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1 Introduction

The extensive literature on the impact of minimum wages in the US typically reports strong com-
pression of relative wages and a small employment effect. Many papers cannot rule out that an
increase in the minimum wage will actually raise rather than reduce employment, see e.g. Card
and Krueger (1994), Dube et al. (2010), Cengiz et al. (2019), Bailey et al. (2020) and Fishback and
Seltzer (2020). Similar results have been reported for other countries, see Dolado et al. (1996) for
Europe, Machin and Manning (1994) and Stewart (2012) for the UK, Ahlfeldt et al. (2018, 2022) for
Germany and Engbom and Moser (2018) and Haanwinckel and Soares (2021) for Brazil.

Although this extensive literature has provided much insight, it has been plagued by a number
of persistent problems, see e.g. Autor et al. (2016) and Neumark and Shirley (2021). First, most
research uses the Kaitz index (the ratio of the minimum to the median wage), as a measure of the
bindingness of the minimum wage. However, the median is endogenous, due to either truncation
of workers with low human capital or compression of relative wages. Moreover, there might be
reverse causality: some outside force may drive up both the median and wage dispersion in a
region, e.g. the IT revolution in San Francisco. The rise in the median will then lead to a fall in the
Kaitz index, which induces the researcher to conclude that a less binding minimum wage leads to
higher wage dispersion. Second, disentangling truncation and compression effects is impossible
when using data on wages only without making strong functional form assumptions. Third, all
effects are likely to depend on the initial level of the minimum wage. For example, some papers
found positive employment effects for low initial levels of the minimum wage, but these effects
are unlikely to persist for higher levels. Finally, employment effects are likely to vary between
workers with different levels of human capital. This paper addresses these problems.

A short review of the literature on minimum wages over the past 40 years is helpful for under-
standing our approach. Our review starts with Meyer and Wise (1983)‘s analysis of the truncation
effect of the minimum on the wage distribution, using data on wages only. They hypothesize that
the minimum truncates an otherwise invariant wage distribution. The truncated lower tail can be
split into three parts. For the first part, the wage is raised to the statutory minimum, yielding a
spike in the wage distribution. For the second part, there is non-compliance: workers get paid be-
low the statutory minimum. The third part measures the disemployment effect. Meyer and Wise
report a substantial loss of employment.

Subsequent research by Card and Krueger (1994), based on time series evidence and a difference-
in-difference approach between New Jersey and Pennsylvania found much smaller or even posi-
tive employment effects. This finding initiated a flurry of papers, at one hand disputing the em-
pirical validity of these claims and at the other hand explaining the combination of small or even
negative truncation effects and strong wage compression.

A first strand of papers use monopsony models and models with search frictions, notably Bon-
temps et al. (2000), Machin et al. (2003), Flinn (2006) and Engbom and Moser (2018). These models
can explain why an increase in the minimum wage might raise rather than reduce employment.
Models with search frictions predict that job seekers under-invest in search when the Hosios con-
dition is violated by job seekers capturing too small a share of the match surplus. An outside legal
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intervention in wage setting can alleviate this hold up problem.
A second strand followed up on an idea first expressed by Rosen (1974) to apply hedonic pric-

ing models for the analysis of minimum quality standards. In a Walrasian market, a minimum
wage is akin to a minimum quality standard for human capital. Contributions in this strand are
Teulings (1995, 2000) and Haanwinckel and Soares (2021). The idea is that small disemployment
effects of minimum wages can go hand in hand with strong wage-compression effects by a chain
of substitution effects, driving up the wages of those workers that are the closest substitutes for
workers whose human capital falls below the implicit minimum quality standard imposed by the
minimum wage and who therefore lose their job.

Motivated by this research, DiNardo et al. (1996), Lee (1999), and Teulings (2003) seek to ex-
plain the negative effect of the minimum on wage dispersion, not from truncation of workers with
low human capital, as in Meyer and Wise (1983), but from compression of relative wages. In par-
ticular Lee (1999) and Teulings (2003) found that a minimum wage generates strong compression
of wage-differentials above the minimum. Lee (1999)’s paper was probably the first to use inter-
state minimum wage differentials as a source of variation, allowing to control for time and region
fixed effects. However, similar to Meyer and Wise (1983), he uses data on wages only. Hence, Lee
has essentially assumed that the fall in wage dispersion is due to compression and not truncation.
He concludes that the full increase in wage inequality during the eighties can be attributed to the
freeze of the nominal minimum wage during the Reagan presidency. However, the problem in
his analysis is that minimum wages were found to compress wages differentials not only in the
bottom but also in the upper half of the distribution. This is implausible. Teulings (2003) also
found strong compression, but mainly for the lower half of the distribution. He uses also data on
workers’ human capital, allowing separate inference on truncation (i.e. changing the distribution
of human capital) versus compression (changing the wage distribution for a constant distribution
of human capital).

