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1 Introduction

Real Business Cycle (RBC) models postulate the existence of a single supply shock that

drives variables related to real economic activity (Kydland and Prescott, 1982). In contrast,

modern Dynamic Stochastic General Equilibrium (DSGE) models feature several shocks

(Smets and Wouters, 2007). The task of choosing between these rival models raises two

fundamental empirical questions: How many shocks are there in the economy overall? And,

even more importantly, how many shocks drive the business cycle, and how many, instead,

do so over the long run? Recently, Angeletos, Collard, and Dellas (2020) (henceforth

ACD) show empirically that just one shock (a noninflationary demand shock) explains the

bulk of the business cycle fluctuations in real macroeconomic variables, and they uncover

a second shock that drives the long run. These two shocks appear orthogonal to one

another, even though ACD’s methodology does not impose orthogonality from the outset.

As ACD elicits, addressing these questions sheds light on which approach to macroeconomic

modelling appears more appropriate. More generally, it can help to clarify issues at the

heart of the business cycle debate, namely whether the main macroeconomic shocks are

permanent or transitory and whether they are mainly demand or supply shocks. We refer

to this as the business cycle quest.

Structural Vector Autoregression (SVAR) models—the most popular tool in business

cycle analysis— are not suitable to identify the number of shocks, given that in SVARs

the number of shocks is necessarily equal to the number of variables. In this paper we

depart from SVAR and frame the problem within the realm of Generalized Dynamic Factor

Models (GDFM), naturally designed to investigate the effect of macroeconomic shocks at

any desired frequency band, such as cyclical and long-run frequencies, because GDFM are

naturally wired into the frequency domain. Noticeably, in GDFM the number of shocks

is typically much smaller than the number of variables described by the model, which is
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an important feature shared with several DSGE models. Indeed, strong analogies exists

between GDFM and DSGE models because both admit a singular finite-order VAR

representation (i.e., when the observables satisfy a vector autoregressive model with a

finite number of lags together with a singular covariance matrix of the shocks). For DSGE

models, this representation is derived by log-linearizing the models around their steady-

state, whereas for GDFM it holds under mild conditions on the impulse response functions.

This paper advances a methodological contribution to resolve empirically the business

cycle quest. Specifically, we propose a new consistent estimator for the number of common

shocks within the realm of GDFMs: the Dynamic Difference Ratio (DDR) estimator. We

can apply DDR to single frequencies as well as to specific frequency bands of interest, and

this does not require preliminary discretionary choices on the part of the researcher. The

DDR estimator performs extremely well in a wide range of simulated environments against

existing methodologies.

Regarding the empirical contribution, we develop an extensive empirical application

that addresses the business cycle quest, applying our criteria to the FRED-QD dataset.

We demonstrate that two dominant shocks drive the U.S. economy, an inflationary de-

mand shock and a deflationary supply shock. Noticeably, the two shocks appear largely

disconnected, along the lines of ACD, in the sense that they affect the economy at different

frequency bands, with modest overlap. The demand shock explains most of the cyclical

fluctuations in the main macroeconomic aggregates; the supply shock affects mainly the

long-run.

Estimators of the Number of Common Shocks. Going more in detail on the theory contri-

bution, let xt be an n-dimensional vector of variables and Σ̂n(ω`) be a suitable estimator of

the spectral density matrix of xt at the Fourier frequencies ω` = 2π`/T , ` = 0, 1, . . . , T −1,

with T being the number of time-series observations available. Moreover, let µ̂nk(ω`) be

the k−th eigenvalue of Σ̂n(ω`) in decreasing order of magnitude, with 1 ≤ k ≤ n, here
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denominated as the dynamic eigenvalues, to distinguish them from the static eigenvalues

(i.e., the eigenvalues of the variance-covariance matrix of xt). Finally, let µ̂nk be the average

of these eigenvalues across frequencies within the frequency band (ω`, ω`):

µ̂nk ≡
∑̀
`=`

µ̂nk(ω`)/(`− `+ 1).

Considering the ratio DDR(k) = (µ̂nk−µ̂n,k+1)/(µ̂n,k+1−µ̂n,k+2) for every 1 ≤ k ≤ qmax <

n, our estimator of the number of shocks, k̂DDR, is given by the value of k maximizing DDR,

or k̂DDR ≡ argmax1≤k≤qmax(µ̂nk − µ̂n,k+1)/(µ̂n,k+1− µ̂n,k+2). We prove that k̂DDR converges

in probability to the true number q of shocks, as n and T go to infinity at the same rate.

To provide an intuition for the DDR estimator, let us recall an important result in

GDFM theory: a q-dimensional dynamic factor structure is characterized by the behavior

of the eigenvalues of the spectral density matrix Σn(ω) of the first n variables, as n →

∞.1 The q largest eigenvalues diverge, whereas the others are bounded.2 We show here

that, under suitable assumptions, similar properties hold for the sample analogue of such

eigenvalues, that is µ̂nk(ω). The first q empirical eigenvalues µ̂nk(ω`), properly normalized,

diverge at the same rate, whereas the others are bounded above and bounded away from

zero in probability. Now consider the average sample eigenvalue µ̂nk as a function of k and

the piecewise linear curve, often indicated as a polyline, linking the points (k, µ̂nk) (dotted

line, Figure 1). DDR is the ratio of the slopes of two adjacent segments; it measures the

curvature of the polyline at k + 1. The larger DDR is, the smaller the angle above the

polyline is at k+1. By maximizing DDR we identify the point k+1 where the steep descent

ends and the slight slope begins. The basic idea is that when k = q, the descent must be

steep, because µ̂nq is large whereas µ̂nq+1 is small. On the other hand, at k = q + 1 the

1See Forni, Hallin, Lippi, and Reichlin (2000); Forni and Lippi (2001).
2Similarly, the existence of a static factor representation is linked to the behaviour of the eigenvalues

of the variance-covariance matrix of the first n variables (Chamberlain and Rothschild, 1983), and not of
their spectral density matrix.
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Figure 1: The dotted line is the plot of µ̂nk (left y axis) as a function of k (x axis). The solid line is
DDR(k) (right y axis). Estimates are obtained from data generated with the ARMA specification of the
third experiment in Subsection B.1, (n, T ) = (100, 200), q = 4. DDR(k) reaches its maximum in k∗ when
the maximum slope change of the dotted line is in k∗ + 1.

slope becomes small, because it is the difference between small eigenvalues. We consider a

slightly different definition of the DDR estimator that avoids possible singularities in the

maximized objection function, but the intuition remains the same.

DDR is not the only estimator studied in this paper. We analyze two additional criteria

that represent the dynamic equivalents of two criteria Ahn and Horenstein (2013) propose

to estimate the number of static factors within a static factor model (i.e., the Eigenvalue

Ratio and the Growth Ratio criteria). In analogy with these denominations, we call these

new estimators the Dynamic Eigenvalue Ratio (DER) and the Dynamic Growth Ratio

(DGR) estimators. We prove that these estimators converge in probability to q, as n and

T go to infinity at the same rate.3

3DER is simply the ratio of two consecutive eigenvalues; it is more parsimonious than DDR in general
but it might underestimate the number of factors. On the other hand, DDR might overestimate it.
Consider for instance the case of two factors with eigenvalues 2.1 and 1, and assume that the third, fourth,
and fifth eigenvalues are 0.5, 0.4, and 0.3, respectively. Then DER(k), k = 1, 2, 3, 4, is 2.1, 2, 1.2, 1.33. The
method cannot distinguish the small factor from the idiosyncratic factors and estimates just one factor.
By contrast, DDR(k), k = 1, 2, 3 is 1.1, 4, 1, so that it captures the small factor, by using the fact that
the idiosyncratic factors are close to each other. On the other hand, if the fourth and fifth eigenvalues are
very small and close to each other (e.g., 0.25 and 0.2), then k̂DDR = 3.
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A noticeable feature of DDR, DER, and DGR is that they do not require discretionary

preliminary choices of tuning parameters from the researcher, apart from the size of the

spectral window. This is an advantage over existing criteria, which, besides the window

size, require making additional choices, that may affect the results.

Small sample performances. We evaluate the finite-sample performance of DDR, DER,

and DGR and compare it with two existing criteria, namely the ones Hallin and Liska

(2007) (HL hereafter) and Onatski (2009) (O hereafter) propose, by means of Monte Carlo

simulations. We run four experiments. For the first three, we evaluate DDR, along with

the competing estimators, on the whole interval [0, π]. We find that DDR dominates DER

and DGR in the first three experiments and performs comparably with DGR in the fourth

one; and DDR performs better than, or comparably with, HL and O for all experiments.

We conclude that DDR is an excellent alternative to existing criteria as far as finite-sample

performance is concerned. In experiment four, the spectral density matrix of the variables

have reduced rank q − 1 at frequency zero. The economic interpretation is that we have

only real activity variables and there is a shock, such as a demand shock, having only

transitory effects on all variables. We show that DDR is able to detect the rank reduction.

We perform a further Monte Carlo exercise, illustrated in the DSGE section, tailored to

assess the ability of our criteria to disentangle the number of structural shocks in DSGE

models.

Empirical results. Our empirical analysis is based on a quarterly U.S. macroeconomic

dataset: FRED-QD (McCracken and Ng, 2020). DDR provides a clear-cut result: two

dominant shocks drive the U.S. macroeconomy, here dubbed main business cycle shocks.

This result holds both on specific frequency bands and on the entire [0, π] interval. More-

over, it holds both for the whole sample period and at several sub-periods. We find that

two common shocks are sufficient to capture the bulk of the variance of the main macroe-
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conomic aggregates, both at cyclical frequencies and in the long term.

In this paper, we do not proceed further with parametric estimation of the GDFM,

but one could readily identify and estimate the shocks, along with the corresponding im-

pulse response functions (IRFs) (see Forni, Hallin, Lippi, and Zaffaroni (2015, 2017) and

Barigozzi, Hallin, Luciani, and Zaffaroni (2022)).

However, full estimation of the model is not necessary to obtain the decomposition of

the spectral density produced by the dynamic eigenvalues and the corresponding eigenvec-

tors. This decomposition corresponds to one of the many possible identification schemes,

namely the one in which the first shock maximizes the sum of the explained variances of

all variables in the panel (Brillinger, 1981). It turns out that this identification, although

based on a statistical criterion, produces shocks that are economically interpretable. The

first shock explains almost nothing of the long-run variance of GDP, consumption, invest-

ment, unemployment rate, and hours worked. Furthermore, it induces a positive covariance

between GDP growth and inflation changes. Therefore, it has the salient features of a de-

mand shock. This demand shock explains most of the cyclical fluctuations in GDP and

other variables related to real economic activity. In addition, it explains most of the vari-

ance in inflation and the federal funds rate at the lower frequencies, including only the

longer cyclical fluctuations (about four years and longer). The second shock has instead

the typical traits of a supply shock, explaining the bulk of the long-term variance of the

real activity variables and inducing negative covariance between GDP growth and inflation

changes. The supply shock explains a minor, but not negligible, part of cyclical fluctua-

tions of real activity variables, but it explains little about inflation and the federal funds

rate at all frequencies.

These empirical results are incompatible with both the RBC model and the view that

news shocks (i.e., shocks that best anticipate future productivity) explain the bulk of

business cycle fluctuations (see Beaudry and Portier, 2006). The finding that the most
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important main business cycle shock has a transitory effect on output is in line with

Angeletos et al. (2020). On the other hand, contrary to Angeletos et al. (2020), we find

that it is not disconnected from inflation.

DSGE models. In the last section we analyze the extent to which our methodology applies

to study medium-scale DSGE models in view of the strong analogies between the GDFM

and the reduced form of DSGE models, as they can both be represented as singular VARs

of finite order. Using Monte Carlo experiments, we first show how the DDR and DGR

criteria are extremely reliable in correctly identifying the number of structural shocks

driving two popular DSGE models, such as Justiniano, Primiceri, and Tambalotti (2010)

and Angeletos, Collard, and Dellas (2018), even if this number is relatively large compared

with the size of the cross-section. Next, we use our decomposition of the spectral density

as a descriptive device to highlight important, but usually overlooked, frequency domain

features of such medium-scale macroeconomic DSGE models. In particular, we evaluate

how well the DSGE models in Justiniano et al. (2010) and Angeletos et al. (2018) reproduce

this kind of empirical evidence. We find that the model in Justiniano et al. (2010) is

successful in reproducing the empirical features of the demand sources of variation in the

data for most variables, but it is less able to reproduce the supply side of the economy.

Recalling that the Angeletos et al. (2018) model does not model inflation, prompting us

to look only at the first dynamic principal component, the model is akin to the data in

capturing the explained variance of real variables, such as GDP, consumption, investment,

and labor productivity. This exercise provides further evidence on the usefulness of our

methodology in a context even wider than GDFM.

Related literature. This paper is related to the literature on factor model methods for

estimating the number of latent factors, especially to the aforementioned Ahn and Horen-

stein (2013), Hallin and Liska (2007), and Onatski (2009). The relationship with Onatski

(2009) is particularly close and deserves a few additional comments. DDR is very similar



9

to the test statistic Onatski (2009) proposes, and it reduces to it when evaluated at a single

frequency. However, the way DDR is used is different. Onatski (2009) uses DDR to test

for the null q = k against the alternative of k < q ≤ qmax, whereas we use directly k̂DDR

as an estimator of q. Onatski’s test, far from being alternative, is complementary to our

DDR estimator. Having determined the number of common shocks with k̂DDR, we can test

whether the null q = k̂DDR − h, h = 1, . . . , k̂DDR, can be rejected against the alternative

k̂DDR − h < q ≤ k̂DDR by using Onatski’s method. On the other hand, besides the test,

Onatski (2009) proposes a procedure to determine the number of shocks. This procedure,

based on the sequential application of the test, is what we call O, and of course it represents

an alternative to our method.4

Regarding the empirical results, our paper is related to a scant literature concern-

ing the number of shocks driving the macroeconomy. Sargent and Sims (1977), using

a small-dimensional dynamic factor model, find that two shocks fit U.S. macroeconomic

data reasonably well. Giannone, Reichlin, and Sala (2005) argue informally in favor of two

shocks, based on the explained variances in the principal component series of a large factor

model. Bai and Ng (2007) and Hallin and Liska (2007), using their proposed criteria for

the number of dynamic factors, find four shocks. Amengual and Watson (2007) find seven

shocks. Finally, Onatski (2009) finds that his proposed test cannot reject the null of two

shocks versus the alternative, which assumes between three and seven shocks. Our finding

of two main shocks is in line with Sargent and Sims (1977), Giannone et al. (2005) and

Onatski (2009).

From the viewpoint of the business cycle quest, our paper is related to a wide array

of literature about the role of demand and supply shocks. A few prominent papers are

Kydland and Prescott (1982), Blanchard and Quah (1989), King, Plosser, Stock, and Wat-

4A further noticeable difference in Onatski’s work is that the theoretical results behind Onatski’s test
require that T diverges much faster than n, whereas in most macroeconomic and financial datasets T and
n have similar sizes. By contrast, we prove consistency of k̂DDR for T and n diverging at the same rate.
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son (1991), Gaĺı (1999), Beaudry and Portier (2006), Bloom (2009), and Angeletos et al.

(2020). The closest paper is ACD, which proposes a frequency-domain method to identify

business-cycle and long-run shocks. At first glance, the ACD approach may appear as in

alternative to ours. Indeed, this is not the case. The purpose of our method is to estimate

the number of common shocks, and thus it is best seen as complementary to the ACD

method, which is about identifying and estimating the shocks themselves. We discuss this

point in detail in Section 5.5 Given the strong analogies between GDFM and DSGE models,

our paper also contributes to this vast literature (see Smets and Wouters, 2007, Justiniano

et al., 2010, and Angeletos et al., 2018, among many others), as it provides a sound way

to estimate the number of shocks driving candidate DSGE models, thereby providing a

taxonomy in terms of their frequency domain effect (i.e., their effect per frequency band).

Finally, our paper is related to Forni, Gambetti, Sala, and Soccorsi (2021), which focuses

on VAR identification techniques in the frequency domain, extending ACD’s method in

various directions.6

Exposition. The paper is organized as follows. Section 2 presents the factor model setup

along with our estimators of the number of shocks and our consistency result. Section 3

presents a summary of the Monte Carlo exercises. The core of the empirical study is in

Section 4. In Section 5 we discuss in depth the relation with the method and results in

Angeletos et al. (2020). Section 6 demonstrates the usefulness of our methodology when

applied to DSGE models. Section 7 concludes. Final online appendices present the formal

proofs of our methodology (Appendix A), full details on the Monte Carlo experiments

(Appendix B), and additional material related to the empirical application (Appendix C).

5Beaudry, Galizia, and Portier (2020) is another interesting business cycle paper that uses frequency
domain techniques; however, their goal differs from ours and so we abstain from illustrating further analo-
gies and differences with our methodology.

6Forni et al. (2021) adopt a two-stage identification procedure. First, consistently with our empirical
results, two “main cyclical shocks” are selected from a VAR with several shocks. Then, by rotating these
two shocks, a demand shock and a supply shock are identified. The main findings are qualitatively similar
to ours, although based on the VAR setup.
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2 Theory: Frequency-Band Estimation of the Num-

ber of Shocks

2.1 The GDFM Setup

The GDFM is a countably infinite set of observable stochastic processes xit (Forni et al.,

2000; Forni and Lippi, 2001) with the following decomposition:

xit = χit + eit = λi1(L)f1t + λi2(L)f2t + · · ·+ λiq(L)fqt + eit, i ∈ N, t ∈ Z, (2.1)

where ft = (f1t f2t · · · fqt)′ is a q-dimensional orthonormal unobservable vector and the

impulse-response functions λik(L), i ∈ N, k = 1, . . . , q, are rational functions in the lag

operator L.7 Detailed assumptions on the common components χit and the idiosyncratic

components eit are given below. Let us only recall here that the common shocks fkt,

k = 1, . . . , q, often called dynamic factors in the literature and loaded through one-sided

linear filters, or IRFs, λij(L), where L is the lag operator, and the eit are uncorrelated

with the fjt at any lead and lag. Moreover, the idiosyncratic components are weakly cross-

correlated, uncorrelatedness (across units) being an extreme case. Weak cross-correlation

essentially means that simple and weighted averages, such as n−1
∑n

i=1 eit, dissipate (in

probability) when n becomes large.

A restriction that we do not impose in this paper, but one often assumed in the liter-

ature is that the common components are contemporaneous linear combinations of r ≥ q

unobservable variables Fht, h = 1, . . . , r, often called “static factors” (see Stock and Wat-

son, 2002a,b; Bai and Ng, 2002). In such a case, we say that the model admits a static

7 Orthonormality of the ft means that E(ft) = 0q,Var(ft) = Iq, and Cov(ft, f
′
s) = 0q×q for every

t 6= s. Rationality of the filters λik(L) means that they can be expressed as ratios such as aik(L)/bik(L)
where the aik(L) and the bik(L) are both filters of finite order in the lag operator. For example, aik(L) =
1+aik,1L+ · · ·+aik,pLp, bik(L) = 1+bik,1L+ · · ·+bik,qLq for some constants aik,1, · · · , aik,p, bik,1, · · · , bik,q
and finite integers p, q.
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factor representation; the dynamic nature of the model comes from the fact that the static

factors have a dynamic representation in the common shocks.8

The shocks and the corresponding impulse-response functions in (2.1) are not identified.

