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Abstract

We study vote delegation and compare it with conventional voting. Typical examples for vote
delegation are validation or governance tasks on blockchains and liquid democracy. There is a
majority of "well-behaving" agents, but they may abstain or delegate their vote to other agents
since voting is costly. "Misbehaving" agents always vote. Preferences of agents are private
information and a positive outcome is achieved if well-behaving agents win. Vote delegation can
lead to quite different outcomes than conventional voting. For instance, if the number of
misbehaving voters, denoted by f, is high, both voting methods fail to deliver a positive outcome. If
the number of misbehaving voters takes an intermediate value, conventional voting delivers a
positive outcome, while vote delegation fails with probability one. However, if f is low, we show by
numerical simulations that delegation delivers a positive outcome with higher probability than
conventional voting. Our results also provide insights in worst-case outcomes that can happen in a
liquid democracy.
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Zürichbergstrasse 18

8092 Zurich, Switzerland

amamageishvili@ethz.ch

Manvir Schneider
CER-ETH
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Abstract

We study vote delegation and compare it with conventional voting. Typical exam-

ples for vote delegation are validation or governance tasks on blockchains and liquid

democracy. There is a majority of “well-behaving” agents, but they may abstain or

delegate their vote to other agents since voting is costly. “Misbehaving” agents always

vote. Preferences of agents are private information and a positive outcome is achieved

if well-behaving agents win. Vote delegation can lead to quite different outcomes than

conventional voting. For instance, if the number of misbehaving voters, denoted by

f , is high, both voting methods fail to deliver a positive outcome. If the number of

misbehaving voters takes an intermediate value, conventional voting delivers a positive

outcome, while vote delegation fails with probability one. However, if f is low, we

show by numerical simulations that delegation delivers a positive outcome with higher

probability than conventional voting. Our results also provide insights in worst-case

outcomes that can happen in a liquid democracy.
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1 Introduction

We study vote delegation when preferences are private information and voting is costly. Vote

delegation plays a crucial role in two contexts—blockchain governance and so-called “liquid

democracy”, that is, a democracy in which the electorate can choose between voting itself or

delegating its right to vote before each collective decision.

Let us look at the standard problem of blockchain governance. Stakeholders vote on is-

sues connected to system development, such as an upgrade of the code or forks, for example.

That is, voters are stakeholders and their stakes are the votes. The stakeholders’ objectives

depend on their type: Either they are well-behaving and seek successful development of the

blockchain or they are misbehaving and want to harm, by voting on undesirable proposals,

rejecting desirable proposals, or by reaching agreement of undesirable forks. In effect, these

misbehaving individuals are similar to a group of voters who wants to obtain a “negative”

voting outcome, that is, a collective decision which is detrimental to the majority. Misbe-

having voters are byzantine, which means that they are indistinguishable from well-behaving

agents and may mimic correct behavior otherwise, except when it comes to voting.

One of the main concerns of a blockchain governance is very low turnout for voting

on changes of the software and infrastructure. Such low turnout can be explained by the

costs of voting. There can be different types of costs: acquiring information on the issue

at hand, registering for voting, and being online at the time of voting, for instance. While

in democracies, voting is often motivated by social norms, such social pressure is missing

in decentralized environments. Therefore, rational voters who analyze their probability of

being pivotal, compared to the costs of voting, may abstain. Low turnout levels, however,

may produce outcomes that are not in the interest of the majority of stakeholders, and the

voting outcome may lack credibility. On the Ethereum blockchain, turnout levels in votings

on upgrade issues are 4.5% on average, and 10% are never reached, no matter the voting

mechanism in place1. In self-governing chains, the turnout rates in voting may even drop

as low as 0.12%2. To mitigate this problem, vote delegation is proposed, in the hope that

turnout levels will increase and blockchain governance by too few entities will be prevented.

Therefore, one key question concerning blockchain management is whether stakeholders

should be allowed to delegate their stake to other stakeholders, which amounts to vote del-

egation. Such vote delegation is part of the basic procedures of some blockchain governance

(see e.g. Goodman (2014) and the proposal in Damg̊ard et al. (2020)3). With vote delega-

tion, well-behaving stakeholders could avoid the voting cost and still implement the correct

outcome if most of their votes go to other, well-behaving stakeholders. However, the well-

behaving stakeholders incur a risk that their vote goes to misbehaving stakeholders who aim

1See https://www.investopedia.com/terms/o/onchain-governance.asp (retrieved June 23, 2021).
2See https://medium.com/wave-financial/blockchain-voter-apathy-69a1570e2af3 (retrieved June

23, 2021).
3See page 7 in Damg̊ard et al. (2020).
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to support wrong outcomes and disrupt the system. If misbehaving agents can accumulate

a majority of votes, a negative outcome occurs.

In the context of democracies—representative or direct—, suggestions are discussed that

citizens should have the option to delegate their voting rights to other citizens. Citizens

who often abstain could then exercise their voting rights indirectly by delegating their votes,

so that the electorate as a whole might be better represented. Yet, one drawback of vote

delegation is that minorities might win via vote delegation, where the majority would prevail

under conventional voting. By “conventional voting”, we mean majority voting in a direct

democracy, with voluntary participation but without the possibility to delegate votes.

Our results can also be applied to the problem of achieving consensus on the state of a

blockchain, i.e. which transactions on the ledger are determined to be valid or not. Con-

ventional voting is a voting-based approach to achieve consensus in the presence of a set of

misbehaving agents. We capture a setting when well-behaving agents face a net cost when

validating such transactions, but benefit from the outcome when they win the validation

game. Our results suggest that the correct outcome only has a high chance to succeed when

the number of number of misbehaving agents is sufficiently low. We provide bounds for this

number in relation to the cost of validating.4

Set-up and Results

Delegating a vote means transferring one’s voting right to another voter. Say, for example,

a voter vi delegates his/her vote to a voter vj. Then, voter vj has his/her own vote, plus

the delegated votes s/he received—in total 2 votes. In general, a voter can obtain and use

any number of votes, if as many votes are delegated to him/her. When a voter votes, all of

his/her votes count for one alternative, that is, a voter cannot split his/her votes between

different alternatives.

We study vote delegation with well-behaving and misbehaving agents under three as-

sumptions. First, voting is costly for well-behaving agents. That means, if a well-behaving

individual abstains or delegates his/her vote, s/he is better off than with voting as long as

his/her action does not affect the voting outcome. Second, we assume that the minority,

composed of misbehaving voters, always votes. The rationale is that this minority is com-

posed of determined agents who either have a strong desire to disrupt the functioning of

the system, or derive a utility from enforcing their minority view which is higher than any

cost of voting. The latter assumption also allows to study vote delegation under the most

unfavorable circumstances. Third, we consider a “one-voter-one-vote” model.5

We compare vote delegation with conventional voting. In vote delegation, the well-

4For a more elaborated voting game to achieve consensus with multiple voting rounds and proposal-
making, see Amoussou-Guenou et al. (2021). Our analysis of mixed strategy equilibria is complementary to
their analysis with pure strategies.

5Most blockchains allow the voting weight of an agent to be equal to his/her stake. We can apply our
results to such weighted voting schemes if the probability that a stakeholder receives the vote is proportional
to the size of the stake. Approximately, this holds in our model.
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behaving agents’ decision to delegate depends on an assessment whether to vote or to abstain

and whether vote delegation would allow misbehaving agents to obtain a majority of votes.

