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1. Introduction

In August 2012, France introduced a 0.2% financial transaction tax (FTT) on the pur-

chase of shares of companies with a market capitalization above e1 billion. A similar tax

was introduced in Italy in March 2013, and in Spain in 2021. A proposal by the European

Commission for the introduction of a 0.1% ad valorem FTT for the entire European Union

has triggered lengthy debates among member states; as of 2021, a decision by the European

parliament has yet to be made. Proposals to introduce the tax have also been advanced in

many other countries, including the United States, especially after the 2008 financial crisis.1

The debate on the merits of FTTs dates back to Keynes’s General Theory, which proposed

the use of these taxes to reduce stock market volatility and speculation. Tobin (1978) followed

up on Keynes’s tax proposal and suggested a 1% tax on all foreign exchange transactions

(the so-called “Tobin tax”) to reduce capital flow and exchange rate volatility. Later, Stiglitz

(1989) and Summers and Summers (1989) advocated the use of FTTs to avoid the build-up

of asset bubbles and reduce market volatility. The economic argument underlying these

proposals is that financial markets suffer from too much “noise trading” activity not based

on fundamentals with adverse consequences for price volatility and informational efficiency.

An FTT would mainly affect such traders with short investment horizons, leaving long-term

investors unaffected. As a result, the effect of the tax would be socially beneficial. The

opposite view is that an FTT, by introducing a friction into the trading process, slows down

1 Transaction taxes are not a recent policy innovation. The United Kingdom’s Stamp Duty, implemented
in 1694 to finance the war against France, is the first financial transaction tax ever imposed; although
reformed several times, it is still in force. Sweden imposed an FTT from 1984 until 1990. The United
States levied a transaction tax from 1914 to 1966. In the US, there is a tiny fee of $21.80 per million
dollars of securities transactions supports the operation costs of the Securities and Exchange Com-
mission (“Section 31 fee”). Moreover, exchanges and brokers sometimes require the payment of trad-
ing fees, which are similar to an FTT from an economic point of view; however, they are typically per
share, rather than ad valorem and their proceeds are not collected by the government. Importantly,
when they are imposed, these fees are levied at rates that are negligible compared to those of an FTT.
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price discovery, thereby lowering liquidity and increasing price volatility. This view has been

advocated by, for instance, Edwards (1993) and Schwert and Seguin (1993), who observe

that informed traders stabilize markets by offsetting the effects of noise traders. Similarly,

Kupiec (1996) shows that an FTT increases price volatility and lowers market liquidity.

A recent theoretical literature has studied the mechanisms through which an FTT impacts

different classes of market participants and generally found that the overall effect of the

tax on market outcomes is theoretically indeterminate. Dávila and Parlatore (2021) show

that, in a CARA-Normal set up, the impact of the tax on price informativeness depends

on the relative elasticity of informed traders and noise traders (hedgers).2 Sørensen (2017)

studies the impact of an FTT on market composition and welfare in a one-period version

of the Glosten and Milgrom (1985) model. In Sørensen (2017) noise traders trade because

they value the asset differently from the market maker (and the informed traders); these

differences in asset valuations arise from liquidity or hedging reasons. The impact of an

FTT on welfare is theoretically ambiguous, since it can lower the cost of trading for noise

traders (if it crowds out informed traders and reduces the bid-ask spread) or increase it (if

the total cost of trading due to the spread and the tax is higher than without a tax). The

net result depends on the relative price elasticity of noise and informed traders.3

2 Dupont and Lee (2007) show that, in a static model of a competitive specialist market, an FTT de-
creases (increases) market depth and liquidity when informational asymmetry is high (low). Subrah-
manyam (1998) shows that, in a strategic model, an FTT increases market liquidity with a monopolist-
informed trader but decreases with multiple informed traders. Song and Zhang (2005) propose a model
of noise trading in which the FTT has a compositional effect on trading activity: a tax discourages
noise trading and fundamental trading to a different extent depending on market conditions; in an econ-
omy with low (high) volatility and low (high) noise traders’ participation, an increase in the FTT re-
duces (increases) volatility. Other papers study the effect of the FTT on different types of traders using
agent-based model, see, e.g., Mannaro et al. (2008) and Pellizzari and Westerhoff (2009).

3 Glosten and Putniņš (2019) also study welfare in a Glosten and Milgrom (1985) model, but they do not
study the effect of a tax. They illustrate how the welfare loss due to informed trading (and a positive
spread) depends on how market characteristics, such as the quality of private information, affect market
composition. The welfare implication of an FTT is also studied by Citanna et al. (2006), in a general
equilibrium model with incomplete markets.
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Unfortunately, the existing empirical studies, mainly event studies or difference-in-differences

analyses, only partially resolve the theoretical ambiguity highlighted by the theoretical liter-

ature (see, e.g., the discussion in Habermeier and Kirilenko (2003)). There is strong evidence

on the negative impact of the FTT on trading volumes. The best known case is the Swedish

transaction tax of 1986, which led to a migration of 60% of trading volume in the eleven

most traded Swedish shares from Stockholm to London (see Umlauf (1993)); Colliard and

Hoffmann (2017) find a similar impact on volume for the imposition of an FTT in France.

The results on other market outcomes, for instance, price volatility, however, are more am-

biguous: while some empirical studies find that an FTT reduces price volatility (Umlauf

(1993); Jones and Seguin (1997)), others find either a non significant or a negative effect

(e.g., Colliard and Hoffmann (2017) and Deng et al. (2018)).4

In this paper, we offer a different empirical strategy to understand the impact of an FTT.

We develop a market-microstructure model of trading in financial markets à la Glosten and

Milgrom (1985), featuring both informed and noise traders that is amenable to structural

estimation. Informed traders trade as they possess private information whereas noise traders

trade because they have a private valuation of the asset. Both types of traders have price-

elastic demands. As a result, the introduction of an FTT affects their behavior; its impact on

informational efficiency, liquidity, volatility, and welfare depends on the model’s parameter

values.

We resolve this indeterminacy by estimating the model using transaction data on a sam-

ple of 60 stocks traded on the New York Stock Exchange (NYSE) in 2017, a period in which

no FTT was levied. To study how the introduction of an FTT impacts different market seg-

ments, we divide the market into quartiles by market capitalization, and randomly sample 15

4 The impact of an FTT on volatility and market efficiency has also been studied in the laboratory (e.g.,
Noussair et al. (1998), and Cipriani and Guarino (2008b)).
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stocks from each quartile. Among other parameters, we estimate the proportion of informed

traders in the market, and the price sensitivity of both informed and noise traders. We

simulate the model without an FTT and with different tax rates; this allows us to compare

trading volume, bid-ask spread, price volatility, informational efficiency, and welfare under

different tax regimes.

The structural estimation approach has several advantages. It enables us to measure

the effects of the introduction of an FTT through counterfactual policy experiments. We

estimate the impact of the FTT on trading volume, volatility, bid ask-spread, and market

composition (i.e., we address the debate on whether the tax affects noise traders’ activity

more than informed traders’). Moreover, we gauge the impact of a tax beyond observable

market data, such as the price levels or intraday price volatility. In particular, we can recover

market participants’ beliefs and preferences from the structural parameter estimates; we use

these estimates also to construct direct measures of informational efficiency and welfare, with

and without an FTT, something that could not be achieved without a structural estimation.

In previous structural estimations of market microstructure models — e.g., Easley et al.

(1996, 1997) and the following voluminous literature on the PIN (probability of informed

trading) — noise traders trade for exogenous reasons (e.g., liquidity shocks) independently of

the price. Moreover, informed traders receive a perfectly informative signal, so that they buy

or sell independently of the price level. Since traders’ behavior does not depend on the price,

these models are not suitable to study an FTT. Recently, Cipriani and Guarino (2014) have

studied herd behavior through a structural estimation of a market microstructure model in

which informed traders (but not noise traders) are price elastic as they receive a signal of

finite precision.5 Here, we build on Cipriani and Guarino (2014) and introduce price-elastic

5 For theoretical studies of herd behavior in financial markets, see Gervais (1997), Avery and Zemsky
(1998), and Cipriani and Guarino (2008a).
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noise traders, who receive a shock to their asset valuation, using the approach developed by

Glosten and Putniņš (2019) to study welfare in a Glosten and Milgrom (1985) model; such a

shock may be interpreted as the result of hedging motives. The presence of both price-elastic

informed traders and price-elastic noise traders allows us to measure the compositional effect

of the tax.

In our theoretical model, an FTT can completely shut down informed traders’ activity

or even overall trading activity; given our parameter estimates, such drastic effects rarely

occur at the tax rates at which an FTT is usually levied. Across all stocks and within each

quartile, however, the tax has a strong negative impact on trading volume, a result consistent

with that found in the existing empirical literature.

Furthermore, the price sensitivity of informed traders (due to the precision of their signal)

is generally lower than that of noise traders (due to their private values). Because of this,

an FTT increases the fraction of trading activity by informed traders, widens the bid-ask

spread, and increases price volatility. An important focus of our analysis is informational

efficiency, measured as the distance of the price from the fundamental value during the day;

for almost all stocks, the tax improves informational efficiency. Finally, by increasing the

spread and lowering noise traders’ market participation, an FTT reduces welfare.

For few stocks, mainly in the first market capitalization quartile, we estimate the precision

of informed traders’ signal to be be very low. For these stocks the impact of the FTT is

generally the opposite of the one described above — e.g., volatility decreases and so does the

market informational efficiency–pointing to a significant source of heterogeneity in the tax

impact. Moreover, in our theoretical model, for these stocks, an FTT may cause informed

traders to stop trading altogether, similarly to an informational cascade (Bikhchandani et al.

(1992); Welch (1992); Gale (1996); Hirshleifer and Hong Teoh (2003); Smith and Sørensen

(2000)). As a result, the price may not converge to the fundamental asset value. For these

stocks, even with a relatively small FTT of 5 bps, the probability of the price not converging

5



to the fundamental value is significant.

The rest of the paper is organized as follows. Section 2 describe the model and its

equilibrium predictions. Section 3 explains the effect of an FTT. Section 4 describes the

data. Section 5 presents the parameter estimates. Section 6 reports the results on the

impact of an FTT. Section 7 concludes. The Appendix contains further estimation results

and other supplementary material.

2. The Model

Our model builds on Cipriani and Guarino (2014). Informed and noise traders trade an

asset with a market maker over multiple days. In contrast to Cipriani and Guarino (2014),

noise traders are price elastic. In the following subsections, we briefly describe the model and

refer the reader to Cipriani and Guarino (2014) for a more complete description; wherever

there is a significant difference between the two models, we describe it in detail.

2.1. The asset

The fundamental value of the asset on day d = 1, 2, 3, ... is denoted by V d. With prob-

ability α, an information event occurs and the asset value changes from the previous day,

that is, V d 6= vd−1. On information event days, with probability δ, the asset value increases

to vdH = vd−1 + λH v
d−1 where λH > 0 (good-event day); with probability 1 − δ, it de-

creases to vdL = vd−1 + λL v
d−1 where −1 < λL < 0 (bad-event day).6 We assume that

6 Note that, in contrast to Cipriani and Guarino (2014), the change in the asset value is modeled as a
multiplicative change. In the existing literature, e.g., Easley et al. (1997), the typical assumption is that
the change in fundamental value between days is additive. Neither choice is relevant for the estimation
of the model’s parameters. However, a multiplicative change in fundamental value is preferable when
studying an FTT since it makes the impact of an ad-valorem tax (as most FTTs are) proportional to
the change in asset value. Additionally, a multiplicative change is consistent with the observation that
the variance of asset returns does not decrease as the price of the asset increases (as would be the case
with additive changes).
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(1 − δ)λL = −δλH , which implies that the value (and therefore, as we shall see, the daily

closing price) is a martingale.

2.2. The market structure

Each day d, trading happens at discrete times t = 1, 2, 3, .... At each time t of day d, a

trader can exchange (buy or sell) one unit of the asset with the market maker or decide not

to trade. We denote the action of a trader at time t on day d by xdt and the history of trades

and prices until time t− 1 of day d by hdt .

The market maker sets the ask and bid prices at which traders can buy or sell. We denote

the ask price at time t of day d by adt and the bid price by bdt . As in Glosten and Milgrom

(1985), the market maker sets the ask and bid prices equal to the expected value of the asset

conditional the history of trades, hdt , and the action at time t. Note that the market maker

does not know whether an information event has occurred on a given day.

2.3. The traders

There are two types of traders, informed and noise traders. A trader’s type is private

information. On information event days, at each time t an informed trader is chosen to trade

with probability µ and a noise trader is chosen to trade with probability 1−µ. On no-event

days, all traders are noise traders.

Informed traders. Informed traders are risk neutral. An informed trader active at time t

on day d receives a private signal Sdt about the asset value vd, distributed according to the

following value-contingent linear density functions

fH(sdt |V d = vdH) = 1 + τ(2sdt − 1), (1)

fL(sdt |V d = vdL) = 1− τ(2sdt − 1),
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where the parameter τ ∈ (0, 2] measures the informativeness of the signal. For 0 < τ ≤ 1,

the support of the densities is [0, 1]; for τ > 1, the support shrinks to [1− 1
τ
, 1] for fH and to

[0, 1
τ
] for fL. An informed trader knows that an information event has occurred; depending

on the signal realization and the precision τ , they may still be unsure about the direction

of the change. As τ → 0, signals become uninformative. As τ increases, so does the signal

informativeness. Following Smith and Sørensen (2000), beliefs are bounded when τ ∈ (0, 1)

and unbounded when τ ∈ [1, 2]. With bounded beliefs, no signal realization perfectly reveals

the asset value. In contrast, with unbounded beliefs some high (low) signal realizations are

possible only when the asset value is high (low), and, therefore, the signal can be perfectly

informative; a signal sdt ≥ 1/τ perfectly reveals that the asset has a high value on day d, and

a signal sdt ≤ (τ − 1)/τ perfectly reveals that the value is low. As τ tends to 2, almost all

informed traders perfectly know the asset value.

Noise traders. Noise (or liquidity) traders may decide to buy or sell the asset not because

they are informed about its fundamental value, but because hedging or liquidity reasons

makes their private valuation of the asset differ from that of the market maker. In other

words, noise traders have a private value from holding the asset in addition to the common

value V d. In contrast to conventional empirical market microstructure models of sequential

trading, we allow noise traders to be price-elastic. Whereas the conventional price-inelastic

noise traders always have a private value (e.g., liquidity or hedging need) so large that they

want to buy or sell independently of the price, price-elastic noise traders’ private values can

be small enough that their decision to trade depends on the price.

We model noise traders by following an approach similar to that of Glosten and Putniņš

(2019): noise traders’ hedging reasons to trade create a wedge between their valuation and

the market maker’s that is modelled as if it were a Bayesian update. Specifically, with prob-

ability 0 < ε < 1, noise traders receive a pseudo signal (or shock) ndt , which is distributed

8



uniformly on the interval [0, 1], independently of the asset’s fundamental value. With prob-

ability (1− ε) they receive no pseudo signal and their expected value of the asset equals the

market maker’s. As long as the bid ask spread is positive, noise traders without a pseudo

signal do not trade.

Since the pseudo signal is independent of the asset’s fundamental value, it conveys no

information. However, upon receiving it, a noise trader computes their asset valuation as

if the pseudo signal were distributed according to the following value-contingent pseudo

densities:

g̃H(ndt |V d = vdH) = 1 + ν(2ndt − 1), (2)

g̃(ndt |V d = vd−1) =
ν

2− ν
,

g̃L(ndt |V d = vdL) = 1− ν(2ndt − 1),

with the supports of the three pseudo densities being, respectively, [ν−1
ν
, 1], [ν−1

ν
, 1
ν
], and

[0, 1
ν
] and with 1 ≤ ν ≤ 2 (for ν = 2, P̃r(n = 0.5|V d = vd−1)= 1).7 As in the case of

informed traders, the value contingent pseudo densities are linear; their slopes depend on the

parameter ν. Noise traders update their valuation of the asset to E(V d|hdt , ndt ) analogously

to how informed traders update valuations upon observing informative signals.

The wedge between a noise trader’s and the market maker’s asset valuation, created by the

pseudo signal ndt , represents the noise trader’s private value, due to hedging reasons. Because

of the mechanism of Bayesian updating, the wedge shrinks as the market maker’s and noise

traders’ valuations converge to the asset’s fundamental value, and it is higher the higher

the uncertainty in the market; this is consistent with the wedge being generated by hedging

7 We use the symbol g̃ to emphasize that these are not the true distributions of the random variable ndt ;
for the same reason, we refer to them as “pseudo densities.”
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reasons, which become smaller as the asset value is learned.8 Indeed, Glosten and Putniņš

(2015, 2019) prove, in a two-state economy where traders are risk averse and have hedging

reasons to trade, that there is a distribution of risk aversion coefficients across traders such

that their asset valuation is distributed identically to the asset valuation generated by the

pseudo signal. In the Appendix, we prove an equivalent result for our three-state economy.9

Some final remarks are in order. First, as we mentioned above, the pseudo signal is

not informative since it is uniformly distributed on [0, 1] independently of the type of day.

