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1 Introduction

Scientific and technological advances are thought to be critical drivers of economic
growth. Modern theories put cumulative innovation, i.e., that inventors stand on the
proverbial shoulders of prior innovations, and collaboration at the heart of the ideas
production function (Romer, 1990; Jones, 2009). If these theories are true, information
and communication technologies (ICT) could supercharge the innovation process, as
they greatly facilitate collaborating with other researchers and learning from and
building on the knowledge of others. ICT could thus provide governments with a
tool to boost regional development and innovation. For example, President Biden has
made it a priority to “ensure that science and technology hubs flourish in every part of
the country” (Office of the President-Elect, 2021).

Does access to ICT increase local innovation? Answering this question is important
as significant economic resources are spent to extend access to ICT to every region
in the developed world. However, it is far from obvious that there should be strong
effects of ICT on innovation. On the one hand, ICT gives inventors easier access
to a wider range of ideas and potential collaborators, which can potentially lead to
new inventions. On the other hand, ICT might have no effect at all because relevant
information for inventions is difficult to codify, people are reluctant to share valuable
information, or because collaborations are costly.

This paper exploits the staggered adoption of BITNET, an early version of the
Internet, among U.S. universities between 1981 and 1990 to provide evidence whether
access to ICT affects local innovation. BITNET was initiated in 1981 with the aim
of setting up a messaging network for students. At its start, it only connected three
universities, but it quickly became the most widely adopted network in academic
institutions worldwide, with about 1,400 member organizations in 1991. BITNET
greatly facilitated the exchange of knowledge by reducing communication costs. It
allowed written communication through e-mail, real-time messages, and featured
e-mail lists and discussion groups. Because of these characteristics, our results largely
speak towards other ICTs or policies reducing the costs of communication in written
form. In contrast, other features of modern ICT such as access to large databases
or real-time video telephony as well as other effects of lower communication costs
in face-to-face settings are not part of BITNET (Catalini, 2018; Furman et al., 2021).
BITNET was only discontinued in 1996, when the World Wide Web became dominant.

To estimate the impact of BITNET adoption on innovation in a region, we focus
on patents assigned to universities (“university patents”) as only university affiliates
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had access to BITNET. In our empirical specification, we compare the change in the
number of university patents in a region before and after the local university adopted
BITNET with changes in the number of university patents around universities that
are not yet connected to BITNET. Thus, we compare the change in innovative activity
around treated universities to the change in not-yet-treated universities that eventually
adopt BITNET in later periods. Our analysis focuses on the years between 1981 and
1990, the time period during which the network was rolled out.

We find that the introduction of BITNET results in an average increase of 0.3
university patents per 100,000 population relative to control universities, a sizable
effect. If we weight each patent with its forward citations to account for quality, we find
an increase of around 1.4 citation-weighted university patents per 100,000 population.
However, we also find that the average university patent receives fewer citations after
BITNET introduction. In line with the idea that ICT can facilitate communication and
improves the transmission of knowledge that is otherwise unavailable locally, we find
that the impact is entirely driven by universities in non-urban areas. After BITNET
adoption, universities also use more prior art from universities that themselves are
already connected to BITNET. The effects are robust to a wide range of robustness and
plausibility checks. For instance, there is no significant impact of BITNET on patents
by non-university corporate inventors.

In additional analyses, we provide evidence that collaboration among new inventor
teams is the mechanism behind our effects. We first show that our results are driven by
inventor teams (Agrawal and Goldfarb, 2008). Second, investigating this result further
we show that new inventor teams, i.e., those that had not yet collaborated before
BITNET adoption, increase their patenting most. Third, we show that collaborations
between inventors at different BITNET-connected universities is increasing the most
in relative terms. These results are in line with the notion that BITNET facilitated the
exchange of knowledge among collaborators with access to BITNET.

We then show that the patents induced by BITNET are closely related to science.
Using data on patent-to-article citations by Ahmadpoor and Jones (2017), we show
that the effect is entirely driven by patents that either directly cite research articles or
that cite other patents that directly cite research articles. In contrast, patents that are
not closely related to science are unaffected by the adoption of BITNET. In line with
the transmission of scientific information as mechanism behind our result, we show
that the excess patents induced by ICT use words that are either completely new (i.e.,
used for the first time in a U.S. patent) or are new in the region around the university.
Patents that do not contain words in either of these two categories again show no
change after BITNET adoption. However, we also find that patents become longer, use
more figures, and are more similar to already existing patents. Thus, the marginal
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patents induced by BITNET may be less novel than the average patent that is closely
related to science.

Our findings contribute to the literature on ICT and knowledge production by
showing a large positive effect of ICT on the translation of science to patents. The most
closely related paper is Forman and van Zeebroeck (2012) that analyzes the effect of
basic internet on the productivity of inventors in firms. In contrast to our results, they
do not find any effect. In line with our results, Kleis et al. (2012) find a positive effect
of general IT investments on firm innovation. We provide new evidence for a positive
impact of a specific form of ICT on the productivity of inventors in a setting where the
change in communication costs due to the ICT is likely larger than in the later years
studied in Forman and van Zeebroeck (2012).

Our work is also related to several studies that look at the effect of BITNET on
scientific publications. For example, Winkler et al. (2010) and Ding et al. (2010) focus on
academic life scientists and find some evidence that BITNET increased the publication
rates of life scientists. We provide evidence that not only scientific publications but
also patenting increased after the introduction of BITNET at a university. Agrawal and
Goldfarb (2008) examine the effect of BITNET on collaboration among university
scientists in top electrical engineering journals between 1981 and 1991 and find
a positive impact. Complementing their paper, we show that collaborations also
increased among inventors. Most importantly, we show that these new collaborations
seem to translate scientific insights into innovation. Patents close to science are
particularly valuable on average (Poege et al., 2019; Watzinger et al., 2021; Arora et al.,
2022) and we do not yet understand well under which circumstances they emerge (e.g.,
Bikard, 2018; Bikard and Marx, 2020).

This paper also extends the literature on the effect of ICT on productivity and
growth to innovation. Recently, there have been contributions on the impacts of ICT
on knowledge spillovers, firm productivity, and firm organization (Huang et al., 2022;
Saunders and Brynjolfsson, 2016; Forman and McElheran, 2019; Forman and van
Zeebroeck, 2019). On the macro level, Czernich et al. (2011) show that increases in
broadband penetration raise annual per capita growth in OECD countries.1 Extending
this literature to innovation is important since innovation, and especially innovation
closely related to science, is a key driver of economic growth and long-run productivity.

1See also Andersen et al. (2012). Other strands of the literature on the impacts of ICT for example
study the impacts of internet access on education and labor market outcomes (e.g., Akerman et al., 2015;
Dettling et al., 2018; Bhuller et al., 2021), on political outcomes (e.g., Falck et al., 2014; Campante et al.,
2018; Gavazza et al., 2019; Zhuravskaya et al., 2020), and on social capital (e.g., Bauernschuster et al.,
2014; Geraci et al., 2022).
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2 Institutional Background: BITNET

Ira H. Fuchs and Greydon Freeman initiated BITNET (“Because It’s There NETwork”)
in 1981 as a communication network between students of different universities.2

BITNET became the most widely used network for communication in scientific research.
The network featured e-mail communication, real-time messages, transmission of
text files and programs. The most popular feature were mailing lists on almost
3,000 different topics. For example, BITNET featured an Organic Chemistry mailing
list. It was intended “[t]o facilitate the interchange of ideas, information, computer
programs, papers, to announce opportunities for doing collaborative efforts (teaching
and/or research activities) between specialists in Organic Chemistry and related areas.”
(NetMonth, 1987).3 Besides e-mail lists, BITNET also featured other collaboration tools,
such as LifeSci, a computer program intended “to enhance interaction and cooperation
among researchers and scientists working far from each other” (Zakai, 1988).4 These
ways of communicating permitted active discussions and knowledge exchange even
among geographically separated scientists.

In the beginning, Ira H. Fuchs and Greydon Freeman directly approached IT
administrators via letters and phone calls to outline the benefits of joining the network.
Institutions could join BITNET if they fulfilled several requirements: First, they
had to lease a phone line which allowed them to connect to the network. Second,
each institution had to serve as entry point for a new potential member. Third,
each institution contributed intermediate storage and computer processing power.
Membership was initially free. Yet, each institution had to lease the phone lines to
connect to the network. Leasing these lines could be quite costly, depending on the
distance between the potential new member and the already existing members of the
network. In 1986, a membership fee was implemented which was dependent on the
annual budget of the institution.

