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real payoffs, risk, and horizon. Applying the method to the United States (US) and
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1 Introduction

The 5-year-5-year (5y5y) forward inflation expectations rate measures expected inflation
in five years time over the following five years. It is a common indicator of whether long-
run inflation expectations are well anchored (e.g., Gürkaynak, Levin and Swanson, 2010).
Policymakers find it useful because it strips out current temporary fluctuations and aver-
ages over a long period of time, therefore providing focus on what an inflation-targeting
central bank can achieve. Indeed, 5y5y inflation is much less volatile than headline infla-
tion. In the United States inflation over the last twelve months reached 8.5% in March of
2022, the highest level since the early 1980s. Yet 5y5y inflation, which we plot in figure
1, rose much more modestly, consistent with this being a temporary rise and long run in-
flation staying anchored. A famous example of policymakers attention to this rate comes
from the Eurozone (EZ). The decline in 2014 of the 5y5y measure well below 2% was used
to justify the start of quantitative easing.1

However, the 5y5y rate is an average and as such does not contain or reflect any infor-
mation about the uncertainty around future inflation. The distribution of its values could
be extremely tight or disperse. However, making decisions under uncertainty typically
requires knowing the whole distribution of future inflation rates, not just their expected
value. Especially important for making robust decisions is to know the probability of ex-
treme inflation realizations, which we will refer to as inflation disasters. It is these large
movements in actual inflation, often deviating from mean expectations, that are associ-
ated with large costs of inflation in popular discourse. Common references to the German
hyperinflation of the 1920s or the Volcker disinflation of the 1980s attest to this fact. It is
also these disasters that are associated with large costs in models of monetary policy that
depart from certainty equivalence, and that dominate policymaking under a risk man-
agement approach.

This paper develops the methods to provide counterparts to figure 1 in the form of
tail probabilities of inflation disasters. We use a data-driven approach making minimal
assumptions about preferences for pricing risk or about inflation dynamics. To be specific,

1Reporting from the August 2014 Jackson Hole meeting where the ECB justified its use of quantitative
easing, the Financial Times noted: “Mr Draghi had highlighted the inflation swap rate...never before Au-
gust’s Jackson Hole speech had a president of the ECB made such a clear link between its behaviour and
policy action.”
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the objects of interest are the following two probabilities:

Fdh
t = Prob[pT,T+H/H > p̄ + d],

Fdl
t = Prob[pT,T+H/H < p̄ � d].

The present date is t, a future distant date is T years away, and a long horizon is denoted
by H further years. Future long-term inflation is pT,T+H, defined as the change in the log
of the price level between the two dates in the subscript, while p̄ is the inflation target,
and d is the size of the disaster. These probabilities then answer the question: What is
the current date t market perceived probability that inflation will be persistently above
or below the p̄% annual target between T and T + H? For example, what is the current
probability that average inflation will be above 4% between 5 and 10 years from now?

In our empirical implementation, we provide estimates of these probabilities for the
US and the EZ starting in January 2011, and setting T = H = 5 years, so these are
5y5y probabilities. The inflation target is p̄ = 2%. For disasters we consider both high
inflation and deflation, d = 0.02, or severe high inflation and deflation, d = 0.03. Note that
given the 5 year horizon, high inflation is a cumulative 10 log-point deviation of inflation
from target, and severely high is equal to 15 log-points, justifying the use of the word
disaster. Our estimates therefore serve as a measure of the success of monetary policy
at anchoring market inflation expectations, and can be used to judge the performance of
different policies.

The first contribution of our paper is to provide a new method to translate the prices
of traded inflation derivatives into risk-neutral and physical-measure probabilities of in-
flation. We show that a conventional reading of the data results in naive estimates that
can provide grossly over- or under-stated estimates of the desired probabilities. These
conventional readings must be adjusted in three ways. First, their units have to be ad-
justed so they can match Arrow-Debreu probabilities, because when inflation is high, this
on the one hand raises the nominal payoff of a call option, but on the other hand lowers
its real payoff. Meanwhile, when inflation is low, the payoff to a put option increases but
is worth more in real terms. Probabilities based on nominal state prices are therefore too
high for low inflation states since a nominal payoff of one is worth more; for high infla-
tion, the opposite is true.2 Second, options give risk-adjusted probabilities (commonly

2This point applies to other derivatives as well, so our method can be used to adjust other financial-
market-based probabilities. However, for non-inflation options, this would require knowing the distribu-
tion of inflation conditional on the fundamental that the option is written on. For inflation options, that
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Figure 1: Expected 5y5y inflation
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referred to as risk-neutral probabilities), but since marginal utility is likely high during
disasters, their prices will over-state the actual tail probabilities. Building on recent work
on rare disasters we examine how inflation disasters affect the price of out-of-the-money
options. We can then make an adjustment for marginal utility without having to specify
the full dynamics of the stochastic discount factor that prices inflation risk. We find that
periods of high inflation are indeed bad times, resulting in a large risk adjustment. In
contrast, periods of deflation are associated with a much smaller drop in consumption,
thus resulting in a correspondingly lower risk adjustment. Third, options pay for realiza-
tions of inflation at p0,T and p0,T+H, but not for the desired forward horizon pT,T+H.3 If
a disaster results from the gradual unanchoring of inflation expectations, then that slug-
gishness requires an adjustment, otherwise both the 5-year and the 10-year probabilities
will understate the probability of a 5y5y inflation disaster.

Depending on the question at hand, researchers may want to make only one or two
of these adjustments. For instance, making only the real and risk (but not the horizon)

conditional distribution is a trivial point mass, making the adjustment simple.
3There are forward starting options, which we will use, but for one-year horizons (H = 1) as opposed

to the longer horizon H = 5 that we would like.
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adjustment, we provide estimates of average inflation being persistently d points above or
below the p̄ target between now and five or ten years in the future (so T = t and H = 5 or
H = 10). We also provide estimates of risk-neutral (or risk-adjusted) densities, so without
a risk factor that would adjust for this probability reflecting elevated marginal utility in
a disaster state. Of independent interest, we provide estimates of the dynamic properties
of inflation, as perceived by market participants. They show a fall in stochastic volatility
in the last decade, and a perception that disasters are short-lived. Finally, note that the
adjustments may not all go in the same direction: for instance, the real adjustment raises
the estimated probability of a high-inflation disaster, while the risk adjustment lowers it.

To judge their overall effect, we produce estimated time series of the inflation disaster
probabilities Fdh

t , Fdl
t from October of 2009 (US) and January of 2011 (EZ) to March of

2022 for both.4 We use these measures to provide new evidence and a new perspective on
three macroeconomic debates. First, we re-examine the market perceived probability of
the US falling into a deflation trap in 2011-14. At the time it was judged to be very high,
and justified expansionary monetary policy to fight the liquidity trap. Estimates based on
our new methodology show that this probability was significantly lower than previously
appreciated using the conventional measures that did not include our three adjustments.
In particular the risk of short-term deflation was at times elevated, but not the risk of a
deflation trap at the 5y5y horizon.

Second, we examine the probability of deflation for the Eurozone between 2015 and
the present. We find that the risk of a deflation trap persisted throughout and has contin-
ued to be present until early 2022, in spite of different waves of ECB policy that tried to
eliminate it. Policy since 2015 appears to have succeeded at lowering the probability of
deflation in the near future, but not of a deflation trap over the long run. This justifies a
mission review of the ECB that eliminates the structural features that have kept this per-
ception of a deflation trap in the face of large policy actions. Whether the ECB’s review of
2021 succeeded is too early to tell, but our estimates will allow for an assessment in a few
years’ time.

Third, we examine how the 5y5y probability changed in 2021 and early 2022. Poli-
cymakers throughout 2021 argued that the observed increase in inflation was temporary
and that inflation expectations were anchored (Powell, 2021, Lagarde, 2021). Our esti-
mates show a steady, significant and accelerating rise in the probability of persistent high
inflation for the US since the middle of 2021. It rose above 10% by the end of 2021 and

4Our website provides updated probabilities at the end of every month.
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approached 15% by March 2022. In the EZ there was no drift in 2021 in the market-
perceived probability of a high-inflation disaster, but a remarkable fast one once we enter
2022. These numbers are relevant for policymakers navigating the resurgence of persis-
tently high inflation, a phenomenon not seen in more than forty years. The numbers also
provide hints on whether the shock to observed inflation was temporary or permanent,
as well as local or global.

The paper is related to four branches of the literature. First, it focuses on tail outcomes
for inflation disasters, in common with the literature on inflation at risk (Kilian and Man-
ganelli, 2007, Banerjee et al., 2020, Andrade, Ghysels and Idier, 2012, Lopez-Salido and
Loria, 2020). However, we focus on market perceptions of this risk as measured by op-
tion prices, rather than on empirical distributions based on realized inflation. Because the
possibility of extreme and persistent inflation events is constantly traded, they provide
many more observations on the likelihood of inflation disasters that are region specific.
Estimates based on empirical distributions have to pool across many countries and long
periods of time with different inflation regimes. Second, while a few other papers look
at expectations of disasters in surveys (Reis, 2022, Ryngaert, 2022), we take the perspec-
tive of financial markets. Very few surveys ask respondents about tail probabilities of
distant-horizon inflation, and the few that do (the Survey of Professional Forecasters for
the United States) move very little over time. Time series of dispersion in surveys about
long-horizon inflation are more useful, but disagreement, which many surveys capture,
and uncertainty, which we measure, are not the same (Reis, 2020, Coibion et al., 2021).
Third, we use inflation options data to focus on tail phenomena in common with Hilscher,
Raviv and Reis (2022), Mertens and Williams (2021), Kitsul and Wright (2013), Flecken-
stein, Longstaff and Lustig (2017). Yet we focus on long-term forward horizons, which
raises unique challenges in using the data. For the one-year ahead questions raised in
some of those papers, our risk and horizon adjustments are quantitatively less impor-
tant.5 Fourth, we draw on the literature on equity disasters to adjust for risk (Barro, 2006,
Gabaix, 2012, Barro and Liao, 2021), but we focus on inflation disasters. Our method can
also be used to construct probabilities for the S&P500 or for currency changes, subject to
knowing the probability that large changes in those prices coincide with high or low infla-
tion. But, options on equities or currencies almost always have short horizons, between
one week and one year, for which the adjustments are less quantitatively important.

