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1 Introduction

This paper proposes a local projection-based estimator for time-varying parameter models, which

we refer to as the “time-varying parameter local projection”estimator (or TVP-LP in short). We

show how to estimate the parameters of the model as well as the associated impulse response

functions.

Impulse responses are an important tool in empirical macroeconomic analyses for estimating

the e↵ects of unanticipated structural disturbances on the economy. Impulse responses are often

estimated by recursively iterating Vector Autoregressions (VARs) – see Sims (1980) and Stock and

Watson (2016), or VARs with external instruments (Montiel Olea, Stock and Watson 2021). In

the presence of instabilities, which are widespread in recent economic data, researchers rely on

time-varying parameter Vector Autoregressions (TVP-VARs); see, for instance, Canova (1993),

Cogley and Sargent (2005), Primiceri (2005), and Clark (2011). VARs, however, are not robust

to the presence of non-invertibility due to omitted variables and misspecification - see Stock and

Watson (2018).

An increasingly widespread alternative to estimating VARs and their impulse responses is

the local projection approach by Jordà (2005). The idea behind local projections is to project

future outcomes on current covariates for each forecast horizon. The relationship between VARs

with local projections has been investigated in Montiel Olea and Plagborg-Møller (2021). Local

projections are robust to non-invertibility and also greatly simplify estimation in the presence of

non-linearities and panel data - see Jordà (2020) for a review. However, local projection estimators

typically assume stable environments.

In this paper, we propose an estimator for local projections and their impulse response functions

in unstable environments, allowing for a stochastic evolution of the parameters over time. Thus,

our work is the counterpart to time-varying parameter VARs in a local projection framework. The

methodology that we propose has widespread applicability since there is substantial evidence of

instabilities in macroeconomic models.

While it is possible to estimate local projections allowing for instabilities using state-dependent
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models, as in Auerbach and Gorodnichenko (2012), Fazzari, Morley and Panovska (2015), Ramey

and Zubairy (2018), and Barnichon, Debortoli and Matthes (2021), these approaches only allow

for discrete shifts in the models’ parameters, linked to the presence of observable state variables.

Finally, Cloyne, Jordà and Taylor (2021) argue that the way fiscal multipliers vary over time de-

pends on both monetary policy as well as the macroeconomic environment. One of the advantages

of our estimator is that it allows for more flexible forms of time variation than state dependence.

Thus, it can be used to guide researchers in identifying potentially important instabilities and their

determinants.

From an estimation standpoint, this paper introduces local time variation in the local pro-

jections framework. In particular, we consider parameter paths whose variability is of order of

magnitude T�1/2 following Condition 2 in Müller and Petalas (2010), which accommodates a wide

range of parameter instabilities, such as random walk variability occurring in either the full sample

or part of the sample, piece-wise constant paths with finitely many jumps, and so on. Importantly,

the local time variation is allowed in both coe�cients and variances, thus allowing researchers to

model and estimate changes in both structural shocks’ volatility and their transmission mechanism.

Documenting the time variation in impulse responses is useful for several purposes. First, the path

estimators themselves describe the parameter evolution over time and shed light on the potential

sources of instability. Second, the time-varying parameter local projections quantify how macroe-

conomic variables respond to structural shocks at di↵erent points in time, allowing for potentially

di↵erent transmission mechanisms under di↵erent economic conditions. Third, the endpoint of the

parameter path is useful for forecasting.

The methodology introduced in this paper builds on the path estimator introduced by Müller

and Petalas (2010), who consider an unstable time series model with a log-likelihood function of the

form
P

T

t=1 lt(✓t) =
P

T

t=1 lt(✓+�t), while its corresponding stationary model has the same likelihood

with time-invariant parameters ✓ 2 ⇥ ⇢ Rq. They derive asymptotically weighted average risk

(WAR) minimizing path estimators for {✓t}Tt=1 and weighted average power (WAP) maximizing

parameter stability test statistics, assuming an approximately stationary model and a weighting
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function for the variability {�t}Tt=1 that is a (demeaned) multivariate Gaussian random walk. The

covariance matrix of the approximate posterior of the path estimators is a WARminimizing interval

estimator that measures the accuracy of the path estimators. We di↵er from their work as we focus

on a local projection setting and allow for di↵erent magnitude of time variation for di↵erent blocks

of parameters.

Methodologically, our TVP-LP contributes to the existing LP literature in the following ways.

First, the TVP-LP builds on the method of local projections by Jordà (2005), hence the im-

pulse responses are based on a direct multi-step forecasting regression at each forecast horizon,

rather than iterating a VAR model into increasingly distant horizons. The equivalence between

Jordà’s (2005) local projections and VARs has been studied by Montiel Olea and Plagborg-Møller

(2021), although their analysis excludes the existence of time-varying parameters. Thus, relative to

(B)VARs and TVP-(B)VARs, our approach preserves the advantages of local projections – that is,

it can be less sensitive to model misspecification (i.e., insu�cient lag length) and non-invertibility,

it accommodates highly nonlinear and flexible specifications, and has a simple and intuitive inter-

pretation. We also extend the analysis of VARs with exogenous variables (Montiel Olea, Stock

and Watson 2021) to time-varying environments.

Second, the TVP-LP method also di↵ers from traditional local projections and their extensions,

which, unlike our study, are all based on constant environments: Barnichon and Brownlees (2019)

propose smooth local projections using B-spline smoothing, which substantially increases precision

over local projections, while Miranda-Agrippino and Ricco (2021) propose a Bayesian approach

to local projections as an alternative to BVARs. Our proposed method di↵ers from theirs as it

assumes an unstable environment and allows for time variation in the parameters.

Third, compared with other VAR/LP-based models considering time variation (such as TVP-

(B)VAR, state-dependent LPs, etc), our approach does not require specifying parametrically the

exact form of the instability process. Thus, it allows for more flexible forms of time variation

such as structural breaks, linear trends, stochastic trends occurring in sub-samples, and piece-wise

constant paths with finitely many jumps. This is a feature distinct from Ruisi’s (2019) Bayesian
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proposal of time-vayring local projections in his recent paper.

Using our approach, we study whether there are instabilities in government spending multipliers

that are still unaccounted for in the existing literature. In particular, while the debate in the

literature focuses on whether the e↵ects of fiscal policy depend on the state of the economy (Fazzari,

Morley and Panovska 2015, 2021) or on the existence of the zero lower bound (Ramey and Zubairy

2018) or the interaction between fiscal and monetary policy (Cloyne, Jordà and Taylor 2021) or even

other variables (e.g., Goemans (2022) uses uncertainty), we allow for more general and agnostic

forms of time variation. This generality, possible because of our methodology, has the potential

to uncover other instabilities that may help reconcile the wide range of estimates of government

spending multipliers, ranging from 0.8 to 7.5 (Ramey 2011b). Our findings can be summarized

as follows. First, both government spending and GDP responses to a government spending shock

exhibit heterogeneity across time, and so do cumulative spending multipliers. Importantly, and

surprisingly, the pattern of both the responses and the multipliers are sometimes the opposite of

state-dependent models, thus implying that the amount of slack in the economy is not the only

factor influencing the magnitude of the e↵ect of a spending stimulus. Overall, our results suggest

that the TVP-LP responses contain richer information, and can better characterize instabilities,

than linear or state-dependent models.

The remainder of this paper is organized as follows. Section 2 discusses the TVP-LP framework

and the impulse response estimation methodology. Section 3 discusses time-varying VARs and LPs

with external instruments. Section 4 presents Monte Carlo simulations calibrated on Primiceri’s

(2005) structural VAR (SVAR) model. Section 5 presents our empirical evidence on government

spending multipliers and responses to a fiscal policy shock using our TVP-LP method. Section 6

concludes.
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2 Impulse Responses under Unstable Local Projections

Let Yt, a (K⇥1) vector of macroeconomic variables, be written in terms of current and past shocks

✏t in a structural moving average representation:

Yt = ⇥(L)✏t, (1)

where L denotes the lag operator, ⇥(L) ⌘ ⇥0 + ⇥1L + ⇥2L2 + · · · , and ⇥h is a (K ⇥K) matrix

of coe�cients. The structural shocks are assumed to be independent and identically distributed

with diagonal covariance matrix E[✏t✏
0
t
] = ⌃✏.

The coe�cients of ⇥(L) are the structural impulse responses, i.e., the dynamic causal e↵ects

of the structural shocks. To be more specific and without loss of generality, suppose we focus on

the first shock, ✏1,t. The e↵ect of a unit increase in ✏1,t on the value of the second variable, Y2,t, is

⇥h,21, which can be rewritten as:

⇥h,21 = E[Y2,t+h|✏1,t = 1, ✏2:K,t, ✏s, s 6= t]� E[Y2,t+h|✏1,t = 0, ✏2:K,t, ✏s, s 6= t], h = 0, 1, · · · . (2)

Following Stock and Watson (2016), we assume the unit e↵ect normalization ⇥0,11 = 1.

The impulse response coe�cient in eq.(2) can be calculated either by recursively iterating a

model to characterize the structure of successive observations (e.g., by recursively iterating VARs),

or via direct linear regressions of future outcomes on current covariates for each forecast horizon

(i.e., Jordà’s (2005) local projections). In the latter, the impulse response coe�cient in eq.(2) can

be obtained by estimating the following local projection regression:

Y2,t+h = ⇥h,21✏1,t + �0
h
Wt + uh

2,t+h
, h = 0, 1, · · · , (3)

where Wt denotes the control variables (including lagged values of Yt) and the residual uh

2,t+h
is

a linear combination of the shocks {✏t+h, · · · , ✏t+1, ✏2:K,t},1 thus serially correlated. The intercept

1The subscript ‘i : j’ denotes the i-th to the j-th elements (rows or columns) of a vector (matrix).
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term is omitted for notational simplicity and without loss of generality.