Typically, some fraction of well-behaving agents will delegate, while the rest will vote. Since

preferences are private information, delegated votes go uniformly at random to either those

well-behaving agents who vote or the misbehaving agents who (always) vote. The assump-

tions of uniform random delegation and unknown preferences are particularly appealing in

the blockchain context. Most studies on vote delegation consider delegation in networks,

where each party delegates to its immediate neighbors and delegation is transitive. However,

if a network is large and complex enough, uniform random delegation to a pool of voters is

a good approximation of the process. We model the total number of well-behaving agents as

a Poisson random variable. This assumption simplifies the analysis considerably and models

the nature of uncertain large elections better. With conventional voting, well-behaving agents

only compare voting with abstention and there is a risk that misbehaving agents obtain a

majority.

We provide three insights: First, if the number of misbehaving voters is high, both voting

methods fail to deliver a positive outcome. Second, if the number of misbehaving voters is

moderate, conventional voting delivers a positive outcome, while vote delegation fails with

probability one. Third, with numerical simulations, we show that if the number of misbe-

having voters is low, delegation delivers a positive outcome with a higher probability than

conventional voting. To sum up, if the number of misbehaving voters is not known a priori,

vote delegation is risky.

Formally, we find that for any cost of voting c, there exist thresholds f ∗(c) and n∗(f)

such that for any number of misbehaving voters f larger than f ∗ and an expected number of

well-behaving agents larger than n∗, misbehaving voters will have the majority of votes and

will win. This, in particular, means that if the cost of voting is close to zero, there must be

many (of order 1
c2

) misbehaving voters and the total number of voters must be of order f 2,

so that misbehaving voters win with certainty.

The intuition for the non-monotonicity in the result is the following. If the number of

misbehaving voters is low, delegation greatly benefits well-behaving agents who vote and

thus delegation improves the chances of well-behaving agents to win. This, in turn, provides

incentives to delegate. Under conventional voting, more well-behaving agents would abstain

to save costs. If the number of misbehaving voters is larger, delegation becomes quite risky,

since these voters may raise the chances of misbehaving voters to win. Hence, the beneficial

effects of delegation declines and conventional voting, which forces agents either to vote or

to abstain, becomes dominant, since well-behaving agents have greater incentives to vote.

The difference between abstention and delegation is that abstention has no impact on the

voting outcome, while delegation affects the probability which alternative will be chosen—

even if delegation is random—as soon as the expected number of well-behaving and misbe-

4



having agents participating in voting differs, as the vote always goes to someone. Individuals

thus can marginally improve (or decrease) the chances that the preferred alternative wins by

delegation, depending on the mix of well-behaving and misbehaving agents who vote. Hence,

the individual calculuses between voting and abstention and between voting and delegation

differ. For instance, in all equilibria with delegation, abstention is strictly dominated by

delegation.

Throughout the paper, we assume that the number of misbehaving voters, f , is fixed and

known to well-behaving agents. This assumption can be relaxed, especially in the case of

large elections, because the main result is very robust for any number of misbehaving voters

above a certain threshold. For moderate values of f , however, the beliefs of well-behaving

agents about this value becomes more important. Our result from Proposition 1, with lower

values of f , still holds if the probability distribution of beliefs has high concentration around

the expected value. If, for instance, the voters overestimate f , and they think it is above the

threshold derived in Theorem 1, no well-behaving agent will vote and misbehaving voters will

win with probability one. If the voters underestimate f , and think it is below the threshold,

some of them will vote in the equilibrium and they will win with some positive probability.

Therefore, our insights on equilibria solutions are still useful, depending on the voters’ beliefs.

Our model of costly voting is orthogonal to the information acquisition and aggregation

studied in the literature, in which delegation is done by voters hoping to delegate to more in-

formed voters than they are. However, we think that the cost-saving aspect of vote delegation

is interesting, given the evidence of low turnouts and the voters’ rationality in decentralized

environments.

Applications

Our results have immediate implications for blockchains, namely, that vote delegation

should only be allowed if it is guaranteed that the absolute number of misbehaving agents is

below a certain threshold. Otherwise, the risk for negative outcomes increases. Our results

can also help assess the performance of vote delegation in democracy, which is known as

“liquid democracy”. Indeed, for liquid democracy, our result is the worst-case result when

delegating agents cannot trust or have no information about those to whom they delegate.

We can view misbehaving voters as a determined minority who will vote, no matter the costs.

In the same setting, the well-behaving agents can be viewed as majority voters, who incur

a voting cost and/or analyze rationally. If there is a sufficiently large minority in absolute

terms who is determined to win, vote delegation can lower the likelihood that the majority

wins.

The paper is organized as follows: In Section 2, we discuss the related literature. In

Section 3, we introduce our model. In Section 4, we analyze the equilibria and state our

main result. In Section 5, we compare the performance of vote delegation and conventional

voting. Section 6 concludes. The proofs are in Appendix A.
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2 Related Literature

Fundamental work on proxy voting and delegative democracy has been done by Tullock and

of Michigan Press (1967); Tullock (1992) and Miller (1969). Alger (2006) further develops this

seminal work on proxy voting. He compares the performance of proxy voting to the perfor-

mance of two existing voting systems in a costless direct democracy with well-informed voters.

He further finds that the simple proxy voting suggested by Tullock and of Michigan Press

(1967) results in the best possible representation in costless voting.

Vote delegation in a network and its dangers are studied in Gölz et al. (2018) and Kahng

et al. (2018). From an algorithmic perspective, Kahng et al. (2018) find that there is a

delegation procedure that outperforms direct voting, depending on the information that the

voters have. In our paper, we focus on vote delegation from a game-theoretic perspective,

when preferences of agents are private information, but there is a cost of voting. Bloembergen

et al. (2019) study vote delegation in a directed graph, but do not study the case where voters

aim to maximize the chance that their type wins. In our case, agents want their type to win.

That is, all misbehaving voters vote for the same undesirable alternative and all well-behaving

agents vote for the same desirable alternative. Leonardos et al. (2020) study weighted voting

on blockchain and consider delegation of stakes as well. Moreover, the literature on Poisson

games started with Myerson (1998). In the costly voting setting, Taylor and Yildirim (2010)

justify the use of Poisson games, which makes the analysis of pivotal probabilities easier.

This setting is particularly useful when the size of the electorate is large. Costly voting with

decisive minorities is the topic of Campbell (1999).

We are comparing conventional voting to delegation in a rational voting set-up that goes

back at least to Riker and Ordeshook (1968) and the analyses in Palfrey and Rosenthal

(1983) and Ledyard (1984). The costly voting set-up has been significantly developed since

(see Börgers (2004)) and applied to institutional questions and voting with smaller and

larger electorates. Herrera et al. (2014) study a Poisson voting game where citizens’ costs are

drawn from a distribution. Costly voting with three alternatives is studied in Arzumanyan

and Polborn (2017) and Xefteris (2019). Bognar et al. (2015) take a mechanism design

approach to devise an optimal voting rule, given costs of voting. Our results also add to a

literature comparing mandatory and voluntary voting, as developed in Krasa and Polborn

(2009), from the perspective of delegation.

Another related strand of voting literature is on so-called sybil (fake or duplicate) voters.

