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Abstract

A growing body of evidence suggests that consumers are not fully informed about prices,

contrary to a critical assumption of classical consumer theory. We analyze a model in which

consumer types can vary in both their preferences and their information about prices. Given data

on demand and the distribution of prices, we identify the set of possible values of the consumer

surplus. Each surplus in this set can be rationalized with simple information structures and

preferences. We also show how to narrow down the set of values using richer datasets and

provide bounds on counterfactual demands at perfectly observed prices.

1 Introduction

A key implicit assumption of the standard approach to consumer demand and welfare is that

consumers perfectly observe and understand prices. Yet it is clear from a number of empirical

studies—if not from introspection alone—that this assumption does not generally hold in practice.

For example, changing the way that prices are presented to consumers can have significant effects

on demand (Chetty, Looney, and Kroft, 2009; Finkelstein, 2009).

We analyze consumer surplus and demand in the market for a single good without assuming

complete information about prices. Unlike uncertainty about the value of the good, uncertainty

about prices invalidates the classical approach to computing consumer surplus.1 Under the standard

assumptions of complete information and quasilinear preferences, a choice at a given price reveals

that the marginal utility of the quantity chosen is equal to that price. Calculating total consumer

surplus is then simply a matter of adding up these marginal utilities (net of expenditures). When

the consumer is uncertain about prices, however, a choice instead reveals only that the marginal

utility of the quantity chosen is equal to the expected price given the consumer’s information. If this

∗We have benefited from the comments of Tibor Heumann, Zi Yang Kang, Anton Kolotilin, Marek Pycia, Andy
Zapechelnyuk, and various seminar audiences. Stewart is grateful to PSE for their hospitality. This work was
supported by ERC grant 770652 and by the Social Sciences and Humanities Research Council of Canada.

1The key distinction is that the analyst observes the price but not the consumer’s value. To accommodate
incomplete information about the value on the part of the consumer, one can simply reinterpret the value as the
expected value conditional on the consumer’s information.
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expectation is unobserved by the analyst, it is no longer possible to identify the marginal utilities

directly.

Uncertainty about prices can result from several factors. The consumer may not be fully

attentive to the price of a good they buy, either because the cost is small relative to their budget,

because it is a habitual purchase, or because prices involve complexities that require nontrivial

effort to understand. It may also happen that the consumer does not check the price of a good—or

does so only if they notice that the good is on sale—under the belief that the price is likely to exceed

their willingness to pay. Alternatively, uncertainty could reflect incomplete information about the

value of money, for example because the consumer does not know the prices of other goods they

might purchase.

In our main setting, an analyst observes data consisting of a distribution of prices for a particular

good together with a downward-sloping demand function indicating the frequency with which the

consumer buys the good at each price. The analyst rationalizes the data with a model describing a

distribution of types of the consumer, with each type specifying the consumer’s value for the good

together with the structure of information this type receives about prices. A key feature of our

approach is that we impose few restrictions on the consumer’s information beyond the assumption

that the consumer is Bayesian. In particular, the information structure can be type-dependent,

reflecting the idea that consumers’ attentiveness to prices may vary from day to day, and this

variation may be correlated with their preferences.

We consider two questions. First, what can the analyst infer from the observed data about

the surplus the consumer receives from participating in the market for this good? Second, what

demand can the analyst forecast if the price were to become deterministic or the consumer perfectly

informed?

One way the analyst can rationalize the data is to suppose the consumer perfectly observes prices

and to attribute all stochasticity in behavior to changing preferences, as in a random utility model.

This rationalization leads to the standard level of consumer surplus (averaged across prices). There

are, however, other rationalizations leading to different levels of surplus; consequently, it is not

possible to pin down the surplus exactly. For example, the analyst could go to the opposite extreme

by supposing that the consumer has a fixed value for the good and attributing all stochasticity in

behavior to the intrinsic randomness of information. The simplest such models involve binary

signals indicating whether or not to buy the good (with the probabilities at each price chosen to

match the observed demand). For such an information structure, there is generally a range of

values that rationalize the data. At the low end, one obtains a surplus of 0 if the consumer’s value

is equal to the expected price conditional on receiving the signal to buy; in that case, the consumer

receives a net expected benefit of 0 after each signal realization. At the high end, the consumer’s

value is equal to the expected price conditional on receiving the signal not to buy; if it were any

higher, the consumer would prefer to switch to buying after both signals. The surplus associated

with such a rationalization can be greater than that associated with complete information. More

complex models that combine random utility with incomplete information can also rationalize the
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data, further enlarging the set of possible values of the surplus.

We fully characterize the set of levels of consumer surplus that are consistent with the data.

This set consists of an interval ranging from 0 to an upper bound that has a simple mathematical

structure akin to that of the standard consumer surplus. Just as the standard surplus is the area

between the price line and the inverse demand up to the quantity demanded, the upper bound is

the area between the price line and an “elevated” inverse demand up to the quantity demanded.

As the name suggests, this elevated demand—which depends on both the observed demand and

the price distribution—lies above the observed demand.

One model that achieves the upper bound involves particularly simple information structures:

each type observes only whether the price is above or below a particular (type-dependent) thresh-

old.2 Each type has a corresponding simple threshold demand. Choosing the distribution of these

thresholds appropriately ensures that the average demand agrees with the observed demand. Given

the individual types’ demands, the surplus is maximized when each type’s value for the good is

equal to the expected price conditional on not buying (as described above). We refer to this model

as the upper threshold model.

The main object of our analysis is the random variable describing the consumer’s value for the

good, which we refer to as the stochastic value. Our bounds on surplus and counterfactual demand

are based on bounds on the stochastic value with respect to various stochastic orders. For the

upper bound on consumer surplus, we make use of the increasing convex order (ICX), which can

be viewed as the analogue of second-order stochastic dominance (SOSD) for a decision-maker who

is risk-loving instead of risk averse. Thus where SOSD favors higher means and smaller spreads,

ICX favors higher means and larger spreads.

The connection between the ICX order and consumer surplus is most direct under complete

information: not only do higher values increase consumer surplus, so do mean-preserving spreads

because they provide the consumer with an option value. Notice, however, that it is not necessary

for this argument that the consumer fully optimize; the same connection holds as long as, at each

price, the set of types that buy are those with the highest values (even if the cutoff type is not chosen

optimally). Since the upper threshold model has exactly this feature and the association of highest

values to purchases maximizes the consumer surplus for any given stochastic value, maximization

in the ICX order gives the stochastic value corresponding to the upper bound on consumer surplus

even under incomplete information.

We prove that the upper threshold model induces a stochastic value that dominates all other

stochastic values consistent with the data with respect to the ICX order. Starting from an arbitrary

stochastic value and corresponding model that rationalizes the data, we amend the model in two

steps, each of which increases the stochastic value with respect to the ICX order (while continuing

to rationalize the data). First, fixing the disaggregation of the observed demand into demands

2While it is important for the upper bound that the consumer receives no additional information when the price
is above the threshold, the information at prices below the threshold can be arbitrarily precise. Thus, for example,
it could be that a sale is announced if and only if the price drops below the threshold and the consumer checks the
price only upon seeing a sale.
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of individual types, we can maximize the value of each type by setting it equal to the expected

price conditional on that type not buying—we call this value the “non-buying price expectation.”

This is the highest value for which there exists an information structure making the type’s demand

incentive compatible. Second, if the demand of any type is not a simple threshold demand then

it can be further disaggregated into such demands. We show that this disaggregation results in a

mean-increasing spread of the non-buying price expectations. Combining these two steps generates

an increase in the stochastic value with respect to the ICX order and leads to the stochastic value

associated with the upper threshold model.

Richer data can be used to tighten the bounds on consumer surplus. We extend our analysis

to datasets comprising two or more regimes that may differ in the distribution of prices and/or the

information obtained by the consumer. For example, it could be that, as in Chetty, Looney, and

Kroft (2009), sales taxes are included in the posted price in one regime but not included in the

other. The analyst considers all rationalizations of the datasets in which the value of each type is

fixed across regimes (though each type’s information may vary in a way that is unobservable to the

analyst). We propose a simple procedure for tightening the bounds on surplus within each regime

using the data from the other regimes. The key idea is to associate each stochastic value with

the convex function describing the consumer surplus at each price under complete information.

Increases in the stochastic value with respect to the ICX order correspond to increases in the

associated consumer surplus function. Since the stochastic value is consistent across regimes, its

associated consumer surplus function cannot, at any price, exceed that for the upper bound in any

of the regimes. Therefore, the consumer surplus function can be no larger than the convex closure

of the minimum of these functions for the upper bounds across the regimes. Mapping this convex

closure back to a stochastic value yields a new upper bound with respect to the ICX order, and

from there an upper bound on consumer surplus. An analogous construction with SOSD in place

of the ICX order allows us to establish a nontrivial lower bound on the consumer surplus in each

regime.

To predict counterfactual demand at a perfectly observed (or deterministic) price, the relevant

comparison of stochastic values is with respect to first-order stochastic dominance (FOSD). This

order captures the observation that, with complete information, the demand at a given price is

equal to the probability that the consumer’s value exceeds this price; thus the counterfactual

demand increases with a FOSD increase in the stochastic value. We construct FOSD bounds on

the stochastic values consistent with the data, which give rise to tight bounds on the counterfactual

demand.