Let f(Y2,t+h|✏1,t,Wt, ✓) denote a family of conditional density functions for Y2,t+h under the

assumption that {uh

2,t+h
} has zero mean and variance �2

u
, where ✓ is a (q ⇥ 1) vector including all

the parameters of interest for a certain horizon h, h = 0, 1, · · · , and ✓ 2 ⇥ ⇢ Rq. For example, ✓ =

(⇥h,21, �0h, ln �u)
0 when estimating eq.(3) for a given h or ✓ = (⇥0,21,⇥1,21, · · · ,⇥H,21, �00, · · · , �0H , ln �u)0

when estimating eq.(3) for h = 0, 1, · · · , H. In the local projections framework,
P

T

t=1 lt(✓), lt(✓) =

ln f(Y2,t+h|✏1,t,Wt, ✓), is not the correct log-likelihood function as the error terms in the local projec-

tions are serially correlated. Let ✓0 denote the vector that consists of the true conditional mean pa-

rameter values (e.g., ⇥h,21 and �h in the first example above) and the pseudo-true volatility param-

eter values (e.g., �2
u
in the previous example). Even with serially correlated error terms, the max-

imum likelihood estimation (MLE) consistently estimates ✓0 with a “sandwich”asymptotic covari-

ance matrix – see White (1982) and Levine (1983). In particular, let st(✓) = @lt(✓)/@✓, t = 1, . . . , T

denote the sequence of (q ⇥ 1) score vectors, let ht(✓) = �@st(✓)/@✓, t = 1, . . . , T, denote the se-

quence of (q ⇥ q) Hessians. Then,
p
T (b✓ � ✓0) ) N (0, S), where the sandwich matrix S is

typically estimated as bS = bH�1bV bH�1 and bH = 1
T

P
T

t=1 ht(b✓). If the score vectors are i.i.d., then

bV = 1
T

P
T

t=1 st(
b✓)st(b✓)0; however, in this context, the residuals in eq.(3) are serially correlated,

thus HAC estimators, such as Newey and West’s (1987) estimator, may be used to account for the

serial correlation.2 Thus, eq.(3) is a stationary system of local projections with a (mis)specified

log-likelihood function of the form
P

T

t=1 lt(✓).

Now consider the corresponding time-varying parameter local projection, which has the same

likelihood
P

T

t=1 lt(·) as the stationary local projection in eq.(3) but with time-varying parameters

2Apart from using HAC estimators, an alternative way to correct for the autocorrelation in the error term is to
include the residuals in the regression, see Lusompa (2021). Then, eq.(3) can be written as

Y2,t+h = ⇥h,21✏1,t + �
0
h
fWt + u2,t+h, h = 0, 1, · · · ,

where u2,t+h denotes the reduced-form error term at period t + h, and fWt includes current and past values of
Y1,t�i, i = 1, 2, · · · , Y2,t�j , j = 0, 1, 2, · · · , as well as the other reduced-form error terms u·,t+1, · · · , u·,t+h�1. Due to
u·,t+1, · · · , u·,t+h�1 being unobserved, the estimates from the VAR must be used instead. Lusompa (2021) shows
that estimates of the impulse responses are still consistent using estimated residuals. The error term u2,t+h is thus
serially uncorrelated. In this case, define ✓ = (⇥h,21, �

0
h, ln�u)0.
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{✓t}Tt=1 = {✓ + �t}Tt=1:

Y2,t+h = ⇥h,21,t✏1,t + �0
h,t
Wt + uh

2,t+h
, h = 0, 1, · · · , (4)

where ⇥h,21,t, �h,t, and �2
u,t+h

are the time-varying analogs of ⇥h,21, �h, and �2
u
in eq.(3) for each

horizon h = 0, 1, · · · .

As shown in Müller and Petalas (2010), the sample information about ✓ and {�t}Tt=1 is approx-

imately independent and described by the pseudo model:

b✓ = ✓ + T�1/2 bS⌫0,

bH bV �1st(b✓) = bS�1�t + ⌫t, t = 1, · · · , T,
(5)

with ⌫t
i.i.d.⇠ N (0, bH). Here, bH, bV , and bS are consistent estimators of the counterparts defined

above. Due to model misspecification, there is a discrepancy between b✓ ⇠ N (✓0, bH�1/T ) and the

approximate sampling distribution b✓ ⇠ N (✓0, bS/T ), and as shown in Müller (2013), the latter

should be used for inference on the pseudo-true parameters.

Assuming an approximately stationary model and a weighting function for {�t}Tt=1 that is a

demeaned multivariate Gaussian random walk, Müller and Petalas (2010) derive asymptotically

WAR minimizing path estimators {b✓t}Tt=1:

1. For t = 1, . . . , T , let xt and ỹt be all the elements of bH�1st(b✓) and bH bV �1st(b✓), respectively.

2. For ci 2 C = {0, c1, c2, · · · , cnG},3 i = 0, 1, · · · , nG, compute

(a) ri = 1� ci
T
, zi,1 = x1, and zi,t = rizi,t�1 + xt � xt�1, t = 2, . . . , T ;

(b) the residuals of {z̃i,t}Tt=1 of a linear regression of {zi,t}Tt=1 on {rt�1
i

Iq}Tt=1;

(c) zi,T = z̃i,T , and zi,t = rizi,t+1 + z̃i,t � z̃i,t+1, t = 1, . . . , T � 1;

3For the factor of proportionality c2

T 2 , Müller and Petalas (2010) suggest a default choice of minimizing WAR
relative to an equal-probability mixture of c 2 {0, 5, 10, . . . , 50}, which represents the standard deviation of the end
point of the random walk weighting function and covers a wide range of magnitudes for the time variation. The
extension to allow vector ci and matrix C is further described in the Not-for-Publication Appendix A.
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(d) {b✓i,t}Tt=1 = {b✓ + xt � rizi,t}Tt=1;

(e) qLL(ci) =
P

T

t=1(rizi,t�xt)0ỹt and w̃i =
q
T (1� r2

i
)rT�1

i
/((1� r2T

i
))exp[�1

2qLL(ci)]

(set w̃0 = 1).

3. Compute wi = w̃i/
P

nG

j=0 w̃j.

4. The parameter path estimator is given by {b✓t}Tt=1 = {
P

nG

j=0 wi
b✓i,t}Tt=1.

With the weighting functions for {�t}Tt=1 and ✓ interpreted as priors from a Bayesian perspec-

tive, the approximate posterior for ✓t is a mixture of multivariate normals N
⇣
b✓i,t, T�1 bSt(ci)

⌘
, i =

0, . . . , nG with mixing probabilities wi where bS = bH�1bV bH�1, t(c) =
c(1+e

2c+e
2ct/T+e

2c(1�t/T ))
2e2c�2 , and

t(0) = 1, see Müller and Petalas (2010) for more details. Following their results, we approxi-

mate the mixture of normals by N(b✓t,⌦t) where ⌦t =
P

nG

i=0 wi

⇣
T�1 bSt(ci) + (b✓i,t � b✓t)(b✓i,t � b✓t)0

⌘
.

Thus, the confidence interval
h
b✓t,j � 1.96

p
⌦t,jj, b✓t,j + 1.96

p
⌦t,jj

i
with b✓t,j the j-th element of b✓t

and ⌦t,jj the (j, j) element of ⌦t is the 95% equal-tailed approximate posterior probability interval

for ✓t,j, the j-th element of ✓ at time t.

Thus, the impulse responses based on a TVP-LP in eq.(4) are estimated using b⇥h,21,t, which is

the appropriate element in the path estimators b✓t. Furthermore, to quantify the accuracy of the

impulse responses, their confidence bands can be constructed based on ⌦t, the covariance matrix

of the approximate posterior for ✓t.

3 VARs and Local Projections with External Instruments

and Time-varying Parameters

The framework proposed in Section 2 can also be used to obtain path estimators in the time-varying

parameter local projection using external instruments (TVP-LP-IV). In addition, given the well-

known relationship between local projections and VAR models (Montiel Olea and Plagborg-Møller

2021), our framework can be implemented as well in time-varying parameter (structural) VARs
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(TVP-VAR or TVP-SVAR) and TVP-VARs using external instruments (TVP-VAR-IV or TVP-

proxy VAR), as we discuss below.

Time-varying Parameter LP-IV (TVP-LP-IV)

Now we consider the scenario where external instruments are used, see, e.g., Ramey and Zubairy

(2018), where narrative measures of fiscal policy changes are used as instruments to estimate the

government spending multipliers. Consider the following TVP-LP, where the LP is defined in

terms of ensemble averages at time t, with control variables Wt:

Y2,t+h = ⇥h,21,tY1,t + �0
h,t
Wt + uh

2,t+h
h = 0, 1, · · · . (6)

When Y1,t is endogenous (in the sense that it is correlated with uh

2,t+h
in eq.(6)), then the OLS

estimator in eq.(6) is not valid. Let zt be a suitable instrument that satisfies both the relevance

condition (E[✏1,tz?t ] 6= 0) and the exogeneity condition (E[✏2:K,tz?t ] = 0, E[✏t+sz?t ] = 0, 8s 6= 0).

The e↵ect of the first shock ✏1,t on the value of the second variable Y2,t at horizon h therefore is

⇥h,21,t =
E[Y ?