For example, see Meir et al. (2020) and Shahaf et al. (2019). Meir et al. (2020) study voting

procedures when honest voters are split into active and passive voters and all sybil voters

are assumed to be active voters. Meir et al. (2020) study vote delegation when voters are

supposed to pick a position on a line. Only a small number of voters is active and any passive

voter can delegate his/her vote. The authors assume that delegated votes go to the nearest

active voter on the line. That is, their setting is quite different from ours.
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Representative democracy models have been recently studied by Pivato and Soh (2020)

and Abramowitz and Mattei (2019). Pivato and Soh (2020) study a model where voters

can choose any legislator as representative. Hence, a legislator can represent any number

of voters, which will be his/her voting weight. In the actual voting, all legislators vote and

votes are counted according to the weights. In their model, Pivato and Soh (2020) show that

for large elections, the voting outcome of the legislator’s votes is the same as if all voters

voted directly. Soh (2020) uses this model and studies other forms of voting, such as Weighted

Approval Voting and Majority Judgement. The paper shows that similar to Weighted Voting,

the voting outcome is the same for large elections as with direct voting.

Unlike the literature on liquid democracy, Abramowitz and Mattei (2019) introduce Flex-

ible Representative Democracy, a new model to study a mixture of representative and direct

democracy where first, a set of experts/representatives is elected by the voters for an entire

term. When voting on an issue, a voter faces the decision how to allocate his/her vote among

a subset of the representatives. In addition, voters can also vote directly. Comparing this

model to our model, we note that random uniform delegation can be achieved by distributing

the voting power of a voter uniformly among all representatives.

Furthermore, in costly voting models, voters analyze whether to vote and incur cost based

on their pivotality. This measure of “voting power” is calculated by the Banzhaf index. Zhang

and Grossi (2020) develop a new index which they call Delegative Banzhaf Index, which also

measures the power of delegators.

3 Model

We consider a society consisting of well-behaving and misbehaving agents. In our setting,

there is a good alternative and a bad one. A well-behaving agent, if s/he votes at all, will vote

for the good alternative and hence incur a cost 0 < c 6 1. A misbehaving agent will always

turn out and vote for the bad alternative to harm the system. We assume that misbehaving

voters do not incur any cost of voting. This can be justified by assuming that misbehaving

voters are a determined minority who will vote, no matter the cost. This is why we normalize

their cost to 0. The assumption of Poisson games is that the total number of well-behaving

agents N is distributed as a Poisson random variable with parameter n, where n is some

positive real number. Moreover, we assume that the number of misbehaving voters f ∈ N is

common knowledge.

Each well-behaving agent has the same strategy set consisting of voting and delegation.

Delegation means that the vote of the delegating agent goes to some other agent. We consider

a totally mixed Nash equilibrium solution concept, where well-behaving agents randomize

between voting and delegating.

Moreover, we consider a symmetric Bayesian Nash equilibrium solution concept, that is,

7



all well-behaving agents have the same probability of delegating. Let γ ∈ [0, 1] denote the

probability of delegation, i.e., a well-behaving agent delegates his/her vote with probability

γ and votes with probability 1−γ. A value of γ characterizes an equilibrium if well-behaving

agents are indifferent between delegating and voting.

The procedure of delegation is performed by the pooling of delegated votes and giving

them uniformly at random to those who are voting. We abstract from the network structure

of the vote delegation process, since the identities of the misbehaving voters are not known.

Further, we assume that delegation has no cost.

From the decomposition property of Poisson games, see Myerson (1998), we have that D,

the number of well-behaving agents who are delegating, is distributed as a Poisson random

variable with parameter nγ. On the other hand, V , the number of well-behaving agents

who are voting, is distributed as a Poisson random variable with parameter n(1 − γ). This

means that D votes are delegated to a group of V + f voters consisting of the remaining

V well-behaving voters and f misbehaving voters. Note that the random variables D and

V are mutually independent. Let h denote the number of votes that are delegated to the

well-behaving voters. Then remaining D − h votes are delegated to the misbehaving voters.

The following figure illustrates the setting.

D

V f

h D − h

Figure 1: h out of D votes are delegated to V well-behaving voters and D − h votes are
delegated to f misbehaving voters.

Note that by the environmental equivalence property of Poisson games, see Myerson

(1998), we can take the outsider view of an additional agent, without having to readjust

the parameters of the Poisson distribution. Let us distinguish between two cases for this

additional agent: Either the agent is voting and hence is increasing the number of well-

behaving voters from V to V + 1 or the agent is delegating and hence increasing the number

of the delegating agents from D to D+ 1. In the first case, the random variable h follows the

binomial distribution with parameters D and V+1
V+1+f

, because h out of D votes are delegated

to a group of V + 1 well-behaving voters out of V + 1 + f total voters. In the latter case,

i.e., if the additional agent is delegating, h follows the binomial distribution with parameters

D + 1 and V
V+f

, because now h out of D + 1 votes are delegated to V well-behaving voters

out of V + f total voters.
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For later analysis, let us define the function

g(x, y) :=


1 if x > y,

1
2

if x = y,

0 if x < y,

where g(x, y) denotes the gain for well-behaving voters if they receive x votes, and misbe-

having voters receive y votes. If well-behaving voters have more votes, the gain is 1, whereas

the gain is 0 if misbehaving voters have the majority of votes. Ties are broken by a fair coin

toss, hence the expected gain is 1
2

when x and y are equal.

4 Vote Delegation

4.1 Main Result

We start our analysis by the equilibrium indifference condition. The equilibrium indifference

condition consists of equating the cost of voting c with the difference of the expected utility

of voting and the expected utility of delegating, that is, the expected utility gain from voting.

We can write,

c = E[U(voting)]− E[U(delegating)].

The expected utilities are calculated in the following way: First, we need to sample D

and V , using the probability mass function of the Poisson distribution with parameter nγ,

respectively n(1 − γ). Then, based on the sampling, we sample the number of votes h

that well-behaving voters receive via delegation, using the binomial distribution with the

parameters specified above. In the case where the additional agent is voting, we have a size

of V + 1 of the well-behaving voter group. Hence, the well-behaving voters have in total

V + 1 + h votes versus f + D − h votes of the misbehaving voters, which will be used to

calculate the gain function g. Similarly, in the case where the additional agent is delegating,

we have a size of D + 1 of the delegating group. The well-behaving voters will have a total

of V + h votes versus f + D + 1 − h misbehaving votes. The following equation explicitly

states the indifference condition for the additional agent:

9



c =
∞∑
D=0

∞∑
V=0

(nγ)D

enγD!

(n(1− γ))V

en(1−γ)V !

×
[ D∑
h=0

(
D

h

)(
V + 1

V + 1 + f

)h(
f

V + 1 + f

)D−h
g(V + 1 + h, f +D − h)

−
D+1∑
h=0

(
D + 1

h

)(
V

V + f

)h(
f

V + f

)D+1−h

g(V + h, f +D + 1− h)

]
.

(1)

The first two sums, together with the Poisson probability mass functions, account for the

sampling of D and V . Whereas the other two sums, together with the binomial probability

mass functions, account for the sampling of h.

Next, we state our main result.

Theorem 1

For any c ∈ R+, there exist f ∗(c) > 0 and n∗(f) > 0, so that for all f ≥ f ∗(c) and n ≥ n∗(f),

well-behaving agents lose. Moreover, f ∗(c) ∈ Θ
(
δ2

c2

)
and n∗(f) ∈ Θ

(
f2

δ2

)
, where δ is any

positive natural number.

Proof. See Appendix A.

To provide an intuition for the theorem, we start by the observation that when well-

behaving agents are losing, this is equivalent to the fact that there exists no solution to the

indifference condition of a well-behaving individual, that is, to equation (1). In this case,

the right-hand side of equation (1) is strictly smaller than c. Or, equivalently, every well-

behaving agent delegates because the cost of voting is larger than the expected benefits for

voting, and hence misbehaving voters have the majority (in fact, all) of the votes.