Second, since noise traders’ asset private valuation is pinned down by linear pseudo density

functions, we can solve the model analytically, which is important for the maximum likelihood

estimation. Third, the support of the pseudo density g̃(·|vd−1) on a no-event day is the

intersection of the supports of g̃H(·|vdH) and g̃L(·|vdL) for good and bad-event days. This,

along with the restriction ν ≥ 1, guarantees that, for any history, there are always noise

traders whose asset valuation is either equal to vdH or to vdL; these traders want to buy

and sell irrespective of any price in the range [vdL, vdH ], thus avoiding market breakdowns.10

Finally, at least for some signal realizations, if ν < 2, noise traders’ valuation of the asset

is always between vdL and vdH , so that at any time t noise traders’ demand is, indeed, price-

elastic; for ν = 2, noise traders act as if, with probability one, the day were a bad-event day

(when ndt < 0.5) or a good-event day (when ndt > 0.5).

Modelling noise traders’ private value shocks as pseudo signals is a simple and flexible

8 In Appendix D.1 we show that the wedge created by noise traders’ pseudo signal can also be written as
a non-i.i.d., time-varying multiplicative shock.

9 In Glosten and Putniņš (2015), Glosten and Putniņš (2019), and in our proof, the hedging reasons arise
because noise traders are either endowed with or short of one unit of the asset; a similar proof could be
constructed assuming that they own an asset or an income stream that is negatively or positively cor-
related with the risky asset. Moreover, Glosten and Putniņš (2019) also show the equivalence between
pseudo signals and hedging reasons when traders’ risk aversion coefficient is fixed but there is hetero-
geneity in wealth; we offer a similar proof for our three-state economy case in the Appendix.

10 Because of asymmetric information, the market would break down in the absence of noise traders. Note
that from an empirical viewpoint, this is a natural assumption, since we do not observe such market
breakdowns.
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way of introducing price-elastic noise traders into our asset market. This encompasses the

standard empirical market microstructure models, where noise traders are price inelastic:

whereas in those models price inelasticity is assumed, in our analysis the elasticity of noise

traders’ demand is estimated.11 Allowing noise traders to be price-elastic creates an im-

portant trade off when analyzing the effect of a transaction tax: the tax discourages both

informed and uninformed traders from trading and affects the market composition (that

is, the relative proportion of informed and uninformed traders) as well as informational

efficiency, welfare, and other market outcomes.

Comparing the estimates of τ and ν informs us about the relative sensitivity of informed

and noise traders to the price; in particular when τ > ν, the same realization of an informed

trader’s signal and of a noise trader’s pseudo signal moves the informed trader’s expectation

away from the market maker’s more than the noise trader’s asset valuation; as a result, there

is a level of the FTT or of the bid-ask spread such that whereas the informed trader trades,

the noise trader does not; in the remainder of the paper, we will refer to this parameter con-

figuration as as situation in which informed traders are ”less price elastic” as their behavior

is less likely to be impacted by the imposition of the tax or widening of the bid-ask spread.

2.4. Equilibrium

Similarly to Cipriani and Guarino (2014), we can characterize the Perfect Bayesian Equi-

librium of the economy through a unique set of thresholds that, at each time t, pin down

informed and noise traders’ decisions as a function of their (pseudo) signals. We denote

informed traders’ thresholds at time t of day d as σdt and βdt , and noise traders’ thresholds as

11 As mentioned above, for ν = 2, noise traders buy or sell with fixed probabilities as in the previous mar-
ket microstructure literature. It is important to notice though, that in this literature, noise traders do
not change their behavior for any price. In our model, instead, even for ν = 2, noise traders remain
price-elastic, since, e.g., they do not buy when the price exceeds vH , which seems a desirable charac-
teristic. This may happen when the ask price is close to vH and, in addition, the trader has to pay an
FTT. We will discuss this issue in more detail when we introduce an FTT into our model.
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κdt and γdt . An informed trader sells for any signal lower than σdt , buys for any signal greater

than βdt , and does not trade for any signal in between. Similarly, a noise trader sells for any

pseudo signal lower than κdt , buys for any pseudo signal greater than γdt , and does not trade

for any pseudo signal in between.

The thresholds are defined as the solution to a system of equations setting the traders’

asset valuations given their (pseudo) signals equal to the bid or the ask price. For instance,

the equation for an informed trader’s buy threshold βdt is

E
(
V d|hdt , βdt

)
= adt . (3)

As in Cipriani and Guarino (2014), the equilibrium thresholds at time t can be written as

an explicit function of beliefs at time t−1 and the model’s parameter.12 Since the thresholds

pin down the traders’ strategies, they also determine the probability of a trade. For instance,

given βdt and κdt , the probability of a buy order on a good-event day at time t is

Pr
(
xdt = buy|hdt , vdH ,Φ

)
= (4)

µ
[
1− FH

(
βdt |vdH

)]
+ (1− µ)ε

(
1− κdt

)
,

where FH(·|vdH) is the cumulative distribution function of fH(·|vdH). To understand this

expression, recall that a trader active at time t is an informed trader with probability µ and

a noise trader with probability 1 − µ. An informed trader buys if his signal is above the

buy threshold βdt , which happens with probability 1 − FH(βdt |vdH). A noise trader receives

a pseudo signal shock with probability ε, in which case he buys if their pseudo signal is

12 In particular, they are a function of α, δ, µ, τ , ν, and ε, but not of λH and λL. Intuitively, the reason is
that λH and λL have the same impact on traders’ and market maker’s valuations and cancel out from
the thresholds’ equations.
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larger than κdt , which happens with probability 1 − κdt (as pseudo signals are uniformly

distributed). We use a similar methodology to compute the probability of any trade after

any history recursively; given the probability of an action, we can compute agents’ posterior

beliefs via Bayes’s rule and, therefore, the action threshold for the following periods. In this

way, we obtain an analytic recursive expression for the model’s likelihood function.13

3. The Financial Transaction Tax

We now consider the introduction of a financial transaction tax (FTT) levied ad valorem,

as are most of the proposed and implemented FTTs. Specifically, whenever a trader buys

the asset, they pay a tax ρ adt ; and whenever they sell, they pay ρ bdt . As a result, an informed

trader with signal sdt finds it optimal to buy when E
(
V d|hdt , sdt

)
> adt (1+ρ), and to sell when

E
(
V d|hdt , sdt

)
< bdt (1−ρ); they choose not to trade when bdt (1−ρ) ≤ E

(
V d|hdt , sdt

)
≤ adt (1+ρ).

Similarly, a noise trader with pseudo signal ndt buys if E
(
V d|hdt , ndt

)
> adt (1 + ρ), sells if

E
(
V d|hdt , ndt

)
< bdt (1− ρ) and chooses not to trade if bdt (1− ρ) ≤ E

(
V d|hdt , ndt

)
≤ adt (1 + ρ).

As in the case of no FTT, the equilibrium can be characterized in terms of buy and sell

thresholds for informed and noise traders. As we discussed in Section 2.4, the thresholds are

the solutions to a system of equations that set the traders’ valuations given their (pseudo)

signal equal to the bid or ask prices. For instance, the equations for informed traders’ buy

and sell thresholds are

E
(
V d|hdt , βdt

)
= adt (1 + ρ), (5)

E
(
V d|hdt , σdt

)
= bdt (1− ρ).

We refer the reader to the Appendix for the analytical derivation of the thresholds for

13 The likelihood function is described in detail in Appendix B.
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informed and noise traders. Here we only note that, in equilibrium, informed traders who

receive less informative signals and noise traders who receive weaker pseudo signals may find

it optimal to abstain from trade to avoid paying the tax; therefore, the tax modifies the

equilibrium bid and ask prices, since the proportion of informed and noise traders on either

side of the market is different than if no tax were imposed.

If the tax is high enough, traders may be unwilling to participate in the market altogether.

With a tax rate such that noise traders do participate, informed traders may still be unwilling

to trade. The next proposition states these results formally.

Proposition 1. There exists a tax rate

ρ̄N =

(
2δ

1− |2δ − 1|

)
λH (6)

such that if ρ > ρ̄N , in equilibrium, traders do not trade at time t = 1 (for any (pseudo)

signal realization), that is, the market does not open. Suppose ρ < ρ̄N , then there exists a

tax rate

ρ̄I =

(
2 min{τ, 1} δ

1−min{τ, 1}|2δ − 1|

)
λH ≤ ρ̄N , (7)

such that if ρ > ρ̄I , in equilibrium, informed traders do not trade at any time t (for any

signal realization).

We refer the reader to the Appendix for the proof of this and all following propositions.

Here we note that, in the proofs, the thresholds ρ̄N and ρ̄I are computed considering the first

trading time of a day. If traders do not find it profitable to trade at that time, they never find

it optimal, since no information is revealed by the trading history and the prices set by the

market maker remain constant. Note that if τ ≥ 1, ρ̄I = ρ̄N , since after an extreme signal

(or pseudo signal) both informed traders and noise traders learn the value of the asset; in

contrast, for τ < 1, ρ̄I is increasing in τ , that is, in how strongly the signal affects informed
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traders’ evaluations.14 Note also that the levels of the tax rates ρ̄I and ρ̄N increase with λH

and δ: higher λH and δ mean that there are higher gains from trade and a higher tax rate

is needed to discourage trading.15

Finally we can compute a threshold for the tax rate, such that both types of traders are

active on both sides of the market at time t = 1:

Corollary 1. There exists a tax rate

ρ̄ =

(
2 min{τ, 1} δ

1 + min{τ, 1}|2δ − 1|

)
λH < ρ̄I , (8)

such that if ρ < ρ̄, in equilibrium, at time t = 1 , both noise traders and informed traders

buy and sell for some (pseudo) signal realizations.

Note that ρ̄ is smaller than ρ̄I , because it assures that, when ρ < ρ̄, informed traders

both buy and sell (depending on their signal realization). When studying the asymptotic

impact of an FTT we will assume that ρ < ρ̄, that is, that the tax rate is low enough that,

at least at time t = 1, informed traders both buy and sell.

3.1. The Asymptotic Impact of an FTT

In the absence of a tax, bid and ask prices and agents’ beliefs converge almost surely to

the true asset value (Cipriani and Guarino (2014)). With an FTT this is no longer true. In

this section, we describe the asymptotic behavior of prices and beliefs when a tax is levied

on transactions.

14 For τ ≥ 1, there is a measure of informed traders receiving a perfectly revealing signal (or at least, a
signal overwhelming any history of trades, when τ = 1). Therefore, for a tax to shut informed traders
out of the market, the tax payment must be higher than the gains from trade for a trader who knows
the realization of the asset value. The same argument applies to noise traders, since ν ≥ 1.

15 Remember that, because the fundamental value is a martingale, |λL| = (δ/(1 − δ))λH ; therefore, for a
given λH , the higher is δ, the higher is |λL|, and therefore the gains from trade.
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Although the market always learns the occurrence of an event (see Lemma 1, Appendix

C), with a tax it is unable to learn whether the event is good or bad with probability 1 as

long as informed traders have bounded beliefs, that is, as long as τ < 1. The reason is that,

with probability 1, there will be a time after which all informed traders find it optimal not

to trade. Nothing is learned about the event from that time onward. As a result, the price

may remain stuck at a high level even if the fundamental is low (or vice versa) (see Lemma

2, Appendix C). We can prove that eventually, there will be a time t when all informed

traders’ activity ceases.16 We state this in the next proposition:

Proposition 2. Consider a tax rate ρ < ρ̄. If τ < 1, in equilibrium, on an event day, for

almost all histories there exists a time T , such that, for any t > T , informed traders decide

not to trade for any signal realization sdt , that is, as t −→∞,

Pr(Xd
t = no trade|hdt , sdt ) = 1. (9)

In our economy an informational cascade, defined as a situation in which the probability of

any action is independent of the fundamental value and, therefore, ”[...] no new information

reaches the market” (Avery and Zemsky, 1998, p. 733) never arises.17 Even when all informed

traders stop trading because of the tax, the probability of a trade depends on whether an

event has occurred; this is why the market maker’s belief about whether an event has occurred

converges to 0 or 1. Nevertheless, something similar to an informational cascade does occur.

16 The idea that an FTT eventually stops all trading activity is developed by Cipriani and Guarino
(2008b) in a Glosten and Milgrom (1985) model and, in a different setup, by Lee (1998).

17 See also Avery and Zemsky (1998) Definition 1 on p. 728. In the early social learning models, a cas-
cade is often defined as a situation in which agents’ actions are independent of their signals. In those
model, this implies that the actions are also independent of the fundamental value and, therefore, learn-
ing ceases. This is not the case in a financial market model with event uncertainty, like ours, in which
different types of traders act on event and no-event days. For this reason, it is appropriate in this type
of economy to define the cascade directly in terms of independence of the actions from the fundamental
value, as Avery and Zemsky (1998) do.
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As Proposition 2 shows, after a long enough history of trades, informed traders stop acting

upon their signal and, as a result, the market maker’s belief about whether the event was

good never converges to either 0 or 1. Moreover, the market maker’s belief about the event

being good may converge to a level below δ on a good-event day; analogously, it may converge

to a level above δ on a bad-event day. That is, not only learning about the event type is

never complete, it may actually be in the wrong direction.

In the following proposition we provide bounds on the probabilities that the market

maker’s belief on a good event remains stuck above 0.5 on a bad-event day, or stuck below

0.5 on a good-event day.

Proposition 3. Consider a tax rate ρ < ρ̄. If τ < 1, in equilibrium, there exists 0 < δl <

δh < 1 such that the probability that the belief Pr(V d = vdH |hdt ) converges to a value lower

than δl on a good-event day (V d = vdH) is bounded above by δl(δh−δ)
δ(δh−δl)

and the probability that

the belief Pr(V d = vdH |hdt ) converges to a value higher than δh on a bad-event day (V d = vdL)

is bounded above by (1−δh)(δ−δl)
(1−δ)(δh−δl)

.

The logic of the proof is that, e.g., conditional on a bad event, the likelihood ratio

Pr(V d=vdH |h
d
t )

Pr(V d=vdL|h
d
t )

is a martingale and, therefore, equal in expectation to its unconditional value

( δ
1−δ ). This fact, along with the observation that informed trading ceases after Pr(V d =

vdH |V d 6= vd−1, hdt ) has reached either the high or the low threshold allows us to pin down the

probability of correct and wrong convergence of the market maker’s belief, Pr(V d = vdH |hdt )

(see Appendix C for the derivation and a discussion).
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4. The Data

Our sample consists of 60 stocks traded on the New York Stock Exchange (NYSE) in

2017. The dataset is constructed using the NYSE Trade and Quote (TAQ) and the Center for

Research in Security Prices (CRSP) databases. We start by considering all common stocks

that are listed in the CRSP database on December 30, 2016 and meet all standard criteria

as detailed in Hasbrouck (2009) and Holden and Jacobsen (2014). We restrict attention to

active stocks that have the NYSE as primary listing and whose closing price on December

30, 2016 exceeded $1. To study how the tax impacts different market segments, we divide

this sample into quartiles by market capitalization, and randomly sample 15 stocks from

each quartile (see Tables 13 in the Appendix for a list of the stocks). Our sample represents

roughly 5% of the total market capitalization of the NYSE. The data comprises all trades

and quotes during regular trading hours, that is, from 9:30am to 4:00pm, in the period from

January 3, 2017 to December 29, 2017. To classify a transaction as a buy or a sell, we

start by signing it with the standard Lee and Ready (1991) algorithm as implemented by an

updated version of Holden and Jacobsen (2014).18 We aggregate trades that occur within

500 microseconds (0.0005 seconds) of each other using the modal trade of that set.19 This

aggregation procedure is meant to capture the fact that it takes time for trading information

to reach market participants (see, e.g., Aquilina et al. (2021) for a discussion of reaction

times in equity markets).20

We use the established convention of inserting no-trades between two transactions if the

elapsed time between them exceeds a particular time interval (see, e.g., Easley et al. (1997)).

18 Holden and Jacobsen (2014) consider datasets with time stamps at millisecond precision. We use a
more recent TAQ version with microsecond precision. The authors have updated their methodology
to sign trades for this case (for link to the code, see https://kelley.iu.edu/cholden/instructions.

pdf).
19 If the mode is not unique, we sign the trade as either a buy or as a sell with equal probability.
20 Easley et al. (2012, 2016) also aggregate trades by “time bars” in their study of high frequency trading.

18



Following Chung et al. (2005) and Cipriani and Guarino (2014) we chose as our interval

the ratio between the total trading time in a day and the average number of transactions

across trading days; in order to have the same interval across stocks (which allows us to

compare our results) and to avoid missing relevant no trade periods in heavily traded stocks,

we use the average number of transactions in the most traded stock (and therefore the

smallest interval).21 The interval resulting from this computation is 1 second: if there is no

transaction for more than 1 second, we insert a number of no-trades equal to the number

of seconds without trading activity. In the Appendix A.3, we show for the median stocks of

each quartile that changing the no-trade interval around 1 second does not materially affect

the results; although some parameters change (notably ε gets smaller as the no-trade interval

increases), economically relevant composite parameters are largely unaffected; in particular,

the proportion of informed trading (PIN) and the probability of observing one trade in a

1 second interval during a no-event day are stable (we present these measures in the next

section; see Easley et al. (1997) for a discussion).