This is best seen by writing the model in matrix form as

xnt = χnt + ent, χnt = Λn(L)ft (2.2)

where xnt = [x1t · · · xnt]′, χnt = [χ1t · · · χnt]′, ent = [e1t · · · ent]′ , and Λn(L) is the n× q

matrix [λik(L) : i = 1, . . . , n; k = 1, . . . , q], and the prime (′) denotes transposition. It is

easily seen that xnt has the alternative representations

xnt = Λn(L)QQ′ft + ent = Λ∗n(L)f∗t + ent, (2.3)

where Λ∗n(L) = Λn(L)Q and f∗t = Q′ft, Q being any orthogonal matrix (i.e., a matrix such

that QQ′ = Iq).

Forni et al. (2015, 2017) show that the GDFM is tightly connected to VAR models

because, by assuming rational impulse-response functions (see footnote 7), the common

components and the observables in (2.2) have the VAR representations

An(L)χnt = Rnft An(L)xnt = Rnft + ηnt, (2.4)

where An(L) is a block-diagonal polynomial matrix of finite order, Rn is a n × q matrix,

8Large dynamic factor models have been applied successfully to the analysis of big panels of macroe-
conomic and financial time series. Early theoretical contributions are Forni and Reichlin (1998), Forni
et al. (2000); Forni, Hallin, Lippi, and Reichlin (2005), Forni and Lippi (2001), Stock and Watson (2002b),
Bai and Ng (2002, 2007), and Bai (2003). A partial list of early applications include forecasting in Stock
and Watson (2002a,b), Boivin and Ng (2006), and D’Agostino and Giannone (2012), structural macroeco-
nomic analysis in Bernanke and Boivin (2003), Bernanke, Boivin, and Eliasz (2005), Favero, Marcellino,
and Neglia (2005), Eickmeier (2007), Forni, Giannone, Lippi, and Reichlin (2009), Forni and Gambetti
(2010), as well as nowcasting and business cycle indicators in Forni and Lippi (2001), Cristadoro, Forni,
Reichlin, and Veronese (2005), Giannone, Reichlin, and Small (2008), Altissimo, Cristadoro, Forni, and
Lippi (2010)), and the analysis of financial markets in Ludvigson and Ng (2009).
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and the components ηt = An(L)ent are idiosyncratic. Clearly the autoregressive filter in

(2.4) and the moving average filter in (2.2) are related by Λn(L) = A−1
n (L)Rn. As this

paper focuses on estimation of the number of common shocks, we rely on representation

(2.2), whereas identification of the structural shocks and estimation of the corresponding

IRFs can be carried out by estimating the VAR representation (2.4), along the lines of

Forni et al. (2015, 2017) and Barigozzi et al. (2022).

2.2 Estimators of the Number of Shocks in the Frequency-Domain

Define the periodogram-smoothing estimator of the spectral density matrix of the xnt

Σ̂n(ω`) ≡
1

2MT + 1

MT∑
j=−MT

În (ω`+j) (2.5)

at the Fourier frequency −π < ω` ≡ 2π`/T ≤ π, assuming T even without loss of generality

(see Brillinger (1981)[p.132]). {MT} is a sequence of positive integers and In(·) denotes

the periodogram of the xnt,

În(ω) ≡

[
1√
T

T∑
t=1

xnte
−iωt

][
1√
T

T∑
t=1

x′nte
iωt

]
, (2.6)

where i in Roman font denotes the imaginary unit. Finally, recall that µ̂nk(ω) denotes the

k−th eigenvalue of Σ̂n(ω) in decreasing order of magnitude, with 1 ≤ k ≤ n.

To construct our estimators, we need to evaluate Σ̂n(·) within any given frequency band

(ω`, ω¯̀), satisfying at minimum −π ≤ ω` ≤ ω¯̀< π, yielding our DDR criterion9

DDRT
n (k) ≡

∑¯̀

`=` (µ̂nk(ω`)− µ̂n,k+1(ω`))

max
(∑¯̀

`=` (µ̂n,k+1(ω`)− µ̂n,k+2(ω`)) ,
∑¯̀

`=` µ̂n,m(ω`)
) , (2.7)

9To avoid denominators very close to zero, we correct the denominator of the DDR criterion by taking,

for each k, the maximum between
∑¯̀

`=` (µ̂n,k+1(ω`)− µ̂n,k+2(ω`)) and
∑¯̀

`=` µ̂n,m(ω`). Notice that we
allow the frequency band to reduce to a single frequency when ω` = ω`.
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and the dynamic versions of Ahn and Horenstein (2013) two criteria,

DERT
n (k) ≡

∑¯̀

`=` µ̂nk(ω`)∑¯̀

`=` µ̂n,k+1(ω`)
,

DGRT
n (k) ≡

ln
[
V T
n (k − 1)/V T

n (k)
]

ln [V T
n (k)/V T

n (k + 1)]
=

ln(1 + µ̂∗nk)

ln(1 + µ̂∗n,k+1)
,

where V T
n (k) ≡

∑n
`=k+1

∑¯̀

`=` µ̂nl(ω`), µ̂
∗
nk ≡

∑¯̀

`=` µ̂nk(ω`)/V
T
n (k). Then, our estimators of

the number k of common shocks are

k̂DDR ≡ arg max
1≤k≤qmax

DDRT
n (k), (2.8)

k̂DER ≡ arg max
1≤k≤qmax

DERT
n (k), (2.9)

k̂DGR ≡ arg max
1≤k≤qmax

DGRT
n (k). (2.10)

where qmax is an upper bound for q chosen by the researcher.

Theorem 1. Suppose that Assumptions (1)- (5), listed in Appendix A.2, hold for some

q ≥ 1. Then,

lim
n,T→∞

Pr
(
k̂DER = q

)
= 1, (2.11)

lim
n,T→∞

Pr
(
k̂DGR = q

)
= 1, (2.12)

lim
n,T→∞

Pr
(
k̂DDR = q

)
= 1. (2.13)

for any qmax ∈ (q, (2MT + 1)− q].

Proof. See Appendix A.5.

Notice that the computation of DDR does not require discretionary preliminary choices

of tuning parameters by the researcher, apart from the size of the spectral window (the

bandwidth) used in the estimation of the spectral density matrix (this cannot be avoided
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when using nonparametric estimators). This is an advantage over both HL and O, which,

besides the window size, require making additional choices, that may influence the results.10

2.3 Variance Decomposition in the Frequency Domain

In the empirical section, besides estimating the number of macroeconomic shocks, we shall

quantify their contribution to the variance of the observable variables at each frequency,

making use of the empirical eigenvalues defined above, along with the corresponding em-

pirical eigenvectors. Here we introduce the relevant estimators.

First, we want to estimate the amount of total variance explained by the common shocks

for each variable and each frequency. Orthogonality of the common and the idiosyncratic

components at all leads and lags imply that the spectral density matrix of the n observed

variates fulfils the decomposition

Σn(ω) = Σχ
n(ω) + Σe

n(ω) for every − π ≤ ω < π,

where Σχ
n(ω) and Σe

n(ω) are the spectral density matrices of the common and idiosyncratic

components, respectively. Now, under suitable conditions, the entries of Σχ
n(ω) can be

estimated consistently by

Σ̂χ
n(ω) =

q∑
k=1

v̂nk(ω)µ̂nk(ω)v̂′nk(−ω), (2.14)

where v̂nk(ω) is the eigenvector corresponding to µ̂nk(ω) (see Forni et al., 2017, Proposition

7). The average of (2.14) over all frequencies provides an estimate of the covariance matrix

of the common components, whereas the average over the frequencies in the band ω` to ω¯̀

10More specifically, HL requires choosing the functional form for the penalty term and a grid nj , Tj ,
j = 1, . . . , J , which is needed for its calibration. O is a sequential-testing procedure and therefore requires
choosing the significance level; furthermore, it requires choosing a grid of frequencies and a criterion for
weighting the potentially different results obtained for different frequencies.
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quantifies the variance associated with that band.

In order to quantify the variance explained by each shock for a given identification

matrix, full estimation of the GDFM is needed. Going back to equations (2.2) and (2.3),

we see that

Σχ
n(ω) =

1

2π
Λ(e−iω)Λ′(eiω) =

1

2π

q∑
k=1

Λ(e−iω)qkq
′
kΛ
′(eiω), (2.15)

where qk denotes the k-th column of the matrix Q. The above equation shows that the

summation on the right-hand side is independent of Q, whereas the single terms of the

summation depend on Q.

Notice however that Σχ
n(ω) satisfies the so-called spectral decomposition

Σχ
n(ω) =

q∑
k=1

vχnk(ω)µχnk(ω)vχ′nk(−ω), (2.16)

where µχnk(ω) and vχnk(ω) denote, respectively, the population eigenvalues and eigevectors

of Σχ
n(ω). Comparing (2.15) and (2.16) shows that the spectral decomposition provides the

variance decomposition for one of the many possible identifications of the common shocks.

With the spectral decomposition identification, the first identified shock maximizes the

sum of the explained variances of all variables (Brillinger, 1981). The decomposition in

(2.16) can be estimated consistently by formula (2.14) without estimating the VAR (2.4)

and thus without imposing explicit identification restrictions.

3 Monte Carlo Simulations (Summary)

In this section we provide a summary of the thoughtful Monte Carlo experiments described

in Section B of the appendix, to which we refer for any details, including the tables reporting

the numerical results.

As anticipated, we evaluate the finite-sample performance of our estimators, DDR,
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DER, and DGR, and we compare it with that of HL and O. We do not consider the

methods Bai and Ng (2007) and Amengual and Watson (2007) propose, because these

methods assume a factor model that can be written in the static form, which is a restriction

that we do not impose here.

We consider several data generating processes (DGPs) to demonstrate the validity of

our methodology. We run four experiments. In the first three, we evaluate the competing

estimators on the whole interval [0, π]. The fourth experiment is devoted to checking

the ability of DDR to detect a rank reduction in the spectral density matrix at specific

frequencies of interest (see below).

Experiments one and two are based on DGPs already proposed in the econometric

literature, namely in Hallin and Liska (2007) and in Onatski (2009). Experiment three is

our own DGP. In experiment four we focus on DDR. The DGP is such that the spectral

density matrix of the variables has reduced rank at frequency zero. One of the shocks is

a supply shock and has permanent effects on several variables. The other is a demand

shocks having transitory effects on all variables, which are supposed to be real activity

variables. DDR should detect two shocks when evaluated on large frequency bands and

just one shock when evaluated at frequency zero.

To compute DER, DGR, and DDR, we use the periodogram smoothing estimator (2.5)

with the bandwidth parameter MT = [0.75
√
T ], and we take the average of the eigenvalues

evaluated in the frequency grid ω` = 2π`/T , ` = 1, . . . , T − 1. With regard to HL, we use

the log information criterion ICT
2;n with penalty p1(n, T ) and the Bartlett lag window with

parameter MT = [0.75
√
T ], which yield the best performance in the authors’ simulations.

The method requires evaluation of the loss function over a grid nj, Tj, j = 1, . . . , J ; we stick

to the one proposed by the authors (i.e., nj = n− 10j, Tj = T − 10j, j = 0, 1, 2, 3). When

dealing with O, we use the procedure described in Section 5.3 of Onatski (2009). We find

that the results are sensitive to the choice of the parameter m. For the second experiment,
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we stick to Onatski’s choice, which is very effective (m = 30 for (n, T ) = (70, 70), m = 40

for (n, T ) = (100, 120), m = 65 for (n, T ) = (150, 500)). For the first DGP, we use m = 15;

for the third experiment, we use m = 15, 20, 30 for T = 80, 240, 480, respectively. These

values produce better results than the larger ones suggested in Onatski (2009). For all the

experiments and all estimators, we set kmax = 8 and we generate 500 artificial datasets.

We evaluate the results in terms of the percentage of times we find the correct number of

shocks.

The results are the following. For experiment one, DDR and HL perform similarly

and dominate the other estimators. For experiment two, MA loadings, O ranks first and

does slightly better than DDR; with AR loadings, DDR dominates all other estimators.

For experiment three, in the version with small idiosyncratic components, DDR and DGR

perform similarly and dominate the other estimators; in the version with large idiosyncratic

components, DDR outperforms the other estimators. Finally, in experiment four, we show

that with DDR, when evaluated at a single frequency (or small frequency bands around

this frequency) in which the spectral density matrix of the variables has reduced rank q−1,

the number of shocks at this frequency is q − 1.

Summing up:

(i) DDR dominates DER and DGR in the first three experiments;

(ii) DDR performs comparably to HL and O for experiments one and two and performs

better than HL and O in experiment three;

(iii) DGR and DDR have similar performances and dominate DER and HL in experiment

four;

(iv) in experiment four, DDR is reasonably able to detect the rank reduction at specific

frequencies.
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We conclude that DDR is an excellent alternative to existing criteria, as far as finite-

sample performance is concerned.

4 Empirics: Dissecting the U.S. Economy

How many shocks drive the economy? And, more specifically, how many shocks affect the

macroeconomic variables in the long run, and how many, instead, are the ones driving the

business cycle? Finally, do demand or supply shocks dominate the economy?

The scant available evidence on the number of shocks is mixed. Sargent and Sims

(1977), using a small-dimensional dynamic factor model, find that two shocks fit U.S.

macroeconomic data reasonably well. Giannone et al. (2005) argue informally in favor of

two shocks, based on the explained variances of the principal-component series of a large

factor model. Bai and Ng (2007), using their information criteria, find seven static factors

and four shocks. Amengual and Watson (2007) find seven static factors and seven shocks.

Hallin and Liska (2007) do not find a clear-cut result: four shocks, but perhaps only one.

Onatski (2009) finds that his proposed test cannot reject the null of two shocks versus the

alternative, which assumes between three and seven shocks.

For our empirical analysis, we use the U.S. quarterly macroeconomic dataset recently

developed by McCracken and Ng (2020). Of this dataset, we consider the n = 216 series

starting from the first quarter of 1960. The final date of the sample is the first quarter of

2020. As for the transformations, we deviate from those McCracken and Ng (2020) suggest

for the interest rates, which we take in levels rather than in differences; furthermore, we

take prices and other nominal variables in log-differences, rather than in double differences

of the logs. The reason is that we want to avoid a possible over differentiation, which

enhances the high frequencies and is of little interest for our analysis. The complete list of

variables and transformations is in Appendix C.1. After the transformations, the number
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of observations over time is T = 240.

We find a clear-cut result: two common shocks drive the U.S. economy. These two

shocks explain the bulk of the variance in the main macroeconomic variables, both at

business-cycle frequencies and in the long term. We also find that the first dynamic factor

behaves like a demand shock and the second one like a supply shock.

4.1 Result 1: The Number of Shocks Driving the U.S. Economy

We consider the entire sample and nine sub-samples: the five 40-year sub-samples 1960Q2-

2000Q1, 1965Q2-2005Q1, 1970Q2-2010Q1, 1975Q2-2015Q1, and 1980Q2-2020Q1, and the

four 30-year sub-samples 1960Q2-1990Q1, 1970Q2-2000Q1 , 1980Q2-2010Q1, and 1990Q2-

2020Q1. To estimate q, we compute DDR on three frequency bands: the entire [0, π]

band, the [0, 2π/6] band, which excludes fluctuations of less than 18 months and is of little

interest for macroeconomic analysis, and the [2π/32, 2π/6] cyclical band, which includes

waves ranging from 18 months to eight years. The DDR estimator for the [0, 2π/6] band

is named DDRa; the one relating to the cyclical band is named DDRbc. For comparison,

we consider also DER, DGR, HL, and O (only on the whole [0, π] band).11 For DER,

DGR, and DDR we set the bandwidth parameter MT = [0.75
√
T ] for the whole sample

and MT = [
√
T ] for all subsamples, according to the results of the simulation exercise

reported in Appendix C.2. For all estimators, we set qmax = 8.

Results are reported in Table 1. Our main estimator DDR selects two shocks; this

finding is reasonably consistent across sub-samples. The same holds for DDRa, which

excludes the short-run frequencies, and DDRbc. DER and DGR behave similarly, except

for the sub-samples 1960Q2-2000Q1 and 1965Q2-2005Q1, for which they select one dynamic

factor only. By contrast, HL selects five factors, whereas O is in favor of three factors. As

11HL is calculated as in the simulations, with MT = [0.75
√
T ] (see the online Appendix B for details).

For O, we use m = 20 for the whole sample and for the 40-year sub-samples, and we use m = 15 for the
30-year sub-samples.
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for the sub-samples, HL oscillates between two and four factors, with a prevalence of four

factors, and O varies between two and five, with a prevalence of two factors. Overall,

DDR, DDRa, and DDRbc are more parsimonious than HL and O and more consistent

across sub-samples.

Sample span DDR DDRa DDRbc DER DGR HL O

1960Q2-2020Q1 2 2 2 2 2 5 3
1960Q2-2000Q1 2 2 2 1 1 4 2
1965Q2-2005Q1 2 2 2 1 1 4 2
1970Q2-2010Q1 2 2 2 2 2 4 2
1975Q2-2015Q1 2 2 2 2 2 4 5
1980Q2-2020Q1 2 2 2 2 2 4 2
1960Q2-1990Q1 1 2 2 1 1 3 5
1970Q2-2000Q1 1 1 1 1 1 4 4
1980Q2-2010Q1 2 3 3 2 2 2 2
1990Q2-2020Q1 2 2 2 2 2 3 3

Table 1: Number of factors detected by the competing criteria for the whole sample and
nine sub-samples. DDR: Dynamic Difference Ratio Estimator. DDRa: Dynamic Difference
Ratio Estimator evaluated on the [0 2π/6] frequency band. DDRbc: Dynamic Difference
Ratio Estimator evaluated on the cyclical band [2π/32 2π/6]. DER: Dynamic Eigenvalue
Ratio estimator. DGR: Dynamic Growth Ratio estimator. HL: Hallin and Lǐska (2007)
estimator. O: Onatski (2009) estimator.

Why do DDR and HL differ so much? One possible explanation is that there are two

large factors and three smaller factors and that the latter are elusive to DDR but not

to HL. This interpretation contrasts, however, with the simulation of Table A, reported

in the on line Appendix B, where there are factors of different variance and DDR has a

performance similar to that of HL. An alternative explanation is that HL overestimates

the number of factors, as in the simulation of Table D in the on line Appendix B.

For the subsequent empirical analysis, we focus solely on our main estimator, DDR. Fig-

ure 2 shows the number of estimated factors by DDR for each single Fourier frequency in the
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Figure 2: Number of factors estimated by DDR when evaluated at each frequency (blue solid line) and
on four frequency bands (red dotted line with circles).

interval [0, π/4] and each one of the frequency bands [0, 2π/80] (long-run), [2π/80, 2π/32]

(long cycles), [2π/32, 2π/6] (business cycle), and [2π/6, π] (short-run). At frequency-zero

DDR selects two factors; the estimator is somewhat unstable when evaluated at single

frequencies, fluctuating between one and three factors. Its value, however, stabilizes at two

when averaging the eigenvalues on the four bands above.

Our conclusion is that there are two major shocks driving the U.S. economy. The

presence of other shocks cannot be ruled out, but these are not large or pervasive enough

to be distinguished from idiosyncratic factors on the basis of existing data. The result of

two shocks is in line with Sargent and Sims (1977), Giannone et al. (2005), and Onatski

(2009), as cited above.

