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Edgeworth’s paradox of taxation occurs when an increase in the unit cost of a
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general analysis of the case of linear marginal cost and demand conditions, showing
how the matrix of cost passthrough terms is similar to a positive definite matrix,
and so has positive eigenvalues. When the firm supplies two substitute products we
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surplus increases with cost.

JEL codes: D42, H22, L12

Keywords: Multiproduct pricing, Edgeworth’s paradox of taxation, cost passthrough,
price discrimination, Ramsey pricing.

1 Introduction

Recent analyses of the rate of passthrough from cost to price as an economic tool have

focussed on single-product firms: see, for example, Weyl and Fabinger (2013), and Miklos-

Thal and Shaffer (2021). However, the subject of multi-product cost passthrough has a

long history. In a remarkable article on the pure theory of monopoly published in 1897,

Edgeworth demonstrated his paradox of taxation —that a tax on (or cost increase of) one

product supplied by a multiproduct monopolist could lead to a reduction in the prices

∗Department of Economics and All Souls College, University of Oxford. We are grateful to Robert Ritz
and Jidong Zhou for helpful comments. Armstrong thanks the European Research Council for financial
support from Advanced Grant 833849.
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charged by the monopolist, including the price of the more costly product.1 This finding,

controversial at the time, was established in more detail by Hotelling (1932), who gave

some illustrations of the phenomenon that were easier to comprehend than Edgeworth’s.

In particular, Edgeworth (1925, pages 132-4) showed for the two-product case that

the second-order condition for profit maximization was compatible with consumer surplus

increasing with a tax on one product. He then provided a numerical example in which

both prices decreased with a tax on one of the products. The example has zero costs but

Edgeworth notes that the conclusion is strengthened when there are costs of production,

‘for then we have more functions at our disposal with which to manipulate a favourable

example’. He goes on to illustrate with rail fares: a tax on first-class tickets might lower

both first- and second-class fares, though the number of first-class travellers will nonetheless

decline, as the reduced second-class fare predominates.

As a preliminary comment it is worth noting why the paradox cannot arise in the

single-product case.2 If the cost of supplying product k increases, the monopolist will want

to reduce the amount of product k that it supplies. (The revealed preference argument

that confirms this is set out in section 2 below.) If k is the only product, and demand as

a function of price slopes down, then the price of product k must go up, and consumer

surplus decreases. But if k is not the only product, the monopolist might adjust its supply

of other products. If products are substitutes, reduced supply of k will normally induce

the monopolist to supply more of product j. The latter effect will bear down on prices,

including the price of k, offsetting at least partially the effect of reduced supply of k. The

paradox arises when the price effect of expanded supply of j more than offsets the reduced

supply of k —a phenomenon compatible with standard demand theory in the multiproduct

case, just as Edgeworth observed.

Edgeworth’s paradox is of interest not only for it own sake. It is part of the much wider

question of which cost passthrough possibilities exist in the multi-product case. For an n-

product firm there are n cost passthrough terms for each price, and therefore (n× n) cost

passthrough terms altogether. What properties of the (n× n) matrix of cost passthrough

1In Italian, in the Giornale degli Economisti. The article appears in English with some modifications
in Edgeworth (1925).

2A related paradox can however occur if there are multiple inputs to the production of a single product.
In particular, an increase in the price of an inferior input causes the marginal cost (though not the total
cost) of the output to fall, which induces the firm to set a lower price for its product. Hicks (1939, p.
93) noticed this possibility, observing that a decrease in the cost of one input will necessarily increase the
demand for the input, but might also decrease the supply of the output.
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terms are implied by standard theory of cost and demand? Our exploration of Edgeworth’s

paradox leads to an answer to this broader question. It also reveals a connection with

Ramsey pricing — in particular how Ramsey quantities move as the welfare weight on

consumer surplus varies.

The paper is organized as follows. Having set out the model in section 2, we analyse

Edgeworth’s paradox in section 3. There, we provide a simple illustration with inelastic

demand, and derive a condition for the paradox when the monopolist is restricted to

uniform pricing. We provide a general analysis of the case with linear marginal cost and

demand conditions, and show the possibility of the paradox and range of possibilities for

cost passthrough in this case. In particular, we show that a matrix is a possible matrix of

cost-passthrough terms if and only it is similar to a positive definite matrix, and show how

the eigenvectors of this matrix can be used to (simultaneously) diagonalize the profit and

consumer surplus functions. We provide a general analysis of the two-product case, and

show for given demand with substitutes that there are always cost conditions that give

rise to the paradox, but this is never possible when the two products are complements.

In section 4 we turn to a weaker version of Edgeworth’s paradox that we call the surplus

paradox– i.e., that consumer surplus increases as the cost of one product rises. We show

that there are always cost conditions that give rise to this paradox even without products

being substitutes. We also derive a connection between Ramsey pricing and the surplus

paradox. This paradox cannot happen in the cost and demand conditions featured in

section III of Armstrong and Vickers (2018), hereafter abbreviated to AV, but is quite

possible more generally. An implication of the Ramsey connection is that the surplus

paradox can be found where the profit-maximizing supply of some product exceeds its

supply with marginal cost pricing. This insight gives a way to find further examples of the

surplus paradox.