2,t+hz
?
t ]

E[Y ?
1,tz

?
t ]

, where x?
t
= xt � Proj(xt|Wt) for some variable xt – see Stock and Watson

(2018) and Montiel Olea, Stock and Watson (2021) for more detailed discussions of structural

identification using external instruments.

To estimate impulse responses in this scenario, we consider the following reduced-form regres-

sion for Yt = (Y1,t, Y2,t)0, where Wt contains past values of Y (i.e., Yt�1, Yt�2, · · · ):

Yt+h =

2

64
⇡h,t

⇡h,t⇥h,21,t

3

75 zt + �h,t(L)Wt + vt+h h = 0, 1, · · · . (7)

Let ✓t :=
�
⇡h,t,⇥h,21,t, vec (�h,t(L))

0 , vech (⌃v,t+h)
0�0 for a given h. Suppose f(Yt+h|zt,

Yt�1, · · · , Yt�p, ✓t) is a family of conditional density functions for Yt+h under the assumption that

vt+h has zero mean and covariance matrix ⌃v,t+h. Note that we allow the parameters ⇡h,t, ⇥h,21,t,

�h,t(L), and ⌃v,t+h to be time-varying.4 MLE consistently estimates the parameters in eq.(7) with

4In the existing literature, the evolution of the parameters is commonly assumed to be (geometric) random walks

10



a “sandwich”asymptotic covariance matrix. The procedure introduced in Section 2 will derive

asymptotically WAR minimizing path estimators b✓t, hence the estimator b⇥h,21,t, which measures

the e↵ect of the first shock ✏1,t on the value of the second variable Y2,t at horizon h.5

Time-varying Parameter VARs (TVP-VARs)

A conventional approach to obtaining the impulse responses is to estimate a reduced-form VAR

and identify it to obtain the responses, ⇥h,t. Consider a TVP-VAR model:

Yt = B1,tYt�1 + · · ·+Bp,tYt�p + ut, ut ⇠ (O,⌃u,t),

Bt(L)Yt = ut = ⇥0,t✏t,
(8)

where Bt(L) = I � B1,tL � · · · � Bp,tLp, ut is the (K ⇥ 1) vector of reduced-form disturbances,

which is a linear combination of the (K⇥1) vector of structural shocks ✏t. The TVP-VAR impulse

response function is represented by ⇥t(L) = Ct(L)⇥0,t, where Ct(L) = Bt(L)�1.6 The VAR

identification problem consists in identifying ⇥0,t. Impose a unit e↵ect normalization such that

the diagonal elements of ⇥0,t are equal to 1. Also, without loss of generality, let us consider the

following triangular reduction of the covariance matrix of the reduced-form disturbance ⌃u,t:

At⌃u,tA
0
t
= ⌃✏,t⌃

0
✏,t
, (9)

where At is a lower triangular matrix with diagonal elements equal to one and ⌃✏,t is a diagonal

matrix.

Furthermore, suppose f(Yt|Yt�1, · · · , Yt�p, ✓t) is a family of conditional density functions for

Yt+h. Let ✓t := (b0
t
, a0

t
, ln �0

t
)0 denote the vector containing all the time-varying parameters in the

with errors following Normal distributions; see, for example, Mumtaz and Petrova (2018):

zt = �t✏1,t + �v,tvt, vt ⇠ N (0, 1),

�t = �t�1 + ��⌘�,t, ⌘�,t ⇠ N (0, 1),

ln�v,t = ln�v,t�1 + ��⌘�,t, ⌘�,t ⇠ N (0, 1).

5The limited information maximum likelihood is adopted in this framework using instruments.
6Note that VAR requires that the structural moving average is invertible, i.e., the invertibility assumption, which

is non-trivial; while LP doesn’t require this invertibility assumption.
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TVP-VAR, where bt = vec(B
0
t
), at contains the elements below the diagonal of At, and �t =

diag(⌃✏,t).7 Then, by applying the procedure discussed in Section 2 we obtain the asymptotically

WAR minimizing path estimators b✓t, i.e., the coe�cients needed to calculate the impulse responses

bCt(L)b⇥0,t.

TVP-VARs with External Instruments

Suppose there is an external instrument zt for the endogenous variable Y1,t that satisfies the

relevance condition (E[✏1,tzt] 6= 0) and the exogeneity condition (E[✏2:K,tzt] = 0). With the unit

e↵ect normalization, the e↵ect of the first shock ✏1,t on the value of the second variable Y2,t is

⇥0,21,t =
E[u2,tzt]
E[u1,tzt]

where ut = Yt � Proj(Yt|Yt�1, Yt�1, · · · , Yt�p), which is the population estimand

of the reduced-form regression below:

Yt =

2

64
⇡t

⇡t⇥0,21,t

3

75 zt + �t(L)Yt�1 + vt, (10)

where Yt = (Y1,t, Y2,t)0.

Let ✓t :=
�
⇡t,⇥0,21,t, vec (�t(L))

0 , vech (⌃v,t)
0�0. Suppose f(Yt|zt, Yt�1, · · · , Yt�p, ✓t) is a family

of conditional density functions for Yt under the assumption that vt has zero mean and covariance

matrix ⌃v,t. MLE consistently estimates the parameters in eq.(10) with a “sandwich”asymptotic

covariance matrix. The procedure in Section 2 will provide asymptotically WAR minimizing path

estimators b✓t, hence b⇥0,21,t.

In summary, the responses at horizon h can be obtained via the following three steps (Stock and

Watson 2018): (i) obtain b⇥0,j1,t for j = 1, 2 from eq.(10), noting that a unit e↵ect normalization

is imposed such that ⇥0,11,t = 1; (ii) obtain bCt(L) from eq.(8); (iii) obtain the e↵ects of shock ✏1,t

on all the variables by b⇥h,·1,t = bCh,t
b⇥0,·1,t.

7The evolution of bt, at, and �t is commonly assumed to follow (geometric) random walks in the literature, see,
for example, Primiceri (2005).
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4 Monte Carlo Simulation

This section reports Monte Carlo simulations to evaluate the performance of our parameter path

estimator in the TVP-VAR and TVP-LP models discussed in the previous sections. Note that there

is no frequentist justification for the path estimator, but it is still useful to learn and understand

its frequentist properties.

4.1 The benchmark New Keynesian SVAR model

Consider a small quarterly time-varying New Keynesian structural VAR model of the U.S. econ-

omy,8 following Primiceri (2005). Let the VAR include the following three variables: the inflation

rate (⇡t, the annual percentage change in a chain-weighted GDP price index), the unemployment

rate (�t, seasonally adjusted civilian unemployment rate, all workers over age 16), and a short-term

nominal interest rate (it, yield on the three month Treasury bill rate). The sample ranges from

1953:Q1 to 2006:Q4.9

Consider the following TVP-VAR:

2

66664

⇡t

�t

it

3

77775
= Ct +B1,t

2

66664

⇡t�1

�t�1

it�1

3

77775
+ · · ·+Bp,t

2

66664

⇡t�p

�t�p

it�p

3

77775
+ ut, ut

i.i.d⇠ N (0,⌃u,t), (11)

where Yt = (⇡t, �t, it)0. Following Primiceri (2005), we consider two lags (p = 2) and the triangular

decomposition of ⌃u,t in the TVP-VAR, defined by

At⌃u,tA
0

t
= ⌃✏,t⌃

0

✏,t
, (12)

8Stock and Watson (2001), Cogley and Sargent (2005), Primiceri (2005), and Inoue and Rossi (2011) have
demonstrated the importance of taking into account instabilities in VAR models.

9The data are obtained from the Federal Reserve Bank of St. Louis website.
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where At is a lower triangular matrix and ⌃✏,t is diagonal:

At =

2

66664

1 0 0

↵21,t 1 0

↵31,t ↵32,t 1

3

77775
, ⌃✏,t =

2

66664

�1,t 0 0

0 �2,t 0

0 0 �3,t

3

77775
. (13)

It thus follows that

2

66664

⇡t

�t

it

3

77775
= Ct +B1,t

2

66664

⇡t�1

�t�1

it�1

3

77775
+ · · ·+Bp,t

2

66664

⇡t�p

�t�p

it�p

3

77775
+ A�1

t
⌃✏,t◆t, (14)

and the variance of ◆t is the identity matrix.

While in our framework, we consider two methods to obtain the impulse responses. One is to

estimate the TVP-VAR in eq.(11) and iterate the TVP-VAR coe�cients. The other is to adopt

a TVP-LP framework. Using Plagborg-Møller and Wolf’s (2021) projection arguments, it can be

shown that the recursively identified structural impulses of each variable to a monetary policy

shock are proportional to �h,·,t in:

⇡t+h = ch,⇡,t + �h,⇡,tit + �h,⇡⇡,t⇡t + �h,⇡,t(L)Yt�1 + uh

⇡,t+h
,

�t+h = ch,�,t + �h,�,tit + �h,�⇡,t⇡t + �h,��,t�t + �h,�,t(L)Yt�1 + uh

�,t+h
,

it+h = ch,i,t + �h,i,tit + �h,i⇡,t⇡t + �h,i�,t�t + �h,i,t(L)Yt�1 + uh

i,t+h
,

(15)

where �h,·,t(L)Yt�1 includes infinitely many lags of Yt. Note that the regression for each variable

in eq.(15) controls for the contemporaneous value of the variables ordered above itself.