5. Results

5.1. Estimates

In this section, we show aggregate statistics for the parameter estimates of the stocks

in our sample. The parameters are obtained by estimating the model presented in Section

2 (i.e., with no FTT) for each stock in our dataset through maximum likelihood.22 Table

21 If we had used the average number of transactions across all stocks, we might have missed relevant no-
trades in the most traded stocks (which could have potentially affected the estimates of all parameters);
in contrast, by using the average number of trades in the most traded stock, we are just adding ad-
ditional no-trades in less-traded stocks (which only leads to a lower estimate of ε and does not affect
economically relevant parameters).

22 In the estimation, we use the Nelder-Mead algorithm as implemented in Julia’s Optim package (Mo-
gensen and Riseth, 2018). Before estimating the model with actual transaction data, we simulated data
for several sets of parameters and verified that we were able to recover them with our estimation algo-
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α δ µ τ ν ε

Q1 median 0.814 0.597 0.002 1.895 1.382 0.028
mean 0.743 0.598 0.020 1.443 1.368 0.045
std dev 0.183 0.137 0.044 0.830 0.105 0.050
std err 0.032 0.048 0.000 0.006 0.013 0.001

Q2 median 0.822 0.603 0.002 1.919 1.353 0.110
mean 0.788 0.565 0.012 1.797 1.404 0.158
std dev 0.196 0.189 0.038 0.490 0.160 0.123
std err 0.026 0.045 0.000 0.011 0.007 0.003

Q3 median 0.923 0.487 0.002 1.871 1.359 0.182
mean 0.863 0.485 0.002 1.847 1.370 0.185
std dev 0.120 0.145 0.0003 0.131 0.027 0.096
std err 0.016 0.064 0.000 0.020 0.011 0.002

Q4 median 0.912 0.500 0.002 1.823 1.390 0.322
mean 0.886 0.468 0.002 1.831 1.414 0.368
std dev 0.082 0.240 0.0004 0.074 0.054 0.158
std err 0.018 0.035 0.000 0.018 0.007 0.003

τ < 1 stocks median 0.585 0.672 0.076 0.097 1.305 0.040
mean 0.558 0.570 0.087 0.100 1.432 0.062
std dev 0.295 0.206 0.067 0.070 0.338 0.051
std err 0.060 0.083 0.008 0.012 0.060 0.001

all stocks median 0.867 0.584 0.002 1.894 1.378 0.143
mean 0.820 0.529 0.009 1.730 1.389 0.189
std dev 0.159 0.186 0.029 0.504 0.100 0.161
std err 0.020 0.048 0.000 0.012 0.008 0.002

Table 1: Parameter estimates Summary statistics of the parameter estimates across all stocks, for each
market capitalization quartile, and for bounded beliefs (τ < 1) stocks. “std err” refers to the median
standard error. Standard errors are estimated by bootstrap.
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1 presents the median, mean, and standard deviation of the parameter estimates, across

all stocks and separately for each quartile; we also present the median of the parameters’

standard errors, estimated by bootstrap. In Table 3, we report the results of a series of Wald

and Likelihood Ratio tests on the parameter estimates. Parameter estimates and standard

errors at the individual stock level are reported in Table 15 of the Appendix.

The probability of an information event (α) is high for all quartiles. Across all stocks,

the mean probability is 82% and increases from 74% of the first quartile to 89% of the

fourth. In other words, more information events are observed in the stocks with the highest

market capitalization. This result is similar to that of Easley et al. (1996), who find a

positive correlation between their estimate of the probability of an information event and

trading volume (market capitalization and trading volume are positively correlated, with a

correlation of 0.32 in our sample of stocks). However, there is heterogeneity within quartiles,

with the standard deviation ranging from 8% in the fourth quartile to 20% in the second

quartile. As Table 3 shows, for all stocks we reject the null that α equals 1 or 0; that is, for

all stocks, there is event uncertainty.

The mean and median probability of a good event (δ) are slightly above 50%. While

there is heterogeneity across quartiles, we do not observe any obvious relationship between

δ and market capitalization.

On event days, the proportion of informed traders (µ) is, on average, 0.9%. This percent-

age is higher for the first quartile (2%) and lower for the last two quartiles (less than 1%).

The median is stable across quartiles and always lower than 1%. There is heterogeneity in µ

across stocks, with an overall standard deviation of 2.9%; the first quartile has the highest

standard deviation.

rithm; the optimization routine converges to the same parameter set starting from a large set of initial
conditions.
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The probability that a noise trader receives a private value shock (ε) monotonically and

strongly increases with quartiles. The mean estimates increase from 5% in the first quartile

to 16% in the second, 19% in the third and to 37% in the fourth; the median follows a similar

pattern. The increase in ε (but not in µ) with market capitalization implies that the increase

in trading activity for larger stocks is due to non-information based trading.

The mean informativeness of the private signal (τ) is 1.4 for the first quartile and ap-

proximately 1.8 for the others. The median across all stocks is 1.9. As Table 3 shows, for all

stocks we reject the null that τ equals 2, that is, in contrast to what Easley et al. (1997) and

several empirical market microstructure paper impose as an assumption, during event days,

informed traders do not receive a perfectly informative signal. For most of our stocks, beliefs

are unbounded since τ > 1. Only for 5 stocks is τ significantly less than one (see Table

3), which implies that a large proportion of informed traders receives an incorrect signal;23

all these stocks but one are in the first quartile. The aggregate statistics of the parameter

estimates for this group of 5 stocks are included in Table 1.

The parameter ν (which measures the impact of noise traders’ shocks on their valuations)

is fairly constant across quartiles, with mean and median values ranging from 1.35 to 1.41.

These estimates imply that, on average, almost half of noise traders who receive a shock are

price elastic.24

To understand the implication of these parameters for trade informativeness, we compute

23 Given the signal density functions, for τ < 1 the probability of an incorrect signal, i.e., less than 0.5 on
a good day and greater than 0.5 on a bad day, is given by 0.5− 0.25 τ . For τ = 0.1, the average τ across
the 5 stocks, this probability is 0.475.

24 Noise traders are price elastic when they receive signals belonging to the intersection of the supports
of gH and gL. The proportion of price-elastic noise traders is given by the area corresponding to such

intersection, measured with the uniform distribution, that is, with
2− ν
ν

(for, e.g., ν = 1.37, this pro-

portion is 0.46).
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the standard measure of PIN, the Probability of Informed Trade (Easley et al. (1996)):

PIN =
αµ

αµ+ ε(1− αµ)
, (10)

where the numerator represents the probability of a trade by an informed trader and the

denominator the approximate probability of any trade at the beginning of a day.25

Table 2 shows PINs by quartile and for stocks with τ < 1. Across all stocks, the median

PIN is 1.5%. The PIN is monotonically decreasing with the quartiles, from approximately

9% for the first quartile to 1.8% for the second, 1.3% for the third and less than 1% for

the fourth. In other words, the order flow is more informative in stocks with lower market

capitalization. This is in line with previous results on PIN (e.g., Easley et al. (1996)).

Q1 Q2 Q3 Q4 τ < 1 stocks all stocks

PIN 0.090 0.018 0.013 0.006 0.456 0.015

Table 2: PIN Median PIN measure across all stocks, for each quartile, and for those stocks with τ < 1.

5.2. A comparison with previous models

Our model nests two previous models of sequential trading with private information:

when ν = 2, we obtain the model estimated in Cipriani and Guarino (2014), with inelastic

noise traders but elastic informed traders; when τ = ν = 2 we obtain the model estimated

in Easley et al. (1997), where both noise and informed traders are inelastic. It is interesting

25 In computing these statistics, we implicitly assume that all informed traders and noise traders trade
(i.e., their asset valuation never falls within the bid-ask spread). We do so to use the same PIN for-
mulas as in Easley et al. (1996) and in much of the subsequent literature. In Appendix A.6, we also
report results on the probability of an informed trade computed taking into account the bid-ask spread,
and we show how this probability is affected by different rates of the FTT; moreover, we compute the
probability of informed trade with correct private information (PCIN), as introduced by Cipriani and
Guarino (2014).
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to see whether these restrictions are rejected by the data. Table 3 reports the Likelihood

Ratio tests for these two restrictions.

For all stocks, we can reject the restriction that ν = 2; that is, the assumption of inelastic

noise traders as in Cipriani and Guarino (2014) and most of the market microstructure

literature is rejected by the data. Similarly, the assumption that both noise and informed

traders are inelastic as Easley et al. (1997) (τ = ν = 2) is rejected for all 60 stocks. Allowing

for price elasticity in informed and noise traders’ behavior significantly improves the fit of

the model.

These results imply that the behavior of both informed and noise traders changes through-

out the day and depends on the price these traders face, including an FTT, if one is imposed.

Since the FTT impacts both informed and noise traders, the implication for informational

efficiency and welfare are theoretically ambiguous and depend on the model’s parameter

estimates. In Section 6, we will be able to quantify them given our parameter estimates.

H0 τ = 2 τ = 1 ν = 2 α = 0 α = 1 CG EKO
H1 < < < > < 6= 6=
Rejections of H0:
1st quartile 15 4 15 15 15 15 15
2nd quartile 15 1 15 15 15 15 15
3rd quartile 15 0 15 15 15 15 15
4th quartile 15 0 15 15 15 15 15

all stocks 60 5 60 60 60 60 60

Table 3: Test of hypotheses. Results of various hypothesis tests. The first five columns are Wald tests,
the last two columns are LR tests. CG refers to Cipriani and Guarino (2014) and EKO refers to Easley
et al. (1997). H0 specifies the null hypothesis, H1 the alternative. The number of rejections (i.e. number
of stocks for which H0 is rejected) is based on a confidence level of 1%.

6. The Impact of an FTT

Given the parameter estimates of each stock, we study the impact of an FTT in three

ways: i) we compute ρ̄N , the tax rate above which the market does not open, and ρ̄I , the
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tax rate above which all trading is noise; ii) for different levels of the tax, we compute the

probability of severe mispricing, that is, that the market maker’s belief about the occurrence

of a good event remains stuck at a high (low) level on a bad (good)-event day; and iii) for

different levels of the tax, we simulate the price path and the trading flow and compute

measures of volume, liquidity, volatility, informational inefficiency, and welfare.

To conduct this analysis, we need an estimate of λH , the percentage change in the asset

value on a good-event day. Indeed, when a tax is present, λH is needed to calculate the

equilibrium trading thresholds for our informed and price-elastic noise traders: the size of

the tax in relation to the possible gains from holding the asset, parameterized by λH (see

footnote 18), affects these thresholds.

6.1. Calibration of λH

We cannot estimate λH as part of the maximum likelihood estimation, since in the absence

of the tax trading decisions are independent of λH (see Section 2.4 and Appendix B). Instead,

we estimate λH through the standard deviation of daily price changes. In a market with no

FTT, the asset price converges to the asset fundamental value; if all price movements were

due to private information, the standard deviation of the daily price percentage would be

related to our model’s parameters through the following equality (see Appendix A.4):

σ

(
∆pd

pd1

)
= λH

√
αδ

1− δ
. (11)

Hence, for each stock, we could estimate σ from daily prices and then λH using equation

(11) and the estimates of α and δ. However, unlike in our theoretical model, observed price

changes (and therefore their standard deviation) may also be due to events that became

public information during or after the trading day (and which are not traders’ private infor-

mation and are not revealed by the order flow). Therefore, we need to decompose the price

variance in public and private component and consider the private component only. If we
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did not do so, our estimates of λH would be inflated and as a result, the impact of a tax

would be underestimated.

To this purpose, we use the variance decomposition method developed by Hasbrouck

(1991): we decompose the variance of the stock price percentage changes into a trade-

correlated component, interpreted as the component driven by private information, and a

trade-uncorrelated component, interpreted as the component driven by public information.

In the interest of space, we discuss this procedure in the Appendix and here we only discuss

the results.

Rw σ λH ρ̄N ρ̄I ρ̄

Q1 median 0.409 0.028 0.011 0.0198 0.0115 0.0087
mean 0.400 0.043 0.015 0.0231 0.0139 0.0094

Q2 median 0.371 0.023 0.007 0.0124 0.0122 0.0062
mean 0.368 0.025 0.010 0.0160 0.0141 0.0070

Q3 median 0.348 0.013 0.005 0.0056 0.0056 0.0032
mean 0.362 0.016 0.007 0.0077 0.0077 0.0046

Q4 median 0.427 0.011 0.005 0.0068 0.0068 0.0030
mean 0.430 0.016 0.010 0.0116 0.0116 0.0041

τ < 1 median 0.409 0.032 0.023 0.0258 0.0012 0.0011
mean 0.413 0.048 0.022 0.0361 0.0029 0.0026

all stocks median 0.387 0.018 0.006 0.0100 0.0087 0.0047
mean 0.391 0.027 0.011 0.0146 0.0118 0.0063

Table 4: Tax thresholds Results of Hasbrouck decomposition, Rw and σ, standard deviation of log-price
changes (daily), the resulting λH , and the corresponding tax thresholds across all stocks, for each market
capitalization quartile, and for those stocks with τ < 1.

Table 4 reports the square root of Hasbrouck’s R2
w statistics along with the standard

deviation of daily log-price changes (σ) and the estimated λH .26 For each of these measures,

we report the mean and median across all stocks, by quartile and, separately, for the stocks

26 We prefer to report the square root of Hasbrouck’s statistics because we are decomposing the standard
deviation of percentage changes (whereas Hasbrouck decomposes their variance).
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with τ < 1. We find that the median value of Rw, that is, the fraction of the standard

deviation of the log-price changes that is due to private information, is 39%. As a result, if

the standard deviation of daily log-price changes is 1.8% (the median standard deviation in

our sample), the standard deviation of daily log-price changes due to private information is

1.8%× 0.39 = 0.7%.

Given these results and our parameter estimates, across all stocks the median estimate

of λH is 0.6% (and that of λL is −0.8%).27 Note also that the median estimate of λH is

decreasing with the quartiles; the reason is that while Rw is approximately constant, stocks

with higher market capitalization are less volatile.

6.2. Threshold Tax Rates

Proposition 1 defines two tax rate thresholds, ρ̄N and ρ̄I , such that for any tax rate

ρ > ρ̄N no trader would ever trade, and for any tax rate ρ ∈ (ρ̄I , ρ̄N) only noise traders

would ever trade. Given our estimates, we can compute these thresholds for each stock in

our sample. Table 4 reports summary statistics on the thresholds for the entire sample and

by quartile. The median tax rate that would shut down all trading activity, ρ̄N , is 100 bps.

These thresholds decrease with the quartiles, from a median of 198 bps in the first quartile

to a median of 68 bps in the fourth. This reflects the fact that the volatility due to private

information is higher in the lower quartiles (the parameter λH decreases with the quartiles).

Perhaps, a priori, one would expect that trading in smaller stocks is more likely to be shut by

an FTT, but actually the opposite happens. In any case, even in the fourth quartile, the tax

rate that shuts down trading activity is much higher than most FTTs actually implemented

(e.g., in France or Italy, FTTs are in the range of 10− 30 bps).

The median tax rate that shuts information-based trading, ρ̄I is 87 bps; ρ̄I ranges from

27 The median estimate of λL is higher (in absolute value) than that of λH because across stocks the me-
dian δ is greater than 0.5 and, by the martingale assumption, this implies a larger downward movement.
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a median of 115 bps in the first quartile to a median of 68 bps in the fourth. Note that

this is lower than ρ̄N for the first two quartiles but equal to ρ̄N for the last two. This

reflects the fact that for the last two quartiles, beliefs are unbounded for all stocks (τ > 1),

and with unbounded beliefs ρ̄I = ρ̄N . Finally, though the median tax rate that prevents

information-based trading is high for all quartiles, there are also stocks for which informed

trading is eliminated by a very low tax rate: for instance, the threshold is just higher than

5 bps for one stock in each of the first two quartiles, that is, in stocks with relatively low

market capitalization. The stocks for which informed trading activity is unprofitable even

with a small tax rate are those with a very low estimate of τ .

6.3. Asymptotic Impact of the FTT

Out of the 60 stocks in our sample, 55 have τ > 1 (unbounded beliefs). For these stocks,

with any tax rate lower than ρ̄I , the market asymptotically learns the true asset realization;

for a tax rate higher than ρ̄I , no learning occurs. For the remaining 5 stocks, instead, τ < 1,

that is, beliefs are bounded; as we proved in Section 3, with bounded beliefs, convergence

of the price to the asset value does not occur for any FTT. Proposition 3 provides two

thresholds, δl and δh, such that, in the presence of a tax, asymptotically informed traders

stop trading whenever the market maker’s belief on the good event (δdt ) is either below the

lower threshold or above the upper threshold. It shows that, given these thresholds, we can

compute bounds on the probability that the market maker’s belief on whether the event is

good remains stuck at a high level when the event is bad, or at a low level when the event is

good; when the market maker belief is stuck, so it the price. We refer to these cases as cases

of “wrong convergence,” since the belief (and the price) converge to a high level whereas the

asset value is low or vice versa.