2 The model and output reduction result

A monopolist supplies n ≥ 2 products. The price and quantity of product k are denoted

by pk and xk respectively, and p and x denote the price and quantity vectors. Total output

is X ≡
∑

k xk. As in AV, gross consumer utility u(x) is assumed to be strictly concave;

the inverse demand function is given by p(x) = ∇u(x), the vector of partial derivatives of

u; and revenue is given by r(x) ≡ p(x) · x. Consumer surplus as a function of quantities is
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given by the function s(x) ≡ u(x)−r(x). Profit is π(x) = r(x)−c(x), where the c(x) is the

cost function. In general the monopolist maximizes the weighted sum φ(x) = π(x)+αs(x),

with α ∈ [0, 1]. Profit maximization corresponds to α = 0, effi cient supply corresponds to

α = 1, while interior α correspond to more general Ramsey pricing.

Suppose that the set of feasible quantity vectors lies in some set X ⊂ Rn+, and that
initially φ(x) is maximized by x0 ∈ X. (In many cases it makes sense that X = Rn+, but,
as with the uniform price analysis below, there are situations where the set of quantities

is restricted.) Compare the situation when product k has a per-unit cost increase (or tax)

of tk > 0, and let x∗ ∈ X then maximize φ(x)− tkxk. By revealed preference we have

φ(x0) ≥ φ(x∗) and φ(x∗)− tkx∗k ≥ φ(x0)− tkx0k .

Combining these inequalities we deduce that tk(x0k − x∗k) ≥ 0, confirming that the cost

increase causes supply of product k to fall, at least weakly. Moreover, if φ(x) is differen-

tiable, X = Rn+ and x0k > 0, then the supply of product k decreases strictly.3 For if not,

i.e., if x0k = x∗k, then x
∗ also maximizes φ, and we would have the contradiction that

∂

∂xk
φ(x∗) = 0 and

∂

∂xk
[φ(x)− tkxk]

∣∣∣∣
x=x∗

= 0⇒ ∂

∂xk
φ(x∗) = tk .

A recurring theme in this paper, explored more systematically in section 4, is that

the Edgeworth paradox is associated with over-provision of the relevant product by the

monopolist, relative to effi ciency. Intuitively, if the monopolist supplies too much of a

product, a tax on the supply of that product– which reduces its supply– may well lead

to better outcomes for consumers. The fall in xk will by itself tend to increase pk but

other xj will adjust. Edgeworth’s paradox occurs when their adjustment both outweighs

the upward effect on pk of the fall in xk, and causes pj to decrease too. The next section

finds a variety of ways in which that can happen.

3 Edgeworth’s Paradox

3.1 Inelastic demands

Both Edgeworth (1925, page 132) and Hotelling (1932, page 612) provide examples of the

Edgeworth paradox. In each case, the demand functions are quite complex and are valid

3The following argument is in the spirit of Edlin and Shannon (1998).
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only over a restricted range of prices and quantities.4 More importantly, the economic

forces underlying their examples seem opaque. The following approach gives rise to the

paradox in perhaps a more economically intuitive manner.

Consider a setting where u(x) takes the form

u(x) = max{uA(x), uB(x)} ,

where uA and uB are sub-utility functions. Suppose that the demand system associated

with uB involves lower profit-maximizing prices than A, but also a lower supply of product

k than A. Then a tax tk on product k tilts the firm in favour of inducing the consumer to

use B relative to A, in which case all prices might fall after tk is introduced.

For example, suppose that there are two products, that demand system A has inelastic

demand product i = 1, 2 equal to xAi so long as its price for the product does not exceed

1, while system B has inelastic demand for product i equal to xBi so long as its price does

not exceed v < 1. In particular, suppose that xA1 = xB2 = 2 and xB1 = xA2 = 1, and that

unit costs are c1 ≥ 0 and c2 = 0, so system A involves more of the costly product. (With

constant unit costs, as here, cost level ck is equivalent to tax tk, and we use the two terms

interchangeably.) For small c1 the profit-maximizing strategy is to extract all consumer

surplus in system A by setting p1 = p2 = 1 to obtain profit of 3 − 2c1. Suppose however

that that 9(1− v) < c1 < v (which requires v > 9
10
). Then the firm makes more profit by

inducing the consumer to choose system B by offering prices p1 = v and p2 = v− 3(1− v).

Such prices give consumer surplus of 6(1 − v) in both systems A and B, so there is no

incentive for the consumer to deviate to A, while the firm obtains profit of

(p1 − c1) + 2p2 = (v − c1) + 2[v − 3(1− v)] = 9v − c1 − 6 ,

which exceeds (3 − 2c1) when c1 > 9(1 − v). So if c1 rises above 9(1 − v), the firm shifts

from using A to using B because B involves less of the costly product. Both prices fall as

a result, and we have the Edgeworth paradox.

Notice in this example that if 3(1−v) < c1 < 9(1−v), the profit-maximizing firm prefers

system A despite the fact that B involves higher total welfare, so the monopoly supply

of product 1 then exceeds its effi cient level. This is an instance of the close connection

between monopolistic over-supply of a product and the Edgeworth paradox.
4For instance, Edgeworth’s example had the prices p1 and p2 being related to to quantities x1 and x2 as

(approximately) p1 = 1.6053− .2x1− 2
3 (x1− .96)

3
2 − 1

2x2 and p2 = 3.918−2
√
x2 − .6975− 1

2x1. Production
was assumed costless, and the profit-maximizing quantities were x1 = x2 = 1.
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3.2 Uniform pricing

We now find a simple condition for Edgeworth’s paradox to arise when the firm is con-

strained to set the same price for each of its products. For instance, regulation or social

norms might require a restaurant to set the same price for dinner regardless of the day of

the week. In this situation it is more convenient to work with demand functions rather

than inverse demand functions. Here, X is the set of quantity vectors x traced out by the

path x(P, ..., P ) as the scalar price P varies. Let P 0 and P ∗ be the uniform prices that

maximize the firm’s objective before and after the product k cost increase. As the cost

increase causes xk to fall weakly, xk(P 0, ..., P 0) ≥ xk(P
∗, ..., P ∗), and the following result

is immediate:

Proposition 1 When uniform pricing is required, the uniform price (weakly) decreases

with the cost of product k if xk(P, ..., P ) strictly increases with P .