For simplicity of exposition, we focus on a single consumer with unit demand. In Appendix B,

we show that our results extend to general quasilinear utilities: for any rationalization of the

data with these utilities, there exists a rationalization with unit demands that generates the same

surplus. Our model can also be interpreted as describing a population of consumers for which the

analyst observes only the aggregate demand. Under this interpretation, each type corresponds to

an individual consumer.
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Our work is related to several streams of empirical and theoretical research. A number of studies

in various contexts have found evidence that consumers do not perfectly observe or understand

prices. For example, Chetty, Looney, and Kroft (2009) show that demand depends on whether

sales taxes are included in the posted price for groceries and alcohol. Finkelstein (2009) finds that

the switch to elecfronic collection of road tolls reduces drivers’ responsiveness to changes in the

cost associated with the toll.3 Taubinsky and Rees-Jones (2018) and Tipoe (2021) find that there

is significant heterogeneity in attention to prices.

Chetty (2012) considers identification of parameters in a large class of behavioral models includ-

ing those featuring price misperceptions. Whereas his main identifying assumption uses bounds on

the cost of deviations from optimal behavior, ours is based on Bayes rationality of the consumer.

The early literature on consumer surplus and price stability originating with Waugh (1944)

(see also, e.g., Samuelson (1972) and Rogerson (1980)) shares with our model an important role

for stochastic prices. The main question in that literature is whether the consumer benefits from

stochasticity in prices under the implicit assumption that prices are perfectly observed. In our

model, stochasticity allows for the consumer to be uncertain about prices. Perhaps surprisingly,

the greatest surplus consistent with a given demand curve is generally higher when prices are

uncertain than when they are perfectly observed: by allowing for uncertainty, the set of preferences

consistent with the observed behavior is larger. (For any given preferences, of course, the consumer

cannot benefit from incomplete information.)

Gul, Pesendorfer, and Strzalecki (2017) study general equilibrium when agents have coarse

perceptions of the state of the world, which they interpret as capturing inattention to prices. Their

main focus is on the resulting equilibrium prices.

Our work can be viewed as combining revealed preference with information design, where the

design has the goal of maximizing or minimizing the surplus or counterfactual demand consistent

with the observed data. We share with the information design literature the approach of imposing

minimal assumptions on the information structure.4 Bergemann, Brooks, and Morris (2015, 2017)

identify the range of surplus that can be attained for given preferences as information varies in a

monopolistic market or a first-price auction. Condorelli and Szentes (2020, 2021) characterize the

range of surplus consistent with partial knowledge of demand in settings with market power on

the supply side. Regarding revealed preference, we are closest to the branch of the literature that

uses choice data to jointly identify preferences and information, as in Masatlioglu, Nakajima, and

Ozbay (2012) and Manzini and Mariotti (2014).

When considering bounds on surplus using data from multiple regimes, we represent random

variables as convex functions to construct bounds with respect to the ICX or SOSD order. A

similar technique has been used in Bayesian persuasion problems by Gentzkow and Kamenica

(2016) and Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017). Müller and Scarsini (2006) establish

3See also Ito (2014) for empirical evidence that consumers do not correctly account for marginal electricity pricing
and Feldman, Katuščák, and Kawano (2016) for related evidence regarding marginal tax rates.

4While information design problems typically place no restrictions on the information structure, we impose and
implicit restriction to ensure that each type has monotone demand.
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lattice properties of these orders using the same transformation. This technique has a natural

interpretation in our context: the convex function that represents a given stochastic value maps

each price to the consumer surplus that would arise under that stochastic value if the price were

perfectly observed.

Perhaps the most closely related papers to ours in spirit are Varian (1985) and Kang and Vasser-

man (2022), which study a complementary problem of identifying bounds on consumer surplus. In

their models, consumers perfectly observe prices but there are gaps in the demand observed by

the analyst. Kang and Vasserman (2022) discuss how to interpret their problem in terms of con-

cavification, along the lines of Kamenica and Gentzkow (2011); our problem can also be viewed

as one of concavification—a connection we discuss in subsection 5.1—but in a different space and

with a different constraint. In both cases, the space over which concavification occurs is very large,

making standard techniques inapplicable.

2 Setup

An analyst observes data (Q,F ) describing the stochastic purchasing behavior of a consumer with

unit demand together with the distribution of prices. The demand function Q :
[
p, p
]
−→ [0, 1],

which we assume is non-increasing, specifies the probability Q(p) of purchase at each price p; we

denote by P (q) the inverse demand associated with Q(p), that is, P (q) := inf{p : Q(p) ≤ q}.5

Prices are distributed according to the continuous distribution F (p) with support
[
p, p
]
, where

p > 0. As is standard when measuring consumer welfare, we assume that the analyst observes the

choke price, i.e., Q(p) = 0; similarly, we assume that Q(p) = 1. We consider richer data involving

demands under multiple market regimes in section 6 and non-unit demands in Appendix B.

The demand Q is the aggregation of many choices made by the consumer across which both

her preferences and her information about prices may vary. In each such choice, the consumer

faces a take-it-or-leave-it offer at a random price p drawn according to F . (We denote random

variables in bold and their realizations with the corresponding non-bold symbol; all probabilities

and expectations are evaluated with respect to these bold variables.) The consumer has a stochastic

type i with support I ⊂ R; the type is independent of the price. Each type i specifies the consumer’s

value vi for the good and her information structure. The information structure consists of a

distribution Φi(x | p = p) of signals x ∈ R for each p. The information structure may be correlated

with the value, as one might expect if the consumer has some discretion over her information

acquisition. Let πi(x) := Ei[p | x = x] denote type i’s posterior expected price upon observing

signal realization x generated by Φi.

Each type has quasilinear preferences and unit demand. Given a realized signal x, a consumer

of type i purchases the good with probability q ∈ [0, 1] to maximize q (vi − πi(x)); we denote the

chosen quantity by q∗i (x).6 Each type i generates a demand function Qi(p) := Ei [q∗i (x) | p = p],

5Analogously, given any inverse demand function P̃ , we define the corresponding demand function Q̃(p) = inf{q :
P̃ (q) ≤ p}.

6If vi = πi(x), making all q ∈ [0, 1] optimal, we include the chosen probability q∗i (x) in the description of the type
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where the signal x is generated by Φi. We restrict Qi(p) to be non-increasing for each type i; this

restriction is guaranteed to hold if, for example, each information structure satisfies the monotone

likelihood ratio property.

The analyst looks to explain the data using a model that consists of a distribution M of types

i ∈ I together with a specification (vi,Φi)i∈I of values and information structures for each type.

We say that a given model rationalizes data (Q,F ) if Q(p) = E [Qi(p)] for all p. Given a model

that rationalizes the data, the (ex ante) consumer surplus, s, is the consumer’s expected utility;

that is,

s := E [q∗i (x) (vi − p)] = E [Qi(p) (vi − p)] . (1)

In general, data can be rationalized by many different models which in turn yield different values

of surplus. We say that s ∈ R is consistent with the data if there exist a model that rationalizes

(Q,F ) and generates surplus s.

Example 1. The analyst observes the linear demand function Q(p) = 1 − p and prices uniformly

distributed on [0, 1]. There are many possible rationalizations of this data. For instance, it could

be that, as in the standard analysis, the consumer perfectly observes the price and her value, vi, is

uniformly distributed on [0, 1]. For any realized price p, this consumer receives surplus (1− p)2/2
(corresponding to the area between the demand curve and the price). The expected consumer

surplus for this rationalization is therefore E
[
(1− p)2/2

]
= 1/6.

Alternatively, the data can be rationalized by a model in which the consumer has incomplete

information about prices. Perhaps the simplest such rationalization features a consumer with a

single type. For each price realization p ∈ [0, 1], the consumer observes signal 1 with probability

Q(p) and signal 0 with the remaining probability 1 − Q(p). The consumer purchases if and only

if she receives signal 1; that is, q∗(x) = x. This model trivially rationalizes the data as long as

the strategy q∗ is incentive compatible. To ensure that buying is optimal at x = 1, it must be

that the consumer’s value v is at least E[p | x = 1] = 1/3. Similarly, to ensure that not buying

is optimal at x = 0, it must be that v ≤ E[p | x = 0] = 2/3. Letting v = 1/3 and v = 2/3,

incentive compatibility therefore holds if and only if v ∈ [v, v]. Taking v = v leads to a surplus of

(v − v) Pr(x = 1) = 1/6 (since v is the expected price conditional on buying). Taking v = v leads

to a surplus of (v − v) Pr(x = 1) = 0. Using values of v in between these two extremes, any surplus

in [0, 1/6] can be obtained.7

More complex models can yield additional values of the surplus. Consider two equally likely

types, 1 and 2, with respective demands

Q1(p) =

2(1− p) if p ≥ 1/2

1 otherwise
and Q2(p) =

0 if p ≥ 1/2

1− 2p otherwise.

but omit this selection from the notation.
7That the upper bound of 1/6 is equal to the complete information surplus is a coincidence that does not generally

hold outside of this example. On the other hand, 0 is a tight lower bound regardless of the data as there are always
models in which the consumer is indifferent whenever she buys the good.
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Since (Q1 +Q2)/2 = Q, these demands are consistent with the observed data. Each type’s demand

Qi can be rationalized in the same manner as in the single-type case by assuming that type i

observes a binary signal x ∈ {0, 1} with Pr(x = 1 | p = p) = Qi(p) and purchases if and only if

x = 1. Incentive compatibility requires that the value vi of type i lie between vi = Ei[p | x = 1] and

vi = Ei[p | x = 0]. Using the maximal values gives surplus 1
2

∑
i vi Pri(x = 1) − E[pQ(p)] = 2/9

(whereas the minimal values again give a surplus of 0).8 By splitting the demand Q into demands

Q1 and Q2, it is therefore possible to obtain higher values of the surplus than can be obtained with

complete information or with only one type.

