4 different cases: our current calibration, "low" credit market fric-

tions, "low" innovation market frictions and low frictions in both markets. To decrease the

level of credit market frictions we let p0 →∞ while to reduce search time in the innovation

markets, we double the search costs for innovators, n.17

Before commenting on the results of Table 2, it is good to recall that given our chosen

calibration ( c=ωn), as shown in section 2.3, the maximum growth rate would be achieved

for p=q. In our case, with p>q, the economy is on the right of the hump in a rather flat

region. Moreover, as exemplified by our back of the envelope calculations at the end of

the same section, when the real rate is close to the growth rate of the economy, the latter is

relatively insensitive to access to credit. The main take away from this simple exercise is that

for a calibration close to US data, changes in credit markets have only a marginal negative

effect on growth as they mainly exacerbate bottlenecks in the innovation market. Similarly,

the second column of the table shows also that this holds trues also for lower frictions in

the innovation market. However, the last column in the table illustrates that a combined

reduction of frictions in both markets would result in a higher growth rate. This can be

construed as substantiating the OECD view that innovation is the outcome of a "system"

favorable to growth rather than the result of isolated pro-growth measures. 18 All in all, the

results above show that for a calibration chosen to mimic the current US economy, financial

17An increase in the search costs for innovators reduce a firm profitability. To keep profit at zero, the prob-
ability of meeting innovators must increase (equation 11).

18For example, the OECD’s 2015 innovation strategy argues that policy makers can promote innovations by
focusing on five areas of action among which education and training systems as well as a business environment
supporting investment in knowledge based capital.
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factors play only a moderate role for growth. In light of what shown in the previous section,

this should perhaps not come as a surprise when the real and growth rate are close to each

other and search costs in both markets are symmetric. More generally, potential growth, as

captured by the productivity jump γ plays an important role. Specifically, is it possible to

show19 that the elasticity of the growth rate with respect to finance is a multiple of the factor
γ−g
γ

. That is, as long as potential growth is close to the actual growth rate, growth is relatively

insensitive to changes in financial factors.

Innovation and growth contribute to societal well-being and the non-monotonical rela-

tion between finance and growth translates on the interlink between welfare and financial

development. Figure 5 illustrates this point plotting the long-run discounted value of output

net of search cost, as a function of credit matching probability, p for our benchmark calibra-

tion.20. Two observations are in order. First, the welfare’s shape mimics the GG curve and it’s

hump-shaped in p. Second, for the chosen calibration, credit market tightness is too low,

i.e. less matching speed in credit market would ease congestion in the innovation market

thereby resulting in a welfare improvement. Quantitatively, an instantaneous matching in

credit markets (p0 →∞) would lead to 3.4% deterioration in long-run output compared to

its maximum value.
19These results are available upon request
20The dotted vertical line in the figure indicates pmi n
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Figure 5: Welfare and finance
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3 Efficient finance and R&D

As shown in the previous section, there may be too much finance in equilibrium: easier

access to credit may dampen growth when the relaxation of credit fictions exacerbates in-

novation frictions. In this section, we formalize what is too much by taking into account the

effects of different distortions on social output. Specifically, we now turn to describing the

efficiency properties of the competitive equilibrium of our model by characterizing the con-

strained efficient allocation. In what follows, we assume the following functional forms for

the two matching probabilities in credit and innovation market, respectively:

q (θ) ≡ µ (F1,I1)

F1
=µ(

1,θ−1)= q0θ
−ε,

p
(
φ

)≡ m (F0,B0)

F0
= m

(
1,θ−1)= p0φ

−η.

As a preliminary it is useful to express the competitive equilibrium in a more compact way

explicitly taking into account a compensation, w, for innovators.

3.1 Block bargaining and competitive equilibrium

So far we have assumed, for ease of exposition, that innovators are not compensated for

their work.21 Suppose now that, after a successful match, innovators receive a wage w ne-

gotiated through Nash bargaining. Bargaining in the financial and innovation markets oc-

curs independently. In the former, firms and banks do not take into account the effect of

credit repayment ρ on wages.22 In the innovation market, the newly formed bank-firm pair

bargains with a innovator. If we define the joint bank-firm value Ĵi as:

Ĵi = B̂i + F̂i i = 0, ..3,

where B̂i and F̂i represent, respectively the value of a bank and a firm at each stage, the

negotiated wage for the innovator solves the following maximization problem:

w = argmax
(

Ĵ2 − Ĵ1
)1−α (

Î2 − Î1
)α

,

21Alternatively, one could assume that innovators receive an exogenous wage.
22This assumption keeps the solution for credit repayment unchanged from what we found in the previous

sections.
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in which α ∈ (0,1) denotes the bargaining weight of innovators. As shown in the ap-

pendix, the solution of this problem is a surplus sharing rule:

w =α(
πγ+θnk −

(
r − g + s

)
K

(
φ

))
,

where K
(
φ

) ≡ c
p + k

pφ measures total discounted search costs in the financial market and

nk ≡ (
r − g

)
K

(
φ

)+n encompasses not only recruiting costs n in the innovation market but

also the annuitized value of search costs in the financial market. The wage is increasing in

innovators productivity (πγ) and the innovation market tightness (θnk ). This general equa-

tion encompasses the case w = 0, considered so far, if innovators had no bargaining power

α = 0. For α sufficiently small, all the properties of the equilibrium we described in the

previous section stand still.

By summing-up the two free-entry conditions in the financial market, taking account

the wage rule above, we can express the equilibrium of our model in a compact way by two

equations:
nk

q
= (1−α)

(
πγ− (

r − g + s
)

K
(
φ

))−αθnk(
r − g + s

) ,

and g expressed by equation(12).

3.2 Constrained efficient allocation

Consider now the problem of a social planner maximizing the presented discounted value

of output net of search cost

max
I1,B0,F0,F1,A

ΩSP =
∫

e−r tΠAd t

st :
·
A = g (I1,B0,F0,F1) A

·
F1=−q (θ)F1 +p

(
φ

)
F0

·
I1 = s (1−I1)−θq (θ)I1,

where

Π= [
πγ (1−I1)− cF0 −kB0 −nF1

]
,

g (I1,B0,F0,F1) = γ(
s

q(θ) + s
p(φ) +1

) .
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Ii , Bi and Fi denote the number of innovators, banks and firms, respectively, in different

stages, A is the aggregate average productivity and the matching frictions impose a techno-

logical constraint on the social planner. Congestion externalities are a standard market fail-

ure in matching models. Here, the endogeneity of the growth rate entails a second source

of externalities since individual investment in R&D and more liquidity can boost aggregate

productivity. An inspection of the following two first-order conditions will make this point

more clear:

e−r t k A =ΦpB0F0 +ΞgB0 A, (14)

e−r t c A =Φ
(
F0p

F0
+p

)
+ΞgF0 A, (15)

where Ξ andΦ are the co-states associated, respectively, to the law of motion of technology

and the flow of matched firms (the notation ∂ f (x)
d x = fx applies). At an optimum, the so-

cial planner equalizes the discounted flow costs of searching in the financial market to the

expected social benefits from an additional bank-firm match where the latter takes into ac-

count the effects of successful matches on growth (gB0 and gF0 ). The following proposition

characterized a constrained efficiency condition in the financial and innovation market.