In Table 5, we report the thresholds and the probabilities of wrong convergence on a good-

event and on a bad-event day for the sample of 5 stocks with bounded beliefs. Threshold
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and probabilities are computed at the median parameter values for these 5 stocks, for αdt = 1

(see Proposition 3) and for an FTT of 5, 10 and 20 bps. The thresholds and probabilities

for individual stocks are reported in the Appendix A.5.

bps δl δh Pr(δd∞ = δl|vdH) Pr(δd∞ = δh|vdL)

5 0.042 0.956 0.020 0.093
10 0.070 0.927 0.037 0.118
20 0.222 0.770 0.059 0.574

Table 5: Belief convergence Belief thresholds and probabilities of wrong convergence for median param-
eter values across stocks with estimated τ < 1.

For a 5 bps tax, the lower threshold is 0.04 and the upper threshold is 0.96; that is, even

for a small tax of 5bps, the price does not converge to a value very close to the fundamental

one. For such a tax rate, the probability of wrong convergence is 0.02 on a good-event day

and 0.09 on a bad-event day. With a 10-bps tax, the thresholds are 0.07 and 0.93 and the

corresponding probabilities are 0.04 and 0.12. For a 20 bps tax, they are 0.22 and 0.77 with

probabilities 0.06 and 0.57. The probability of wrong convergence increases with the tax

rate and, for a given tax rate, is higher on bad-event days than on good-event days. The

reason for this asymmetry between good and bad-event days is that across these 5 stocks,

the median estimate of δ is higher than 0.5; that is, the trader’s and the market maker’s

prior beliefs are closer to the true asset value on good days, lowering the likelihood of a

wrong convergence.28

Overall, our analysis shows that even when an FTT does not prevent all informed traders

from trading, in stocks where beliefs are bounded, the price may still end up not reflecting

28 The bounds computed analytically according to Proposition 3 are virtually identical to the proportions
of wrong convergence we obtain by simulating the model with our parameter estimates. Recall that the
reason Proposition 3 only provides bounds on the probabilities is that the thresholds may be reached
before the occurrence of the event is completely learned, that is, before αdt has converged to 1. Simula-
tion results, however, indicate that at the median parameters for τ < 1, this does not occur.

29



the information held by these traders; indeed, even when the tax rate is small, there is a

sizeable probability of wrong convergence (and, therefore, of the price being stuck far away

from the asset value).

6.4. Within Day Effects of an FTT

Whereas one can derive the asymptotic effects of an FTT analytically, it is difficult to

obtain analytical results for the impact of the tax on the intra-day trading activity. This

is a difficulty that our model shares with any Glosten and Milgrom (1985) type of model.29

Since the impact of a tax is hard to tease out analytically, we proceed by simulating the

model. In particular, we take the median parameters for all the stocks in our sample and,

separately, for all the stocks in each quartile, and for the five stocks whose τ < 1; we simulate

the model with these sets of parameter values with no FTT and with an FTT of 5 bps, 10

bps, and 20 bps. The simulations are run for 100, 000 days, each consisting of 25, 660 trading

times (decisions), the median number of decisions in our sample. In the subsections below,

we report the effect of the FTT on the trading volume, market composition, liquidity (the

bid-ask spread), volatility, informational efficiency and welfare. For each variable we report

the average computed across simulated days and its standard error.30

6.4.1. Impact of an FTT on Volume

Table 6 reports the average number of daily trades (buys or sells) for different tax rates.

The FTT lowers the volume of trade substantially. Across all stocks, at the median parame-

ters, even a 5 bps FTT reduces the volume of trade by approximately 14%. The effect of an

29 Indeed, because of this difficulty, Dupont and Lee (2007) and Sørensen (2017) study the impact of
an FTT restricting their analysis to a static (one-period) version of the Glosten and Milgrom (1985)
model.

30 For each day, we set vd−1 = 100(1−δ)
λH

, which guarantees that each day vH − vL = 100, that is, the price
range equals 100. We chose to do so in order to present many of the simulation results (e.g., the bid
and ask spread or the average distance of the price from the fundamental) as percentages.
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0bps 5bps ∆ 10bps ∆ 20bps ∆

Q1 727 479 −0.34 424 −0.42 358 −0.51
Q2 2, 809 2, 376 −0.15 2, 063 −0.27 1, 601 −0.43
Q3 4, 667 3, 822 −0.18 3, 136 −0.33 2, 151 −0.54
Q4 8, 254 7, 276 −0.12 6, 296 −0.24 4, 582 −0.44
τ < 1 1, 656 789 −0.52 709 −0.57 635 −0.62
all stocks 3, 661 3, 151 −0.14 2, 748 −0.25 2, 125 −0.42

Table 6: Volume Average daily trades by market capitalization quartile for different levels of the tax rate.
∆ represents the change relative to the no FTT (0bps) volume. Simulations are computed at the median
parameters across all stocks, for each quartile, and for those stocks with τ < 1. All standard errors of
simulation means are less than 3.

FTT is much larger for the first quartile (a 34% reduction in volume for a 5 bps tax) than

for the others. The impact of the FTT is also very large in those stocks with τ < 1.31 The

higher the tax rates, the higher the reduction in trading volume: for the median parameters

across all stocks, a 20 bps FTT reduces the volume of trade by approximately 42%. These

results are in line with the strong negative impact on trading volume found in the empir-

ical literature on the FTT, in particular for less liquid stocks. For instance, Colliard and

Hoffmann (2017) find an average reduction of 10% in trading volume in response to a 20

bps tax on French stocks; they find a stronger effect on less liquid stocks (-20%) and a very

strong immediate effect for the average French stock (-60%) in the first month of the tax.

Umlauf (1993) finds a reduction of trading volume of 60% on the Stockholm stock exchange

in response to a 100 bps tax in Sweden. Deng et al. (2018) find a reduction of 55% in trading

volume in Chinese stocks in response to a 30 bps stamp duty.

31 For these stocks, not surprisingly, informed trading is highly reduced by the tax, due to the high price
elasticity of informed traders. Moreover, given those stocks’ parameter values, on no-event days, the
market maker learns quickly that an event has not occurred, with the result that noise trading also
becomes quickly unprofitable, leading to the overall reduction in volume in the presence of an FTT.
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6.4.2. Impact of an FTT on Market Composition

Table 7 reports the proportion of trades (buys and sells) by informed traders on event

days for different tax rates. Table 7 also reports the proportion of buys on good-event days

and sells on bad-event days by informed traders.

Given that across all stocks and for each quartile, τ is bigger than ν, that is, noise traders

are more price elastic than informed traders, one may have expected the tax to increase the

proportion of informed trading substantially. It is indeed true that the proportion of informed

buys on good-event days and of informed sells on bad-event days increases in the tax rate.

However, when we look at the proportion of informed buys and sells together, we find that

this increase is modest (and actually does not occur for the first quartile).

The reason is the following. As the price converges to the fundamental value, most

informed traders receive signals that agree with the history of trades; such signals move their

asset valuation by little with respect to that of the market maker, and they may abstain

from trading if they have to pay an FTT. This is a fortiori true for those noise traders who

receive pseudo signals in agreement with the history of trades (since their pseudo signals

are less precise). Recall, however, that noise traders’ pseudo signals are independent of the

asset value (their distribution is uniform). Therefore, even as the price converges to the

fundamental value, a large proportion of noise traders receives pseudo signals at odds with

the past history of trades. These pseudo signals move their asset valuation significantly

away from that of the market maker; these noise traders, who are on the ”wrong” side of the

market, may find it optimal to trade even in the presence of a tax. As a result, the fraction

of noise traders impacted by the tax is smaller, thereby muting the overall impact of the tax

on market composition.

Finally, for the stocks with τ < 1, the proportion of informed trading monotonically

declines with the introduction of an FTT, from more than 50% without a tax to only 14%

with a 20 bps tax. For these stocks, informed traders’ signal is less precise than the noise

32



traders’ pseudo signal (τ < ν), and, therefore, informed traders are more affected by the tax.

informed trading informed buying informed selling
0bps 5bps 10bps 20bps 0bps 5bps 10bps 20bps 0bps 5bps 10bps 20bps

Q1 0.081 0.060 0.056 0.051 0.192 0.193 0.196 0.206 0.196 0.195 0.199 0.207
Q2 0.021 0.022 0.022 0.023 0.045 0.050 0.054 0.062 0.045 0.050 0.054 0.061
Q3 0.014 0.014 0.015 0.015 0.027 0.031 0.035 0.043 0.027 0.031 0.035 0.043
Q4 0.007 0.008 0.008 0.009 0.014 0.015 0.017 0.021 0.014 0.015 0.017 0.021
τ < 1 0.562 0.315 0.245 0.142 0.578 0.294 0.223 0.141 0.578 0.374 0.301 0.178
all stocks 0.017 0.018 0.018 0.018 0.035 0.039 0.042 0.048 0.035 0.038 0.041 0.047

Table 7: Market composition Average daily share of informed trading on event days (left panel), aver-
age daily share of informed buying on good-event days (middle panel) and average daily share of informed
selling on bad-event days (right panel). Simulations are computed at the median parameters across all
stocks, for each quartile, and for those stocks with τ < 1. All standard errors of simulation means are less
than 0.0005.

6.4.3. Impact of an FTT on the Bid-Ask Spread

Theory does not give us a prediction on the effect of the FTT on the spread, a standard

measure of liquidity. Suppose that only informed traders were price elastic, as in Cipriani

and Guarino (2014). In this case, the FTT would crowd out a fraction of informed traders;

this would reduces adverse selection, and the market maker would set a lower spread to make

zero expected profits. However, with fewer informed traders, learning would be slower and,

therefore, the spread would converges to zero at a slower pace. Furthermore, in our sample

of stocks, noise traders are price-elastic too; therefore, an FTT also affects their willingness

to trade. As a result, the theoretical impact of the FTT on the average daily spread is

ambiguous.

In Table 8, we show simulation results on the impact of the FTT on the average daily bid-

ask spread for our sample of stocks.32 First, for any tax rate, the spread decreases through the

32 In the simulations, the daily price range is always 100, e.g., 2 can be read as a spread of 2% of the max-
imum possible daily change in asset value due to private information. The price change due to private
information is only part of the overall price change, which includes public information (see Section 6.1)
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quartiles, reflecting the fact that in higher quartiles there is less information-based trading,

which makes the stocks more liquid. Second, for the median parameters across all stocks,

the spread increases, though only moderately, with the tax rate. This is consistent with the

fact that as we showed above, the proportion of informed traders is higher with a higher

FTT. We observe the same behavior for the last three quartiles. In the first quartile, the

spread is slightly decreasing, consistent with the fact that the proportion of informed traders

decreases with the tax. Finally, for the stocks with τ < 1 the spread slightly increases for

5 bps and then decreases. A decrease in the spread reflects the fall in information-based

trading. As we observed, though, a lower proportion of informed traders, especially with a

relatively imprecise signal, also means a lower speed of learning, with a consequent higher

spread. This is the reason the spread increases for a 5 bps FTT.

0bps 5bps 10bps 20bps

Q1 2.212 2.193 2.164 2.111
Q2 1.131 1.214 1.271 1.328
Q3 0.888 0.979 1.049 1.099
Q4 0.516 0.570 0.629 0.715
τ < 1 0.786 0.804 0.791 0.631
all stocks 0.989 1.061 1.117 1.180

Table 8: Bid-ask spread. Simulations are computed at the median parameters across all stocks, for each
quartile, and for those stocks with τ < 1. All standard errors of simulation means are less than 0.005.

6.4.4. Impact of an FTT on Volatility

In Table 9, we report the average annualized standard deviation of intraday log-price

changes (i.e., log-price changes between trading times during a day), where we define the

price at time t of day d as pdt = E
(
V d|hdt

)
. For the median parameters across all stocks

and across each quartile except the first, volatility increases with the tax rate. In the first

quartile and for the stocks with τ < 1 volatility decreases with the tax rate. The reason for

this difference is that in the first quartile and for τ < 1, the FTT displaces informed traders
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to a greater extent than noise traders, thereby reducing the price impact of trades.33 In

the existing empirical literature, the results on the impact of an FTT on price volatility are

heterogeneous: whereas Umlauf (1993) and Jones and Seguin (1997) have found a positive

relationship between transaction costs and price volatility, more recent work by Deng et al.

(2018), focusing on cross-listed Chinese stocks, finds that an FTT reduces price volatility,

as Tobin (1978) had envisioned; Colliard and Hoffmann (2017), instead, find no significant

effect of an FTT on volatility in France. Our results help to explain this conflicting evidence,

since they show that the FTT can affect the market composition in different ways, and this

in turn affects price volatility differently.

0bps 5bps 10bps 20bps

Q1 17.917 17.906 17.810 17.609
Q2 8.858 9.114 9.289 9.433
Q3 4.789 4.977 5.130 5.219
Q4 3.689 3.844 4.012 4.258
τ < 1 28.023 25.907 23.203 16.078
all stocks 7.762 7.984 8.157 8.331

Table 9: Volatility Annualized intraday standard deviation of log prices changes. Simulations are com-
puted at the median parameters across all stocks, for each quartile, and for those stocks with τ < 1. All
standard errors of simulation means are less than 0.01.

6.4.5. The Impact of an FTT on Informational Efficiency

In this section, we investigate how the FTT affects the ability of the market to aggregate

private information. Informational efficiency is high when the market maker’s expected

value of the asset, pdt = E
(
V d|hdt

)
(which we have defined as the price of the asset) is close to

the asset value. In order to estimate the market’s informational efficiency, we compute the

average distance between the price and the asset value vd, that is, |pdt − vd|, throughout the

33 While in some work, e.g., Stiglitz (1989) and Summers and Summers (1989), volatility is attributed to
excessive noise trading, in our model price volatility is the result of private information.
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trading day. A higher value of this average distance indicates a lower informational efficiency.

The impact of an FTT on informational efficiency is theoretically ambiguous. One could

imagine that, by lowering the incentive of informed traders to trade, an FTT would also lower

informational efficiency. This however is not necessarily true: no trades, not only buys and

sells, also convey information to the market maker. To complicate matters further, the FTT

also impacts the behavior of noise traders, and the market maker endogenously changes the

bid-ask spread; as a result, market composition changes and so does informational efficiency.

As reported in Table 10, our simulation results show that, for all tax rates, informational

efficiency is lower in stocks with higher market capitalization. We know that informed trading

monotonically decreases in the quartiles (see Tables 2 and 7); it is, therefore, not surprising

that the price is closer to the fundamental value in the first quartiles.

Across all stocks and for the last three quartiles, a higher FTT improves informational

efficiency although the effect is not very large. The impact of the tax is different for the five

stocks with τ < 1 and for the first quartile: for these stocks, by reducing informed trading

activity, the tax has a negative impact on informational efficiency.

0bps 5bps 10bps 20bps

Q1 14.415 13.985 13.925 14.199
Q2 29.715 28.898 28.180 27.151
Q3 35.611 34.635 33.523 32.162
Q4 40.570 40.078 39.467 38.245
τ < 1 10.331 12.834 15.912 21.909
all stocks 32.440 31.684 30.992 29.873

Table 10: Informational inefficiency Distance between price and fundamental, |pdt − vd|, averaged over
the trading day. Simulations are computed at the median parameters across all stocks, for each quartile,
and for those stocks with τ < 1. All standard error of simulation means are less than 0.05.

It is also interesting to look at the evolution of informational efficiency over the course of

the day. In Figure 1 we plot |pdt−vd| for the median parameters, averaged across all simulated

days, by trading time. Consistently with what we saw in Table 10, an FTT increases infor-
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Figure 1: Distance between price and fundamental, |pdt − vd|, for the median parameters across all stocks
by trading time.

mational efficiency. The higher the tax rate we consider, the higher the efficiency. Finally,

informational efficiency increases monotonically during the day.

6.4.6. Impact of an FTT on Welfare

Any transaction between a noise trader and the market maker realizes a gain from trade

equal to the absolute value of the difference between the noise trader’s valuation of the

asset (which includes a private value) E(V d|hdt , ndt ) and the market maker’s, E(V d|hdt ).34

Even in the absence of a tax, not all gains from trade are realized because the bid-ask

spread prevents some noise traders with a gain from trade from trading (whenever their

valuation falls into the spread). The introduction of the FTT increases the price noise

traders pay, thereby, everything else being equal, reducing their trading activity and the

market’s allocative efficiency. The tax may also impact the bid-ask spread, thereby making

34 In contrast, transactions between the market maker and informed traders do not realize any gain from
trade as informed traders do not have private values and value the asset the same as the market maker.
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its effect on allocative efficiency theoretically ambiguous; in our sample of stocks, however,

we know that the spread increases in the tax rate (with the exception of the first quartile and

for those stocks for which τ < 1) and therefore, we can expect the FTT to have a negative

impact on welfare.

In Table 12 (left panel) we report the fraction of noise traders receiving a pseudo signal

(and therefore having a private value) who decide to trade. At the median parameters across

all stocks, without an FTT, almost all trade, since the probability of informed trading is low

and a small spread is enough for the market maker to have zero expected profits: in the first

quartile, where liquidity is lowest, 95% of them trade, and this proportion reaches 99% in the

fourth quartile. An FTT decreases the fraction of noise traders trading, monotonically in the

tax rate, across all stocks and for all quartiles: at the median parameters across all stocks,

the proportion of noise traders with a pseudo signal who trade goes from 98% without a tax

to 57% with a 20bps tax.