Both Lee (1999) and Teulings (2003) used the Kaitz index as their independent variable. Autor
et al. (2016) have argued that this procedure is suspect when e.g. 50-10% log wage differential
serves as the endogenous variable. The median enters both the explanatory and endogenous vari-
ables. Hence, measurement error in the median introduces an artificial correlation, biasing the
estimation results. Moreover, cities tend to have both a higher median and a larger wage disper-
sion than rural areas. Again, this creates an artificial correlation biasing the estimation results.
Correcting for these biases, Autor et al. (2016) did not find significant evidence for compression ef-
fects above the spike, thereby confirming the initial assumption of Meyer and Wise (1983). Though
one might dispute the validity of their instruments, their analysis shows the problem of using the
Kaitz index as the explanatory variable.

Neumark and Shirley (2021) question the general view that the disemployment effects are small
or even negative. They argue that there is clear evidence for negative employment effects for sub-
groups of low human capital workers. Their argument suggests that there is strong heterogeneity
in the impact of minimum wages on employment, not only by the level of the minimum wage, but
also between subgroups of workers.

Cengiz et al. (2019) try to correct the Meyer and Wise (1983) model for the compression effects
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above the minimum reported by Lee (1999) and Teulings (2003). Using data on wages only, they
start from the Meyer and Wise (1983) estimate of the disemployment effect. From this estimate
they subtract the added probability mass for wage levels slightly above the minimum, arguing
that these workers earned less than minimum wage before its increase and should therefore not
be included in Meyer and Wise (1983) estimate of the disemployment effect. They found the dis-
employment effect to be small. We argue that the magnitude of the employment effect can be
estimated from wage data only by making strong functional form assumptions.

From this short history of the research on minimum wages, the main elements of our design
are easy to understand. We tackle the problem of the endogeneity of the median by using the spike
in the wage distribution rather than the Kaitz index as our explanatory variable. We interpret the
spike as the objective of the policymaker and the nominal minimum wage as the instrument for
implementing this objective. The spike will be determined by the real minimum wage. Hence,
it depends both on the nominal minimum wage and on the counterfactual evolution of nominal
wages in general. Apart from region and time fixed effects, we use a Bartik instrument for agglom-
eration externalities derived from a companion paper, Chen and Teulings (2021), to instrument for
the counterfactual wage. Moreover, we address the systematic differences in the wage distribution
between cities and the countryside by treating 34 SMSA’s as separate regions. We disentangle the
truncation and the compression effect by aggregating a vector of personal characteristics into a
single index for workers’ human capital, following Teulings (2003), which we use for the analysis
of both relative wages and employment. We solve the problem of heterogeneity in employment
effects by analyzing the effect on employment for each percentile of the human capital distribution
and by allowing this effect to be non-linear in the spike. Our specification does not make a priori
choices regarding the sign of employment effects for each quantile of the distribution. Moreover,
it allows for a sign reversal when the spike exceeds some critical threshold. We use data starting
from 1979, when the spike accounted for 5% of total employment for the country as a whole and
even 10% in some low wage regions, to allow for sufficient variation in the spike for reliably es-
tablishing this turning point. These non-linearities allow us to quantify trade-offs legislators face
when setting the minimum wage.

We find strong evidence both for the compression of wage differentials above the spike and
for heterogeneous employment effects. The return to human capital for the median worker is 11%
lower when the spike is 10% compared to the case without a spike; it is even 30% lower for a
worker earning a wage just above the minimum. Total employment is maximized by a spike of
10%. The additional employment of this spike relative to a situation without a minimum wage
is 14% of total employment, with a strong shift of the distribution of employment towards low
skilled workers. Employment for workers with higher levels of human capital is even negatively
affected by an increase in the minimum. These effects are precisely measured. This strong positive
employment effect demonstrates the relevance of monopsony models above the hedonic pricing
models.

We provide counterfactual simulations for several turning points in the evolution of the mini-
mum. We find that the changes in minimum wages have contributed substantially to the variation
in the return to human capital and wage dispersion in the bottom half of the distribution in par-
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ticular in 1980s and that an increase in the minimum wage might be an effective instrument for
boosting the labor share in aggregate output.