Proposition 5 (Modified Hosios ) The decentralized solutions for credit and innovation tight-

ness maximize net social welfare if:

1−ω= η k
(
r − g∗)

k
(
r − g∗)−ηΠ∗gB0

> η, (16)

α= ε+ τ

ŵ
> ε,

where g∗ = g
(
θ∗,φ∗)

denotes the efficient level of growth and

ŵ ≡ πγ+θ∗nk −
(
r − g − s

)
K

(
φ∗)(

r + s − g∗) ,

τ≡ gI1

θ∗q

[
Π∗+

(
k −ηpφK

(
φ∗))

gB0

(
s +θ∗q

)]
,

Π∗ ≡ θ∗sq(
s +θ∗q

) [
πγ

s
−

(
1+ r − g

q

)
K

(
φ∗)− nk

q

]
,

gB0 ≡
g 2sη

γ

φ∗

q

(
s +θ∗q

θ∗s

)
,

Proof: See the appendix. •
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In the absence of growth externalities, the first efficiency condition above would collapse

into the usual Hosios condition, (1−ω) = η which states that at an optimum, the share of

surplus accruing to banks (1−ω) in a match should equal to the elasticity of the matching

function with respect to the corresponding search input
(
η
)
. Disregarding the growth effects,

when the elasticity η is high, searching firms in the financial market creates more congestion

than unmatched banks and the social planner would like to give a higher share of surplus to

the banks to reduce that cost. On the other hand, when η is too low, there are too many banks

searching for firms. With endogenous growth, more banks searching have also a positive

effect on growth, thereby giving a further incentive to the social planner to stimulate entry

by new banks by setting (1−ω) > η. Another way of looking at this result, comes by noting

that total search costs , i .e. K
(
φ

)≡ k
φp(φ) +

c
p(φ) are minimized at φK :

φK = 1−η
η

k

c
> ω

(1−ω)

k

c
=φ∗.

Taking into account growth, the optimal level of credit market tightness,φ∗ is lower than the

value that would minimize search costs, φK , since the social planner internalizes the nega-

tive effects of the trading friction on growth. Note that φK also corresponds to the optimal

credit market tightness in absence of endogenous growth. The social planner internalizes

banks’ contribution to growth and the interactions between the two searching frictions. This

becomes more clear noting that we can rewrite the term in the denominator of equation (16)

as :

Π∗gB 0 =
g 2sηφ∗

γ
[
πγ

s
−

(
1+ r − g

q

)
K

(
φ∗)− nk

q
)].

That is, when there is more congestion in innovation markets (a lower q) banks marginal

contribution to growth is lower. Therefore the share of surplus accruing to bank should be

lower to disincentivize banks’ entry, in other words, the tighter are innovation markets the

lower the optimal size of financial sector.

Turning to the innovation market, the second efficiency condition conveys a similar

message. The optimal share of surplus going to innovators (α) should be greater than their

contribution in terms of matching (ε) since their entry has also a positive effect on the av-
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erage growth rate. This implies that the optimal level of innovation market tightness
(
θ∗

)
is

lower compared to a case without endogenous growth.

4 Robustness

In this section, we evaluate the robustness of our findings to different model assumptions.

First, we modify the original model to allow for a direct feedback, absent heretofore, from

growth onto credit market tension. To that effect, we introduce the assumption that entering

in financial markets entails a fix licensing cost for banks. Second, we show that relationship

between finance and growth is monotonic if markets of ideas are frictionless.

4.1 Fixed entry cost for banks

Assume that a bank suffers a fixed entry cost K , say a licensing cost, at the time it enters the

credit market to offer its services to firms. The annuity value of that cost in a growing econ-

omy is (r − g )K , and it adds up to the flow search cost k paid by the bank. Since the growth

rate is endogenous in our model, the effect of the fixed entry cost K depends on its impact on

the equilibrium growth rate—an effect absent when growth is exogenous. This introduces

into our model a direct feedback from growth into finance that we now investigate.

We assume that the fixed market-entry cost K is paid by the bank each and every time it

starts searching for a firm—i.e. that upon exogenous separation from the firm or in case of

negotiation failure it reverts to its zero pre-entry value. As a result, the fixed cost K does not

affect the surplus of the bank-firm match, and the free entry conditions (7) and (8) become

c

p(φ)
=ωS[q(θ), g ;γ], (17)

k + (r − g )K

φp(φ)
= (1−ω)S[q(θ), g ;γ]. (18)

Note the way we introduce fixed costs of entry differs from the approach taken, for in-

stance, in Wasmer and Weil (2004). There, the fixed cost K is paid once and for all when

entering the market, and endogenous separation or failure of Nash-bargaining does not en-

tail exit from the market and the ensuing need to repay the entry cost to resume search.

As a result, the value of a bank that has just separated equals the value of a firm which has

just entered — i.e., K as required under perfect competition. The fixed entry cost K there-
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fore affects the surplus of the match between bank and firm — both because it changes the

exit value of the bank to a positive number (K ), and because it improves the firm’s outside

option during Nash-bargaining. To avoid such unnecessary modeling complications, we as-

sume instead that a separated bank, or one that has failed in negotiations with the bank,

exits the market altogether and loses its costly operating license. To reenter the market and

resume search, the bank must therefore repay the fixed cost K . As are result, the exit value

of a bank is zero — which simplifies calculations without affecting results qualitatively.23

Retracing the steps taken in section 2, the conditions (17) and (18) can be rewritten as

q =Q(p, g ;c,γ), (19)

φ= ω

1−ω
k + (r − g )K

c
. (20)

The novel term (r − g )K on the right hand-side of equation (20) captures the annuity

value, in an economy growing at the endogenous rate g , of the fixed entry cost K . The faster

the economy grows, the smaller the fixed cost looms in the bank’s cost computations. The

equilibrium impact of the fixed cost thus depends on whether it slows down or raises growth.

In the first case, lower growth amplifies the impact of barriers to credit entry. In the latter,

it mitigates them. Interestingly, equation (20) shows a direct positive effect of growth on

financial deepening. Higher growth reduces the annuity value of the licensing cost, thereby

inducing entry of new banks and reducing the tightness of credit markets.

4.1.1 Equilibrium

Equation (20) implies that the equilibrium credit matching probability obeys

p = p

[
ω

1−ω
k + (r − g )K

c

]
. (21)

Since p ′(·) < 0, and provided r > g (a condition always satisfied in equilibrium), this equa-

tion defines, given K , an upward sloping PP curve in (p, g ) space—as shown in Figure 6.24

When K = 0, the PP curve is vertical. Raising K shifts the PP curve to the left and flattens it.

Furthermore, since the surplus S does not depend on K , neither does the spillover function

23This approach is similar to that of Pissarides (2009) in a labor setting where fixed training costs are in-
curred each time a match occurs.

24When p → ∞, the PP curve has a horizontal asymptote at (k + r K )/K := g∞
p . The minimal value of p

occurs when g = 0.
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(19) — so that the equation and position of the GG curve defined in (12) are unaffected by

the introduction of the fixed entry cost K .

We can therefore represent the equilibrium with fixed entry costs K in Figure 6.
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Figure 6: Equilibrium growth and credit matching probability (K > 0)

The feedback from growth to credit tightness, captured by the new PP curve could po-

tentially result in multiplicity of equilibria, as depicted in figure 7. The following proposition

rules out this possibilities and establishes the uniqueness of the equilibrium under standard

assumptions on the matching probabilities.25

Proposition 6 In the presence of fixed-entry costs in financial market, if an equilibrium exists

it is unique.

Proof: See the Appendix. •

As in our benchmark model, a policy intervention which lowers costs for financial inter-

mediaries stimulates entry and decreases credit market tightness. On the margin, lowering

licensing costs has a stronger impact on market tightness the lower the initial growth rate

25Here, we assume the same functional forms for the two matching probabilities defined in the previous
section.
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Figure 7: Multiple Equilibria

and for higher level of interest rates. As before, the interaction between credit and innova-

tion frictions makes the policy have a negative effect on congestion in the innovation mar-

ket, and the equilibrium effect on growth is ambiguous. Graphically, a reduction in search

costs shifts the PP curve to the right while lowering licensing costs steepens the curve and

moves it to the right (see Figures 8 and 9).
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Figure 8: More finance with fixed entry cost
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Figure 9: Smaller bank entry cost

Search frictions only in one market

In the foregoing analysis, the interaction between search frictions in financial and innova-

tion markets generates a non-monotonic relationship between growth and finance. To shed

more light on this channel, this section presents a simplified version of our growth model

where R&D is frictionless.