14



4.2 The TVP-VAR and the TVP-LP models: A comparison

The Elliott and Müller (2006) qLL test statistic based on the TVP-VAR model in eq.(11) rejects the

null hypothesis that the parameters are time-invariant.10 We consider the following grid of param-

eters in our estimation procedure: CB = {0, 1, · · · , 3}, C↵ = {0, 2, · · · , 6}, Cln� = {0, 3, · · · , 15}

for the TVP-VAR in eq.(11) and C⇥ = {0, 1, · · · , 3}, Cln� = {0, 3, · · · , 15} for the TVP-LP in

eq.(15).11 The Not-for-Publication Appendix reports robustness results to other choices of C and

sample sizes.

Figure 1 compares our TVP-VAR path estimates with Primiceri’s (2005) posterior mean of the

standard deviations, i.e., the diagonal elements of ⌃✏,t. The time-varying standard deviation of

the identified monetary policy shocks from the interest rate equation quantifies the importance

of monetary policy and its changes over time. The two estimates broadly share the same trends.

Similarly to Primiceri (2005), our TVP-VAR estimate of monetary policy shocks exhibits a sub-

stantially higher variance in 1979-1983, i.e., the Volcker period, while it is less volatile as well as

considerably low and constant in the post-Volcker period compared with the pre-Volcker period,

implying that the Taylor rule has been a good approximation of U.S. monetary policy after the

Volcker period. Our TVP-VAR monetary policy shocks estimate is smoother than Primiceri’s

(2005) TVP-BVAR estimate.

Figure 2 compares our TVP-VAR path estimates of the coe�cient matrix B1,t with Primiceri’s

(2005) posterior mean: our TVP-VAR path estimates are more volatile than Primiceri’s (2005).

In particular, our estimates exhibit relatively more time variation around 1975:Q1 and 1981:Q3,

dates corresponding to the NBER business cycle trough and the NBER business cycle peak, re-

spectively. Our path estimates indicate that the estimated coe�cients experience relatively more

time variation under these di↵erent economic conditions.

Figure 3 plots the impulse responses of inflation, unemployment, and the interest rate to a

unit monetary policy shock in a series of episodes (1975:Q1, 1981:Q3, and 1996:Q1). The figure

10The qLL test statistic is �178.858, which is smaller than the critical value at 1% significance level. See Lemma
2 in Elliott and Müller (2006) for the limiting distribution of the qLL test statistic.

11
C⇥ refers to the grid for the intercept and slope parameters.
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compares the responses based on Primiceri’s (2005) estimates with our TVP-LP estimates and

our TVP-VAR estimates.12 Figure 4 further plots the responses with 90% confidence bands for

each estimate in each episode. Figures 3-4 show that the e↵ects of monetary policy shocks di↵er

depending on the episode. Similarly, Figures 5-6 plot the impulse responses of inflation, unemploy-

ment, and the interest rate to a unit unemployment shock, i.e., a 1% increase in unemployment,

implying that the e↵ects of unemployment shocks also di↵er depending on the episode. Compared

to Primiceri (2005), our TVP-LP and TVP-VAR impulse responses share similar trends most of

the time, but our TVP-LP estimates point to significantly larger e↵ects. The di↵erence in the

estimates may arise from the fact that our TVP-LP responses are robust to misspecification, and

thus have the potential to uncover the true impulse responses even if the VAR is non-invertible.

In addition, our TVP-LP estimates can easily accommodate situations when GDP follows a non-

linear model, which are often impractical or infeasible in multivariate time-varying VAR models.

Finally, our new procedure is easy to implement as it doesn’t require computationally intensive

MCMC algorithms.

4.3 Data generating process

Consider eqs.(11)-(14) as the true data generating process (DGP). Let ✓t = (b0
t
,↵0

t
, ln �0

t
)0 be the

(q ⇥ 1) parameter vector including: bt, i.e., the elements in coe�cient matrices Bj,t, j = 1, . . . , p;

↵t, i.e., the o↵-diagonal elements in At; and ln �t, i.e., the log of the diagonal elements in ⌃✏,t.

Consider the following time-varying process:

✓t = ✓t�1 + ⌘t, ⌘t
i.i.d⇠ N

✓
O,⌃⌘

c2

T 2

◆
.

By iterating eq.(11), we obtain the corresponding TVP-LP:

Yt+h = ⇥h,1,tYt +⇥h,2,tYt�1 + · · ·+⇥h,p,tYt�p+1 + uh

t+h
, (16)

12To smooth the impulse responses, we use a cubic spline to interpolate a sine curve over unevenly-spaced sample
points.
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where uh

t+h
is a moving average of {ut+h, · · · , ut+1}. When the horizon h = 1, the TVP-LP in

eq.(16) degenerates to the TVP-VAR in eq.(11). The intercept term is omitted for notational

simplicity and without loss of generality.

Suppose we are interested in the h-step ahead impulse response function. Two estimation

procedures are considered to obtain path estimators of ⇥h,j,t, j = 1, 2.

• Procedure 1: Estimate the TVP-VAR in eq.(11) and generate the path estimator b✓TV P�V AR

t =

(bbTV P�V AR

t ; b↵TV P�V AR

t ; ln b�TV P�V AR

t ), as well as its accuracy measurement b⌦TV P�V AR

t . Then

the path estimator of ⇥h,j,t, j = 1, 2, denoted as b⇥TV P�V AR

h,j,t
, j = 1, 2, can be obtained by

iterating the TVP-VAR coe�cients.

• Procedure 2: Estimate the TVP-LP in eq.(16) directly and generate the path estimators of

⇥h,j,t, j = 1, 2, denoted as b⇥TV P�LP

h,j,t
, j = 1, 2, as well as its accuracy measurement b⌦TV P�LP

h,t
.

The autocorrelation in the error terms is taken into consideration by using a HAC estimator.

We consider T 2 {240, 480}, c 2 {1, 4}, and set the initial values ✓0
iid⇠ N (0, I). Besides, we

also consider the case where the values of c are di↵erent for di↵erent blocks of parameters such

that bt � bt�1
i.i.d⇠ N

⇣
O,

c
2
b

T 2 I
⌘
, ↵t �↵t�1

i.i.d⇠ N
⇣
O, c

2
↵

T 2 I
⌘
, and ln �t � ln �t�1

i.i.d⇠ N
⇣
O,

c
2
ln�
T 2 I

⌘
, with

(cb, c↵, cln�) = (2, 1, 4), as well as di↵erent ranges Cb, C↵, Cln�, respectively.

4.4 Monte Carlo Simulation Results

We conduct 2000 Monte Carlo replications for each model specification. In each replication i,

we obtain {bbTV P�V AR,(i)
t }T

t=1, {b↵
TV P�V AR,(i)
t }T

t=1, {ln b�
TV P�V AR,(i)
t }T

t=1, {b⇥
TV P�V AR,(i)
h,j,t

, j = 1, 2}T
t=1,

and {b⇥TV P�LP,(i)
h,j,t

, j = 1, 2}T
t=1, as well as the corresponding accuracy measurements, denoted as

�b⌦TV P�V AR,(i)
t

 T

t=1
and

�b⌦TV P�LP,(i)
h,t

 T

t=1
. Then we compute the average values of the path estima-

tors across these 2000 replications, denoted as {bb
TV P�V AR

t
}T
t=1, {b↵

TV P�V AR

t
}T
t=1, {ln b�

TV P�V AR

t
}T
t=1,

{b⇥
TV P�V AR

h,j,t
}T
t=1, {b⇥

TV P�LP

h,j,t
}T
t=1, j = 1, 2, h = 2, 3, as well as the coverage rates across these 2000

Monte Carlo replications, denoted as {rTV P�V AR

t }T
t=1 and {rTV P�LP

h,t
}T
t=1.

Figures 7 and 9 plot the mean path estimates {bb
TV P�V AR

t
}T
t=1, {b↵

TV P�V AR

t
}T
t=1, {ln b�

TV P�V AR

t
}T
t=1,
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together with the true parameters of the TVP-VAR in eq.(11), and Figures 8 and 10 plot the mean

path estimates {b⇥
TV P�V AR

h,j,t
}T
t=1 and {b⇥

TV P�LP

h,j,t
}T
t=1, together with the true {⇥h,j,t}Tt=1 computed

using true {Bj,t}Tt=1, j = 1, 2, h = 2, 3, of the TVP-LP in eq.(16), with di↵erent specifications.

C = {0, 5, · · · , 50} is considered in the estimation procedure.13 Figures 11 and 12 plot the mean

estimates of the TVP-VAR and TVP-LP models, considering di↵erent true magnitudes of time

variation c for di↵erent blocks of parameters (Bj,t, ↵ij,t, ln �k,t) such that (cB, c↵, cln�) = (2, 1, 4)

and di↵erent C for di↵erent blocks of parameters in the estimation procedure. Results of more

model specifications (di↵erent T , c, and C for estimation) are provided in the Not-for-Publication

Appendix. These figures show that the parameter path estimates perform well with di↵erent

choices of sample size T , variability parameter c, and the range of C used in the estimation: in

fact, all the average path estimates of the TVP-VAR and TVP-LP models are close to the true

parameter paths. Smaller values of C give smoother mean path estimates but still recover the

trends of the parameter paths; while larger values of C better recover the fluctuations of the pa-

rameter paths across time. Besides, the path estimators obtained directly from eq.(16) perform

well as the average path estimates of the TVP-LP are close to the true parameter paths. Also,

the TVP-LP path estimates perform better than those computed from the TVP-VAR estimates.

This might result from the fact that the estimation errors compound while iterating the VAR. In

addition, Figures 13-16 plot the coverage rates of intervals constructed using the accuracy mea-

surements of the path estimates for TVP-VAR (h = 1) and TVP-LP (h = 2, 3) with T = 240,

K = 3, p = 2, and c = 1 and C = {0, 5, · · · , 50} considered in the estimation procedure. Fig-

ures of coverage rates with more specifications (di↵erent T , c, and C for estimation) are provided

in the Not-for-Publication Appendix. The coverage probabilities generally become more volatile

when the magnitude of variability c increases or when T decreases. The WAR minimizing interval

estimator generally provides good coverages with di↵erent model specifications.