Unlike most of the results in this paper, this result does not depend upon cost condi-

tions. With two products, xk(P, P ) can increase with P only if products are substitutes.

Revealed preference shows that the uniform price P that maximizes the Ramsey objective

φ decreases with the weight on consumer surplus, α, and in particular that the profit-

maximizing uniform price exceed the welfare-maximizing uniform price. Therefore, when

xk increases with P , the firm chooses to supply too much product k relative to the welfare-

maximizing case.

In any demand system total output X falls with the uniform price P . In particular,

in the two-product case if x1 increases with P then x2 must fall with P . Thus if demand

for one product rises with P , the set X of feasible quantities is a downward-sloping curve

in R2+. In the differentiable case, the condition that xk rises with P is equivalent to total

quantity X increasing with pk. This is because by Slutsky symmetry

d

dP
xk(P, ..., P ) =

∑
j

∂xk
∂pj

=
∑
j

∂xj
∂pk

=
∂

∂pk
X(P, ..., P ) .

This condition cannot occur with a situation with standard discrete choice and unit de-

mands, since in that case the number of consumers who buy something (which is X)

decreases if any price rises. However, more generally it is possible that total quantity rises

when a price rises, as the following example illustrates.
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Suppose there are two products with the linear demands

x1 = 1− p1 + 3
2
p2 , x2 = 3− 4p2 + 3

2
p1 ,

and constant unit costs of c1 ≥ 0 and 0 respectively for products 1 and 2. (Since (3
2
)2 < 4

this demand system corresponds to a concave utility function u(x1, x2).) With uniform

price P , demand for product 1 is the increasing function x1 = 1 + P
2
, and so the condition

in Proposition 1 is met. Profit is

(4− 2P )P −
(
1 + 1

2
P
)
c1 ,

and the profit-maximizing price

P̂ = 1− 1
8
c1 (1)

decreases with c1. Without the restriction to uniform pricing, however, there is no Edge-

worth paradox in this example. Indeed, the profit-maximizing prices without the uniform

price constraint are

p1 = 17
7

+ 1
2
c1 and p2 = 9

7
,

which are both higher than P̂ in (1), and as usual with linear demand and constant unit

costs there is no cross-cost passthrough from c1 to p2.

In the next section we continue the discussion of linear demand in greater detail, without

imposing the uniform pricing constraint.

3.3 Linear marginal costs and demands

Hotelling (1932, section 7) gives an example with linear marginal cost and demand in which

Edgeworth’s paradox arises with marginal cost pricing. We now give a general analysis

of the case where marginal costs and demands vary linearly with quantities. Specifically,

suppose that the n products have linear inverse demands

p(x) = a−Bx (2)

where a is a vector of positive constants and B is a (symmetric) positive definite matrix.5

Thus the firm’s revenue function is

r(x) = aTx− xTBx ,
5We adopt the standard convention that a positive definite matrix is symmetric.
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where ‘T’stands for transpose and aTx is the inner product
∑

i aixi. Suppose the firm’s

cost function is

c(x) = cTx+ xTDx ,

where c is a vector of positive constants ck, one per product, and D is again symmetric

(though not necessarily positive definite). Let M ≡ 2(B +D) so that the firm’s profit is

π = (a− c)Tx− 1
2
xTMx .

To ensure that profit is concave in quantities, suppose thatM is positive definite. Assuming

an interior solution, the first-order condition for profit-maximizing quantities is

Mx = a− c⇒ x = M−1(a− c) , (3)

so that ∂xi/∂cj is equal to minus the ijth element of the positive definite matrix M−1.

In particular, there is symmetry in the cross-effects in the sense that ∂xi/∂cj = ∂xj/∂ci.

From (2), expression (3) implies optimal prices are given by

p = (I − Γ)a+ Γc , (4)

where I is the identity matrix and Γ ≡ BM−1. Thus, Γ is the matrix of cost passthrough

terms, so that ∂pi/∂cj = γij, the ij
th element of Γ. (This is just an instance of the chain

rule: dp/dc = (dp/dx) · (dx/dc).) Even though the matrices B and M−1 are symmetric,

their product Γ need not be, in which case ∂pi/∂cj 6= ∂pj/∂ci. The Edgeworth paradox

occurs for product k– that is, an increase in ck (e.g., due to a new tax tk > 0 on that

product) will reduce all prices– if the kth column of Γ is made up of negative entries.

If the cost function is linear (i.e., if D = 0), then Γ = 1
2
I and (4) simplifies to

p = 1
2
(a+ c) ,

in which case there are no cross-cost effects on prices, and the paradox cannot occur.