Since we have restricted attention to simple binary signals, one might wonder whether it is

possible to enlarge the set of attainable surpluses by allowing for more complex information struc-

tures. The answer is no: any surplus that is consistent with the data can be rationalized by a

model in which every type has a binary signal. The question remains, however, as to whether fur-

ther splitting of the two demands Q1 and Q2—or some other splitting of Q—can expand the range

of attainable surpluses. As we show in the next section, it turns out that a “maximal” splitting of

the demand can rationalize higher values of the surplus (up to 1/4 in this case). 4

3 Main Result

We identify tight bounds on the consumer surplus consistent with the observed data. For arbitrary

demand Q̃ and (possibly unrelated) inverse demand P̂ , define the functional

CS
(
Q̃, P̂

)
:= E

[∫ Q̃(p)

0

(
P̂ (q)− p

)
dq

]
, (2)

where p ∼ F . When applied to the observed demand function Q and its inverse demand P , this

functional returns the expected consumer surplus under complete information about the price. In

that case, the inverse demand describes the consumer’s marginal benefit of consumption at each

q. Under incomplete information about the price, the marginal benefit is not generally equal to

the inverse demand: the value of the marginal type is equal to her expectation of the price, not to

the price itself. Nonetheless, if P̂ (q) describes the marginal benefit, then CS(Q, P̂ ) is the consumer

surplus.

For any data (Q,F ), CS(Q, P̂ ) provides tight bounds on the consumer surplus for appropriate

choices of P̂ . Accordingly, define the elevated and lowered inverse demands to be

P (q) := E [p | p ≥ P (q)]

and P (q) := E [p | p ≤ P (q)] ,

respectively. These two functions are non-increasing and satisfy P (q) ≥ P (q) ≥ P (q) for all q; see

8Type 1 buys with probability 3/4 and has maximal value v1 = 5/6 and type 2 buys with probability 1/4 and has
maximal value v2 = 11/18, giving a surplus of 1/2 · 5/6 · 3/4 + 1/2 · 11/18 · 1/4− 1/6 = 2/9.
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Figure 1: Elevated and lowered inverse demands for a particular inverse demand P (q) with uni-
formly distributed prices.

Figure 1 for an illustration. Note that, letting q ∼ U [0, 1],

CS (Q,P ) = E
[
1q≤Q(p) (P (q)− p)

]
= E

[
1p≤P (q) (E[p | p ≤ P (q)]− p)

]
= E

[
1p≤P (q) (p− p)

]
= 0.

Theorem 1. Consumer surplus s is consistent with data (Q,F ) if and only if

0 = CS (Q,P ) ≤ s ≤ CS
(
Q,P

)
.

The proof of this result is provided in subsection 5.1.

Example 2. To illustrate the theorem, consider the data from Example 1. The empirical inverse

demand is P (q) = 1 − q, the elevated inverse demand is P (q) = (1 + P (q))/2 = 1 − q/2, and

CS
(
Q,P

)
= 1/4. Theorem 1 therefore indicates that any surplus in the interval [0, 1/4] is consistent

with the data. In this case, the consumer surplus can be up to 3/2 times as large as the complete

information surplus. 4

In section 6, we extend the model to allow for the possibility that the analyst observes demand

in two or more market regimes that may differ in the distribution of prices or in the consumer’s

information (or both). Assuming that preferences do not vary across regimes, combining the data

allows for the construction of bounds on surplus within each regime that are generally narrower

than the bounds in Theorem 1. In particular, data from multiple market regimes can lead to a

non-trivial positive lower bound on the surplus.

Instead of welfare, the analyst may be interested in predicting the consumer’s demand in some

counterfactual market regime. In section 7, we derive tight bounds on the demand that would

arise at a counterfactual deterministic price—or, equivalently, a perfectly observed realization of a

stochastic price—for any given data.
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4 Preliminaries

The distribution of the consumer’s value of the good plays a central role in our analysis. As we

explain in this section, when the value is viewed as a random variable, stochastic orders on the

value are relevant for comparisons of demand and of consumer surplus.

Given a model, let v := vi be the consumer’s stochastic value of the good. Thus v is a partial

description of the model that disregards information structures. Let QCI(p;v) := Pr(v > p); the

superscript CI indicates complete information. For any price p, QCI(p;v) is the probability with

which the consumer would buy the good if she perfectly observed the price p (except possibly at

atoms of v).9 Therefore, we refer to QCI(p;v) as the complete information demand function for v.

Note that the complete information demand function is the complementary distribution function

of v. Likewise, the complete information inverse demand function PCI(q;v)—which is the inverse

to the demand QCI(p;v)—is the complementary quantile function of v.

In light of the connection between the distribution of the stochastic value and the demand,

first-order stochastic dominance comparisons of v correspond to rankings of the associated com-

plete information demands. Indeed, the following statements are equivalent: (i) v′ first-order

stochastically dominates v; (ii) QCI (p;v′) ≥ QCI (p;v) for all p; and (iii) PCI (q;v′) ≥ PCI (q;v)

for all q.

Gentzkow and Kamenica (2016) and Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017) identify

a mapping from random variables to convex functions that is useful for making comparisons with

respect to the convex order. Define the function CSCI(·;v) : R −→ R by

CSCI(p;v) :=

∫ ∞
p

QCI
(
p′;v

)
dp′. (3)

This mapping has a natural interpretation in our context: it is the area between the price line and

the complete information demand function, i.e., the surplus of the consumer when she perfectly

observes p.10 Observe that CSCI(p;v) is convex in p because QCI is downward-sloping.

In addition to its economic interpretation, the function CSCI(·;v) characterizes a relevant

stochastic order on v. Given two real-valued random variables x and y, recall that y dominates x

in the increasing convex order, denoted by y �icx x, if there exists a random variable z such that

z first-order stochastically dominates x and y is a mean-preserving spread of z.

Lemma 1. For any v′ and v,

v′ �icx v if and only if CSCI(p;v′) ≥ CSCI(p;v)

for every price p.

9If v has an atom at p, then the demand if p is perfectly observed lies in the closed interval between the left and
right limits of QCI(·;v) at p.

10Gentzkow and Kamenica (2016) and Kolotilin et al. (2017) map each random variable to the integral of the lower
tail of its distribution function. For our purposes, the relevant integral is over the upper tail of the complementary
distribution function.
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Proof. The result follows from Theorem 4.A.2 of (Shaked and Shanthikumar, 2007) given (3) to-

gether with the fact that QCI(p;v) is the complementary distribution function of v.

The increasing convex order is closely related to second-order stochastic dominance, denoted

here by �sosd.11 (Indeed, y �icx x if and only if −x �sosd −y.) Roughly speaking, both orders

favor higher values, but the increasing convex order favors spreads while second-order stochastic

dominance disfavors them. Lemma 1 is essentially the analogue for the increasing convex order of

the usual characterization of SOSD in terms of integrals of distribution functions.

The next result suggests how the increasing convex order can be useful even when there is

incomplete information about prices. Consider a consumer with stochastic value v and demand

Q̃(p). The highest possible surplus for this consumer is obtained when, for each p, the highest

types of measure Q̃(p) are the ones that buy the good. In that case, the consumer surplus is

CS
(
Q̃, PCI (·;v)

)
.

Lemma 2. For every demand function Q̃, CS
(
Q̃, PCI (·;v)

)
is nondecreasing in v with respect to

the increasing convex order.

Clearly, a first-order stochastic dominance increase of values increases the consumer surplus

CS
(
Q̃, PCI (·;v)

)
. A mean-preserving spread of the values also increases this surplus because it is

computed under the assumption that, for each p, it is the measure Q̃(p) of types with the highest

values that buy. The gross surplus at a given price is therefore proportional to the mean value

conditional on being among these buying types, which increases with a mean-preserving spread.

The proof of this lemma—and those of other results not proved in the main text—may be found

in the appendix.

5 Bounds on Consumer Surplus

5.1 Proof of Theorem 1

We first show by construction that each surplus between 0 and CS
(
Q,P

)
is consistent with the

data. To prove that no other levels of surplus are consistent with the data, we show that the

stochastic value associated with the construction yielding surplus CS
(
Q,P

)
provides an upper

bound with respect to the increasing convex order. (For this step, it suffices to consider only the

upper bound: since the lower bound on surplus is 0, it holds trivially that no lower surplus can be

obtained by a rational consumer.)

Consider a decomposition of the observed demand Q into demands (Qi)i of individual types i.

We begin by identifying the range of stochastic values consistent with this decomposition and then

consider varying the decomposition itself.