BITNET spread quickly across the United States and around the world. The
first connection was established between the City University of New York and Yale
University in May 1981. Figure 1 displays the geographical dissemination of BITNET
in the continental United States for the years 1981, 1983, 1985, and 1987. Universities
which adopted BITNET up until the respective year are shown as red dots. Universities
connecting to BITNET that were not yet connected are shown in black hollow circles.

2The information summarized in this paragraph is based on Gale Encyclopedia of E-Commerce
(2019), Ramirez (2014), Gurbaxani (1990), Agrawal and Goldfarb (2008), CREN (1997), Living Internet
(2000).

3See https://ia803109.us.archive.org/10/items/bitnet_documents/nm8711.txt, last accessed
February 11th, 2022.

4See https://ia803109.us.archive.org/10/items/bitnet_documents/nm8802.txt, last accessed
February 11th, 2022.
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In 1981 only three universities were connected to the network. In 1983 the number
of members was 36, 133 in 1985, and 248 in 1987. By 1990, 365 U.S. universities had
joined the network. In 1991, at the peak of its popularity, the network had connected
about 1,400 organizations in almost 50 countries. BITNET was discontinued in 1996 as
the number of BITNET members declined due to the rise of the internet.5

3 Empirical Setup and Data

In the empirical analysis we aim to estimate the impact of adopting BITNET at a
university on university patenting in proximity to the institution. To do this, we need
an estimate of how patenting activity in that region would have evolved had the
university not received BITNET access. To construct an estimate of this counterfactual,
we exploit the staggered adoption of BITNET between 1981 and 1990. Our control
group consists of regions around universities that received BITNET at a later point
in time. Figure 1 therefore shows the treatment and control universities for the years
1981, 1983, 1985, and 1987.

Regions that have not yet connected to BITNET are a useful control group if
patenting in these regions follows the same trend as patenting in regions with BITNET
access would have, had the institution not connected to BITNET.6 Although we cannot
verify the validity of this assumption, historical evidence suggests that the time of
connection to BITNET was probably not systematically related to any factor that could
also influence changes in patenting. In particular, the decision to adopt BITNET was
the responsibility of the directors of university computing centers and not undertaken
by individual scientists (Agrawal and Goldfarb, 2008).7 In line with this, we show
below that prior to the actual adoption of BITNET, regions around treatment and
around control universities are on parallel trends in terms of per-capita patenting.
Because the network spread fast, it is also unlikely that adopting BITNET was part
of a strategic plan that involved investments into innovation capabilities that would
have generated higher patenting even in the absence of BITNET adoption. In line with
this, we show in the Online Appendix that there do not seem to be concurrent funding
shocks or effects of the Bayh-Dole Act that can plausibly explain our results.

5The network formation has been studied by Kellerman (1986).
6Note that, for the validity of the control group, it is fine that those universities with a higher

treatment effect join BITNET first, as long as the parallel trends assumption holds.
7For that reason, Ira H. Fuchs, one of the founders of the network, targeted IT administrators by

sending out letters and by advocacy in public forums of IT professionals to persuade new member
institutions to join.
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In our main specification, we estimate an event-study difference-in-differences
specification. Specifically, we quantify the impact of adopting BITNET on patenting by
estimating the following equation:

yi
jτ = β1 · Posti

τ + β2 · BITNETi
j · Posti

τ + µt + γi
j + εi

jτ (1)

where superscript i denotes the treated university along with the associated
control universities assigned to the treated university. j denotes the university under
consideration, τ indexes the time relative to the BITNET adoption of university i in
years, and t are the calendar years. yi

jτ corresponds to the outcome of interest, Posti
t is

an indicator which equals one in the years after BITNET was introduced and BITNETi
j

is an indicator equal to one for the treated university (i.e., i = j) and zero otherwise.
In all specifications, we include calendar year fixed effects (µt) and a seperate fixed
effect for each combination of university j and treated university i. We adjust for the
different number of control observations for each treated university by using weights
(Iacus et al., 2012). The standard errors allow for clustering at the treated university i
level. β2 measures the average increase in the outcome variable in the year of BITNET
introduction and in the four years thereafter for treated universities.8

In our main analysis, the outcome of interest is the number and quality of
university-assigned patents. We capture patent quantity by the yearly overall number
of patents assigned to a university and filed by inventors within 15 miles around the
university.9 For patents with multiple inventors, we allocate an equal share of the
patent to each inventor. If there are multiple universities less than 15 miles from an
inventor, we divide the inventor’s patent share equally among them to avoid double
counting. To factor in quality differences between patents, we use the number of
citation-weighted patents. To this end, we determine for each patent the number
of forward citations received within 5 years of the filing date (including the year of
filing). To account for regionally varying population, in all analyses we divide the
number of patents and citation-weighted patents by the population within 15 miles
of the university.10 We use university patents with an inventor localized in the region of

8Note that, upon BITNET adoption, some universities drop from the control group. This does
not drive our effects: In Appendix A.2, we show that an approach similar to our approach, but
leveraging only control universities that adopt BITNET after the treatment period of the focal universities
(Cengiz et al., 2019) provides similar results. In Appendix A.3, we additionally show that alternative
difference-in-differences specifications such as those suggested by Callaway and Sant’Anna (2021) and
Borusyak et al. (2021) provide qualitatively identical results.

9This distance approximately corresponds to the average commuting distance in the United States,
which is roughly 15 miles according to polls (ABC News, 2005). Rapino and Fields (2013) find a mean
commuting distance of around 19 miles (including extreme commutes).

10In Figure A3 in Appendix A.4, we show the treatment effects around BITNET adoption using the
number of patents as the dependent variable. The results are qualitatively identical to our time-varying
results in the main specification, but larger by around the average population in the data. In the same
Appendix, we also show that scaling university patents per faculty yields qualitatively identical results.
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the university instead of patents assigned to the university because from the name of the
assignee it is often unclear which university is meant. For example, patents of all
universities in the University of California System are assigned to “The Regents of the
University of California” and not to the individual universities.11

For our empirical analysis, we combine data from various sources. The information
on universities and their BITNET status is from the Atlas of Cybergeography.12

The data covers 1,054 institutions worldwide, among them universities, government
institutions and companies, which connected to BITNET between 1981 and 1990. It
includes the exact adoption date as well as information on the number of connections
(nodes) to other institutions. Of these institutions, we keep only U.S. universities. The
exact university geolocations are from the Integrated Postsecondary Education Data
System (U.S. Department of Education, 2019). Finally, the U.S. Census in 2010 provides
information on the population within a certain region around each university (NBER,
2010). The patent data is from PATSTAT (European Patent Office, 2016). To obtain the
geographic location of the inventors, we use the geolocated patent data from Morrison
et al. (2017).

Table A1 in Online Appendix A.1 shows summary statistics for the universities
in our sample in the year before their respective BITNET adoption. The average
university has around 0.39 university patents and 1.35 citation-weighted patents per
100,000 population in the year before BITNET adoption.

4 The Impact of BITNET on Patenting

We start our examination of the innovation effects of BITNET by estimating a variant of
equation (1) with time-varying treatment effects. Figure 2 displays the yearly treatment
effects for the number of university patents per 100,000 persons in the 15 miles region
around a university. We use the year before BITNET adoption as baseline period. The
estimates are very small and statistically insignificant prior to BITNET adoption. This
speaks in favor of the parallel trends assumption. After BITNET adoption, the number
of patents increases around treated universities relative to universities that have not yet
adopted BITNET. The impact starts in the year after BITNET adoption and increases
over time.13

11Similar problems appear with patents assigned to universities throughout the United States.
12The file including information on BITNET institutions is available at https://personalpages.

manchester.ac.uk/staff/m.dodge/cybergeography/atlas/bitnet\_topology.txt, last accessed
February 10th, 2022.

13This increase over time is consistent with several explanations. For once, effects may take time to
develop, for instance because producing the invention takes time. However, it could also be driven by
network effects with more and more universities connecting to BITNET and thus the network becoming
more useful over time.
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Figure 2: Effects of BITNET on Local Patenting Relative to the Connection Date

Note: This figure shows the yearly average treatment effects on the treated of BITNET adoption on the
number of university patents per 100,000 population within 15 miles of universities adopting BITNET
relative to universities that only adopt BITNET later. The blue bars represent 95% confidence bounds
that allow for clustering at the treated institution level. To adjust for the different number of control
universities, we use the weights suggested by Iacus et al. (2012).