5Gimeno and Ibanez (2018) is closer to us in goal but imposes very restrictive assumptions in its meth-
ods.
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All market-based measures of expectations have in common that they may be influ-
enced by noise from liquidity fluctuations as well as the opinions or hedging motives
of some large traders. Our measures are not immune to this concern. However, note
that because of our focus on changes in the 5y5y probability, it would take systematic
changes over time in the differential liquidity of 5-year and 10-year options to bias our
estimates. Still, in our empirical analysis of the recent history of US and EZ inflation,
we focus on trends across many months, rather than month-to-month fluctuations, since
these are likely to be more robust to liquidity changes. Finally, note that since the inflation
options are actively used to hedge positions in inflation swaps, liquidity concerns would
likely be common between our estimates and those in figure 1. Therefore, they would not
affect our goal of providing a tail probability counterpart to the 5y5y expected inflation.
Insofar as policymakers and academics have found the estimates in figure 1 reliable, they
should finds ours useful as well.

The paper is organized as follows. Section 2 lays out our approach in a simple two-
period setup. Section 3 presents the general model and formally defines the probabilities
of interest. Section 4 makes the real adjustment and presents time series of densities
for risk-neutral probabilities, while section 5 presents our model of disasters to adjust
for risk. Section 6 presents and estimates a model of inflation dynamics to adjust for
correlation and build forward probabilities (horizon adjustment). Section 7 then presents
our estimates to answer the three applied questions stated above. Section 8 concludes.

2 The intuition of the method in a simple setup

Consider a simple event-tree world where at present, in period 0, inflation is at its normal
target level p̄, at which it stays with a very high probability. However, in the next period,
1, inflation can instead rise to the moderately high level pm, or jump to a disaster-high
level pd, according to the respective probabilities of the Markov chain pm and pd. We focus
on a high-inflation disaster for expositional simplicity, but the arguments would be the
same for a low-inflation disaster. The left panel A of figure 2 illustrates these outcomes.

The probability we are after, for now, is pd. We have data on options that pay one
nominal unit if pd is realized in period 1, and zero otherwise. If the price of this option
that pays in the disaster state at period 1 is ad(1), then by arbitrage, this price should be
equal to ad(1) = pdmd exp(�pd). With the disaster probability, the option pays $1, which
in real terms requires an inflation adjustment exp(�pd), and is discounted by the real
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Figure 2: Inflation paths
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stochastic discount factor md, reflecting the marginal utility of the future payoff.
The conventional approach in asset pricing to construct risk-neutral probabilities is to

calculate: nd(1) = ad(1) exp(i(1)). The i1 is the nominal interest rate between the two
periods, which, based on no arbitrage, must be the return from buying the three possible
options.6 But then, it follows that nd(1) � 0 and that n̄(1) + nm(1) + nd(1) = 1 Therefore,
nd(1) can be interpreted as a probability. But what does this measure?

2.1 First adjustment: risk-neutral (inflation-adjusted) probabilities

Arrow-Debreu securities instead pay one unit of consumption (not $1) in each future
state. Therefore, the price of the disaster security is: bd(1) = pdmd. Letting r(1) denote the
real interest rate, the associated Arrow-Debreu probability is then qd(1) = bd(1) exp(r(1)).
It has the interpretation that, if the agents are risk-neutral, then because md exp(r(1)) = 1,
we have that qd(1) = pd, the desired object. For this reason, qd(1) is called a real risk-
neutral probability.

It follows right away that:

qd(1) = nd(1) exp(r(1) + pd � i(1)) ⇡ nd(1) exp(pd � p̄) = nd(1) exp(d). (1)

The approximation comes from the starting assumption that monetary policy is very
credible, so that break-even inflation—the gap between the nominal and the real inter-
est rates—is equal to the normal target inflation level. The second equality comes from
recalling that the gap between disaster inflation and target inflation is what we earlier

6So, no arbitrage dictates: ā(1) + am(1) + ad(1) = exp(�i(1)).
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called the disaster d. The conventionally-measured probabilities from options nd(1) must
therefore be adjusted by the disaster size.

If we are calculating probabilities near the inflation target (so d is close to 0), as some-
times is done by central banks, then this adjustment factor is negligible. Likewise, even
for d = 0.03, if the horizon is short, then the adjustment factor is quantitatively not
that significant. However, if we are looking at disasters over long horizon, say 10 years,
then the adjustment factor is exp(10 ⇥ 0.03) = 1.35. Reporting nd(1) from the price of a
well out-of-the-money long-dated inflation option significantly underestimates the risk-
neutral probability qd(1).

The intuition for this adjustment factor is simple: when the disaster happens, and the
option pays, its $1 is now worth less in real terms. Economic agents understand this,
and so pay less for this option than if they were suffering from money illusion. Reading
the low price, a researcher would be misled to thinking that the agents are placing a low
likelihood on this event happening.

2.2 Second adjustment: actual (or physical measure) probabilities

The next adjustment is the more familiar one to financial economists: only with an esti-
mate of the stochastic discount factor in the inflation disaster state, md, can we go from the
risk-neutral to the actual probabilities. Importantly, to answer the question in this paper,
one does not need a full model of risk. In the simple example in this section, one does not
need mn and mm, for instance. Only the risk that is correlated with inflation in disaster
times is relevant.

Moreover, it is likely that only the risk-adjustment in the disaster state will be large.
Normal times will, on average, have normal marginal utility growth. This implies that
our focus on the adjustment in the disaster state also represents the largest adjustment for
the three states in this simple setup.

Imagine then that the main source of variation in the stochastic discount factor is
whether there is a consumption disaster or not. So, md(.) is a function of consumption,
which can either be normal or in a disaster. Conditional on an inflation disaster, p̃ is the
conditional probability that there is a consumption disaster as well. Because a consump-
tion disaster is a time of elevated marginal utility, then the ratio of md(.) when there is a
consumption disaster, to the marginal utility when there is none, call it m̃, is well above
1. Finally, continuing with the approximation that disasters are small-probability events,
so that the marginal utility without a disaster is approximately equal to the expected one,
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the risk-neutral probability is:

q(1) = ((m̃ � 1) p̃ + 1) pd. (2)

Since m̃ > 1, the risk-neutral probability will over-state the probability of an inflation
disaster, because inflation disasters are on average states of the world with high marginal
utility. The rare disasters literature has argued that m̃ can be quite large, and that the
probability of a consumption disaster is not so small, a fact that is important when pricing
equities that fall sharply when there is a consumption disaster. For inflation though, the
picture is a bit different. First, the relevant probability is p̃: that conditional on an inflation
disaster, there is a consumption disaster. This is well below one. There are many times,
especially outside the United States, where inflation has been reasonably high or low
without any sharp fall in economic activity. Second, m̃, though larger than 1, is on average
lower than in a consumption disaster state, because historically, there are several episodes
where an inflation disaster came with only a mild recession. Therefore, the adjustment
for risk is not as dramatic as the one in the literature on the equity premium.

What the formula shows is that in order to calculate the adjustment factor the two
relevant quantities to measure are m̃ and p̃. Since there is already a well-established liter-
ature measuring them for consumption disasters, and since we have corresponding data
on inflation, combining the two provides a path forward to identify the two parameters.

2.3 Third adjustment: forward (horizon-adjusted) probabilities

Imagine now that there is an extra period, and that the goal is to measure the probabil-
ity of having a disaster in period 2. Then, as the right panel of figure 2 illustrates, the
probability of having such a disaster, from the perspective of the present, is: pm pmd +

pd pdd + (1 � pm � pd)pd. The price of an Arrow-Debreu security that paid one unit of
consumption in period 2 if there is an inflation disaster would provide an estimate of the
risk neutral probability, qd(2).

However, we do not have the option prices that match this security. Say that there are
options that pay if there has been a disaster that lasted two periods. Those would pro-
vide an estimate of pd pdd, clearly understating the desired probability. Especially when
inflation is elevated because of transitory factors, this understatement can be substantial.

Likewise, say that there are options that pay if there is a disaster in the first period, and
so provide an estimate of pd. Since inflation often moves sluggishly, pm pmd/pd is quite
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large: starting from a normal level, it is considerably more likely for inflation to build up
to a moderately high level and then be in the disaster state in period 2, than for it to get
there straight away in period 1. This makes this second probability also under-state the
desired probability qd(2).7

Therefore, looking at either short-dated, or long-dated cumulative options, may under-
state the forward probability. With two pieces of information, and three needed transition
probabilities to calculate qd(2), clearly one needs one more piece of information. Intu-
itively, one needs some information on the extent to which inflation is sluggish. Fortu-
nately, there are traded forward starting options, but for sub-periods of our hypothetical
period 2. Namely, in the actual data, there are forward contracts for annual inflation
within our 5-year desired periods. While these options are not always the most liquid,
and so the inflation distributions data have to be constructed carefully, they provide the
missing piece of data because their higher frequency provides an estimate of the sluggish-
ness of inflation to enter a disaster state.