4.2 Result 2: Common and Idiosyncratic Variance

Table 2 shows, for seven key macroeconomic variables, the variance explained by the

first and second dynamic factor along with the variance explained by the subsequent three

factors (from the third to the fifth factor). The aim is to quantify the size of the explained



23

variance for these variables is when retaining only two factors and the size of the variance

that is not accounted for with respect to the choice q = 5 suggested by HL. From the

table one can see that on the bands of macroeconomic interest, namely the long run,

the long waves, and the business cycle, two factors capture about 85% of GDP growth

fluctuations, 70% of consumption, 75%-85% of investment, 80%-90% of the unemployment

rate variation, 85%-90% of hours worked, 85%-90% of inflation, and 80% of the federal

funds rate. The variance not accounted for by selecting q = 2 instead of q = 5 is not

negligible, particularly for consumption and the interest rate. Nevertheless, we conclude

that two factors are enough to capture the bulk of the variance in the main macroeconomic

aggregates on the frequency bands of main macroeconomic interest.

4.3 Result 3: Cyclical Shock vs. Long-Run Shock

We now investigate how much the first and second shock explain the variance in the above

variables for each frequency band. The shocks are not identified imposing an economic

criteria, as this would require estimation of (2.4) along with a choice for the identification

matrix Q. Our variance decomposition corresponds to the special identification induced

by the dynamic eigenvalues and the corresponding eigenvectors (i.e., the decomposition of

equation (2.14) above). Despite this, it is possible to assign a precise economic meaning

to the common shocks resulting from this identification and to derive conclusions of sound

economic interest.

The explained variances are shown in Table 3. The first shock accounts for almost

nothing of the variance in GDP in the long run and, more generally, over the long cycles

band, which is instead explained by the second shock. The same result applies to all real

activity variables. We therefore find ourselves, without having imposed it, in front of an

identification à la Blanchard and Quah (1989): the first factor is a transitory shock, while

the second one is a permanent shock. It is very much tempting to interpret the transitory
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PC All Long run Long cycles Medium cycles Short cycles Bus. cycle
series freq. > 20 years 8-20 years 4-8 years 1.5-4 years 1.5-8 years

GDP first 2 73.1 84.6 85.7 84.5 82.3 83.1
next 3 16.4 8.1 5.9 7.1 9.3 8.6

Cons. first 2 56.8 70.9 73.8 72.6 66.7 68.7
next 3 16.6 15.1 13.3 14.9 11.1 12.9

Inv. first 2 73.1 74.7 78.6 87.1 85.3 85.7
next 3 8.8 16.7 11.2 4.6 3.0 3.7

U rate ffirst 2 80.7 80.3 79.1 86.7 91.7 89.7
next 3 8.5 14.0 15.4 8.9 2.3 4.7

Hours first 2 77.3 84.7 85.3 91.4 91.2 91.1
next 3 8.6 10.0 10.3 5.5 2.0 3.4

Inflation first 2 84.5 91.6 91.1 91.3 63.2 86.0
next 3 7.9 5.7 6.2 6.1 18.3 8.5

FFR first 2 78.6 78.9 79.2 81.8 66.5 79.7
next 3 16.1 18.1 17.2 13.6 20.1 14.1

Table 2: Percentage of variance explained by the first two dynamic factors and the following
three for a few selected variables, by frequency band. All frequencies: [0 π]; Long run:
[0 2π/80); Long cycles: [2π/80 2π/32); Medium cycles: [2π/32 2π/16); Short cycles:
[2π/16 2π/6); Business cycle: [2π/32 2π/6).

shock as a demand shock and the long-run shock as a supply shock. To confirm this

interpretation, we look at the covariances of GDP growth and inflation changes induced by

the two shocks and find that, in fact, such covariance is positive for the transitory shock,

which therefore has the features of a demand shock, and it is negative for the permanent

shock, which can then be regarded as a supply shock (see the lower-right panel of Figure

3 below).

A caveat is necessary. Our shocks can in principle be, and probably are, mixtures of

different underlying structural shocks, such as news technology shocks, uncertainty shocks,
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All Long run Long cycles Medium cycles Short cycles Bus. cycle
Shocks freq. > 20 years 8-20 years 4-8 years 1.5-4 years 1.5-8 years

GDP 1st 47.2 1.4 3.3 34.1 77.4 62.2
2nd 25.9 83.2 82.5 50.3 4.9 20.8

Cons. 1st 29.5 1.2 1.9 24.8 57.0 42.3
2nd 27.3 69.7 71.9 47.8 9.7 26.4

Inv. 1st 43.2 4.0 5.2 35.7 79.4 63.1
2nd 29.9 70.7 73.3 51.4 5.9 22.6

U rate 1st 51.8 9.9 11.8 40.6 87.6 70.8
2nd 28.9 70.4 67.3 46.1 4.1 18.9

Hours 1st 44.2 0.8 4.8 37.3 88.3 68.5
2nd 33.1 83.9 80.4 54.0 3.0 22.6

Inflation 1st 78.3 91.3 89.7 81.8 30.9 72.8
2nd 6.2 0.3 1.4 9.5 32.3 13.2

FFR 1st 75.2 78.7 78.6 76.4 52.7 72.9
2nd 3.4 0.2 0.6 5.4 13.8 6.8

Table 3: Percentage of variance explained by the first and the second factor for a few
selected variables, by frequency band. All frequencies: [0 π]; Long run: [0 2π/80); Long
cycles: [2π/80 2π/32); Medium cycles: [2π/32 2π/16); Short cycles: [2π/16 2π/6);
Business cycle: [2π/32 2π/6).

financial shocks, or policy shocks. Despite this, they may still be economically meaningful,

if we can group the true structural shocks into the broader categories of demand and

supply. This is possible if shocks belonging to the same group have similar effects on most

macroeconomic variables.12

In the last column of the table we report the explained variances at business cycle

frequencies. The demand shock is the most important cyclical shock for real activity

variables. It accounts for 62% of GDP growth fluctuations, 42% of consumption, 63% of

12For instance, technology shocks can be interpreted as supply shocks, whereas financial and uncertainty
shocks can be interpreted as demand shocks.
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Figure 3: The estimated spectral density functions of seven variables (black line) and the components
are driven by the first factor (red line) and the second factor (blue line). The variables are: GDP growth,
consumption growth, investment growth, unemployment rate changes, hours worked changes, GDP deflator
inflation, and federal funds rate. Bottom-right panel: co-spectrum of GDP growth and inflation changes
produced by the first factor (red line) and the second factor (blue line). Lilac shadowed area: long-run
frequencies; pink shadowed area: business cycle frequencies.
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investment, 71% of unemployment, and 68% of hours worked. The contribution of the

permanent, supply shock is still sizeable, particularly for consumption, but much smaller;

for real activity variables, it varies between 19% (unemployment) and 26% (consumption).

Figure 3 illustrates the same points by showing the spectral density of the seven vari-

ables above, along with the spectra of the common components driven by the two shocks.

The upper-left panel refers to GDP growth. The supply shock accounts for the long run

and the long- medium cycles but explains almost nothing of short cycles and short-run

frequencies as if it were cut by a low-pass filter canceling waves of periodicity shorter than

five years. By contrast, the demand shock explains almost all cycles of four years or fewer

and almost nothing of longer cycles. A similar result holds for the other variables related

to real activity: consumption, investment, unemployment, and hours worked. Demand

shock, both at business cycle frequencies and in the long run, almost exclusively explain

inflation and interest rate. 13 The bottom-right panel of Figure 3 shows the co-spectra

of GDP growth and inflation changes relative to the transitory shock (red line) and the

permanent shock (blue line). As anticipated, the transitory shock induces a positive co-

variance between GDP growth and inflation changes, whereas the opposite is true for the

permanent shock.14

The above results are in line with Blanchard and Quah (1989) and King et al. (1991)

and in sharp contrast with both the RBC model and the idea that news technology shocks

(i.e., shocks anticipating future technology improvements) explain the bulk of business cycle

fluctuations (Beaudry and Portier, 2006).15 This confirms the ACD finding that long-run

shock does not drive the bulk of business cycle fluctuations. On the other hand, the ACD

13The demand shock is therefore closely related to monetary policy, whereas the supply shocks is not.
A possible explanation is that an expansionary supply shock reduces inflation, so that the Fed does not
react to it.

14We consider inflation changes in place of inflation because the latter exhibits a large negative co-
spectrum with GDP growth for all of the first five dynamic factors, owing to the 1970s and the early
1980s, characterized by low growth and high inflation.

15Barsky and Sims (2011) and Forni, Gambetti, and Sala (2014) question this idea.
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hypothesis that there is just one non inflationary demand shock affecting real activity

variables at business cycle frequencies is not in line with our results, mainly because the

demand shock is closely related to inflation. The implication for macroeconomic modelling

is that our analysis does not rule out standard demand shocks of the textbook type.

5 Frequency-Domain Approaches in Macroeconomics:

Discussion

In this section we discuss the relation with ACD’s method and ACD’s findings. First, we

emphasize that our methodology is complementary to the frequency-domain identification

approach of ACD; that is, one can implement ACD, assuming that the world is GDFM,

or alternatively we can guide on how to implement their methods knowing the number

of shocks-per-frequency band. Second, we shed some light on the reasons our empirical

results differ from ACD’s findings.

5.1 Relation with ACD Methodology

ACD proposes a frequency-domain identification method in the context of structural VAR

models. The method allows for the identification of the shock, which maximizes the ex-

plained variance of a given variable on a specific frequency band, along with the corre-

sponding IRFs. Our GDFM setup naturally couples with the ACD methodology, as long

as the number of shocks q is greater than one. In particular, applying ACD’s approach to

(2.3), leads to identifying the column of the orthogonal matrix Q, and thus the structural

shock f∗t = q′1kft that explains the largest share of the variance of the k-th observable,
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relative to the frequency band [ω, ω̄] ,0 ≤ ω ≤ ω̄ ≤ π. Precisely,

q1k = argmaxq s.t.q′q=1 q′
(∫ ω̄

ω

Λnk(e
iω)Λ′nk(e

−iω)dω

)
q, (5.1)

where Λnk(L) is the k-th row of the n×q matrix of filters Λn(L).16 The solution to problem

(5.1), as ACD explains, is to set q1k equal to the eigenvector corresponding to the largest

eigenvalue of the matrix in brackets in (5.1). This implementation of ACD’s method differs

from ACD in two respects. First, it only considers the common components, netting out

the possibly distorting effect of the idiosyncratic component et in (2.2). Second, it is carried

out over q shocks, where q is estimated by a consistent criterion, rather than a number of

shocks equal to the number of variables included in the VAR, which in turn is based on a

discretionary choice of the researcher.17

5.2 Relation with ACD Empirics

Let us now comment on the relation between ACD and ours empirical results. ACD

finds that (i) a single shock, dubbed the main business cycle (MBC) shock, is enough

to explain most of the business cycle fluctuations in real activity variables, and (ii) the

MBC is disconnected with both real activity in the long term and inflation fluctuations.

Result (i) is not in conflict with our finding that there are two business cycle shocks: as

explained below, our shocks are designed to explain all macroeconomic variables, not just

real activity variables. Indeed, also in the ACD setting at least two shocks are needed to

explain both real activity and inflation, precisely because the MBC shock is disconnected

from inflation. As for (ii), focusing on real activity variables, we find that one of the shocks

16Note that q1k = q1(k, ω, ω̄), where the suffix 1k indicates that q1k is the eigenvector corresponding to
the largest eigenvalue for the kth observed variable. We do not make this dependence explicit for notation
convenience.

17Typically, estimation of the GDFM (2.2) leads to a small q, implying a problem whose dimension is
smaller than the one for ACD.
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explains the dynamics for up to a five-year horizon, but it dissipates over a longer horizon,

which is where the other shock kicks in. In this respect, we also find a clean disconnection

between short cycles, on one hand, and a frequency band including both long cycles and

the long run, on the other hand. This result is not completely out of line with respect to

ACD’s findings. The big difference with respect to ACD is that we find a close connection

between one of our main business cycle shock and inflation.

As explained above, we could in principle apply equation (5.1) to rotate our shocks and

identify a shock maximizing the explained variance in GDP growth at cyclical frequencies.

By mixing our two shocks, the resulting MBC shock would have smaller effects on inflation

than our first shock, because the inflationary effects of the first shock and the deflationary

effects of the second shock would partially cancel out, leading us to results closer to ACD’s

findings. However, then we should arguably loose the long-run disconnection. Alterna-

tively, we could apply ACD’s technique to identify a long-run shock as the one maximizing

the explained variance of, say, GDP growth, on a frequency band close to frequency zero.

By doing this, however, we would end up with a shock very similar to the supply shock

found here, because our supply shock already maximizes the explained variance in GDP

growth in the long run.

To better understand our results and the difference from ACD’s findings, consider that

our variance decomposition is based on the principal-component series Brillinger (1981) in-

troduces, where standard PCA analysis is generalized to a dynamic setting. The principal-

component series, like ordinary principal components, maximizes the sum of the explained

variances for all variables in the dataset. Hence, unlike ACD’s method, (a) dynamic prin-

cipal components target all cross-sectional units (including inflation indexes), not just real

activity variables; moreover, (b) dynamic principal components target all frequencies, not

just business cycle frequencies.18 Point (a) helps understand why we do not get the price

18Other obvious differences with ACD are the dataset, the data treatment (our variables are transformed
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disconnection. Point (b) helps understand why our first shock captures long-run inflation

variance and why our second shock captures long-run growth.19

5.3 Analyzing Subset of Variables

We obtain further insights about our results and the relation with ACD findings by applying

our method to some specially selected subsets of the observable variables. Our focus is on

GDP growth and inflation (as measured by the log differences of the GDP deflator), which

are therefore included in all subsets. In addition to GDP growth and inflation, the first

subset includes only variables related to real economic activity.20 The second includes

only inflation indexes.21 The third includes both real activity and inflation series.22 It

turns out that for both the real activity and the inflation datasets we have just one shock

according to our criteria (not the same one, clearly). For the third subset we identify

two shocks. We then examine the percentage of explained variance by the first dynamic

principal component for the first two subsets and the percentage of explained variance by

the first two principal components for the third dataset. Figure 4 reports these percentages,

decomposed by frequency.

The top panels refer to real activity variables. By including only real activity variables

we get close to ACD’s method: the difference highlighted in point (a) above is removed.

Here we get the price disconnection: the top-center panel shows that the real activity shock

to reach stationarity), and the fact that we do not have a VAR model, which imposes constraints on the
shocks.

19As a robustness check, ACD performs a principal component analysis of their data and finds that their
first (ordinary) principal component explains little of inflation. This difference with our results depends
on the different datasets used: in ACD’s dataset, inflation is just one out of 10 variables; in our dataset
there are 46 inflation variables out of 216 variables. We repeat the same robustness exercise from ACD,
but with our dataset, and find that the first ordinary principal component of our dataset explains about
80% of inflation variance.

20National account series, industrial production indexes, employment and unemployment series, sales
and orders (92 variables out of 216). Including inflation, we have 93 variables.

2146 variables out of 216. Including GDP growth, we have 47 variables.
22138 variables out of 216, including GDP growth and inflation.
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Panel (a): Using 92 real activity variables and inflation

Panel (b): Using 46 inflation variables and GDP growth

Panel (c): Using both inflation and real activity variables

Figure 4: Top panels: percentage of spectra and co-spectra explained by the first dynamic principal
component of real activity variables (subset one). Middle panels: percentage of spectra and co-spectra
explained by the first dynamic principal component of inflation variables (subset two). Bottom panels:
percentage of spectra and co-spectra explained by the first (red line) and the second (blue line) dynamic
principal components of real activity and inflation variables (subset three). Lilac shadowed area: long-run
frequencies; pink shadowed area: business cycle frequencies.

explains little of inflation at all frequencies. By contrast, the top-left panel demonstrates

that the real activity shock explains a very high percentage of GDP growth at all frequen-

cies.23 This confirms ACD’s finding that just a single shock captures most of real activity

fluctuations, but it also shows that the same shock can explain both the business cycle and

the long-run.

Why do we not get the long-run disconnection for this subset of variables? The basic

reason is point (b) above: we are targeting all frequencies, not just the business cycle.24

23It explains 58%, 82%, 87%, and 67% of business-cycle fluctuations of consumption, investment, un-
employment and hours worked, respectively; as for the long run, the percentages are in order 67%, 78%,
80%, and 65%.

24To verify this, we apply ACD’s method to the seven variables in Figure 3. By targeting unemployment
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By looking at the top-left panel of Figure 4, one might interpret this shock as a real

business cycle shock: a single shock explaining both the long-run and the business-cycle

fluctuations of real activity variables. However, the top-right panel shows that the co-

spectrum between GDP growth and inflation changes induced by this shock is positive.

This result is not in line with the RBC interpretation; if the shock were a supply shock,

the covariance should be negative. Below we provide an alternative interpretation of this

shock.

The disconnection between prices and real activity is also evident in the middle panels

of Figure 4, which refers to the second (nominal) subset. The nominal shock explains most

of inflation variance in the long-run and in the cyclical band, but little of GDP fluctuations

(across all frequencies).

Let us now consider the third subset (bottom panels of Figure 4). Because the nominal

and real shocks appear almost orthogonal, it is not surprising that our criteria now detect

two shocks for the third subset, which includes both real activity and inflation variables.

This is the reason we have two lines: the red line refers to one shock, related to the first

principal-component series; the blue line refers to the other shock. The picture is now

very similar to the one in Figure 3, obtained with the whole dataset. Comparing the red

and blue lines with the corresponding lines of the top and middle panels of the GDP and

inflation columns, respectively, the GDP line is very much similar to the upper envelope

of the blue and the red curves, whereas the inflation line is very much similar to the lower

envelope. If we interpret the red line as demand and the blue line as supply, the real shock

of the top panels is clearly a dynamic mixture of supply and demand, capturing mainly

supply at long-run frequencies and mainly demand at all other frequencies. This is the

reason the cospectrum of the top-right panel is positive when away from frequency zero.

cycle, as in ACD, we find that the MBC shock explains only 13% of long-run GDP growth, so that the
long-run disconnection is there. By targeting GDP on the frequency band [0, 2π/6], which includes both
the long-run and the business cycle, we find that the MBC shock explains 67% of long-run growth and
70% of the GDP cycle: percentages not that much different from the ones in Figure 4.
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6 Dynamic Principal Components and DSGE Model

Strong analogies exist between certain DSGE models and the GDFM, particularly for

the DSGE models of Angeletos et al. (2018) (ACD* henceforth) and of Justiniano et al.

(2010) (JPT henceforth). In fact, these DSGE models and GDFMs admit a finite-order

VAR representation with a singular covariance matrix of the error term, implied when

the number of shocks is smaller than the number n of observables.25 In view of this

commonality, we develop a two-fold analysis, exploring how our methodology (i) is able to

dissect (by frequency) the number of structural shocks driving DSGE models by means of

a Monte Carlo experiment and (ii) provides a frequency domain variance decomposition of

these DSGE structural shocks with the data used in our empirical section.

6.1 Estimation of Number of Shocks in DSGE Models

(Simulations)

The aim of this experiment is twofold: test our estimators with a DGP from a macroe-

conomic model, and verify whether our criteria capture a relatively large value of q. In

fact, the ACD* model has q = 8 shocks and n1 = 10 variables; the JPT has q = 7 shocks

and n1 = 11 variables. This is developed in a Monte Carlo setting, with the DGPs for

these variables reported in subsection B.3. Notice that ACD* and JPT have a static fac-

tor representation, meaning that the variables are linear contemporaneous combinations

of the static factors F1t, . . . , Frt. The unit variance, independent Gaussian shocks fjt, are

multiplied by a diagonal matrix, so that the resulting shocks have different variances. To

try also a different value of q, we shut down some of the shocks by setting their variance

to zero and generate the variables by using the first four shocks only.