Table 1 presents the difference-in-differences estimation results for equation (1). In
line with the figure, Column (1) shows a positive impact of BITNET on the number of
patents per 100,000 population relative to universities that gain access to BITNET later.
On average, the number of patents increases by 0.3. This is around 34% of the average
number of university patents around treated universities in the post period.14 These
results suggest that BITNET spurred local innovation close to adopting universities.
In Column (2), we use citation-weighted patents as the dependent variable and find
a positive and significant effect on citation-weighted patents. This suggests that the

14Note that this large effect is also due to many universities not patenting much. This is illustrated
when estimating our main model with a Poisson maximum likelihood model following Correia et al.
(2020). Using this approach, we obtain an estimate for the increase in local per capita patenting after
BITNET adoption of around 11%.

10



patents resulting from the adoption of BITNET are useful. However, when we analyze
the impact of BITNET on the number of forward-citations per patent, we find that the
average patent around treated universities receives around 13% fewer citations after
BITNET introduction, relative to the average of the outcome variable among treated
universities in the post period.15 Thus, the marginal patents induced by the adoption
of BITNET seem to be of somewhat lower quality than an average patent in the control
group. Figure A6 in Appendix A.5 shows that this is independent of the exact measure
of patent quality that we use.

Because BITNET lowered the cost of communicating with other universities, we
would expect the impact of BITNET to be greater in remote, non-urban areas. In
Columns (4) and (5), we thus split the sample by population density. We find that
universities with below-median population densities (labeled “non-urban”) largely
drive the effect.16 For universities in urban environments, we only find a small effect
of BITNET on local innovation. This is in line with the idea that ICT facilitates
communication and collaboration in particular in non-urban regions. In Table A4 in
Appendix A.6, we show further heterogeneity analyses for our results. We find that
the effect is driven by universities that already showed above median patenting levels
before the introduction of BITNET. This could point to a complementarity between ICT
and local inventive capacity. We also show a split by adoption year and find that the
effect is larger for early adopters (until 1984), but is also substantial for late adopters.
We show time-varying treatment effects of all of the above heterogeneities in Figure
A7 in Appendix A.6.17

Do these effects plausibly stem from BITNET? We investigate this question directly
by leveraging the “paper trail of ideas” embedded in citations. We weight all university
patents around treatment and control universities by whether they cited inventors
at other already connected BITNET universities or inventors that are not close to a
BITNET-connected university. That is, we use backward citations to BITNET-connected
or non-BITNET-connected universities as our dependent variable. Columns (6) to (9)
show the results of this analysis. Column (6) uses the patents’ total backward citations
per 100,000 population as dependent variable. Relative to baseline, inventors around
BITNET-adopting universities start citing more prior art than inventors around control
group universities. Columns (7) and (8) then show that this is largely due to patents

15This result also only appears after BITNET adoption, as Figure A5 in Appendix A.5 shows.
16When we split the sample by quartiles of population densities, we find that the effect is strongest for

the bottom quartile and decreases subsequently, with no effect in the most populated regions. Results
are available on request.

17In unreported regressions, we estimate interaction effects to formalize inference. We find that
non-urban universities experience significantly higher treatment effects than urban universities. In
contrast, the results on above vs. below median patenting universities as well as on early vs. late
adopters are not significant at conventional levels.
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citing inventors close to other BITNET-connected universities. This suggests that
BITNET primarily increased patenting based on inputs from other BITNET universities.
This is true both in absolute terms and relative to baseline citation rates to both sets of
universities. In addition, this is not driven by increased self-citations, as Column (9)
shows.

So far, our analysis has focused on patents filed by universities. This is because
BITNET was designed as an academic network and consisted almost entirely of
academic institutions. If the parallel trends assumption holds, it is reasonable to expect
effects on university patenting but less so on the patenting of other inventors. In
contrast, if unobservable regional shocks were driving our effects, we would expect to
see similar productivity effects for other inventors as well. To test this, we rerun our
analysis using patents filed by company inventors unconnected to universities as the
dependent variable. Column (10) shows the result from this analysis. The impact of
BITNET on company inventors unconnected to universities is very small (less than 1%
of the variable mean in 1980) and statistically not significantly different from zero. We
acknowledge however that the standard errors are wide such that the 95% confidence
bounds of this analysis include the effect on university patents.

Further Analyses in the Online Appendix

In Online Appendix A we show the results from several auxiliary analyses. Using
data from Hausman (2021), from Fleming et al. (2019), and from Microsoft Academic,
we provide evidence that it is not likely that concurrent funding shocks can fully
explain our results in Appendix A.7. In Appendix A.8 we provide evidence that we
do not confound the impact of BITNET with the impact of the 1980 Bayh-Dole Act
and the subsequent establishment of technology transfer offices (TTOs) by universities
(see, e.g., Henderson et al., 1998; Mowery et al., 2001; Mowery and Ziedonis, 2002).
BITNET seems to have an independent effect on local innovation, which also appears
at universities without TTOs. However, we do find that universities with TTOs benefit
more from BITNET than universities without and that TTOs are directly associated
with more university patenting.18 We also use data from Ouellette and Tutt (2020) to
investigate whether the introduction of royalty payments biases our estimates of the
BITNET effect. This does not seem to be the case.

18We thank Arvids Ziedonis for providing us with data on TTOs.
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In Appendix A.9 we show that results are not driven by a particular university. In
Appendices A.10 we show the results of alternative control groups that rely on more
stringent matching strategies and find similar results. In Appendix A.11, we estimate
different plausible alternative versions of the main specification, accounting for the
skewed nature of patenting, and find similar results. In Appendix A.12 we show that
results are not driven by a particular region.

Finally, in Online Appendix A.13, we find that the effect of BITNET is largely
proportional to baseline patenting levels across fields. We show that the largest
absolute effects in Chemistry and in Instruments, followed by Electrical Engineering.
The largest relative results are in Electrical Engineering, however, in line with the
impact of BITNET on collaboration in this category reported by Agrawal and Goldfarb
(2008).

5 Mechanism: Collaboration and Patenting Closely

Related to Science

5.1 Effects are Driven by Collaborative Patents by New Inventor

Teams

One reason why BITNET may lead to more patenting is easier team formation (Agrawal
and Goldfarb, 2008; Ding et al., 2010; Forman and van Zeebroeck, 2012). For example,
e-mail and discussion forums made it easier to identify potential collaborators with
complementary capabilities.

Table 2 shows the results of our analysis. Column (1) repeats our baseline estimate
for comparison. In Columns (2) and (3), we split the dependent variable by whether
the patent was filed by multiple inventors (“collaborative patents”) or whether the
patent was single-authored. Both in absolute and in relative terms, the impact on
collaborative patents is substantially stronger. This is in line with prior research that
found impacts of BITNET on collaboration among academics (Agrawal and Goldfarb,
2008). Columns (4) and (5) investigate this result further. In this analysis, we split the
result on collaborative patents by whether the inventor team is newly formed (i.e., has
at least one new team member) or whether the inventor team has patented before.

We find that the effect on collaborative patents is larger both in absolute and in
relative terms among new inventor teams. These results point to a leading role of new
collaborations in explaining the effect of BITNET on patenting. Incumbent inventor
teams are less affected, but still benefit from the adoption of BITNET. In combination
with Column (2), this suggests that ICT may also have productivity effects that go
beyond its impact on collaboration and new team formation. In Columns (6) and (7),

14



we split the collaborative patents into those that were filed with other inventors around
universities that already adopted BITNET (labeled “BITNET collaborations”) and into
all other team patents. Both BITNET collaborations and other collaborative patents
contribute to our finding that BITNET positively impacts collaborative patents, with
the latter contributing more in absolute terms. However, relative to baseline levels,
collaborations that are joint with inventors close to universities that already connected
to BITNET rise substantially more than other team patents. Relative to baseline levels,
Column (6) suggests that collaborative patents with other BITNET universities increase
sevenfold. Finally, in Column (8) we show only a small positive effect on team size,
suggesting that our results rather reflect a change in team composition. We show
time-varying treatment effects of these effects in Figure A11 in Appendix B.1.19 Overall,
while direct productivity effects may well be possible, our effects seem to largely be
driven by increases in collaborative patents by new inventor teams.