13We follow Müller and Petalas (2010) in choosing C.
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5 What Are the Macroeconomic E↵ects of Fiscal Policy

Shocks?

Estimates of fiscal policy multipliers di↵er widely in the literature (see Ramey 2011a). A possible

explanation for the wide range of estimates is the fact that the e↵ects of fiscal shocks and the

government spending multipliers vary over time. On the one hand, Auerbach and Gorodnichenko

(2012), Caggiano, Castelnuovo, Colombo and Nodari (2015), and Fazzari, Morley and Panovska

(2015, 2021) find that fiscal multipliers are higher than normal during recessions; on the other

hand, Owyang, Ramey and Zubairy (2013) and Ramey and Zubairy (2018) find that the amount

of slack in the economy does not substantially a↵ect their size, while the presence of a zero lower

bound might. These studies, however, rely on threshold models, which imply a very specific form

of time variation that depends on a state variable (e.g., the unemployment rate in Ramey and

Zubairy (2018) or capacity utilization in Fazzari, Morley and Panovska (2015)). A similar result,

emphasizing that the e↵ects of fiscal policy may depend on the interaction between fiscal and

monetary policy has been suggested by Cloyne et al. (2021) and Rossi and Zubairy (2011). More

recently, Barnichon, Debortoli and Matthes (2021) find that the multiplier depends on the sign of

the shock, i.e., whether the shock is contractionary or expansionary. In this section, we use our

proposed methodology to investigate whether the existing literature on the size of fiscal multipliers

and the e↵ects of fiscal policy shocks has overlooked potentially important instabilities.

We investigate the e↵ects of fiscal policy shocks using our “agnostic” TVP-LP(-IV) model. Our

approach has several advantages relative to state-dependent models: it avoids imposing restrictive

assumptions on the type of instability in the data; it uncovers periods in which multipliers are

exceptionally high or low; furthermore, it does not take any stand on the source of time variation

but rather helps uncovering the economic mechanisms behind it.
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5.1 Data and models description

We estimate a quarterly model for the United States including real government spending, real

GDP, and a series of government spending shocks over the period 1890:Q1-2015:Q4.14 The data is

transformed as follows. Real government spending is nominal government purchases, including all

federal, state, and local purchases but excluding transfer payments, divided by the GDP deflator.

The quarterly real government spending is obtained by interpolating annual government spending,

combining Kendrick’s (1961) annual series starting in 1889 and the annual National Income and

Product Accounts (NIPA) data starting in 1929, using monthly federal outlay series from the

NBER Macrohistory database and the 1954 quarterly NIPA data from 1939–1946. The quarterly

real GDP is obtained by interpolating annual real GDP data, combining the Historical Statistics

of the United States series for 1889–1928 and the NIPA data from 1929, using quarterly real

GNP series for 1889–1938 and quarterly NIPA nominal GNP data adjusted using the Consumer

Price Index (CPI) for 1939–1946. The GDP deflator is constructed using a similar procedure. In

addition, all NIPA variables are put in the same units by dividing an estimate of trend GDP, so

that one can estimate the multiplier directly.15

The fiscal policy shock is identified using a narrative approach based on Ramey (2011b), who

measures government spending shocks by estimated changes in the expected present value of

government purchases caused by military events; we will refer to them as the “military news

shocks”.16

We use the following TVP-LP to estimate the responses of government spending and GDP to

the military news shocks:

Yi,t+h = ct + ✓t,h✏f,t +  t(L)Wt + ⇠t+h, (17)

where Yi,t is the target variable (either government spending, gt, or GDP, yt), the term  t(L)Wt

includes control variables, such as lagged values of government spending and GDP, ✏f,t is the fiscal

14Our choice of sample is guided by Ramey and Zubairy (2018), which is our benchmark for comparisons.
15The choice of variables and their transformations closely follow Ramey and Zubairy (2018).
16In the Not-for-Publication Appendix, we show that our results are robust to using other identification proce-

dures.
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shock, that is Ramey’s (2011b) military news shock, and ⇠t+h denotes the residuals.

We will compare our results to Ramey and Zubairy’s (2018) state-dependent model, where

Yi,t+h = dt (c1,h + ✓1,h✏f,t +  1,h(L)Wt)

+ (1� dt) (c2,h + ✓2,h✏f,t +  2,h(L)Wt) + ⇠t+h,
(18)

and dt is a dummy variable such that dt = 1 if a certain state variable (st) is above a threshold

s (i.e, if st > s). Note that eq.(18) is a special case of eq.(17) where ✓t,h = ✓1,hdt + ✓2,h (1� dt).

Compared with the state-dependent model in eq.(18), the TVP-LP in eq.(17) allows the parameters

to vary in a flexible way over time, rather than allowing only changes across states. Furthermore,

it allows us to study whether a state-dependent model su�ciently describes all the heterogeneity

of the responses over time.

Another special case is the constant parameter model, where ✓t,h = ✓h, that is:

Yi,t+h = ch + ✓h✏f,t +  h(L)Wt + ⇠t+h. (19)

The fiscal multipliers are calculated as the ratio of the integral of the output responses and the

integral of the government spending responses, and measure the cumulative GDP gains relative to

the cumulative government spending over the period. In the TVP-LP-IV model, the multipliers

(mt,h) are obtained as follows:
P

h

j=0 yt+j = µy,t,h +mt,h

P
h

j=0 gt+j + �y,t,h(L)Wt + vy,t+h, where yt

and gt refer to GDP and government spending respectively, via an instrumental variable approach

using ✏f,t as an instrument for
P

h

j=0 gt+j. In practice, they are estimated using the following

equation: 2

64
P

h

j=0 gt+j

P
h

j=0 yt+j

3

75 = µt,h +

2

64
⇡t,h

⇡t,hmt,h

3

75 ✏f,t + �t,h(L)Wt + vt+h. (20)

We assume vt+h is normally distributed with mean zero and covariance matrix ⌃v,t+h, and get the

likelihood accordingly.
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We will compare our multipliers to Ramey and Zubairy’s (2018) state-dependent model, where

2

64
P

h

j=0 gt+j

P
h

j=0 yt+j

3

75 = dt

0

B@µ1,h +

2

64
⇡1,h

⇡1,hm1,h

3

75 ✏f,t + �1,h(L)Wt

1

CA

+ (1� dt)

0

B@µ2,h +

2

64
⇡2,h

⇡2,hm2,h

3

75 ✏f,t + �2,h(L)Wt

1

CA+ vt+h,

(21)

which is a special case of our eq.(20) where ⇡t,hmt,h = dt⇡1,hm1,h + (1� dt) ⇡2,hm2,h. Another

special case is the constant parameter model, where mt,h = mh, that is:

2

64
P

h

j=0 gt+j

P
h

j=0 yt+j

3

75 = µh +

2

64
⇡h

⇡hmh

3

75 ✏f,t + �h(L)Wt + vt+h. (22)

5.2 Understanding time variation in the e↵ects of fiscal policy shocks

and government spending multipliers

First, we test for the existence of parameter instabilities. We implement Elliott and Müller’s

(2006) qLL test in the government spending and GDP equations in eq.(17), with h = 1. The

test finds significant evidence of instabilities. In fact, the qLL test statistics are �105.57 and

�120.61 respectively, and are smaller than the critical value at the 1% significance level. Besides,

if we focus on the state-dependent model in eq.(18) with h = 1, the qLL test statistics for the

government spending and GDP equations are �144.46 and �153.77 respectively when the state

variable is unemployment and �125.45 and �135.27 respectively the state variable is the ZLB.

All are smaller than the critical value at the 1% significance level. This suggests the presence of

instabilities even in the state-dependent model.

Next, we turn to the responses to fiscal policy shocks.17 Figures 17-18 plot impulse responses

of government spending and GDP to Ramey and Zubairy’s (2018) military news shock from three

17In our estimates, we consider vector ci with C = {0, 3, · · · , 15} for the intercepts and slope parameters and
C = {0, 3, · · · , 15} for the variance parameters.
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models: (i) the linear model, eq.(19); (ii) Ramey and Zubairy’s (2018) state-dependent models,

eq.(18), characterizing the state by either the unemployment level or whether the ZLB holds; (iii)

our TVP-LP which, instead, allows the parameters to vary across all time periods. In the figure,

we sort our time-varying responses (which di↵er at each point in time) in two groups, identified

based on how the date is classified depending on the value of the state variables. As shown in

Figures 17-18, the TVP-LP responses are heterogeneous across time: they vary a lot depending on

the period and not only on the value of the state, thus containing richer information than state-

dependent models. The Not-for-Publication Appendix reports robustness results to fiscal shocks

identified in alternative ways as well as results including more control variables.

We then calculate the cumulative spending multipliers (mt,h in eq.(20)) for two- and four-year-

ahead horizons using the news shocks as an instrument. The results are reported in Table 1.