3 The theoretical result

This section derives the key theoretical result on the three adjustment factors to go from
option prices to get the probability of inflation disasters.

Uncertainty about inflation: Every date, there is a state of the world s drawn from
a countable set S with a probability distribution p̂(s), so that p̂(s) � 0 for all s and
Âs2S p̂(s) = 1. Inflation is a random variable, so it is a function of the state s and
has an associated probability distribution p(p). This is given by the standard formula:
p(p) = Âs:p(s)=p p̂(s) which is calculated over the set of all possible values of inflation P.
The cardinality of P may be lower than that of S because there may be some states s0 and
s00 such that p(s0) = p(s00). This paper is about the probability of inflation disasters alone,
not about disasters more generally. Therefore, the goal is to recover p(.), not p̂(.), so that
we recover the probability of an inflation disaster. That probability may well average over
states of the world where there are non-inflation disasters and others.

Inflation securities and inflation risk: The price in consumption units of an Arrow-
Debreu security that pays one unit of consumption only if state s is realized is b̂(s) =

p̂(s)m̂(s), where m̂(s) is the discounted marginal utility in that state relative to today. This
7The precise condition for it to understate it is: pm pmd/pd > pm + pd � pdd.
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is because the consumer in an Arrow-Debreu world must be indifferent between consum-
ing one unit today, or buying 1/b̂(s) securities that with probability p(s) pay m(s) utility
units relative to today, so Arrow-Debreu prices twist probabilities by the marginal utility
of consumption.

Assuming a full set of Arrow-Debreu securities, i.e. complete markets, is a strong data
requirement. However, consider a related set of inflation securities that pay off one unit
of the consumption good if inflation is p at that future date. We assume throughout that
there is no arbitrage in trading inflation risk. Inflation is an aggregate variable, on which
there is little inside information by any particular investor, and which is monitored by
some of the largest passive investors, as well as by many speculators. By no-arbitrage, it
must be that their price is b(p) = Âs:p(s)=p b̂(s). But then, it follows that:

b(p) = p(p)m(p), (3)

where m(p) = Âs:p(s)=p p̂(s)m̂(s)/p(p): the average marginal utility across all the states
of the world where inflation is the same. The average arises because there may be states
with the same level of inflation but different marginal utility: s0 and s00 such that p(s0) =
p(s00) but for which m(s0) 6= m(s00). As a result, m(p) will vary only with inflation, or
carry inflation risk, while averaging across all other sources of risk in the economy. This
pattern is present in the data – over the last twenty years, the US economy has gone
through booms and busts, but inflation has been approximately unchanged.

Risk-neutral probabilities: Consider an alternative security that pays one unit of con-
sumption, no matter what the state of the world is. The inverse of the price of this secu-
rity is er, where r is the net real interest rate. Since this security has an identical payoff
as buying one inflation security for each possible value of inflation, it follows that by no-
arbitrage: e�r = Âp b(p) = Âp p(p)m(p). Therefore, as is standard, e�r is the expected
SDF or marginal utility of consumption growth. Because prices are non-negative, then
we can define q(p) = b(p)er. It is non-negative and adds up to 1. It is the risk-neutral
probability of this inflation rate.

The securities described so far do not exist and so their prices cannot be easily ob-
served in the data. A different security, that matches what is traded in financial markets,
pays not one unit of consumption, but rather one nominal unit at the future state-date.
Again, by no-arbitrage, its price is a(p) = b(p)e�p. If inflation is high, this is lower
than that of b(p), because the nominal unit delivered by this security is worth less in real
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terms than that of the inflation security. The net nominal interest rate i is likewise defined
as the inverse of the price of a security that delivers one nominal unit for sure next period
e�i = Âp b(p)e�p.

Combining these two, one can define the “nominal risk-neutral probability” n(p) =

b(p)ei�p, which is itself non-negative and adds up to 1. Finally, let pe = i� r, be expected
inflation. It immediately follows that:

q(p) = n(p)ep�pe
. (4)

Time and horizons: Date 0 is the present, at which all probabilities will be calculated
conditional on what is known now, while t denotes a future date. The joint risk-neutral
probability density of inflation over the first T periods and over the remaining H pe-
riods is q(p0,T, pT,T+H). From the definition of marginal and conditional distributions:
q(pT,T+H) = Âp0,T

q(p0,T, pT,T+H) and q(pT,T+H|p0,T) = q(p0,T, pT,T+H)/q(p0,T). Fi-
nally, because of the definition of inflation, pT,T+H H = pT,T+1 +pT+1,T+2 + ...+pT+H�1,T+H,
and there is a joint distribution of q(pT,T+1, pT+1,T+2, ..., pT+H�1,T+H). Combining all of
these probabilities and re-arranging, q(pT,T+H) equals:

q(p0,T+H) Â
p0,T

" 

Â
pT,T+1+...+pT+H�1,T+H=pT,T+H

q(pT,T+1, ..., pT+H�1,T+H|p0,T)

!
q(p0,T)

q(p0,T+H)

#

(5)
The expression within the round brackets takes into account the persistence of inflation
across periods within the interval of time (T, T + H). Multiplying it, and so within the
square brackets, is the sluggishness of inflation, which requires adjusting for the relative
probability that given a longer horizon T > t inflation may build up.

Final result: Combining all the steps, we get the following result:

Proposition 1. The probabilities of high and low inflation disasters are, respectively: Fdh
t =
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ÂpT,T+H>H(p̄+d) pt(pT,T+H) and Fdl
t = ÂpT,T+H<H(p̄�d) pt(pT,T+H) where:

pt(pT,T+H) = nt(pT,T+H)| {z }
Options Data

⇥
⇣

e(pT,T+H�pe
T,T+H)H

⌘

| {z }
Real Factor

⇥
⇣

e�rT,T+H Hm(pT,T+H)
⌘

| {z }
Risk Factor

⇥ Â
p0,T

" 

Â
...=pT,T+H

q(pT,T+1, ..., pT+H�1,H|p0,T)

!
q(p0,T)

q(p0,T+H)

#

| {z }
Horizon Factor

(6)

The proposition characterizes the adjustment factors in some generality. Each of the
next three sections discusses how to implement them, and the data that we use.8

4 Risk-neutral probabilities: real adjustment

When data on inflation options is used to report probabilities, typically what is shown is
nt(pT,T+H), what we have called the nominal risk neutral probability. Here we discuss
their meaning, and why a real adjustment factor should always be used when measuring
the probability of inflation.

4.1 Data

There is an active market for US and EZ inflation options. The same players that buy
and sell nominal and inflation-indexed government bonds, or that trade in the inflation
swap markets, will potentially also be present in these option markets to hedge some
of their positions from the other markets. Therefore, even though trading volumes will

8An open question, common to all market prices, is whether or not there should be a fourth adjustment
factor that captures the effect of potentially time-varying illiquidity of the option contracts. Not only is it
difficult to measure such an effect, the direction of its impact is not obvious: since all option prices move
together with the real risk-free rate, our measures would be distorted only by movements in the differential
liquidity of options with strike prices that are nearer or more out of the money. It would take a new paper
to investigate appropriate adjustments for liquidity in these options and to analyze whether or not any
potential adjustment are economically large. We leave this task for future work.
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differ, these data are as good (or as poor) as that behind figure 1, which is used very
frequently.9.

Price data exist for both call and put options for average inflation between the present
and up to 15 years away for strike prices between -2% to 6% with 0.5% jumps. The typical
call security with a strike price k pays at the future date the difference between the gross
inflation rate (ep) until that date and the strike price k if this is positive, or zero otherwise.
The price of that option today is a(k).

We use US data from October of 2009 to March 2022 from Bloomberg, while for the
EZ the start date of the sample is January of 2011. While option prices are available daily,
sometimes the data quality is low. Since options are not traded simultaneously, option
pricing functions can violate basic options properties. Therefore to be conservative in its
use, we construct data at the monthly frequency by choosing the trading days where the
market prices of the options do not violate the properties of option prices, as summarized
in the appendix. We focus on horizons of 5 years, and 10 years, which are also two of the
more liquid markets for these securities. The appendix describes how we construct the
data.10

4.2 Recovering nominal probabilities

The no-arbitrage pricing condition for the traded securities are:11

a(k) = Â
p

✓
p(p)m(p)max

⇢
ep � k

ep , 0
�◆

. (7)

Following the seminal contribution of Breeden and Litzenberger (1978), it is convenient
to approximate this by assuming a continuum of inflation states. Further using the defi-
nition of the Arrow-Debreu prices in equation (3):

a(k) =
Z •

k

✓
ep � k

ep

◆
b(p)dp. (8)

9Baumann et al. (2021), Feldman et al. (2015) describe the use of these options data at the ECB and the
Fed

10These options are traded over the counter, so a valid concern is whether inflation disasters are also
times when there is a higher likelihood that the sellers of the options default on their contracts. If so, this
would show up in the price of other options sold by the same intermediaries. While this might have been a
concern at the start of our sample, there is no indications that it is significant for most of the period that we
cover.