11Recall that y second-order stochastically dominates x if there exists z such that x is a mean-preserving spread
of z and y first-order stochastically dominates z.
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We say that a value vi is consistent with demand Qi if vi together with some information

structure Φi generates demand Qi. Given Qi, let

vi := E [p | Qi(p) ≥ q] = E [p | p ≤ Pi(q)] ,

vi := E [p | Qi(p) ≤ q] = E [p | p ≥ Pi(q)] ,

where q ∼ U [0, 1] and Pi is the inverse demand associated with Qi. Since type i buys with

probability Qi(p) at each price p, vi and vi are, respectively, the expected price conditional on the

event that consumer of type i does or does not make a purchase. Accordingly, we refer to vi as

the buying price expectation and to vi as the non-buying price expectation. Note that, since Qi is

downward sloping, vi ≤ vi.

Lemma 3. A value vi is consistent with Qi if and only if vi ≤ vi ≤ vi.

Proof. Since the average price across all signal realizations at which type i buys is vi, incentive

compatibility requires that vi ≥ vi for otherwise this type could improve its expected utility by

never buying. Similarly, incentive compatibility at signals where this type does not buy requires

that vi ≤ vi. This proves the “only if” statement.

For the “if” statement, suppose vi ≤ vi ≤ vi. Consider a binary information structure Φi

generating signals 0 and 1 with Pr(x = 1 | p = p) = Qi(p). Let type i’s strategy be q∗i (x) = x;

this generates demand Qi(p). Since the posterior price expectations satisfy πi(1) = vi ≤ vi and

πi(0) = vi ≥ vi, the strategy q∗i is optimal as needed.

For each s ∈
[
CS (Q,P ) , CS

(
Q,P

)]
, we construct a model that generates surplus s. Let the

type i be uniformly distributed on [0, 1] and let each realization i generate the demand function

Qi(p) = 1p≤P (i). Thus type i always buys when the price is below P (i) and never buys at prices

above P (i). Note that the average demand across all types is equal to the observed demand Q, as

needed for the model to rationalize the data:

E [Qi(p)] = Pr (P (i) ≥ p) = Pr (i ≤ Q(p)) = Q(p).

By Lemma 3, a value vi is consistent with demand Qi if vi ≤ vi ≤ vi. Due to the choice of

Qi, we have vi = P (i) and vi = P (i). Since type i buys if and only if i ≤ Q(p), taking vi = vi

for all i gives ex ante surplus CS
(
Q,P

)
; we refer to this model as the upper threshold model. At

the other extreme, taking vi = vi for all i gives CS (Q,P ) = 0. For any s ∈
(
0, CS

(
Q,P

))
, taking

vi = λP (i) + (1 − λ)P (i) with λ = s/CS
(
Q,P

)
yields surplus s. This completes the proof that

lying in the given interval is sufficient for s to be consistent with the data.

We now shift our attention to the other direction, namely, that lying in the given interval is a

necessary condition for consistency with the data. We say that a stochastic value v is consistent

with data (Q,F ) if there exists a model satisfying v
d
= vi that rationalizes (Q,F ). We provide an

upper bound on stochastic values consistent with the data with respect to the increasing convex

12
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Figure 2: Example illustrating the effect of splitting demand into simple demands. (a) For p ∼
U [0, 1], the non-buying price expectation associated with demand Qi is the expected price across
the shaded region with both coordinates uniformly distributed, which is 11

16 . (b) Splitting type i
into two (equally likely) types with simple demands gives non-buying price expectations of 7

8 and
5
8 . The average of these two expectations conditional on not buying is 7

8 ·
1
4 + 5

8 ·
3
4 = 11

16 , whereas
the unconditional average is 7

8 ·
1
2 + 5

8 ·
1
2 = 3

4 >
11
16 .

order. Let v := P (i) and v := P (i) for i ∼ U [0, 1]. Thus v and v are, respectively, the stochastic

values associated with the upper threshold model and the corresponding model for the lower bound

constructed above. For the proof of Theorem 1, we make use only of v; v is needed in subsections

5.2 and 6.2.

The following lemma is the core technical insight underlying the necessity part of Theorem 1.

Lemma 4. If a stochastic value v is consistent with data (Q,F ), then v �icx v.

The proof of this lemma, which is in the appendix, starts by considering an arbitrary model

rationalizing the data with values vi and demands Qi(p) for each type i. We then amend the model

in two steps such that (i) each step leads to an increase in the stochastic value with respect to

the increasing convex order and (ii) in combination, the two steps transform the original stochastic

value v = vi to v.

In the first step, we replace the value vi of each type i with i’s non-buying price expectation

vi (given the demand Qi). Since, by Lemma 3, vi ≥ vi, this replacement leads to a first-order

stochastic dominance increase in the stochastic value and hence also an increase with respect to

the increasing convex order.

In the second step, we decompose the demand of each type into demands of the form Qj(p) =

1p≤ρ for some ρ; we refer to such functions as threshold demands. More specifically, we replace

each type i with a stochastic type j such that each realization j has a threshold demand and the

average demand across j is Qi. (If Qi is itself a threshold demand, then such a decomposition is

trivial.) We assign to each j the value vj equal to its non-buying price expectation. Replacing

each i with the corresponding j clearly increases the spread in the values. For this change to be an

increase with respect to the increasing convex order, it suffices to show that it also increases the

means, i.e., that E [vj] ≥ vi for each i. To see why the last inequality holds, notice that, by the

Law of Iterated Expectations, the expected non-buying price expectation conditional on not buying
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is unaffected by the decomposition of the demand Qi(p). Since higher values of vj are associated

with lower probabilities of not buying, when compared to the conditional expectation, the relative

weight assigned to higher values vj in the unconditional expectation is larger, as claimed. See

Figure 2 for an illustration.

Taken together, the two steps transform the original model into one in which all types have

threshold demands and values equal to their non-buying price expectations, and the average demand

is Q; in other words, the result is the upper threshold model. The associated stochastic value is

therefore v, as needed for the proof of Lemma 4.

We now use Lemma 4 to establish the upper bound on consumer surplus in Theorem 1. First

note that, for a given stochastic value v, incomplete information can lead to two types of loss for

the consumer: (i) the probability of purchase at a given price may not be ex post optimal, i.e.,

Q(p) 6= QCI(p;v), and (ii) the set of types purchasing the good at a given price may not be those

with the highest values. Starting from any model that rationalizes the data, reallocating demands

across types to eliminate this latter loss (ignoring incentive compatibility) gives an upper bound

CS
(
Q,PCI(·;v)

)
on the expected surplus for models with stochastic value v. Therefore, the surplus

s generated by any such model satisfies

s ≤ CS
(
Q,PCI(·;v)

)
≤ CS

(
Q,PCI (·;v)

)
= CS

(
Q,P

)
,

where the middle inequality follows from Lemmas 2 and 4. This concludes the proof of Theorem 1.

5.2 Related results

Theorem 1 has connections with several other questions.

First, Lemma 1 and Lemma 4 together have immediate implications for the counterfactual

consumer surplus that would arise under complete information about the price.

Corollary 1. Given data (Q,F ), the consumer surplus that would arise under complete information

about price p is no greater than CSCI (p;v).

Second, as in Bayesian persuasion, the upper bound on consumer surplus can be viewed as

the value of a concavification problem. (However, due to the high dimensionality of the problem,

standard concavification techniques are not sufficient to identify a solution.) Just as Kamenica and

Gentzkow (2011) split the prior belief into posterior beliefs under a Bayes-plausibility constraint,

we split the aggregate demand Q(p) into individual types’ demands Qi(p) under the constraint

E [Qi] = Q. The objective in the persuasion problem is to maximize the expected value across

posteriors. Likewise, our objective is to maximize the expected surplus E [s (Qi)], where s (Qi)

is the highest surplus for type i consistent with demand Qi. Threshold demands can be viewed

as analogous to degenerate posteriors insofar as neither can be further split. Since the upper

threshold model splits the original demand to threshold demands, it is analogous to full disclosure

in the persuasion problem. The optimality of this model is nontrivial since the objective function

s(Qi) is not convex.
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Finally, all of the results stated so far have symmetric counterparts regarding a different welfare

measure. Consumer surplus, as defined in (1), captures the consumer’s benefit from freely choosing

whether to buy relative to not having the option to buy the good. Define the complementary

consumer surplus

ŝ := E [(1− q∗i (x)) (p− vi)] ,

which captures the consumer’s benefit from freely choosing relative to being forced to buy the good,

i.e., not having the option not to buy the good. One can think of the complementary surplus as

the gain relative to universal provision of the good financed by a tax equal to the average price.

Whereas consumer surplus is maximized when the consumer’s value is high, complementary

consumer surplus is maximized when the consumer’s value is low. In both cases, however, greater

spreads in values are associated with higher (complementary) surplus. Consequently, the relevant

ranking of stochastic values for the complementary surplus is (the reverse of) second-order stochastic

dominance: a lower bound with respect to �sosd provides an upper bound on ŝ.