Specifically, assume that a firm needs a financial intermediary to find an upgraded blueprint

to boost its productivity. Finding a financiers requires effort and time but, once the firm has

met a bank, an innovator is found costlessly and instantly. As shown in the appendix, the

equilibrium of this simple model can be summarized by two equations

BB :
k

φp
(
φ

) = (1−ω)(
r − g + s

) [
πγ+ c − ω

1−ω
k

φ

]
,

GG : g = γ
s

p(φ) +1
.

The first equation represents a free-entry condition in the financial sector, the second cap-

tures the average growth rate of the economy when firms meet innovators instantaneously

after having secured financing. Both curves are downward sloping in the
(
φ, g

)
plane, as
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shown in figure 10 26.

In this simplified set-up, a more efficient matching between firms and financiers mod-

eled as an increase in p0 makes the first curve shifts to the left, i.e. for given g the discounted

search cost for banks decreases thereby inducing more banks to enter and thus reducing

credit tightness. The GGφ curve moves upward, since finance has a positive direct effect on

the share of innovating firms. An improvement in credit markets therefore results unequiv-

ocally into higher growth and less tightness in financial markets. Finance is always good for

growth because it is the only hindrance to innovation. This is the traditional mechanism

underlying simplistic policy recommendations for financial liberalization. Similarly, if only

innovation markets were frictional while access to credit were free, more developed R&D

markets would always be beneficial for growth.

𝑔𝑔

ϕ

γ

𝑟𝑟 + 𝑠𝑠

𝐺𝐺𝐺𝐺

𝐵𝐵𝐵𝐵

𝐺𝐺𝐺𝐺’

𝐵𝐵𝐵𝐵𝐵

Figure 10: More efficient credit markets when innovation markets are frictionless

26The existence of an equilibrium is ensured by the condition r > γ.
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5 Conclusion

In the last century, most developed economies have experienced a widespread expansion of

the financial sector yet almost constant growth rates of GDP (save for wars and financial or

health crises). In this paper, we build a parsimonious endogenous growth model with search

frictions in credit and innovation markets to shed more light into this empirical observation.

In our model, higher growth induces firms and banks to entering in the market and can in-

crease the size of the financial sector. All else equal, tight credit and innovation markets have

a negative effect on growth. However, we show that once all general equilibrium effects are

taken into account, financial deepening beyond a certain threshold is harmful for growth.

Finance has a non-monotonic effect on long-run growth since there are other bottlenecks

than money hindering innovation, i.e. a too big financial sector can create congestion in the

innovation markets. For a calibration chosen to mimic the actual US economy, with rela-

tively good functioning credit and innovation markets, the effects of finance on growth are

negative but only marginal.

We look at this issue also from a normative perspective and show that entry in both mar-

kets is efficient once innovators and financiers are compensated for their contribution to

growth and that the social planner internalizes the interactions between the two congestion

frictions.

Financial development could also have an impact on the speed of convergence to the

world technological frontier. We explore this possibility in a companion paper where less de-

veloped countries strive to reach the technological frontier by imitation in a multi-country

version of our model.
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Appendix A The model

This section describes in more detail our model.

A.1 Matching functions and probabilities

We assume the following functional forms:

q (θ) ≡ µ (F1,I1)

F1
=µ(

1,θ−1)= q0θ
−ε

p
(
φ

)≡ m (F0,B0)

F0
= m

(
1,θ−1)= p0φ

−η

where µ (·) and m (·) are constant return to scale technologies producing matches in the

innovation and the credit markets, respectively.

A.2 The value of an innovator

The Bellman equations describing the steady-state values of the innovator over the four

stages are

(
r − g

)
Î1 =−ℓ+θq(θ)

[
Î2 − Î1

]
(
r − g

)
Î2 = s

[
Î3 − Î2

]
Î3 = Î1

where ℓ is the search cost for innovators. There is no free-entry in this market and the

total number of inventors is normalized to 1

I =I 1 +I2 = 1.

Then, the dynamics of the flow of inventors searching for entrepreneurs can be expressed

as
·

I1 = s (1−I1)−θq (θ)I1.
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Abstracting from the very short-run
·

I1 = 0 :

I1 = s

s +θq (θ)
.

A.3 Value of a firm

The values of a firm along the balanced path in the four stages are described by

(
r − g

)
F̂0 =−c +p

(
φ

)[
F̂1 − F̂0

]
(
r − g

)
F̂1 = q(θ)

[
F̂2 − F̂1

]
(
r − g

)
F̂2 =π

(
1+γ)−π−ρ+ s

[
F̂3 − F̂2

]
F̂3 = F̂0.

In the fund-raising stage, firms produce πA, pay a flow cost c A to search for banks and pro-

duction costs πA. Once the match is created, in stage 1, they will still produce πA (and

sustain production costs πA) and with probability q (θ) , they will meet an innovator and

have access to a better technology, where θ = F1
I1

, i.e. the ratio between entrepreneurs and

available innovators, represents tightness in the market of idea and q ′ (θ) < 0. In the next

stage, 2, they will produce π
(
1+γ)

A and repay the contracted amount ρA to the bank, and

sustain costs πA. Matches are exogenously destroyed with probability s at the end of that

stage. With free entry, F̂0 = 0 and

F̂1 = c

p
(
φ

)
F̂1 = q (θ)

r − g +q (θ)

πγ−ρ
r − g + s

c

p
(
φ

) = q (θ)

r − g +q (θ)

πγ−ρ
r − g + s

.
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A.4 Value of a bank

Similarly, we can express the Bellman equations describing the evolution of the bank values

along the balanced growth path as:

(
r − g

)
B̂0 =−k +φp

(
φ

)[
B̂1 − B̂0

]
(
r − g

)
B̂1 =−n +q (θ)

[
B̂2 − B̂1

]
(
r − g

)
B̂2 = ρ+ s

[
B̂3 − B̂2

]
where k and n are search costs in the financial and innovation markets, respectively.

With free-entry:

B̂1 = k

φp
(
φ

)
B̂1 =− n

r − g +q (θ)
+ q (θ)ρ(

r − g +q (θ)
)(

r − g + s
)

k

φp
(
φ

) =− n

r − g +q (θ)
+ q (θ)ρ(

r − g +q (θ)
)(

r − g + s
) .

If we instead assume that banks need to pay a fix cost K upon entry, B̂0 = B̂3 = K ,

B̂1 =
(
r − g

)
K +k

φp
(
φ

)
B̂2 = ρ+ sK

r − g + s

B̂1 = −n +q (θ) B̂2

r − g +q (θ)

= −n +q (θ) B̂2

r − g +q (θ)
+ q (θ)

r − g +q (θ)

ρ+ sK

r − g + s
,

by equating forward and backward Bellman equations, we get:

(
r − g

)
K +k

φp
(
φ

) = −n

r − g +q (θ)
+ q (θ)

r − g +q (θ)

ρ

r − g + s
.

A.5 Bargaining

No entry-costs
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Banks and firms share the surplus

S = q (θ)

r − g +q (θ)

πγ

r − g + s
− n

r − g +q (θ)

according to the rule:

ρ = argmax
(
B̂1 − B̂0

)(1−ω) (
F̂1 − F̂0

)ω
.

Then we have

(1−ω) F̂1 =ωB̂1

(1−ω)

[
q (θ)

r − g +q (θ)

πγ−ρ
r − g + s

]
=ω

(
q (θ)ρ(

r − g +q (θ)
)(

r − g + s
) − n

r − g +q (θ)

)
ρ = (1−ω)πγ+ωn

(
r − g + s

)
q (θ)

.