The table reports fiscal multipliers from linear and state-dependent models considering the clari-

fications “recession/expansion”18 and “ZLB/Normal periods”, as well as our TVP-LP-IV results

for selected dates (1938:Q1, 1945:Q1, 1954:Q1, 1984:Q1). These dates are chosen such that they

belong to di↵erent states: in particular, 1938:Q1, 1945:Q1, 1945:Q1, 1984:Q1 are classified as “Re-

cession, Expansion, Expansion, Recession”, and “ZLB, ZLB, Normal, Normal”. As shown in Table

1, Ramey and Zubairy’s (2018) state-dependent results imply that the multiplier is larger in reces-

sion/ZLB periods than that in expansion/Normal periods. However, our TVP-LP-IV multipliers

behave di↵erently depending on the date. In particular, our TVP-LP-IV multipliers in recessions

(1938:Q1, 1984:Q1) are smaller than those in expansions (1945:Q1, 1954:Q1). Most interestingly,

the pattern of our TVP-LP-IV multipliers in the chosen periods do not correspond to ZLB/Normal

periods either.

Thus, the table suggests that our TVP-LP-IV multipliers vary depending on the date, with

di↵erent patterns from those based on the state-dependent model, no matter whether the state is

high/low unemployment or the presence of the zero lower bound.

To investigate more systematically whether our time-varying multipliers can be fully character-

18Ramey and Zubairy (2018) define an economy to be in a slack state when the unemployment rate is above 6.5.
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ized by a state-dependent model, consider Figures 19 - 20. Figure 19 plots our multipliers together

with shaded areas indicating times when unemployment is above the threshold. Clearly, the time

variation cannot be fully explained by recessionary/expansionary periods. Figure 20 instead plots

our multipliers together with shaded areas indicating whether the economy is at the zero lower

bound: the time variation cannot be fully explained by the presence of the zero lower bound ei-

ther. Our TVP-LP-IV multipliers are significantly di↵erent from the state-dependent multipliers

in some periods – for example, see periods around 1950 in Figures 19(a) and 20(a).

Figure 21 further shows our cumulative spending multipliers for several horizons during “reces-

sions”(panels on the top left), “expansions”(panels on the top right), as well as “ZLB”(panels on

the bottom left), and “non-ZLB”(panels on the bottom right) periods, together with Ramey and

Zubairy’s (2018) multipliers, respectively. For example, the top left panel in Figure 21 plots

the multipliers based on: (i) the linear model (line with circles); (ii) periods labeled “reces-

sions”according to Ramey and Zubairy’s (2018) state-dependent model (dashed line); and (iii)

our TVP-LP-IV path estimators (continuous line) in all periods that are classified as recessionary

– i.e., the unemployment rates are higher than 6.5%. Figure 21 implies that the cumulative mul-

tipliers di↵er from those in Ramey and Zubairy’s (2018) linear and state-dependent models and

exhibit strong variation across time. Thus, our approach captures information that might be lost

when considering constant parameters in a given state. Besides, the TVP-LP-IV multipliers in

periods classified as recessionary are very di↵erent from those obtained from Ramey and Zubairy’s

(2018) state-dependent model, implying that unemployment rates may not be the only/correct

factor that describes the variation across multipliers.

In addition, Figure 22 plots the TVP-LP-IV cumulative spending multipliers at the beginning

of several wars: the Spanish-American War, starting with the sinking of the USS Maine (1898:Q1),

the start of WW-I (1914:Q3) andWW-II (1939:Q3), the start of the Korean (1950:Q3) and Vietnam

(1965:Q1) wars, the fiscal buildup in response to the Soviet invasion of Afghanistan (1980:Q1), and

the terrorist attack on 9/11 (2001:Q3). Our TVP-LP-IV multipliers di↵er across each war date.

For example, consider Figure 22(d), which shows that our TVP-LP-IV multipliers at the start
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of the Korean (1950:Q3) substantially di↵er from both the linear and state-dependent models’

multipliers.

In a recent paper, Barnichon, Debortoli and Matthes (2021) argue that the fiscal multiplier

is low (below unity) for expansionary shocks (that is, shocks that increase government spending)

and large (above unity) for contractionary shocks. They conclude that, since narrative shocks

typically contain larger and more frequently positive shocks than negative ones, the multipliers

are typically below unity and display no detectable state-dependence. Figure 24(a) plots our

estimated multipliers mt,h in eq.(20) together with the fiscal policy shocks. As in Barnichon,

Debortoli and Matthes (2021), we notice that the multiplier starts to increase substantially in the

presence of positive shocks. However, that is not always the case; for example, in 1950Q2, there

is a large positive shock yet the multiplier starts decreasing from that point onwards. Similarly,

there are large increases in the 4-year multiplier around 1920 yet no large positive shocks to explain

that increase. So, while our results generally support Barnichon, Debortoli and Matthes’s (2021)

intuition, the sign of the shock does not completely explain the fluctuations of the multipliers over

time.

By looking more closely to the time variation in the multipliers and their correlation with

other potential explanatory variables, we can shed light on whether alternative variables can be

more successful in explaining why fiscal multipliers change over time. In particular, our analysis

suggests that the multiplier is correlated with U.S. public debt. In fact, Figure 24(b) plots our

estimated multipliers mt in eq.(20) together with public debt. It is clear that the multipliers

comove with public debt. Hence, not only the sign of fiscal policy shocks is important, but also

the size of public debt. Let us investigate whether a state dependent model where the state is

public debt explains the multipliers’ evolution over time better than the traditional state variables

previously considered in the literature. Figure 25 plots 1/4-year integral multipliers based on our

TVP-LP-IV as well as the state dependent model where the state variable is public debt.19 By

comparing Figure 25 with Figures 19-20, it is clear that using public debt as the state variable

19The historical public debt is documented annually and we use the detrended public debt from the previous year
as the state variable. We consider a threshold value of 11. Other choices of threshold values give robust results.

25



describes the time variation better than using unemployment or the interest rate. This analysis

further demonstrates the usefulness of our TVP-LP(-IV) methodology as a flexible framework to

model time variation and investigate the reasons behind it.

6 Conclusion

This paper introduces time variation in the local projections framework, allowing local instabilities

in both slope coe�cients and variances, and develops an estimator for impulse responses in unstable

local projections. Monte Carlo studies demonstrate the good performance of both the TVP-VAR

and TVP-LP path estimators in finite samples. Our methodology uncovers novel results on fiscal

multipliers. Our estimated responses of government spending and GDP to fiscal policy shocks as

well as the cumulative spending multipliers are heterogeneous across time: their evolution over

time cannot be adequately characterized by traditional state variables, such as unemployment

or whether the economy is at the zero lower bound, thus featuring richer information than state-

dependent models. We also find that the sign of the fiscal policy shock does not completely explain

the fluctuations of the multipliers either; the size of public debt, instead, emerges as an important

explanatory variables.
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Figure 1: Standard deviation of the shocks in each equation
Note: This figure plots the standard deviation of the shocks of (a) the inflation equation, (b) the unemployment

equation, and (c) the interest rate equation (monetary policy shocks), based on Primiceri’s (2005) TVP-BVAR

and our TVP-VAR estimates, respectively. The blue and red areas are the 90% confidence bands.

Figure 2: TVP-VAR Path estimates of B1,t

Note: This figure plots the path estimates of the parameter matrix B1,t, based on Primiceri’s (2005) TVP-BVAR

and our TVP-VAR estimates, respectively. B1,rs refers to the r
th row and s

th column element in the parameter

matrix B1,t. The blue and red areas are the 90% confidence bands.
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Figure 3: Impulse responses of each variable to a unit monetary policy shock at di↵erent periods
Note: This figure plots the impulse responses of each variable to a unit monetary policy shock at various periods

(1975:Q1, 1981:Q3, 1996:Q1), based on Primiceri’s (2005) TVP-BVAR estimates (in blue), our TVP-LP estimates

(in red), and our TVP-VAR estimates (in orange), respectively. The x-axis refers to horizons (quarters).
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(a) inflation, 1975:Q1 (b) inflation, 1981:Q3 (c) inflation, 1996:Q1

(d) unemployment, 1975:Q1 (e) unemployment, 1981:Q3 (f) unemployment, 1996:Q1

(g) interest rate, 1975:Q1 (h) interest rate, 1981:Q3 (i) interest rate, 1996:Q1

Figure 4: Impulse responses of each variable to a unit monetary policy shock at di↵erent periods
Note: This figure plots the impulse responses of each variable to a unit monetary policy shock at each period

(1975:Q1, 1981:Q3, 1996:Q1), based on Primiceri’s (2005) TVP-BVAR estimates (in blue), our TVP-LP estimates

(in red), and our TVP-VAR estimates (in orange), respectively. The shaded areas are the 90% confidence bands.