11Note that the payoff of these securities only depends on inflation, not on the entire set of states p̃(s).
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Recalling the definition of n(p) = b(p)ei�p, we can re-write the no-arbitrage condi-
tion as:

eia(k) =
Z •

k
(ep � k)n(p)dp. (9)

Differentiating this expression with respect to k and using the definition of a distribution
function N(p) gives a simple formula to build this distribution:

N(log(k)) = 1 + Ia0(k). (10)

The right-hand side can be measured for different strike prices: it is how sensitive the
price of the option is to the strike price. Since these strike prices are themselves inflation
measures, one can easily build the whole distribution for different k = log(p), which is
what is usually reported in the financial media.

However, from equation (3) and the definition of n(.), n(p) = p(p) only if m(p)ei�p =

1 that is for these conventionally-calculated probabilities to match the actual physical
probabilities, it must be that there is not only risk neutrality (m(p)er = 1), but also that
p = pe for every realization of p. But, this is only the case if there is no uncertainty about
inflation. In that world, these probabilities carry little, if any, useful information; all prob-
abilities, including the disaster probabilities in the proposition, are either trivially 1 or 0.
The reason is that, even if investors are risk neutral, they still care about receiving a payoff
in a high-inflation state that has lower real value. To conclude, the conventional nominal
probabilities that are usually reported have no useful counterfactual in which they match
the actual (physical measure) probabilities. From the perspective of theory, they are not
an accurate proxy for the actual probabilities.

4.3 Risk-neutral probabilities

Instead, from the definition of q(p) = b(p)er and equation (3), we have that q(p) = p(p)

as long as m(p)er = 1. This is the case if people are neutral with respect to inflation
risk, or if the classical dichotomy holds, so inflation is uncorrelated with marginal utility.
For a long horizon, as is our focus, this is not a terrible assumption, as it corresponds
to believing in a long-run vertical Phillips curve, which is true in the majority of models
used for monetary policy. One could obtain them from the data on n(.) using equation
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(4). Alternatively, going back to equation (8), take derivatives with respect to k to give:

era0(k) = �
Z •

k
e�pq(p)dp. (11)

Taking another round of derivatives with respect to k gives:

q(log k) = erka00(k). (12)

Since the right-hand side can be measured, this provides a way to build the Arrow-
Debreu prices directly from the option prices.

Note that, given our long-run setting, we are assuming that the asset that pays off one
unit of consumption in each state of the world is the risk-free asset. For short horizons,
it is common to measure risk-free returns using a nominal interest rate, like the monthly
T-Bill rate. Since, in the data, inflation is small and not that volatile over a few months,
the nominal and real risk-free rates are similar. But, over longer horizons and for states
of the world that are grouped by inflation disasters, the risk-free asset is not a nominal
discount bond that pays off one unit of nominal currency in all states of the world, but
instead a security that pays off one unit of consumption for sure.

4.4 Densities

Figure 3 shows the risk-neutral densities for the United States inflation for a ten-year
horizon. On the left panel are the January distributions every 3 years between 2011 and
2020. They show the success of the Federal Reserve at re-anchoring inflation after the
uncertainty that came with the great financial crises. In 2011, the distribution was spread
out, with significant mass both on the right and left tails. As time went by, the stan-
dard deviation fell significantly. By the start of 2020, pre-pandemic, the distribution was
tightly concentrated around the inflation target, with 92% of its mass between 1% and
3.5% (whereas it was 45% in 2011).

The right panel shows the evolution of the distribution in 2021 and 2022. Between
January of 2020 and 2021, the distribution barely moved. There was a significant increase
in the left tail during March and April of 2020 (not shown in the figure), but by December,
market inflation expectations were as well anchored as they were pre-pandemic. How-
ever, from the second half of 2021 onwards the shift to the right of the median, together
with the fattening of the right tail is very noticeable.
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Figure 3: Risk-neutral distributions of US inflation, 10-year horizon
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Figure 4 in its left panel shows the risk-neutral distributions between 2013 and 2016
for the Eurozone. As discussed in the introduction, the fall in the mean of the distribu-
tion between 2013 and 2014, reported in figure 1, motivated the ECB to start its program
of quantitative easing. Looking at the whole distribution, perhaps there was less reason
for concern at first, as the fall in the mean between January of 2013 and August 2014
was mostly driven by a decline in the far right-tail mass: the risk-adjusted 10-year hori-
zon probability of inflation begin above 3% fell from 24% to 11%. The median was only
slightly below 2%, with an accumulation of mass between 1% and 2%. However, as the
figure shows, by the start of 2016, most of the mass (80% of it) was now well below 2%,
with a considerable probability mass (41%) below 1%, justifying the fear that inflation
expectations were anchored well below 2%.

The right panel of figure 4 provides the EZ counterpart to the US distribution shown in
the right panel of figure 3. Qualitatively, the evolution during 2020 and 2021 was similar
across the two areas. However, the starting point had the EZ further to the left than the
US. Also, quantitatively, the shift for the US is larger and the right tail becomes thicker.
Noticeably, there is a very large change in the first three months of 2022 in the EZ, much
larger than the change in the US.
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Figure 4: Risk-neutral distributions of EZ inflation, 10-year horizon
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5 Actual probabilities: risk adjustment

If the classical dichotomy held, then at the long horizons that we consider, inflation would
be uncorrelated with marginal utility. Therefore, m(p) would be a constant, equal to the
inverse of the real interest rate, and the risk-neutral probabilities would be equal to the
actual probabilities.12 However, it seems likely that inflation disasters are times where
marginal utility is high. Deflation and high inflation sometimes, even if not always, come
at the same time as economic recessions. If so, at the tail of the distribution, m(p) is high,
in which case risk-neutral probabilities will over-state the actual probabilities of disasters,
because these events are particularly costly to investors. Relative to a full model of risk,
however, we only need a model to price inflation risk at the tails.

5.1 A model of risk in inflation disasters

We assume that inflation is the sum of two parts: one capturing the ups and downs of the
price level during normal times, and the other capturing its sharp jumps during disasters.

12Note that people may still be arbitrarily risk averse: the stochastic discount factor may still be volatile,
so that m̃(s) is a non-degenerate function and there is plenty of risk in the economy. But, all of it would be
orthogonal to inflation, m(p) is constant.
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Either component may be correlated with consumption, so their joint dynamics are:

pt+D = p̄ + up
t+D + #t+D + dh

t+D � dl
t+D, (13)

log(ct+D) = log(ct) + g + uc
t+D + b0#t+D � bhdh

t+D � bldl
t+D. (14)

where D is a time period, consumption ct is expected to grow at rate g, and up
t+D and

uc
t+D are shocks to inflation and consumption, respectively, that are independent of each

other. The two series co-move in normal times due to the random component #t, (which
may be driven by multiple shocks, and may be correlated over time), where the scalar b0

measures that co-movement that is crucial to measure inflation risk premia during normal
times.

Our focus is on dh
t , dl

t, which are two independent common disasters between inflation
and output. Disasters to inflation that do not affect consumption do not produce a risk
adjustment, and consumption disasters that do not come with high or low inflation do
not trigger the options. They are included in up

t+D and uc
t+D, respectively. The coefficient

bh measures the size of the consumption drop when there is a high inflation disaster; the
coefficient bl the size of the drop following a deflation disaster.

To model these disasters, we follow and modify the approaches of Gabaix (2012) and
Barro and Liao (2021). With probability ph, the high-inflation disaster dh

t is non-zero.
Defining the inverse fall in consumption in a disaster by zh = 1/(1 � bhd), we assume
that the size of the disaster zh follows a Pareto distribution:

F(zh) = 1 �
 

zh

zh
0

!�ah

with zh � zh
0 > 1, ah > 0. (15)

The Pareto distribution has two parameters. First, zh
0 is the minimum size of the jumps,

so the higher it is, the more average consumption falls during inflation disasters. Second,
the exponent ah captures how quickly the tail of the distribution thins out, so the lower it
is, the more likely is a very large consumption disaster. The same applies to (zd, zd

0, ad).

5.2 Estimating the Pareto distribution

We combine data on annual output from Barro (2006) (using real GDP per capita, as he
did) with data on inflation from Jordà, Schularick and Taylor (2016) between 1875 and
2015. The dataset covers 18 advanced economies, listed in the appendix. Starting with
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Figure 5: Distribution of joint inflation-output disasters
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(b) Inverse fall in GDP (z) during an inflation and consumption disaster
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one country’s inflation series, we date sequential peaks and troughs by looking for local
maxima and minima in 5-year rolling windows. Then, we compare the average value of
inflation in a 5-year window centered around the peak (or trough), with the target level,
which is taken as the trend from a band-pass filter that isolates fluctuations of frequency
lower than 20 years. The appendix discusses alternatively taking 5-year fixed windows
from the start of the sample, and calculating target inflation as the winsorized mean over
the full sample (excluding the top and bottom quartile of observations) or instead as a
moving average over the past 20 years only. Across the 6 possible methods that result
from combining these, the results are quite similar.

The top panel of figure 5 shows the identified disasters across the sample. The results
accord with the economic history of the time: many deflation disasters across the world
in the last quarter of the 19th century and again in the 1930s, as well as three waves of
high inflation disasters, after each of the World Wars and in the 1970s. Pooling all, the
unconditional probability of an inflation disaster (10 log points above or below target for
5 years) is 12.9%. The key parameters for the risk adjustment though is the probability of
a consumption disaster conditional on an inflation disaster. Matching the disaster 5-year
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interval dates for inflation from the figure, with the dates for consumption disasters from
Barro (2006), they overlap for 20.3% of the cases. Therefore, p̃ = 0.203. Separating high
and low inflation disasters, then p̃h = 0.374 and p̃d = 0.084.