25For the DSGE models this is given by their reduced form, obtained by the standard practice of log-
linearizing the models around their steady state (see (B.1)-(B.2) and (B.3)-(B.4) in Section B.3) whereas
for GDFMs the VAR representation (see (2.4)) holds under suitable assumptions on the IRFs (see Forni
et al. (2015)).
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To produce a large data set we proceed as follows. Because the number of variables these

models generate is small, we enlarge the artificial DSGE data set by including additional

variables obtained as random linear combinations of both the original variables and the

shocks driving these variables. To simulate the idiosyncratic components we add to all

variables an independent measurement error.

More in detail, we transform the I(1) (i.e., nonstationary) variables to get stationary

variables. We assume that such stationary variables are the first n1 common components

χχχn1t. Second, we standardize the entries of χχχn1t and the shocks. Third, letting FFF t be the r-

dimensional vector, r = n1+q, including the standardized common components and shocks,

we generate additional n2 = n − n1 common components as χit = ai1F1t + · · · + air,Frt,

i = n1 + 1, . . . , n, where aik ∼ iid U[−1,1]. Such additional common components can be

interpreted as macroeconomic variables not included in the model, sectoral variables, or

survey variables. Finally, we add the idiosyncratic components eit, generated according

independent AR(1) models. Precisely, we set eit = s(σχi
/σζi)ζit, ζit = 0.5ζi,t−1 + εit, εit

being iid ∼ N (0, 1). Here σχi
and σζi are the sample standard deviations of χit and

ζit, respectively. In this way, s2 is the ratio of the sample variance of each idiosyncratic

component to the corresponding common component. In this context, the idiosyncratic

components are measurement errors or sectoral components. For ACD* we set q = 4, 8;

for JPT we set q = 4, 7. For both models we set s2 = 0.1, 0, 2; (n, T )= (60, 120), (60, 160),

(120, 160), (120, 240). In terms of calibration of the exercise, we set kmax = 15 and, as

for the other Monte Carlo exercises, we generate 500 artificial datasets. We evaluate the

results in terms of the percentage of times we find the correct number of shocks.

Table 4 reports results of this experiment based on the DGP given by the JPT and

ACD* models. HL performs poorly for both models and most q, n, T, s2 configurations,

with the noticeable exceptions of the ACD* model, large errors (s2 = 0.2), cases q = 4,
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n = 60, T = 120 and q = 8, n = 120, and T = 160 (see the bottom-right panel).26 For

almost all configurations DGR and DDR dominate DER, with no clear ranking between

the DGR and DDR. When measurement errors are relatively small (1/11 of total variance,

about 9%) both criteria capture the correct number of shocks in most cases, even if there

are seven or eight shocks. With T = 240, as is the case for the empirical exercise below,

both criteria detect the correct number of shocks even when the errors are large (1/6 of

total variance, about 17%). We omit results O because of the modest performance.

Summarizing, DDR and DGR detect correctly the number of shocks driving DSGE

models even if the number of shocks is relatively large (seven and eight in the ACD* and

JPT models, respectively).

6.2 Frequency Domain Analysis of DSGE Models (Empirical)

In the previous sections we use the dynamic-principal components and the related eigen-

values to estimate the number of shocks and analyze their effects on a large macroeconomic

data set, in a Monte Carlo simulation setting. Here we depart from the large factor model

framework and study two small data sets extracted from the data used in the empirical

application of Section 4, corresponding to the ACD* and JPT models. Of course, in this

context estimation of the number of shocks is less reliable; still, we can use dynamic-

principal components as a descriptive statistic highlighting the frequency domain features

of the empirical data: such features are often overlooked and cannot be studied with stan-

dard time-domain tools. In this section we show how the dynamic principal components

can verify whether and to what extent DSGE models replicate frequency-domain empir-

ical evidence; we do so by comparing the explained variances of the dynamic-principal

26One of the experiments of Appendix B, reported in Table D (variation of the third experiment), shows
that HL performs very well for intermediate values of the idiosyncratic variance (within the HL calibration
design) but less so for either very small or very large values of the idiosyncratic variance. This is the case
in the current experiment.
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components from the variables generated by the model with those from their empirical

counterparts (whereas in Section B we analyze the ability of our criterion DDR to pin

down the number of shocks driving these models). The number of observations for the

simulated data is set to T = 240 (equal to the sample size of the empirical data).

6.2.1 The Justiniano et al. (2010) DSGE Model

In the first exercise we consider eight variables in the JPT model: GDP, Consumption,

Investment, Hours worked, Labor productivity, the nominal interest rate, inflation and

TFP.

Panel (a): Empirical data

Panel (b): Data simulated from JPT

Figure 5: Top panels: Empirical data. Percentage of spectra of GDP growth and inflation explained
by the first dynamic principal component (red line) and the second principal component (blue line). The
top-right panel shows the co-spectrum of GDP growth and inflation changes explained by the two dynamic
principal components. Bottom panels: JPT simulated data. Lilac shadowed area: long-run frequencies;
pink shadowed area: business cycle frequencies.

Figure 5 shows the percentage of the variance in GDP growth and inflation explained

by the first two principal-component series. The right panels show the co-spectra of GDP
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growth and inflation changes driven by the first two principal components. For the em-

pirical data (top panels), the picture is very much similar to the one for the large data

set in Section 4 (Figure 3), and especially for the subset including both real activity and

inflation variables in Section 5.3 (see Figure 4, bottom panels). The first principal compo-

nent (red line) captures mainly transitory shocks inducing positive comovements between

GDP changes and inflation changes; the second principal component (blue line) captures

mainly permanent shocks inducing negative co-movements between GDP changes and in-

flation changes. This shows that the results in the main text are not an oddity, related to

a particular large data set or to a particular treatment of variables; on the contrary, they

can also be obtained with a reduced data set, similar to those commonly used in structural

VAR and DSGE studies.

Figure 6: Real data. The estimated spectral density functions of the eight variables, namely GDP,
Consumption, Investment, Hours worked, Labor productivity, the nominal interest rate, inflation and
TFP (black line), and the components driven by the first principal component series (red line) and the
second principal component series (blue line). Lilac shadowed area: long-run frequencies; pink shadowed
area: business cycle frequencies.
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As for the simulated data (bottom panels), the red line is similar to that of real data,

whereas the blue line differ across the two rows of plots. The basic difference is that

in the JPT model the blue line does not capture the long-run of GDP growth (which is

instead explained by the third and the fourth principal components, not shown here). Our

interpretation is that the JPT model is successful in reproducing the empirical features of

demand sources of variation, but is less so in reproducing the supply side of the economy.

Figures 6 and 7 show the estimated spectral density functions of all variables, along

with the components driven by the first and the second principal-component series (red line

and blue line, respectively). Figure 6 refers to empirical data; Figure 7 refers to simulated

data. The basic message is the same as in Figure 5: the red lines of the two figures are

similar to one another (albeit less so for hours and interest rate), whereas the blue lines

are not as close (with the exception of investment).

6.2.2 The Angeletos et al. (2018) DSGE Model

In the second exercise we compare real data with data simulated from the ACD* model.

We consider seven variables: GDP, Consumption, Investment, Hours worked, Labor pro-

ductivity, TFP, and the real interest rate. We do not include inflation, because the model

is intended to fit real variables. Therefore, here we consider the first principal component

only, because the second principal component is strongly related to inflation, which as said

is not included in the data set.

Figure 8 shows the percentage of the spectral density of GDP growth explained by

the first dynamic principal component, frequency by frequency. The left panel refers to

empirical data, whereas the right panel refers to simulated data. Here the first principal

component does not capture transitory sources of variation but arguably captures a mixture

of long-run and short-run shocks: the left panel is very similar to the one in the main text

obtained with the large data set (see Section 5.3) including only real activity variables;
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Figure 7: JPT simulated data. The estimated spectral density functions of eight variables, namely GDP,
Consumption, Investment, Hours worked, Labor productivity, the nominal interest rate, inflation, and
TFP (black line), and the components driven by the first principal component series (red line) and the
second principal component series (blue line). Lilac shadowed area: long-run frequencies; pink shadowed
area: business cycle frequencies.

Figure 8: Percentage of the spectral density of GDP growth explained by the first dynamic principal
component, frequency by frequency. Left panel: empirical data. Right panel: ACD* simulated data.

see Figure 4, top-left panel. This is not surprising, because here we do not have nominal

variables. The basic message from the figure is that the right panel is very similar to the

left panel, so that the ACD* model is very much in line with the data.

Figures 9 and 10 show the estimated spectral density functions of all variables (black
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lines) along with the components driven by the first principal-component series (red line).

Figure 9 refers to the empirical data; Figure 10 refers to simulated data from ACD*. For

GDP, consumption, investment, and labor productivity, the ACD* model is successful in

reproducing the features of the data. In the empirical data the first principal component

is poorly related to TFP and closely related to hours, whereas the opposite is true for the

ACD* model. Another difference between the model and the data concerns the interest

rate, which is not captured by the first principal component of the empirical data, whereas

it appears well described for simulated data. Summing up, the model does a good job for

GDP, consumption, investment, and labor productivity but less so for hours, TFP, and the

interest rate.

Figure 9: Empirical data. The estimated spectral density functions of seven variables (black line)
and the components driven by the first principal component series (red line) and the second principal
component series (blue line). Lilac shadowed area: long-run frequencies; pink shadowed area: business
cycle frequencies.
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Figure 10: ACD* simulated data. The estimated spectral density functions of seven variables (black
line) and the components driven by the first principal-component series (red line) and the second principal-
component series (blue line). Lilac shadowed area: long-run frequencies; pink shadowed area: business
cycle frequencies.
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JPT model s2 = 0.1 (small errors) s2 = 0.2 (large errors)

q n T HL DER DGR DDR HL DER DGR DDR

4 60 120 6.0 68.2 93.8 83.6 67.2 31.4 77.0 84.2
4 60 160 0.6 83.8 98.4 92.6 22.6 45.0 89.6 94.0
4 120 160 0.0 98.2 100.0 97.4 0.0 76.4 99.2 97.6
4 120 240 0.0 99.8 100.0 98.8 0.0 94.2 100.0 98.6

7 60 120 36.0 41.0 91.2 75.0 3.4 1.4 35.6 50.8
7 60 160 45.8 58.6 97.8 88.8 51.4 4.6 55.2 72.4
7 120 160 0.4 89.2 99.8 96.2 34.0 32.0 93.4 95.4
7 120 240 0.0 99.0 100.0 99.8 3.0 77.4 99.4 99.2

ACD* model s2 = 0.1 (small errors) s2 = 0.2 (large errors)

q n T HL DER DGR DDR HL DER DGR DDR

4 60 120 9.0 78.0 98.6 93.0 91.8 26.8 76.4 94.0
4 60 160 0.6 91.2 99.6 98.2 50.6 48.2 92.6 98.8
4 120 160 0.0 99.0 100.0 98.0 0.0 85.6 99.8 99.8
4 120 240 0.0 100.0 100.0 99.2 0.0 98.4 100.0 100.0

8 60 120 47.0 13.4 79.4 84.6 3.0 0.0 8.8 33.4
8 60 160 68.2 23.8 93.4 95.4 34.4 0.2 15.0 63.4
8 120 160 1.2 79.6 100.0 99.8 91.2 2.8 63.8 72.6
8 120 240 0.0 99.8 100.0 100.0 36.0 38.8 98.4 100.0

Table 4: Experiment described in Section 6.1. Percentage of correct outcomes over 500
replications. HL: Hallin and Lǐska (2007) estimator, DER: Dynamic Eigenvalue Ratio
estimator, DGR: Dynamic Growth Ratio estimator; DDR: Dynamic Difference Ratio esti-
mator. Boldface numbers denote the estimator that performs best in each row.
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7 Summary and Conclusions

Determining the number of different sources of fluctuations affecting the economy is a

fundamental quest for macroeconomic modelling and the business cycle debate. However,

existing methods to estimate the number of shocks are not entirely satisfactory, mainly

because they do not focus on specific frequencies and cycles. In this paper, we study new

criteria for single frequencies and selected frequency bands of interest. Our estimators do

not require pre-selecting penalty functions and nuisance parameters.

We establish the consistency of these estimators and evaluate their small-sample per-

formance with Monte Carlo exercises. We find that one of them, the Dynamic Difference

Ratio (DDR), dominates the other two in most simulations and performs better than, or

comparably with, existing criteria. Noticeably, our estimators work even when applied to

data stemming from DSGE models where the number of shocks is relatively large.

We apply DDR to the FRED-QD database and find a clear-cut result: two major

shocks drive the U.S. economy; we dub them, following Angeletos et al. (2020), the main

business cycle shocks. They account for the bulk of the variance in the main macroeconomic

aggregates at both business-cycle and long-run frequencies. It turns out that the statistical

identification based on the eigenvalues leads a precise economic interpretation: the first

factor appears to be a demand shock and the second factor a supply shock. The demand

shock explains most of the business cycle fluctuations in real activity variables, as well as

inflation and interest rate volatility.
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Appendices “For Online Publication”

A Frequency-Band Estimators of Number of Dynamic

Factors: Consistency

A.1 Notation

Let A be a (n ×m) matrix, with complex or real entries aij; in short A = [aij : 1 ≤ i ≤

n, 1 ≤ j ≤ m]. For m = n , µ1(A) ≥ µ2(A) ≥ · · · ≥ µn(A) denote the eigenvalues of A

in a decreasing order. The jth largest singular value of the matrix A, σj(A), is defined as√
µj(A

′A). The prime attached to the to a complex-valued matrix denotes the conjugate-

complex transpose of the matrix, or the transpose when the matrix has real entries. The

spectral norm ‖A ‖ =
√
µ1(A′A) is the largest singular value of A, whereas ‖a‖ is the

euclidean norm of the vector a. The diagonal matrix B ≡ diag{b11, . . . bnn} has non-zero

entries bii, for 1 ≤ i ≤ n.

For the double-indexed process {yit : 1 ≤ i ≤ n, 1 ≤ t ≤ T}, we write ynt ≡

[y1t, · · · , ynt]′. The discrete Fourier transform (DFT) of {yn1, . . . ,ynT} at frequency ωj

is defined by

ŷnj ≡ T−
1/2

T∑
t=1

yt(n)e−iωjt (A.1)

where ωj = 2πj/T and T is assumed to be even, as discussed in Section 2.2 .

A.2 Assumptions

We state the following Assumptions for the model introduced in Section 2.2

Assumption 1. The process ft is an orthonormal white noise.
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Assumption 2. The coefficients of the filter Λn(L) ≡
∑∞

u=0 Λ
(u)
n Lu satisfy

∞∑
u=0

‖Λ(u)
n ‖(1 + u) = O(n1/2)

Assumption 3. Let εjt, j ∈ N, t ∈ Z be iid. zero-mean random variables with unit

variance and E |εjt|4 <∞. Further, let unt = [u1t, . . . , unt]
′, with

ujt ≡ Cj(L)εjt =
∞∑
k=0

cjkεj,t−k

where supj>0

∑∞
k=0 k|cjk| <∞ and minj |Cj(z)| > 0 for |z| ≤ 1, with C(z) =

∑∞
k=0 ckz

k for

z ∈ C. We assume that the n-vector of the idiosyncratic components of the data is such

that

ent = An unt, for t = 1, . . . , T,

where An is a non-singular lower triangular matrix with ‖An ‖ uniformly bounded in n.

Assumption 4. The bandwidth parameter MT is a function of T satisfying 1/MT → 0and

M2
T/T = O(1) as T →∞. Moreover, as n→∞, T →∞, n/T → y ∈ (0, 1) ∪ (1,∞).

Assumption 5. For any ` ≤ ` ≤ ¯̀, let

µ̂χnk(ω`) ≡ µk

[∑`+MT

j=`−MT
χ̂njχ̂

′
nj

n(2MT + 1)

]
,

where the n dimensional vector χ̂n` denotes the DFT of {χnt, t = 1, . . . , T} evaluated at the

Fourier frequency ω`. We assume that plimT→∞ µ̂
χ
nk(ω`) ≡ µχk(ω`), where 0 < µχk(ω`) <∞

for every k = 1, . . . , q and µχk(ω`) > µχk+1(ω`), for at least one ` in [`, ¯̀], and k = 1, . . . , q−1.
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A.3 Proof Outline of Theorem 1

For a generic frequency ω`, we consider the index set

S(`) ≡ {(`−MT ), (`−MT + 1), . . . , `, (`+ 1), . . . (`+MT )}

To save notation, we omit the dependence on ` and set S ≡ S(`). The cardinality of S is

denoted by m ≡ 2MT + 1. Let s be a generic element of S, s ≡ ` −MT and s̄ ≡ ` + MT

and define the n× q matrix

F̂ ≡
[
f̂ s, f̂ s+1, . . . , f̂ s̄

]
, with f̂ s = [f̂1s, . . . , f̂qs]

′, s ∈ S, (A.2)

where f̂js = T−1/2
∑T

t=1 fjte
−iωst. Similarly, using the notation introduced in (A.1), we

define the n×m matrices

χ̂ ≡ [χ̂ns, χ̂n,s+1, . . . , χ̂ns] , Ê ≡ [êns, ên.s+1, . . . , êns] . (A.3)

Finally, we write

Λ̂n(s) ≡ Λn

(
e−iωs

)
=
∞∑
u=1

Λ(u)
n e−iωsu, for s ∈ S. (A.4)

The prove Theorem 1 we approximate (in the sense of Lemma A.17)

X̂ = [x̂ns, x̂n,s+1, . . . , x̂ns̄] = χ̂+ Ê, (A.5)

with

X̃ ≡ Λ̂n(`)F̂ + Ẽ
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and analyze the behavior of the eigenvalues of the matrix

X̃X̃
′

mn
=

(Λ̂n(`)F̂ + Ẽ)(Λ̂n(`)F̂ + Ẽ)′

mn
(A.6)

The matrix Ẽ is defined in Lemma A.12. Considering the matrix in (A.6) instead of

X̂X̂
′
/mn leads to the following decomposition (see the proof of Lemma A.14 for details):

X̃X̃
′

mn
=

(Λ̂n(`)F̂1 + Ẽ1)(Λ̂n(`)F̂1 + Ẽ1)′

mn
+

Ẽ2Ẽ
′
2

mn

Then, it conveniently follows that

µj

[
(Λ̂n(`)F̂1 + Ẽ1)(Λ̂n(`)F̂1 + Ẽ1)′

n

]

is Op(m) for j = 1, . . . , q and zero for j = q+1, . . . , n. Bounds for the extreme eigenvalues of

the matrix Ẽ2Ẽ2/n are derived exploiting a result in Bai and Silverstein (2010) (see Lemma

A.9). The previous result allows us to find a lower and upper bound for µj

(
X̃X̃

′
/n
)

, for

j = q + 1, . . . ,m− 2q (see Lemmas A.13 - A.15).

Remark 1. In the fourth simulation experiment (Section B.2, below) the spectral density

matrix of the common components had reduced rank at a specific frequency. This case is

easily covered by our theory by allowing the number of factors q to be dependent of ω`,

that is replacing q with q(ωj) in Assumption 5. The possibility of zero factor (q = 0) can

be allowed by defining a mock eigenvalue along the lines of Ahn and Horenstein (2013),

Corollary 1.

A.4 Lemmata

This section introduces auxiliary results that prove Theorem 1 in Section A.5.
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Lemma A.1. For any (n×m) matrix A, ‖A ‖ = σ2
1(A) ≤

∑n
i=1

∑m
j=1 |aij|2.

Proof. See Horn and Johnson (1990), p. 421.

Lemma A.2. For A,B (n× n) Hermitian matrices,

µi+j−1(A + B) ≤ µi(A) + µj(B), i+ j ≤ n. (A.7)

Proof. See Bernstein (2009), Fact 8.4.11. p. 470.