Furthermore, using the backward definition of F̂1 and B̂1, it follows that

(1−ω)
c

p
(
φ

) =ω k

φp
(
φ

)
φ= ω

1−ω
k

c
.

Entry costs

When there are fixed entry costs in the banking sector, we assume that they do not affect

the outside option of the bank

ρ = argmax
(
B̂1

)(1−ω) (
F̂1 − F̂0

)ω
.

As a result, the surplus is unaffected:

S = q (θ)

r − g +q (θ)

πγ

r − g + s
− n

r − g +q (θ)
.

The equilibrium tightness is determined using the backward definition of F̂1 and B̂1 :

φ= ω

1−ω

(
r − g

)
K +k

c
.
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A.6 Flow equations and technology evolution

The number of entrepreneurs in the four stages evolves according to the following equa-

tions:

·
F2=−sF2 +q (θ)F1

·
F1=−q (θ)F1 +p

(
φ

)
F0

·
F0=sF2 −p

(
φ

)
F0.

Thus, abstracting from the very short run
·

Fi = 0, we have

F1 = s

q (θ)
F2

F0 = s

p
(
φ

)F2.

Since

(F1 +F0 +F2) =F ,

it follows that (
s

q (θ)
+ s

p
(
φ

) +1

)
F2 =F

and thus that

F2

F
= 1(

s
q(θ) + s

p(φ) +1
) .

Note that the law of motion of technology in discrete time would be

At+1 = (F1 +F0)

F
At + F2

F
At

(
1+γ)

At+∆− At

∆
=

(
F1 +F0 +F2

(
1+γ)−F

)
F

At

At+∆− At

∆
= F2

F
γAt ,
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so that, in continuous time, letting ∆→ 0, we have:

g ≡
·
A

A
= γ(

s
q(θ) + s

p(φ) +1
) .

A.7 Equilibrium conditions

A.7.1 No fixed-costs

To sum up, the equilibrium conditions of this economy read:

k

φp
(
φ

) = (1−ω) q (θ)(
r − g +q (θ)

) {
πγ(

r − g + s
) − n

q (θ)

}
c

p
(
φ

) = ωq (θ)

r − g +q (θ)

{
πγ(

r − g + s
) − n

q (θ)

}
φ= ω

1−ω
k

c

ρ = (1−ω)πγ+ωn
(
r − g + s

)
q (θ)

·
A

A
≡ g = γ(

s
q(θ) + s

p(φ) +1
) .

The equilibrium can be represented in a more compact way using the following GG and PP

curves:

GG : g = γ(
s

Q(p,g ) + s
p +1

)
PP : p = P

(
ω

1−ω
k

c

)
,

where q = (r−g ) c
ωp +n

πγ
r−g+s − c

ωp
:=Q(p, g ).
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A.7.2 Fixed entry costs

With fixed entry costs, the equilibrium conditions become:

k + (
r − g

)
K

φp
(
φ

) = (1−ω) q (θ)(
r − g +q (θ)

) {
πγ(

r − g + s
) − n

q (θ)

}
c

p
(
φ

) = ωq (θ)

r − g +q (θ)

{
πγ(

r − g + s
) − n

q (θ)

}
ρ = (1−ω)πγ+ω

(
r − g + s

)
q (θ)

n

φ=ωk + (
r − g

)
K

c (1−ω)
·
A

A
≡ g = γ(

s
q(θ) + s

p(φ) +1
) .

The equations defining the GG and PP curves become, accordingly:

GG : g = γ(
s

Q(p,g ) + s
p +1

)
PP : PP : p = P

(
ω

1−ω
k + (r − g )K

c

)
,

where q = (r−g ) c
ωp +n

πγ
r−g+s − c

ωp
:=Q(p, g ).

Appendix B Growth and finance

As a preliminary to the proof of the next two propositions, it is useful to define P = 1/p and

Q = 1/q . From the definition of the growth rate, we have

P +Q = (γ/g −1)/s := M(g ). (B.1)

If GG has a hump, it must be that (locally) dP =−dQ so that d g = 0.

From the free-entry condition:

cP = ω

1+Q(r − g )
[

πγ

r − g + s
−nQ] (B.2)
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or, in logs,

logc + logP = logω− log[1+Q(r − g )]+ log[
πγ

r − g + s
−nQ] (B.3)

We can now derive the condition under which dP = −dQ and d g = 0 according to the

(log) free entry condition. To do so, let’s keep g constant and totally differentiate so that:

dP

P
=− (r − g )dQ

1+Q(r − g )
− ndQ

πγ
r−g+s −nQ

. (B.4)

Hence dP =−dQ and d g = 0 if and only if

1

P
= (r − g )

1+Q(r − g )
+ n

πγ
r−g+s −nQ

(B.5)

= (r − g )

1+Q(r − g )
+ nω/cP

1+Q(r − g )
(B.6)

or

1 = P (r − g )+nω/c

Q(r − g )+1
(B.7)

or

P −Q = 1−nω/c

r − g
:= N (g ). (B.8)

The hump thus occurs at (P,Q, g ) that are defined by the three equations (1), (2) and (8).

Now (1) and (8) can be solved, given g , to provide:

P = M(g )+N (g )

2
(B.9)

Q = M(g )−N (g )

2
. (B.10)

Substituting these values in B.2 provides a single equation in g , and thus the value of the

g at hump. Existence condition for the hump boils down to checking under which condition

this equation has a solution below r .

More specifically, the free-entry condition is:

cP [1+Q(r − g )] =ωΠ−nωQ (B.11)

or

[cP +nωQ]+ cPQ(r − g )−ωΠ= 0. (B.12)
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Now, at the hump,

Q = P −N (g ) = P + nω/c −1

r − g
, (B.13)

so that

PQ = P 2 + nω/c −1

r − g
P. (B.14)

Using the last two equations to eliminate Q and PQ from the free-entry condition yields:

[
cP +nω[P + nωc −1

r − g
]

]
+ c

[
P 2 + nω/c −1

r − g
P

]
(r − g )−ωΠ= 0. (B.15)

Collecting terms, we get another quadratic equation in P , with coefficients depending

on r − g :

c(r − g )P 2 +2nωP +nω
nω/c −1

r − g
−ω πγ

r − g + s
= 0. (B.16)

Its discriminant is

∆= 4n2ω2 −4c(r − g )

(
nω

nω/c −1

r − g
−ω πγ

r − g + s

)
= 4n2ω2 −4cnω (nω/c −1)+4c(r − g )ω

πγ

r − g + s

= 4cnω+4c(r − g )ω
πγ

r − g + s
> 0

Proposition 7 (hump-shaped GG curve) Suppose c =ωn. Then the GG curve is hump-shaped.

The growth rate is maximal and the total expected search time is minimal when expected

credit and innovation search times are equal 1/p = 1/q.

Proof: In the special case nω/c = 1, N (g ) = 0 and P =Q = M(g )/2 which can be inserted

into the free-entry condition B.2 to provide the value of g at the hump.

cP
(
1+P (r − g )

)=ω(
πγ

r − g + s
−nP

)
cP

(
1+P (r − g )

)=ωΠ− cP

For a given g, the equation above provides a quadratic expression in P with the following
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two roots

P1 =
−

√
c2 + cΠω

(
r − g

)− c

c
(
r − g

)
P2 =

√
c2 + cΠω

(
r − g

)− c

c
(
r − g

)
It’s clear that if

(
r − g

)> 0, P1 < 0 and P2 > 0. Using the fact that P = M(g)
2 , we have

P2 =
−c +

√
c2 + c

πγω(r−g)
r−g+s

c
(
r − g

) = M
(
g
)

2
.

The left-hand side of this equation evaluated at 0 and r is

M
(
g
)

2
=

γ
g −1

s

M (r ) =
γ
r −1

2s
< 0

M (0) =∞.