In the right panel of Table 12, we report the welfare loss for different levels of the tax

rate. In computing the welfare loss, we take into account not only whether a trade occurs,

but also the size of the foregone gain from trade (i.e., the difference between the trader’s

and the market maker’s valuation). In particular, we measure the loss as the average ratio

between the daily forgone gains from trade and the daily potential gains from trade. In the

absence of an FTT, the loss in welfare due the bid-ask spread is negligible; only in the first

quartile, the least liquid one, can one observe a very modest welfare loss (0.1%). An FTT

lowers gains from trade for all quartiles. At the median parameters across all stocks, the

welfare loss is 0.9% for a tax rate of 5 bps and reaches 8.3% for a tax rate of 20 bps. Across

tax rates, the loss is generally bigger in the top two quartiles; that is, the tax has a greater

impact on welfare in more liquid stocks.

Finally, note that for the stocks with τ < 1 the impact of an FTT on welfare is very

strong even with a small tax. The reason is that, as we discuss in Section 6.4.1, the tax
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0bps 5bps 10bps 20bps

Q1 0.946 0.634 0.564 0.478
Q2 0.980 0.828 0.719 0.557
Q3 0.989 0.809 0.664 0.455
Q4 0.995 0.876 0.758 0.551
τ < 1 0.982 0.555 0.554 0.572
all stocks 0.985 0.847 0.739 0.571

0bps 5bps 10bps 20bps

Q1 0.001 0.012 0.026 0.054
Q2 0.000 0.009 0.027 0.079
Q3 0.000 0.017 0.055 0.161
Q4 0.000 0.010 0.038 0.135
τ < 1 0.000 0.408 0.405 0.369
all stocks 0.000 0.009 0.027 0.083

Table 11: Welfare Average fraction of noise traders with a pseudo-signal who trade (left panel) and av-
erage daily ratio of foregone gains from trade to total available gains from trade for noise traders (right
panel). Simulations are computed at the median parameters across all stocks, for each quartile, and for
those stocks with τ < 1. All standard errors of simulation means are less than 0.005 (left panel) and
0.0001 (right panel).

heavily impacts noise traders’ trading activity. Moreover, for these stocks, a tax rate of 5 bps

has a stronger impact than a tax rate of 20 bps: a 20 bps tax displaces a larger proportion

of informed traders (see Table 7), which lowers the spread (see Table 8), thereby mitigating

the impact of the tax on noise traders.

Finally, an important question is the FTT effectiveness in raising revenues. In Table 12,

we report the average ratio of the daily forgone gains from trade over the daily tax revenues,

a measure of the deadweight loss caused by the tax. The cost of imposing an FTT increases

in the tax rate. At the median parameters, a 5bps tax is associated with a 10% deadweight

loss, whereas a 20bps is associated with a 36% deadweight loss.

5bps 10bps 20bps

Q1 0.311 0.363 0.454
Q2 0.117 0.203 0.375
Q3 0.124 0.251 0.531
Q4 0.074 0.163 0.394
τ < 1 0.771 0.769 0.756
all stocks 0.100 0.183 0.359

Table 12: Deadweight loss Ratio of average daily foregone gains from trade for noise traders to average
daily tax revenue (all days). Simulations are computed at the median parameters across all stocks, for
each quartile, and for those stocks with τ < 1. All standard errors of simulations means are less than
0.0005.
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7. Conclusion

We presented a novel methodology to quantify the impact of an FTT on the informa-

tional efficiency of financial markets. We built a sequential trading model in which both

informed traders and noise traders are price-elastic. Informed traders receive private infor-

mation of heterogeneous quality, and noise traders have heterogeneous private values (for

instance, stemming from liquidity or hedging reasons). Compared to previous work in mar-

ket microstructure, price-elastic noise traders are a modelling innovation that is crucial to

understand the differential impact of an FTT on market composition.

In our model, as in most of the theoretical work on the FTT, the impact of an FTT

on market outcomes is theoretically ambiguous and depends on the model’s parameters. In

order to resolve this ambiguity, we estimated the model through maximum likelihood for a

sample of 60 stocks traded on the NYSE, with different levels of market capitalization. The

structural estimation allowed us to estimate the probability of (good or bad) informational

events, the composition of the market in terms of informed and noise trading, as well as

the traders’ price sensitivity. For most of the stocks in our sample, noise traders are price

elastic, more so than informed traders. As a result, the introduction of an FTT changes

the composition of the market, making the order flow more informative, that is, it has a

positive effect on informational efficiency. Moreover, by reducing noise trading, an FTT has

a negative effect on welfare; this effect is monotonically increasing in the tax rate.
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Appendices

A. Data and additional empirical results

A.1. Sample of stocks

company name ticker price volume market cap

GRAHAM CORP GHM 22 8, 479 215
VISHAY PRECISION GROUP INC VPG 19 5, 002 230
NATRL GROCERS BY VIT COTTAGE INC NGVC 12 18, 159 267
GENESIS HEALTHCARE INC GEN 4 31, 933 319
TRECORA RESOURCES TREC 14 9, 824 339
RUBICON PROJECT INC RUBI 7 76, 351 364
CHANNELADVISOR CORP ECOM 14 20, 181 370
ROADRUNNER TRANS SYSTEMS INC RRTS 10 60, 963 398
LUMBER LIQUIDATORS HOLDINGS INC LL 16 151, 964 429
NACCO INDUSTRIES INC NC 91 2, 846 471
MARCUS CORP MCS 32 18, 360 596
NIMBLE STORAGE INC NMBL 8 242, 951 674
CBIZ INC CBZ 14 27, 120 735
CIVITAS SOLUTIONS INC CIVI 20 34, 438 741
MANITOWOC CO INC MTW 6 373, 371 830

DYNEGY INC NEW DEL DYN 8 793, 990 992
FORTRESS TRANS AND INFR INV LLC FTAI 13 22, 093 1, 007
CALLAWAY GOLF CO ELY 11 128, 602 1, 031
BARRACUDA NETWORKS INC CUDA 21 85, 205 1, 121
HERC HOLDINGS INC HRI 40 80, 134 1, 137
TUTOR PERINI CORP TPC 28 85, 459 1, 378
AZZ INC AZZ 64 30, 417 1, 662
PARTY CITY HOLDCO INC PRTY 14 100, 568 1, 697
HEADWATERS INC HW 24 314, 920 1, 761
HERTZ GLOBAL HOLDINGS INC HTZ 22 461, 409 1, 789
ARCH COAL INC ARCH 78 140, 574 1, 919
SWIFT TRANSPORTATION CO SWFT 24 566, 647 2, 013
KBR INC KBR 17 269, 895 2, 381
COMMERCIAL METALS CO CMC 22 310, 960 2, 517
ESTERLINE TECHNOLOGIES CORP ESL 89 30, 241 2, 644

AMERICAN EAGLE OUTFITTERS INC NE AEO 15 1, 165, 330 2, 759
LEGG MASON INC LM 30 552, 197 3, 021
ALLETE INC ALE 64 61, 127 3, 175
ONE GAS INC OGS 64 39, 385 3, 342
ENERSYS ENS 78 60, 850 3, 392

44



RADIAN GROUP INC RDN 18 549, 523 3, 855
VEEVA SYSTEMS INC VEEV 41 224, 677 4, 119
TEGNA INC TGNA 21 356, 932 4, 586
SONOCO PRODUCTS CO SON 53 95, 252 5, 262
PERKINELMER INC PKI 52 142, 101 5, 713
JACOBS ENGINEERING GROUP INC JEC 57 219, 421 6, 887
NISOURCE INC NI 22 618, 225 7, 145
SPECTRUM BRANDS HOLDINGS INC SPB 122 105, 448 7, 299
ROLLINS INC ROL 34 83, 008 7, 358
BROWN FORMAN CORP BFA 46 7, 443 7, 819

RITE AID CORP RAD 8 3, 502, 339 8, 670
TORCHMARK CORP TMK 74 106, 012 8, 752
CBRE GROUP INC CBG 31 501, 436 10, 621
PRINCIPAL FINANCIAL GROUP INC PFG 58 316, 898 16, 645
AMERISOURCEBERGEN CORP ABC 78 407, 548 17, 210
EVERSOURCE ENERGY ES 55 301, 283 17, 519
AMERIPRISE FINANCIAL INC AMP 111 221, 164 17, 534
MOODYS CORP MCO 94 203, 561 18, 024
INTERNATIONAL PAPER CO IP 53 563, 930 21, 819
HP INC HPQ 15 2, 031, 599 25, 309
DEERE & CO DE 103 584, 182 32, 651
MARSH & MCLENNAN COS INC MMC 68 486, 171 34, 849
BECTON DICKINSON & CO BDX 166 201, 132 35, 301
PEPSICO INC PEP 105 859, 812 150, 059
CHEVRON CORP NEW CVX 118 1, 345, 075 222, 190

Table 13: List of sample stocks in order of market capitalization. Price, volume (monthly; in 100 shares)
and market capitalization (in $MM) as of 30 December 2016 (source: CRSP).

Table 14 shows that the number of buys and sells increases with market capitalization.

In all quartiles, the ratio between buys and sells is very close to one.

A.2. Parameter Estimates

ticker α δ µ τ ν ε

Q1 GHM 0.835 0.596 0.002 1.895 1.379 0.013
(0.0228) (0.0323) (0.0001) (0.0056) (0.0075) (0.0001)

VPG 0.885 0.784 0.002 1.856 1.340 0.011
(0.0053) (0.0125) (0.0001) (0.0067) (0.0072) (0.0003)

VRS 0.868 0.721 0.076 0.097 1.552 0.040
(0.0395) (0.1771) (0.0083) (0.0078) (0.0706) (0.0011)

NGVC 0.442 0.448 0.002 1.947 1.423 0.032
(0.0914) (0.0215) (0.0001) (0.0032) (0.0049) (0.0006)

GEN 0.943 0.638 0.002 1.925 1.427 0.038
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(0.0115) (0.0780) (0.0001) (0.0120) (0.0096) (0.0009)
TREC 0.651 0.698 0.002 1.989 1.451 0.012

(0.0623) (0.0302) (0.0001) (0.0016) (0.0127) (0.0002)
RUBI 0.824 0.542 0.002 1.950 1.329 0.096

(0.0371) (0.0565) (0.0001) (0.0092) (0.0165) (0.0051)
ECOM 0.735 0.524 0.003 1.894 1.432 0.022

(0.0316) (0.0564) (0.0001) (0.0062) (0.0143) (0.0003)
RRTS 0.814 0.245 0.028 0.167 1.252 0.028

(0.0535) (0.0796) (0.0032) (0.0291) (0.0596) (0.0008)
LL 0.335 0.487 0.162 0.028 1.092 0.122

(0.1117) (0.1636) (0.0316) (0.0080) (0.0677) (0.0029)
NC 0.585 0.672 0.017 0.173 1.305 0.009

(0.0971) (0.0601) (0.0085) (0.0671) (0.0378) (0.0004)
MCS 0.855 0.708 0.003 1.907 1.419 0.023

(0.0213) (0.0156) (0.0001) (0.0042) (0.0046) (0.0003)
CBZ 0.780 0.728 0.003 1.941 1.421 0.033

(0.0235) (0.0234) (0.0002) (0.0037) (0.0160) (0.0010)
CIVI 0.624 0.597 0.002 1.883 1.382 0.014

(0.0179) (0.0210) (0.0000) (0.0060) (0.0134) (0.0002)
MTW 0.970 0.584 0.002 1.990 1.319 0.185

(0.0030) (0.0479) (0.0001) (0.0007) (0.0060) (0.0054)

Q2 DYN 0.786 0.663 0.002 1.868 1.368 0.337
(0.0489) (0.0334) (0.0000) (0.0242) (0.0052) (0.0046)

FTAI 0.891 0.461 0.003 1.914 1.470 0.025
(0.0336) (0.0573) (0.0002) (0.0069) (0.0209) (0.0004)

ELY 0.859 0.601 0.003 1.914 1.353 0.152
(0.0292) (0.0417) (0.0001) (0.0160) (0.0102) (0.0039)

CUDA 0.190 0.725 0.151 0.033 1.959 0.110
(0.0600) (0.0831) (0.0749) (0.0117) (0.0091) (0.0035)

HRI 0.978 0.505 0.002 1.948 1.299 0.081
(0.0073) (0.0529) (0.0001) (0.0042) (0.0169) (0.0032)

TPC 0.647 0.630 0.002 1.977 1.334 0.074
(0.0889) (0.0426) (0.0000) (0.0019) (0.0073) (0.0004)

AZZ 0.721 0.656 0.002 1.950 1.446 0.034
(0.0261) (0.0299) (0.0001) (0.0015) (0.0020) (0.0001)

PRTY 0.784 0.332 0.002 1.918 1.347 0.087
(0.0398) (0.0478) (0.0001) (0.0162) (0.0150) (0.0029)

SEM 0.924 0.806 0.002 1.936 1.350 0.122
(0.0113) (0.0269) (0.0001) (0.0104) (0.0046) (0.0013)

HTZ 0.675 0.603 0.001 1.949 1.391 0.450
(0.0365) (0.1311) (0.0001) (0.0162) (0.0095) (0.0122)

ARCH 0.990 0.698 0.002 1.980 1.321 0.101
(0.0012) (0.0566) (0.0000) (0.0017) (0.0017) (0.0019)

KBR 0.743 0.041 0.002 1.793 1.375 0.239
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(0.0165) (0.0066) (0.0001) (0.0238) (0.0060) (0.0014)
CMC 0.822 0.471 0.002 1.919 1.385 0.280

(0.0154) (0.0490) (0.0000) (0.0106) (0.0053) (0.0033)
ESL 0.872 0.718 0.002 1.959 1.319 0.053

(0.0096) (0.0285) (0.0001) (0.0027) (0.0068) (0.0009)
KNX 0.942 0.570 0.003 1.891 1.350 0.226

(0.0072) (0.0449) (0.0003) (0.0175) (0.0065) (0.0061)

Q3 AEO 0.660 0.219 0.002 1.818 1.357 0.399
(0.0493) (0.0635) (0.0001) (0.0581) (0.0134) (0.0056)

LM 0.979 0.404 0.003 1.871 1.344 0.193
(0.0069) (0.1047) (0.0001) (0.0375) (0.0074) (0.0045)

ALE 0.647 0.654 0.003 1.963 1.426 0.071
(0.0396) (0.0379) (0.0002) (0.0049) (0.0292) (0.0006)

OGS 0.861 0.446 0.003 1.636 1.421 0.063
(0.0164) (0.0772) (0.0002) (0.0563) (0.0113) (0.0007)

ENS 0.954 0.571 0.003 1.535 1.396 0.079
(0.0080) (0.0228) (0.0001) (0.0539) (0.0218) (0.0017)

RDN 0.954 0.487 0.002 1.750 1.353 0.222
(0.0127) (0.0629) (0.0001) (0.0762) (0.0053) (0.0029)

VEEV 0.784 0.482 0.002 1.971 1.360 0.243
(0.0344) (0.0717) (0.0002) (0.0100) (0.0108) (0.0030)

TGNA 0.922 0.493 0.002 1.956 1.359 0.295
(0.0182) (0.0957) (0.0002) (0.0044) (0.0108) (0.0059)

SON 0.644 0.317 0.003 1.986 1.336 0.132
(0.0664) (0.0492) (0.0001) (0.0012) (0.0055) (0.0015)

PKI 0.941 0.336 0.003 1.786 1.353 0.143
(0.0076) (0.0733) (0.0001) (0.0176) (0.0051) (0.0012)

PF 0.871 0.600 0.002 1.954 1.373 0.210
(0.0532) (0.0324) (0.0001) (0.0066) (0.0146) (0.0024)

JEC 0.939 0.738 0.002 1.913 1.384 0.182
(0.0079) (0.0339) (0.0001) (0.0197) (0.0022) (0.0015)

NI 0.936 0.332 0.002 1.819 1.378 0.300
(0.0188) (0.0883) (0.0000) (0.0304) (0.0058) (0.0045)

SPB 0.926 0.606 0.002 1.814 1.355 0.116
(0.0109) (0.0327) (0.0001) (0.0208) (0.0202) (0.0011)

ROL 0.923 0.595 0.003 1.934 1.353 0.128
(0.0112) (0.0760) (0.0001) (0.0093) (0.0056) (0.0010)

Q4 RAD 0.862 0.189 0.002 1.922 1.474 0.622
(0.0357) (0.0505) (0.0001) (0.0228) (0.0105) (0.0211)

TMK 0.959 0.451 0.003 1.983 1.344 0.129
(0.0074) (0.0345) (0.0000) (0.0012) (0.0058) (0.0005)

CBG 0.805 0.641 0.002 1.872 1.385 0.293
(0.0198) (0.0277) (0.0001) (0.0241) (0.0150) (0.0024)

PFG 0.984 0.696 0.002 1.881 1.375 0.238
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(0.0019) (0.0268) (0.0001) (0.0215) (0.0055) (0.0010)
ABC 0.867 0.818 0.002 1.774 1.390 0.322

(0.0208) (0.0354) (0.0001) (0.0399) (0.0066) (0.0046)
ES 0.912 0.812 0.003 1.808 1.388 0.283

(0.0156) (0.0177) (0.0002) (0.0129) (0.0034) (0.0033)
AMP 0.924 0.604 0.002 1.833 1.384 0.262

(0.0025) (0.0256) (0.0000) (0.0169) (0.0004) (0.0003)
MCO 0.947 0.482 0.002 1.793 1.369 0.219

(0.0274) (0.1183) (0.0001) (0.0310) (0.0076) (0.0040)
IP 0.892 0.245 0.002 1.867 1.400 0.361

(0.0177) (0.0231) (0.0001) (0.0150) (0.0174) (0.0035)
HPQ 0.639 0.513 0.001 1.712 1.439 0.590

(0.0554) (0.0500) (0.0001) (0.0184) (0.0096) (0.0063)
DE 0.924 0.588 0.002 1.742 1.389 0.364

(0.0051) (0.0594) (0.0001) (0.0381) (0.0068) (0.0031)
MMC 0.891 0.010 0.003 1.907 1.428 0.326

(0.0084) (0.0017) (0.0001) (0.0148) (0.0091) (0.0017)
BDX 0.843 0.500 0.002 1.823 1.399 0.320

(0.0245) (0.0779) (0.0001) (0.0290) (0.0140) (0.0060)
PEP 0.912 0.252 0.002 1.747 1.496 0.533

(0.0275) (0.0596) (0.0001) (0.0156) (0.0063) (0.0033)
CVX 0.929 0.216 0.002 1.807 1.544 0.652

(0.0034) (0.0729) (0.0000) (0.0061) (0.0040) (0.0028)

Table 15: Parameter estimates for the sample of 60 NYSE stocks grouped by market capitalization quar-
tiles. Standard errors are reported in parentheses and are calculated using the bootstrap by resampling
trading days. A value of 0.0000 indicates a standard error smaller than 0.00005.