Just as v is the highest and the most spread out stochastic value consistent with the data, v is

the lowest and the most spread out such stochastic value. More precisely, v is a lower bound with

respect to �sosd on all v consistent with the data. While the central step of the proof of Lemma 4

was to show that a decomposition into threshold demands induces a mean-increasing spread of the

non-buying price expectations, a symmetric argument implies that the same decomposition induces

a mean-decreasing spread of the buying price expectations.

By analogy to the functional CS, let

ĈS
(
Q̃, P̂

)
:= E

[∫ 1

Q̃(p)

(
p− P̂ (q)

)
dq

]
.

Note that, just as CS (Q,P ) = 0, ĈS
(
Q,P

)
= 0. Complementary consumer surplus ŝ is consistent

with data (Q,F ) if and only if

0 = ĈS
(
Q,P

)
≤ ŝ ≤ ĈS (Q,P ) ;

this is the mirror image of Theorem 1. Since the proof of this result is analogous to that of

Theorem 1, we omit the details.

Example 3. Consider the same data as in Example 1, namely, Q(p) = 1−p and p ∼ U [0, 1]. In this

case, the empirical inverse demand is P (q) = 1 − q, the lowered inverse demand is P = P (q)/2 =

(1− q)/2, giving an upper bound on complementary consumer surplus of ĈS(Q,P ) = 1/4.

6 Multiple Datasets

The bounds on consumer surplus can be tightened if the analyst observes the consumer’s choices

under varying market conditions, which we refer to as regimes. We assume that the consumer’s

preferences are fixed across regimes, but the regimes may differ in the distribution of prices or in
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the information the consumer receives about prices (or both). For example, one such regime may

correspond to a publicly announced “sale” associated with low distribution of prices while another

corresponds to the same market in the absence of a sale. Alternatively, it could be the consumer’s

information that varies across regimes, for instance due to changes in how prices are presented as

in the empirical studies of Chetty, Looney, and Kroft (2009) and Finkelstein (2009).

The analyst observes a profile of datasets
(
Qk, F k

)
, k = 1, . . . ,K, where Qk(p) and F k(p) are,

respectively, the probability that the consumer makes a purchase at each price p and the distribution

of prices in regime k and each (Qk, F k) satisfies the assumptions on data made in section 2. The

consumer has a stochastic type i, which specifies her value vi for the good and her information

structure Φk
i in each regime. The distribution of types and the value of each type are the same

across all regimes. In each regime k, type i knows the prior distribution F k and the information

structure Φk
i (x | p = p) that generates her signal. A model consists of a distribution of types

together with a specification of
(
vi,Φ

1
i , . . . ,Φ

K
i

)
i

for each type.

We say that a model rationalizes the profile of datasets
(
Qk, F k

)
k

if, for each regime k, it

rationalizes dataset (Qk, F k) when each type i has information structure Φk
i . A stochastic value

v is consistent with the profile of datasets
(
Qk, F k

)
k

if there exists a model that rationalizes this

profile and satisfies v
d
= vi.

Given a model, consumer surplus in regime k is

sk = E
[
qk∗i (x) (vi − p)

]
,

where the signal x is generated according to Φk
i and qk∗i is an optimal strategy for type i in regime

k. Consumer surplus sk in regime k is consistent with the profile of datasets (Qk, F k)k if there

exists a model that rationalizes this profile and generates surplus sk in regime k.

If, as in the previous sections, the analyst observes a single dataset, then, to determine rational-

izable levels of consumer surplus, it suffices to consider types with threshold demands, corresponding

to information structures that indicate only whether the price is above or below a particular (type-

dependent) threshold. If, however, the analyst observes multiple regimes, some profiles of datasets

can be rationalized only by types with more complex demands (even though each type’s information

structure, and therefore its demand, is allowed to depend on the regime). The following example

illustrates this point.

Example 4. Consider two regimes. The data in regime 1 consist of the linear demand Q1(p) = 1−p
and uniform price distribution p ∼ U [0, 1], as in Example 1. The data in regime 2 consist of the

step-function demand Q2(p) = 1p≤2/3 and uniform price distribution p ∼ U [2/3−ε, 2/3+ε], where

0 < ε ≤ 1/3. These two regimes are jointly rationalizable by a single type with value 2/3 who

observes signals 0 or 1 with probability Φk(1 | p = p) = Qk(p) for k = 1, 2 and buys upon observing

signal 1. Note that this type does not have a threshold demand in regime 1.

For ε < 1/6, this profile is not rationalizable with types having threshold demands (or, equiva-

lently, threshold information structures). If the demand from regime 1 is decomposed into threshold
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demands, then a nonzero mass of types must have thresholds below 1/3−2ε. The non-buying price

expectation of such types—which is their maximal incentive-compatible value—is less than 2/3−ε.
Therefore, these types would not buy at any price that occurs in regime 2, contradicting that

Q2(p) = 1 for p ≤ 2/3. 4

Data from other regimes can help to pin down the surplus within a given regime. For instance,

if ε is small in Example 4, then only values close to 2/3 are consistent with the demand in regime

2. The surplus in regime 1 must therefore be approximately 2/3× 1/2− 1/6 = 1/6.12

6.1 Upper bound

The next result provides an upper bound on the surplus within each regime that generally improves

upon the bounds that can be obtained for each regime separately. The basic idea is to combine the

upper bounds on the stochastic value with respect to the increasing convex order when consider-

ing each regime separately in such a way as to generate a tighter bound. The approach therefore

requires combining bounds imposed on random variables with respect to a stochastic order. To do

so, building on ideas of Gentzkow and Kamenica (2016) and Kolotilin et al. (2017), we exploit the

connection described in section 4 between random variables and convex functions—in this case,

the stochastic value and the complete information consumer surplus. According to Lemma 1, com-

parisons of stochastic values in the increasing convex order correspond to comparisons of complete

information consumer surplus. Using this connection, we find the largest random variable that

satisfies the bounds on the stochastic value across all of the regimes by finding the largest convex

function lying below the corresponding complete information consumer surplus bounds. That this

indeed provides an upper bound follows from an abstract result due to Müller and Scarsini (2006).

Let vk be the upper bound on stochastic values consistent with the data for regime k with respect

to the increasing convex order as in Lemma 4.13 For each k, the bound vk corresponds to the convex

function CSCI
(
p;vk

)
. The upper bound using data across all regimes therefore corresponds to the

largest convex function that lies below each CSCI
(
p;vk

)
. Accordingly, let CSCI

∗ (p) denote the

convex closure of the function mink CS
CI
(
p;vk

)
.14 By extension of the terminology of Kamenica

and Gentzkow (2011), we refer to CSCI
∗ as the convexification of mink CS

CI
(
p;vk

)
.

To map CSCI
∗ back to a stochastic value, recall from section 4 that CSCI (p;v) is the integral

of the right tail of the complete information demand QCI (p;v), which is the complementary dis-

tribution function of v. Define the demand function QCI
∗ (p) = −∂−CSCI

∗ (p), where ∂− denotes

the left derivative. Note that 1 − QCI
∗ is a distribution function and let v∗ be a stochastic value

associated with this distribution.15 Finally, let PCI
∗ be the inverse demand to QCI

∗ . See Figure 3

for an illustration.
12Here, 1/2 is the purchase probability and 1/6 the expected expenditure in regime 1.
13That is, vk = P

k
(i) with i ∼ U [0, 1], where the elevated demand for regime k is P

k
(i) = E

[
p | p ≥ P k(i)

]
with

p ∼ F k and P k is the inverse demand to Qk.
14Recall that the convex closure of a function g(p) is the function that maps each p to inf {s : (p, s) ∈ co(g)}, where

co(g) denotes the convex hull of the graph of the function g. In the terminology of convex analysis, CSCI
∗ is the

biconjugate function to mink CS
CI
(
p;vk

)
.

15Since CSCI
∗ is convex, its left derivative exists, and QCI

∗ is nonincreasing and left-continuous. Additionally,
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Figure 3: Convexification for the two regimes described in Example 4 with ε = 1/3. The graphs
depict prices p ∈ [1/2, 1]; for p < 1/2, the convexification is trivial. (a) Complete-information
consumer-surplus functions: (dashed) CSCI

(
p;v1

)
, (dotted) CSCI

(
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)
, (thick) the convex

closure CSCI
∗ (p) (b) Complete-information demands associated with stochastic values: (dashed)
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)
, (thick) QCI

∗ (p).

Bound from Theorem 1 Bound from Theorem 2

Regime 1 CS
(
Q1, P

1
)

= 0.25 CS
(
Q1, PCI

∗
)
≈ 0.238

Regime 2 CS
(
Q2, P

2
)
≈ 0.167 CS

(
Q2, PCI

∗
)
≈ 0.125

Table 1: Upper bounds on consumer surplus for the two regimes from Example 4 with the
parameter ε = 1/3.

The following result is the main step underlying the upper bound for multiple regimes.

Lemma 5. If a stochastic value v is consistent with the profile of datasets, then v∗ �icx v.

Proof. Follows from Theorem 3.2 of Müller and Scarsini (2006).

A direct argument is as follows. If v is consistent with the profile of datasets, then it is consistent

with each dataset separately; thus vk �icx v for each regime k. By Lemma 1, mink CS
CI
(
p;vk

)
≥

CSCI (p;v). Since CSCI (p;v) is convex in p, CSCI (p;v) is no greater than the convexification of

mink CS
CI
(
p;vk

)
. Finally, again by Lemma 1, v∗ �icx v.