From the theorem, we see the following. Suppose that δ is a positive number. Then, the

lowest value for f for which the theorem holds is from the set of functions Θ
(

1
c2

)
6. In this

case, n needs to be large as a function of f , namely f 2.

If we take a large value of δ, then the threshold on f increases, but the relative value of

the threshold on n to f decreases. For example, if we take δ of order 1√
c
, then f ∗(c) is of order

1
c3

. Moreover, n∗(f) is of order f 2c. That is, unlike in the previous case, the relative value

of n∗(f) to f is much smaller. If we take f = f ∗(c), then n∗(f) as a function of c is of order
1
c5

. That is, the absolute value of n∗(f) is much higher in this case than in the previous case.

To sum up, taking a higher value of δ increases the absolute value of n∗(f) as a function of

c, but decreases its value relative to f .

Verbally, the theorem states that vote delegation is dangerous if there are sufficiently

many misbehaving voters and sufficiently many well-behaving agents. The intuition behind

6A function f(c) is in Θ(h(c)) if f(c) has the same order of growth as h(c).
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this result is the following. If the number of well-behaving voters is even slightly smaller

than the number of misbehaving voters, then with high probability, the number of delegating

agents is large enough to guarantee that well-behaving agents will lose.

If the number of well-behaving voters is much bigger than the number of misbehaving

voters, then for any number of delegating agents, well-behaving voters will win with high

probability. In contrast, if the number of well-behaving voters is moderately larger than

the number of misbehaving agents, then the number of delegating agents is large enough to

guarantee that well-behaving agents win with high probability.

In the latter two cases, a well-behaving agent is not motivated to vote. Lastly, the

probability that the number of well-behaving voters is approximately equal to the number

of misbehaving voters is sufficiently small. The driving force of this last claim is that the

expected number of well-behaving voters is large enough, and we can apply the Poisson

random variable concentration bounds.

4.2 Winning Probability and Social Welfare

To assess the efficiency of a voting rule, we look at two values. First, we consider the

probability that well-behaving agents win in equilibrium under a specific voting rule. Second,

we consider the value of per-capita social welfare, which consists of the expected benefits of

the whole (well-behaving) society minus the costs incurred by voting. The probability p that

the well-behaving agents win is calculated by the following formula:

p(n, f, γ) =
∞∑
D=0

∞∑
V=0

D∑
h=0

(nγ)D

enγD!

(n(1− γ))V

en(1−γ)V !

(
D

h

)(
V

V + f

)h(
f

V + f

)D−h
g(V + h, f +D − h).

We note that D and V are sampled and then, given D, h is sampled. Therefore, we

have V + h votes for the right alternative and f +D− h votes for misbehaving voters. This

implies that well-behaving agents win with certainty if V +h > f +D−h and they win with

probability 1
2

when V + h = f + D − h. The probability that well-behaving agents win is

described by the g function introduced in the last section.

We calculate per-capita social welfare as the difference between the probability of winning

and the voting costs. The former represents per capita expected utility. Per-capita welfare

is thus given by

W (n, f, γ, c) =
∞∑
D=0

∞∑
V=0

r(D + V )
D∑
h=0

(nγ)D

enγD!

(n(1− γ))V

en(1−γ)V !

(
D

h

)(
V

V + f

)h(
f

V + f

)D−h
(

(D + V )g(V + h, f +D − h)− V c
)
,

11



where the function r is defined as follows:

r(x) :=

 1
x

if x > 0,

0 if x = 0.

Note that the term −V c in the above formula is the cost of voting for well-behaving

voters, and it is subtracted from the total benefits for the society. The latter is captured by

the term (D + V )g(V + h, f +D − h).

5 Comparison with Conventional Voting

5.1 Conventional Voting

With conventional voting, there is no option to delegate one’s voting right. Thus, the voters’

strategy sets only consist of voting and abstaining. We look for symmetric Bayesian Nash

equilibria under conventional voting. Let α ∈ [0, 1] be the probability of voting. To determine

α, we next derive the indifference condition between voting and abstention. We have to

consider the cases where an additional vote would impact the probability that well-behaving

agents win. Then, we have to equate the cost of voting, c, with the difference between the

expected utilities of voting and abstaining, that is

c = E[U(voting)]− E[U(abstaining)].

This indifference can only hold if well-behaving agents have either f or f − 1 votes. In the

case of f votes, there is a draw (f versus f). Then, one additional vote from well-behaving

agents will win and creates a utility gain of 1
2
. In the other case, where well-behaving agents

have exactly f − 1 votes, one additional vote by well-behaving agents would turn this loss

into a draw, which again yields a utility gain of 1
2
. These expected utilities are equated

with the cost of voting and we obtain the following indifference relation between voting and

abstaining:

c =
1

2

(nα)f

enαf !
+

1

2

(nα)f−1

enα(f − 1)!
. (2)

For a given probability of voting α, the probability of the well-behaving agents winning in

the baseline game is calculated by the following formula:

q(n, f, α) =
∞∑
k=0

(nα)k

enαk!
g(k, f).

12



The per-capita social welfare is calculated as the difference between the probability of win-

ning, measuring the expected benefits, and the cost of voting. To calculate per-capita social

welfare, we first sample the total number of citizens, denoted by N and then, out of those N

individuals, k individuals will vote with probability α. That is, D is sampled as a binomial

random variable with parameters N and α, which leads to the following formula:

W (n, f, α, c) =
∞∑
N=0

nN

enN !
r(N)

N∑
k=0

(
N

k

)
αk(1− α)N−k(Ng(k, f)− kc),

where the r(N) term has been introduced above and measures the per-capita benefit when

there are N well-behaving agents in total. The term Ng(k, f) stands for the total benefits,

while −kc stands for the costs incurred by k voters voting. This model is studied in Gersbach

et al. (2021), where f is interpreted as a handicap for one of the alternatives. In our setting

it is the wrong outcome.

5.2 Two Ranges of f

In this subsection, we compare the performance of vote delegation with conventional voting in

two ways: the probability that the right alternative is winning and per-capital social welfare.

From the proof of Theorem 1 and by taking δ = 1, we obtain the lower bound threshold

on f ∗(c) for vote delegation, above which no well-behaving agent votes. We can compare

this to the corresponding threshold for conventional voting that is derived in Gersbach et al.

(2021). This leads to the following proposition.

Proposition 1

There exist positive real numbers t1 < t2, such that

(i) If f > t2
1
c2

, misbehaving voters will win with probability 1 under vote delegation and

under conventional voting.

(ii) If f ∈ [t1
1
c2
, t2

1
c2

], the probability that well-behaving agents win with vote delegation

is zero, while the probability that well-behaving agents win with conventional voting is

positive.

Hence, with the above proposition, we obtain two insights: First, if the number of misbe-

having voters is high, both voting methods fail to deliver a positive outcome. Second, if the

number of misbehaving voters is moderate, conventional voting delivers a positive outcome,

while vote delegation fails with probability one. In such cases, conventional voting performs

better than vote delegation. Therefore, the handicap effect is stronger in the vote delegation

setting than in the voluntary voting setting. The remaining third case, where f < t1
1
c2

, is

partially discussed in the following subsection.
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5.3 Numerical Solutions

In this subsection, we compare the performance of two voting rules for small values of f and

n, by approximately solving indifference conditions and calculating the probability of winning

and social-welfare values. The analysis around Theorem 1 requires a large electorate, that

is, n and f need to be large enough numbers for the result to hold. Theorem 1 tells us that

there are no mixed equilibria solutions if n and f are large enough.