The bottom panel plots the histograms of the observations of annual output growth
for the years of joint inflation and consumption disasters, together with a simple kernel
density estimate. In blue are the results from fitting the Pareto distribution in equation
(15), but pooled for both high and low inflation disasters (so imposing that zh and zl

have the same distribution). The resulting estimates are a = 6.38 and z0 = 1.03.13 Sep-
arating high and low inflation disasters, the estimates are: ah = 5.45, zh

0 = 1.03 and
ad = 15.18, zd

0 = 1.06. That is, deflation disasters more rarely come with consumption
disasters, and when they do, the falls in consumption are on average higher but with
significantly thinner tails.

5.3 Estimating risk adjustments and risk premia

Following Gabaix (2012), Barro and Liao (2021), we then use an Epstein-Zin model for
marginal utility, with a relative risk aversion coefficient of 3. Using the pooled estimates,
and assuming that all of the parameters are constant over time, the risk adjustment factor
is 0.82. That is, an estimate of the risk-neutral probability of qt(pT,T+h) should be multi-
plied by 0.82 to obtain the actual probability. Separating high and low inflation disasters,
the adjustment factor is higher for the former than the latter: 0.65 versus 0.96. In fact,
these results indicate that episodes of deflation, at least historically, have not been partic-
ularly risky. The reason is that across the sample there are many instances of deflation
during which aggregate consumption stayed on trend.

Figure 6 plots the resulting estimates of the 10-year US inflation risk premia that come
from this procedure. The risk premia are defined as q(p + rp) = p(p), that is the increase
in inflation to equate risk-adjusted and actual probabilities, so they are positive for high
inflation and negative for deflation. The figure shows the three cases discussed so far:
the pooled premium from the constant risk adjustment across both types of disasters, and
the premia from treating high and low inflation disasters differently. As others before us,
using quite different methods, we find only moderately high inflation risk premia for the
pooled estimates: it averages to 0.23%, fluctuating between 0.19 and 0.3%. Fleckenstein,
Longstaff and Lustig (2017, 2016) estimate inflation risk premia by taking the difference

13For comparison, Barro and Liao (2021) report a’s in the range of 6 to 8, and set z0 = 1.03.
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Figure 6: US inflation risk premia
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between subjective expectations from analysts forecasts, and market expectations from
inflation swap rates: they find risk premia in the range of 0.2-0.25%. The FRB Cleve-
land reports the estimated inflation risk premium from the affine term structure model
of Haubrich, Pennacchi and Ritchken (2011): they average to 0.39% during our common
sample.

However, the pooled estimates hide a significant difference between high inflation and
deflation episodes. The average risk premium for high-inflation disasters is significantly
higher at 0.61%. In contrast, the risk premium for deflation is significantly lower. Intu-
itively, in the data, there are many instances of deflation without a consumption disaster,
so the risk-adjustment is smaller.

6 Forward probabilities: horizon adjustment

The final adjustment is to go from probabilities on cumulative inflation between the
present t and a far-away date, T + H, to probabilities over a forward period that is far
ahead in time, so between T and T + H. Obtaining forward expectations of inflation is
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easy (as we did in figure 1), since the linearity of the expectations operator and of in-
flation as the difference in logs implies that Eq(pT,T+H) = Eq(p0,T+H)� Eq(p0,T). But,
as proposition 1 shows, to estimate probabilities, it is impossible to solely use the two
distributions for cumulative inflation. It requires new data, as well as a model for the
time-series sluggishness and persistence of inflation as it is perceived by markets.

6.1 Data on forward starting options

There exist markets for forward-dated options at date t that will pay out depending on the
realizations of inflation in pT,T+1. That is, these options are for inflation in one given year,
not on the average over a longer period H > 1 as we would like. These data were used to
estimate general stochastic processes for inflation in Hilscher, Raviv and Reis (2022), and
are described there in detail, as well as in the appendix. In this paper, we use the data for
one-year ahead inflation covering the one-year periods starting in 5 to 9 years; this adds
5 additional distributions that we can use.

The markets in which these trade are not as liquid, so we want to be conservative in
using them. We find that all five of these one-year distributions are quite similar for al-
most all of our data. This indicates that a low-order Markov process with not too much
persistence is an adequate model since, after 5 years, the marginal risk-adjusted distribu-
tion of inflation seems to have settled at its ergodic state. Therefore, and to allow for the
possibility of data concerns, we take the average of these 5 annual distributions and use
that alone for estimation, making our approach more robust to the presence of measure-
ment noise. Using the adjustments discussed in section 4, this provides an estimate of
q(p5,6).

Strike prices for inflation options come in jumps of 0.5%. Correspondingly, we con-
sider distributions for inflation in 8 bins: p(i) = { �1, (�1, 0], (0, 1], (1, 2], (2, 3], (3, 4], (4, 5],>
5}. Our data to estimate the dynamics of inflation consist then of 21 numbers per month,
for the distributions of q(p0,5), q(p0,10), and q(p5,6). These refer to risk-neutral inflation
so the model of dynamics is for risk-neutral inflation as well.

6.2 A model of inflation persistence

We start from the model of inflation dynamics laid out in the previous section, repeated
here for convenience:

pt+D = p̄ + #t+D + dh
t+D � dl

t+D. (16)
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In the previous section, we did not have to specify assumptions on the normal component
of inflation #t. Now, we do. We make two major assumptions (and a series of minor
ones). First, that the variance of #t is small relative to the size of the disaster jumps,
so that inflation enters the disaster range only as a result of a disaster, or if inflation in
the previous year was just below disaster levels. Second, that if D was infinitesimally
small, then #t would approximately follow a mean-reverting Ito process with continuous
sample paths in time. The result of these two assumptions is that inflation in bins follows
a first-order Markov process with a particular set of restrictions on the Markov transition
matrix.14

To see this, consider a discrete approximation of this process as a Markov chain where
inflation can be in one of 8 states corresponding to the bins in the data. The Markov
transition matrix P is then 8 ⇥ 8, where as usual elements in each row add up to 1. We
consider the following specific model:

P =

2

666666666666664

1 � 5pl pl pl pl pl pl 0 0
pdl + pnn pml pmr 0 0 0 0 0

pdl pnn pm pmr 0 0 0 pdh

pdl 0 pnn pn pnn 0 0 pdh

pdl 0 0 pnn pn pnn 0 pdh

pdl 0 0 0 pmr pm pnn pdh

0 0 0 0 0 pmr pmh pdh + pnn

0 0 ph ph ph ph ph 1 � 5ph

3

777777777777775

. (17)

Starting with the low-inflation disaster state in the first row, the economy exits with
probability 5pl, which should be close to 1 to match the Poisson-Pareto assumption on
disasters. When the disaster disappears, the economy will return to any one of the normal
(non-disaster) values, though not to the state opposite and closest to the other disaster.
We assume that they are equally likely reflecting the first-order Markov assumption that
where it was before the disaster would not affect where it ends up now. Symmetrically,
the same arguments explain the 8th row referring to the high-inflation disaster.

Turning to when inflation is close to 2%, in the third and fourth row, it may move up or
down according to its normal process symmetrically with probability pnn. This captures
the normal inflation dynamics. Inflation may be hit by the high-inflation disaster with

14Mertens and Williams (2021) compute forward distributions under the much stronger assumption that
inflation follows a Gaussian random walk.
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probability pdh, or with the low-inflation disaster with probability pdl.
Finally, on the 2nd and 3rd (and 6th and 7th) rows, a final ingredient appears, as there

is mean reversion in the normal inflation component. The probability of staying close
to the target is pn, and the probability of staying above (or below) the target is pm.15 The
probability of reverting towards target is pmr, which in the data we find to be much higher
than the probability of staying at that level.16

All combined, there are 6 parameters to estimate with our 21 moments: the probabili-
ties of entering a high and low disaster pdh and pdl, the probabilities of exiting the disaster
pd, pl, the probability of normal inflation moving, pnn, which captures the local volatility
of inflation, and the probability of elevated or low normal inflation moving back to the
target, capturing mean-reversion in normal inflation pmr. Given an estimate of the matrix,
we can then simulate many paths to calculate the probability of inflation disasters at the
forward horizon.

We estimate the six parameters using GMM. We match the three sets of moments,
assigning equal weights to each set of moments and minimizing the squared deviation to
the target. That is, we minimize squared differences in probabilities for each of the bins in
the three sets of moments. The overall fit, which we report in the appendix, is quite good
and, apart from a few isolated episodes, is reasonably stable over time.

6.3 Estimating the model

In principle, we can allow the distribution to vary over time, and so estimate Pt in ev-
ery month, since we have 21 moments to match every month to estimate 6 parameters.
However, we instead estimate one model for the entire data set that keeps three of the
parameters fixed over the whole sample, while letting three others vary across months.

In the model, local volatility is captured by the pnn parameter. In the data, volatility
varies substantially over time and so we need to capture this important feature of inflation
dynamics. However, volatility over longer horizons is affected by both the tendency to
move away from the target as well as return to it. Thus, allowing pnn and the mean
reversion parameter pmr to both vary, leads to instability in these estimates since they are
not well separately identified. To improve the precision of the other estimates and since

15Note that pn and pm are equal to combinations of the other parameters: pn = 1 � 2pnn � pdl � pdh.
Similarly, pm = 1 � pnH � pnn � pmr � pnL.