5.2 BITNET Induced Patenting Closely Related to Science

What kind of patents were induced by BITNET? We investigate this question in Table 3.
Column (1) repeats our baseline specification for comparison. We start by investigating
how closely related to science the excess patents are. Columns (2) through (4) leverage
the data on patent-to-article citations by Ahmadpoor and Jones (2017). We distinguish
between patents that (i) directly cite scientific papers and patents that (ii) either do this
or cite a patent directly citing an article. Thus, the latter is a superset of the former
category. All other patents are interpreted as not being closely related to science.
Column (2) shows that the effect is largely driven by increases in patents directly citing
scientific articles. Columns (3) and (4) show that it is entirely driven by patents that at
least indirectly cite scientific articles. In contrast, patents that are not closely related to
science show no effect at all.

In Figure A12 in Online Appendix B.2, we show the time-varying version of
these results. In line with our identification assumption, patents of all types do not
differ between treatment and control group before BITNET adoption. After BITNET
adoption, patents that directly or indirectly cite research articles increase around
treated universities. In contrast, patents that are not closely connected to science
are unaffected. It seems plausible that patents closely connected to science are most
affected by the introduction of BITNET, since BITNET was a communication system
between scientists.

19These figures again show that the impact on team size is small and hardly detectable, suggesting a
change in team composition as the likely driver behind our results.
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In Columns (5) through (7) we analyze the patent text of the affected patents further.
We use the data of Arts et al. (2018) that gives us the set of words used in the abstract
and title of each U.S. patent from 1976 to 2013 and add to this data all words of the
first independent claim from the PatentsView database. We split patents into (i) those
containing words that are new to the U.S. patent system (i.e., that were previously not
used in any USPTO patent), (ii) those containing words that are not new, but new to
the region around the treated university, and into those patents (iii) containing only
words that do not fall in these two categories. As the results show, the effects are
largely driven by patents containing words that are either entirely new or that are new
to the region around the adopting university. The strongest relative effect of BITNET is
on patents new to U.S. patenting. This is in line with the idea that patents that use
novel concepts, such as concepts derived from science, are the most affected.20

In Figure A13 in Appendix B.3, we investigate this result further by analyzing more
dimensions of patent content. We find that the patents driving our results, namely
those closely connected to science, change in content. They increase in length, use
more figures, show somewhat higher originality (Hall et al., 2001), and their text is
more similar to existing patents using the measure of Kelly et al. (2021).

Overall, our findings show that BITNET induced more and different patenting. Our
results are especially relevant since patents closely connected to science are particularly
valuable on average (Poege et al., 2019; Watzinger et al., 2021) but there are many
barriers to translating scientific insights to actual innovation (e.g., Bikard, 2018). The
types of collaborations that BITNET induced seem to produce knowledge that directly
translates research to patenting. At the same time, our additional results caution that
the marginal patent translating scientific insights to actual innovation may be less novel
than the average patent doing so.

20In unreported regressions, we estimate interaction effects on stacked datasets to formalize inference.
We find that all differences that we report above are significant at conventional levels.
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6 Conclusion

Many observers have argued that ICT facilitates the exchange of knowledge, which in
turn improves productivity and inventive activity. While there exists some evidence
that shows a research-enhancing role of information technology in academic research,
evidence on the impacts of these technologies on innovation and patenting is scarce.

We exploit the staggered adoption of BITNET across U.S. universities between
1981 and 1990 to study whether access to specific ICTs affects (local) innovation. We
document a strong effect of BITNET on patenting around adopting institutions. We
provide evidence that this effect is driven by an increase in collaborative patents by
new inventor teams. Our effect is larger among universities in non-urban areas and
is linked to increased knowledge flows between universities already connected to
BITNET. Patenting by assignees outside of universities is unaffected by BITNET. We
finally show that the patents induced by ICT are closely connected to science. Thus,
BITNET seems to have facilitated the translation of scientific insights to innovation by
inducing productive collaborations.

Because BITNET largely reduced the costs of communication in written form, our
results mainly speak towards related ICTs or policies. In contrast, the innovation
impacts of modern ICTs that allow for more extensive communication as well as access
to large scale databases and online search remain to be studied.
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A Appendix to Sections 3 and 4

A.1 Descriptive Statistics

Table A1: Summary Statistics in the Year before BITNET Adoption

Main sample
Mean Standard deviation Minimum Maximum

# univ. patents/100k 0.39 1.56 0.00 53.20
# cit.-wght. univ. patents/100k 1.35 5.73 0.00 117.42
Average cit. per univ. patent 3.98 3.51 0.00 34.00
Backward citations

Mean Standard deviation Minimum Maximum

# backward citations/100k 2.28 8.75 0.00 194.01
# backward citations to BITNET unis/100k 0.93 3.85 0.00 105.22
# backward citations to other unis/100k 1.35 5.96 0.00 173.15
# backward citations to own uni/100k 0.11 0.86 0.00 33.82
Collaboration

Mean Standard deviation Minimum Maximum

# single-authored univ. patents/100k 0.17 0.87 0.00 26.30
# collaborative univ. patents/100k 0.22 0.97 0.00 37.55
# collab. univ. patents/100k with new inventors 0.18 0.72 0.00 21.90
# collab. univ. patents/100k with existing teams 0.04 0.34 0.00 15.65
# collab. univ. patents/100k with BITNET inventors 0.01 0.09 0.00 2.35
# collab. univ. patents/100k with other inventors 0.21 0.95 0.00 37.55
Average team size 2.22 0.76 1.00 6.00
Patent content

Mean Standard deviation Minimum Maximum

# directly science-related univ. patents/100k 0.09 0.31 0.00 4.39
# indirectly science-related univ. patents/100k 0.14 0.49 0.00 7.44
# not directly science-related univ. patents/100k 0.25 1.35 0.00 52.15
# univ. patents with words new to world/100k 0.11 0.47 0.00 15.65
# univ. patents with words new to region/100k 0.27 1.24 0.00 37.55
# univ. patents with old words/100k 0.01 0.10 0.00 2.83

Note: This table displays the averages of the outcomes of interest for treated universities and associated
control universities in the year before the introduction of BITNET. Patents are collaborative if they were filed
by more than one inventor. Inventor teams have new inventors if the team had not previously patented in this
constellation. Patents are (in)directly related to science if they directly cite a scientific article (or cite a patent that
does so).
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A.2 Alternative Control Group Specification

In our current specification, we use later-adopting universities as the control group for
earlier adopting universities. This implies that some control universities drop from the
control group when they connect to BITNET in the post period of the focal university.
We think this is a sensible approach because a university that adopts BITNET shortly
after the treated university might be a better control than a control university that
adopts BITNET many years later.

Yet, our results stay qualitatively and quantitatively very similar if we use “clean
controls”, that is, if we use only those universities as control observations for any
focal university that adopt BITNET after the end of the treatment period for the focal
university. This is the approach used in Cengiz et al. (2019). Table A2 replicates the
main table and Figure A1 replicates the main figure of our paper. In line with our
identification assumption that the timing of BITNET adoption is not related to trends
in university patenting, the results are similar if we do or do not use clean controls. If
anything, the results in this analysis are larger.
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Figure A1: Effects of BITNET on Local Patenting Relative to the Connection Date Using
Clean Controls

Note: This figure shows the yearly average treatment effects on the treated of BITNET adoption on the
number of university patents per 100,000 population within 15 miles of universities adopting BITNET
relative to universities that only adopt BITNET after the treatment period of the focal university. The
blue bars represent 95% confidence bounds that allow for clustering at the treated institution level. To
adjust for the different number of control universities, we use the weights suggested by Iacus et al.
(2012).
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A.3 Alternative Difference-in-differences Methods

Table A3 reports estimates from alternative specifications using novel methods for
difference-in-differences estimation with variations in treatment timing (Callaway and
Sant’Anna, 2021). The first column shows average treatment effect on the treated (ATT)
when using a simple weighted aggregation of the treatment effect. The second column
shows the ATT when using the group-specific aggregation. The third column shows
the ATT when averaging over the dynamic effects. In all columns, the effects are sizable
and significantly different from zero. They are qualitatively identical with the results
from our event-study design.