Similarly, the right-hand side is

P1 (0) =
−c +

√
c2 + crω πγ

r+s

cr
> 0

P1 (r ) = lim
g→r

√
c2 + c πγ

r−g+sω
(
r − g

)− c

c
(
r − g

)
= lim

g→r

(−1
2

)(
c2 + c πγ

r−g+sω
(
r − g

))− 1
2
(
c πγ

r−g+sω
)

−cg
=

(−1
2

)
c πγs ω

−c2r
= πγω

2scr
.

So there is always a solution between 0 and r, i .e. the left-hand and right-hand sides cross

at least once in that interval since:

P1 (0) < M (0)

P1 (r ) = πγω

2scr
> 0 > γ− r

r s
= M (r ) .

•
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Proposition 8 (hump-shaped GG curve general case) The GG curve is hump-shaped if

n2 < c

ω

[
(r − g∞)Π∞+n

]
. (B.17)

Proof: For ease of exposition, it is useful to divide the proof into few steps.

Step 1: Positive P The quadratic equation in P (derived above)

c(r − g )P 2 +2nωP +nω
nω/c −1

r − g
−ω πγ

r − g + s
= 0

has two roots P1 and P2 whose sum and product are

P1 +P2 =− 2nω

c(r − g )
< 0

P1P2 =
ω

(
n nω/c−1

r−g − πγ
r−g+s

)
c(r − g )

.

If

n
nω/c −1

r − g
− πγ

r − g + s
< 0 ⇒

n
nω/c −1

r − g
−Π < 0,

then one of the two roots is positive.

Step 2: Sufficient condition The condition above can be simplified as

nω− c < c

n

(
r − g

)
Π

n2 < c

ω

[
(r − g )Π+n

]
.

This condition involves an endogenous variable (g ), but a sufficient condition for it to

hold is

n2 < c

ω

[
(r − g∞)Π∞+n

]
where g∞ is the horizontal asymptote of the GG curve when p →∞.
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Step 3: r − g > 0 Finally, we need to check that r − g > 0. Let’s denote with P1 the positive

root, recall that

P1
(
g
)= M

(
g
)+N

(
g
)

2
.

The righthand side of this equation is

M
(
g
)+N

(
g
)

2
= 1−nω/c

r − g
+

γ
g −1

s

M (r )+N (r ) =∞
M (0)+N (0) =∞.

The lefthand side is:

P1 (0) =
−nω+

√
cnω+ crω πγ

r+s

cr
> 0

P1 (r ) = lim
g→r

−nω+p
cnω

c(r − g )
=∞.

Hence there must be at least a solution in between 0 and r .

•

Proposition 9 (Uniqueness of the hump) If the GG curve has an hump, it’s unique.

Proof: Recall the equation describing the GG curve:

g = γ

1+ s/p + s/Q(p, g )
, (B.18)

where the function Q(p, g ) is derived implicitly from the free-entry condition:

q =
(r − g ) c

w p +n
πγ

r−g+s − c
w p

:=Q(p, g )

with Qp < 0 and Qg < 0. This implies after straightforward differentiation that the sign of the

slope of the GG curve
(
d g /d p

)
is the same as the sign of

A := 1/p2 +Qp /q2 (B.19)
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since

Gp = d g

d p
= γs(

s
q + s

p +1
)2

(
qp

q2
+ 1

p2

)
= A

(
p

) γs(
s
q + s

p +1
)2

Gpp = d g

d pd p
= 2

γs2(
s
q + s

p +1
)3 A

(
p

)2

+ γs(
s
q + s

p +1
)2 Ap

where Ap = qpp

q2 − 2q2
p

q3 − 2
p3 . At the hump, p∗, A

(
p∗)= 0 so that

Gpp = γs(
s
q + s

p∗ +1
)2 Ap

(
p∗)

.

With some algebra, it is possible to show that at the hump the GG function is concave, i.e.
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Ap < 0

Ap = qpp

q2
−

2q2
p

q3
− 2

p3

/ Recall qpp = −2qp

(
1

p
− Ψp

(ωΠ−Ψ)

)
/

= −2qp

q2

(
1

p
− Ψp

(ωΠ−Ψ)

)
−

2q2
p

q3
− 2

p3

/ Recall
qp

q2
= − 1

p2
/

= −2qp

q2

(
1

p
− Ψp

(ωΠ−Ψ)
+ qp

q

)
− 2

p3

= 2

p2

(
1

p
− Ψp

(ωΠ−Ψ)
+ qp

q
− 1

p

)
= 2

p2

(
qp

q
− Ψp

(ωΠ−Ψ)

)

/ Recall
qp

q
= ωΨp

(
r − g

)
Π+n

(ωΠ−Ψ)
(
ωn + (

r − g
)
Ψ

)/

= 2

p2

(
ωΨp

(
r − g

)
Π+n

(ωΠ−Ψ)
(
ωn + (

r − g
)
Ψ

) − Ψp

(ωΠ−Ψ)

)
=

(
2

p2

)
︸ ︷︷ ︸

+

Ψp

(ωΠ−Ψ)︸ ︷︷ ︸
−

(
ωn +ω(

r − g
)
Π

ωn + (
r − g

)
Ψ

−1

)
︸ ︷︷ ︸

+

< 0

We can show that the last term is positive using the no free-entry condition:

Ψ=ωβ
(
Π− n

q

)
<ωβΠ<ωΠ

where

β = q

r − g +q
< 1

Π = πγ

r − g + s

Ψ = c

p
.
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We used the following expressions:

q = ωn + (
r − g

)
Ψ

(ωΠ−Ψ)

Ψp = − c

p2
< 0, Ψpp = 2

c

p3
> 0,

Ψpp

Ψp
=− 2

p

qp = Ψp

(
r − g

)
(ωΠ−Ψ)+ωn + (

r − g
)
Ψ

(ωΠ−Ψ)2 =ωΨp

(
r − g

)
Π+n

(ωΠ−Ψ)2 < 0

qp

q
= ωΨp

(
r − g

)
Π+n

(ωΠ−Ψ)2

(ωΠ−Ψ)

ωn + (
r − g

)
Ψ

=ωΨp

(
r − g

)
Π+n

(ωΠ−Ψ)
(
ωn + (

r − g
)
Ψ

)
qpp = ωΨpp

(
r − g

)
Π+n

(ωΠ−Ψ)2 +2ωΨ2
p

(
r − g

)
Π+n

(ωΠ−Ψ)3 =

= qp
Ψpp

Ψp
+ 2qpΨp

(ωΠ−Ψ)
= −2qp

p
+ 2qpΨp

(ωΠ−Ψ)
=−2qp

(
1

p
− Ψp

(ωΠ−Ψ)

)
> 0.

•

Proposition 10 In the presence of fixed-entry costs in financial market, If the equilibrium

exists is unique.

Proof: As a preliminary, it is useful to rewrite the PP curve by explicitly expressing g as a

function of p:

PP : p = p0

[
ω

1−ω
k + (r − g )K

c

]−η
⇒

g = 1

K

c

ω
(1−ω)

(
1

c

ω

1−ω (k +K r )−
(

p

p0

)− 1
η

)
⇒

g = (k +K r )

K
− 1

K

c

ω
(1−ω)

(
p

p0

)− 1
η

.

It is straightforward to show that PP is an increasing and concave curve in the (p, g ) plane:

PPp =
(

1

η

)
1

K

c

ωp0
(1−ω)

(
p

p0

)− 1
η−1

> 0

PPpp = −
(

1

η

)(
1

η
+1

)
1

K

c

ωp2
0

(1−ω)

(
p

p0

)−(
1
η+2

)
< 0.
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Let’s now define the RR
(
p

)
curve as the vertical difference between PP and GG :

RR
(
p

)≡ PP −GG = (k +K r )

K
− 1

K

c

ω
(1−ω)

(
p

p0

)− 1
η − γ

1+ s/p + s/
(r−g ) c

ωp +n
πγ

r−g+s − c
ωp

.