16For completeness, and again because probabilities have to add up to 1 within rows: pml = 1 � pdl �
pnn � pmr and pmh = 1 � pdh � pnn � pmr .
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pnn is the clearer candidate to measure time-varying volatility, we therefore pool all the
observations in the entire sample and assume that pmr is constant over time. For the US,
the estimates is 0.5025, while for the EZ it is 0.4720, capturing the strong evidence for
mean reversion.

Similarly our pooled model assumes that the exit probabilities for disasters, pl, ph,
are constant. For the monthly estimation, they are close to 0.2 for a large share of the
sample (as expected), motivating our choice to assume that they are not time-varying.
The estimates are almost exactly equal to 0.2 for the US (0.1990, 0.1998), implying that,
as soon as the US enters a disaster state, it leaves again immediately. For the Eurozone,
instead they are (0.1999, 0.0617); markets expect EZ high-inflation disasters to persist.

Pooling the data in this way means that we move from estimating six parameters for
all of the months in our sample period to estimating three time-varying parameters plus
three constant parameters all in one model. We therefore opt to reduce the frequency to
quarterly and instead estimate three quarterly time-varying and three constant parame-
ters. This approach is computationally manageable without resulting in a material loss of
information. To get back to a monthly frequency for our analysis, we then re-estimate the
model every month only for the three time-varying parameters, while keeping the three
constant parameters at their full-sample constant estimated values.

Figure 7 shows the estimates of the three key parameters over time. In the left panel,
for the US, the decline in pnn since the start of the decade captures a fall in the perceived
volatility of inflation. Independently of this, the probability of jumping to a low-inflation
disaster was high at the start, but became quite low after mid-2012. More erratic is the
pattern of probability of jumping to a high-inflation disaster. It significantly declines after
2015, but, since the start of the pandemic, it has risen significantly.

For the EZ, there is a similar decline in the stochastic volatility of inflation throughout
the decade. However, the probability of a deflation disaster hitting the economy is higher
than in the US throughout the sample, and varies significantly, including a significant rise
in 2018-19. The probability of a high inflation disaster stays small throughout, including
at the very end of the sample. In early 2022 the probability of a low inflation disaster
declines markedly and there is an uptick in inflation volatility.

The appendix describes the robustness of these estimates. We estimated several other
candidate models, including models with four and eight time-varying parameters, as well
as one where some parameters move at an annual while others move at a monthly fre-
quency. These other models are discussed in the appendix along with a more detailed
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Figure 7: Inflation dynamics: model parameter estimates
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explanation as to why we did not end up using them for our main results.

7 Estimates: inflation and deflation disasters in US and EZ

This section applies the tools we developed to measure the probability of inflation disas-
ters for the US and the EZ, and re-examines three macroeconomic questions during this
time. Throughout, our baseline estimates use our full method, and so display Fdh

t , Fdl
t , the

actual probabilities of inflation disasters starting 5 years from the date in the horizontal
axis, over a further 5 years. We complement these with some variants at other horizons.

7.1 US deflation fears in 2011-14

The left panel of figure 8 shows the evolution of the US probability of deflation and seri-
ous deflation (less than �1%) in the 5y5y horizon over time. At first, following the defla-
tion of 2009, these probabilities were high and rising. Investors were perhaps doubtful of
the Federal Reserve’s ability to steer inflation back on target after the large fluctuations of
the previous two years. Yet, by the end of 2012, the probability of persistent deflation had
fallen below 5%, and the probability of serious deflation was close to 0, staying there for
many years after. Accommodative monetary policy lasted for several years, often moti-
vated by the desire to avoid the risk of a deflation trap. According to our estimates, this
fear was not justified.
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Figure 8: The conquest of US deflation risk
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The right panel of the figure delves further into the topic by contrasting our estimate
with two related ones (note that this required a wider scale). First, the figure shows also
the 10-year probability (that is, doing the real and risk adjustment, but not the horizon
adjustments). As expected, this was lower, as having a 10-year long deflation would be
even more extreme, but not much lower.

Second, the figure shows the forward probability of deflation in a single year, averag-
ing over the estimates from the options 5 to 9 years ahead. They measure the chance of
a one-year deflation event, and do not adjust for risk, and so overstate physical measure
probabilities. There is a similar downward movement in the sample period, but these
numbers are much larger and more volatile. This is understandable: with current infla-
tion over the sample period close to 2%, a one-year deflation episode is significantly more
likely than deflation over a five-year period. Our Markov model estimates show both
very strong mean reversion and a high probability of leaving the disaster state as soon as
the economy has entered it.

Our assessment of the risk of deflation during this time is significantly smaller than
the ones reported in Christensen, Lopez and Rudebusch (2015), Kitsul and Wright (2013),
Fleckenstein, Longstaff and Lustig (2017). The reason is the influence of our three ad-
justment factors, each of which reduce the probability of deflation. First, these papers
mostly focused on deflation in the near horizon and over one year, so they measured the
probability of deflation, whereas our estimates are of the probability of a deflation trap, a
persistent period of deflation over the long run, the event that policymakers worry most
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Figure 9: Eurozone probabilities of deflation
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about. Our results take into account the large horizon adjustment factor. Second, the real
adjustment is significant over this large horizon, and without it the probabilities are over-
stated. Third, the risk premium with deflation is small, smaller than what affine models
that impose a uniform risk-premium across inflation realizations would suggest.

7.2 The resilient EZ deflation-tail risk

Figure 9 shows the risk of a deflation disaster (average inflation below zero) and a serious
deflation disaster (average inflation below -1%) in the Eurozone since 2011. In contrast to
the United States, this risk was elevated all the way until early 2022. From 2018 until 2019,
these probabilities fluctuated between high levels. The effect of the pandemic is visible,
with a short-lived sharp spike in 2020Q2 (a spike is also present in the US data). More
striking is that in 2021 the probability remained high, only falling in 2022. In the United
States, this probability has been very close to zero since the start of 2021.

The figure shows a third series, for a deflation disaster over the next five years, so with
the real and risk adjustment, but measuring the near-term rather than the 5y5y probabil-
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ity, as in Boninghausen, Kidd and de Vincent-Humphreys (2018). Until 2016, this tracked
the 5y5y probability. That is, the perception in markets of the probability of an inflation
disaster was roughly the same over the next 5 years, or over the succeeding ones. But,
from the end of 2016 onwards the probability of near deflation was low, with a short-lived
spike in the middle of 2020.

What is the interpretation? The estimates suggest that the ECB’s aggressive policies
from 2015 onwards to contain the perception of a deflation disaster succeeded in lowering
the probability of a deflation in the near term. However, the chances of falling into a
deflation trap in the distant horizon did not fall, even after the increase in inflation in
late 2021. If anything that probability became larger and more volatile. The market thus
continues to perceive a significant structural flaw in the ECB’s mandate that keeps the
chance that the Eurozone will fall into a deflation trap high. Whether the recent mission
review remedied this perception is too early to tell.

7.3 The pandemic and 2021 inflation fears

The top panel of figure 10 shows the 5-year-5-year probability of a high-inflation disaster
(above 4% on average) from 2020 to early 2022 for both the US and the EZ.17 In 2020,
the two were roughly similar and reasonably stable, although they started rising in the
second half of the year for the US reaching 5% by the end of the year. In the second half
of 2021, the two series strongly diverge, with the US probabilities steadily rising, while
the EZ one stayed constant. In the first three months of 2022, the EZ probabilities sharply
increased, almost catching up to the US ones.

These estimates provide a rich account of the expectations anchor during this period.
In 2020 and 2021, the ECB seemed to succeed in keeping market inflation expectations
anchored away from right-tail risk, even as the probability of left-tail risk remained high.
Anchoring market expectations against the deflation risk seemed the bigger challenge.
Yet, bad luck or bad policy led to a sharp turn in 2022, with two-sided tail risk emerging,
as the probability of an inflation disaster in either direction became high. One tentative
hypothesis for why the high-inflation disaster probability stayed low in the Eurozone in
2021 was that actual inflation was slower to rise there, on account of less fiscal stimulus,

17This period was also marked by large bond purchases, of both nominal and indexed bonds by the
Federal Reserve and the ECB. Insofar as these policies distort market prices, they may spillover to inflation
options prices. It is much less clear whether, and in what direction, they would distort out-of-the-money
options prices. A form of distortion would be violations of put-call parity conditions: in our data, these did
not become more frequent during this sub-sample.
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Figure 10: The risk of a high inflation disaster from 2020 to Q1 2022
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a lower starting point, and a small impact of the pandemic on labor force participation,
unlike the US. Another tentative hypothesis for the large change in 2022 could be the
impact of the Russian invasion of the Ukraine.

In the US, instead, the probability of a deflation risk stayed always close to zero. The
market-perceived probability of high-inflation risk, however, rose steadily, especially in
2021 as inflation itself was sharply rising. By March of 2022, it reached the high value of
14%. Interestingly, this drift up of right-tail estimates is significantly more pronounced
than that of the mean estimates shown in figure 1. Tail risk is drifting in a way that
looking at conventional measures of expected inflation would miss. It also is in line with
the general phenomenon that high inflation is often volatile inflation – in the US both are
moving up, something that should and most likely does concern the monetary authority.
From the perspective of economic theory, this evolution suggests that even long-horizon
expectations are quite sensitive to current realizations.