Lemma A.3. For A(n× n) Hermitian and B(n× n) Hermitian positive-semi-definite,

µi(A) ≤ µi(A + B), i = 1, . . . , n.

Proof. See Lütkepohl (1996), p. 135.

Lemma A.4. For A,B (n× n) Hermitian, with rank(B) ≤ r,

µi+r(A + B) ≤ µi(A), i = 1, . . . , n− r.

Proof. See Lütkepohl (1996), p. 135.

Lemma A.5. Let A,B (n×n) matrices with A Hermitian and B nonsingular. Then, there

exists a non-negative real number δk, k = 1, 2, . . . .n, such that µn(B B′) ≤ δk ≤ µ1(B B′)

and

µk(B A B′) = δkµk(A).

Proof. See Theorem 4.5.9 in Horn and Johnson (1990)

Lemma A.6. Let A,B (n ×m) matrices, and r ≡ min{n,m}. For decreasingly ordered
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singular values of A, B and A + B,

σ1(A + B) ≤ σ1(A) + σ1(B)

Lemma A.7. For A,B, r as in Lemma A.6,

|σi(A + B)− σi(A)| ≤ σ1(B), i = 1, . . . , r.

Proof. See Lemma 3.3.16.(c) in Horn and Johnson (1991).

Lemma A.8. For A,B, r as in Lemma A.6,

|σ2
i (A + B)− σ2

i (A)| ≤ σ1(B) (2σi(A) + σ1(B)) , i = 1, . . . , r. (A.8)

Proof. The proof follows Onatski (2009), Proof of Lemma 3. By Lemma A.7

|σ2
i (A + B)− σ2

i (A)| ≤ |σi(A + B)− σi(A)||σi(A + B) + σi(A)|

≤ σ1(B) (2σi(A) + |σi(A + B)− σi(A)|)

≤ σ1(B) (2σi(A) + σ1(B)) ,

proving the result.

Lemma A.9. Assume that the entries of {yij} are a double array of iid complex random

variables with mean zero, variance σ2, and finite fourth moment. Let Yn = [yij : i ≤ p, j ≤

n] be the p × n matrix of the upper-left corner of the double array. Let Sn = n−1YnY
′
n
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and denote the eigenvalues of Sn by µ1 ≥ µ2 ≥ · · · ≥ µp. Write µmax = µ1(Sn) and

µmin =

 µp(Sn), if p ≤ n

µn(Sn), if p > n

If p/n→ y ∈ (0,∞), we have a.s.

lim
n→∞

µmin = σ2 (1−√y)2

and

lim
n→∞

µmax = σ2 (1 +
√
y)2 .

Proof. See (Bai and Silverstein, 2010, Theorem 5.10) and Bai and Yin (1993) (Theorem 1

and Remark 1 therein).

Lemma A.10. Under Assumptions 1 and 2

‖χ̂− Λ̂n(`)F̂‖2 = Op

(mn
T

)
(A.9)

Proof. The proof follows closely (Onatski, 2009) (proof of Lemma 4, p. 1471) and it is

reported for completeness. Write χ̂− Λ̂n(`)F̂ as P1 +R1, which are (n×m) matrices with

s−th columns p1s = χ̂ns − Λ̂n(s)̂f s and r1s = (Λ̂n(s)− Λ̂n(`))̂f s, s ∈ S. Recall that

Λ̂n(s)̂f s = T−
1/2Λ̂n(s)

T∑
τ=1

fτe
−iωsτ (A.10)

with Λ̂n(s) defined in (A.4) and

χ̂ns = T−
1/2

T∑
t=1

∞∑
u=0

Λ(u)
n ft−ue

−iωst (A.11)
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Interchanging the order of summation in (A.11) and changing the summation index t to

τ ≡ t− u, we obtain the representation

χ̂ns = T−
1/2

∞∑
u=0

Λ(u)
n

T−u∑
τ=1−u

fτe
−iωs(τ+u) (A.12)

Subtracting (A.10) from (A.12) we obtain

p1s = χ̂ns − Λ̂n(s)̂f s = T−
1/2

∞∑
u=0

Λ(u)
n e−iωsud1u(s)

where,

d1u(s) =

min(T−u,0)∑
τ=1−u

fτe
−iωsτ −

T∑
τ=max(T−u,0)+1

fτe
−iωsτ .

Then,

E ‖p1s‖2 ≤ T−1

∞∑
u,v=0

E
∣∣∣d′1u(s)Λ(u)′

n Λ(v)
n d1v(s)

∣∣∣
≤ T−1

∞∑
u,v=0

∥∥Λ(u)
n

∥∥∥∥Λ(u)
n

∥∥E (‖d1u(s)‖ ‖d1v(s)‖)

≤ T−1

∞∑
u,v=0

∥∥Λ(u)
n

∥∥∥∥Λ(v)
n

∥∥ (E ‖d1u(s)‖2 E ‖d1v(s)‖2)1/2
= T−1

[
∞∑
u=0

∥∥Λ(u)
n

∥∥ (E ‖d1u(s)‖2)1/2]2

.

But

E ‖d1u(s)‖2 =

min(T−u,0)∑
τ=1−u

E ‖fτ‖2 +
T∑

τ=max(T−u,0)+1

E ‖fτ‖2 = 2qmin(u, T ).
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because ft is a q-dimensional orthonormal white noise. Therefore, by Lemma A.1

E ‖P1‖2 ≤
∑
s∈S

E ‖p1s‖2 ≤ 1

T

∑
s∈S

[
∞∑
u=0

∥∥Λ(u)
n

∥∥ (E ‖d1u(s)‖2)1/2]2

=
1

T

∑
s∈S

[
T∑
u=0

∥∥Λ(u)
n

∥∥ (2qu)
1/2 +

∞∑
u=T+1

∥∥Λ(u)
n

∥∥ (2qT )
1/2

]2

≤ m

T

[
∞∑
u=0

∥∥Λ(u)
n

∥∥ (2qu)
1/2

]2

= O
(mn
T

)
(A.13)

where we used
∑

s∈S as the shorthand notation for
∑s̄

s=s.

Next, we consider the matrix R1. Note that

∥∥∥Λ̂n(s)− Λ̂n(`)
∥∥∥ ≤ ∞∑

u=0

∥∥Λ(u)
n

∥∥ |e−iuωs − e−iuω`|

≤
∞∑
u=0

∥∥Λ(u)
n

∥∥u2πm

T
= O

(
mn1/2

T

)

uniformly in s. Further, since ft is a q− dimensional orthonormal white noise,
∑

s∈S E ‖f̂ s‖2 =

O(m). Finally, by Lemma A.1

E ‖R1‖2 ≤
∑
s∈S

E ‖r1s‖2 ≤ max
s

∥∥∥Λ̂n(s)− Λ̂n(`)
∥∥∥2∑

s∈S

E ‖f̂ s‖2

= O

(
m2n

T 2

)
Op(m) = O

(n
T

)
O(m) = O

(mn
T

)
(A.14)

where we use that m2/T = O(1) by Assumption 4. The statement follows from (A.13) and

(A.14) and the fact that, by Lemma A.2

‖χ̂− Λ̂n(`)F̂‖2 ≤ [‖P1‖+ ‖R1‖]2 = Op

(mn
T

)
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Lemma A.11. Under Assumptions 1, 2 and 5, for k = 1, . . . , q

σ2
k

(
Λ̂n(`)F̂√
mn

)
− σ2

k

(
χ̂√
mn

)
= Op

(
1√
T

)
, (A.15)

and

µ̃χnk(ω`) ≡ µk

(
Λ̂n(`)F̂F̂

′
Λ̂
′
n(`)

mn

)
= µχk(ω`) + op(1) (A.16)

where µχk(ω`) is a positive bounded constant defined in Assumption 5.

Proof. By Lemma A.8, Lemma A.10 and Assumption 5

σ2
k

(
Λ̂n(`)F̂√
mn

)
− σ2

k

(
χ̂√
mn

)

≤ σ1

(
χ̂− Λ̂n(`)F̂√

mn

)[
2σk

(
χ̂√
mn

)
σ1

(
χ̂− Λ̂n(`)F̂√

mn

)]
= Op

(
1√
T

)

proving (A.15). The result in (A.16) follows from Assumption 5 and (A.15), by noting that

σ2
k

(
(mn)−1/2χ̂

)
= µ̂nk(ω`).

To establish the following lemmas we need to introduce further notation. As in (A.3)

and (A.4), we define the (n×m) matrix Ê ≡ [ε̂ns, ε̂n,s+1, . . . , ε̂ns], and the (n×n) diagonal

matrix

Ĉn(s) ≡ diag

(
∞∑
u=0

c1ue
−iωsu, . . . ,

∞∑
u=0

cnue
−iωsu

)
(A.17)

Lemma A.12. Under Assumption 3

‖Ê− Ẽ‖2 = Op

(mn
T

)
.

where Ê is defined in (A.3) and Ẽ ≡ An Ĉn(`)Ê are (n×m) matrices.

Proof. Following the proof of Lemma A.10 we write Ê − Ẽ as the sum of the (n × m)
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matrices P2 and R2. The s−th column of P2 is defined as

p2s ≡ êns −An Ĉn(s)ε̂ns = T−
1/2 An

∞∑
u=0

C(u)
n e−iωsud2u(s) (A.18)

where

d2u(s) ≡
min(T−u,0)∑
τ=1−u

εnτe
−iωsτ −

T∑
τ=max(T−u,0)+1

εnτe
−iωsτ .

The last equality in (A.18) follows by recalling that by (A.17) Ĉn(s) =
∑∞

u=0 C(u)
n e−iωsu

and ε̂ns = T−1/2
∑T

τ=1 εnτe
−iωsτ and noting that

êns = An ûns = T−
1/2 An

T∑
t=1

∞∑
u=0

C(u)
n εn,t−ue

−iωst,

can be re-written as

êns = T−
1/2 An

∞∑
u=0

C(u)
n

T−u∑
τ=1−u

εnτe
−iωs(τ+u) = T−

1/2 An

∞∑
u=0

C(u)
n e−iωsu

T−u∑
τ=1−u

εnτe
−iωsτ

First we consider

E ‖p2s‖2 ≤ T−1‖An ‖2

n∑
j=1

E

∣∣∣∣∣
∞∑

u,v=0

cjue
−iωsud2sj(u)

∣∣∣∣∣
2

≤ T−1‖An ‖2

n∑
j=1

∞∑
u,v=0

|cjue−iωsv||cjveiωsu|
[
E |d2,sj(u)|2 E |d2,sj(v)|2

]1/2
≤ T−1‖An ‖2

n∑
j=1

∞∑
u,v=0

|cju|u1/2|cjv|v1/2 = O
(n
T

)
(A.19)

The last inequality follows along the line of (A.13), after noting that by Assumption 3 we

have

E |d2ju(s)|2 =

min(T−u,0)∑
τ=1−u

E ε2
jτ +

T∑
τ=max(T−u,0)+1

E ε2
jτ = min(u, T ), for j = 1, . . . , n.
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By Lemma A.1

E ‖P2‖2 ≤
m∑
s=1

E ‖p2s‖2 = O
(mn
T

)

Next, we consider the matrix R2. Note that, for j = 1, . . . , n

|Cj(e−iωsu)− Cj(e−iω`u)| ≤
∞∑
u=0

cju|e−iωsu − e−iω0u| ≤ 2πm

T

∞∑
u=0

|cju|u

By Assumption 3

∥∥∥Ĉn(s)− Ĉn(`)
∥∥∥ ≤ 2πm

T

[
max
0<j≤n

∞∑
u=0

|cju|u

]
= O

(m
T

)

uniformly in s. Moreover,

E ‖ε̂ns‖2 = E

 n∑
j=1

∣∣∣∣∣ 1√
T

T∑
t=1

εjte
−iωst

∣∣∣∣∣
2


=
n∑
j=1

E ε2
jt = O(n).

Hence,
∑

s∈S ‖ε̂ns‖2 = Op(mn) and

‖R2‖2 ≤
∑
s∈S

E ‖r2s‖2 ≤ ‖An ‖2 max
s

∥∥∥Ĉn(s)− Ĉn(`)
∥∥∥2∑

s∈S

‖ε̂ns‖2

= O(1)O

(
m2

T 2

)
Op(mn) = O(1)O(T−1)Op(mn) = Op

(mn
T

)
(A.20)

where we have used that, by Assumption 4, m2/T = O(1).

The statement follows from (A.19) and (A.20) and the fact that

‖Ê− Ẽ‖2 ≤ [‖P2‖+ ‖R2‖]2 = Op

(mn
T

)
.
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Lemma A.13. Under Assumptions 3 and 4, for 1 ≤ k ≤ m

l ≤ µk

(
ẼẼ

′

n

)
≤ l,

almost surely as N, T →∞, where

l ≡ δk

(
1− 1
√
y

)2

, l ≡ δk

(
1 +

1
√
y

)2

(A.21)

and δk is a positive bounded real number satisfying

µn(An Ĉn(`)Ĉ
′
n(`) A′n) ≤ δk ≤ µ1(An Ĉn(`)Ĉ

′
n(`) A′n). (A.22)

Proof. By Lemma A.5 , for each k = 1, . . . ,m there exists a positive real number δk

satisfying (A.22) and

µk

(
ẼẼ

′

n

)
= µk

(
An Ĉn(`)ÊÊ

′
Ĉn(`)′A′n

n

)
= δkµk

(
ÊÊ
′

n

)
(A.23)

The n×m matrix Ê can be written as E B, where B is a T ×m matrix with s-th column

b(ωs) = T−
1/2
[
eiωs , ei2ωs , . . . , eiTωs

]′
, for s ∈ S.

The T × 1 vectors b(ωj) constitute an orthonormal basis for CT , so PB ≡ B B′ is a

projection matrix. Let MB ≡ IT −PB. By Lemma A.3

µk

(
ÊÊ
′

n

)
= µk

(
EPBE ′

n

)
≤ µk

(
EPBE ′

n
+

EMBE ′

n

)
= µk

(
EE ′

n

)
≤ µ1

(
EE ′

n

)
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Moreover, by Lemma A.4, for k = 1, . . . ,m

µk

(
ÊÊ
′

n

)
= µk

(
EPBE ′

n

)
≥ µk+(T−m)

(
EPBE ′

n
+

EMBE ′

n

)
≥ µT

(
EE ′

n

)
.

We conclude that, for k = 1, . . . ,m,

µT

(
EE ′

n

)
≤ µk

(
ÊÊ
′

n

)
≤ µ1

(
EE ′

n

)

By Lemma A.9

µ1

(
EE ′

n

)
=
T

n
µ1

(
EE ′

T

)
a.s−→ 1

y
(1 +

√
y)2 =

(
1 +

1
√
y

)2

(A.24)

and

µT

(
EE ′

n

)
a.s−→
(

1− 1
√
y

)2

, (A.25)

The proof follows from equations (A.23), (A.24), and (A.25).

Define

µ̃nk(ω`) ≡ µk

(
X̃X̃

′

nm

)
, for j = 1, 2, . . . ,m (A.26)

with X̃ defined in display (A.5).

Lemma A.14. Under Assumptions 1-3, for m sufficiently large and j = 1, . . . ,m− 2q

µ2q+j

(
ẼẼ

′

mn

)
≤ µ̃n,q+j(ω`) ≤ µ1

(
ẼẼ

′

mn

)
. (A.27)

Proof. Following Onatski (2009)[p. 1475], we define the m × m unitary matrix V such

that F̂V = [F̂1 0] and ẼV = [Ẽ1 Ẽ2] where Ẽ1 is n × q and F̂1 is q × q and consider the
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decomposition

X̃X̃
′

mn
=

(Λ̂n(`)F̂1 + Ẽ1)(Λ̂n(`)F̂1 + Ẽ1)′

mn
+

Ẽ2Ẽ
′
2

mn
(A.28)

Note that, for j = 1, . . . ,m− q

µq+j

[
(Λ̂n(`)F̂1 + Ẽ1)(Λ̂n(`)F̂1 + Ẽ1)′

mn

]
= 0. (A.29)

We first prove the upper bound of the inequality in (A.27). Lemma A.2 and display (A.29)

entail that, for q + 1 + j ≤ m

µ̃n,q+j(ω`) ≤ µq+1

(
(Λ̂n(`)F̂1 + Ẽ1)(Λ̂n(`)F̂1 + Ẽ1)′

mn

)
+ µj

(
Ẽ2Ẽ

′
2

mn

)
= µj

(
Ẽ2Ẽ

′
2

mn

)
.

(A.30)

By Lemma A.3,

µj

(
Ẽ2Ẽ

′
2

mn

)
≤ µj

(
Ẽ1Ẽ

′
1 + Ẽ2Ẽ

′
2

mn

)
= µj

(
ẼẼ

′

mn

)
. (A.31)

Hence, by (A.30) and (A.31) we conclude that for every j ≥ 1

µ̃n,q+j(ω`) ≤ µ1

(
ẼẼ

′

mn

)
(A.32)

Next we derive the lower bound of (A.27). Using again Lemma A.3, for any 1 ≤ j ≤ m− q

µq+j

(
Ẽ2Ẽ

′
2

mn

)
≤ µ̃n,q+j(ω`), (A.33)

whereas, by Lemma A.4, for 1 ≤ j ≤ m− 2q,

µ2q+j

(
ẼẼ

′

mn

)
≤ µq+1

(
Ẽ1Ẽ

′
1

mn

)
+ µq+j

(
Ẽ2Ẽ

′
2

mn

)
= µq+j

(
Ẽ2Ẽ

′
2

mn

)
(A.34)
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because µq+1(Ẽ1Ẽ
′
1) = 0 by construction. Equations (A.32) and (A.35) imply that

µ2q+j

(
ẼẼ

′

mn

)
≤ µ̃n,q+j(ω`) ≤ µ1

(
ẼẼ

′

mn

)
(A.35)

for j = 1, . . . ,m− 2q, concluding the proof.

Lemma A.15. Under Assumptions 1-5, for k = q + 1, . . . ,m− q

l ≤ m µ̃nk(ω`) ≤ l

almost surely, as N, T →∞.

Proof. Follows from Lemmas A.13 and A.14.

Lemma A.16. Under Assumptions 1-5, for k = 1, . . . , q,

|µ̃nk(ω`)− µ̃χnk(ω`)| = op(m
−1/2),

where µ̃χnk(ω`) has been defined in Lemma A.11

Proof. Using the decomposition in equation (A.28) we write

|µ̃nk(ω`)− µ̃χnk(ω`)| =

∣∣∣∣∣σ2
k

(
X̃√
mn

)
− σ2

k

(
Λ̂n(`)F̂√
mn

)∣∣∣∣∣
≤

∣∣∣∣∣σ2
k

(
X̃√
mn

)
− σ2

k

(
Λ̂n(`)F̂1 + Ẽ1√

mn

)∣∣∣∣∣+

∣∣∣∣∣σ2
k

(
Λ̂n(`)F̂1 + Ẽ1√

mn

)
− σ2

k

(
Λ̂n(`)F̂1√

mn

)∣∣∣∣∣
(A.36)
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We first show that, for k = 1, . . . , q

∣∣∣∣∣σ2
k

(
X̃√
mn

)
− σ2

k

(
Λ̂n(`)F̂1 + Ẽ1√

mn

)∣∣∣∣∣
≤σ1

(
Ẽ2√
mn

)[
2σk

(
Λ̂n(`)F̂1 + Ẽ1√

mn

)
+ σ1

(
Ẽ2√
mn

)]
= Op

(
1√
m

)
.