It follows that

RRp = PPp −GGp .

First, notice that if PP and GG cross after the hump, i.e. RR
(
p

)= 0 for p > p∗, then RRp > 0

since GG is downward sloping. The GG is downward sloping and we cannot have multiple

crossing on that side. Things are different if the two curves cross for p < p∗. At the hump

RRp
(
p∗)= (

1

η

)
1

K

c

ωp0
(1−ω)

(
p∗

p0

)− 1
η−1

> 0.

At p = 0,

lim
p→0

RRp (0) =
(

1

η

)
1

K

c

ωp0
(1−ω)

(
p

p0

)− 1
η−1

+ γs(
s
q + s

p +1
)2

(
qp

q2
+ 1

p2

)
=∞.

Furthermore RRp is monotonic and decreasing for p < p∗so that:

RRpp =GGpp −
(

1

η

)(
1

η
+1

)
1

K

c

ωp2
0

(1−ω)

(
p

p0

)−(
1
η+2

)
< 0.

Since as we have already shown that GG is concave at the hump. This means that for points

at the left of the hump, when both PP and GG are increasing, the PP curve is always steeper

than GG , i.e. there cannot be more than one crossing point. •

Appendix C Block bargaining

Let’s assume that the joint value bank-firm pair bargain with a innovator. If we define:

Ji = Bi +Fi .
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Then, in different stages:

(
r − g

)
Ĵ2 =πγ−w − s Ĵ2(

r − g
)

Ĵ1 =−n +q (θ)
[

Ĵ2 − Ĵ1
]

K
(
φ

)≡ k

φp
(
φ

) + c

p
(
φ

) = Ĵ1.

In the innovation market, the negotiated wage for the innovator is the solution to

w = argmax
(

Ĵ2 − Ĵ1
)1−α (

Î2 − Î1
)α

⇒α
(

Ĵ2 − Ĵ1
)= (1−α)

(
Î2 − Î1

)
α

(
Ĵ2 − Ĵ1

)= (1−α)
(
Î2 − Î1

)
(1−α)

(
Î2 − Î1

)=α(
Ĵ2 − Ĵ1

)
.

It follows that

(1−α)
(
Î2 − Î1

)=α(
Ĵ2 − Ĵ1

)
(1−α)

(
r − g

)(
Î2 − Î1

)=α(
r − g

)(
Ĵ2 − Ĵ1

)
(1−α)

[
w − s

(
Î2 − Î1

)− (
r − g

)
Î1

]=α[
πγ−w − s

(
Ĵ2 − Ĵ1

)− (
r − g + s

)
Ĵ1

]
(1−α)

[
w − (

r − g
)

Î1
]=α[

πγ−w − (
r − g

)
Ĵ1

]
w =α(

πγ− (
r − g + s

)
Ĵ1

)+ (1−α) Î1

(
r − g

)
Î1 = θq(θ)

[
Î2 − Î1

]=
= θq(θ)

α

(1−α)

[
Ĵ2 − Ĵ1

]
= θq(θ)

α

(1−α)

[(
r − g +q

)
K

(
φ

)+n

q
− Ĵ1

]
= θq(θ)

α

(1−α)

[(
r − g +q

)
K

(
φ

)+n

q
−K

(
φ

)]
= θ α

(1−α)

[(
r − g

)
K

(
φ

)+n
]
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(
r − g

)
Î1 = θq(θ)

[
Î2 − Î1

]=
= θq(θ)

α

(1−α)

[
Ĵ2 − Ĵ1

]
.

Therefore

w =α(
πγ− (

r − g + s
)

Ĵ1
)+ (1−α) Î1

=απγ+ (1−α) Î1 −α
(
r − g + s

)
K

(
φ

)
=απγ+ (1−α)θ

α

(1−α)

((
r − g

)
K

(
φ

)+n
)−α(

r − g + s
)

K
(
φ

)
=α(

πγ+θ (
r − g

)
K

(
φ

)+θn − (
r − g + s

)
K

(
φ

))
=α(

πγ+θnk −
(
r − g + s

)
K

(
φ

))
where nk ≡ (

r − g
)

K
(
φ

)+n. Plugging w in the value functions:

Ĵ2 =
πγ−α(

πγ+θnk −
(
r − g + s

)
K

(
φ

))(
r − g + s

)
Ĵ2 = nk

q
+K

(
φ

)
nk

q
+K

(
φ

)= (1−α)πγ−αθnk +α
(
r − g + s

)
K

(
φ

)(
r − g + s

)
nk

q
= (1−α)

(
πγ− (

r − g + s
)

K
(
φ

))−αθnk(
r − g + s

) .

Appendix D Efficiency in financial and innovation markets

The social planner solves the following problem

max
I1,B0,F0,F1,A

ΩSP =
∫

e−r tΠAd t

st :
·
A = g (I1,B0,F0,F1) A

·
F1=−µ (F1,I1)+m (F0,B0)
·

I1 = s (1−I1)−µ (F1,I1)
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where

µ (F1,I1) = q0F
1−ε
1 I ε

1

m (F0,B0) = p0F
1−η
0 B

η
0

q (θ) = µ (F1,I1)

F1

p
(
φ

)= m (F0,B0)

F0

Π= [
πγ (1−I1)− cF0 −kB0 −nF1

]
g (I1,B0,F0,F1) = γ(

s
µ(F1,I1)

F1

+ s
m(F0,B0)

F0

+1

)

This is the Hamiltonian

H = e−r t [
πγ (1−I1)− cF0 −kB0 −nF1

]
A

+Φ[−µ (F1,I1)+m (F0,B0)
]+Ψ[

s (1−I1)−µ (F1,I1)
]

+Ξ[
g A

]
with following first-order conditions:

∂H

∂B0
= 0 : −e−r t k A+ΦmB0 +ΞgB0 A = 0 (D.20)

∂H

∂F0
= 0 : −e−r t c A+ΦmF0 +ΞgF0 A = 0 (D.21)

·
Φ=− ∂H

∂F1
:

·
Φ = e−r t n A+ (Φ+Ψ)µF1

−ΞgF1 A (D.22)

·
Ψ=− ∂H

∂I1
:

·
Ψ = e−r tπγA+ (Φ+Ψ)µI1

+ sΨ−ΞgI1 A (D.23)

·
Ξ=− ∂H

∂A
:

·
Ξ =−e−r tΠ−Ξg (D.24)
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where:

mB0 = η
m

B0
= ηpφ

mF0 =
(
1−η) m

F0
= (

1−η)
p

µF1
= (1−ε)

µ

F1
= (1−ε) q

µI1
= εµ

I1
= εqθ

pB0 = η
p

B0

pF0 =−η p

F0

qI1 = ε
q

I1

qF1 =−ε q

F1

gB0 =
g spB0

p2
(

s
q + s

p +1
) = g sη

pB0

(
s
q + s

p +1
) = g 2sη

pB0γ

gF0 =
g spF0

p2
(

s
q + s

p +1
) = −g sη

pF0

(
s
q + s

p +1
) = −gB0

φ

gI1 =
g sqI1

q2
(

s
q + s

p +1
) = g sε

qI1

(
s
q + s

p +1
) = gB0

ε

η

p

q

B0

I1

gF1 =
g sqF1

q2
(

s
q + s

p +1
) =− g sε

qF1

(
s
q + s

p +1
) = −gI1

θ
.