Combining Lemma 5 and Lemma 2 leads to the following upper bound on the consumer surplus

within each regime. See Table 1 for an illustration.

Theorem 2. If consumer surplus sk in regime k is consistent with the profile of datasets, then

sk ≤ CS
(
Qk, PCI

∗
)
.

Proof. Given a stochastic value v, the consumer surplus in regime k is at most CS
(
Qk, PCI(·;v)

)
because this is the surplus associated with having the measure Qk(p) of types with the highest

CSCI
∗ (p) = 0 for p > p and CSCI

∗ (p) has slope −1 for p < p; hence, limp→−∞Q
CI
∗ (p) = 1 and limp→+∞Q

CI
∗ (p) = 0.

Thus, 1−QCI
∗ is a distribution function.
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values buy at each p. By Lemma 2, CS
(
Qk, PCI(·;v)

)
is nondecreasing in v with respect to the

increasing convex order. Finally, by Lemma 5, any stochastic value v consistent with the profile of

datasets is bounded by v∗ in the increasing convex order.

While the bound in this theorem is generally tighter than the bound from Theorem 1 obtained

from the data in regime k alone, it is not itself a tight bound. For example, consider the two

regimes from Example 4 with ε ≤ 1/6. In this case, CSCI (p;v2) ≤ CSCI (p;v1) for all p, making

the convexification trivial: CSCI
∗ (p) ≡ CSCI (p;v2). Therefore, v∗

d
=v2 almost surely takes on the

value 2/3 + ε/2, which is the non-buying price expectation for regime 2. However, this value is not

consistent with the data for regime 1 since the non-buying price expectation of at least some types

must be no more than 2/3 (the non-buying price expectation for demand Q1(p)).

Handling multiple regimes is complicated by the fact illustrated in Example 4 that decomposi-

tions into threshold demands are not generally sufficient to rationalize the data. The construction

in Theorem 2 circumvents this complication by using a bound on surplus in each regime based on

threshold demands. The downside of this approach is that the combined bound need not corre-

spond to a model that rationalizes the profile of datasets, and hence the bound is not generally

tight.

Lemma 5, when combined with Lemma 1, also provides an upper bound on the counterfactual

consumer surplus that would arise if prices were perfectly observed.

Corollary 2. Given a profile of datasets
(
Qk, F k

)
k
, the consumer surplus that would arise under

complete information about price p is no greater than CSCI
∗ (p).

Like Theorem 2, this corollary improves on the bound for a single regime from Corollary 1 but

is not generally tight.

6.2 Lower bound

An analogous construction to that for the upper bound can be used to obtain a nontrivial lower

bound on surplus using data from multiple regimes. Given a stochastic value v and demand Q(p),

we can compute a lower bound on surplus by supposing that the measure Q(p) of the lowest types

purchase the good at each p (as opposed to the highest types we used for the upper bound). Under

this assignment, roughly speaking, lower means and greater spreads of the stochastic value both

reduce the lower bound on surplus. Consequently, the relevant ordering of stochastic values is �sosd

(as opposed to �icx for the upper bound).

Define the complete information complementary consumer surplus

ĈS
CI

(p;v) :=

∫ p

−∞

(
1−QCI

(
p′;v

))
dp′

and note that it is nondecreasing and convex in p. By the well known characterization of Hadar

and Russell (1969) and Rothschild and Stiglitz (1970), the ranking of stochastic values v with

respect to �sosd implies the opposite ranking of ĈS
CI

(p;v), and the converse also holds provided
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the latter ranking is consistent across all p. Following the analogous construction to that for the

upper bound, let ĈS
CI

∗ (p) be the convexification of mink ĈS
CI (

p;vk
)
, where, for each k, vk is the

lower bound on stochastic values with respect to �sosd consistent with the dataset (Qk, F k) (see

subsection 5.2). Let v∗ be the stochastic value associated with ĈS
CI

∗ .16 Along the same lines as

in Lemma 5, v∗ is a lower bound with respect to �sosd on stochastic values v consistent with the

profile of datasets.

Let P̂ (q;v) := PCI(1− q;v) denote the qth lowest quantile of v.

Theorem 3. If consumer surplus sk in regime k is consistent with the profile of datasets, then

sk ≥ CS
(
Qk, P̂ (·,v∗)

)
.

To understand this result, consider a consumer with stochastic value v. According to the data

for regime k, a measure Qk(p) of types buy at each price p. Selecting the types with the lowest

values generates surplus CS
(
Qk, P̂ (;v)

)
; this lower bound is nondecreasing in v with respect to

second-order stochastic dominance. Finally, because stochastic values consistent with the profile of

datasets are bounded from below with respect to �sosd by v∗, the bound on sk from the theorem

applies.

To illustrate the lower bound, consider the regimes from Example 4 with ε = 1/3. In this case,

v1 is uniformly distributed on [0, 1/2] and v2 is almost surely equal to 1/2. Thus v2 second-order

stochastically dominates v1, making the convexification trivial with v∗ = v2. The lower bound

from Theorem 3 on the consumer surplus in regime 1 is therefore 1/2 · 1/2 − 1/6 = 1/12 and the

lower bound in regime 2 is 0.

7 Bounds on Counterfactual Demand

Returning to the original model in which the analyst observes a single dataset (Q,F ), we now

consider the counterfactual demand that would arise if the distribution of prices F were replaced by

a deterministic price, or equivalently, the consumer were to perfectly observe the realized price. As

for consumer surplus, bounds on counterfactual demand correspond to bounds on the consumer’s

stochastic value, albeit with respect to a different stochastic order: while the increasing convex

order and second-order stochastic dominance provide the relevant bounds for consumer surplus,

the bounds for counterfactual demand correspond to first-order stochastic dominance.

To state these bounds, define the doubly elevated and doubly lowered inverse demands, respec-

tively, by

P (q) := E [p | p ≥ P (q),q ≤ q]

and P (q) := E [p | p ≤ P (q),q ≥ q] ,

16That is, let 1 −QCI (·;v∗) be the right derivative of ĈS
CI

, observe that it is a distribution function, and let v∗
be a random variable with this distribution.
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Figure 4: Doubly elevated and doubly lowered inverse demands, P (thick grey) and P (thick

dashed), for given inverse demand P (black). For each q, P (q) is the expected price conditional
on p and q lying in the upper-left grey area. Similarly, P (q) is the expected price conditional on

the lower-right grey area. For comparison, the thin grey and thin dashed curves depict P and P ,
respectively.

where q ∼ U [0, 1] and p ∼ F . Both functions are non-increasing. Relative to the elevated and

lowered inverse demands P and P , these inverse demands are further elevated and lowered, i.e.,

P (q) ≥ P (q) and P (q) ≤ P (q) for all q. To see this, observe that P (q) is a convex combination of

P (q′) across q′ ∈ [0, q] and P is non-increasing; a symmetric argument shows that P (q) ≤ P (q).

See Figure 4 for an illustration.

Theorem 4. For every stochastic value v consistent with data (Q,F ), the complete information

inverse demand function satisfies

P (q) ≤ PCI(q;v) ≤ P (q)

for all q.

The bounds in this theorem are tight in the sense that for each q, there exists a stochastic value

v consistent with the data such that PCI(q;v) = P (q), and similarly for P (q).

We sketch the argument for the upper bound; the argument for the lower bound is analogous.

For each q, given any stochastic value v, the complete information inverse demand PCI(q;v) is a

particular quantile of v (namely, the (1 − q)th quantile). The model that maximizes the counter-

factual inverse demand at q among those rationalizing the data is therefore the one that maximizes

this quantile. Accordingly, bounds on counterfactual demand correspond to bounds on stochastic

values with respect to first-order stochastic dominance.

How can we maximize a given quantile of v (among stochastic values consistent with the data)?

Recall that the highest incentive-compatible value given a type’s demand is its non-buying price

expectation. It turns out that this non-buying price expectation is maximized when no other type

has a higher value and the demand of this type is as large as possible. Accordingly, to maximize

the value at the (1 − q)th quantile, we use a model in which the type with the highest value has

measure q and demand min{Q(p)/q, 1}. By construction, the non-buying price expectation of this
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type is exactly P (q). To see that the bound is tight, note that such a type can be part of a model

that rationalizes the data (in which the remaining measure 1 − q of types generate the residual

demand).

As with consumer surplus, data from multiple market regimes can be used to tighten the bounds

on counterfactual demand. Assuming, as in section 6, that preferences are stable across regimes, a

tighter bound can be obtained by simply taking the minimum and maximum, respectively, of the

upper and the lower bounds from Theorem 4 across all of the regimes.

8 Discussion

If the analyst does not know whether the consumer perfectly observes and understands prices,

the consumer surplus cannot be point identified from price and demand data. Nonetheless, Bayes

rationality imposes significant restrictions on the levels of surplus consistent with the data. Identi-

fication of the consumer surplus can be further sharpened by combining data from market regimes

with varying priors or consumer information.