Turn next to the case with a quadratic cost function, and suppose for simplicity there

are two products where we write b = b12 = b21 and d = d12 = d21. We have

Γ =
2

detM

(
b11(b22 + d22)− b(b+ d) bd11 − db11

bd22 − db22 b22(b11 + d11)− b(b+ d)

)
(5)

where detM > 0 is the determinant of M . Thus an increase in c1 will reduce both prices

if

b11(b22 + d22)− b(b+ d) < 0 (6)
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and

bd22 − db22 < 0 . (7)

Given that b11 > 0 and b22+d22 > 0, condition (6) implies that b(b+d) needs to be positive,

so there must be cross effects in demand. In fact, the two conditions (6) and (7) together

require b > 0 and hence that b + d > 0. To see this, suppose in contrast that b < 0, in

which case (6) can be written

0 > −b11
b

(b22 + d22) + (b+ d) > − b

b22
(b22 + d22) + (b+ d) = d− bd22

b22
,

which contradicts (7). (In the second inequality we used the fact that b11b22 > b2.) Thus if

the Edgeworth paradox occurs we must have products being substitutes in demand (b > 0)

and substitutes in the profit function too (in the sense that b+ d > 0). Indeed, given that

b > 0 and b + d > 0, once the own-cost effect (6) is negative then the cross-cost effect (7)

is automatically negative as well. We summarise this discussion as follows:

Proposition 2 Suppose there are two products and marginal cost and demand is linear

such that products are substitutes in demand (i.e., b > 0) and profit (i.e., b+d > 0). Then

the Edgeworth paradox holds if and only if (6) is satisfied.

A further observation is that (7) together with b > 0 implies that either d22 is strictly

negative or d is strictly positive. The former means that product 2’s marginal cost falls

when the firm supplies more of that product, while the latter implies that product 2’s

marginal cost falls when the firm supplies less of product 1. As we explore more fully in

Section 3.4, one way to obtain Edgeworth’s paradox is when the reduction in x1 due to the

tax induces a particularly large expansion in x2, and having product 2’s marginal cost fall

with a reduction in x1 or an increase in x2 are two ways to achieve this effect.

Finally, consider the Ramsey problem rather than pure profit maximization. With a

weight α on consumer surplus, the objective function becomes

π + αs = (a− c)Tx− xT (B +D)x+ 1
2
αxTBx ,

and so the preceding analysis carries over if the matrixM is replaced by M̂ = (2−α)B+2D.

Condition (7) for the Edgeworth paradox is unchanged, while condition (6) is modified to

b11(b22 + d22)− b(b+ d) < 1
2
α(b11b22 − b2) .
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Thus, since b11b22 − b2 > 0 the paradox becomes easier to achieve when more weight is

placed on consumer surplus. In particular, if the paradox occurs with profit-maximization

it occurs for all Ramsey weights as well.6

Patterns of cost passthrough: Moving beyond the focus on the Edgeworth paradox, a nat-

ural question is what patterns of cost passthrough are possible in this framework with linear

marginal costs and demands. Expression (4) shows that the matrix of cost passthrough

terms under profit maximization is Γ = BM−1. Since the two matrices B and M−1 can

be freely chosen subject only to the constraints that they both be positive-definite, the

only constraint on Γ is that it be the product of two positive definite matrices.7 Ballantine

(1968, Theorem 2) shows that a matrix Γ is the product of two positive definite matrices if

and only it is similar to a positive definite matrix.8 Note that a positive definite matrix is

similar to a diagonal matrix with positive entries, and so Γ is the product of two positive

definite matrices if and only it is similar to a diagonal matrix with positive entries, i.e., if

Γ is diagonalizable with positive eigenvalues. Thus, we have the following result:

Proposition 3 With linear demands and marginal costs, Γ is a feasible cost passthrough

matrix if and only if it is diagonalizable with positive eigenvalues.

Proposition 3 implies that the determinant of Γ is positive and that the trace of Γ

is positive, where the latter observation shows that on average the own-cost passthrough

terms are positive. The condition that Γ be diagonalizable with positive eigenvalues is

almost the same as requiring that all eigenvalues of Γ are real and positive. If Γ has distinct

positive eigenvalues then it is diagonalizable. However, if Γ has some repeated eigenvalues,

then it is not necessarily diagonalizable. We will see shortly that the eigenvectors of Γ

have a natural interpretation, as a way to change variables to make profit and consumer

surplus additively separable.

6In Hotelling’s example (see Hotelling, 1932, pp. 602-3) the Edgeworth paradox arises with the Ramsey
objective φ = π + αs for all α ∈ (0, 1]. But with pure profit maximization (α = 0) the price of product 1
does not vary with its unit cost in his example.

7If M is positive-definite then so is M−1. Given the linear demand matrix B, one can construct any
positive-definite matrix M by choosing the cost matrix D = 1

2M −B.
8Two matrices A and B are said to be similar if they are related as A = Z−1BZ for some invertible

matrix Z. Similar matrices have the same determinant, trace, and eigenvalues. If a matrix A is similar
to a diagonal matrix, it is said to be “diagonalizable”, and the entries in the diagonal matrix are the
eigenvalues of A.
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Proposition 3 holds more generally. If demands and costs are smooth functions, then

at the firm’s optimal set of quantities its inverse demand function is locally linear (with

cross-quantity effects given by a matrix B which is positive definite) and where its profit

function is locally quadratic (where the second—order condition for optimality implies the

matrix of second derivatives is (minus) a positive definite matrix M). Thus, for small

changes in unit costs, the matrix of cost passthrough terms is similar to a positive definite

matrix.

If Γ has distinct positive eigenvalues then it is a feasible matrix of cost passthrough

terms. With two products, Γ has two distinct positive eigenvalues when the characteristic

equation det(Γ− λI) = 0 has distinct positive roots for λ, i.e., when

γ11γ22 > γ12γ21 and γ11 + γ22 > 2
√
γ11γ22 − γ12γ21 . (8)

If the Edgeworth paradox arises for c1 (i.e., if γ11 < 0 and γ21 < 0), then (8) requires

that γ22 > 0 and γ12 > 0 so that an increase in the other cost must cause both prices to

rise. Asymmetry in cross-cost passthrough is crucial for the paradox: if γ12 and γ21 merely

have the same sign, then (8) implies that both own-cost passthrough terms are positive.