The structure of the paper is as follows. Section 2 discusses the compression and the truncation
effects in hedonic models. These concepts guide our empirical approach, which is set out in Section
3. The data are discussed in Section 4, while the empirical specification and the estimation results
are presented in Section 5. Section 6 contains the counterfactual analysis. Section 7 offers some
concluding reflections on our results.

2 Some theoretical considerations

2.1 Walrasian models

Modelling spillover effects of a minimum wage to the wages above the minimum is not straight-
forward. Rosen (1974) was probably the first to observe that hedonic pricing models with hetero-
geneity on both sides of the market are a prerequisite for assessing the impact of minimum quality
standards; a minimum wage is akin to a minimum quality standard for labor. Sattinger (1975) and
Teulings (1995, 2005) analyzed equilibrium assignment models of heterogeneous workers to het-
erogeneous jobs, where the heterogeneity on each side of the market is captured by a single index,
say, the worker’s human capital h on the supply side and job-complexity z on the demand side.1

Gabaix and Landier (2008)’s model of CEO compensation has the same structure. This section
shows why an increase in the minimum yields wage compression in these models.

Returns to scale are constant in these models. Let x (h, z) be the log productivity of a worker
with human capital h in a job with complexity z; x (h, z) is twice differentiable in both argu-
ments. Human capital is assumed to have both an absolute advantage in all job-types, implying
xh (h, z) > 0 (more human capital yields more input, irrespective of the job type), and a compara-
tive advantage in more complex jobs, implying xhz (h, z) > 0 (log supermodularity: more human
capital yields relatively more additional output in more complex jobs). The distributions of the
supply of human capital and the demand for product complexity are exogenous; both distribution
functions are assumed to be twice differentiable. For the sake of the argument, we ignore other
factors of production. Finally, there is perfect competition in all markets.

Under these assumptions, absolute advantage implies that the equilibrium log wage function
w (h) is differentiable and strictly increasing, w′ (h) > 0, while comparative advantage implies
that the equilibrium assignment of worker- to job-types, z (h), is also a differentiable and strictly
increasing function, z′ (h) > 0, see Teulings (2005) for a proof.

Since types of labor are the only factors of product and since there is perfect competition, wages
account for the full value of output and profits are zero. Hence, profit maximization is equivalent to
cost minimization. Since production is characterized by constant return to scale, cost minimization
for a given quantity is equivalent to cost minimization per unit of output. Let h (z) be the type of

1A single index is not the same as a single factor of production. In fact, single-index models have an infinite number
of factors of production, since each value of the index corresponds to a different factor of production. The elasticity
of substitution between two factors is a decreasing function of the distance between these factors measured along the
index: DIDES: Distance Dependent Elasticity of Substitution, see Teulings (2005).
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worker hired by an employer offering a job of complexity z; this function is therefore the inverse
of z (h), which exists since z′ (h) > 0. The employer chooses the optimal level of human capital
h (z) as to minimize cost per unit of output

h (z) = arg min
h

[
ew(h)−x(h,z)

]
,

w′ (h) = xh [h, z (h)] , (1)

where the second line is the first-order condition of the program in the first line, substituting z for
z (h) and hence h (z) for h [z (h)] = h. This is a fundamental insight in this class of models: keeping
constant the level of human capital h, the slope of the log wage function w′ (h)(or equivalently:
the Mincerian return to human capital) is an increasing function of the complexity z (h) of the
job which an h-type worker holds in equilibrium. The same result applies in Gabaix and Landier
(2008)’s model of CEO pay, where the return to a CEO’s talent is proportional to the size of his firm.
Keeping constant his managerial talent, the larger are firms, the steeper is the CEO compensation
curve.

The impact of a minimum wage is conveniently demonstrated by a simple parameterization
of this model: human capital and jobs are uniformly distributed at the unit interval, h ∈ [0, 1] and
z ∈ [0, 1], and the productivity function satisfies

x (h, z) = −1

γ
eγ(z−h),

with γ > 0, satisfying the previous assumptions of absolute and comparative advantage. By equa-
tion (1) the first-order condition reads

w′ (h) = eγ[z(h)−h]. (2)

For γ = 0, relative wages are independent of the minimum wage. This is the case where worker
types are perfect substitutes.