Dep. Var.: Numer of patents p.c.
Spec.: Callaway and Sant’Anna

Aggregation: Simple weighted Group-specific Dynamic

(1) (2) (3)
ATT 0.41** 0.34** 0.38**

(0.11) (0.08) (0.11)
Note: This table shows difference-in-differences specifications of the
impact of BITNET on local patenting with the number of patents per
capita in the 15 miles around the university as the dependent variable.
We use the methods suggested by Callaway and Sant’Anna (2021). All
specifications include year fixed effects and institution fixed effects.
Columns (1), (2), and (3) use the simple weighted, the group-specific, and
the dynamic aggregation methods suggested by Callaway and Sant’Anna
(2021) using their doubly-robust estimation procedure, respectively.
Bootstrapped standard errors in parentheses, ** p < 0.05

Table A3: Main Results Using Difference-in-Differences Specifications

We also report the results from the estimator suggested by Borusyak et al. (2021).
Figure A2 shows that in line with our main estimates, the estimated treatment effects
in the period before BITNET adoption are insignificantly different from zero and do
not show a clear or strong pre-trend. After BITNET adoption, both the number of
patents and citation-weighted patents per capita increase in the treated relative to the
control universities.
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A.4 Estimates With a Different or Without Scaling of the Outcome

Variable

In Figure A3 below, we show the treatment effects around BITNET adoption using the
number of patents as the dependent variable. The results are qualitatively identical to
our time-varying results in the main specification.
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Figure A3: The Impact of BITNET on the Local Number of Patents

Note: This figure shows the yearly average treatment effects on the treated of BITNET adoption on the
number of university patents within 15 miles of universities adopting BITNET relative to universities
that only adopt BITNET later. The blue bars represent 95% confidence bounds that allow for clustering
at the treated institution level. To adjust for the different number of control universities, we use the
weights suggested by Iacus et al. (2012).

We additionally show a specification where we use the number of patents assigned
to the respective universities scaled by a measure of university size as outcome. To
construct a measure of university size, we count the number of active faculty at
patenting universities using data from Microsoft Academic. We define an author as
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faculty if she published for an institution at least twice in the top 10,000 highest impact
journals with a gap of five or more years. To count the number of patents directly
assigned to a university we use the direct match between patents and universities
provided by Microsoft Academic to identify the right assignee name for the university.
Then, we count all patents of the identified assignee. Figure A4 shows the results from
this analysis. We find qualitatively identical results to our main analysis, suggesting
that using population as scaling of the dependent variable does not drive our results.
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Figure A4: Treatment effects analysis normalized by university faculty

Note: This figure shows the yearly average treatment effects on the treated of BITNET adoption on the
number of directly assigned university patents per faculty of universities adopting BITNET relative to
universities that only adopt BITNET later. We take the number of faculty and the patent assignments
from Microsoft Academic. We define an author as faculty if she published for an institution at least twice
in the top 10000 highest impact journals with a gap of five or more years. The blue bars represent 95%
confidence bounds that allow for clustering at the treated institution level. To adjust for the different
number of control universities, we use the weights suggested by Iacus et al. (2012).
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A.5 Additional Results on Patent Quality

Figure A5 shows how the introduction of BITNET relates to the average number of
citations per patent. As in our main graphs, there is no difference in the average
citations per patent between treatment and control groups in the time period before the
introduction of BITNET. After the introduction, the negative effect on average citations
appears soon, becoming statistically significantly different from zero around two years
after the introduction of BITNET.

Figure A6 shows the results from difference-in-differences regressions around
BITNET introduction using different quality measures as dependent variables. We
translate the point estimates to percent changes for better interpretability. The upper
part of the figure shows results for all university patents, while the lower part shows
results for university patents closely related to science only, the main driver of
our effects. Row (1) shows that average forward citations decrease around treated
universities relative to control universities, as just shown above. Row (2) shows that
also the share in the top 1% of the citation distribution decrases. Row (3) uses patent
renewals as alternative measure of patent quality (e.g., Pakes, 1986; Schankerman and
Pakes, 1986). The effect is negative but not statistically different from zero. Row (4)
uses the size of the patent family as a quality measure (Putnam, 1996; Harhoff et al.,
2003) and finds a negative effect. Finally, Row (5) uses the patent quality measure by
Kelly et al. (2021) as dependent variable and finds no effects. Thus, average patent
quality seems to have at least not increased, no matter which measure we look at. This
is broadly in line with our finding of a negative impact on average citations.

Is this finding also true for patents closely related to science, the main driver of our
effects on patenting? Rows (6) through (10) repeat the analysis using the same quality
measures, but focusing on patents closely related to science instead of all university
patents. The effects are more pronounced and negative, suggesting that the patents
induced through BITNET were indeed of lower quality than the average patent filed in
the control group.

34



BITNET
adoption

-2

-1.5

-1

-.5

0

.5

1

-5 -4 -3 -2 -1 0 1 2 3 4
 

Year relative to BITNET introduction

Average citations
per patent

Figure A5: The Impact of BITNET on the Average Citations to Local Patents

Note: This figure shows the yearly average treatment effects on the treated of BITNET adoption on the
average forward citations to university patents within 15 miles of universities adopting BITNET relative
to universities that only adopt BITNET later. The blue bars represent 95% confidence bounds that allow
for clustering at the treated institution level. To adjust for the different number of control universities,
we use the weights suggested by Iacus et al. (2012).
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Figure A6: The Impact of BITNET Different Measures of Patent Quality

Note: Note: This figure shows the results from a difference-in-differences estimation with measures of
quality of university patents in the 15 miles region around a university as the dependent variable. The
treatment group are universities that are already connected to BITNET. The control group consists of
universities that are not yet connected to BITNET but that connect to BITNET later. All specifications
include year fixed effects and institution group fixed effects. The bars indicate 90% confidence intervals
using standard errors that allow for clustering at the treated institution level. Coefficients plotted as
a hollow diamond indicate coefficients not significantly different from zero at this level. Full (red)
diamonds indicate coefficients that are significantly different from zero.
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A.6 Additional (Time-Varying) Heterogeneity of Effects

In Table A4 below, we show more heterogeneity results. In Column (1), we repeat our
baseline estimate for comparison. In Columns (2) and (3), we split the sample by the
treated university’s patenting levels before BITNET existed, i.e., in 1980. We find that
the effect is largely driven by universities that already showed above median patenting
levels in 1980. This could point to a complementary between ICT and local inventive
capacity. In Columns (4) and (5), we show a split by adoption year and find that the
effect is larger for early adopters (until the end of 1984), but is also substantial for late
adopters.

Dependent Variable: University patents p.c.
Baseline Above Below Early Late

Split: Median Patenting Adopters
(1) (2) (3) (4) (5)

BITNETxPost 0.30∗∗∗ 0.56∗∗∗ 0.20∗∗ 0.48∗∗∗ 0.24∗∗∗

(0.08) (0.17) (0.08) (0.18) (0.08)
Mean Dep. 0.30 0.70 0.23 0.42 0.27
R2 (within) 0.00 0.01 0.00 0.00 0.00
Obs. 531063 102175 264225 200777 330286
Note: This table shows difference-in-differences estimates of BITNET adoption on local
patenting. The treatment group are universities that are already connected to BITNET.
The control group consists of universities that are not yet connected to BITNET but
that are connected to BITNET later. The dependent variable is the number of patents
per 100,000 population in the 15 miles region around a university. All specifications
include year fixed effects and institution group fixed effects. Column (1) uses our
baseline sample and repeats Column (1) of Table 1. Columns (2) and (3) split the
sample by median patenting rates per 100,000 population in the 15 miles region around
universities in 1980, the year before the first BITNET adoption. Columns (4) and (5) split
the sample into early and late BITNET adopters. Early adopters are those universities
that are connected by the end of 1984. To adjust for the different number of control
universities, we use the weights suggested by Iacus et al. (2012). Robust standard errors,
adjusted for clustering at the treated institution level, are in parentheses. * p<0.10, **
p<0.05, *** p<0.01

Table A4: Impact on Number of University Patents p.c. Across Different Types of
Universities

In panels (a) and (b) of Figure A7, we show the effects by above- and below-median
patenting before BITNET adoption. In both figures, the difference between treatment
and control universities is insignificant in the time period before BITNET adoption.
After BITNET adoption, patenting increases around universities that had above-median
patenting in 1980, while we only see smaller effects arising around universities with
historically low patenting rates. In panels (c) and (d) of the Figure, we split our
sample into early and late adopters. We again find that before BITNET adoption,
there is no differential trend between treatment and control group both for early and
for late adopters. After BITNET adoption, both sets of universities see increases in
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patenting. This increase is larger for early adopters than for late adopters. In panels
(e) and (f), we split the sample into non-urban and urban universities (by median
population density). Again, in line with our identification assumption, there is no
difference in patenting between treatment and control group both for non-urban and
for urban universities before BITNET adoption. After BITNET adoption, patenting
substantially increases around non-urban universities. Around urban universities,
there is only a small increase in patenting around treated universities that also sets in
later. Note the difference in scales that is necessary such that any impact is visible for
urban universities. This reinforces our finding that non-urban universities benefit from
BITNET while urban universities do not.
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(a) Above-median prior patenting
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(b) Below-median prior patenting
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(c) Early adopters
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(d) Late adopters
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(e) Non-urban universities

BITNET
adoption

-.1

0

.1

.2

.3

.4

.5

-5 -4 -3 -2 -1 0 1 2 3 4
 

Year relative to BITNET introduction

Difference in # of patents
per 100k persons within 15 miles

(f) Urban universities

Figure A7: Treatment effects analysis by sub-groups

Note: This figure shows the yearly average treatment effects on the treated of BITNET adoption on the
number of university patents per 100,000 population within 15 miles of universities adopting BITNET
relative to universities that only adopt BITNET later across sub-groups. Panels (a) and (b) split the
sample by median per capita patenting in 1980. Panels (c) and (d) split the sample by whether the
focal university adopted BITNET before or after 1984. Panels (e) and (f) split the sample by median
population around universities. The blue bars represent 95% confidence bounds that allow for clustering
at the treated institution level. To adjust for the different number of control universities, we use the
weights suggested by Iacus et al. (2012).
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A.7 Funding Shocks as Potential Explanation

If there is a funding increase concurrent to the BITNET introduction, this might bias
our results. We use two complementary approaches to provide evidence that this is
likely not an issue in our setting.