By numerical simulations, we find that there are mixed equilibria solutions if n and f

are small enough. We illustrate this by the following example. The cost of voting, c, is

equal to 0.14. The expected number of well-behaving agents, n, is equal to 30. Approximate

numerical solutions show that we have two different equilibria solutions when f > 1, but f is

not too large. In Table 1, the probabilities p1 and p2 represent the equilibrium probabilities

of well-behaving agents winning in the delegation game. In Table 2, the values q1 and q2

represent the equilibrium probabilities of well-behaving agents winning in the conventional

voting game. In both tables, W1 and W2 are the per-capita social welfare values for the

corresponding voting game.

Figure 2: Delegation game: The x-axis repre-
sents values of γ and the y-axis displays ex-
pected utility gains from voting, with the blue
horizontal line representing cost. The graphs
represent the right hand side (RHS) of equa-
tion (1) for different values of f .

f p1 p2 W1 W2

1 0.84 - 0.82 -
2 0.76 0.08 0.74 0.07
3 0.71 0.10 0.69 0.09
4 0.63 0.14 0.61 0.13
5 0.57 0.21 0.54 0.19

6-30 - - - -

Table 1: Equilibrium probabili-
ties p1, p2 of well-behaving agents
winning with delegation and per-
capita social welfare values of
the corresponding equilibria states
W1,W2 for c = 0.14 and n = 30.

Extensive numerical calculations for different parameter values correspond to the pattern

shown in the tables. They suggest that the two equilibrium probabilities of well-behaving

agents winning in the delegation game are higher than the probabilities in the conventional

voting game for sufficiently low values of f . For moderate values of f , however, the conven-

tional voting game yields higher probabilities that the correct alternative is chosen, and vote

delegation may even prevent the correct alternative from having any chance to win. Finally,

for high values of f , misbehaving voters win with certainty in both the delegation and the

14



Figure 3: Conventional game: The x-axis rep-
resents values of α and the y-axis displays ex-
pected utility gains from voting, with the blue
horizontal line representing cost. The graphs
represent the RHS of equation (2) for different
values of f .

f q1 q2 W1 W2

1 0.80 - 0.79 -
2 0.74 0.02 0.73 0.02
3 0.74 0.04 0.72 0.03
4 0.66 0.07 0.64 0.06
5 0.63 0.13 0.61 0.12
6 0.61 0.19 0.58 0.17
7 0.55 0.24 0.51 0.21
8 0.45 0.32 0.41 0.29

9-30 - - - -

Table 2: Equilibrium probabili-
ties q1, q2 of well-behaving agents
winning in the conventional voting
game and per-capita social welfare
values of the corresponding equi-
libria states W1,W2 for c = 0.14
and n = 30.

conventional voting games. The latter observation is in line with our main result.

5.4 Intervals of cost of voting

In this subsection, we address the special case f = 1 and look at the intervals for the cost

of voting where an equilibrium solution exists. In this case, with vote delegation, we have a

totally mixed equilibrium for a large enough value of c, and the equilibrium is unique.

Proposition 2

For f = 1, equation (1) has a solution for any c ∈ [ 1
en

(1
2

+ n
2

+ n2

12
), 1

2
].

Proof. See Appendix A.

We note that for n arbitrarily large, the left endpoint of the interval in the proposition

converges to 0. Therefore, the interval of c for which there is a solution converges to [0, 1
2
]

and 1
2

is a natural upper bound for the cost of voting.

For the conventional voting game, we also obtain a totally mixed equilibrium for a large

enough value of c, and the equilibrium is unique. In particular, we obtain the following result:

Corollary 1

For f = 1, equation (2) has a solution for any c ∈ [n+1
2en

, 1
2
]. For any f ≥ 2, equation (2) has

a solution for any c ∈ [0, 1

e
√
f(f−1)

(√
f(f−1)

f

f !
+

√
f(f−1)

f−1

(f−1)!

)
].

Proof. See Appendix A.
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In the case f = 1, the left endpoint of the interval converges to 0 if n grows unboundedly.

In the case f ≥ 2, we note that the right endpoint of the interval converges towards 0 as

f grows and reaches the critical value above which no well-behaving individual will vote

anymore.

6 Conclusion

We have studied the role of vote delegation in the costly voting setting. In particular,

we showed that with malicious parties, vote delegation is a risky procedure if the number

of misbehaving voters is not low. However, for a low number of misbehaving voters, we

showed that vote delegation dominates conventional voting, that is, it implements the right

alternative with a higher probability than conventional voting. Overall, our results suggest

that one should be cautious with the implementation of vote delegation.

We believe the cost-saving aspect of vote delegation is worth studying further. Our

analysis can be extended in various ways. First, we could study caps on the number of

delegated votes, that is, every voter is only allowed to cast at most a constant maximum

number of votes. Second, we could assume that there is a number of committed well-behaving

agents who will vote no matter the costs. Note that this case is not equivalent to considering

fewer misbehaving voters, because having some number of well-behaving agents voting with

certainty changes the probability that a vote will be delegated to a misbehaving voter.
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A Proofs

Proof of Theorem 1. We denote the right-hand side of (1) by ξn,f (γ) and analyze it in

the following. To make notation easier, we define the function

Gf (D, V ) :=
D∑
h=0

(
D

h

)(
V + 1

V + 1 + f

)h(
f

V + 1 + f

)D−h
g(V + 1 + h, f +D − h)

−
D+1∑
h=0

(
D + 1

h

)(
V

V + f

)h(
f

V + f

)D+1−h

g(V + h, f +D + 1− h).

Note that by the property of a probability distribution and by the definition of g, we have

|Gf (D, V )| 6 1. Our goal is to show that c > ξn,f (γ) for any γ ∈ [0, 1], for large f .

Equivalently, we prove that the value ξn,f (γ) is very small. That is, we show it is close

enough to zero for large enough f .

First recall the definition

ξn,f (γ) =
∞∑
D=0

∞∑
V=0

(nγ)D

enγD!

(n(1− γ))V

en(1−γ)V !
Gf (D, V ).

Next, we derive upper bounds on Gf (D, V ). Let us rewrite

Gf (D, V ) =
D∑

h=b f+D−V+1
2

c

(
D

h

)(
V + 1

V + 1 + f

)h(
f

V + 1 + f

)D−h
(3)

+
1

2

(
D

f+D−V−1
2

)(
V + 1

V + 1 + f

) f+D−V−1
2

(
f

V + 1 + f

)D− f+D−V−1
2

1{ f+D−V−1
2

∈N}

(4)

−
D+1∑

h=b f+D+3−V
2

c

(
D + 1

h

)(
V

V + f

)h(
f

V + f

)D+1−h

(5)

− 1

2

(
D + 1

f+D+1−V
2

)(
V

V + f

) f+D+1−V
2

(
f

V + f

)D− f+D+1−V
2

1{ f+D+1−V
2

∈N}. (6)

The above equation holds because

g(V + 1 + h, f +D − h) = 1 ⇐⇒ h >
f +D − V − 1

2
,

and

g(V + 1 + h, f +D − h) =
1

2
⇐⇒ h =

f +D − V − 1

2
.

Analogously, for g(V + h, f +D + 1− h), we have

g(V + h, f +D + 1− h) = 1 ⇐⇒ h >
f +D + 1− V

2
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and

g(V + h, f +D + 1− h) =
1

2
⇐⇒ h =

f +D + 1− V
2

.