From the first equation:
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−e−r t k A+ (
ΦmB0 + AΞgB0

)= 0 ⇒
−e−r t k A+ (

AΞgB0 +Φηpφ
)= 0

Φ= e−r t k −ΞgB0

ηpφ
A ⇒

·
Φ=

−
(
e−r t r k + ·

ΞgB0

)
A+ ·

A
(
e−r̂ t k −ΞgB0

)
ηpφ

·
Φ=

−
(
e−r t r k + ·

ΞgB0

)
A+ g A

(
e−r̂ t k −ΞgB0

)
ηpφ

·
Φ=

−e−r t r k A+ g Ae−r̂ t k − gB0 A
(
gΞ+ ·

Ξ
)

ηpφ
·
Φ=−e−r t

(
r − g

)
k −ΠgB0

ηpφ
A.

From the second first-order condition:

−e−r t c A+ΦmF0 + AΞgF0 = 0 ⇒
−e−r t c A+ AΞgF0 +Φ

(
1−η)

p = 0

Φ= e−r t c A− AΞgF0(
1−η)

p
⇒

·
Φ=−e−r t

(
r − g

)
c −ΠgF0(

1−η)
p

A

And the last two:

·
Φ = e−r t n A+ (Φ+Ψ)µF1

−ΞAgF1 ⇒
·
Φ= e−r t n A+Ψ (1−ε) q +Φ (1−ε) q − AΞgF1

·
Ψ= e−r tπγA+ (Φ+Ψ)µI1

+ sΨ− AΞgI1 ⇒
·
Ψ= e−r tπγA+Φεqθ+ (

s +εqθ
)
Ψ− AΞgI1 .
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We can then derive the optimal credit market tightness from:

·
Φ=−e−r t

(
r − g

)
k −ΠgB0

ηpφ
A

·
Φ=−e−r t

(
r − g

)
c −ΠgF0(

1−η)
p

A

(
r − g

)
k

ηpφ
− ΠgB0

ηpφ
=

(
r − g

)
c(

1−η)
p
+ ΠgB0(

1−η)
pφ

.

Therefore

(
r − g

)
k

ηpφ
− ΠgB0

ηpφ
=

(
r − g

)
c(

1−η)
p
+ ΠgB0(

1−η)
pφ(

1−η)(
r − g

)
k − (

1−η)
ΠgB0 = η

((
r − g

)
cφ+ΠgB0

)
φSP =

(
1−η)(

r − g
)

k −ΠgB0

η
(
r − g

)
c

.

Note that the usual Hosios condition,
(
1−η)=ω does not imply φSP =φC E . We can derive a

modified Hosios condition

φSP =φC E = ω

1−ω
k

c

(
1−η)(

r − g
)

k −ΠgB0

η
(
r − g

)
c

= ω

1−ω
k

c(
1−η)

(1−ω)
(
r − g

)
k − (1−ω)ΠgB0 =ωkη

(
r − g

)
((

1−η)
(1−ω)−ωη)(

r − g
)

k = (1−ω)ΠgB0

k
(
r − g

)(
1−ω−η)= (1−ω)ΠgB0

(1−ω)
(
ΠgB0 −k

(
r − g

))=−ηk
(
r − g

)
(1−ω) = η k

(
r − g

)
k

(
r − g

)−ΠgB0

> η

From

ηΦ

A
= e−r t k −ΞgB0

pφ(
1−η)Φ

A
= e−r t c −ΞgF0

p
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given that gF0 =
−gB0
φ

. It follows that

Φ= A

p
e−r t

[
k

φ
+ c − ΞgB0

φ
+ ΞgB0

φ

]
Φ= Ae−r t K

(
φ

)
·
Φ=−r e−r t K

(
φ

)
A+ ·

Ae−r t K
(
φ

)
=−e−r t K

(
φ

)
A

(
r − g

)
where total search costs are measured by

K
(
φ

)= k

pφ
+ c

p
.

We can then use this expression forΦ to derive Ξ :

ηΦ

A
= e−r t k −ΞgB0

pφ

e−r t k − Φηpφ

A
=ΞgB0

e−r t k −ηpφe−r t K
(
φ

)=ΞgB0

er tΞ=
(
k −ηpφK

(
φ

))
gB0

=
(
1−η)

k −ηcφ

gB0

.

Finally, we can rearrange the last two first-order conditions:

·
Φ= e−r t n A+Ψ (1−ε) q +Φ (1−ε) q − AΞgF1

·
Ψ= e−r tπγA+Φεqθ+ (

s +εqθ
)
Ψ− AΞgI1 .
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From the first equation:

·
Φ = e−r t n A+ (Φ+Ψ)µF1

− AΞgF1

−(
r − g

)
e−r t K

(
φ

)
A = e−r t n A+ (Φ+Ψ) (1−ε) q − AΞgF1

−(
r − g

)
e−r t K

(
φ

)
A = e−r t n A+ (

Ae−r t K
(
φ

)+Ψ)
(1−ε) q − AΞgF1

Ψ=−e−r t
(

n A+ (
r − g

)
K

(
φ

)
A

(1−ε) q
+ AK

(
φ

))+ AΞgF1

(1−ε) q

Ψ=−e−r t
(

n + (
r − g

)
K

(
φ

)
(1−ε) q

+K
(
φ

))
A+ AΞgF1

(1−ε) q
·
Ψ=

(
n + (

r − g
)

K
(
φ

)
(1−ε) q

+K
(
φ

))
e−r t

(
Ar − ·

A
)
+ gF1

(1−ε) q

(
A

·
Ξ+ ·

AΞ
)

·
Ψ=

(
n + (

r − g
)

K
(
φ

)
(1−ε) q

+K
(
φ

))
e−r t (

r − g
)

A+ gF1

(1−ε) q
A

(−e−r tΠ− gΞ+ gΞ
)

·
Ψ=

(
n + (

r − g
)

K
(
φ

)
(1−ε) q

+K
(
φ

))
e−r t (

r − g
)

A− gF1

(1−ε) q
e−r tΠA.

If we define nk ≡ n + (
r − g

)
K

(
φ

)
and use the expressions above in

·
Ψ=− ∂H

∂I1
:

·
Ψ= e−r tπγA+Φεqθ+ (

s +εqθ
)
Ψ− AΞgI1(

nk

(1−ε) q
+K

(
φ

))
e−r t (

r − g
)

A− gF1

(1−ε) q
e−r tΠA =

e−r tπγA+ (
Ae−r t K

(
φ

))
εqθ

+(
s +εqθ

)(−e−r t
(

nk

(1−ε) q
+K

(
φ

))
A+ AΞgF1

(1−ε) q

)
−AΞgI1

(
nk

(1−ε) q
+K

(
φ

))
e−r t (

r − g
)

A− gF1

(1−ε) q
e−r tΠA =

e−r tπγA+ (
Ae−r t K

(
φ

))
εqθ

+(
s +εqθ

)(−e−r t
(

n + (
r − g

)
K

(
φ

)
(1−ε) q

+K
(
φ

))
A− AΞgI1

θ (1−ε) q

)
−AΞgI1
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(
nk

(1−ε) q
+K

(
φ

))(
r − g

)+ gI1

θ (1−ε) q
Π=

πγ+K
(
φ

)
εqθ

−(
s +εqθ

)( nk

(1−ε) q
+K

(
φ

)+ er tΞgI1

θ (1−ε) q

)
−gI1 er tΞ

nk

(1−ε) q

(
r − g + s

)=πγ− (
r − g − s

)
K

(
φ

)−εqθ
nk

(1−ε) q

− gI1

θ (1−ε) q
Π−er tΞgI1

[
s +εqθ+θ (1−ε) q

θ (1−ε) q

]

nk

(1−ε) q

(
r − g + s

)=πγ− (
r − g − s

)
K

(
φ

)−εqθ

[
nk

(1−ε) q

]
− gI1

θ (1−ε) q
Π−er tΞgI1

[
s +θq

θ (1−ε) q

]

nk

(1−ε) q

(
r − g + s

)=πγ− (
r − g − s

)
K

(
φ

)−εθ[
nk

(1−ε)

]
− gI1

θ (1−ε) q

[
Π+er tΞ

(
s +θq

)]

nSP
k

q
= πγ− (

r − g − s
)

K
(
φ

)(
r − g + s

)
−επγ+θnk −

(
r − g − s

)
K

(
φ

)(
r − g + s

)
− gI1

θq

[
Π+

(
k −ηpφK

(
φ

))
gB0

(
s +θq

)]

or, in a more compact form,

nSP
k

q
= πγ−K

(
φ

)(
r + s − g

)(
r + s − g

) − (εŵ +τ)
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where

ŵ ≡ πγ+θnk −
(
r − g − s

)
K

(
φ

)(
r + s − g

)
τ≡ gI1

θq

[
Π+

(
k −ηpφK

(
φ

))
gB0

(
s +θq

)]
.