First, we directly control for the funding that universities have at their disposal
by using federal funding per university and an estimate of the number of faculty as
controls. The federal funding data per university is from Hausman (2021), which
Naomi Hausman thankfully shared with us. Unfortunately, this data is available only
for a subset of our universities. To estimate the number of faculty, we use data from
Microsoft Academic. We define an author as faculty if she published for an institution
at least twice in the top 10,000 highest impact journals with a gap of five or more years.

We show the results of this analysis using the number of patents as outcomes in
Table A5. The results are qualitatively identical when estimating this in per capita
terms. Column (1) shows our baseline estimate for comparison. Column (2) controls
for the number of faculty in the respective year. Column (3) adds the funding measure
from Hausman (2021). Column (4) includes both measures. The table shows that our
results are qualitatively unaffected by these additional controls.

Figure A8 shows the time-varying treatment effects on patents within 15m of the
respective university around BITNET adoption when controlling for both measures
of university funding. Again, the estimates are very similar to the estimates without
controlling for these variables. This analysis suggests that concurrent funding shocks
are unlikely to explain our results. Note, however, that data limitations make this
analysis not entirely conclusive. Thus, we cannot entirely rule out funding shocks as a
partial confounder.
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Dep. Var.: University patents
(1) (2) (3) (4)

BITNETxPost 0.50∗∗∗ 0.35∗∗∗ 1.34∗∗∗ 1.51∗∗∗

(0.12) (0.13) (0.33) (0.32)
Faculty (in 100) 0.30∗∗∗ -0.28∗∗∗

(0.02) (0.05)
Total funding (in 10,000 USD) 0.09∗∗∗ 0.12∗∗∗

(0.02) (0.02)

Mean Dep. 1.24 1.35 2.33 2.33
R2 (within) 0.10 0.12 0.04 0.05
Obs. 531063 365537 19791 19791

Note: This table shows difference-in-differences estimates of BITNET adoption
on local university patenting. The treatment group are universities that are
already connected to BITNET. The control group consists of universities that
are not yet connected to BITNET but that are connected to BITNET later. All
specifications include year fixed effects and institution group fixed effects. All
columns use university patenting in 15 miles around the universities as dependent
variable. Column (2) controls for the number of faculty that we take from Microsoft
Academic. We define an author as faculty if she published for an institution at
least twice in the top 10,000 highest impact journals with a gap of five or more
years. In Column (3) we control for total funding from all government agencies,
using the data from Hausman (2021). To adjust for the different number of control
universities, we use the weights suggested by Iacus et al. (2012). Robust standard
errors, adjusted for clustering at the treated institution level, are in parentheses. *
p<0.10, ** p<0.05, *** p<0.01

Table A5: Impact on Number of University Patents p.c. Controlling for Funding Shocks

In a second, complementary, approach, we also directly investigate the possibility
that concurrent funding shocks by the government induce both BITNET adoption and
higher patenting, without a direct effect of BITNET. We leverage that patents that
rely on U.S. government funding must acknowledge that they do. Using the data by
Fleming et al. (2019), we can thus split the dependent variable into whether patents
rely on U.S. government funding, either directly or indirectly. If government funding
increased at the same time as BITNET was introduced we would expect that patents
acknowledging government funding grow faster than patents that do not acknowledge
funding. In particular - if there is no BITNET effect and we only see a funding shock -
we would expect little reaction from patents that do not acknowledge funding.

We show the results from the analysis in changes relative to post period means
using the margins command in Stata in Figure A9. The first line shows our baseline
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Figure A8: Innovation impact controlling for funding

Note: This figure shows the yearly average treatment effects on the treated of BITNET adoption on
the number of patents in 15m around universities adopting BITNET relative to universities that only
adopt BITNET later. In the graph, we control for faculty members and total funding support available
at the universities. We count faculty members by identifying authors in Microsoft Academic. We define
an author as faculty if she published for an institution at least twice in the top 10,000 highest impact
journals with a gap of five or more years. For the funding data, we rely on a name matching to the data
from Hausman (2021). The blue bars represent 95% confidence bounds that allow for clustering at the
treated institution level. To adjust for the different number of control universities, we use the weights
suggested by Iacus et al. (2012).
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effect for comparison. It amounts to an around 50% increase in local per capita
patenting. In the second line, we show the impact of BITNET on patenting per capita
for patents that directly acknowledge U.S. government funding. Relative to the mean
of the control group in the year before BITNET adoption, this is an effect of around
50%, proportional to the main result. In the third line, we repeat the analysis using
those patents as dependent variable that do not directly rely on government funding
but cite either a patent or an article that acknowledges government funding (“indirect
government funding”). We find a somewhat larger effect (68%). We show the impact
on patents without direct or indirect funding from the U.S. government in line (4). In
relative terms, the effect is by far the largest, with an increase of 77%. Many patents in
the data by Fleming et al. (2019) do not contain positive or negative information on
their reliance on U.S. government funding. In this group, the relative effect is around
41% (line 5). All in all, it does not seem as if our effects are exclusively driven by
increases in funding that occur at the same time as the introduction of BITNET. All
categories see increases in patenting that are roughly proportional to the categories’
baseline patenting levels. If anything, the largest relative effect occurs among patents
for which we know that they do not rely on U.S. government funding.
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Figure A9: Treatment effect by acknowledgment of U.S. government funding

Note: This figure shows the results from a difference-in-differences estimation with university patents
per 100,000 population in the 15 miles region around a university in the first line and university patents
with the respective characteristic per 100,000 population in the 15 miles region around a university as
the dependent variable in all subsequent lines. We show the results from the analysis in changes relative
to post period means using the margins command in Stata. All specifications include year fixed effects
and institution group fixed effects. The bars indicate 95% confidence intervals using standard errors that
allow for clustering at the treated institution level. Coefficients plotted as a hollow diamond indicate
coefficients not significantly different from zero at this level. Full (red) diamonds indicate coefficients
that are significantly different from zero. To adjust for the different number of control universities, we
use the weights suggested by Iacus et al. (2012).
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A.8 Relation to Bayh-Dole Act

The Bayh-Dole Act was an important step in inducing more innovation closely
connected to science and local economic activity around universities (Hausman, 2021).
But while the Bayh-Dole Act greatly changed the nature of university patenting, we
think it did so for all universities, i.e., treatment and control universities alike. For
example, looking at a treated university that joined BITNET in 1984, it is difficult to
understand how Bayh-Dole (enacted in 1980) led to an increase in patents in 1985 only
at the treated university but not at the control universities, and how it did not increase
patents at either the treated or control universities in 1983.

This seems possible only if Bayh-Dole had an impact on patenting that is
synchronized both in location (at treated but not at control universities) and time (after
BITNET but not before) with the introduction of BITNET. There are, therefore, two key
concerns related to the Bayh-Dole Act. Universities adopting BITNET earlier might
also have been more keen to increase technology transfer by (i) introducing TTOs and
by (ii) incentivizing their faculty with royalty payments.

In this subsection, we show that we arguably do not confound the impact of
BITNET with the impact of the 1980 Bayh-Dole Act and the subsequent establishment
of technology transfer offices or the introduction of royalties by universities (e.g.,
Henderson et al., 1998; Mowery et al., 2001; Mowery and Ziedonis, 2002).