(A.37)

The first inequality follows from Lemma A.8. From the inspection of the proof of Lemma

A.13, we have

σ2
1

(
Ẽ2√
mn

)
= µ1

(
Ẽ2Ẽ

′
2

mn

)
≤ 1

m
µ1

(
ẼẼ

′

n

)
= Op

(
1

m

)
. (A.38)

By Lemma A.11, for k = 1, . . . , q,

σ2
k

(
Λ̂n(`)F̂1√

mn

)
= µk

(
Λ̂n(`)F̂F̂

′
Λ̂
′
n(`)

mn

)
= Op(1), (A.39)

because F̂1F̂
′
1 = F̂F̂

′
. Hence, by Lemma A.7

∣∣∣∣∣σk
(

Λ̂n(`)F̂1 + Ẽ1√
mn

)
− σk

(
Λ̂n(`)F̂1√

mn

)∣∣∣∣∣ ≤ σ1

(
Ê1√
mn

)
= Op

(
1√
m

)
(A.40)

because, by Lemma A.3 and equation A.38

σ2
1

(
Ẽ1√
mn

)
≤ µ1

(
Ẽ1Ẽ

′
1 + Ẽ2Ẽ

′
2

mn

)
= Op

(
1

m

)
. (A.41)

The bound in (A.37) follows from (A.38)-(A.41).
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Using similar arguments, it follows that

∣∣∣∣∣σ2
k

(
Λ̂n(`)F̂1 + Ẽ1√

mn

)
− σ2

k

(
Λ̂n(`)F̂1√

mn

)∣∣∣∣∣
≤σ1

(
Ẽ1√
mn

)[
2σk

(
Λ̂n(`)F̂1√

mn

)
+ σ1

(
Ẽ1√
mn

)]
= Op

(
1√
m

)
.

(A.42)

The proof follows from the right hand side of the inequality in (A.36), and the bounds

derived in displays (A.41) and (A.42).

Let X̂ ≡ [x̂js : 1 ≤ j ≤ n, s ≤ s ≤ s̄]. Define

µ̂nk(ω`) ≡ µk

(
X̂X̂

′

nm

)
. (A.43)

Lemma A.17. Under Assumptions 1-5,

|µ̂nk(ω`)− µ̃nk(ω`)| = Op(T
−1/2), for k = 1, . . . , q,

and

|µ̂nk(ω`)− µ̃nk(ω`)| = Op((mT )−
1/2), for k = q + 1, . . . ,m,

where µ̃nk(ω`) has been defined in (A.26).

Proof. By Lemma A.8,

|µ̂nk(ω`)− µ̃nk(ω`)| ≤ σ1

(
X̂− X̃√
mn

)[
2σk

(
X̃
)

+ σ1

(
X̂− X̃√
mn

)]
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We first note that, by Lemma A.6, Lemmas A.10 and A.12,

σ1

(
X̂√
mn
− X̃√

mn

)
= σ1

(
χ̂− Λ̂n(`)F̂√

mn
+

Ê− Ẽ√
mn

)

≤ σ1

(
χ̂− Λ̂n(`)F̂√

mn

)
+ σ1

(
Ê− Ẽ√
mn

)
= Op

(
1√
T

)
, (A.44)

For k ≤ q the result follows by noting that, Lemmas A.16 and A.11 entail that σk

(
X̃
)

=

Op(1). For k > q, by Lemma A.15 we conclude that σk

(
X̃
)

= Op(m
−1/2), completing the

proof.

A.5 Proof of Theorem 1

The matrix Σ̂n(ω`) in display (2.5) can be rewritten as

Σ̂n(ω`) =
1

2MT + 1

MT∑
j=−MT

x̂n,`+jx̂
′
n,`+j =

X̂(`)X̂
′
(`)

2MT + 1)

where X̂(`) = [x̂n,`+j : −MT ≤ j ≤ MT ]. In sections A.3 and A.4 we omitted the

dependence on the frequency ω` for notational convenience, setting X̃(`) = X̃. From

equation (A.43) it follows that µk(n
−1Σ̂n(ω`)) = µ̂k(ω`). Similarly, we wrote X̃ for

X̃(`) =
[
Λ̂n(`)̂f `+j + ên(`+j) : −MT ≤ j ≤MT

]

Finally we recall that we set m = (2MT + 1), omitting the dependence of m on T . From

equation (A.26) we have

µ̃nk(ω`) = µk

(
X̃(`)X̃(`)′

n(2MT + 1)

)
= µk

(
X̃X̃

′

nm

)
.
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In the following we write
∑

` for
∑¯̀

`=`, and set L ≡ ¯̀− ` + 1. Recall that the results

derived in section A.4 hold for any −π < ω` ≤ π as N, T diverge.

By Lemmas A.16,A.17, and A.11 and Assumption 5, µ̂nk(ω`) = µχnk(ω`) + op(1), for

k = 1, . . . , q. Hence,

DERT
n (k) =

∑
` µ

χ
k(ω`)∑

` µ
χ
k+1(ω`)

+ op(1) = Op(1) for k = 1, . . . , q − 1.

By Lemmas A.17 and A.15 mµ̂n,q+1(ω`) ≤ l̄ + op(1). It follows that

DERT
n (q) ≥ m

[
L−1

∑
` µq(ω`) + op(1)

l̄ + op(1)

]
p−→∞.

Lemma A.15 also entails that l+op(1) ≤ mµ̂nk(ω`) ≤ l̄+op(1), uniformly in q < k ≤ m−q.

Hence,

DERT
n (k) ≤ l̄ + op(1)

l + op(1)
, for k = q + 1, . . . , kmax.

These results show (2.11).

We now show the consistency of the DGR estimator. Lemmas A.12 and A.13 entail

that for k = q + 1, . . . , qmax

m−1(l + op(1)) ≤ L−1
∑
`

µ̂nk(ω`) ≤ m−1(l̄ + op(1))

Hence,

[
m− (q + 1)

m

]
(l + op(1)) ≤ L−1V T

n (q + 1) ≤
[
m− (q + 1)

m

] (
l̄ + op(1))

)
(A.45)

Using the inequalities

δ

1 + δ
< ln(1 + δ) < δ, for any δ ∈ (0,∞) (A.46)
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we have

DGRT
n (k) =

ln (1 + µ̂∗nk)

ln
(
1 + µ̂∗n,k+1

) < µ̂∗nk
µ̂∗n,k+1/(1 + µ̂∗n,k+1)

= DERT
n (k)

for k = 1, 2, . . . , q − 1, q + 1, . . . qmax. For k = q

DGRT
n (q) =

ln
(
1 + µ̂∗nq

)
ln
(
1 + µ̂∗n,q+1

) > µ̂∗n,q/(1 + µ̂∗n,q)

µ̂∗n,q+1

= DERT
n (q) · V

T
n (q + 1)

V T
n (q − 1)

p−→∞

because by display A.45

V T
n (q + 1)

V T
n (q − 1)

=
V T
n (q + 1)∑

` [µ̂nq(ω`) + µ̂n,q+1(ω`)] + V T
n (q + 1)

= 1 +Op(1).

We conclude the proof showing the consistency of the DDR estimator. For k ≤ q − 2,

by Lemma A.16 and Assumption 5

DDRT
n (k) =

L−1
∑

`

(
µχk(ω`)− µχk+1(ω`)

)
+ op(1)

L−1
∑

`

(
µχk+1(ω`)− µχk+2(ω`)

)
+ op(1)

= Op(1)

For k = q − 1, by Lemma A.16, Assumption 5 and Lemmas A.15 and A.17

DDRT
n (q − 1) =

L−1
∑

`

(
µχq−1(ω`)− µχq (ω`

)
+ op(1)

L−1
∑

` µ
χ
q (ω0,j) + op(1)

= Op(1)

For q < k ≤ qmax, by Lemmas A.15 and A.17

DDRT
n (k) =

L−1
∑

` (µ̃nk(ω`)− µ̃n,k+1(ω`) + op(1))

max (L−1
∑

` (µ̃n,k+1(ω`)− µ̃n,k+2(ω`)) , L−1
∑

` µ̃n,m(ω`)) + op(1)
= Op(1)
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Finally, by Lemma A.16, Assumption 5 and Lemmas A.15 and A.17

DDRT
n (q) =

L−1
∑

`

(
µχq (ω`)− µ̃n,q+1(ω`)

)
+ pp (1)

max (L−1
∑

` (µ̃n,q+1(ω`)− µ̃n,q+2(ω`)) , L−1
∑

` µ̃n,m(ω`)) +Op(T
1/2)

=
m
(
L−1

∑M
` µχq (ω`) + op(1)

)
Op(1)

p−→∞.

B Monte Carlo Simulations

To evaluate the performance of the criteria defined in Section 2, we run several Monte

Carlo experiments. In Section B.1 we use three different specifications of model (2.2) to

compare the performances of DDR, DER, and DGR with each other and with HL and O.

The conclusion is that DDR dominates DGR and DER, and it performs comparably to,

or even better than, HL and O.

As already observed, we can evaluate DDR (like DER and DGR) at a specific frequency

of interest or on a frequency band. Whereas Section B.1 looks at single frequencies, Section

B.2 considers a fourth specification, with frequency bands, where data-generating processes

(DGPs) exhibits the spectral density matrix of the common components with reduced rank

at specific frequencies. We show that DDR, when evaluated at these frequencies, can detect

the rank reduction with reasonable accuracy.

A further Monte Carlo experiment demonstrates the ability of our methodology to iden-

tify the number of structural shocks in DSGE models (see Section 6.1 in the manuscript).

B.1 Simulations: Analysis without Frequency Bands

B.1.1 Simulation Design

First experiment (HL). The first DGP follows Hallin and Liska (2007), Section 5. Pre-

cisely:



23

i. The common shocks fjt, j = 1, . . . , q, t = 1, . . . , T , q ≤ 3, are iid ∼ N (0, Dj), with

D1 = 1, D2 = .5 and D3 = 1.5.

ii. The idiosyncratic components are of form eit =
∑4

l=0

∑2
k=0 gi,l,k εi+l,t−k, where the

εit are iid ∼ N (0, 1), and the gi,l,k are iid ∼ U[1,1.5], with U[a,b] indicating a uni-

formly distributed random variable between a and b, where i = 1, . . . , n, t = 1, . . . , T ,

l = 1, . . . , 4, and k = 0, 1, 2. The εit and the gi,l,k are mutually independent and

independent of fjt. Hence, the idiosyncratic components are both autocorrelated and

locally cross-correlated.

iii. The filters λij(L), i = 1, . . . , n, j = 1, . . . , q, are randomly generated (independently

from the fjt and eit) according to one of the following time-series structures: (1) MA(2)

loadings: λij(L) = λij,0 +λij,1L+λij,2L
2 with iid and mutually independent coefficients

(λij,0, λij,1, λij,2) ∼ N (0, I3); (2) AR(2) loadings: λij(L) = mij,0(1 − mij,1L)−1(1 −

mij,2L)−1 with iid and mutually independent coefficients mij,0 ∼ N (0, 1),mij,1 ∼ U[.8,.9]

and mij,2 ∼ U[.5,.6].

Finally, for each i, the variance of each idiosyncratic component eit and that of the

corresponding common component χit =
∑q

j=1 λij(L)fjt are normalized to 0.5.

The artificial samples were generated with q = 2, 3 and (n, T )= (60, 100), (100, 100),

(70, 120), (120, 120), and (150, 120). Notice that in this experiment we have both large and

small factors (the variance of the second factor is one-half of that of the first factor and

one-third of the variance of the third factor).

Second experiment (O). The second DGP is the one Onatski (2009) studies, Sections

5.1 and 5.3. The basic difference for the previous DGP is that here the number of common

shocks is fixed to q = 2, whereas the variance of the idiosyncratic components takes different

values.

Precisely:
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i. The common shocks fjt, k = 1, . . . , q, t = 1, . . . , T , are iid ∼ N (0, 1).

ii. The idiosyncratic components follow AR(1) processes both cross-sectionally and over

time: eit = ρi ei,t−1 + vit, vit = ρvi−1,t + εit, where ρi is iid ∼ U[−.8,.8], ρ = .2 and εit is

iid ∼ N (0, 1).

iii. The filters λij(L), i = 1, . . . , n and j = 1, . . . , q, are randomly generated (inde-

pendently from fjt and eit) by one of the following devices: (1) MA(2) loadings:

λij(L) = mij,0(1 + mij,1L)(1 + mij,2L) with iid and mutually independent coefficients

mij,0 ∼ N (0, 1),mij,1 ∼ U[0,1] and mij,2 ∼ U[0,1]; (2) AR(2) loadings, same as in the

first experiment; λij(L) = mij,0(1 − mij,1L)−1(1 − mij,2L)−1 with iid and mutually

independent coefficients mij,0 ∼ N (0, 1),mij,1 ∼ U[.8,.9] and mij,2 ∼ U[.5,.6].

For each i, the idiosyncratic component eit and the common component χit =
∑q

j=1 λij(L)fjt

are normalized so that their variances equal σ2 and 1, respectively. Hence, the idiosyncratic-

to-common variance ratio is σ2 for all i. Following Onatski (2009), we set q = 2 and

(n, T, σ2) equal to (70, 70, 1), (70, 70, 2), (70, 70, 4), (100, 120, 1), (100, 120, 2), (100, 120, 6),

(150, 500, 1), (150, 500, 8), (150, 500, 16).

Third experiment. The main feature of this experiment is that, unlike the previous

ones, the idiosyncratic-common variance ratio differs across different cross-sectional units.

The loadings are ARMA(1, 2) filters, and the number of common shocks is larger than in

the previous experiments (q = 2, 4, 6). Precisely, the third GDP consists of the following:

i. The common shocks fjt, j = 1, . . . , q, t = 1, . . . , T , are iid ∼ N (0, 1).

ii. Same as in the second experiment, where the idiosyncratic components follow AR(1)

processes both cross-sectionally and over time, eit = ρi eit−1 + vit, vit = ρvi−1t + εit,

where ρi ∼ iidU[−.8,.8], ρ = 0.2 and εit ∼ iidN (0, 1).
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iii. The filters λij(L), i = 1, . . . , n and j = 1, . . . , q, are randomly generated (indepen-

dently from the fjt and eit) with ARMA(1,2) loadings: λij(L) = (mij,0 + mij,1L +

mij,2L
2)/aij,0(1 − aij,1L), where the coefficients are iid and mutually independent,

mij,s ∼ U[−1,1], s = 0, 1, 2, and aij,r ∼ U[−0.8,0.8], r = 0, 1.

In experiments one and two, all variables in the cross-section have the same common-

idiosyncratic variance ratio. This is not the case with real data. In this third experiment,

we want to control for the size of the idiosyncratic components without forcing the variables

to have the same ratio. To this end, for each artificial dataset we compute the average

sample variance of the common and the idiosyncratic components, say σ2
χ and σ2

e . Then

we multiply all common components by 1/σχ and all idiosyncratic components by s/σe,

with s taking on two values: (i) s = 0.5 (small idiosyncratic components) and (ii) s = 1

(large idiosyncratic components). Because variables do not have the same variance, we

standardize them before estimation.

We set q = 2, 4, 6 and (n, T )= (60, 80), (120, 80), (60, 240), (120, 240), (240, 480).

Variation of Third experiment. The DGP is the same for the third experiment. The

parameters q, n, and T are kept fixed, with values q = 3, n = 100, T = 100. The parameter

s, which governs the average idiosyncratic variance, varies between 0.3 and 1.2.

B.1.2 Calibrating the Criteria

To compute DER, DGR, and DDR, we use the periodogram smoothing estimator (2.5)

with the bandwidth parameter MT = [0.75
√
T ] and take the average of the eigenvalues

evaluated in the frequency grid ω` = 2π`/T , ` = 1, . . . , T − 1. As explained, in order to

avoid denominators very close to 0, we construct the denominator of DDR by taking, for

each k, the maximum between µ̂n,k+1 − µ̂n,k+2 and the smallest non-zero eigenvalue µ̂n,m.

In our simulation, such correction is active in about 5% of the ratios.
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We compare our criteria with HL and O. With regard to HL, we use the log information

criterion ICT
2;n with penalty p1(n, T ) and the Bartlett lag window with parameter MT =

[0.75
√
T ], which yield the best performance in the simulations the authors show. The

method requires evaluation of the loss function over a grid nj, Tj, j = 1, . . . , J . We stick

to the one the authors proposed (i.e., nj = n− 10j, Tj = T − 10j, j = 0, 1, 2, 3).

When dealing with O, we use the procedure described in Section 5.3 of Onatski (2009).

We found that the results are sensitive to the choice of the parameter m (Onatski, 2009,

footnote 7). For the second experiment, we stick to Onatski’s choice, which is very effective

(m = 30 for (n, T ) = (70, 70), m = 40 for (n, T ) = (100, 120), m = 65 for (n, T ) =

(150, 500)). For the first DGP, we use m = 15; for the third experiment, we use m =

15, 20, 30 for T = 80, 240, 480, respectively. These values produce better results than the

larger ones Onatski (2009) suggests.

For the three experiments and estimators, we set kmax = 8. For all experiments, we

generate 500 artificial datasets. We evaluate the results in terms of the percentage of times

we find the correct number of shocks.

B.1.3 Simulation Results

Table A reports results for the first experiment. Boldface numbers denote the estimator(s)

that perform best for each q, n, T configuration. Results for HL are very close to those in

Hallin and Lǐska (2007). With MA loadings and AR loadings, q = 2, HL and DDR perform

similarly and dominate the other estimators. With AR loadings, q = 3, DDR clearly

outperforms HL, with the exception of the cases (n, T ) = (120, 120) and (n, T ) = (150, 120),

in which results are similar. DDR uniformly outperforms DGR, which in turn does better

than DER and O. In this experiment the second factor is small as compared to the first and

the third ones. Hence, we conclude that DDR is reasonably able to detect small factors.

Table B reports results for the second experiment. Results for O are close to those in
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q n T HL O DER DGR DDR

MA loadings

2 60 100 99.6 47.6 80.8 92.4 98.4
100 100 99.6 71.2 87.8 96.6 99.2
70 120 97.8 53.2 87.2 96.2 99.6

120 120 99.4 78.4 96.6 99.4 100.0
150 120 99.6 83.0 97.4 99.4 100.0

3 60 100 62.0 15.8 27.2 52.6 77.0
100 100 91.2 24.6 29.6 52.0 87.8
70 120 89.8 18.8 32.8 62.2 90.8

120 120 99.0 25.8 43.0 70.4 97.0
150 120 99.8 29.6 48.0 74.2 97.4

AR loadings

2 60 100 96.8 81.2 84.4 92.8 98.8
100 100 99.4 93.0 90.4 94.6 99.4
70 120 99.8 88.8 89.2 95.8 99.4

120 120 100.0 96.8 94.4 97.4 100.0
150 120 100.0 96.8 96.4 98.0 100.0

3 60 100 31.2 33.4 41.2 54.6 67.6
100 100 62.4 54.4 49.0 66.0 87.0
70 120 69.4 49.8 49.6 63.2 81.0

120 120 90.8 67.6 57.8 70.0 91.6
150 120 94.6 74.4 63.2 75.8 93.6

Table A: First experiment described in Section B.1. Percentage of correct outcomes over
500 replications. HL: Hallin and Lǐska (2007) estimator, O: Onatski (2009) estimator, DER:
Dynamic Eigenvalue Ratio estimator, DGR: Dynamic Growth Ratio estimator; DDR: Dy-
namic Difference Ratio estimator. Boldface numbers denote the estimator that performs
best in each row.