Since both h and z are distributed uniformly, the equilibrium assignment is z (h) = h. By
equation (2), this implies w′ (h) = 1. The situation is portrayed in Figure 1. The lower panel shows
the assignment z (h) of worker- to job-types, while upper panel shows the wage function w (h);
the red continuous lines depict the case without a minimum wage. All job-types are done and
all worker-types are employed, where the worker with the least human capital is assigned to the
simplest job, z (0) = 0, and the worker with the highest human capital to the most difficult job,
z (1) = 1. We choose the numeraire of the model such that w (0) = 0, so that w (h) = h.

Consider the effect of log minimum wage m; since w (0) = 0, m > 0 for this minimum to be
binding. The minimum wage causes the least skilled workers to lose their job. Let h̃ be the worker
with the lowest human capital who remains employed. Since h is distributed uniformly on the unit
interval, h̃ is the disemployment effect of the minimum wage as a fraction of total employment.
h̃ measures the truncation effect of a minimum wage on the wage distribution: wage dispersion is
reduced since the workers with the least human capital lose their job.

Let w̃ (h) and z̃ (h) denote the wage function and the equilibrium allocation for this minimum
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Figure 1: Equilibrium Assignment z(h) and Wages w(h)
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wage, the blue dashed lines in Figure 1. Both functions are also portrayed in Figure 1 as the
dotted blue lines. Since all jobs have to be done and since z̃′ (h) > 0, the equilibrium assignment
z̃ (h) starts from z

(
h̃
)

= 0 and ends at z (1) = 1. All worker-types who remain employed hold
jobs that are less complex after rather than before the introduction of the minimum wage, z̃ (h) ≤
z (h), where equality holds only for the highest type, h = 1; the lower h, the larger z (h) − z̃ (h).
Summarizing our results till sofar: a minimum wage causes the least skilled workers (h < h̃) to
lose their job. Since these jobs have to be done anyway, all other workers move to less complex jobs
than before the introduction of the minimum wage (except the worker with h = 1, who remains
doing the most complex job z̃ (1) = z (1) = 1).

Since w̃ (h) is differentiable and increasing, the wage of the least skilled worker who remains
employed is equal to the minimum wage:

w̃
(
h̃
)

= m.

Due to equation (2), the decrease in job complexity for all workers (except for h = 1) implies
that the slope of the wage function declines: w̃′

(
h̃
)
≤ w′ (h) = 1, where equality holds for h = 1

only. This flattening is the strongest for least skilled worker who remains employed, h̃. It gradually
declines for higher levels of human capital. At the upper support of the human capital distribution,
h = 1, the wage function before and after the introduction of the minimum wage run parallel, since
z̃ (1) = z (1), and hence w̃′ (1) = w′ (1). Since our example is constructed such that w (h) is linear in
the absence of a minimum wage (and hence w′′ (h) = 0), w̃′′ (h) ≥ 0 in the presence of a minimum
wage (with equality holding only for h = 1).

These arguments establish the slope of w̃ (h), but not its level. The latter follows from a Wal-
rasian argument, see Teulings (2005) for the proof. Consider a marginal increase in the minimum
wage, forcing workers with h < h̃ out of employment. Since wages are equal to the value of the
marginal product, the fall in aggregate output due to this increase in the minimum must be equal
to the wage sum of the workers who lose their job. Hence, up to a term of order O

(
m−2

)
, the sum

of wages for all workers who remain employed must be equal before and after the introduction of
the minimum wage: ∫ 1

h̃
ew̃(h) − ew(h)dh = 0, (3)

Since the wage function flattens, equation (3) implies that the wages at the bottom go up, while
these at the top go down. This is the compression effect of a minimum wage. Roughly stated, the
two blue shaded areas in Figure 1 between the functions w̃ (h) and w (h) must have equal surface.2

We shall use equation (3) to calculate the aggregate shift in value-added between labor and other
factors of production due to an increase in the minimum wage.

As equation (2) shows, this compression effect is proportional to γ. For γ = 0 (perfect substitu-

2The equality of the surfaces of the two blue shaded areas requires∫ 1

h̃

w̃ (h)− w (h) dh = 0.

This condition is not exactly the same as equation (3), which uses the wage level ew(h) than its log w (h).
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tion of worker types), the return to human capital is independent of workers’ assignment to jobs
z (h). Hence, there is no compression effect in that case.

Summarizing the conclusions of this analysis. For γ > 0, the introduction of a minimum wage
has three effects:

1. truncation: workers with the least human capital, h < h̃, lose their job;

2. compression: the return to human capital w′ (h) falls for all levels of human capital, except for
the highest, the more so the lower h; hence, w′′ (h) rises;

3. the sum of wages for workers who remain employed remains constant; hence, workers with
h slightly above the disemployment threshold h̃ gain by the introduction of a minimum
wage, while workers at the top of the human capital distribution lose.