To this end, we first leverage data on the number of full-time equivalent staff at
universities devoted to technology transfer, e.g., in a technology transfer office. We
thank Arvids Ziedonis for providing us with this data. Column (1) repeats our baseline
estimate. Column (2) controls for an indicator whether the university employs staff
devoted to technology transfer (i.e., a technology transfer office, TTO) in a given year.
Our main result is unaffected, while we do see positive impacts of TTOs on university
patenting. In Columns (3) and (4), we split our sample into whether the treated
university ever had staff devoted to technology transfer or not. The impacts of BITNET
are somewhat larger for universities that had a TTO, suggesting a complementarity
between BITNET and TTOs. However, even in universities without a TTO, we see
positive and significant effects of BITNET adoption on university patenting. Our
analyses thus suggest that the establishment of TTOs and the introduction of BITNET
had independent effects on local university innovation.

Second, we extend this analysis to universities’ licensing regimes. A key part of
the Bayh-Dole Act was that universities could now incentivize their research staff
to translate research findings to inventions by allowing researchers to benefit from
subsequent royalty payments (Lach and Schankerman, 2008; Ouellette and Tutt, 2020).
We therefore use the data provided by Ouellette and Tutt (2020) to investigate whether
we confound these potential royalty payments with our estimates of BITNET.
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We show the results of our main specification controlling for royalty payments in
Table A7. The first column repeats our baseline estimate. In Column (2) we additionally
control for whether the university grants its researchers shares of the royalties resulting
from their patents. Note that the royalty variable is time-varying since the data contain
information on when the universities introduced royalties. Our estimate is unaffected.
Columns (3) and (4) then divide the sample according to whether the university has
ever granted its researchers royalty shares from its patents. The table shows that
royalties do not materially affect our estimate for the impact of BITNET on local
university patenting. While royalty-granting universities benefit somewhat more, the
effect on universities that do not is also sizable.

Overall, we believe that these results show that the Bayh-Dole Act does not confound
our estimates on the patenting impact of BITNET adoption.

Dep. Var.: University patents p.c.

Sample Baseline Baseline TTO Univ. Non-TTO Univ.
(1) (2) (3) (4)

BITNETxPost 0.30∗∗∗ 0.29∗∗∗ 0.60∗∗∗ 0.18∗∗∗

(0.08) (0.08) (0.18) (0.06)
TTO 0.08∗∗∗

(0.02)

Mean Dep. 0.30 0.30 0.82 0.22
R2 (within) 0.00 0.00 0.02 0.01
Obs. 531063 518154 43907 265600

Note: This table shows difference-in-differences estimates of BITNET adoption
on local patenting. The treatment group are universities that are already
connected to BITNET. The control group consists of universities that are not yet
connected to BITNET but that are connected to BITNET later. The dependent
variable is the number of patents per 100,000 population in the 15 miles region
around a university. All specifications include year fixed effects and institution
group fixed effects. Column (1) uses our baseline sample and repeats Column
(1) of Table 1. Column (2) controls for an indicator whether the university
employs staff devoted to technology transfer in a given year. Columns (3) and
(4) split our sample into whether the treated university ever had staff devoted
to technology transfer (i.e., a technology transfer office) or not. To adjust for
the different number of control universities, we use the weights suggested by
Iacus et al. (2012). Robust standard errors, adjusted for clustering at the treated
institution level, are in parentheses. * p<0.10, ** p<0.05, *** p<0.01

Table A6: Impact on Number of University Patents p.c.: Relation to University
Technology Transfer Offices
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Dep. Var.: University patents p.c.
Sample: Baseline Royalties

Yes No
(1) (2) (3) (4)

BITNETxPost 0.30∗∗∗ 0.31∗∗∗ 0.59∗∗∗ 0.15∗∗∗

(0.08) (0.08) (0.18) (0.06)
Royalty Fee -1.64∗∗∗

(0.03)

Mean Dep. 0.30 0.30 0.37 0.27
R2 (within) 0.00 0.01 0.00 0.00
Obs. 531063 531063 219265 311798

Note: This table shows difference-in-differences estimates
of BITNET adoption on local patenting. The treatment
group are universities that are already connected to BITNET.
The control group consists of universities that are not yet
connected to BITNET but that are connected to BITNET
later. All specifications include year fixed effects and
institution group fixed effects. All columns use patents by
university-connected inventors adjusted by the population in
the 15 miles region around the university as the dependent
variable. The royalty data stems from Ouellette and Tutt
(2020). We label those universities without information
on royalties as not granting them. Column (2) controls
for whether the treated university every pays royalties to
university inventors. Columns (3) and (4) split the sample
by this variable To adjust for the different number of control
universities, we use the weights suggested by Iacus et al.
(2012). Robust standard errors, adjusted for clustering at
the treated institution level, are in parentheses. * p<0.10, **
p<0.05, *** p<0.01

Table A7: Impact of BITNET accounting for royalty payments
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A.9 Results without Top X Universities

To provide evidence that our results are not driven by few selected universities, we
show in this section that our results are robust to dropping the top 5, top 10, top 20,
and top 25 universities in terms of pre-BITNET patenting.

Dep. Var.: University patents p.c.

Sample Baseline w/o Top 5 w/o Top 10 w/o Top 20 w/o Top 25
(1) (2) (3) (4) (5)

BITNETxPost 0.30∗∗∗ 0.31∗∗∗ 0.30∗∗∗ 0.26∗∗∗ 0.25∗∗∗

(0.08) (0.08) (0.08) (0.06) (0.06)

Mean Dep. 0.30 0.30 0.30 0.30 0.29
R2 (within) 0.00 0.00 0.00 0.00 0.00
Obs. 531063 518512 505660 478728 464855

Note: This table shows difference-in-differences estimates of BITNET adoption on local patenting.
The treatment group are universities that are already connected to BITNET. The control group
consists of universities that are not yet connected to BITNET but that are connected to BITNET
later. The dependent variable is the number of patents per 100,000 population in the 15 miles
region around a university. All specifications include year fixed effects and institution group
fixed effects. Column (1) uses our baseline sample and repeats Column (1) of Table 1. Columns
(2) to (5) drop the top 5, 10, 20, and 25 universities in terms of patenting per population before
the introduction of BITNET. To adjust for the different number of control universities, we use
the weights suggested by Iacus et al. (2012). Robust standard errors, adjusted for clustering at
the treated institution level, are in parentheses. * p<0.10, ** p<0.05, *** p<0.01

Table A8: Impact on Number of University Patents p.c. without Top X Universities
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A.10 Matching

In Table A9, we show that our results are robust when we use a more detailed matching
strategy. In particular, we show that additionally matching on the number of patents
in the year before BITNET adoption as well as matching on number of patents and on
population before BITNET adoption does not affect our results.

Dep. Var.: University patents p.c. Cit.-wght. univ. patents p.c.
Matching: Baseline + Patenting + Patenting Baseline + Patenting + Patenting

& Population & Population
(1) (2) (3) (4) (5) (6)

BITNETxPost 0.30∗∗∗ 0.29∗∗∗ 0.29∗∗∗ 1.43∗∗∗ 1.40∗∗∗ 1.40∗∗∗

(0.08) (0.08) (0.08) (0.35) (0.35) (0.35)
Mean Dep. 0.30 0.29 0.29 1.01 0.98 0.97
R2 (within) 0.00 0.00 0.00 0.01 0.01 0.01
Obs. 531063 530326 439080 531063 530326 439080

Note: This table shows difference-in-differences estimates of BITNET adoption on local patenting. The treatment
group are universities that are already connected to BITNET. The control group consists of universities that are not yet
connected to BITNET but that are connected to BITNET later. The dependent variable is the number of patents per
100,000 population in the 15 miles region around a university in Columns (1) through (3). All specifications include
year fixed effects and institution group fixed effects. Column (1) uses our baseline sample and repeats Column (1)
of Table 1. Columns (2) and (3) additionally match on patenting in the year before BITNET adoption and patenting
before BITNET and population, respectively. To match control universities to treatment universities, we use Coarsened
Exact Matching (Iacus et al., 2012) with 5 bins on patenting and on population. We repeat this analysis in Columns (4)
through (6) using citation-weighted patents as the dependent variable. To adjust for the different number of control
universities, we use the weights suggested by Iacus et al. (2012). Robust standard errors, adjusted for clustering at the
treated institution level, are in parentheses. * p<0.10, ** p<0.05, *** p<0.01

Table A9: Results Using Additional Matching Strategies
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A.11 Specification

Below, we show that our results are robust to accounting for the skewed nature of
patenting outcomes. We first repeat our baseline specifications for the number of
patents per population and the number of citation-weighted patents per population.
We then use inverse hyperbolic sine transformations of these outcomes. Our results
are qualitatively unaffected.