Several relevant questions related to this project remain open. First, the bounds we provide

under multiple regimes are not tight; our bounds rely on separate rationalizations for each regime

involving simple information structures (which are sufficient in the single-regime case), whereas, in

principle, identification of the surplus can be improved by simultaneously rationalizing the profile

of datasets using more complex information structures. Second, one could consider richer data

than those studied here. For instance, outside of the unit-demand environment, our results apply

if the analyst observes only the average demand of the consumer. If instead the dataset includes

the full distribution of quantities chosen, our bounds continue to apply but are not generally tight

if the data are inconsistent with simple information structures. Identifying tight bounds therefore

again requires consideration of more complex information structures than those needed in the

unit-demand or average-demand case. Finally, the tightness of our bounds depends on how much

freedom the analyst has in the choice of information structures to rationalize the data. In some

contexts, it may be plausible to assume that the consumer has at least some minimal information

consisting of a particular signal. If this information is also observed by the analyst—as, for example,

if the first digit of the price were perfectly observed by the consumer—then each realization of the

signal can be treated as a different regime. In any case, since additional information restricts the

set of models that can rationalize the data, it could potentially be used to narrow the bounds on

surplus or counterfactual demand.

A Proofs

Proof of Lemma 2. Note that

CS
(
Q̃, PCI(·;v)

)
= E

[∫ Q̃(p)

0
PCI(q;v)dq

]
− E

[
Q̃(p)p

]
.
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Consider any v and v′ such that v′ �icx v. Since the expected expenditure E [Q(p)p] does not

depend on the stochastic value, it suffices to prove that
∫ q∗
0 PCI (q;v′) dq ≥

∫ q∗
0 PCI(q;v)dq for each

q∗ ∈ [0, 1]. Fix q∗. For p = PCI (q∗;v′),∫ q∗

0
PCI

(
q;v′

)
dq = CSCI

(
p;v′

)
+ pq∗

≥ CSCI (p;v) + pq∗

≥
∫ q∗

0
(PCI(q;v)− p)dq + pq∗

=

∫ q∗

0
PCI(q;v)dq;

the first inequality follows from Lemma 1 and the second because CSCI (p;v) = maxq′
∫ q′
0 (PCI(q;v)−

p)dq.

Proof of Lemma 4. Step 1 : Consider a model such that each type i has value vi and generates de-

mandQi(p). Let v = vi be the associated stochastic value. Let v′ = vi, where vi = E [p | q ≥ Qi(p)]

for q ∼ U [0, 1] denotes the non-buying price expectation associated with demand Qi. By Lemma 3,

vi ≥ vi for each i. Thus, v′ �icx v (in fact, v′ first-order stochastically dominates v).

Step 2 : For each type i, define a random variable vi as follows. Let Pi(q) be the inverse

demand to demand Qi, let P i(q) = E[p | p ≥ Pi(q)] be the elevated demand of type i, and define

the stochastic value vi = P i(q) for q ∼ U [0, 1]. Finally, let v′′ = vi; thus v′′ is a spread of v′ that

replaces v′i = vi with vi for each i.

We will show that v′′ �icx v′ (and hence v′′ �icx v). It suffices to show that vi ≤ E [vi] for each

i. Indeed, for q ∼ U [0, 1], by the Law of Iterated Expectations,

vi = E [p | q ≥ Qi(p)]

= E [p | p ≥ Pi (q)]

= E [E [p | p ≥ Pi (q) ,q] | p ≥ Pi (q)]

= E
[
P i (q) | p ≥ Pi (q)

]
= E

[
P i (q) | q ≥ Qi(p)

]
.

Since q conditional on q ≥ Qi(p) first-order stochastically dominates q itself and P i (q) is nonin-

creasing, it follows that

vi ≤ E
[
P i (q)

]
= E [vi] ,

as needed.

Step 3 : We conclude by proving that v′′
d
=v. Consider any p at which Q is continuous and let
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ṽ = E[p | p ≥ p]. For any j ∈ [0, 1],

j = Pr (v ≥ ṽ) =⇒ P (j) = ṽ =⇒ P (j) = p =⇒ j = Q(p).

Hence Pr(v ≥ ṽ) = Q(p). Likewise, Pr (vi ≥ ṽ) = Qi(p) for almost all i (i.e., for all i except those

for which Qi is discontinuous at p), and thus

Pr
(
v′′ ≥ ṽ

)
= Pr (vi ≥ ṽ) = E [Qi(p)] = Q(p) = Pr (v ≥ ṽ)

for all ṽ from a dense subset of the support of v and v′′, as needed.

Proof of Theorem 3. Consider a model consistent with the profile of datasets and let v be its

associated stochastic value. Recall that P̂ (q;v) = PCI (1− q;v) is the qth quantile of v. Note that

sk ≥ CS
(
Qk, P̂ (·;v)

)
for each k since the right-hand side is the expected consumer surplus if the measure Qk(p) of types

with the lowest values buy at each price p.

For any two stochastic values v and v′ such that v �sosd v′ and any demand function Q̃, we

claim that

CS
(
Q̃, P̂ (·;v)

)
≥ CS

(
Q̃, P̂ (·;v′)

)
.

The proof of this claim is analogous to that of Lemma 2. In particular, we may disregard expendi-

tures since they depend only on the first argument of CS. In fact, we prove a somewhat stronger

statement: if v �sosd v′, then
∫ q∗
0 P̂ (q;v) dq ≥

∫ q∗
0 P̂ (q;v′) dq for every q∗. Fixing q∗ and letting

p = P̂ (q∗;v′), we have ∫ q∗

0
P̂
(
q;v′

)
dq = q∗p− ĈS

CI (
p;v′

)
≤ q∗p− ĈS

CI
(p;v)

≤ q∗p−
∫ q∗

0

(
p− P̂ (q;v)

)
dq

=

∫ q∗

0
P̂ (q;v) dq;

the first inequality follows from the integral condition for v �sosd v′ and the second from the fact

that ĈS
CI

(p;v) = maxq̂
∫ q̂
0

(
p− P̂ (q;v)

)
dq.

Therefore, if a stochastic value v is consistent with the profile of datasets, then

sk ≥ CS
(
Qk, P̂ (·;v)

)
≥ CS

(
Qk, P̂ (·;v∗)

)
since v �sosd v∗.
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Proof of Theorem 4. We prove only the upper bound; the argument for the lower bound is analo-

gous.

For any q ∈ (0, 1] consider a demand function Q̃ that attains values in [0, q], i.e., a nonincreasing

function from [p, p] onto [0, q]. Let

ṽ
(
Q̃; q

)
:= E

[
p | q ≥ Q̃(p)

]
and w

(
Q̃; q

)
:= qPr

(
q ≥ Q̃(p)

)
for q ∼ U [0, q] and p ∼ F . To interpret these two functions, consider a model with type distribution

M and a subset I ′ ⊆ I of types such that Pr (i ∈ I ′) = q and Q̃(p) =
∫
i∈I′ Qi(p)dM(i). Then

ṽ
(
Q̃; q

)
is the expected price conditional on a type randomly drawn from I ′ not making a purchase

and w
(
Q̃; q

)
is the probability that a randomly drawn type lies in I ′ and does not buy.

Note the following recursion. For any qa, qb ∈ (0, q] such that qa + qb = q and any two demands

Qa and Qb that attain values in [0, qa] and [0, qb], respectively, such that Qa +Qb = Q̃,

ṽ
(
Q̃; q

)
=
w (Qa; qa) ṽ (Qa; qa) + w (Qb; qb) ṽ (Qb; qb)

w (Qa; qa) + w (Qb; qb)
. (4)

Given any model and a subset I ′ of types such that Pr (i ∈ I ′) = q, let v∗ := infi∈I′ vi. To

establish the upper bound, it suffices to show for each q that the supremum of v∗ across all models

that rationalize the data and subsets I ′ such that Pr (i ∈ I ′) = q is at most P (q).

Fix a model with type distribution M on I and types (vi,Φi) that rationalizes the data. Fix a

set I ′ of types such that Pr (i ∈ I ′) = q. Let Q̃(p) =
∫
i∈I′ Qi(p)dM(i) be the demand generated by

the types in I ′. Note that

inf
i∈I′

vi ≤ ṽ
(
Q̃; q

)
since, by Lemma 3, vi ≤ vi for each type i, where vi is the non-buying price expectation associated

with the demand Qi of type i and ṽ
(
Q̃; q

)
is a convex combination of vi across i ∈ I ′.

Let Q∗(p) := min{Q(p), q} and observe that P (q) = ṽ (Q∗; q). It suffices to show that

ṽ
(
Q̃; q

)
≤ ṽ (Q∗; q) (5)

for all q and all demands Q̃ that can be generated by a subset I ′ of types from a model that

rationalizes the data and satisfies Pr (i ∈ I ′) = q. For all such demands Q̃, both Q̃ and Q(p)− Q̃(p)

are nonnegative and nonincreasing because they are the demands induced by types in I ′ and I \ I ′,
respectively.

Let Q̃(p) be any demand function attaining values in [0, q] such that Q(p)− Q̃(p) is nonnegative

and nonincreasing. Let p∗ := P (q) and q∗ := Q̃ (p∗). Since Q̃(p) ≤ Q∗(p) ≤ q for all p, we have

that q∗ ≤ q. Define the demand function Q0(p) := min
{
Q̃(p), q∗

}
that attains values in [0, q∗] and

let Q1(p) := Q∗(p)−Q0(p) and Q2(p) := Q̃(p)−Q0(p). See Figure 5 for an illustration.
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Figure 5: Illustration of the definitions of Q∗, Q̃, and Q0.