We define

a1 =
f +D − V − 1

2
, and a2 =

f +D + 1− V
2

. (7)

Further, we define the random variables X1, X2, so that X1 is distributed as Bin(D, V+1
V+1+f

),

a binomial random variable with parameters D and V+1
V+1+f

, and X2 is distributed as Bin(D+

1, V
V+f

). Then, equation (3) is equal to the probability P [X1 > a1] and equation (5) is equal

to −P [X2 > a2]. Similarly, (3) + (4) is equal to P [X1 > a1] + 1
2
P [X1 = a1] and (5) + (6) is

equal to −P [X2 > a2]− 1
2
P [X2 = a2]. Together we have,

Gf (D, V ) = P [X1 > a1] +
1

2
P [X1 = a1]− P [X2 > a2]−

1

2
P [X2 = a2], (8)

where 1
2
P [X1 = a1] and 1

2
P [X2 = a2] vanish if a1, resp. a2, are not integers. Let δ(f), δ̃(f), σ(f)

be functions of f , satisfying the following set of conditions:

• 1 ≤ ˜δ(f) ≤ δ(f).

• δ(f) ≤ f .

We consider the following three cases:

• V ≤ f − δ(f), low value of V .

• V ≥ f + δ̃(f), high value of V .

• V ∈ (f − δ(f), f + δ̃(f)), intermediate value of V .

We resolve all cases in the following.

Case 1. Let V ≤ f − δ(f). As V is small, D is large with high probability since V

and D are distributed as Poisson random variables with parameters n(1−γ) and nγ, respec-

tively. That is, if one value is small, the other is large with high probability.

The larger D, the higher the chance that well-behaving voters obtain more votes. In the

worst case for well-behaving voters, V = f − δ(f), i.e. V is as large as possible in Case 1 and

hence D will be smaller with high probability than what it would be with high probability if

V was lower than f − δ(f).

Let us consider equality, V = f − δ(f). Then p, the probability that a vote is delegated

to V + 1 well-behaving voters, is

p =
V + 1

V + 1 + f
=

1

2
− δ(f)− 1

2(2f − δ(f) + 1)
,
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and a1, as given in (7), is

a1 =
f +D − V − 1

2
=
D + δ(f)− 1

2
.

We want to upper-bound the first two terms in (8), i.e. P [X1 ≥ a1] <
c
3
. First we state

Hoeffding’s inequality7, which gives us an exponential upper bound for some real-valued

ε > 0,

P [X1 > D(p+ ε)] 6 exp(−2ε2D). (9)

In order to make use of (9), we need to find ε first. By setting D(p + ε) = a1, we can solve

this for ε:

ε =
a1
D
− p =

δ(f)− 1

2

(
1

D
+

1

2f − δ(f) + 1

)
.

Note that for D > 2f , we can upper-bound ε to make the ensuing analysis easier,

ε ≤ 3δ(f)

4f
. (10)

By the inequality of Mitzenmacher and Upfal (2005), for 2f < nγ, we can lower-bound the

probability that D > 2f ,

P [D > 2f ] ≥ 1− e−nγ(enγ)2f

(2f)2f
.

As n is large, we see that this probability is high. That is, for any β > 0, there exists n∗,

such that for all n ≥ n∗, we have

e−nγ(enγ)2f

(2f)2f
≤ β.

The threshold n∗ is calculated by solving the above inequality. Later in the proof, we will

obtain more thresholds for n. In the end, we choose the maximum of all thresholds. Hence

we can use (10).

Next, we make use of the upper bound in (9). We set exp(−2ε2D) = c
3

and solve it for

D. But remember that now, we are using the upper bound on ε, (10):

exp(−2ε2D) =
c

3
≥ exp

(
−2

(
3δ(f)

4f

)2

D

)
.

We end up with a lower bound on D which we call D∗,

D ≥ f 2

δ2(f)

8

9
log

(
3

c

)
=: D∗. (11)

7See Hoeffding (1963).
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Then, for any D ≥ D∗ we have P [X1 ≥ a1] <
c
3

and hence,

Gf (D, V ) = P [X1 > a1] +
1

2
P [X1 = a1]− P [X2 > a2]−

1

2
P [X2 = a2]

≤ P [X1 ≥ a1] <
c

3
,

(12)

where the last inequality precisely follows from Hoeffding’s inequality.

In the last step, it remains to show that the probability that D ≥ D∗ is high and hence (12)

holds. For this, we can use the inequality from Mitzenmacher and Upfal (2005) for D∗ < nγ,

P [D ≤ D∗] ≤ e−nγ(enγ)D
∗

(D∗)D∗ .

With n large enough or by taking

δ(f) >
2f√
nγ

2 log(3/c)
+ 1

,

we can ensure that D∗ < nγ and hence by Mitzenmacher and Upfal (2005),

P [D ≥ D∗] = 1− P [D ≤ D∗] ≥ 1− e−nγ(enγ)D
∗

(D∗)D∗ .

We find parameters such that this event has a probability at least q, where q is close to 1.

Note that

ι(n) :=
e−nγ(enγ)D

∗

(D∗)D∗

has only one extremum for γ,D∗, n 6= 0, which attains its maximum at

n∗ =
D∗

γ
.

Further, note that ι(n)→ 0 as n→ {0,∞}. This means that for any β > 0, there are some

0 < n1 < n∗ < n2, so that for all n < n1 and all n > n2, we have ι(n) < β.

Let 0 < β < 1. We solve ι(n) = β. We know from above that there are two solutions:

e−nγ(enγ)D
∗

(D∗)D∗ = β, (13)

⇐⇒ −n γ

D∗
e−n

γ
D∗ = −β

1/D∗

e
. (14)

To solve this, we use the Lambert W function, which is the inverse function of f(w) = wew. 8.

W is multi-valued and has a infinite number of branches Wk(z) for k ∈ Z and z ∈ C. Wk(z)

is complex everywhere except for k = 0 and k = −1. W0(z) is real-valued and monotone

8A short overview of the Lambert W function is given in Johansson (2020).

22



increasing for R 3 z ≥ −1/e, with the image [−1,+∞). W−1(z) is real-valued and monotone

decreasing for real z ∈ [−1/e, 0), with the image (−∞,−1]. We want to apply the Lambert

W function to equation (14). On the left hand side (LHS), we have wew for w = −n γ
D∗ . On

the RHS we have a real number that is in the interval (−1/e, 0), since β ∈ (0, 1). As the RHS

is in the valid interval, we can apply two two branches W0 and W−1 to (14). Let k ∈ {0,−1}

(14) ⇐⇒ Wk(−n
γ

D∗
e−n

γ
D∗ ) = Wk(−

β1/D∗

e
)

⇐⇒ −n γ

D∗
= Wk(−

β1/D∗

e
)

⇐⇒ n = −D
∗

γ
Wk(−

β1/D∗

e
).

As W0(−1/e) = W−1(−1/e) = −1 and W0(0) = 0,

W0(−
β1/D∗

e
) ∈ (−1, 0)

and

W−1(−
β1/D∗

e
) ∈ (−∞,−1).

Hence, the two solutions to equation (14) are

n1 := −D
∗

γ
W0(−

β1/D∗

e
) < −D

∗

γ
W−1(−

β1/D∗

e
) =: n2.

Clearly, we see that n1 < n∗ < n2.

Therefore, we obtain two thresholds n1, n2 using the LambertW function, one for applying

W0 and the other for applying W−1:

n1,2 = −D
∗

γ
W0,−1(−

(1− q)1/D∗

e
).

We choose the higher threshold.

Case 2. Let V ≥ f + δ̃(f). Then we have to consider two cases: First, if V is much larger

than f , e.g. larger than f + σ(f). In this case, well-behaving agents win for any D. The

second case is the one where V is larger than f + δ̃(f) and smaller than f + σ(f).