Spec.: Levels IHS
Dep. Var.: Univ. Cit.-wght. univ. Univ. Cit.-wght. univ.

patents p.c. patents p.c. patents p.c. patents p.c.
(1) (2) (3) (4)

BITNETxPost 0.30∗∗∗ 1.43∗∗∗ 0.09∗∗∗ 0.13∗∗∗

(0.08) (0.35) (0.02) (0.03)
Mean Dep. 0.30 1.01 0.19 0.44
R2 (within) 0.00 0.01 0.03 0.07
Obs. 531063 531063 531063 531063
Note: This table shows difference-in-differences estimates of BITNET adoption on local
patenting. The treatment group are universities that are already connected to BITNET.
The control group consists of universities that are not yet connected to BITNET but that
are connected to BITNET later. All specifications include year fixed effects and institution
group fixed effects. Columns (1) and (2) repeat our baseline specification using patents and
citation-weighted patents in levels as dependent variable. Columns (3) and (4) repeat our
baseline specification using a inverse hyperbolic sine transformation as dependent variable.
All variables are weighted with the population in the 15 miles region around the university.
To adjust for the different number of control universities, we use the weights suggested by
Iacus et al. (2012). Robust standard errors, adjusted for clustering at the treated institution
level, are in parentheses. * p<0.10, ** p<0.05, *** p<0.01

Table A10: Main Results Using Different Specifications
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A.12 Results across Regions

To provide evidence that our results are not driven by regional shocks affecting overall
patenting in the area around adopting universities, we show that the effects are similar
across different regions in the United States. To this end, we repeat our baseline
specification splitting the U.S. into four broad regions.

Dep. Var.: University patents p.c.
Sample: Baseline Northwest Northeast Southwest Southeast

(1) (2) (3) (4) (5)
BITNETxPost 0.30∗∗∗ 0.50∗∗∗ 0.21∗∗ 0.13∗ 0.68∗∗

(0.08) (0.15) (0.09) (0.08) (0.31)
Mean Dep. 0.30 0.31 0.31 0.31 0.28
R2 (within) 0.00 0.00 0.00 0.00 0.00
Obs. 531063 56545 322260 79085 73173
Note: This table shows difference-in-differences estimates of BITNET adoption on local
patenting. The treatment group are universities that are already connected to BITNET.
The control group consists of universities that are not yet connected to BITNET but that
are connected to BITNET later. The dependent variable is the number of patents per
100,000 population in the 15 miles region around a university. All specifications include
year fixed effects and institution group fixed effects. Column (1) uses our baseline sample
and repeats Column (1) of Table 1. Columns (2) to (4) split the sample according to the
region in which the university is located. To adjust for the different number of control
universities, we use the weights suggested by Iacus et al. (2012). Robust standard errors,
adjusted for clustering at the treated institution level, are in parentheses. * p<0.10, **
p<0.05, *** p<0.01

Table A11: Results across Regions: Impact on Number of University Patents p.c.
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A.13 Effects by Technology Category

We show the effects by technology category in Figure A10. Each line is the
difference-in-difference coefficient on the interaction between time and BITNET
in a different regression that uses patents in the respective field as the dependent
variable. The absolute effects on the number of patents per capita are most pronounced
in Chemistry and Instruments, but these effects are proportional to baseline patenting
levels. We find the largest relative effects in Electrical Engineering, but effects are
hardly distinguishable (not shown). This suggests that the adoption of BITNET might
have had a productivity-enhancing effect on inventors in several technology areas.

Other Fields

Mechanical engineering

Process engineering

Electrical Engineering

Instruments

Chemistry

Baseline

0 .1 .2 .3 .4 .5

Figure A10: Innovation Effects of BITNET by Technology Category

Note: This figure shows the results from a difference-in-differences estimation with university patents
per 100,000 population in the 15 miles region around a university in the first line and university
patents in the denoted field per 100,000 population in the 15 miles region around a university as the
dependent variable in all subsequent lines. Thus, the coefficients in the next lines add up to the first
line. The treatment group are universities that are already connected to BITNET. The control group
consists of universities that are not yet connected to BITNET but that are connected to BITNET later.
All specifications include year fixed effects and institution group fixed effects. The bars indicate 95%
confidence intervals using standard errors that allow for clustering at the treated institution level.
Coefficients plotted as a hollow diamond indicate coefficients not significantly different from zero at
this level. Full (red) diamonds indicate coefficients that are significantly different from zero.
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B Appendix to Section 5

B.1 Time-varying Effects on Team Formation

Figure A11 shows the time-varying impacts of BITNET on team formation. Panels
(a) and (b) show estimates using single-authored and team patenting as dependent
variables, respectively. In line with our identification assumption, outcomes do not
differ between treatment and control universities before BITNET adoption. After
BITNET adoption, all types of inventors become somewhat more productive, but
inventor teams increase their patenting substantially more than single inventors. Panels
(c) and (d) show patenting by new and by old teams, respectively. We define new
teams as teams that had at least one new team member (including entirely new
teams that had not patented together before), whereas teams that had patented in the
same composition before count as old teams. Again, in line with our identification
assumption, outcomes do not differ between treatment and control universities before
BITNET adoption. After BITNET introduction, we find that both types of teams
increase their patenting but new teams increase their patenting substantially more than
old teams. Finally, Panel (e) shows the impact of BITNET adoption on average team
size. The positive impact observed in Table 2 is visible, but it is much more noisily
estimated than the other results.
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Figure A11: Time-varying effects on team formation

Note: This figure shows the yearly average treatment effects on the treated of BITNET adoption on
different outcomes of universities adopting BITNET relative to universities that only adopt BITNET
later. Panels (a) to (d) use the number of university patents filed by different types of inventors per
100,000 population within 15 miles around the universities. Panels (a) and (b) use single-authored and
team patents as dependent variables, respectively. Panels (c) and (d) use patenting by new teams and
by existing teams, respectively. Panel (e) uses average team size on university patents filed within 15
miles around the universities as dependent variable. The blue bars represent 95% confidence bounds
that allow for clustering at the treated institution level. To adjust for the different number of control
universities, we use the weights suggested by Iacus et al. (2012).
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B.2 Time-varying Effects on Patents Closely Related to Science

In Figure A12, we show the time-varying version of our results on patents closely
connected to science. Closely connected patents are those which either directly cite
academic articles or cite patents that directly cite academic articles. Patents not closely
connected to science are all other patents. The data is from Ahmadpoor and Jones
(2017). In line with our identification assumption, both types of patents do not differ
between treatment and control group before BITNET adoption. After BITNET adoption,
patents closely connected to science increase around treated universities. In contrast,
other patents are unaffected.
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B.3 Other Margins of Patent Content

In Figure A13 we analyze various measures of patent content. We show our results
for all university patents as well as for patents closely related to science only. We
find that patents seem to have more information, draw on a wider range of prior art
(originality), but are less widely used (generality) and more similar to prior work.

In Rows (1) to (5) we look at all patents and do not find a strong pattern. If at
all, the number of sheets, the length of the patents, appears to go down. We find
much stronger effects when we restrict our analysis to patents closely connected to
science, the drivers of our effect. These patents become longer (Row 6) and use more
figures (Row 7) after BITNET adoption. Following the adoption of ICT, they show
lower generality (Row 8, measuring the range in technologies that cite the patent - Hall
et al. 2001) and higher originality (Row 9, measuring the range in technologies that
are cited by a patent - Hall et al. 2001), but are also substantially more similar to prior
US patents (Row 10 - Kelly et al. 2021). Overall, after the adoption of BITNET, patents
closely related to science around adopting universities seem to have more, but less
impactful content.
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Figure A13: The Impact of BITNET on the Content of Patents

Note: This figure shows the results from a difference-in-differences estimation with measures of content
of university patents in the 15 miles region around a university as the dependent variable. The treatment
group are universities that are already connected to BITNET. The control group consists of universities
that are not yet connected to BITNET but that connect to BITNET later. All specifications include year
fixed effects and institution group fixed effects. We show the results from the analysis in changes
relative to post period means using the margins command in Stata. The bars indicate 90% confidence
intervals using standard errors that allow for clustering at the treated institution level. Coefficients
plotted as a hollow diamond indicate coefficients not significantly different from zero at this level. Full
(red) diamonds indicate coefficients that are significantly different from zero.
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