A.3. Robustness

As discussed in Section 4, when constructing our dataset, we insert a number of no-

trades equal to the number of seconds without trading activity. As a robustness check, we

re-estimate the model for the median stock by market capitalization in each of the four

market capitalization quartiles using a no-trade interval of 0.1, 0.2, 0.5, 2 and 5 seconds.

We report these estimates in Table 16. Our estimates are robust to changes in the no-trade

interval. The parameters estimates for α, δ, τ and ν are stable across no-trade intervals.

The parameters µ and ε, which determine the pattern of trading activity within the day,

cannot remain constant as the no-trade interval and therefore the number of no trades in

the dataset increase (see, Easley et al. (1997, p. 820) and Cipriani and Guarino (2014, p.

239)): for instance, with a lower no-trade interval, there are more no trades, hence ε must

increases. Nevertheless, as first proposed by Easley et al. (1997), we can compute parameter

transformations that are economically meaningful and that should remain constant. The
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market cap buys sells % buys trades no trades % trades

Q1 mean 465 549 565 49 1,115 23,068 4
median 398 343 355 49 698 23,168 3

Q2 mean 1,670 1,899 1,895 50 3,794 22,431 14
median 1,697 1,334 1,250 50 2,584 22,644 10

Q3 mean 5,049 2,134 2,150 50 4,285 22,248 16
median 4,586 2,020 1,998 50 4,019 22,297 15

Q4 mean 42,477 5,108 5,146 50 10,254 20,759 31
median 18,024 4,037 3,949 50 8,047 21,363 27

all stocks mean 12,415 2,423 2,439 50 4,862 22,126 16
median 1,593 2,701 1,582 50 3,175 22,485 12

Table 14: Daily trades Daily trading activity by market capitalization (in $MM) quartiles .

first of these transformations is the PIN discussed in Section 5. The second transformation

is the proportion of informed traders with correct information on an event day, which we

denote by Γ; Γ measures the informativeness of trading activity in a given stock35:

Γ =
µ

µ+ ε(1− µ)

(
1

2
+

1

4
τ

)
.

The third transformation is the probability of at least one trade within 1 second on a no

event day, which we denote by Λ:

Λ = 1− (1− ε)
1000

NT interval (in ms) .

The last three columns of Table 16 report the PIN, Γ, and Λ for the four median stocks

across 6 no-trade intervals. Overall, the results show that changing the no-trade interval

does not change the predicted arrival of trades to the market, the predicted arrival of trades

by informed traders with a correct signal and the probability of informed trading (PIN).

35 In Easley et al. (1997) all informed traders have a correct signal; therefore Γ measure the proportion
of informed trading; Cipriani and Guarino (2008a) changed Easley et al. (1997)’s original measure to
incorporate the fact that only a proportion of informed traders in their model, like in our model, have
correct information.
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stock NT α δ µ τ ν ε PIN Γ Λ

ECOM 0.1 0.807 0.593 0.0003 1.911 1.430 0.002 0.094 0.111 0.022
(Q1) 0.2 0.717 0.413 0.001 1.898 1.438 0.004 0.083 0.109 0.022

0.5 0.846 0.483 0.001 1.907 1.404 0.011 0.091 0.104 0.022
1 0.735 0.524 0.003 1.894 1.432 0.022 0.086 0.111 0.022
2 0.744 0.399 0.005 1.907 1.435 0.043 0.086 0.110 0.022
5 0.705 0.455 0.013 1.903 1.443 0.105 0.079 0.106 0.022

PRTY 0.1 0.810 0.389 0.0002 1.920 1.320 0.009 0.018 0.022 0.087
(Q2) 0.2 0.740 0.434 0.0004 1.997 1.357 0.018 0.016 0.022 0.085

0.5 0.714 0.332 0.001 1.920 1.353 0.043 0.016 0.022 0.085
1 0.784 0.332 0.002 1.918 1.347 0.087 0.018 0.023 0.087
2 0.693 0.361 0.004 1.928 1.367 0.166 0.015 0.021 0.087
5 0.851 0.219 0.009 1.886 1.334 0.353 0.021 0.023 0.083

TGNA 0.1 0.977 0.492 0.0003 1.940 1.322 0.035 0.008 0.008 0.300
(Q3) 0.2 0.954 0.692 0.001 1.966 1.322 0.068 0.008 0.008 0.298

0.5 0.954 0.725 0.001 1.922 1.326 0.162 0.008 0.008 0.298
1 0.922 0.493 0.002 1.956 1.359 0.295 0.008 0.008 0.295
2 0.878 0.674 0.004 1.616 1.396 0.488 0.007 0.007 0.284
5 0.686 0.657 0.010 1.668 1.485 0.748 0.010 0.013 0.241

MCO 0.1 0.937 0.424 0.0003 1.786 1.359 0.025 0.010 0.010 0.223
(Q4) 0.2 0.956 0.357 0.001 1.840 1.362 0.049 0.010 0.010 0.224

0.5 0.858 0.554 0.001 1.753 1.366 0.118 0.009 0.010 0.222
1 0.947 0.482 0.002 1.793 1.369 0.219 0.010 0.010 0.219
2 0.946 0.737 0.004 1.687 1.377 0.385 0.010 0.010 0.216
5 0.891 0.072 0.011 1.715 1.476 0.655 0.014 0.015 0.192

Table 16: Estimation for different no trade intervals (NT reported in seconds) for the median stock by
market capitalization within each market capitalization quartile. The last three columns report PIN, Γ
and Λ measures as described in Section 5 and in this appendix.
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A.4. Hasbrouck Decomposition - Calibration of the FTT

In this section we explain how we calibrate λH , the size of the increase of the asset value

on good event days. The parameters λH and λL in our model refer to the upward and

downward movements of asset values on which informed traders have private information.

As we explain in the Section 6, if all price volatility from one day to the next were due to

the aggregation of private information by the market price, we would be able to directly

estimate λH and λL.

However, in actual financial markets, not all observed stock price movements from one

day to the next are due to informed trading; rather, they may be due to the release of public

information. To calibrate λH using stock price data, we need to isolate the variability in

stock prices that is due to informed trading. To do so, we use the variance decomposition

proposed by Hasbrouck (1991) that decomposes the variance of log price changes into a

trade-correlated component, interpreted as the component driven by private information,

and a trade-uncorrelated component.

We calculate Hasbrouck’s variance decomposition using intraday quote updates and all

trades that occur during continuous trading. We use a lag length of 500 for the bivariate

VAR. For each stock s in our sample, we obtain an estimate of Hasbrouck’s R2 measure,

which gives the fraction of the variance of log price changes that can be attributed to private-

information based trading. We denote this fraction for stock s by R2
w(s); if we denote by

σp(s) the standard deviation of daily percentage price changes, then the standard deviation

of daily price changes due to private information is Rw(s)σp(s).

Following equation (11) in the paper, then:

λH(s) = Rw(s)σp(s)

√
1− δ(s)
α(s)δ(s)

.

Table 17 reports the square root of Hasbrouck’s R2
w measure, the standard deviation of

log price changes, σ, and λH for all 60 stocks in our sample.

ticker Rw σ λH ρ̄N ρ̄I ρ̄

Q1 GHM 0.47 0.02 0.01 150 150 102
VPG 0.30 0.02 0.003 115 115 32
VRS 0.30 0.04 0.01 211 12 11
NGVC 0.35 0.04 0.02 207 207 168
GEN 0.42 0.03 0.01 198 198 112
TREC 0.30 0.02 0.005 113 113 49
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RUBI 0.45 0.04 0.02 236 236 199
ECOM 0.39 0.03 0.01 125 125 114
RRTS 0.41 0.03 0.03 258 23 20
LL 0.47 0.03 0.02 234 6 6
NC 0.50 0.09 0.04 815 98 87
MCS 0.28 0.02 0.003 73 73 30
CBZ 0.43 0.01 0.004 100 100 37
CIVI 0.39 0.02 0.01 130 130 88
MTW 0.44 0.09 0.04 503 503 359

Q2 DYN 0.45 0.04 0.01 251 251 127
FTAI 0.27 0.01 0.004 37 37 32
ELY 0.30 0.02 0.005 68 68 45
CUDA 0.34 0.02 0.01 288 5 5
HRI 0.44 0.02 0.01 111 111 109
TPC 0.30 0.02 0.01 112 112 66
AZZ 0.38 0.02 0.01 122 122 64
PRTY 0.33 0.02 0.01 124 124 61
SEM 0.37 0.02 0.004 166 166 40
HTZ 0.47 0.05 0.02 329 329 216
ARCH 0.43 0.02 0.01 131 131 56
KBR 0.26 0.02 0.03 315 315 14
CMC 0.29 0.02 0.01 85 85 75
ESL 0.42 0.03 0.01 177 177 70
KNX 0.39 0.02 0.01 82 82 62

Q3 AEO 0.46 0.03 0.03 271 271 76
LM 0.31 0.01 0.01 56 56 38
ALE 0.27 0.01 0.002 42 42 22
OGS 0.36 0.01 0.004 40 40 32
ENS 0.46 0.02 0.01 87 87 66
RDN 0.35 0.02 0.01 59 59 57
VEEV 0.42 0.02 0.01 93 93 87
TGNA 0.28 0.03 0.01 99 99 96
SON 0.28 0.01 0.005 49 49 23
PKI 0.29 0.01 0.004 42 42 21
PF 0.30 0.01 0.003 47 47 31
JEC 0.35 0.01 0.003 78 78 28
NI 0.37 0.01 0.005 48 48 24
SPB 0.52 0.02 0.01 102 102 67
ROL 0.30 0.01 0.003 39 39 27

Q4 RAD 0.60 0.05 0.06 608 608 142
TMK 0.30 0.01 0.003 27 27 22
CBG 0.29 0.01 0.003 53 53 30
PFG 0.28 0.01 0.002 47 47 20
ABC 0.43 0.02 0.003 152 152 34
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ES 0.39 0.01 0.001 64 64 15
AMP 0.49 0.01 0.01 77 77 50
MCO 0.46 0.01 0.005 49 49 46
IP 0.42 0.01 0.01 86 86 28
HPQ 0.57 0.01 0.01 99 99 94
DE 0.46 0.01 0.005 68 68 48
MMC 0.30 0.01 0.02 241 241 3
BDX 0.47 0.01 0.01 50 50 50
PEP 0.40 0.01 0.005 47 47 16
CVX 0.43 0.01 0.01 78 78 21

Table 17: Hasbrouck decomposition, calibration of λH , and tax thresholds (in bps) for individual stocks
grouped by market capitalization quartiles.

A.5. Tax threshold for τ < 1 stocks

tax δl δh Pr(δd∞ = δl|vdH) Pr(δd∞ = δh|vdL)

VRS 5 0.09 0.91 0.03 0.25
10 0.14 0.85 0.04 0.44
20

RRTS 5 0.04 0.96 0.12 0.01
10 0.07 0.93 0.23 0.02
20 0.19 0.80 0.71 0.02

LL 5 0.26 0.73 0.28 0.26
10
20

NC 5 0.01 0.99 0.004 0.02
10 0.05 0.94 0.02 0.12
20 0.04 0.96 0.02 0.09

CUDA 5 0.24 0.75 0.02 0.85
10
20

Table 18: Belief thresholds and probabilities of wrong convergence for stocks with estimated τ < 1: thresh-
olds δl and δh as well as the probabilities of wrong convergence as given in Proposition 3. Empty cells
indicate that there is no trading in these stocks for the indicated tax rate.
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A.6. PCIN and non-approximated PIN for different rates of the FTT

Table 19 shows the PIN by quartile (as reported also in the main text - Section 5) together

with the Probability of Correct Informed Trade (PCIN),

PCIN =
αµ

αµ+ ε(1− αµ)

(
1

2
+

1

4
τ

)
,

that is, the probability of an informed trade made by a trader with a correct signal, intro-

duced by Cipriani and Guarino (2014). Since τ is estimated to be very high, PCIN estimates

are very close to PIN estimates; the exceptions are those stocks for which τ is less than one,

where the PIN is 46% and the PCIN 25%.

Q1 Q2 Q3 Q4 τ < 1 stocks all stocks

PIN 0.090 0.018 0.013 0.006 0.456 0.015
PCIN 0.088 0.018 0.013 0.006 0.247 0.015

Table 19: Median PIN and PCIN across all stocks, for each quartile, and for those stocks with τ < 1.

PIN and PCIN are approximate measures of informed trading, since they assume that

all informed traders and noise traders trade independently of the price, as is the case when

they are price inelastic. In Table 20, we present an alternative measure of informed trading

at time 1 that takes into account the impact of the bid-ask spread and, if present, of a tax.

Since, for the median parameters for all quartiles, noise traders are more price elastic than

informed traders, the probability of informed trading as measured by the PIN increases with

the tax rate. For τ < 1 stocks, informed traders are more price elastic than noise traders

and the probability of informed trading decreases in the tax.

tax (bps) Q1 Q2 Q3 Q4 τ < 1 stocks all stocks

0 0.098 0.018 0.013 0.006 0.398 0.015
5 0.102 0.017 0.014 0.006 0.337 0.016
10 0.107 0.019 0.015 0.006 0.078 0.015
20 0.129 0.023 0.019 0.008 0.000 0.017

Table 20: Median non-approximated PIN across market capitalization quartiles, for all stocks and for τ <
1 stocks.
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B. The Likelihood Function

In our empirical analysis, we estimate the model’s parameters through maximum likeli-

hood using financial market data for a period with no transaction tax. Here, we provide a

detailed characterization of the model’s likelihood function. The derivation of the likelihood

function follows a similar logic as in Cipriani and Guarino (2014).

In Section 2.4, we described the equilibrium behavior of market participants for any

history of trades. As the bid and ask prices are uniquely determined by the trade sequence

and thus do not contain any additional information once we condition on the order flow, we

can write the likelihood function in terms of the history of trades only.

Let us denote the history of trades at the end of a trading day by hd := hdTd , where Td is

the number of trading times on day d. We denote the likelihood function by

L(Φ; {hd}Dd=1) = Pr
(
{hd}Dd=1|Φ

)
(12)

where Φ := {α, δ, µ, τ, ν, ε} is the vector of parameters.

Next recall that on day d all market participants know vd−1, and the occurrence of

information events is independent across days. Thus, the sequence of trades on day d only

depends on the realization of V d and not on any trading data from days other than d. We

can therefore write the likelihood function as the product of the likelihoods of daily trading

sequences

L(Φ; {hd}Dd=1) = Pr
(
{hd}Dd=1|Φ

)
= ΠD

d=1 Pr(hd|Φ). (13)

Now consider the likelihood of a sequence of trades for a given day. Unlike in the standard

market microstructure model of Easley and O’Hara (1987) where only the total number

of buys and sells matters for the probability of a given history of trades, in our model,

the sequence of trades is important. Informed and price-elastic noise traders update their

valuations depending on the trading sequence, and, thus, their probability of trading depends

on the observed history of trades up to the time in which they act. Therefore, we compute the

likelihood function for the history of trades on day d starting at time 1 and, then, recursively

up to time Td. At trading time t the probability of a given action xdt depends on the sequence

of previous trades hdt , and we have that

Pr
(
hdt+1|Φ

)
= Pr(xdt |hdt ,Φ) Pr

(
hdt |Φ

)
. (14)
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To compute Pr
(
xdt |hdt ,Φ

)
, we express it in terms of the value-contingent trading probabilities

Pr
(
xdt |hdt ,Φ

)
= Pr

(
xdt |hdt , vdH ,Φ

)
Pr
(
vdH |hdt ,Φ

)
+ (15)

Pr
(
xdt |hdt , vdL,Φ

)
Pr
(
vdL|hdt ,Φ

)
+ Pr

(
xdt |hdt , vd−1,Φ

)
Pr
(
vd−1|hdt ,Φ

)
.