Let V > f + σ(f). We then have to distinguish between two cases: D < σ(f) and

D > σ(f).

• If D < σ(f), then well-behaving agents win, because even if all D votes are being

delegated to misbehaving voters, these misbehaving voters still end up having fewer

votes.
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• If D > σ(f), we define a binomial random variable Y that stands for the number of

votes (out of D) that are delegated to well-behaving voters. The probability that a

vote goes to a well-behaving voter is p = V
V+f

. Note that p is an increasing function

in V . Although V > f + σ(f), we consider the case where V = f + σ(f). Hence we

consider a lower probability p than the actual p. Now,

p =
V

V + f
=

f + σ(f)

2f + σ(f)
= 1− f

2f + σ(f)
.

Note that Y ∼ Bin(D, p). The probability that well-behaving agents can at most

create a tie is

P [Y ≤ D − (V − f)

2
] < P [Y ≤ D

2
− σ(f)

2
]

≤ exp

(
−2

(
1

2
− f

2f + σ(f)
+
σ(f)

2D

)2

D

)

= exp

(
−2σ2(f)

(
1

4f + 2σ(f)
+

1

2D

)2

D

)

= exp

(
−2σ2(f)

(
D

(4f + 2σ(f))2
+

1

4f + 2σ(f)
+

1

4D

))
,

where we used the fact that V − f > σ(f) for the first strict inequality. For the second

inequality, we solved D(p− ε) = D
2
− σ(f)

2
and used Hoeffding’s inequality. We see that

the last function of the expression converges to 0 as f increases. This means again that

for sufficiently high f , well-behaving agents win.

Taking these together, we find that in the case V > f +σ(f), well-behaving agents win

for sufficiently high f . The fact that well-behaving agents win means that they have

more votes than misbehaving voters, i.e. g(·, ·) = 1. Hence, Gf (D, V ) = 0 in this case,

as we subtract two binomial sums which are both equal to 1.

Let f + δ̃(f) ≤ V ≤ f + σ(f).

• Let V = f + δ̃(f). Then, the probability p that a vote is being delegated to the

well-behaving voters is

p =
V

V + f
=

1

2
+

δ̃(f)

2(2f + δ̃(f))

and a2, as given in (7), is

a2 =
f +D + 1− V

2
=
D + 1 + δ̃(f)

2
.

We want to upper-bound the following: P [X2 ≤ a2] < c/3. Again we recall Hoeffding’s
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inequality for some real-valued ε > 0,

P [X 6 D(p− ε)] 6 exp(−2ε2D). (15)

To use (15), we first need to find ε. By setting D(p− ε) = a2, we can solve ε:

ε = p− a2
D

=
δ̃(f)

4f + 2δ̃(f)
− δ̃(f) + 1

2D
.

To ensure that ε is positive, we take D > 8f . On the other hand, note that for D > 8f ,

we can upper-bound ε, as we did in Case 1,

ε ≤ δ̃(f)

4f
. (16)

By the inequality from Mitzenmacher and Upfal (2005), for 8f < nγ, we can lower-

bound the probability of the event D > 8f :

P [D > 8f ] ≥ 1− e−nγ(enγ)8f

(8f)8f
.

With large n, this probability is high. That is, for any β > 0, there exists n∗, so that

for all n ≥ n∗,

e−nγ(enγ)8f

(8f)8f
≤ β.

The threshold n∗ is calculated by solving the previous inequality. At this point we obtain

another threshold for n. Remember that in the end, we will choose the maximum of

these thresholds. Hence we can use (16).

Next, we make use of the upper-bound in (15). We set exp(−2ε2D) = c
3

and solve it

for D. Again, remember that we will use the upper-bound on ε, (16):

exp(−2ε2D) =
c

3
≥ exp

−2

(
δ̃(f)

4f

)2

D

 .

We end up with a lower bound on D, which we denote by D∗,

D ≥ f 2

δ̃2(f)
8 log

(
3

c

)
=: D∗. (17)
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Then, for any D ≥ D∗, we have P [X2 ≤ a2] <
c
3

and hence,

Gf (D, V ) = P [X1 > a1] +
1

2
P [X1 = a1]− P [X2 > a2]−

1

2
P [X2 = a2]

< 1− P [X2 > a2]

< 1− (1− c

3
) =

c

3
,

(18)

where the last inequality precisely follows from Hoeffding’s inequality. As a last step,

it remains to show that the probability that D ≥ D∗ is high and hence (18) holds. We

can use again the inequality of Mitzenmacher and Upfal (2005) for bounding a Poisson

random variable, namely, for D∗ < nγ,

P [D ≤ D∗] ≤ e−nγ(enγ)D
∗

(D∗)D∗ .

Again, with n large enough or by taking

δ̃(f) >
2f√
nγ

2 log(3/c)
− 1

,

we can make ensure that D∗ < nγ and hence

P [D ≥ D∗] = 1− P [D ≤ D∗] > 1− e−nγ(enγ)D
∗

(D∗)D∗ .

We want to lower-bound the latter by q, where q is close to 1. By the property of the

Lambert function, we obtain two thresholds n1, n2, one for applying W0 and the other

for applying W−1,

n1,2 = −D
∗

γ
W0,−1

(
−(1− q)1/D∗

e

)
.

We choose the higher threshold.

• Let V = f + σ(f). This part is treated as the previous part, where V = f + δ̃(f).

Then, the probability p that a vote is delegated to the well-behaving voters is

p =
V

V + f
=

1

2
+

σ(f)

2(2f + σ(f))

and a2, as given in (7), is

a2 =
f +D + 1− V

2
=
D + 1 + σ(f)

2
.

We want to upper-bound the following: P [X2 ≤ a2] < c/3. We use Hoeffding’s inequal-
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ity for some real-valued ε > 0,

P [X 6 D(p− ε)] 6 exp(−2ε2D). (19)

To use (19), we need to find ε. By setting D(p− ε) = a2, we can solve ε:

ε = p− a2
D

=
σ(f)

4f + 2σ(f)
− σ(f) + 1

2D
. (20)

To ensure ε is positive, we take D > 8f . Then again, for D > 8f , we can upper-bound

ε as we did it before,

ε ≤ σ(f)

4f
. (21)

By the Poisson random variable concentration bound, for 8f < nγ, we can lower-bound

the probability that D > 8f ,

P [D > 8f ] ≥ 1− e−nγ(enγ)8f

(8f)8f
.

For large n, this probability is high. That is, for any β > 0, there exists n∗ such that

for all n ≥ n∗:

e−nγ(enγ)8f

(8f)8f
≤ β.

The threshold n∗ is calculated by solving the above inequality. We obtain one more

threshold for n. We will finally choose the maximum of all thresholds. Hence we can

use (21).

Next, we make use of the upper-bound in Hoeffding’s inequality, (19). We set exp(−2ε2D) =
c
3

and solve it for D. We again use the upper bound on ε, (21):

exp(−2ε2D) =
c

3
≥ exp

(
−2

(
σ(f)

4f

)2

D

)
.

We end up with a lower bound on D, which we again call D∗,

D ≥ 8
f 2

σ2(f)
log

(
3

c

)
=: D∗. (22)
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Then, for any D ≥ D∗ we have P [X2 ≤ a2] <
c
3

and hence,

Gf (D, V ) = P [X1 > a1] +
1

2
P [X1 = a1]− P [X2 > a2]−

1

2
P [X2 = a2]

< 1− P [X2 > a2]

< 1− (1− c

3
) =

c

3
,

(23)

where the last inequality precisely follows from Hoeffding’s inequality. As the last step,

it remains to show that the probability for D ≥ D∗ is high and hence that (23) holds.