The x-axis refers to horizons (quarters).
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Figure 5: Impulse responses of each variable to a unit unemployment shock at di↵erent periods
Note: This figure plots the impulse responses of each variable to a 1% permanent increase in unemployment at

various periods (1975:Q1, 1981:Q3, 1996:Q1), based on Primiceri’s (2005) TVP-BVAR estimates (in blue), our

TVP-LP estimates (in red), and our TVP-VAR estimates (in orange), respectively. The x-axis refers to horizons

(quarters).
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(a) inflation, 1975:Q1 (b) inflation, 1981:Q3 (c) inflation, 1996:Q1

(d) unemployment, 1975:Q1 (e) unemployment, 1981:Q3 (f) unemployment, 1996:Q1

(g) interest rate, 1975:Q1 (h) interest rate, 1981:Q3 (i) interest rate, 1996:Q1

Figure 6: Impulse responses of each variable to a unit unemployment shock at di↵erent periods
Note: This figure plots the impulse responses of each variable to a 1% permanent increase in unemployment at

each period (1975:Q1, 1981:Q3, 1996:Q1), based on Primiceri’s (2005) TVP-BVAR estimates (in blue), our

TVP-LP estimates (in red), and our TVP-VAR estimates (in orange), respectively. The shaded areas are the 90%

confidence bands. The x-axis refers to horizons (quarters).
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Figure 7: TVP-VAR path estimates, T = 480, K = 3, p = 2, c = 1, C = {0, 5, · · · , 50}
Note: This figure plots the average values of the TVP-VAR path estimates with T = 480, K = 3, p = 2, c = 1

across 2000 replications. C = {0, 5, · · · , 50} is considered in the estimation procedure. The blue lines are the true

parameter values of {Bj,t}Tt=1, j = 1, 2, {↵ij,t}Tt=1, i = 2, · · · ,K, j < i, {ln�k,t}Tt=1, k = 1, · · · ,K, and the red lines

are the average path estimates { bB
TV P�V AR

j,t }Tt=1, j = 1, 2, {b↵TV P�V AR
ij,t }Tt=1, i = 2, · · · ,K, j < i,

{ln b�TV P�V AR
k,t }Tt=1, k = 1, · · · ,K. The x-axis refers to the periods, and y-axis refers to the parameters. The

notation Bj,rs, j = 1, 2 refers to the r
th row and s

th column element in the parameter matrix Bj,t, j = 1, 2.
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Figure 8: TVP-LP path estimates, T = 480, K = 3, p = 2, c = 1

Note: This figure plots the average values of the TVP-LP path estimates with T = 480, K = 3, p = 2, c = 1 across

2000 replications, and di↵erent C is considered in the estimation procedure. The blue lines are the true parameter

values of {⇥h,j,t}Tt=1, the red and orange lines are the average path estimates {b⇥
TV P�V AR

h,j,t }Tt=1 and

{b⇥
TV P�LP

h,j,t }Tt=1, respectively. The x-axis refers to the periods, and y-axis refers to the parameters where the

subscripts h and t are omitted for notational simplicity. The notation ⇥j,rs refers to the r
th row and s

th column

element in the parameter matrix ⇥h,j,t with di↵erent h in (a) and (b).
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Figure 9: TVP-VAR path estimates, T = 240, K = 3, p = 2, c = 1, C = {0, 5, · · · , 50}
Note: This figure plots the average values of the TVP-VAR path estimates with T = 240, K = 3, p = 2, c = 1

across 2000 replications. C = {0, 5, · · · , 50} is considered in the estimation procedure. The blue lines are the true

parameter values of {Bj,t}Tt=1, j = 1, 2, {↵ij,t}Tt=1, i = 2, · · · ,K, j < i, {ln�k,t}Tt=1, k = 1, · · · ,K, and the red lines

are the average path estimates { bB
TV P�V AR

j,t }Tt=1, j = 1, 2, {b↵TV P�V AR
ij,t }Tt=1, i = 2, · · · ,K, j < i,

{ln b�TV P�V AR
k,t }Tt=1, k = 1, · · · ,K. The x-axis refers to the periods, and y-axis refers to the parameters. The

notation Bj,rs, j = 1, 2 refers to the r
th row and s

th column element in the parameter matrix Bj,t, j = 1, 2.
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Figure 10: TVP-LP path estimates, T = 240, K = 3, p = 2, c = 1

Note: This figure plots the average values of the TVP-LP path estimates with T = 240, K = 3, p = 2, c = 1 across

2000 replications, and di↵erent C is considered in the estimation procedure. The blue lines are the true parameter

values of {⇥h,j,t}Tt=1, the red and orange lines are the average path estimates {b⇥
TV P�V AR

h,j,t }Tt=1 and

{b⇥
TV P�LP

h,j,t }Tt=1, respectively. The x-axis refers to the periods, and y-axis refers to the parameters where the

subscripts h and t are omitted for notational simplicity. The notation ⇥j,rs refers to the r
th row and s

th column

element in the parameter matrix ⇥h,j,t with di↵erent h in (a) and (b).
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Figure 11: TVP-VAR path estimates, T = 240, K = 3, p = 2, (cB, c↵, cln�) = (2, 1, 4),

CB = {0, 2, · · · , 6}, C↵ = {0, 3, · · · , 9}, Cln� = {0, 3, · · · , 15}
Note: This figure plots the average values of the TVP-VAR path estimates with T = 240, K = 3, p = 2 across

2000 replications. The true magnitudes of time variation c are di↵erent for di↵erent blocks of parameters (Bj,t,

↵ij,t, ln�k,t) such that (cB , c↵, cln�) = (2, 1, 4). Di↵erent ranges of C (CB = {0, 2, · · · , 6}, C↵ = {0, 3, · · · , 9},
Cln� = {0, 3, · · · , 15}) are considered for di↵erent blocks of parameters are considered in the estimation procedure.

The blue lines are the true parameter values of {Bj,t}Tt=1, j = 1, 2, {↵ij,t}Tt=1, i = 2, · · · ,K, j < i,

{ln�k,t}Tt=1, k = 1, · · · ,K, and the red lines are the average path estimates { bB
TV P�V AR

j,t }Tt=1, j = 1, 2,

{b↵TV P�V AR
ij,t }Tt=1, i = 2, · · · ,K, j < i, {ln b�TV P�V AR

k,t }Tt=1, k = 1, · · · ,K. The x-axis refers to the periods, and

y-axis refers to the parameters. The notation Bj,rs, j = 1, 2 refers to the r
th row and s

th column element in the

parameter matrix Bj,t, j = 1, 2.
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Figure 12: TVP-LP path estimates, T = 240, K = 3, p = 2, (cB, c↵, cln�) = (2, 1, 4),
CB = {0, 2, · · · , 6}, C↵ = {0, 3, · · · , 9}, Cln� = {0, 3, · · · , 15}

Note: This figure plots the average values of the TVP-LP path estimates with T = 240, K = 3, p = 2 across 2000

replications. The true magnitudes of time variation c are di↵erent for di↵erent blocks of parameters (Bj,t, ↵ij,t,

ln�k,t) such that (cB , c↵, cln�) = (2, 1, 4). Di↵erent ranges of C (CB = {0, 2, · · · , 6}, C↵ = {0, 3, · · · , 9},
Cln� = {0, 3, · · · , 15}) are considered for di↵erent blocks of parameters are considered in the estimation procedure.

The blue lines are the true parameter values of {⇥h,j,t}Tt=1, the red and orange lines are the average path

estimates {b⇥
TV P�V AR

h,j,t }Tt=1 and {b⇥
TV P�LP

h,j,t }Tt=1, respectively. The x-axis refers to the periods, and y-axis refers to

the parameters where the subscripts h and t are omitted for notational simplicity. The notation ⇥j,rs refers to the

r
th row and s

th column element in the parameter matrix ⇥h,j,t with di↵erent h in (a) and (b).
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Figure 13: Coverage rates of TVP-VAR credible intervals, T = 480, K = 3, p = 2, c = 1,
C = {0, 5, · · · , 50}

Note: This figure plots the coverage rates of TVP-VAR credible intervals with T = 480, K = 3, p = 2, c = 1 across

2000 replications. C = {0, 5, · · · , 50} is considered in the estimation procedure. The black dotted line is the 95%

horizontal line. The notation Bj,rs, j = 1, 2 refers to the r
th row and s

th column element in the parameter matrix

Bj,t, j = 1, 2.
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Figure 14: Coverage rates of TVP-LP credible intervals, T = 480, K = 3, p = 2, c = 1,
C = {0, 5, · · · , 50}

Note: This figure plots the coverage rates of TVP-LP credible intervals with T = 240, K = 3, p = 2, c = 1 across

2000 replications. C = {0, 5, · · · , 50} is considered in the estimation procedure. The black dotted line is the 95%

horizontal line. The x-axis refers to the periods, and y-axis refers to the parameters where the subscripts h and t

are omitted for notational simplicity. The notation ⇥j,rs refers to the r
th row and s

th column element in the

parameter matrix ⇥h,j,t with di↵erent h in (a) and (b).
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Figure 15: Coverage rates of TVP-VAR credible intervals, T = 240, K = 3, p = 2, c = 1,
C = {0, 5, · · · , 50}

Note: This figure plots the coverage rates of TVP-VAR credible intervals with T = 240, K = 3, p = 2, c = 1 across

2000 replications. C = {0, 5, · · · , 50} is considered in the estimation procedure. The black dotted line is the 95%

horizontal line. The notation Bj,rs, j = 1, 2 refers to the r
th row and s

th column element in the parameter matrix

Bj,t, j = 1, 2.
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(b) h = 3

Figure 16: Coverage rates of TVP-LP credible intervals, T = 240, K = 3, p = 2, c = 1,
C = {0, 5, · · · , 50}

Note: This figure plots the coverage rates of TVP-LP credible intervals with T = 240, K = 3, p = 2, c = 1 across

2000 replications. C = {0, 5, · · · , 50} is considered in the estimation procedure. The black dotted line is the 95%

horizontal line. The x-axis refers to the periods, and y-axis refers to the parameters where the subscripts h and t

are omitted for notational simplicity. The notation ⇥j,rs refers to the r
th row and s

th column element in the

parameter matrix ⇥h,j,t with di↵erent h in (a) and (b).
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(a) Government spending, recession
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(b) GDP, recession
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(c) Government spending, expansion
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Figure 17: Government spending and GDP responses to a news shock

Note: This figure plots government spending and GDP responses to a Ramey and Zubairy (2018) military news

shock equal to 1 percent of GDP. Each plot includes responses from Ramey and Zubairy’s (2018) linear model