We now illustrate how to compute the value-contingent probabilities of a trade xdt . Con-

sider period t = 1 and suppose, for instance, that there was a buy order, xd1 = buy. The

probability of such an order for a given asset value depends on the buy thresholds for informed

and price-elastic noise traders, βd1 and κd1, which are functions of the model’s parameters.

Having obtained the value-contingent probabilities of a buy order in period 1, we can then

update the market makers’ beliefs using Bayes’ rule. Hence, consider period t and suppose

again that xdt is a buy order. The equilibrium buy thresholds, βdt and κdt , will be functions

of the market maker’s beliefs given the trading history up to (but not including) period t,

as well as the parameters of the model.

Once we have solved for βdt and κdt , we can compute the probability of a buy order on a

good-event day:

Pr
(
xdt = buy|hdt , vdH ,Φ

)
= (16)

µ
[
1− FH

(
βdt |vdH

)]
+ (1− µ)ε

(
1− κdt

)
,

where FH(·|vdH) is the cumulative distribution function of fH(·|vdH). Recall that a trader

active at time t is an informed trader with probability µ and a noise trader with probability

1 − µ. An informed trader buys if his signal is above the buy threshold βdt , which happens

with probability 1− FH(βdt |vdH). A noise trader receives a pseudo signal with probability ε,

in which case he buys if his signal is larger than κdt , which happens with probability 1− κdt
(as these pseudo signals are uniformly distributed). Similarly, on a bad-event day, we have

that

Pr
(
xdt = buy|hdt , vdL,Φ

)
= (17)

µ
[
1− FL

(
βdt |vdL

)]
+ (1− µ)ε

(
1− κdt

)
.

On a no-event day (V d = vd−1), a market order can only come from a noise trader. Therefore,

Pr
(
xdt = buy|hdt , vd−1,Φ

)
= ε

(
1− κdt

)
. (18)
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By the same logic, we obtain the value-contingent probabilities for a sell order at t by

computing σdt and γdt . The probability of a sell order on a good event day, for instance, is

Pr
(
xdt = sell|hdt , vdH ,Φ

)
= (19)

µFH
(
σdt |vdH

)
+ (1− µ)εγdt .

The probability of a no-trade is just the complement to the probabilities of a buy and of

a sell. Finally, to compute Pr
(
xdt |hdt ,Φ

)
, we need the conditional probabilities of V d given

the history until time t; that is, Pr
(
V d = v|hdt ,Φ

)
for v ∈ {vdL, vd−1, vdH}. These can also be

computed recursively by using Bayes’s rule.
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C. Proofs of Analytical Results

C.1. Proof of Proposition 1

First, observe that since ν ≥ 1, a noise trader with shock Nd
t = 1 believes the asset

value to be vdH with probability 1 and a noise trader with shock Nd
t = 0 believes the asset

value to be vdL with probability 1. It follows that if the tax rate ρ is so high that no noise

trader trades, no informed trader will trade either; therefore, to prove the first part of the

proposition, we will focus on noise traders. At t = 1, no noise trader trades if and only if

the following two inequalities hold:

E(V d|Nd
1 = 1) < ad1(1 + ρ),

E(V d|Nd
1 = 0) > bd1(1− ρ),

that is, a noise trader with the highest signal (Nd
1 = 1) does not want to buy and a noise

trader with the lowest signal (Nd
1 = 0) does not want to sell given ask and bid prices and

the transaction tax. Taking into account that when, in equilibrium, informed traders do not

trade, the bid and ask are both equal to the unconditional expected value of the asset, and

that E(V d) = vd−1, noise traders do not trade if and only if

vd−1(1 + λH) < vd−1(1 + ρ),

vd−1(1 + λL) > vd−1(1− ρ),

which simplifies to

λH < ρ and

(
δ

1− δ

)
λH < ρ.

These inequalities are jointly satisfied if and only if

ρ > max

{
1,

δ

1− δ

}
λH =

2δ

1− |2δ − 1|
λH ≡ ρ̄N .

Finally, note that as noise traders do not trade, the market does not open.

We now derive conditions under which informed traders do not buy or sell assuming that

noise traders continue to be active. We start with the case in which informed traders do not

buy. The informed trader with the highest ex-post valuation is a trader with signal Sdt = 1.

The probability they attribute to an increase in the asset value after observing history hdt
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and this signal is

qh(p) ≡ Pr
(
V d = vdH |Sdt = 1, hdt

)
=

(1 + τ)p

(1 + τ)p+ (1− τ)(1− p)
,

where, to simplify notation, we denote Pr
(
V d = vdH |hdt

)
by p. Informed traders do not buy

whenever their highest possible ex-post valuation is below the current ask price including

the transaction tax, that is[
1 + qh(p)λH − (1− qh(p))

(
δ

1− δ

)
λH

]
vd−1 < (1 + ρ) ask.

If informed traders do not buy, the market maker sets the ask price taking into account

that any buy will come from a noise trader. In that case, the market maker’s posterior

Pr
(
V d = vdH |buydt , h

d
t

)
is

(1− µ)ε(1− κ)a p

(1− µ)ε(1− κ) a+ ε(1− κ)(1− a)
= ã p,

where 1 − κ is the probability that a noise trader with a pseudo-signal buys after history

hdt
36 and a = Pr

(
V d 6= vd−1|hdt

)
. ã is the market maker’s posterior probability that an event

has occurred given that a noise trader is active in t, that is,

ã = Pr
(
V d 6= vd−1|noise trader, hdt

)
=

(1− µ)a

1− µ a
.

The market maker’s valuation of the asset if a noise trader buys after history hdt is then given

by

vd−1 +

[
ã p−

(
δ

1− δ

)
ã (1− p)

]
λH v

d−1 = vd−1 + ã

(
p− δ
1− δ

)
λH v

d−1.

It follows that informed traders do not buy whenever their highest possible valuation is below

the maker maker’s valuation of the asset (plus tax) when only noise traders are active. This

36 Here, κ designates noise traders’ threshold buy pseudo-signal after history hdt . Recalling that the
pseudo-signal is uniformly distributed on [0, 1] irrespective of the asset value, the probability of a noise
trader buying is 1− κ irrespective of the day d event.
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condition is met whenever

qh(p)− δ − (1 + ρ)ã(p− δ) < (1− δ) ρ
λH

. (20)

Analogous arguments establish the condition under which informed traders do not sell, as-

suming that noise traders continue to sell. This condition is given by

(1− ρ)ã(p− δ)− (ql(p)− δ) < (1− δ) ρ
λH

, (21)

where ql(p) is the posterior probability an informed trader with the lowest possible signal,

Sdt = 0, assigns to the asset having increased in value, that is

ql(p) =
(1− τ)p

(1− τ)p+ (1 + τ)(1− p)
.

For τ ≥ 1 the proof that no informed trader trades is identical to that for noise traders.

Now consider τ < 1. At t = 1, we have p = Pr(V d = vdH |V d 6= vd−1) = δ. Thus, from (20),

the condition under which informed traders do not buy at t = 1 is given by

qh(p)− δ < (1− δ) ρ
λH

.

This can be simplified to yield

ρ >

[
2δ τ

1− (1− 2δ)τ

]
λH .

Likewise, from (21) we obtain the condition under which informed traders do not sell at

t = 1, which is

δ − ql(p) < (1− δ) ρ
λH

,

which is equivalent to

ρ >

[
2δτ

1 + (1− 2δ)τ

]
λH .
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It follows that informed traders neither buy nor sell whenever

ρ > ρI ≡ max

{
2δ min{τ, 1}

1− (1− 2δ) min{τ, 1}
,

2δ min{τ, 1}
1 + (1− 2δ) min{τ, 1}

}
λH

=

(
2δ min{τ, 1}

1−min{τ, 1}|1− 2δ|

)
λH .

C.2. Proof of Corollary 1

A similar reasoning to that used for the proof of Proposition 1 shows that informed

traders are active on both sides of the market for at least some signal realizations if and only

if

min

{
(1 + τ)δ

(1 + τ)δ + (1− τ)(1− δ)
, 1

}
λH > ρ,

min

{
(1− τ)δ

(1− τ)δ + (1 + τ)(1− δ)
, 1

}(
δ

1− δ

)
λH > ρ.

The two inequalities are jointly satisfied if and only if

ρ <

(
2 min{τ, 1} δ

1 + min{τ, 1}|2δ − 1|

)
λH .

C.3. Proof of Lemma 1

Lemma 1. Consider a tax rate ρ < ρ̄. In equilibrium, the market maker’s posterior belief

that an event has occurred on day d, αdt =: Pr(V d 6= vd−1|hdt ), converges almost surely to

1V d 6=vd−1 as t→∞.

Proof The process {αdt }∞t=1 is a bounded martingale under the filtration generated by the

successive trades on day d. Hence, by the Martingale Convergence Theorem, αdt converges

almost surely.

Now consider a given day d and suppose an event has occurred, V d 6= vd−1. First, suppose

there is a set of histories with positive measure for which αdt converges to a value in (0, 1).

Then for such trading histories, for any arbitrary value η > 0, there exists a time Tη such

that for all t > Tη, after observing any given action (buy, sell or no trade), the change in

market maker’s beliefs about the occurrence of an event is smaller than η. This means that

the probabilities of observing any given action (buy, sell, or no trade) conditional on whether

an event has occurred or not cannot differ by an amount larger than εSη where 0 < εS <∞
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can be obtained from Bayes’ Rule. Hence, for instance, for a sell order in t it must be that

∣∣(µF (σdt |V d) + (1− µ)εγdt
)
− εγdt

∣∣ < εSη,

where σdt is informed traders’ threshold sell signal and γdt is noise traders’ threshold sell

pseudo-signal. We have ∣∣F (σdt |V d)− εγdt
∣∣ < εSη

µ
, (A1)

for both V d = vdL and V d = vdH . Similarly, for a buy order, it must be that

∣∣(µ (1− F (βdt |V d)
)

+ (1− µ)ε
(
1− κdt

))
− ε

(
1− κdt

)∣∣ < εBη,

that is, ∣∣(1− F (βdt |V d)
)
− ε(1− κdt )

∣∣ < εBη

µ
, (A2)

for both V d = vdL and V d = vdH .

As the probability of selling by a noise trader cannot depend on the asset value, for

equality (A1) to be satisfied, it must be that
∣∣F (σt|V d = vdL)− F (σt|V d = vdH)

∣∣ is arbitrarily

close to zero. But this is only possible if informed traders sell for almost all signal realizations

or for almost no signal realization.37 The same considerations apply to the buy order. Since,

however, ε < 1, the case in which informed traders sell for almost all signal realizations

(F (σdt |V d) = 1) cannot satisfy (A1).38 Suppose instead that an informed trader does not

sell for almost any signal realization (F (σdt |V d) = 0); in this case, equality (A1) could be

satisfied if γdt = 0 (i.e. noise traders do not sell for almost any signal realization). By the

same logic, however, for (A2) to be satisfied as well, noise traders must also not buy for

almost any signal realizations (κdt = 1). If both γdt = 0 and κdt = 1, noise traders would never

trade (for almost all signal realization). This is, however, impossible, since noise traders find

it optimal to buy (or sell) at time 1 for a positive measure of signal realizations (ρ < ρN)

and, therefore, must find it optimal to buy (and to sell) at any time t for at least a positive

measure of signal realizations.

37 For any σt in the interior,
∣∣F (σt|V d = vdL)− F (σt|V d = vdH)

∣∣ is bounded away from zero.
38 Note that, even if ε = 1, the same argument would hold. Indeed, since ν ≥ 1, there is always a shock

such that a noise trader’s valuation of the asset is vdH or vdL, that is, the probability of a noise trader
buying (or selling) can never be arbitrarily close to 1.
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To conclude the proof, we must show that αdt cannot converge to 0. Suppose it did.

Then, for instance, on a good-event day, the probability of a sell order would converge to

µF (σdt |V d = vdH) + (1− µ)ε
1

2
,

since the market maker would set both bid and ask prices (approximately) equal to the

unconditional expected value, vd−1. This probability is different from that of a no-event day,

which equals ε(1/2). The same argument holds for a buy order and a no trade. Hence, as t

goes to infinity, the market maker would learn that αdt 6= 0. The same argument applies to

a bad-event day and similar arguments prove the convergence of αdt to 0 when V d = vd−1.

This concludes the proof.

Intuitively, since ν ≥ 1, noise traders always trade (either buy or sell) for some pseudo

signal realizations even in the presence of a tax.39 Therefore, at any time t, the probability of

a buy or sell order is different on an event day and a no-event day, which allows the market

maker to update his belief αdt .

C.4. Proof of Lemma 2

Lemma 2. Consider a tax rate ρ < ρ̄. Let δdt =: Pr(V d = vdh|V d 6= vd−1, hdt ). If τ < 1

and δλH/(1 − δ) < 1, in equilibrium, there exist an event probability ā < 1 and functions

0 < δl(α
d
t ) < δh(α

d
t ) < 1 such that for αdt > ā informed traders do not trade after history hdt

whenever either δdt < δl(α
d
t ) or δdt > δh(α

d
t ).

Proof Treating the condition under which no informed trader buys as an equality yields a

quadratic equation in p,

qh(p)− δ − (1 + ρ)ã(p− δ) = (1− δ) ρ
λH

, (22)

where ã, the market maker’s posterior event probability after having observed a noise trader

39 Recall that the assumption ρ < ρ means that at time 1 a positive measure of noise traders finds it
optimal to buy and a positive measure finds it optimal to sell given their signal realizations. Since ν ≥
1, a positive measure of noise traders does not change their valuation of the asset depending on the
history of trades. Therefore, even when the prices change, a positive measure of noise traders continues
to buy or to sell.
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trade, is as defined before

ã(a) =
(1− µ)a

1− µa
.

If ρ < ρI , both roots are real and decreasing in the prior event probability a. The original

inequality holds whenever p is higher than the larger root, denoted by p1b , or lower than the

smaller root, denoted by p2b . Furthermore, for τ < 1, the larger of the two roots tends to

+∞ as a goes to zero and is strictly smaller than 1 when a = 1. It follows that there exists a

value 0 < ah < 1 such that for all a > ah informed traders stop buying whenever p is higher

than p1b(a) < 1. ah is given by the solution to p1b(ah) = 1, which yields

ã(ah) =

(
1

1 + ρ

)(
λH − ρ
λH

)
< 1 ⇒ ah < 1.

Similarly, treating the condition under which no informed trader sells as an equality yields

a quadratic equation in p,

(1− ρ)ã(p− δ)− (ql(p)− δ) = (1− δ) ρ
λH

. (23)

Both roots are real for ρ < ρI and increasing in a. Informed traders do not sell whenever

p is higher than the larger root, denoted by p1s, or lower than the smaller root, denoted by

p2s. The smaller of the two roots tends to −∞ as a goes to zero and, if λH < (1− δ)/δ, is is

strictly above 0 for a = 1. Thus, there exists a value al such that for all a > al no informed

trader sells whenever p is lower than p2s(a) > 0. al is given by the solution to p2s(al) = 0,

which yields

ã(al) =

(
1

1− ρ

)[
1− (1− δ)ρ

δ λH

]
< 1 ⇒ al < 1.

Finally, let

ā = max{al, ah} , δh(a) = max{p1b(a), p2b(a), p1s(a)p2s(a)}

and

δl(a) = min{p1b(a), p2b(a), p1s(a)p2s(a)}.

The above arguments establish that ā < 1 and 0 < δl(a) < δh(a) < 1 which concludes the

proof.

Intuitively, when after a history of trading the market’s belief about the likelihood of

a good event is very high or very low, the asymmetry of information between the market
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maker and informed traders becomes small. In this circumstance, the informational content

of a private signal is of little importance with respect to that of the history of trades. There

will be a point when the valuations of all informed traders (irrespective of the signal they

receive) become so close to the bid and ask prices that the expected gain from trading upon

private information becomes smaller than the tax. At this point, all informed traders choose

not to trade.

Note that the thresholds for which informed traders stop trading are not constant dur-

ing the day; they change as a function of the market maker’s belief about an information

event having occurred.40 Therefore, it is possible that after informed traders have stopped

trading, they resume doing so as the market maker’s updates his belief on the likelihood of

an information event.

C.5. Proof of Proposition 2

By Lemma 1 we know that on event days αdt converges to 1. By Lemma 2, we know that

there are two thresholds δl(1) and δh(1) (0 < δl(1) < δh(1) < 1) such that informed traders

do not trade for δdt < δl(1) or δdt > δh(1). Moreover, since δdt is a bounded martingale, it must

converge. If it converged to any value in (δl(1), δh(1)), informed traders would keep buying or

selling for some signal realizations (since for αdt = 1 there is never herding). Since informed

traders trade only when their expected gain is greater than the tax paid, the market maker

would update δdt by a an amount bounded away from zero, a contradiction.