For this, we can again use the concentration bound on the Poisson random variable, in

particular, for D∗ < nγ,

P [D ≤ D∗] ≤ e−nγ(enγ)D
∗

(D∗)D∗ .

Again, with n large enough or by taking

σ(f) >
2f√
nγ

2 log(3/c)
− 1

,

we can ensure that D∗ < nγ and hence,

P [D ≥ D∗] = 1− P [D ≤ D∗] > 1− e−nγ(enγ)D
∗

(D∗)D∗ .

We want the latter to be at least q, where q is close to 1.

Therefore, we obtain two thresholds n1, n2, one by applying W0 and the other by

applying W−1,

n1,2 = −D
∗

γ
W0,−1

(
−(1− q)1/D∗

e

)
.

We choose the higher threshold.

Case 3. Let V ∈ (f − δ(f), f + δ̃(f)). We can bound the probability that V is in this

interval by

P [V ∈ (f − δ(f), f + δ̃(f))] ≤ 2δ(f) · (f − δ(f))f−δ(f)

ef−δ(f)(f − δ(f))!
. (24)

The latter inequality follows from two conditions. First, δ̃(f) ≤ δ(f). Second, from Gers-

bach et al. (2021), we know the fact that Poisson probability xd

exd!
is maximized for x = d. On

the other hand, the sequence dd

edd!
is decreasing with increasing d, and hence, inequality (24)

follows.

Next, we obtain the following upper bound on the probability:

P [V ∈ (f − δ(f), f + δ̃(f))] <
c

3
.
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For any d, the following holds by Stirling’s inequality:

√
2πdd+1/2e−d+1/(12d+1) < d!.

Let us rewrite (24), using d := f − δ(f), and apply Stirling’s inequality:

P [V ∈ (f − δ(f), f + δ̃(f))] ≤ 2δ(f)
dd

edd!
<

2δ(f)√
2πde1/(12d+1)

.

Next, we set the RHS equal to c/3 and obtain

δ2(f) =
πc2

18
(f − δ(f))e2/(12(f−δ(f))+1).

We upper-bound δ by the following:

δ(f) ≤ ce

√
π

18

√
f.

The latter can be rewritten as

f ≥ 18

e2π

δ2(f)

c2
.

δ(f) should be at least 1. This is a requirement to have V strictly smaller than f . By taking

the maximum of lower bounds on D obtained in (11), (17) and (22), we obtain a lower bound

for the value of n, too. Altogether, we have shown that in each case, Gf (D, V ) < c
3
. This

ends the proof of the theorem.

Proof of Proposition 2. The right-hand side of equation (1) for f = 1 reads

ξn,1(γ) =
∞∑
D=0

∞∑
V=0

(nγ)D

enγD!

(n(1− γ))V

en(1−γ)V !

×
[ D∑
h=0

(
D

h

)(
V + 1

V + 2

)h(
1

V + 2

)D−h
g(V + 1 + h, 1 +D − h)

−
D+1∑
h=0

(
D + 1

h

)(
V

V + 1

)h(
1

V + 1

)D+1−h

g(V + h,D + 2− h)

]
.

For γ = 1, only the terms remain where V = 0,

ξn,1(1) =
∞∑
D=0

nD

enD!

[ D∑
h=0

(
D

h

)(
1

2

)D
g(1 + h, 1 +D − h)

]
.

Note that g(1 + h, 1 +D − h) = 1
2

if 2h = D and g(1 + h, 1 +D − h) = 1 if 2h > D. Hence,
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we have

ξn,1(1) =
∞∑
D=0

nD

enD!

[(
D

h

)(
1

2

)D
1

2
1{2h=D} +

(
1

2

)D D∑
h=dD+1

2
e

(
D

h

)]
. (25)

We use the following property about the sum of binomial coefficients:

D∑
h=0

(
D

h

)
= 2D. (26)

Recall the symmetry property of binomial coefficients for non-negative D and h:(
D

h

)
=

(
D

D − h

)
. (27)

With the two properties (26) and (27) we end the proof.

In equation (25), the first term in brackets vanishes for odd D. This means that for odd

D, the entire expression in brackets is the following:

(
1

2

)D D∑
h=D+1

2

(
D

h

)
=

(
1

2

)D
2D

2
=

1

2
,

where the first equality follows from (26) and (27), as we only sum over exactly half of the

binomial coefficients.

If D is even, the expression in brackets in equation (25) is

(
D
D
2

)(
1

2

)D
1

2
+

(
1

2

)D D∑
h=D

2
+1

(
D

h

)

=

(
1

2

)D(D
D
2

)
1

2
+

D∑
h=D

2
+1

(
D

h

)
=

(
1

2

)D
2D

2
=

1

2
,

where again, the second equality follows from (26) and (27).

It follows that

ξn,1(1) =
1

2

∞∑
D=0

nD

enD!
=

1

2
.
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The right-hand side of equation (1) for f = 1 reads

ξn,1(γ) =
∞∑
D=0

∞∑
V=0

(nγ)D

enγD!

(n(1− γ))V

en(1−γ)V !

×
[ D∑
h=0

(
D

h

)(
V + 1

V + 2

)h(
1

V + 2

)D−h
g(V + 1 + h, 1 +D − h)

−
D+1∑
h=0

(
D + 1

h

)(
V

V + 1

)h(
1

V + 1

)D+1−h

g(V + h,D + 2− h)

]
.

For γ = 0, only the terms remain where D = 0,

ξn,1(0) =
∞∑
V=0

nV

enV !

[
g(V + 1, 1)−

1∑
h=0

(
1

h

)(
V

V + 1

)h(
1

V + 1

)1−h

g(V + h, 2− h)

]
=

∞∑
V=0

nV

enV !

[
g(V + 1, 1)− 1

V + 1
g(V, 2)− V

V + 1
g(V + 1, 1)

]
.

From the equation above, we see immediately that the term in brackets is 0 for V ≥ 3, as all

g(·, ·)-terms are 1. Therefore, we only need to consider ξn,1(0) for V = 0, 1, 2. It follows that

ξn,1(0) =
1

2en
+

n

2en
+

n2

12en
=

1

en
(
1

2
+
n

2
+
n2

12
).

Since ξn,1(γ) is a continuous function, equation (1) has a solution for any c ∈ [ 1
en

(1
2
+n

2
+n2

12
), 1

2
].

Proof of Corollary 1. The derivative w.r.t. α of the RHS of (2) is given by

nf

2f !

fαf−1 − nαf

enα
+

nf−1

2(f − 1)!

(f − 1)αf−2 − nαf−1

enα
.

Setting this equation equal to 0, we obtain

0 = nf (fαf−1 − nαf ) + nf−1f((f − 1)αf−2 − nαf−1)

= αf−2(f(f − 1)− n2α2).

The only positive solution is α∗ =

√
f(f−1)
n

. We need that α∗ ∈ [0, 1], or, equivalently,

f(f − 1) < n2, which is achievable for large enough n. We can easily verify that the RHS

of (2) has a maximum at α∗ by inserting α∗ into the second derivative of the RHS of (2).

As a last step, we have to insert α∗ into the RHS of (2) to obtain the right endpoint of the

interval. As for f ≥ 2 and α = 0, the RHS of (2) is 0, the left endpoint of the interval is 0.

For f = 1, we simply insert α = 0 and α = 1 into the RHS of (2) to obtain both endpoints

of the interval.
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