Note, however, that the compression effect in this model is driven by the truncation effect:
workers take less complex jobs after the introduction of a minimum wage since the least skilled
workers are truncated from the employment distribution. Without a truncation, this model does
not generate compression. Note furthermore that this model does not predict a spike in the wage
distribution.

2.2 Identification from only the wage distribution

Cengiz et al. (2019) seek to establish the disemployment effect of minimum wages just from the
shape of the wage distribution. They set out to establish the additional probability mass in the
wage distribution just above the minimum due to the compression effect and compare that ad-
ditional mass to the truncated mass below the minimum. The disemployment effect is measured
as the difference between this truncated mass minus the additional mass just above the minimum
(workers previously employed below the minimum who found employment in jobs that pay above
the minimum after its increase). This section applies the framework developed in the previous sec-
tion to argue that this method works only under strong functional form assumptions.

Empirically, the distribution of human capital is bell shaped (like the normal distribution)
rather than uniform. Consider an increase in the minimum wage. Does an increase in the fat-
ness of the lower tail of the wage distribution provide evidence in favour of either truncation or
compression? The answer is: hard to tell. Let w (h,m) denote the equilibrium log wage as a func-
tion of the human capital h of the worker and the applicable log minimum wagem. It is convenient
to construct the index h such that for a particular level of the log minimum wage mo, the function
is linear in h: whh (h,mo) = 0 for all h (the subscript refers to the relevant partial derivative). This
normalization is not essential, but makes the subsequent argument more easy to follow.3 Let h (m)

be lowest level of human capital that is employed for that level of the log minimum m (the equiv-
alent of h̃ from the previous section). Like in the previous section, we assume that, apart from
the truncation at h (m), the supply of human capital f (h,m) is exogenously fixed (labor supply

3Following the argument in the previous section, w (h,m) is strictly increasing in h for any m. Hence, an index h
for which whh (h,mo) = 0 does always exist, by replacing the original human capital index h∗ by a transformed index
h = w (h∗,mo). This transformation can be applied without changing the empirical content of the model.
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is fully price-inelastic). Except for the renormalisation due to this truncation, the density of the
human capital distribution among employment is therefore invariant to changes in the minimum
wage

f (h,m) =
f (h)

1− F [h (m)]
for h ≥ h (m)

where f (h) denotes the untruncated distribution of human capital that applies in the absence of
a minimum wage. Suppose that we start from a log minimum wage mo. The density function of
the log wage distribution conditional on a log minimum wage m, denoted g (w,m), is equal to the
density of human capital distribution f(h,m) times the Jacobian dh/dw = 1/wh (h,m):

g [w (h) ,m] = f (h,m) /wh (h,m) .

The relative change in the density function of log wages at the minimum is therefore equal to

d

dm
[log g (m,m)]|m=mo = −whm [h (mo) ,mo]

wh [h (mo) ,mo]
(4)

+

(
f ′ [h (mo)]

f [h (mo)]
+

f [h (mo)]

1− F [h (mo)]

)
h′ (mo) ,

using whh (h,mo) = 0. The first term is the compression effect: the flattening of the wage function.
This term is positive, since whm (h,m) < 0 for γ > 0. The second term is the truncation effect: the
change in the lower support of the human capital distribution among employment. Since f ′ (h) is
positive in the left tail of a bell shaped distribution, this term is positive, too. If γ is high, so that
there is strong compression and little truncation, then the first term dominates. In the reverse case,
the second term dominates. The change in the fatness of the left tail of the wage distribution is
therefore an uninformative statistic regarding the relative size of compression versus truncation.

This argument sketches the outline of a solution to this problem in the approach of Cengiz et al.
(2019). When information on workers’ human capital is available, we can disentangle changes in
the return to human capital on the one hand and changes in its distribution on the other hand.
This strategy will be pursued.

3 Empirical specification

We consider a world that consists of multiple regions r which are observed at multiple points in
time t; the index s refers to a combination of region r and time t; we refer to each s as an economy.
Each worker i is located in a single economy s, so the index i uniquely identifies the economy s in
which i lives.

Similar to the model in Section 2, the human capital of worker i can be summarized in a sin-
gle index hi. This index has infinite support on the real domain. The wage return to this index
may vary across economies, but the way in which various components of workers’ human capital
(like experience and years of education) are aggregated into this single index hi is invariant across
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economies. However, the index hi is observed only partially:

hi = gi + εi, (5)

where gi is the observable part of the human capital index hi and εi ∼ N
(
0, σ2s

)
is the unobservable

component which is orthogonal to gi. Note that we allow the variance σ2s of εi to vary between
economies to allow for changes in the role of unobservable components of hi.