The bottom panel of figure 10 digs a little deeper, by showing the 5-year and 10-year
probabilities for the US and the EZ. Throughout the entire sample, before 2021, the 10-year
disaster probability was always above the 5-year. As the figure shows, this changed in the
US in May of 2021 and in the EZ in January of 2022, as the market perceived probability
of a disaster in the next 5 years rose even more than the 5y5y horizon. The market seems
to expect that some of the high inflation is temporary, but some of it will persist. Whether
this is the result of over-reaction of expectations or instead a reflection of lack of credibility
of monetary policy is a question left for future research.

8 Conclusion

This paper develops methods to use inflation options data to back out market-perceived
probabilities for tail events in inflation. We show that producing accurate estimates re-
quires taking into account that: (i) the options price data do not reveal the real Arrow-
Debreu probabilities; (ii) the risk premium for inflation is not the same at its two tails
and at the center of the distribution; and (iii) forward horizons can differ from short or
long horizons because of the sluggishness of inflation. We provide some simple, but we
hope robust, methods to do all of these adjustments. We show that the adjustments are
quantitatively large relative to constructing probabilities using conventional methods.

In a second step, we apply our methods to data from the US and the EZ between
2009 and March of 2022. The estimates of inflation disaster probabilities lead to three
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empirical findings. First, the risk of sustained future deflation in the United States in
2011-14 was quite low, in spite of policymakers’ perceptions at the time. Second, there is
a persistent belief in markets in the Eurozone that it may fall into a deflation disaster trap
in the future. Third, in 2020-22, market perceptions of a high-inflation disaster diverged
significantly between the two regions, rising significantly in the United States throughout
2021, but in Europe only sharply in 2022.

Whether in these or in other cases, probabilities of inflation disasters are informative
about macroeconomic risk, monetary policy regimes, and the credibility of the central
bank. They may be of particular interest in the current environment of high inflation
levels, risk of stagflation, and unanchored inflation expectations (Reis, 2022). Under an
inflation targeting regime, at these forward distant horizons, the success of a central bank
at anchoring expectations near the target can partly be measured by whether the disaster
probabilities are small. Our estimates provide inputs to future work that can use these
methods and measures to diagnose the success of monetary policy regimes, and as an
input in models of how economic behavior changes when agents perceive a higher chance
of an economic disaster.
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This appendix is split into three sections that explain: how we obtain the probabil-
ity distributions for inflation from option prices; how we calculate the risk adjustment
factors; and how we estimate inflation dynamics to adjust for the horizon.

A Constructing the marginal distributions of inflation

The paper uses data on two sets of distributions. First, with zero-coupon inflation caps
and floors options at date t, we construct distributions of cumulative inflation from t for
5 and 10 year horizons using the formula in section 3 in the paper. Second, using year-on-
year caps and floors on inflation we construct forward distributions for one-year periods
starting in five to nine years. The data are from Bloomberg, for the United States (US) and
the Eurozone (EZ). Our data cleaning and construction process closely follows Hilscher,
Raviv and Reis (2022). Relative to their work, we use fewer maturities, have a higher
frequency (monthly rather than annual), and build distributions for the EZ as well as the
US.

A.1 Data pre-cleaning

Before starting the construction of the inflation distributions, we pre-process the data.
The raw data includes both data errors as well as data points that are based on trades at
different times of the day. This lack of simultaneity means that option prices may not pass
some basic screens. We only use data if it passes the following requirements: (1) cap and
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floor premia are monotonic in the strike price, (2) cap and floor premia increase mono-
tonically with maturity, (3) butterfly spreads, which represent one way of constructing
nominal Arrow-Debreu security payoffs, have positive prices, and (4) the put-call parity
implied real rates are consistent across strike prices.

A.2 Implied volatility smoothing

We then transform the data and calculate Black and Scholes (1973) implied volatilities.
This nonlinear transformation makes it easier to adjust for data inaccuracies and errors.
Black and Scholes (1973) implied volatilities of the cap and floor contracts are smoother
than the prices of the options. We therefore follow Shimko (1993) and use implied volatil-
ities to interpolate and smooth the data. We fit the SABR model, the four-factor stochastic
volatility model developed by Hagan et al. (2002) for each maturity. We search for the
set of parameters that minimizes the norm of the difference between model and actual
volatilities. We constrain the SABR parameters to ensure that the smoothing does not in-
troduce any arbitrage opportunities in option prices. In this way we construct a smoothed
maturity-specific implied volatility function, which we then use to convert back to option
prices.

For the year-on-year data, we first extract individual caplet and floorlet prices from
the market prices of caps and floors. We then use the Rubinstein (1991) transformation
to price forward starting options based on their specific option tenor, which is the time
between reset dates. We discount using the real interest rate which is extracted from the
put-call parity relationship of the zero coupon options (Birru and Figlewski, 2012). For
the individual caplet and floorlet prices we then follow the same SABR implied volatility
smoothing procedure with the same constraint that smoothing cannot introduce arbitrage
opportunities.

A.3 Strike prices

The zero-coupon cap and floor data for the five and ten year maturities that we are in-
terested in has strike prices from 1% to 6% (caps) and from -2% to 3% (floors), in 0.5%
increments. At times, individual data points may be missing or the range may be slightly
smaller. Using our smoothing algorithm we can calculate implied prices for the missing
data points and we can also extrapolate to strike price above and below the maximum
and minimum strike price levels.
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Starting August 10, 2021, data availability for the US drops and we only have 1%
increments. For the EZ the lowest cap strike price is 1.5%.

A.4 Constructing distributions

Data quality is not constant over time. In order to construct accurate distributions we
require high-quality data, that is, a combination of many observed option prices and those
option prices passing the pre-screening outlined above. Each month, we choose one (or
sometimes more) trading days that have the highest quality data, as close as possible to
the start of the month. We ensure that spacing between observations is stable, so that we
do not end up, for example, with a day at the end of February followed by a day at the
beginning of March.

For the year-on-year data, for the EZ it is common that only the five, seven and ten-
year maturities are available. This means that we can observe the price of the portfolio
of two year-on-year caplets (or floorlets) for the one-year periods starting in five and six
years and one portfolio for the following three one-year periods. For the US, we have data
for the different maturities but only until June of 2018, after which available maturities
also decline. We linearly interpolate the implied volatility for the missing years. Based on
data for which the various maturities are available, we know that the year-on-year for-
ward distributions from years five to nine are quite stable, supporting our interpolation
technique.

A.4.1 Periods of sparse data, especially on US YOY

When constructing the distributions we use the put-call-parity-implied real interest rate
for calculation of the option implied volatility. If there are sparse data, sometimes there
are no overlapping observations. This happens only in the case of the YOY data for the
US starting in June 2021. Before this time and for all other distributions (5Y and 10Y zero
coupon), we have the necessary data. For these cases we use the Bloomberg swap rate
for the relevant period. Comparing the nominal rate to the swap rate, we recover the real
rate for the period.

Another data issue starting June 2021 is that there are not sufficient data to construct
the 1Y distribution, which is needed for construction of the YOY distributions. In those
cases the one-year implied volatility function is linearly extrapolated from the two- and
three-year implied volatility functions. Given that we are using data for the six to 10-year
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horizons, this adjustment has little effect.

B Model of inflation risk

This section of the appendix describes the estimation of the distribution of joint output-
inflation disasters. The data on inflation comes from Jordà, Schularick and Taylor (2016),
which is then merged with the output data in Barro (2006). The list of 18 covered countries
is: Australia, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan,
Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, and the
United States.

B.1 Identifying disasters: baseline

To classify disasters in a time-series for inflation for an individual country, we proceed in
two steps. First, we identify cycles, periods between local maxima and minima. Second,
we compare these to a target, or normal, inflation rate at the time. If inflation is sufficiently
away from the target we call this a disaster.

On cycle identification, for the results in the main body of the paper, the local minima
(maxima) of the inflation series are identified in a rolling, centered five-year window: if
the midpoint is lower (higher) than all other values in the window, that point is classified
as a trough (peak).

Date t is:

8
>>><

>>>:

a peak , if pt > p
t̃
8 t̃ 2 {t � 2, t � 1, t + 1, t + 2}

a trough , if pt < p
t̃
8 t̃ 2 {t � 2, t � 1, t + 1, t + 2}

neither , otherwise

All observations after some preceding trough/peak up to (and including) the next local
extremum are classified as one cycle (method C2, see below). These cycles, often spanning
several years, are the unit for evaluating whether there is a disaster. The inflation of an
entire cycle C = {tC, tC + 1, . . . , tC + TC} is the aggregation of yearly inflation within the
cycle; we use the cumulative growth rate pC =

⇣
’t2C(1 + pt)

⌘
� 1 as aggregator.

A cycle is classified to be in a disaster state pd if this inflation value deviates from
some target by some threshold. For the baseline results, the target is given by applying
a 20 year-Butterworth square-wave highpass filter on the inflation series (sub-method T3
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below).

B.2 Alternatives to identifying disasters

We explored alternatives to both identifying cycles and to setting the target. Starting with
the target, beyond the baseline (method T3), we also use the mean of inflation censored
at the [0.25, 0.75]-quantiles for each country, with the exception of the US, where we use
2%. Here the inflation target is a country-specific constant. This is method T1. Another
alternative was, for each country, to compute the mean of censored inflation as above,
but using the past 20 years in a rolling window, imputing for the first 19 observations
the values from method T1. Here the inflation target is a country-specific constant for the
first 19 years and time-moving afterwards, and we call this method T2. The threshold
for deviation is chosen as the inflation target, which in the case of (T2) and (T3) is itself
moving with time.