Another kind of paradox occurs if a given price is a decreasing function of both costs, e.g.,

if γ11 < 0 and γ12 < 0. Clearly this is possible, and can be achieved by swapping γ12 with

γ21 in any instance of the Edgeworth paradox.
9 In such a situation, the other price will

increase with both costs.

As well has being similar to a positive definite matrix, the passthrough matrix Γ has

additional interesting properties. Given demand and profit matrices B and M , both posi-

tive definite, there exists an invertible matrix Ẑ such that ẐTMẐ = I and ẐTBẐ = Λ, a

diagonal matrix with positive entries. (See, for instance, Strang (2006, p. 361).) It is easier

to work with the inverse matrix Z ≡ Ẑ−1. Thus, with the linear change of variables given

by y = Zx, we have xTMx = yT ẐTMẐy = yTy, and the firm’s profit becomes additively

separable in the variables y1, ..., yn. Likewise, consumer surplus, which is s = 1
2
xTBx, is

equal to the separable expression 1
2
yTΛy when expressed in terms of the y quantities. Since

M = ZTZ, the matrix Z is a “square root”of M . Then Γ can be written as

Γ = BM−1 =
[
ZTΛZ

] [
Z−1(ZT )−1

]
= ZTΛ(ZT )−1 ,

9In fact, if γ11 < 0 then (8) implies that either γ12 < 0 or γ21 < 0 (but not both).
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and hence

Λ = (ZT )−1ΓZT

so that the matrix ZT diagonalizes Γ. In particular, Λ consists of the eigenvalues of Γ

and ZT consists of associated eigenvectors of Γ arranged in columns, i.e., Z consists of

eigenvectors of Γ arranged as rows. Thus, via its eigenvectors, the passthrough matrix Γ

contains the information required to find a matrix Z such that with the change of variables

y = Zx both profit and consumer surplus become separable functions of y1, ..., yn.

To illustrate, consider the demand and profit matrices

B =

(
7
2

3
3 8

3

)
, M =

(
10 8
8 20

3

)
,

both of which are positive definite.10 These induce the passthrough matrix

Γ = BM−1 =
1

4

(
−1 3
−2 4

)
,

which exhibits the Edgeworth paradox for c1. Here, Γ has eigenvalues λ1 = 1/4 and

λ2 = 1/2, and respective eigenvectors that are (proportional to)
√

2
3
× (3, 2) and (2, 2), so

that

Z =

(
3
√

2
3

2
√

2
3

2 2

)
.

(The particular normalization for the eigenvectors is chosen so Z is a square root of M .)

Thus, with the change of variables y1 =
√

2
3
(3x1 + 2x2) and y2 = 2x1 + 2x2, both profit

and consumer surplus become separable in y1 and y2.

3.4 Two-product analysis

The possibility of the paradox with linear marginal costs and demands raises the question

of how prevalent it is more generally. We now focus on the two-product case with a

profit-maximizing firm, and show that, for any demand system with substitutes, there

exists a cost function such that the paradox occurs. This validates Edgeworth’s remark,

quoted above, that a flexible choice of cost functions expands the scope for examples of

the paradox.

10For instance, these matrices arise when inverse demand and cost are given by p1 = 18 − 7
2x1 − 3x2,

p2 =
44
3 −

8
3x2−3x1, and c(x) =

1
6 (3x1 + 2x2)

2, in which case the firm chooses profit-maximizing (interior)
quantities equal to x1 = x2 = 1.
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Suppose then that there are two products, that utility u is differentiable and strictly

concave and that the cost function is differentiable, and that the marginal cost of product

1 increases by t1 > 0. Then x1 will strictly decrease (except in the trivial case where x1 is

already zero). For fixed x1, the firm’s optimal choice of x2, denoted x2(x1), does not depend

on t1. Standard comparative statics results show that optimal x2 increases [decreases] with

x1 according to whether π12(x) is positive [negative], where subscripts of π(x) denote its

partial derivatives. If both quantities fall then at least one price must rise.11 So to observe

the Edgeworth paradox it is necessary that optimal x2 decreases with x1, i.e., that π12 < 0.

Moreover, for p1 to fall when x1 falls and x2 rises it is necessary that

∂p1
∂x2

=
∂p2
∂x1

< 0 ,

so that the products are substitutes in demand.

Optimal x2 given x1 satisfies the first-order condition π2(x1, x2(x1)) = 0, and differen-

tiating this condition yields

x′2(x1) = −π12
π22

,

where the second-order condition requires π22 < 0. It follows that the net impact on p1 of

the reduction in x1 and consequent increase in x2 is negative if

∂p1
∂x2

π12
π22
− ∂p1
∂x1

< 0 , (9)

while the impact on p2 is negative if

∂p2
∂x2

π12
π22
− ∂p2
∂x1

< 0 . (10)

Condition (9) can be written as

π12
π22

>
∂p1/∂x1
∂p1/∂x2

. (11)

Since the concavity of utility implies that

∂p1
∂x1

∂p2
∂x2
≥ ∂p1
∂x2

∂p2
∂x1

,

it follows that if the own-cost effect on price (11) is negative then so is the cross-cost effect

(10), and so the paradox occurs simply when (11) holds. Condition (11) implies that either

11If x̂ 6= x then the strict concavity of u implies that u(x̂) < u(x) + (x̂ − x) · p(x) and u(x) < u(x̂) +
(x− x̂) · p(x̂), and adding these implies (x̂− x) · (p(x̂)− p(x)) < 0. Therefore, if x̂k ≤ xk for each k with
at least one strict inequality then pi(x̂) > pi(x) for some product i.
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∂p1/∂x2
∂p1/∂x1

> 1 or π12/π22 > 1, i.e., that cross-effects dominate own-effects for either inverse

demand p1 or for profit π (or both). Note that the concavity of u and π implies that the

corresponding condition to (11) for product 2 cannot hold simultaneously, i.e., that the

Edgeworth paradox can occur for at most one of the two products.