C.6. Proof of Proposition 3

We provide the proof for V d = vdH . The proof for V d = vdL is analogous.

Step 1. The likelihood ratio
Pr(V d=vdL|h

d
t )

Pr(V d=vdH |h
d
t )

is a martingale conditional on V d = vdH .

Proof of step 1. Recall that δdt =: Pr
(
V d = vdH |V d 6= vd−1, hdt

)
. We can then write

Pr
(
V d = vdH |hdt

)
= αdt δ

d
t and Pr

(
V d = vdL|hdt

)
= αdt (1− δdt ). We then have:

Pr
(
V d = vdL|hdt

)
Pr
(
V d = vdH |hdt

) =
1− δdt
δdt

.

We have to show that

40 The reason is that the market maker’s belief on whether the event has occurred affects the market
maker’s expectation and therefore the bid and ask prices that he sets.
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E
(

1− δdt+1

δdt+1

| hdt , V d = vdH

)
=

1− δdt
δdt

.

By Bayes’s rule,

E
(

1− δdt+1

δdt+1

| hdt , vdH
)

= E
(

Pr(Xd
t+1|hdt , vdL)(1− δdt )

Pr(Xd
t+1|hdt , vdH)δdt

| vdH
)

=

(
1− δdt
δdt

) ∑
x∈{sell,nt,buy}

Pr(Xd
t+1 = x|hdt , vdH)

[
Pr(Xd

t+1 = x|hdt , vdL)

Pr(Xd
t+1 = x|hdt , vdH)

]
=

1− δdt
δdt

.

Step 2. The probability that the belief Pr(V d = vdH |hdt ) remains stuck at a value lower than

δl(1) on an good event day (V d = vdH) is bounded above by

δl(1)[δh(1)− δ]
δ[δh(1)− δl(1)]

.

Proof of step 2. Consider the time T at which informed traders stop trading (as defined

in Proposition 3) and assume that by that time the market has learned that an event has

occurred, i.e. αdT = 1. Since the likelihood ratio
Pr(V d=vdL|h

d
t )

Pr(V d=vdH |h
d
t )

is a martingale conditional on

V d = vdH , we have that

E
(

1− δdT
δdT

| V d = vdH

)
=

1− δ
δ

.

As, by Lemma 2, the posterior beliefs δdt have to converge to either δh(1) or δl(1) we have

E
(

1− δdT
δdT

| vdH
)

= Pr(δdT = δh(1)|vdH)

(
1− δh(1)

δh(1)

)
+ (1− Pr(δdT = δh(1)|vdH))

(
1− δl(1)

δl(1)

)
,

from which we obtain that

Pr(δdT = δh(1)|vdH) =
δh(1)[δ − δl(1)]

δ[δh(1)− δl(1)]
,

and

Pr(δdT = δl(1)|vdH) =
δl(1)[δh(1)− δ]
δ[δh(1)− δl(1)]

.

Finally, note that since for αdt < 1, δh(α
d
t ) can be higher than δh(1) and δl(α

d
t ) can be

lower than δl(1), informed traders may stop trading before αdt has converged to 1. Hence

Pr(δdT = δl(1)|vdH) is only bounded from above by the expression derived assuming αdT = 1.

66



Defining δl ≡ δl(1) and δh ≡ δh(1) we obtain the expressions given in Proposition 3 of Section

3.1.

To understand why the formulas in Proposition 3 are only probability bounds, it is useful

to focus first on the case of no event uncertainty (that is, αdt = α = 1 for any t). In this case,

the market maker stops updating Pr(V d = vdH |hdt ) as soon as the thresholds are reached.

Moreover, in this case, the probabilities that Pr(V d = vdH |hdt ) converges to the low threshold

when V d = vdH or to the high threshold when V d = vdL are equal to (1−δh(1))(δ−δl(1))
(1−δ)(δh(1)−δl(1))

and
δl(1)(δh(1)−δ)
δ(δh(1)−δl(1))

respectively. In contrast, when there is event uncertainty, the market maker,

in principle, may stop learning about whether the event is good or bad before the belief

on whether an information event has occurred has converged to 1. This may occur when

Pr(V d = vdH |hdt ) is above δh(1) or below δl(1). Since the levels at which the belief may be

stuck are different, so are the probabilities of these events. That is the reason the probabilities

that the price is misaligned with the fundamental value, indicated in Proposition 3, are only

bounds.
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D. Private Values for Noise Traders

D.1. Equivalence of pseudo signals and multiplicative private values.

In this section, we show that the pseudo signal setup generates multiplicative private

value with a time varying distribution. Specifically, we prove the following proposition:

Proposition. For any history of trades h and realization of the pseudo signal n, a noise

trader’s valuation of the asset can be expressed as a multiplicative private value shock ρ with

history-dependent distribution function Fh such that

Ẽ (V |h, n) = ρE(V |h),

where Ẽ is the expectation of a noise trader obtained via Bayesian updating given a realization

of the pseudo signal.

Proof. We normalize the fundamental value of the asset V d as follows

V = (1− δ)
(
V d − vd−1

λHvd−1

)
,

The normalized value is−δ, 0, 1− δ on bad, no-event and good-days respectively. The market

maker’s unconditional expectation of the asset value is

E(V ) = (1− α)0 + αδ(1− δ)− α(1− δ)δ = 0

and its conditional expectation after history h is

E(V |h) = (1− δ) Pr(λ = λH |h)− δ Pr(λ = λL|h) = (1− δ)p− δq.

A noise trader who receives a pseudo signal n after history h has a valuation of the asset of

Ẽ(V |n, h) = (1− δ)pAh(n)− δqBh(n),

where

Ah(n) =


0 if n ≤ (ν − 1)/ν

g̃H(n)
pg̃H(n)+qg̃L(n)+(1−p−q)ν/(2−ν) if (ν − 1)/ν < n < 1/ν

1 if n ≥ 1/ν
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and

Bh(n) =


1 if n ≤ (ν − 1)/ν

g̃L(n)
pg̃H(n)+qg̃L(n)+(1−p−q)ν/(2−ν) if (ν − 1)/ν < n < 1/ν

0 if n ≥ 1/ν.

Note that Ah(n)p is a noise trader’s pseudo posterior probability of a good event day given

history h and pseudo signal n. As this pseudo posterior probability has been obtained via

Bayesian updating using a valid prior probability 0 ≤ p ≤ 1 and state-dependent pseudo

densities for n, a noise trader’s posterior is a martingale, that is,

Ẽ(Ah p|h) = Ẽ(Ah|h)p = p ⇒ Ẽ(Ah|h) = 1.

Similar reasoning implies that Ẽ(Bh|h) = 1.

We now show that a noise trader’s valuation of the asset after history h and having received

a pseudo signal n can be equivalently expressed as a multiplicative private value shock ρ,

that is,

Ẽ(V |n, h) = ρE(V |h) with Ẽ(ρ|h) = 1.

Before a noise trader observes n, she has the same beliefs as the market maker, that is

E(V |h) = Ẽ(V |h). To find ρ, we write the above expression as

(1− δ)pAh(n)− δqBh(n) = ρ [(1− δ)p− δq] .

As long as (1− δ)p 6= δq, this allows us to solve for ρ,

ρ = β Ah(n) + (1− β)Bh(n) where β =
(1− δ)p

(1− δ)p− δ q
.

As Ẽ(Ah|h) = Ẽ(Bh|h) = 1, we indeed have Ẽ(ρ|h) = 1 as claimed.

It is important to note that unless p = q = 0, E(ρ|h) 6= 1 since the market market un-

derstands that the pseudo signal N is uniformly distributed on [0, 1]. Hence, after a given

history of trades, the market maker typically expects the average noise trader’s valuation to

differ from its own valuation.

Note that Ah(n) is increasing in n and Bh(n) is decreasing in n. If (1 − δ)p > δq we

have β > 1. In that case, ρ is increasing in n. If (1 − δ)p < δq, then β < −1 and ρ

is decreasing in n. In both cases, ρ is monotonic in n and the inverse ρ−1(x) = n exists
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Figure 2: CDF of private value shock ρ for (1− δ)p > δq.

where x = β Ah(n) + (1 − β)Bh(n). We can therefore derive the distribution of the private

value shock ρ conditional on the history h under the market maker’s beliefs. We denote its

distribution function by Fh. For (1− δ)p > δq we have

Fh(ρ ≤ x) = P (N ≤ ρ−1(x)) = ρ−1(x).

The first equality is a consequence of ρ being an increasing function of n and the last equality

follows from the fact that, under the marker maker’s beliefs, N is uniformly distributed on

[0, 1] irrespective of the history h. Note that as the mapping ρ−1 implicitly depends on the

history h via p and q, so does the distribution of ρ. Similarly, for (1− δ)p < δq we have

Fh(ρ ≤ x) = P (N ≥ ρ−1(x)) = 1− ρ−1(x),

as, for this case, ρ is decreasing in n.
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D.2. Microfoundation of Pseudo Signals

In this section we provide a microfoundation of the noise traders’ private values given

by the pseudo signals; in particular, we prove that hedging motives generate noise traders’

valuations with the same distribution as those generated by the pseudo-signals.

Let us denote the private value for a noise trader receiving a pseudo signal ndt by Bd ≡
E(V d|hdt , ndt ) and the distribution of these private values by fBd(Bd).

Proposition 1 Consider noise traders with preferences represented by a HARA utility

function over wealth w with risk aversion parameter r distributed on [0, 1]: u(w, r) = w(r −
2)/(2w(r−1)− r). Assume they have an endowment of the asset of either V d or 1−V d with

equal probability. There exists a distribution of r such that the distribution of private values

from the asset for these noise traders is equal to fBd(Bd).

Proposition 2 Consider noise traders with preferences represented by a CRRA utility

function over wealth w with risk aversion parameter equal to 2, that is, u(w) = −(1/w).

Assume they have an endowment of M units of cash and either V d or 1 − V d of the asset

with equal probability . There exists a distribution of M on the interval [vL,∞] such that the

distribution of private values from the asset for these noise traders is equal to fBd(Bd).

Proof of Propositions

First we establish some results useful to prove both propositions.

Preliminary result

Let us assume that at time t, Pr(V d = vH |hdt , ndt ) = p and Pr(V d = vL|hdt , ndt ) = q. Let

us consider the transformation

V = (1− δ)
(
V d − vd−1

λHvd−1

)
,

and note that V is distributed on {−δ, 0, 1 − δ}. Its expectation is (1 − δ)p − δq. The

noise trader’s private value in our model is defined as

Bd = E(V d|hdt , ndt ) =
∑
i

V d
i Pr(V d

i |hdt , ndt ).

Let us define
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B = E(V |hdt , ndt ) =
∑
i

Vi Pr(Vi|hdt , ndt ).

Note that B = ((1 − δ)/(λHv
d−1))Bd − vd−1. Since Bd is a one-to-one, differentiable,

function g(B) of B, the distribution fBd of Bd is given by

fBd(Bd) = fB(g−1(Bd))

∣∣∣∣ dBdBd

∣∣∣∣ .
We, therefore, prove our result for the random variable V.

Pseudo signals

First, we compute a noise trader’s private value, given their beliefs p and q and their

pseudo signal n:

Pr(V = 1− δ|n) = (((1 + ν(2n− 1))p)/((1 + ν(2n− 1))p+ (1− p− q) + (1− ν(2n− 1))q))

Pr(V = 0|n) = (((1− p− q))/((1 + ν(2n− 1))p+ (1− p− q) + (1− ν(2n− 1))q))

Pr(V = −δ|n) = (((1− ν(2n− 1))q)/((1 + ν(2n− 1))p+ (1− p− q) + (1− ν(2n− 1))q))

Therefore,

B = (((1 + ν(2n− 1))p)/((1 + ν(2n− 1))p+ (1− p− q) + (1− ν(2n− 1))q))(1− δ)−

(((1− ν(2n− 1))q)/((1 + ν(2n− 1))p+ (1− p− q) + (1− ν(2n− 1))q))δ =

((p− pδ − pν − qδ + 2pnν + pδν − qδν − 2pnδν + 2qnδν)/(qν − pν + 2pnν − 2qnν + 1).

B is a strictly increasing function of n. Its inverse is

n(B) = (((B−p+pδ+pν+qδ−Bpν+Bqν−pδν+qδν))/(2pν−2Bpν+2Bqν−2pδν+2qδν)).

and its derivative with respect to B is

dn

dB
= ((p(1− δ)(1− p) + q(p+ δ(1− q)))/(2ν(p− pδ + qδ −Bp+Bq)2))
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Finally, the distribution of B is

fB(B) = fn(n(B))

∣∣∣∣ dndB
∣∣∣∣ =

∣∣∣∣ dndB
∣∣∣∣

= ((p(1− δ)(1− p) + q(p+ δ(1− q)))/(2ν(p− pδ + qδ −Bp+Bq)2))

on the support [−δ, 1− δ], since pseudo signals are distributed uniformly on [0, 1].

Proof of Proposition 1

Consider a noise trader who has an endowment of 1 unit of the asset. By selling the asset

they can completely hedge their risk. At time t, the noise trader has expected utility

Eu(w, r) = u(1− δ, r)p+ u(−δ, r)q =

(((1− δ)(r − 2))/(2(1− δ)(r − 1)− r))p+ (((−δ)(r − 2))/(2(−δ)(r − 1)− r))q.

If the noise traders sell the asset at a bid price B, their expected utility is

Eu(w, r) = u(B, r) = ((B(r − 2))/(2B(r − 1)− r)).

To obtain an expression for the noise trader’s private value, we find the lowest price at which

he is willing to sell:

(((1− δ)(r − 2))/(2(1− δ)(r − 1)− r))p+ (((−δ)(r − 2))/(2(−δ)(r − 1)− r))q

= ((B(r − 2))/(2B(r − 1)− r)).

This implies that

B = ((pr2 − 2pr2δ2 − 2qr2δ2 − 2prδ − 2qrδ + 2prδ2 + pr2δ + 2qrδ2 + qr2

δ)/(2r − 4δ + 4r2δ2 + 4pδ + 4qδ + 4rδ + 4δ2 + 2pr2 − 4pδ2 − 4qδ2

− 8rδ2 − 2pr − r2 − 4pr2δ2 − 4qr2δ2 − 6prδ − 6qrδ + 8prδ2 + 2pr2δ + 8qrδ2 + 2qr2δ)).

Let us denote this function by B = h(r). It is equal to 0 for r = 0 (extreme risk aversion)

and to the asset’s expected value, (1− δ)p− δq, for r = 1 (risk neutrality). Therefore, B is
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strictly increasing on the support [−δ, (1− δ)p− δq] with density

fB(B) = fr(h
−1(B))

∣∣∣∣ drdB
∣∣∣∣ .

This distribution is equal to

fB(B) =

∣∣∣∣ dndB
∣∣∣∣ ,

when the distribution of r is

fr(h
−1(B)) =

∣∣∣∣ dsdB
∣∣∣∣ / ∣∣∣∣ drdB

∣∣∣∣
on [0, 1]. Analogous steps for a noise trader with endowment of 1 − V (i.e., who is short

of one unit of the asset) prove the existence of an fr(h
−1(B)) on [0, 1] that has the same

distribution fB(B) on the support [(1− δ)p− δq, 1− δ].

Proof of Proposition 2

Let us study a noise trader’s asset valuation when they have has an endowment of M of

cash (or certainty equivalent of a portfolio uncorrelated with the asset) and an endowment

of 1 unit of the asset. Without hedging, their utility is

Eu(M) = −
(

1

M + 1 + δ

)
p−

(
1

M

)
(1− p− q)−

(
1

M − δ

)
q.

If the noise trader hedges by selling the asset at a bid price B, their expected utility is

Eu(M) = −
(

1

M +B

)
.

They are indifferent between hedging and not when(
1

M + 1 + δ

)
p+

(
1

M

)
(1− p− q) +

(
1

M − δ

)
q =

1

M +B
,

that is, when

B = −((−M2p+Mpδ +Mqδ +Mpδ2 −M2pδ +Mqδ2 +M2qδ)/(M − δ + pδ + qδ−

δ2 + pδ2 + qδ2 −Mp+M2 −Mpδ +Mqδ)).
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Standard arguments show that B is a strictly increasing function B(M) of M . Moreover,

for M = δ, B = −δ and for M that goes to infinity, B converges to (1− δ)p− δq (the asset’s

expected value). Therefore, B is strictly increasing on the support [−δ, (1 − δ)p − δq] with

density

fB(B) = fM(k−1(B))

∣∣∣∣dMdB
∣∣∣∣ .

This distribution is equal to

fB(B) =

∣∣∣∣ dndB
∣∣∣∣ ,

when the distribution of M is

fM(k−1(B)) =

∣∣∣∣ dndB
∣∣∣∣ / ∣∣∣∣dMdB

∣∣∣∣
on [δ,∞].

Analogous steps for a noise trader with endowment of M + 1 − V (i.e., they are short

on the asset by one unit) prove the existence of an fM(k−1(B)) on [δ,∞] that has the same

distribution fB(B) on the support [(1− δ)p− δq, 1− δ].
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