Recall the competitive equilibrium:

nC E
k

q
= πγ−K

(
φ

)(
r + s − g

)(
r + s − g

)
−απγ+θnk −

(
r − g − s

)
K

(
φ

)(
r + s − g

) .

SP and CE coincide if:

αŵ = εŵ +τ
α= ε+ τ

ŵ
> ε.

This is the second modified Hosios condition.

Note: Some useful algebra

gI1

gB0

= ε

η

p

q

B0

I1

= ε

η

p

q

F0

F1

θ

φ
= ε

η

p

q

q

p

θ

φ
= ε

η

θ

φ

gI1

θq
= gB0

ε

η

p

q

B0

I1
= qθ

pφ
gB0

ε

η

p

q
= gB0

θ

φ

ε

η

gB0 =
g 2sη

pB0

gF0 =
−gB0

φ

gI1 = gB0

ε

η

p

q

B0

I1
.

61



Recall that:

(1−I1) = θq

s +θq

I1 = s

s +θq

F1 = θI1 = θs

s +θq

F0 = q

p
F1 = q

p

(
θs

s +θq

)
B0 = q

pφ

(
θs

s +θq

)
B0

I1
= qθ

pφ
,

so that

Π= [
πγ (1−I1)− cF0 −kB0 −nF1

]
= 1

s +θq

[
πγθq − c

qθs

p
−k

qθs

pφ
−nsθ

]
θsq(

s +θq
) [
πγ

s
− c

p
− k

pφ
− n

q

]
= θsq(

s +θq
) [
πγ

s
−K − n

q

]
= θsq(

s +θq
) [
πγ

s
−

(
1+ r − g

q

)
K − nk

q

]
.

Appendix E Only one friction

E.1 Only financial frictions

The value of a bank

The Bellman equations describing the steady-state values of the bank over the two stages

are:

(
r − g

)
B̂0 = −k +φp

(
φ

)[
B̂1 − B̂0

]
(
r − g

)
B̂1 = ρ+ s

[
B̂0 − B̂1

]
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where k is a search cost in the financial market. With free-entry:

B̂1 = k

φp
(
φ

)
B̂1 = ρ(

r − g + s
)

k

φp
(
φ

) = ρ(
r − g + s

) .

The value of an Innovator/Firm

Similarly, the value of a firm on the balanced growth path is:

(
r − g

)
F̂0 = −c +p

(
φ

)[
F̂1 − F̂0

]
(
r − g

)
F̂1 = πγ−ρ+ s

[
F̂0 − F̂1

]
or (

r − g
)[

F̂1 − F̂0
]=πγ−ρ+ c − (

s +p
)[

F̂1 − F̂0
]

.

There is no free-entry in this market and the total number of Firms is normalized to 1:

F =F 1 +F0 = 1.

Then, the dynamics of the flow of firms searching for banks can be expressed as

·
F0 = s (1−F0)−pF0.

Abstracting from the very short-run so that F = 0 :

F0 = s

s +p

F1 = p

s +p
.

Nash Bargaining

Under Nash bargaining, the surplus is shared according to the bargaining weights

(1−ω)
[
F̂1 − F̂0

]=ωB̂1.
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After some algebra, we have:

(1−ω)
(
r − g

)[
F̂1 − F̂0

]=ω(
r − g

)
B̂1

(1−ω)
[
πγ−ρ+ c − (

s +p
)(

F̂1 − F̂0
)]=ω[

ρ− sB̂1
]

(1−ω)
[
πγ−ρ+ c −p

(
F̂1 − F̂0

)]− s (1−ω)
(
F̂1 − F̂0

)=ωρ− sωB̂1

(1−ω)
[
πγ−ρ+ c −p

(
F̂1 − F̂0

)]=ωρ
(1−ω)

[
πγ−ρ− (

r − g
)

F̂0
]=ωρ

ρ = (1−ω)
[
πγ− (

r − g
)

F̂0
]

.

Moreover

(
r − g

)
F̂0 = −c +p

(
φ

)[
F̂1 − F̂0

]=−c +p
(
φ

) ωB̂1

1−ω(
r − g

)
F̂0 = −c +p

ω

1−ω
k

φp(
r − g

)
F̂0 = −c + ω

1−ω
k

φ
.

Plugging the expression above in the equilibrium ρ :

ρ = (1−ω)

[
πγ+ c − ω

1−ω
k

φ

]
.

Therefore, the free entry condition in the banking sector can be rewritten as

k

φp
(
φ

) = ρ(
r − g + s

)
k

φp
(
φ

) = (1−ω)(
r − g + s

) [
πγ+ c − ω

1−ω
k

φ

]
.

Equilibrium

The equilibrium is summarized by the two expressions below:

BB :
k

φp
(
φ

) = (1−ω)(
r − g + s

) [
πγ+ c − ω

1−ω
k

φ

]
GG : g = γ

s
p +1

.
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Both curves are downward sloping in the φ, g plane. Taking limits of the GG curve, we

find:

g 0
GG = γ

g∞
GG = 0,

while, for the BB curve, we have:

g∞
BB = −∞

g 0
BB = r + s.

E.2 Perfect credit, frictions in R&D

Value of a firm

The Bellman equations describing the values of the firm along the balanced growth path

in the two stages are:

(
r − g

)
F̂0 = −n +q (θ)

[
F̂1 − F̂0

]
(
r − g

)
F̂1 = πγ−w + s

[
F̂0 − F̂1

]
.

The free-entry condition is
n

q (θ)
= πγ−w

r − g + s
.

Value of an innovator

Similarly, for innovator:

(
r − g

)
Î0 = −m +θq (θ)

[
Î1 − Î0

]
(
r − g

)
Î1 = w + s

[
Î0 − Î1

]
(
r − g

)[
Î1 − Î0

] = w +m − (
s +θq (θ)

)[
Î1 − Î0

]
.

Nash-Bargaining
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(1−α)
[
Î1 − Î0

]=αF̂1

(1−α)
(
r − g

)[
Î1 − Î0

]=α(
r − g

)
F̂1

(1−α)
(
r − g

)[
w + s

[
Î0 − Î1

]− (
r − g

)
Î0

]=α(
r − g

)[
πγ−w − sF̂1

]
(1−α)

[
w + s

[
Î0 − Î1

]− (
r − g

)
Î0

]=α[
πγ−w − sF̂1

]
w =απγ+ (1−α)

(
r − g

)
Î0.

Furthermore

(
r − g

)
Î0 = −m +θq (θ)

[
Î1 − Î0

]=−m +θq (θ)
αF̂1

1−α(
r − g

)
Î0 = −m +θq (θ)

[
Î1 − Î0

]=−m +θq (θ)
n

q (θ)

α

1−α
= −m +nθ

α

1−α .

Then

w =απγ+ (1−α)
[
−m +nθ

α

1−α
]

.

Equilibrium

F F θ :
n

q (θ)
= (1−α)

(
πγ+m

)−αnθ

r − g + s

GGθ : g = γπ
s

q(θ) +1
.

In this case, too, increased slackness on innovation markets has a positive effect on

growth.
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