Note that Q1(p) is nonincreasing: it is equal to q− q∗ for p ≤ p∗ and to Q(p)− Q̃(p) for p ≥ p∗.
The function Q2(p) is also nonincreasing since it is equal to Q̃(p) − q∗ ≥ 0 for p ≤ p∗ and to 0

for p > p∗. Let P0, P1, and P2 be the inverse demand functions associated with Q0, Q1, and Q2,

respectively. Note that P0 and P1 lie above P2 in the strong sense that both P0 and P1 only attain

values above p∗ while P2 only attains values below p∗.

Recall that ṽ(Q̃; q) can be written as E
[
p | p ≥ P̃ (q)

]
for q ∼ U [0, q], where P̃ is the inverse

demand to Q̃; similarly, w(Q̃; q) can be written as qPr
(
p ≥ P̃ (q)

)
. It follows that ṽ (Q1; q − q∗) ≥

ṽ (Q2; q − q∗), ṽ (Q0; q
∗) ≥ ṽ (Q2; q − q∗), and w (Q2; q − q∗) ≥ w (Q1; q − q∗). Finally, since Q∗ =

Q0 +Q1 and Q̃ = Q0 +Q2, we have from (4) that

ṽ (Q∗; q) =
w (Q0; q

∗) ṽ (Q0; q
∗) + w (Q1; q − q∗) ṽ (Q1; q − q∗)

w (Q0; q∗) + w (Q1; q − q∗)

and ṽ
(
Q̃; q

)
=
w (Q0; q

∗) ṽ (Q0; q
∗) + w (Q2; q − q∗) ṽ (Q2; q − q∗)

w (Q0; q∗) + w (Q2; q − q∗)
.

Therefore,

ṽ (Q∗; q) = ṽ (Q0; q
∗) +

w (Q1; q − q∗)
w (Q0; q∗) + w (Q1; q − q∗)

(ṽ (Q1; q − q∗)− ṽ (Q0; q
∗))

≥ ṽ (Q0; q
∗) +

w (Q1; q − q∗)
w (Q0; q∗) + w (Q1; q − q∗)

(ṽ (Q2; q − q∗)− ṽ (Q0; q
∗))

≥ ṽ (Q0; q
∗) +

w (Q2; q − q∗)
w (Q0; q∗) + w (Q2; q − q∗)

(ṽ (Q2; q − q∗)− ṽ (Q0; q
∗))

= ṽ
(
Q̃; q

)
,

which establishes inequality (5), as needed.
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B General quasilinear utility

In this appendix, we show that the assumption of unit demands is without loss of generality within

the class of quasilinear preferences. As in the main setup, the analyst observes data (Q̂, F ), where

F is the distribution of prices with support
[
p, p
]
. The average demand Q̂ is a nonincreasing and

nonnegative function with Q̂ (p) = 0. While the demand Q(p) in the main setup is the probability

that the consumer purchases one unit of good, Q̂(p) denotes the average demand of a consumer

who may purchase variable quantities. Equivalently, Q̂(p) can be viewed as the aggregate average

demand of a population of consumers. Without loss of generality, we normalize Q̂(p) to 1.

The consumer’s types are indexed by i ∈ I ⊂ RK for some K ≥ 1. A consumer of type i who

chooses quantity q ≥ 0 at price p receives quasilinear utility ui(q) − pq, where the gross utility

ui : [0,∞)→ [0,∞] is a nondecreasing concave function with ui(0) normalized to 0. Just as in the

main setup, a consumer of type i receives a signal x ∈ R generated by an information structure

Φi(x | p = p) and we let πi(x) = E[p | x = x]. A consumer of type i chooses quantity q∗i (x) ∈
arg maxq≥0 {ui(q)− πi(x)q}.17 Each type i generates a demand function Q̂i(p) = E [q∗i (x) | p = p]

that we assume is nondecreasing. There is no fixed upper bound on the values of q∗i or Q̂i.

A model consists of a Borel probability measure µ on I together with a complete specification

(ui,Φi)i∈I of preferences and information structures. We say that a given model rationalizes data

(Q̂, F ) if Q̂(p) = E
[
Q̂i(p)

]
for all prices p. Given a model that rationalizes the data, the consumer

surplus is s = E [ui (q∗i (x))− pq∗i (x)].

For the purpose of analyzing the levels of consumer surplus consistent with the data, it turns

out that it is without loss of generality to restrict attention to unit demand preferences. We say

that type i has unit demand with value vi if ui(q) = vi min{q, 1}. Such a type purchases one unit

of the good if vi > πi(x) and zero units if vi < πi(x).

Proposition 1. Suppose that s is the consumer surplus in some model that rationalizes the data.

Then there exists a model with unit demands that also rationalizes the data and generates consumer

surplus s.

The proposition implies that, given the data, it is impossible to distinguish between rational-

izations in which types may have complicated quasilinear utility functions and those in which each

type has unit demand. Moreover, rationalizations with unit demands can generate any consumer

surplus that can be obtained by some other rationalization.

To illustrate the idea behind the proposition, consider a model consisting of a single type that

receives marginal utility 2 from the first half-unit of the good, 1 from the second half-unit, and

0 from all subsequent units. To match the behavior in this model using only unit demands, we

replace the single type with two equally likely types, one having value 2 and the other value 1.

Each of the new types has the same information structure as the single type in the initial model.

At each signal realization, both the total expected demand and the total expected utility of these

17As in the main setup, if there are multiple optimal choices, we include a selection among them in the description
of the type but omit this selection from the notation.
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two types are identical to those of the original type. Therefore, the aggregate demand and the

consumer surplus at each price are identical to those in the original model.

While Proposition 1 implies that Theorem 1 extends immediately to general quasilinear de-

mands, and the same is true of our upper bound with multiple regimes (Theorem 2), there is a

subtle issue when applying it to the lower bound with multiple regimes (Theorem 3). For the

construction of the lower bound, we associated purchases with the types having the lowest values.

In the case of general quasilinear utilities, it could be that these lowest types do not purchase at all

in the initial data, and that the total demand is explained by a subset of types that buy multiple

units. Without additional assumptions, then, it is not possible to obtain a nontrivial lower bound.

It is important for Proposition 1 that the analyst observes only the average demand and not

the consumer’s full stochastic choice behavior, i.e., the full distribution of quantities chosen at each

price. (While these two types of data are equivalent with unit demands, with general quasilinear

utilities they are not.) Our bounds trivially apply to such richer data since the analyst could simply

ignore the additional information and use only the average demand. However, the bounds in our

main result are not generally tight in this case. The key issue is whether the observed data can be

rationalized with unit demand preferences; if so, the bounds remain tight. However, there are many

such datasets that cannot be rationalized in this way, such as those with deterministic demands

that take on at least three distinct quantities. In that case, obtaining tight bounds appears to be

much more difficult.

Proof of Proposition 1. For any type i ∈ I in the original model and any quantity a ∈ [0, Q̂i(p)],

define a new type j = (i, a) ∈ I × (0,∞] that has the original information structure Φj = Φi and

gross utility uj(q) = vj min{q, 1}, where vj is the left derivative of ui at a.18 Let the measure of

types j be µ̃ = µ × λ, where λ is the Lebesgue measure. Note that, because of the normalization

Q̂(p) = 1, µ̃ is indeed a probability measure.

Given any a ∈ [0, Q̂i(p)] and any signal x, if q∗i (x) is optimal for type i, then q∗(i,a)(x) = 1a≤q∗i (x)

is optimal for type (i, a). Indeed, the optimality condition for q∗i (x) is equivalent to v(i,a) ≥ π(x)

for all a ∈ (0, q∗i (x)] and v(i,a) ≤ π(x) for all a ∈ [q∗i (x), q]. Thus the demand of type i at any signal

realization x is equal to the aggregate demand of the types (i, a)a at x. Furthermore, the original

gross utility function ui can be written as an integral of its left derivative:

ui(q) =

∫ q

0
v(i,a)da =

∫ Q̂i(p)

0
u(i,a) (1a≤q) da.

18Since ui is a concave function, the left derivative exists.
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Since Φi = Φ(i,a) for all (i, a), the two models generate identical average demands:∫
I
Q̂i(p)dµ(i) =

∫
I

E [q∗i (x) | p = p] dµ(i)

=

∫
I

E

[∫ Q̂i(p)

0
1a≤q∗i (x)da | p = p

]
dµ(i)

=

∫
J

E
[
q∗j (x) | p = p

]
dµ̃(j)

=

∫
J
Q̂j(p)dµ̃(j),

where J := I × [0,∞).

Likewise, the two models agree on the gross consumer surplus at each price:

∫
I

E [u (q∗i (x)) | p = p] dµ(i) =

∫
I

E

[∫ Q̂i(p)

0
u(i,a)

(
1a≤q∗i (x)

)
da | p = p

]
dµ(i)

=

∫
J

E
[
uj
(
q∗j (x)

)
| p = p

]
dµ̃(j).

Since the two models generate the same average demand, they have identical total expenditure at

each price, and therefore the same average net consumer surplus.
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