Condition (11) involves both the demand function and the profit function. However,

one can choose these two functions independently, by means of a suitable choice of cost

function. Indeed, for any given revenue function r(x), if one chooses the cost function

c(x) = r(x)− π(x) one can implement the profit function π(x). This means for any given

demand system involving substitutes, one can construct a cost function which leads to the

Edgeworth paradox.

The method is as follows. Take a demand system p1(x) and p2(x) with ∂p1/∂x2 =

∂p2/∂x1 < 0, and let r(x) ≡ x1p1(x) + x2p2(x) be the associated revenue function. Pick a

quantity vector x∗ such that r is increasing in x1 and x2 at x∗. Then find a (concave) profit

function π such that π is maximized at x = x∗ and where (11) holds when evaluated at

x = x∗. For any negative constants π11, π22 and π12 such that π11π22 > π212, the quadratic

function

π(x) = 1
2
π11x

2
1 + 1

2
π22x

2
2 + π12x1x2 − (π11x

∗
1 + π12x

∗
2)x1 − (π22x

∗
2 + π12x

∗
1)x2 (12)

is concave, is maximized at x = x∗ (with positive profits), and has second derivatives equal

to the constant terms π11, π22 and π12. Since these constant terms can be freely chosen

(subject to the requirement π11π22 > π212), we can always find such a profit function where

π12/π22 is large enough to satisfy (11). The final step is then to choose the cost function

c(x) = r(x) − π(x), which implements the profit function. Since r(x) is increasing at

x = x∗, so is c(x). With such a cost function, a small tax t1 > 0 on product 1 will induce

the firm to reduce both its prices.

We summarise this discussion in the following result.

Proposition 4 For any differentiable two-product demand system with substitute products,

there exists a cost function such that Edgeworth’s paradox arises.

4 The Surplus Paradox

For Edgeworth’s paradox to occur, all prices must fall when the cost of one product rises.

Consider instead the surplus paradox that he mentioned, where consumer surplus increases

14



when the cost of one product rises. Clearly the surplus paradox occurs whenever Edge-

worth’s paradox does, but it can occur more generally and with less in the way of “manip-

ulation”needed.

4.1 Further two-product analysis

When utility u(x) is smooth and strictly concave, the surplus function s(x) must strictly

increase with at least one xk.12 However, when products are complements it is possible

that s(x) decreases with other quantities. In the case of two products, a tax on product 1

will reduce the firm’s supply of x1, and similarly to (9) the net impact on consumer surplus

is positive when

s2
π12
π22
− s1 > 0 . (13)

Here, if s decreases with x1 then (13) is very likely to hold. This is because negative s1

implies that products are complements, and this is likely to mean that products are also

complements in the profit function in the sense that π12 > 0. Since s1 < 0 implies s2 > 0,

it then follows that (13) holds.

More generally, a similar argument to that in Proposition 4 shows that any differentiable

demand system (regardless of whether products are substitutes or complements) can lead

to the surplus paradox with a suitable choice of cost function. For let u(x) be some utility

function, leading to revenue r(x) and consumer surplus s(x). Pick a quantity vector x∗ such

that r is increasing in x1 and x2 at x∗. The function s cannot have both s1 = 0 and s2 = 0

at x∗, and so label products so that s2(x∗) 6= 0. We seek a concave profit function π such

that (13) holds when evaluated at x = x∗. For any constants π11, π22 and π12 such that

π11 < 0 and π11π22 > π212, the quadratic function (12) is concave, is maximized at x = x∗

(with positive profits), and has second derivatives equal to the constant terms π11, π22 and

π12. Since these constant terms can be freely chosen (subject to the requirements π11 < 0

and π11π22 > π212), we can always find such a profit function where π12/π22 satisfies (13).

(We choose π12 to be positive or negative according to whether s2 is negative or positive.)

The final step is then to choose the cost function c(x) = r(x)−π(x), which implements the

12This is because

−
∑

xi
∂

∂xi
s(x) = −

∑
xixj

∂2

∂xi∂xj
u(x) > 0 ,

where the inequality is due to the matrix of second derivatives of u being negative definite, and so ∂s/∂xk >
0 for at least one product k.
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profit function. Since r(x) is increasing at x = x∗, so is c(x). With such a cost function, a

small tax t1 > 0 on product 1 will induce the firm to deliver higher surplus s to consumers.

Thus we have:

Proposition 5 For any differentiable two-product demand system there exists a cost func-

tion such that the surplus paradox arises.

Thus, unlike the full Edgeworth paradox, the surplus paradox can occur even when the

firm serves markets which are separate and independent in terms of consumer demand.13

4.2 An Edgeworth-Ramsey connection

The surplus paradox has a simple connection with Ramsey pricing. Recall that the monop-

olist in our model is assumed to maximize φ(x) = π(x) + αs(x), where α is the weight on

consumer surplus relative to profit. A natural question is how the optimal quantity xk of

product k varies with α. As the next proposition records, the answer is that the rate that

consumer surplus varies with the cost of product k is equal to minus the rate that xk varies

with α. Therefore, if xk decreases with α then the surplus paradox occurs and consumer

surplus increases with the tax tk. Thus there is a close Edgeworth-Ramsey connection.