Onatski (2009). With MA loadings, O is the best method for all n, T, σ2 configurations,

except for (n, T, σ2) = (70, 70, 2), which DDR beats. DDR is tied for first with O in five

cases, performs slightly better than O in the case above, and ranks second in the remaining

three cases. Again, DDR uniformly dominates DGR, which in turn dominates DER. With

AR loadings, DDR performs the best for all n, T, σ2 configurations. As Onatski (2009)

notes, HL works well for low values of σ2, but fails dramatically for noisy data, except
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n T σ2 HL O DER DGR DDR

MA loadings

70 70 1 100.0 100.0 99.6 99.8 100.0
70 70 2 94.6 99.8 89.2 94.0 100.0
70 70 4 1.6 89.0 49.4 58.2 77.6

100 120 1 100.0 100.0 100.0 100.0 100.0
100 120 2 100.0 100.0 99.6 100.0 100.0
100 120 6 3.0 98.8 54.0 62.2 81.4
150 500 1 100.0 100.0 100.0 100.0 100.0
150 500 8 100.0 100.0 99.2 99.8 100.0
150 500 16 40.2 97.4 45.6 47.0 88.8

AR loadings

70 70 1 99.0 98.8 90.8 96.0 99.4
70 70 2 85.6 89.4 78.4 87.8 98.4
70 70 4 14.4 64.6 61.0 69.4 84.8

100 120 1 100.0 99.0 99.6 100.0 100.0
100 120 2 100.0 99.4 95.8 98.2 100.0
100 120 6 44.8 77.6 75.4 82.0 91.4
150 500 1 100.0 98.4 100.0 100.0 100.0
150 500 8 100.0 97.8 99.6 100.0 100.0
150 500 16 99.6 91.6 91.4 93.0 99.8

Table B: Second experiment described in Section B.1 (q = 2). Percentage of correct out-
comes over 500 replications. HL: Hallin and Lǐska (2007) estimator, O: Onatski (2009)
estimator, DER: Dynamic Eigenvalue Ratio estimator, DGR: Dynamic Growth Ratio esti-
mator; DDR: Dynamic Difference Ratio estimator. Boldface numbers denote the estimator
that performs best in each row.

for the AR case with T = 500. Onatski (2009) argues that the grid of the calibration

procedure does not work with high values of σ2.

Table C reports results for the third experiment. In the upper panel (small idiosyn-

cratic components), DDR and DGR perform similarly and dominate all other estimators,

except for the configuration (q, n, T ) = (4, 120, 80), where HL performs slightly better. O

does not perform well for q = 4, 6, and small T . In the lower panel (large idiosyncratic

components), DDR dominates DGR, which in turn dominates DER. No criterion cor-
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q n T HL O DER DGR DDR

Small idiosyncratic components

2 60 120 99.2 98.8 100.0 100.0 100.0
120 80 88.6 90.8 100.0 100.0 99.8
60 240 99.6 100.0 100.0 100.0 100.0

120 240 35.6 100.0 100.0 100.0 100.0
240 480 0.6 100.0 100.0 100.0 100.0

4 60 120 97.6 64.8 88.8 97.0 98.6
120 80 89.2 36.2 67.2 86.6 88.8
60 240 100.0 94.6 100.0 100.0 100.0

120 240 91.6 99.2 100.0 100.0 100.0
240 480 73.4 100.0 100.0 100.0 100.0

6 60 120 8.6 23.8 17.8 56.4 57.0
120 80 0.8 16.4 5.0 26.6 21.8
60 240 96.8 54.0 96.4 99.2 99.8

120 240 98.6 87.0 100.0 100.0 100.0
240 480 91.6 99.8 100.0 100.0 100.0

Large idiosyncratic components

2 60 120 97.2 87.2 85.8 93.4 99.4
120 80 99.0 93.4 85.4 94.2 99.8
60 240 100.0 99.0 98.8 99.4 100.0

120 240 99.8 99.8 99.8 100.0 100.0
240 480 99.8 100.0 100.0 100.0 100.0

4 60 120 0.0 16.8 2.0 7.6 30.0
120 80 0.0 15.2 2.0 7.4 11.8
60 240 16.8 32.4 29.4 55.8 80.8

120 240 99.8 73.4 92.0 97.8 100.0
240 480 96.8 100.0 100.0 100.0 100.0

6 60 120 0.0 8.2 0.0 0.0 0.8
120 80 0.0 9.0 0.0 0.0 0.0
60 240 0.0 7.8 0.0 0.4 7.6

120 240 48.0 20.8 5.4 11.2 47.0
240 480 94.8 94.8 100.0 100.0 100.0

Table C: Third experiment described in Section B.1. Percentage of correct outcomes over
500 replications. HL: Hallin and Lǐska (2007) estimator, O: Onatski (2009) estimator, DER:
Dynamic Eigenvalue Ratio estimator, DGR: Dynamic Growth Ratio estimator; DDR: Dy-
namic Difference Ratio estimator. Boldface numbers denote the estimator that performs
best in each row.
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rectly captures the number of common shocks for the (q, n, T ) configurations (4, 60, 120),

(4, 120, 80), (6, 60, 120), (6, 120, 80), and (6, 60, 240). In the remaining rows, DDR works

best in all cases except the (6, 120, 240) configuration, for which HL performs slightly

better. Again, O works reasonably well for q = 2 but not for q = 4, 6.

Surprisingly, HL fails for large n, T configurations, particularly for q = 2, which should

be the simplest one. The fact that the performance deteriorates as n, T gets larger suggests

that the calibration procedure for the penalty function does not work in these cases. Para-

doxically, the procedure works much better when the idiosyncratic components are larger

(lower panel). Here, the problem is not that the data is noisy; on the contrary, it is not

noisy enough. To investigate this aspect we run the modification of the third experiment,

illustrated above.

Table D shows results for HL and DDR.27 The table reports not only the percentage

of correct outcomes but also the percentages of cases for which q̂ < q and q̂ > q. HL

performs very well for intermediate values of s but has problems for DGP’s with both

small and large idiosyncratic components. When s is very small, the number of common

shocks is overestimated, whereas when s is very large the number of common shocks is

underestimated. On the other hand, DDR does not lose accuracy for small idiosyncratic

components; when data becomes noisier, its performance deteriorates, but less so than HL.

More specifically, DDR and HL have similar performances in the interval 0.50 ≤ s ≤ 0.80;

for all other values of s, DDR outperforms HL, and for extreme values of s the difference

is very large. We conjecture that, by changing the grid nj, Tj, j = 1, . . . , J , over which to

evaluate the loss function, HL performs better. However, in practice we do not know in

advance how noisy the data is, so the choice of grid is a possible source of error.

Summing up, for experiments one to three, DDR dominates DGR and DER for almost

all DGPs. In Experiment 1, with AR loadings, Experiment 2, with AR loadings, and

27We do not include O, because our aim here is to verify whether HL fails for small values of s, as
suggested by Table C.
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HL DDR

s q̂ < q q̂ = q q̂ > q Total q̂ < q q̂ = q q̂ > q Total

0.30 0.0 12.2 87.8 100.0 0.0 99.8 0.2 100.0
0.35 0.0 41.4 58.6 100.0 0.0 99.6 0.4 100.0
0.40 0.0 69.4 30.6 100.0 0.0 99.8 0.2 100.0
0.45 0.0 88.8 11.2 100.0 0.2 99.4 0.4 100.0
0.50 0.0 98.4 1.6 100.0 0.0 99.8 0.2 100.0
0.55 0.0 99.8 0.2 100.0 0.2 99.6 0.2 100.0
0.60 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0
0.65 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0
0.70 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0
0.75 0.6 99.4 0.0 100.0 0.8 99.2 0.0 100.0
0.80 0.4 99.6 0.0 100.0 0.2 99.8 0.0 100.0
0.85 2.6 97.4 0.0 100.0 1.2 98.6 0.2 100.0
0.90 6.6 93.4 0.0 100.0 3.0 97.0 0.0 100.0
0.95 15.0 85.0 0.0 100.0 3.8 96.2 0.0 100.0
1.00 28.2 71.8 0.0 100.0 5.4 94.6 0.0 100.0
1.05 45.0 55.0 0.0 100.0 11.0 89.0 0.0 100.0
1.10 63.2 36.8 0.0 100.0 15.2 84.8 0.0 100.0
1.15 77.4 22.6 0.0 100.0 18.0 82.0 0.0 100.0
1.20 89.4 10.6 0.0 100.0 26.8 73.2 0.0 100.0

Table D: Variation of the third experiment described in Section B.1, with q = 3, n = 100,
T = 100 and s = 0.3 + 0.05i, i = 0, 1, . . . , 18. Percentage of underestimated outcomes,
correct outcomes, and overestimated outcomes over 500 replications. HL: Hallin and Lǐska
(2007) estimator, DDR: Dynamic Difference Ratio estimator. Boldface numbers denote
the percentage of correct outcomes.

Experiment 3, with large idiosyncratic components, DDR has the best performance for

almost all parameter configurations. For Experiment 2, with MA loading, O has the best

performance, but DDR ranks either first or second in all cases. In Table D, DDR generally

outperforms HL. For Experiment 1, with MA loadings, DDR and HL perform similarly and

dominate the other estimators. For Experiment 3, with small idiosyncratic components,

DDR and DGR perform similarly and dominate the other estimators. We conclude that

DDR is preferable to DGR and DER and has an excellent performance compared to the
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best existing estimators. DGR, however, performs remarkably well when the idiosyncratic

components are small, as is likely the case with most macroeconomic data sets.

B.2 Simulations: Analysis with Frequency Bands

B.2.1 Simulation Design

In this section, we run a fourth Monte Carlo experiment. We use two DGPs, which we call

the Trend-Cycle Model and the Stop-Band Model. In both models, the spectral density

matrix of the common components has reduced rank at a specific frequency. In the Trend-

Cycle Model, one of the common shocks is loaded by all variables with IRFs that vanish

for L = 1, so that the spectrum has rank q − 1 at frequency zero. Hence, assuming that

xt is the first difference of the integrated vector yt, this shock has transitory effects on

all variables in yt. In the Stop-Band Model, one of the common shocks is loaded by all

variables with filters whose frequency response vanishes at frequency π/6, which can be

interpreted as a cyclical frequency, in that it corresponds to a period of three years with

quarterly data.

Fourth experiment (reduced rank spectral density). The data are generated as

follows:

i. We have two common shocks fjt, j = 1, 2, t = 1, . . . , T , which are iid ∼ N (0, 1).

ii. The idiosyncratic components are mutually independent white noises: eit = giεit,

where εit ∼ iidN (0, 1) and the gi are iid ∼ U[−1,1].

iii. Trend-Cycle Model. For the first factor, the permanent shock, we have the AR(1)

loadings λi1(L) = ai1,0/(1 − ai1,1L), where the coefficients are iid, mutually indepen-

dent, ai1,0 ∼ U[−1,1], ai1,1 ∼ U[−0.8,0.8]. For the second factor, the transitory shock, we
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have the ARMA(1,1) loadings λi2(L) = ai2,0(1−L)/(1− ai2,1L), where the coefficients

are iid, mutually independent, ai2,0 ∼ U[−1,1], ai2,1 ∼ U[0,0.7].

iv. Stop-Band model. For the first factor we have the same AR(1) loadings as in the

Trend-cycle model: λi1(L) = ai1,0/(1− ai1,1L), ai1,0 ∼ U[−1,1], ai1,1 ∼ U[−0.8,0.8]. For the

second factor we use here a rough stop-band filter whose frequency response vanishes

at frequencies π/6 and −π/6. Precisely, we use the ARMA (2,1) loadings λi2(L) =

ai2,0(1− e−iπ/6L)(1− eiπ/6L)/(1− ai2,1L), where ai2,0 ∼ U[−0.5,0.5], ai2,1 ∼ U[0.8,0.9].

In the Trend-Cycle model, we have λi2(1) = 0 for all i, so that there is just one factor

affecting the variables at frequency 0. Hence q = 2 for ω 6= 0 and q = 1 for ω = 0.

To get an economic interpretation of the model, assume that the variables are growth

rates of some macroeconomic series related to real economic activity, such as GDP and its

components, employment variables, industrial production indexes, hours worked, and so

on. Then the first factor is a long-run, permanent shock, driving the common trends of the

series, expressed in log levels. For instance, it can be a technology shock or a generic supply

shock. On the other hand, the second factor has transitory effects and can be interpreted

as a demand shock driving a common cycle. Both shocks may affect variables at business

cycle frequencies.

In the Stop-Band model, we have λi2(eiπ/6) = λi2(e−iπ/6) = 0 for all i, so that there

is just one factor affecting the variables at frequency π/6, which corresponds to a period

of three years with quarterly data. As a result, we have q = 1 for ω = ±π/6. The

filters λi2(L), i = 1, . . . , n, can be regarded as rough stop-band filters toning down cyclical

frequencies.

As in the third experiment, for each artificial dataset we compute the average sample

variance of the common and the idiosyncratic components, say σ2
χ and σ2

e . Then we multiply

all common components by 1/σχ and all idiosyncratic components by s/σe, with s taking on
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two values: (i) s = 0.6 (small idiosyncratic components) and (ii) s = 1.2 (large idiosyncratic

components). Again, we standardize the variables before estimation. For this exercise, we

set n = 120 and T = 240. We evaluate DDR at the points ω = 0 and ω = π/6. Moreover,

we evaluate it in the long-run frequency band [0, 2π/80], corresponding to cycles of 20 years

or more with quarterly data; in the cyclical band [2π/32, 2π/6], corresponding to cycles

between 18 months and eight years; and in the short-run band [2π/8, π], corresponding to

cycles between six and 18 months. Finally, we evaluate DDR in the whole interval [0, π].

B.2.2 Simulation Results

Table E reports the percentage of outcomes q̂ = 1, q̂ = 2 and q̂ > 2, over 500 replications.

Boldface numbers denote the percentage of correct outcomes. On the long-run band 0 ≤

ω ≤ 2π/80 (which corresponds to periodicity greater than 20 years with quarterly data)

the true number of common shocks is two for both models, but, for the Trend-Cycle model,

the contribution of the transitory shock to total variance is negligible, so that we consider

correct the outcome q̂ = 1. On the cyclical band 2π/32 ≤ ω ≤ 2π/8 the true number of

common shocks is two for both models, but, for the Stop-Band model, the contribution

of the non-cyclical shock to total variance is very small, so that we consider correct the

outcome q̂ = 1.

In most cases, DDR can detect the correct number of common shocks. At a first sight,

the worst outcome from the Stop-Band model, small idiosyncratic components (upper-right

panel), for the cyclical band, where the result is q̂ = 2 in almost 40% of the cases. Indeed,

we have already observed that the true number of common shocks is in fact two. With

small idiosyncratic components, in several cases the criterion can detect the presence of a

second factor, even though its effect is very small.
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Trend-Cycle Model Stop-Band Model

Frequency band q̂ = 1 q̂ = 2 q̂ > 2 Total q̂ = 1 q̂ = 2 q̂ > 2 Total

Small idiosyncratic components

ω = 0 82.6 13.8 3.6 100.0 1.8 95.2 3.0 100.0
0 ≤ ω ≤ 2π/80 89.6 10.2 0.2 100.0 1.6 98.4 0.0 100.0
ω = 2π/12 0.0 100.0 0.0 100.0 99.8 0.2 0.0 100.0
2π/32 ≤ ω ≤ 2π/8 0.0 100.0 0.0 100.0 60.6 39.4 0.0 100.0
2π/8 ≤ ω ≤ π 0.0 99.4 0.6 100.0 0.0 96.4 3.6 100.0
0 ≤ ω ≤ π 0.0 99.8 0.2 100.0 0.0 98.0 2.0 100.0

Large idiosyncratic components

ω = 0 93.2 3.6 3.2 100.0 9.6 82.0 8.4 100.0
0 ≤ ω ≤ 2π/80 98.4 1.2 0.4 100.0 11.2 87.4 1.4 100.0
ω = 2π/12 3.8 96.2 0.0 100.0 100.0 0.0 0.0 100.0
2π/32 ≤ ω ≤ 2π/8 4.2 95.8 0.0 100.0 94.6 5.4 0.0 100.0
2π/8 ≤ ω ≤ π 0.0 99.8 0.2 100.0 0.6 98.4 1.0 100.0
0 ≤ ω ≤ π 0.0 99.8 0.2 100.0 1.4 98.2 0.4 100.0

Table E: DGP: Trend-cycle model (left panel) and Stop-band model (right panel) described in
Section B.2, with q = 2, n = 120, T = 240 and s = 0.6 (small idiosyncratic components), s = 1.2
(large idiosyncratic components). Percentage of outcomes q̂ = 1, q̂ = 2 and q̂ > 2, over 500
replications, obtained with the DDR estimator, evaluated at selected frequencies or frequency
bands. Boldface numbers denote the percentage of correct outcomes. In the Trend-cycle Model,
one of the two common shocks has zero effect in the long run for all variables so that the true
value of q at frequency 0 is 1. On the long-run band 0 ≤ ω ≤ 2π/80 (which corresponds to
periodicity greater than 20 years with quarterly data), the true number of factors is two, but
the contribution of the transitory shock to total variance is negligible so that we consider correct
the outcome q̂ = 1. In the Stop-band Model, one of the two common shocks has zero effect at
frequency π/6 for all variables so that the true value of q at this frequency is 1. On the cyclical
band 2π/32 ≤ ω ≤ 2π/8 (which corresponds to cycles between two and eight years with quarterly
data), the true number of factors is two, but the contribution of the transitory shock to total
variance is very small, so we consider correct the outcome q̂ = 1.