(labeled ‘RZ Linear’) and state dependent model (labeled ‘RZ-Expansion’ and ‘RZ-Recession’), where the state

variable is unemployment, as well as responses based on TVP-LP path estimates at di↵erent periods classified in

the corresponding states. The x-axis refers to horizons (quarters), and y-axis refers to the impulse responses of

government spending and GDP, respectively.
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(a) Government spending, ZLB
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Figure 18: Government spending and GDP responses to a news shock

Note: This figure plots government spending and GDP responses to a Ramey and Zubairy (2018) military news

shock equal to 1 percent of GDP. Each plot includes responses from Ramey and Zubairy’s (2018) linear model

(labeled ‘RZ Linear’) and state dependent model (labeled ‘RZ-ZLB’ and ‘RZ-Normal’), where the state variable is

ZLB, as well as responses based on TVP-LP path estimates at di↵erent periods classified in the corresponding

states. The x-axis refers to horizons (quarters), and y-axis refers to the impulse responses of government spending

and GDP, respectively.
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Table 1: Estimates of Multipliers

Linear High ut Low ut ZLB Normal - - - -
2-year 0.66 0.60 0.59 0.76 0.63 - - - -

(0.110) (0.156) (0.150) (0.174) (0.245) - - - -
4-year 0.71 0.68 0.67 0.75 0.78 - - - -

(0.072) (0.086) (0.199) (0.095) (0.619) - - - -

TVP-LP-IV 1938:Q1 1945:Q1 1954:Q1 1984:Q1
2-year - - - - - 0.79 0.86 0.94 0.64

- - - - - (0.346) (0.333) (0.370) (0.566)
4-year - - - - - 0.84 0.81 0.84 0.69

- - - - - (0.304) (0.317) (0.283) (0.428)

Note: This table reports 2/4-year integral multipliers with 90% confidence intervals from the Ramey and Zubairy

(2018) linear model (labeled ‘Linear’), the Ramey and Zubairy (2018) state-dependent model using unemployment

or the ZLB as the state (labeled ‘High ut’/‘Low ut’ and ‘ZLB’/‘Normal’, respectively), as well as our TVP-LP-IV

path estimates. The values in parentheses under the multipliers give the 90% confidence intervals. Note that,

according to Ramey and Zubairy’s (2018) state variables, 1938:Q1, 1945:Q1, 1954:Q1, 1984:Q1 are classified as

“Recession, Expansion, Expansion, Recession”, and “ZLB, ZLB, Normal, Normal”, respectively.
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(a) 2-year integral (b) 4-year integral

Figure 19: Cumulative spending multipliers across time, TVP-LP-IV estimates compared with
recession-dependent results

Note: This figure plots 2/4-year integral multipliers from Ramey and Zubairy’s (2018) state-dependent model

where the state variable is unemployment (labeled ‘recession-dependent’), as well as multipliers based on our

TVP-LP-IV path estimates (labeled ‘TVP-LP-IV’) with 90% confidence intervals (green dotted lines). The shaded

areas denote the recession periods (unemployment is above 6.5).

(a) 2-year integral (b) 4-year integral

Figure 20: Cumulative spending multipliers across time, TVP-LP-IV estimates compared with
ZLB-dependent results

Note: This figure plots 2/4-year integral multipliers from Ramey and Zubairy’s (2018) state-dependent model

where the state variable is ZLB (labeled ‘ZLB-dependent’), as well as multipliers based on our TVP-LP-IV path

estimates (labeled ‘TVP-LP-IV’) with 90% confidence intervals (green dotted lines). The shaded areas denote the

ZLB periods.
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Figure 21: Cumulative spending multipliers across horizons

Note: This figure plots cumulative spending multipliers calculated across di↵erent horizons (years) during

recessions/expansions or ZLB/Normal periods. Each plot includes multipliers based on the Ramey and Zubairy

(2018) linear model and state-dependent (unemployment/ZLB-dependent) model, denoted as

RZ-Linear/Recession/Expansion or RZ-Linear/ZLB/Normal, as well as multipliers based on our TVP-LP-IV path

estimates at di↵erent periods classified in the corresponding states. The x-axis refers to years, and y-axis refers to

the multipliers.
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Figure 22: Cumulative spending multipliers at war dates

Note: This figure plots multipliers across di↵erent horizons (years) at various war dates. Each plot includes

multipliers from Ramey and Zubairy’s (2018) linear model (labeled ‘RZ Linear’) and state-dependent model where

the state variable is unemployment (labeled ‘RZ-Recession’ or ‘RZ-Expansion’), as well as multipliers based on

our TVP-LP-IV path estimates. The x-axis refers to years, and y-axis refers to the multipliers.
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Figure 23: Cumulative spending multipliers across horizons at war dates

Note: This figure plots multipliers across di↵erent horizons at various war dates. Each plot includes multipliers

from Ramey and Zubairy’s (2018) linear model (labeled ‘RZ Linear’) and state-dependent model where the state

variable is ZLB (labeled ‘RZ-ZLB’ or ‘RZ-Normal’), as well as multipliers based on our TVP-LP-IV path

estimates. The x-axis refers to years, and y-axis refers to the multipliers.
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Figure 24: Cumulative spending multipliers across time

Note: Figure (a) plots 1/2/4-year integral multipliers based on our TVP-LP-IV path estimates (labeled

‘1/2/4-year integral’, with y-axis on the left) across time, together with the news shock (labeled ‘news shock’, with

y-axis on the right). Figure (b) plots 1/2/4-year integral multipliers based on our TVP-LP-IV path estimates

(labeled ‘1/2/4-year integral’, with y-axis on the left) across time, together with the detrended public debt

(labeled ‘public debt’, with y-axis on the right).

(a) 1-year integral (b) 4-year integral

Figure 25: Cumulative spending multipliers across time, TVP-LP-IV estimates compared with
public debt-dependent results

Note: This figure plots 1/4-year integral multipliers from Ramey and Zubairy’s (2018) state-dependent model

where the state variable is public debt (labeled ‘debt-dependent’), as well as multipliers based on our TVP-LP-IV

path estimates (labeled ‘TVP-LP-IV’). The shaded areas denote the periods when detrended public debt is above

11).
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Jordà, Ò.: 2020, Local projections: new developments, mimeo .

Kendrick, J. W.: 1961, Productivity trends in the United States, number kend61-1, National

Bureau of Economic Research.

Levine, D.: 1983, A remark on serial correlation in maximum likelihood, Journal of Econometrics

23(3), 337–342.

Lusompa, A.: 2021, Local projections, autocorrelation, and e�ciency, Federal Reserve Bank of

Kansas City Working Paper (21-01).

Miranda-Agrippino, S. and Ricco, G.: 2021, The transmission of monetary policy shocks,

American Economic Journal: Macroeconomics 13(3), 74–107.

Montiel Olea, J. L. and Plagborg-Møller, M.: 2021, Local projection inference is simpler and

more robust than you think, Econometrica 89(4), 1789–1823.

Montiel Olea, J. L., Stock, J. H. and Watson, M. W.: 2021, Inference in structural vector

autoregressions identified with an external instrument, Journal of Econometrics 225(1), 74–87.

Müller, U. K.: 2013, Risk of bayesian inference in misspecified models, and the sandwich

covariance matrix, Econometrica 81(5), 1805–1849.

51



Müller, U. K. and Petalas, P.-E.: 2010, E�cient estimation of the parameter path in unstable

time series models, The Review of Economic Studies 77(4), 1508–1539.

Mumtaz, H. and Petrova, K.: 2018, Changing impact of shocks: a time-varying proxy svar

approach.

Newey, W. K. and West, K. D.: 1987, A simple, positive semi-definite, heteroskedasticity and

autocorrelationconsistent covariance matrix, Econometrica 55, 703–708.

Owyang, M. T., Ramey, V. A. and Zubairy, S.: 2013, Are government spending multipliers

greater during periods of slack? evidence from twentieth-century historical data, American

Economic Review 103(3), 129–34.

Plagborg-Møller, M. and Wolf, C. K.: 2021, Local projections and vars estimate the same

impulse responses, Econometrica 89(2), 955–980.

Primiceri, G. E.: 2005, Time varying structural vector autoregressions and monetary policy, The

Review of Economic Studies 72(3), 821–852.

Ramey, V. A.: 2011a, Can government purchases stimulate the economy?, Journal of Economic

Literature 49(3), 673–85.

Ramey, V. A.: 2011b, Identifying government spending shocks: It’s all in the timing, The

Quarterly Journal of Economics 126(1), 1–50.

Ramey, V. A. and Zubairy, S.: 2018, Government spending multipliers in good times and in bad:

evidence from us historical data, Journal of Political Economy 126(2), 850–901.

Rossi, B. and Zubairy, S.: 2011, What is the importance of monetary and fiscal shocks in

explaining us macroeconomic fluctuations?, Journal of Money, Credit and Banking

43(6), 1247–1270.

Ruisi, G.: 2019, Time-varying local projections.

52



Sims, C. A.: 1980, Macroeconomics and reality, Econometrica: Journal of the Econometric

Society pp. 1–48.

Stock, J. H. and Watson, M. W.: 2001, Vector autoregressions, Journal of Economic Perspectives

15(4), 101–115.

Stock, J. H. and Watson, M. W.: 2016, Dynamic factor models, factor-augmented vector

autoregressions, and structural vector autoregressions in macroeconomics, Handbook of

Macroeconomics, Vol. 2, Elsevier, pp. 415–525.

Stock, J. H. and Watson, M. W.: 2018, Identification and estimation of dynamic causal e↵ects in

macroeconomics using external instruments, The Economic Journal 128(610), 917–948.

White, H.: 1982, Maximum likelihood estimation of misspecified models, Econometrica: Journal

of the Econometric Society pp. 1–25.

53