Proposition 6 Suppose that per-unit tax tk is imposed on product k. Then

∂s

∂tk
= −∂xk

∂α
. (14)

Proof. Define

φ̂(tk, α) ≡ max
x

: π(x)− tkxk + αs(x)

as maximum weighted welfare with Ramsey parameter α and tax tk. By the envelope

theorem
∂φ̂

∂tk
= −xk ;

∂φ̂

∂α
= s

and the symmetry of the cross derivatives of φ̂ entails (14).

A simple revealed preference argument shows that s necessarily increases with α, and

so Proposition 6 can be interpreted as saying that the surplus paradox arises for a cost

13Chen and Schwartz (2015) analyze the effect on consumer surplus and welfare of mean-preserving
spreads of unit cost in a setting with separate single-product markets that have the same demand condi-
tions.
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increase for product k if the most profitable quantity of product k needed to achieve a

target consumer surplus s decreases with s. For instance, suppose consumers view the

products as perfect substitutes, so that they care only about total quantity X. Given

the firm’s cost function c(x), suppose that the least-cost way to supply total quantity X

involves quantity x1(X) of product 1. Then if x1(X) decreases with X, so that product

1 is akin to an inferior input, Proposition 6 implies that a tax on product 1 will increase

consumer surplus. (The optimal choice of X in the Ramsey problem increases with α, and

so the optimal choice of x1 decreases with α if x1(X) falls with X.)

Since s increases with α and s(x) cannot be a decreasing function of all quantities xk, it

cannot be that the surplus paradox occurs for cost increases in all products. In particular,

with two products the surplus paradox can occur for a cost increase for at most one of the

products.

Using Proposition 6 we can apply Ramsey pricing results to understand when the

surplus paradox might arise. For instance, AV connects Ramsey pricing to Cournot com-

petition. In particular, Section IIC in AV implies that Cournot competition between m

symmetric multiproduct firms with cost function satisfying

c(x) is convex and homogeneous degree 1 (15)

has the same outcome as the monopoly Ramsey problem with weight α = (m − 1)/m.

Proposition 6 then implies that, if entry into the Cournot market would have caused

equilibrium supply of product k to fall, then an industry-wide tax on that product will

cause consumer surplus to rise.

A theme of AV is that under certain conditions optimal quantities move equipropor-

tionately as the Ramsey weight α on consumer surplus varies, in which case the surplus

paradox cannot occur. It is well known that the equiproportional property holds if α is

close to 1 when (15) holds (see section IIB in AV). Thus when α ≈ 1 the only way to obtain

either paradox is to have cost functions outside the class (15). For instance, as already

noted, Hotelling (1932, section 7) gives an example with linear demand and a quadratic

cost function in which Edgeworth’s paradox arises with α = 1. Section III in AV considers

the situation where the cost function satisfies (15) and consumer surplus s is homothetic

in x, i.e., s is an increasing function of the scalar “composite quantity”q(x) where q(·) is
homogenous degree 1 in outputs x. (Consumer surplus is homothetic in x when utility u

is homothetic, and also when demands are linear or take a Logit form. More generally,
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Proposition 2 in AV shows that s is homothetic in x if the utility function u takes the

form u(x) = h(x) + g(q(x)), where h and q are homogeneous degree 1 functions.) Propo-

sition 3 in AV shows in this case that Ramsey quantities increase equiproportionately as

α increases, so that neither paradox can occur. The reason is that the cost of producing

composite quantity q increases if the cost of any component product rises, and this induces

the firm to reduce q and so reduce consumer surplus.

An implication of Proposition 6 is that the surplus paradox can be found wherever the

profit-maximizing quantity of some product exceeds its effi cient level, for in that case there

must be a range of α over which xk falls with α. This phenomenon of excessive monopoly

supply of one product can be viewed as the quantity analogue to a monopoly price being

below marginal cost. We now give two examples of this phenomenon. They share the

feature that total quantity X is unchanged as α varies, so (unless the profit-maximizing

and effi cient allocation of that quantity happened to coincide) one product must be in

greater supply with profit-maximization than with marginal cost pricing.

Hotelling preferences: In the spirit of Hotelling (1929), consider a firm with two products

located at each end of the unit interval [0, 1] with unit costs c1 and c2 respectively. Con-

sumers of mass 1 are uniformly distributed along the line and wish to buy or other product

(or neither). Their willingness to pay for a product is 1 − τz, where z is their distance

travelled and τ is the transport cost. Assume 0 ≤ c2 − c1 < τ , which ensures an interior

solution with both profit maximization and with marginal-cost pricing. Assume also that
1
2
(c1+c2) < 1−τ , which ensures that the firm will optimally choose to serve all consumers,
and so total output does not depend on costs over this range. With marginal cost pricing

the quantity of the high-cost product is

x̃1 =
1

2

(
1− c1 − c2

τ

)
,

whereas with profit-maximization it is

x̂1 =
1

2

(
1− c1 − c2

2τ

)
> x̃1 .

So there is more asymmetry between x1 and x2 with marginal cost pricing than with

profit-maximizing monopoly. In the latter case, increasing c1 has the effect of increasing

asymmetry, which is good for consumers and so we have the surplus paradox. The reason is

that the consumer indifferent between products gets zero surplus, and the surplus of others
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is τ times their distance from the indifferent consumer. The average distance increases with

asymmetry. In this example total quantity is at the effi cient level with profit-maximization

but is ineffi ciently allocated between products whenever cost levels differ. Thus increasing

the cost of the more costly product 1 will benefit consumers in aggregate, and the surplus

paradox always exists.