B.3 The DGPs of the DSGE Models

For both models, we used the same DGPs that ACD use.28

28The codes were kindly provided by Fabrice Collard.
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B.3.1 JPT Model

Let φφφt, be the vector whose entries are the theoretical variables in JPT. The DGP for these

variables is given by

φφφmt = MMMssst (B.1)

ssst = PPPssst−1 + JJJSSSfff t, (B.2)

where φφφt is (11×1), MMM is (11×22), ssst is (22×1), PPP is (22×22), ssst is (22×1), JJJ is (22×7),

SSS is (7× 7) and fff t is (7× 1). Setting PPP = (PPP 1 PPP 2), the matrices are

MMM ′ =



0.0031 0.0635 −0.1940 −0.1946 0.1977 0.0138 −0.1839 −0.0108 −0.0308 1.0414 0.0265

0.5672 0.7445 −0.1453 0.5522 0.0150 0.0126 −0.0024 0.1500 0.0179 85.9791 0.0937

0.1588 −0.0066 0.8010 0.1546 0.0042 0.0052 0.0010 0.0417 0.0041 37.5009 0.0262

0.1693 0.0831 0.5005 0.1647 0.0046 0.0231 0.0185 −0.1861 0.0295 75.9155 0.0275

−0.5785 −0.2839 −1.7099 −0.5628 −0.0157 −0.0791 −0.0633 0.6360 −0.1007 −23.7064 −0.0941

−0.0671 −0.0308 −0.2031 −0.0646 −0.0024 −0.1123 −0.1099 0.0622 0.2103 −116.0562 −0.0087

−0.0562 −0.0402 −0.1443 −0.0597 0.0035 0.8220 0.8185 0.0207 0.0928 −53.4098 −0.0272

0.0268 0.0131 0.0793 0.0261 0.0007 0.0040 0.0033 −0.0093 0.0053 0.7339 0.0043

0.0024 0.0012 0.0073 0.0024 0.0001 −0.0016 −0.0016 −0.0986 −0.0041 −6.6639 0.0004

0.0041 0.0020 0.0120 0.0040 0.0001 0.0002 0.0001 −0.0259 −0.0002 28.1988 0.0007

−0.1693 −0.0831 −0.5005 −0.1647 −0.0046 −0.0231 −0.0185 0.1861 −0.0295 0.6844 −0.0275

−0.0062 −0.0044 −0.0159 −0.0066 0.0004 0.0904 0.0900 0.0023 0.0102 0.0938 −0.0030

−0.6313 −0.7195 −0.2780 −0.4120 −0.2193 −0.8388 −0.6196 −0.0634 −0.0916 −0.0424 −0.1125

7.7656 12.5038 −11.0450 7.5562 0.2093 0.7277 0.5184 2.4356 0.7781 1.9143 1.2704

0.1057 −0.0124 0.5639 0.1028 0.0028 0.0091 0.0063 0.0148 0.0079 0.0091 0.0173

0.7968 −0.2212 −0.1591 0.7757 0.0211 0.0065 −0.0146 0.0554 0.0224 0.0332 0.1318

−3.2446 −0.8070 −12.5055 −3.1277 −0.1169 −5.1797 −5.0628 0.7111 4.0689 −5.0282 −0.4245

−4.8425 −6.9363 3.2748 −4.7569 −0.0856 6.9860 7.0716 1.4505 7.1071 −11.3526 −0.9544

−0.8266 −0.4055 −2.4437 −0.8041 −0.0225 −0.1146 −0.0920 0.7358 −0.1472 0.7564 −0.1344

2.4002 0.5494 9.4519 2.3164 0.0838 3.3851 3.3013 −0.3291 −2.4865 −0.3291 0.3237

4.4375 6.4319 −3.3428 4.3507 0.0868 −5.0126 −5.0994 −1.3220 −6.4936 −1.3220 0.8443

1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000



,
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PPP 1 =



0.9646 −0.0043 0.0238 0.0148 −0.0507 −0.0060 −0.0043 0.0024 0.0002 0.0004 −0.0148

0.0635 0.7445 −0.0066 0.0831 −0.2839 −0.0308 −0.0402 0.0131 0.0012 0.0020 −0.0831

−0.1940 −0.1453 0.8010 0.5005 −1.7099 −0.2031 −0.1443 0.0793 0.0073 0.0120 −0.5005

0.0031 0.5672 0.1588 0.1693 −0.5785 −0.0671 −0.0562 0.0268 0.0024 0.0041 −0.1693

−0.0108 0.1500 0.0417 −0.1861 0.6360 0.0622 0.0207 −0.0093 −0.0986 −0.0259 0.1861

−0.0308 0.0179 0.0041 0.0295 −0.1007 0.2103 0.0928 0.0053 −0.0041 −0.0002 −0.0295

0.0138 0.0126 0.0052 0.0231 −0.0791 −0.1123 0.8220 0.0040 −0.0016 0.0002 −0.0231

−0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9705 −0.0201 0.0192 0.0000

−0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0961 0.6560 −0.0323 0.0000

−0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0073 −0.6780 0.6469 0.0000

0.0000 0.0000 0.0000 0.0000 −0.0000 −0.0000 0.0000 0.0715 0.3866 0.1065 −0.0000

−0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



,

PPP 2 =



0.9646 −0.0043 0.0238 0.0148 −0.0507 −0.0060 −0.0043 0.0024 0.0002 0.0004 −0.0148

0.0635 0.7445 −0.0066 0.0831 −0.2839 −0.0308 −0.0402 0.0131 0.0012 0.0020 −0.0831

−0.1940 −0.1453 0.8010 0.5005 −1.7099 −0.2031 −0.1443 0.0793 0.0073 0.0120 −0.5005

0.0031 0.5672 0.1588 0.1693 −0.5785 −0.0671 −0.0562 0.0268 0.0024 0.0041 −0.1693

−0.0108 0.1500 0.0417 −0.1861 0.6360 0.0622 0.0207 −0.0093 −0.0986 −0.0259 0.1861

−0.0308 0.0179 0.0041 0.0295 −0.1007 0.2103 0.0928 0.0053 −0.0041 −0.0002 −0.0295

0.0138 0.0126 0.0052 0.0231 −0.0791 −0.1123 0.8220 0.0040 −0.0016 0.0002 −0.0231

−0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9705 −0.0201 0.0192 0.0000

−0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0961 0.6560 −0.0323 0.0000

−0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0073 −0.6780 0.6469 0.0000

0.0000 0.0000 0.0000 0.0000 −0.0000 −0.0000 0.0000 0.0715 0.3866 0.1065 −0.0000

−0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



,
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JJJ =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0



,

SSS is the diagonal matrix having on the diagonal the square roots of 0.88, 0.04, 6.03, 0.35,

0.14, 0.2, and 0.22, in that order. The entries of fff t are iid ∼ N (0, 1) so that SSSfff t is a

vector of serially and mutually independent Gaussian shocks with ordered variances 0.88,

0.04, 6.03, 0.35, 0.14, 0.2, and 0.22.

Having φφφt, we take the first difference of the I(1) variables in φφφt to get the vector of

stationary variables χχχn1t and construct a large data set as explained in the main text.

In our Monte Carlo experiment we have also a configuration of the model with q = 4

shocks. This is realized by setting to zero the last three diagonal entries of S, so that the

last three shocks of SSSfff t are identically zero.
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B.3.2 ACD* Model

Let φφφt be the vector whose entries are the theoretical variables in ACD*. The DGP for

these common components is given by

φφφt = MMMssst (B.3)

ssst = PPPssst−1 + JJJSSSfff t, (B.4)

where where φφφt is (10× 1), MMM is (10× 11), ssst is (11× 1), PPP is (11× 11), ssst is (11× 1), JJJ

is (11× 8), SSS is (8× 8) and fff t is (8× 1). The matrices are

MMM =



0.0134 0.4573 0.1389 0.5280 0.0535 0.2577 0.0147 0.0564 −0.0642 0.1734 0.2772

0.0527 0.8063 −0.0164 0.2128 −0.0063 0.2447 −0.0191 −0.0067 0.0076 −0.0205 0.2063

−0.1026 −0.2052 0.8027 0.6831 0.3089 0.5783 0.5221 0.3259 −0.3709 −0.0753 0.8107

−0.3344 0.6185 0.1879 −0.6383 0.0723 −1.0039 0.0198 0.0763 −0.0868 0.2346 0.3749

0.3477 −0.1612 −0.0490 1.1663 −0.0188 1.2616 −0.0052 −0.0199 0.0226 −0.0611 −0.0977

−0.1228 0.0569 0.0173 1.0657 0.0067 1.0321 −0.1226 0.0070 −0.0080 0.0216 0.0345

0.0904 0.1244 0.1571 −0.5029 −0.7180 −0.0607 0.3785 −0.0524 0.1052 0.0400 −0.2987

0.0000 0.0000 0.0000 1.3524 −0.0000 −0.0000 −0.3524 −0.0000 −0.0000 1.0000 −0.0000

−0.4711 0.2183 0.0663 0.2521 0.0255 0.1230 −0.4704 0.0269 −0.0306 0.0828 0.1324

0.0134 0.4573 0.1389 0.5280 0.0535 0.2577 0.0147 0.0564 −0.0642 0.1734 0.2772


,

PPP =



0.9724 −0.0051 0.0201 0.0171 0.0077 0.0145 −0.0119 0.0331 −0.0093 −0.0019 0.0203

0.0527 0.8063 −0.0164 0.2128 −0.0063 0.2447 −0.0191 −0.0067 0.0076 −0.0205 0.2063

−0.1026 −0.2052 0.8027 0.6831 0.3089 0.5783 −0.4779 0.3259 −0.3709 −0.0753 0.8107

0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.3088 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.3917 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3643 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4792 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7875 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6204


,
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JJJ =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



,

and SSS is the diagonal matrix having on the diagonal the square roots of 0.3959, 0.3764,

0.3385, 0.8457, 5.9607, 0.6579, 1.6752, and 1.7975, in that order. The eight entries of fff t

are iid ∼ N (0, 1) so that SSSfff t is a vector of serially and mutually independent Gaussian

shocks with ordered variances 0.3959, 0.3764, 0.3385, 0.8457, 5.9607, 0.6579, 1.6752, and

1.7975.

Having φφφt, we take the first difference of the I(1) variables in φφφt to get the vector of

stationary variables χχχn1t and construct a large data set as explained in the main text.

In our Monte Carlo experiment we have also a configuration of the model with q = 4

shocks. This is realized by setting to zero the last four diagonal entries of S, so that the

last four shocks of SSSfff t are identically zero.
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C Empirics

C.1 Empirical Variables and Transformations

The data are from FRED-QD. We retain the 216 series starting in 1960Q1. We report here

the ID number and the mnemonic. For the description of each variable, see McCracken

and Ng (2020). Transformation codes: 1 = no transformation; 2 = first difference; 5 = log

difference; 7 = first difference of the of percentage variation.
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ID FRED-QD Transf. FRED-QD ID FRED-QD Transf. FRED-QD
number ID number code Mnemonic number ID number code Mnemonic

1 1 5 GDPC1 52 54 5 CES9091000001
2 2 5 PCECC96 53 55 5 CES9092000001
3 3 5 PCDGx 54 56 5 CES9093000001
4 4 5 PCESVx 55 57 5 CE16OV
5 5 5 PCNDx 56 58 2 CIVPART
6 6 5 GPDIC1 57 59 2 UNRATE
7 7 5 FPIx 58 60 2 UNRATESTx
8 8 5 Y033RC1Q027SBEAx 59 61 2 UNRATELTx
9 9 5 PNFIx 60 62 2 LNS14000012
10 10 5 PRFIx 61 63 2 LNS14000025
11 11 1 A014RE1Q156NBEA 62 64 2 LNS14000026
12 12 5 GCEC1 63 65 5 UEMPLT5
13 13 1 A823RL1Q225SBEA 64 66 5 UEMP5TO14
14 14 5 FGRECPTx 65 67 5 UEMP15T26
15 15 5 SLCEx 66 68 5 UEMP27OV
16 16 5 EXPGSC1 67 73 5 LNS12032194
17 17 5 IMPGSC1 68 74 5 HOABS
18 18 5 DPIC96 69 76 5 HOANBS
19 19 5 OUTNFB 70 77 1 AWHMAN
20 20 5 OUTBS 71 79 1 AWOTMAN
21 22 5 INDPRO 72 80 1 HWIx
22 23 5 IPFINAL 73 81 5 HOUST
23 24 5 IPCONGD 74 82 5 HOUST5F
24 25 5 IPMAT 75 83 5 PERMIT
25 26 5 IPDMAT 76 84 5 HOUSTMW
26 27 5 IPNMAT 77 85 5 HOUSTNE
27 28 5 IPDCONGD 78 86 5 HOUSTS
28 29 5 IPB51110SQ 79 87 5 HOUSTW
29 30 5 IPNCONGD 80 88 5 CMRMTSPLx
30 31 5 IPBUSEQ 81 89 5 RSAFSx
31 32 5 IPB51220SQ 82 90 5 AMDMNOx
32 34 1 CUMFNS 83 92 5 AMDMUOx
33 35 5 PAYEMS 84 95 5 PCECTPI
34 36 5 USPRIV 85 96 5 PCEPILFE
35 37 5 MANEMP 86 97 5 GDPCTPI
36 38 5 SRVPRD 87 98 5 GPDICTPI
37 39 5 USGOOD 88 99 5 IPDBS
38 40 5 DMANEMP 89 100 5 DGDSRG3Q086SBEA
39 41 5 NDMANEMP 90 101 5 DDURRG3Q086SBEA
40 42 5 USCONS 91 102 5 DSERRG3Q086SBEA
41 43 5 USEHS 92 103 5 DNDGRG3Q086SBEA
42 44 5 USFIRE 93 104 5 DHCERG3Q086SBEA
43 45 5 USINFO 94 105 5 DMOTRG3Q086SBEA
44 46 5 USPBS 95 106 5 DFDHRG3Q086SBEA
45 47 5 USLAH 96 107 5 DREQRG3Q086SBEA
46 48 5 USSERV 97 108 5 DODGRG3Q086SBEA
47 49 5 USMINE 98 109 5 DFXARG3Q086SBEA
48 50 5 USTPU 99 110 5 DCLORG3Q086SBEA
49 51 5 USGOVT 100 111 5 DGOERG3Q086SBEA
50 52 5 USTRADE 101 112 5 DONGRG3Q086SBEA
51 53 5 USWTRADE 102 113 5 DHUTRG3Q086SBEA
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ID FRED-QD Transf. FRED-QD ID FRED-QD Transf. FRED-QD
number ID number code Mnemonic number ID number code Mnemonic

103 114 5 DHLCRG3Q086SBEA 160 187 5 EXCAUSx
104 115 5 DTRSRG3Q086SBEA 161 188 1 UMCSENTx
105 116 5 DRCARG3Q086SBEA 162 190 2 B020RE1Q156NBEA
106 117 5 DFSARG3Q086SBEA 163 191 2 B021RE1Q156NBEA
107 118 5 DIFSRG3Q086SBEA 164 194 5 IPMANSICS
108 119 5 DOTSRG3Q086SBEA 165 195 5 IPB51222S
109 120 5 CPIAUCSL 166 196 5 IPFUELS
110 121 5 CPILFESL 167 197 1 UEMPMEAN
111 122 5 WPSFD49207 168 198 1 CES0600000007
112 123 5 PPIACO 169 199 5 TOTRESNS
113 124 5 WPSFD49502 170 200 7 NONBORRES
114 125 5 WPSFD4111 171 201 1 GS5
115 126 5 PPIIDC 172 202 1 TB3SMFFM
116 127 5 WPSID61 173 203 1 T5YFFM
117 129 5 WPU0561 174 204 1 AAAFFM
118 130 5 OILPRICEx 175 205 5 WPSID62
119 132 5 CES2000000008x 176 206 5 PPICMM
120 133 5 CES3000000008x 177 207 5 CPIAPPSL
121 135 5 COMPRNFB 178 208 5 CPITRNSL
122 136 5 RCPHBS 179 209 5 CPIMEDSL
123 138 5 OPHNFB 180 210 5 CUSR0000SAC
124 139 5 OPHPBS 181 211 5 CUSR0000SAD
125 140 5 ULCBS 182 212 5 CUSR0000SAS
126 142 5 ULCNFB 183 213 5 CPIULFSL
127 143 5 UNLPNBS 184 214 5 CUSR0000SA0L2
128 144 1 FEDFUNDS 185 215 5 CUSR0000SA0L5
129 145 1 TB3MS 186 216 5 CES0600000008
130 146 1 TB6MS 187 217 5 DTCOLNVHFNM
131 147 1 GS1 188 218 5 DTCTHFNM
132 148 1 GS10 189 219 5 INVEST
133 150 1 AAA 190 220 1 HWIURATIOx
134 151 1 BAA 191 221 5 CLAIMSx
135 152 1 BAA10YM 192 222 5 BUSINVx
136 154 1 TB6M3Mx 193 223 1 ISRATIOx
137 155 1 GS1TB3Mx 194 224 1 CONSPIx
138 156 1 GS10TB3Mx 195 225 1 CP3M
139 157 1 CPF3MTB3Mx 196 226 1 COMPAPFF
140 158 5 BOGMBASEREALx 197 227 5 PERMITNE
141 160 5 M1REAL 198 228 5 PERMITMW
142 161 5 M2REAL 199 229 5 PERMITS
143 162 5 MZMREAL 200 230 5 PERMITW
144 163 5 BUSLOANSx 201 231 5 NIKKEI225
145 164 5 CONSUMERx 202 234 5 TLBSNNCBx
146 165 5 NONREVSLx 203 235 1 TLBSNNCBBDIx
147 166 5 REALLNx 204 236 5 TTAABSNNCBx
148 168 5 TOTALSLx 205 237 5 TNWMVBSNNCBx
149 170 5 TABSHNOx 206 238 2 TNWMVBSNNCBBDIx
150 171 5 TLBSHNOx 207 239 5 TLBSNNBx
151 172 5 LIABPIx 208 240 1 TLBSNNBBDIx
152 173 5 TNWBSHNOx 209 241 5 TABSNNBx
153 174 1 NWPIx 210 242 5 TNWBSNNBx
154 175 5 TARESAx 211 243 2 TNWBSNNBBDIx
155 176 5 HNOREMQ027Sx 212 244 5 CNCFx
156 177 5 TFAABSHNOx 213 245 5 S&P 500
157 184 5 EXSZUSx 214 246 5 S&P: indust
158 185 5 EXJPUSx 215 247 1 S&P div yield
159 186 5 EXUSUKx 216 248 5 S&P PE ratio
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C.2 Calibrating the Window Size

To better calibrate the window size of kDDR, kDER, and kDGR for the macroeconomic

dataset used in the empirical application, we run a further simulation exercise. We set

n = 216 (the number of series in the dataset) and use three values for T , namely T = 240

(the time dimension of the whole sample), T = 120, and T = 160 (the sizes of the sub-

samples used in the application). For the bandwidth parameter MT , we use MT = [a
√
T ],

with a = 0.5, 0.75, 1, 1.25. The DGP is the one used in the third experiment, Subsection

B.1, in the version with large idiosyncratic components.

Table F reports the percentage of correct outcomes over 500 replications. Let us con-

sider first the case T = 240, reported in the right part of the table. With q = 1, 2, 3, all

bandwidths perform well. With q = 4, the bandwidth MT = [0.5
√
T ] performs poorly,

particularly for DDR. The other bandwidths perform well for all estimators. Hence for

T = 240 we stick to the bandwidth used in the simulations (i.e., MT = [0.75
√
T ]). Coming

to the sample size T = 120 reported in the left part of the table, when q = 1, a = 1.25

performs poorly for DDR. With q = 2, all values of a perform well. With q = 3, a = 0.5

have a bad performance for all estimators. For q = 4, both a = 0.5 and a = 0.75 perform

poorly. The results for T = 160 are qualitatively similar. Hence for the subsamples with

T = 120 and T = 160 we choose a = 1, corresponding to MT = [
√
T ].
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T = 120 T = 160 T = 240

q a DER DGR DDR DER DGR DDR DER DGR DDR

1 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.25 100.0 100.0 48.6 100.0 100.0 91.8 100.0 100.0 100.0

2 0.50 96.0 99.6 99.8 100.0 100.0 100.0 100.0 100.0 100.0
0.75 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.00 99.6 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.25 99.4 99.8 99.8 100.0 100.0 100.0 100.0 100.0 100.0

3 0.50 48.2 73.0 37.2 88.2 96.8 89.6 99.8 100.0 100.0
0.75 87.2 96.8 98.8 98.2 99.6 100.0 100.0 100.0 100.0
1.00 93.8 98.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0
1.25 91.4 96.0 98.4 99.0 99.6 100.0 100.0 100.0 100.0

4 0.50 1.2 11.6 0.0 19.8 49.8 0.8 86.8 95.6 81.0
0.75 40.0 65.4 49.2 81.4 94.4 91.2 100.0 100.0 100.0
1.00 63.6 83.0 95.6 94.4 98.0 99.6 99.8 100.0 100.0
1.25 64.6 81.2 93.4 94.6 98.2 99.8 100.0 100.0 100.0

Table F: Calibration of the bandwidth parameter for the empirical application. The DGP is
the model of the third experiment described in Section B, large idiosyncratic components,
with q = 1, 2, 3, 4, n = 216, T = 120, 160, 240. The bandwidth parameter is MT = [a

√
T ]

with a = 0.5, 0.75, 1, 1.25. The table reports the percentage of correct outcomes over 500
replications. DER: Dinamic Eigenvalue Ratio estimator, DGR: Dynamic Growth Ratio
estimator; DDR: Dynamic Difference Ratio estimator.