Relative to the baseline, beyond the baseline (method C2), we considered partitioning
the observed time period using peaks/troughs. For each country, annual inflation and
inflation target (using submethods T1-T3) are smoothed with a five-year leading window.
Moving with the direction of time, if in some year inflation deviates from target, that and
the next four years are classified as inflation disaster; the evaluation then continues with
the year following this cycle. This procedure yields disaster cycles with a fixed length of
five years, and we call it method C1.

B.3 Results under alternatives, for pooled sample

A cycle is classified as a joint inflation-and-output disaster if it has been classified as an
inflation disaster, and additionally contains at least one year that has been classified as an
output disaster in Barro (2006).

Overall, with two methods to partition the time period into cycles, and three methods
to define an inflation target, this yields six alternative ways in total. Table 1 presents the
unconditional probability of an inflation disaster, and the probability of a joint inflation-
and-output disaster conditional on an inflation disaster p̃, for method {C1, C2} x {T1, T2,
T3}. It also shows the conditional probabilities for when the occurrence of a joint disaster
is evaluated on a year-by-year basis rather than per cycle, which produces lower prob-
abilities. Table 1 also reports estimated parameters of a Pareto fit on the (transformed)
changes in output z = 1/(1 + g) during joint disasters.
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Table 1: Unconditional and conditional probabilities, Pareto fits

Method
C1: fixed disaster length C2: peak/trough cycles

C1.T1 C1.T2 C1.T3 C2.T1 C2.T2 C2.T3

unconditional probability of an infla-
tion disaster

21.3% 20.7% 13.2% 20.6% 21.3% 13.4%

probability of output disaster condi-
tional on inflation disaster p̃

16.7% 18% 21.3% 16.9% 18.6% 20%

estimated z0 1.04 1.03 1.04 1.03 1.03 1.03

estimated a 5.73 5.7 6.77 6.11 6.67 6.38

B.4 Results under alternatives, separating high and low

Table 2 presents conditional probabilities where a distinction was made between high and
low inflation disasters.

C Horizon factor model

The Markov model that we use to model inflation dynamics has six parameters: symmet-
ric movements in the middle of the distribution, pnn, entering the high or low inflation
disaster, pdh and pdl, exiting the high or low inflation disaster, pnH and pnL and a probabil-
ity capturing mean reversion, pmr. The transition matrix is reported in the main text. We
chose this model because it fits well, with parameters that have clear interpretations, and
it is sufficiently rich to capture the dynamics well, but not so complicated that it becomes
difficult to interpret movements in the parameter estimates.

In our baseline model, the first three parameters are time-varying. This captures time
varying volatility and time-varying probabilities of entering a disaster, which is the vari-
ation that this paper is interested in estimating. The other three parameters are not time-
varying. The probabilities of leaving a disaster are close to constant when estimated in
an unconstrained setting and the mean reversion parameter is, if left to vary freely, quite
unstable due to the difficulty of identifying it relative to the local movement probability,
both of which affect medium-term volatility.

The main model is estimated at the quarterly frequency. Instead of six parameters
each period, it includes three fixed parameters and three time-varying parameters for

6



Table 2: With distinction between deflation and inflation: unconditional and conditional
probabilities, and Pareto fits

Method
C1: fixed disaster length C2: peak/trough cycles

C1.T1 C1.T2 C1.T3 C2.T1 C2.T2 C2.T3

Low-inflation disasters only

probability of output disaster condi-
tional on low-inflation disaster

12.1% 11.4% 14.2% 8.5% 8.5% 8.5%

estimated z0 1.04 1.03 1.04 1.06 1.06 1.06

estimated a 10.84 8.62 11.55 15.18 15.18 15.18

High-inflation disasters only

probability of output disaster condi-
tional on high-inflation disaster

19.6% 22.7% 29% 22.7% 25.4% 35.6%

estimated z0 1.07 1.03 1.05 1.03 1.03 1.03

estimated a 5.4 5.11 5.73 5.4 6.09 5.45

the quarterly sample. Estimating the model using monthly frequency data proved to be
computationally too costly relative to the very small potential benefit of higher-frequency
estimates of the time-varying parameters based on the full model. To obtain monthly
estimates, we re-estimate the model separately at each month, maximizing fit only over
the three time-varying parameters, while keeping fixed the three constant parameters
estimated with the quarterly data. We verify that in the months in the middle of the
quarter, the quarterly and monthly estimates are very close to each other.

C.1 Model fit

The model is fit by GMM. We fit three sets of moments (i) the five-year zero-coupon
distribution, (ii) the ten-year zero-coupon distribution, and (iii) the average of the t+6 to
t+10 year-on-year distributions. Each set of moments has eight moments associated with
it. Each of the sets has an equal weight when minimizing the squared deviations of the
model from the actual probability.

As an example, Figures 1, 2 and 3 present data and model distributions for the first
quarter of 2021. In order to calculate the model average inflation for five and ten years we
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Figure 1: 2021 Q1, 5-year cumulative distribution
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need to choose a value for average inflation in the high and low inflation disaster states
(below -1% and above 5%); we set these equal to -2% and 6%.

We next compare model fit of our main model (Model 101) to the fit of the alternative
model (Model 1) for which all parameters vary freely over time. Figures 4 and 5 plot
model fit over time as well as average model fit. What the figures report is the root mean
squared error of the model and model R

2. Figure 5 reports results from fitting a quarterly
model and then, in a second step, fitting the time-varying parameters for each of the
missing months, but holding fixed the time invariant parameters.

Though there is some heterogeneity over time, with a spike in the early days of the
pandemic, overall fit is quite good. Importantly, though overall fit declines when moving
from the flexible time-varying model (Model 1) to the more restricted model (Model 101),
for R

2 this is driven primarily by poor fit early in the sample period. It is also useful to
note that fit, as measured by the RMSE, move together for both models. It is therefore not
the model but rather time variation in the data that leads to time variation in fit.

For the EZ the pattern is similar to the US. Figures 6 and 7 show the fit of models 1 and
101 respectively. The pattern is similar to the US data. Overall fit is comparable for both
models, though again a little better for the flexible model, as expected. Time variation
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Figure 2: 2021 Q1, 10-year cumulative distribution
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Figure 3: 2021 Q1, one-year forward distribution
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Figure 4: Model fit for US monthly and quarterly models
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Figure 5: Model fit for US monthly and quarterly models
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Figure 6: Model fit for EZ monthly and quarterly models
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in model fit is also similar, with the exception of the early days of the pandemic, during
which model 101 underperforms by a little more.

We also explore another model in which the parameters that are held fixed in model
1 are allowed to vary at the annual frequency, rather than at the monthly frequency,
which is what we assume in the fully flexible model. This approach, which we refer
to as model 101A, results in a substantial increase in parameters relative to model 101,
our main model, and it also improves fit a bit, but it has the same feature as the monthly
model, which is an inability to clearly identify long-term trends in volatility through the
probability of local changes. This is because this model allows for slow-moving changes
in mean reversion, which also affects long-run volatility, itself slow-moving. Figure 8
shows model fit compared to the fully flexible monthly model.

C.2 Model parameters

For completeness, we show the full set of parameters for model 1, both for the US and the
EZ. The time-varying parameters are also presented in the main paper. Figures 9 and 10
show the estimated model parameters.
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Figure 7: Model fit for EZ monthly and quarterly models

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
20%Model Fit, EZ, Model(101)

R2, lhs mean R2 RMSE, rhs mean RMSE

Figure 8: Model fit compared to model with slow-moving mean reversion probability
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Figure 9: Model parameters: US
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Figure 10: Model parameters: EZ
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C.3 Other models

We considered several other candidate models. These models either had two few param-
eters to have adequate model fit or they had more parameters than were necessary. For
completeness, we briefly discuss some of them here.

First, we considered a model with only three parameters – the probability of a local
change in inflation, one probability of entering either disaster, and one for leaving it. The
model fit was poor. We tried varying the jump size (into and out of disaster) and the
number of bins used.

The next model had four more parameters: the probabilities of jumping to either disas-
ter and leaving disaster, one probability of local movements in inflation and a probability
capturing mean reversion. As is apparent from the estimated parameters of entering ei-
ther disaster in our main model or in the flexible six-parameter model, the assumption of
the disaster probability being the same for both disasters is too restrictive. It also does not
allow us to separately identify disaster probabilities, which is one focus of this work.

In another model, the probability of entering a disaster was allowed to depend on
the distance from the disaster state. This added unnecessary flexibility that made little
difference in practice.

In another model we allowed the probability of jumping to disaster to depend on
the distance from disaster, either by estimating separate probabilities depending on the
distance or by assuming that the probability is a function of the number of bins between
the current state and disaster. Again this proved to be more complicated than necessary.

Finally, as a separate robustness check we have estimated a model in which param-
eters vary at different frequencies. The parameters assumed to be constant in our main
model vary at annual frequency and the time-varying parameters vary at monthly fre-
quency. The model has the advantage of being able to include monthly data. However, it
has the same disadvantage as the fully time-varying model in that low-frequency move-
ments in volatility and disaster probabilities are harder to detect.

To conclude, across models, the different parameter movements were broadly compa-
rable, though, as discussed, the long run decline in volatility cannot be observed as easily
since more than one time-varying parameter affects volatility.
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