Discrete choice where one valuation is known: Again there are two products and a unit

mass of consumers. Here, the valuation for product 1 is known to be v1 ≡ 1, while the

valuation v2 for product 2 is uniformly distributed on the interval [0, 1]. Suppose initially

that c1 = c2 = 0 in which case the firm can obtain first-best profit by choosing p1 = 1 and

fully extracting consumer surplus (and setting p2 ≥ 1 so that consumers do not wish to

buy product 2).

If cost c1 is now increased to c1 > 0, the firm will wish instead to supply some consumers

with the costless product 2. The most profitable strategy is to choose p1 = 1 and to choose

0 < p2 < 1, in which case all consumers with v2 > p2 will buy product 2 and all other

consumers will buy product 1, yielding profit

p2(1− p2) + (1− c1)p2 . (16)

This profit is maximized at p2 = 1− 1
2
c1 which falls with c1. Since consumers gain no surplus

from product 1, it follows that consumer surplus rises with c1. The most profitable supply

for product 1 is then x̂1 = 1 − 1
2
c1, while the supply of this product with marginal-cost

pricing is x̃1 = 1 − c1, which is smaller.14 The same result would occur if the known-

value product 1 were eliminated altogether. Indeed product elimination may be seen as

the ultimate cost increase. For product elimination to increase consumer surplus is not

uncommon. For example, in the n-product version of the standard discrete choice model

with independent uniformly-distributed values, profit-maximization leaves consumers with

little surplus when n is large, as a consumer’s maximum value is likely to be close to 1,

unlike when n = 1 when the firm cannot fully extract consumer surplus.

These examples shared the feature that the firm’s choice of total output X was un-

affected by cost changes over the relevant range of costs. In effect, the firm’s choice of
14The same effect can be seen less transparently in the more familiar situation where the valuation of

each product is independently and uniformly distributed on [0, 1]. Then one can show that when c2 = 0
and when c1 is suffi ciently close to one, consumer surplus rises when c1 is increased still further.
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quantities was taken from the constrained set X = {x | X =
∑

k xk = 1}. Likewise, in the
situation with uniform pricing in section 3.2, we saw that the uniform price decreases with

the cost of a product when the constrained set X took the form of a downward-sloping

curve in R2+. This result holds quite generally. If the firm chooses its quantities from a

constrained set X that has the property that an increase in one quantity necessarily causes

another quantity to fall, then the surplus paradox will hold. Proposition 6 continues to

hold when quantities are chosen from a (suitably smooth) constrained set X rather than

Rn+, and as long as increasing the Ramsey weight α has any impact on its choice of x it
must then cause one quantity to fall. For instance, if the firm operates under some form

of average price regulatory constraint then this will usually entail this form of quantity

constraint X, and so an increase in some product’s cost will cause consumer surplus to rise.

5 Conclusion

Edgeworth’s paradox highlights that comparative statics in multi-product settings can be

very different from what happens in the familiar single-product case. We have provided

various simple examples in which all prices fell as a cost level increased, and have shown

that this possibility always exists for some cost function in the two-product case with

substitutes. We then explored the milder consumer surplus paradox, and related it to

Ramsey pricing. A common theme was that the paradox in either form involves the most

profitable output of product k decreasing with consumer surplus. This is akin to product k

being an inferior good in consumer theory– i.e., one for which demand decreases as income

rises. Although Edgeworth’s pricing paradox is rarer than the surplus paradox, examples

of either kind are not hard to find once one considers situations outside the most familiar

specifications for multiproduct cost and demand systems.

The paradox is but one aspect of the much wider question of what cost passthrough

possibilities exist in the multi-product case. For the case of linear demands and marginal

costs we established that with profit maximization a matrix is a possible cost passthrough

matrix if and only if it is similar to a positive definite matrix, and that its eigenvectors

provide a way to express profit and consumer surplus in terms of composite quantities with

no cross-effects. As all smooth cost and demand systems are linear locally, this is a finding

of some generality.

20



REFERENCES

Armstrong, M. and J. Vickers (2018), ‘Multiproduct pricing made simple’, Journal of

Political Economy, 126, 1444-1471.

Ballantine, C.S. (1968), ‘Products of positive definite matrices, III’, Journal of Algebra, 10,

174-182.

Chen, Y. and M. Schwartz (2015), ‘Differential pricing when costs differ: a welfare analysis’,

RAND Journal of Economics, 46, 442-460.

Edgeworth, F. (1925), ‘The pure theory of monopoly’, in Papers Relating to Political

Economy, Macmillan, London, for the Royal Economic Society.

Edlin, A. and C. Shannon (1998), ‘Strict monotonicity in comparative statics’, Journal of

Economic Theory, 81, 201-219.

Hicks, J. R. (1939), Value and Capital, Oxford, Clarendon Press.

Hotelling, H. (1929), ‘Stability in competition’, Economic Journal, 39, 41-57.

Hotelling, H. (1932), ‘Edgeworth’s taxation paradox and the nature of demand and supply

functions’, Journal of Political Economy, 40, 577-616.

Miklos-Thal, J. and G. Shaffer (2021), ‘Pass-through as an economic tool: on exogenous

competition, social incidence, and price discrimination’, Journal of Political Economy, 129,

323-335.

Strang, G. (2006), Linear Analysis and its Application, 4th edition, Belmont CA, Thomson,

Brooks/Cole.

Weyl, G., and M. Fabinger (2013), ‘Pass-through as an economic tool: principles of inci-

dence under imperfect competition’, Journal of Political Economy, 121, 528—583.

21