Let ms be the log minimum wage in economy s and let ws (h,m) be the log nominal wage
for a worker with human capital h in economy s when the log minimum wage is equal to m.
Hence, ws (h) ≡ ws (h,ms) is the log wage function evaluated at the actual log minimum wage
ms in economy s, is the function that generates our data on log wages wi. Note that we allow the
wage function ws (h,m) to vary between economies for other reasons than the minimum wage. In
line with the analysis Section 2, we assume that this function is twice differentiable and strictly
increasing in h everywhere, except for the spike at the minimum wage, where the function is flat.
Let hs (m) be the upper support of the spike in economy s as a function of the log minimum wage:
the highest level of h that does not earn more than the minimum wage. At hs (m), ws [hs (m) ,m]

is continuous but non-differentiable; the function is flat to the left of hs (m); it is increasing to its
right. hs ≡ hs (ms) is the upper support of the spike in our data. Hence:

ws [hs (m) ,m] = m,

ws (h,m) > m, ∀h > hs.

The Meyer and Wise (1983) model is the special case of this model wherews (h,m) does not depend
on m for all h > hs (m).

The research question we address is how ws(h,m) and the density function of human capital
among employment depends on the minimum wage. The standard approach has been to use
the Kaitz index (ratio of the median to the minimum wage) as an index for the bindingness of the
minimum wage. The problem of this approach is that the median wage itself is endogenous, as it is
potentially affected by truncation and compression. Even more problematic, there are systematic
differences between economies in their wage distribution unrelated to the minimum wage. In
particular, both the mean and dispersion of the wage distribution tend to be higher in cities, e.g.
due to agglomeration externalities. This yields a negative correlation between the Kaitz index and
wage dispersion, which is unrelated to the minimum wage. We, therefore, do not use the Kaitz
index, but the spike as a measure of the bindingness of the minimum wage. We view the minimum
wage as an instrument of the policymaker to manipulate the level of the spike. Hence, our first
stage regression analyses the effect of the minimum wage on the spike, while our second stage
regressions analyze the effect of this instrument for the spike on wages and employment.

Following this argument, we apply a 5-step estimation procedure:

1. The construction of the index gi for observed human capital for each individual i;

2. The estimation of the upper support of the spike (in terms of the human capital index) for
each economy s;
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3. The first-stage regression for the spike;

4. The second-stage regression for the effect of the spike on the wage function ws (h,m);

5. The second-stage regression for the effect of the spike on the distribution of observed human
capital among employment.

These steps will be elaborated in the subsequent subsections. Before doing so, we provide a
discussion of the data.

4 Data

We draw data from the Current Population Survey, Merged Outgoing Rotation Groups (CPS-
MORG) from 1979 till 2019. We use the hourly wage, years of education, occupation, industry
and other demography information as gender, age, marital status, and race. Our sample includes
all workers aged between 16 and 64.

For our classifications of regions, we first select 34 Metropolitan Statistical Areas (MSAs). We
then take the remaining part of each state as one non-city region. The definition of MSAs changes
over time. To make the samples consistent, we match different IDs of these areas over time. From
1979 to 1985, we use the 1970 Census ranking to identify MSAs. From 1986 to 1988, we use CMSA
and PMSA identifiers. From 1989 to 2003, we use MSAFIPS and for the rest of the samples we use
CBSAFIPS. Out of the total sample of 2,099,847 observations, 36.2% lives in MSAs. We have 47
Non-MSA state regions: as is common practice, we exclude Hawaii and Alaska. Furthermore, we
split New Jersey from NY-NJ MSA, and exclude Washington DC, leaving us with 34 MSAs and 47
non-city regions, 81 regions in total. The full list of MSAs is in Appendix Table A1. We use the
industry definition by Autor et al. (2003) and the crosswalk constructed by IPUMS.

Let qs be the spike in the wage distribution at the minimum wage. We operationalize the
definition of the spike by including all workers whose log wage is equal to ms plus or minus .01

(that is 1% above or below the minimum). The details of the construction of the spike are in the
Appendix, while the summary statistics table is in Table A2.

5 Estimation

5.1 Step 1: the human capital index

For the construction of the index gi for observed human capital, we apply a second-order Taylor
expansion to the function wi = ws (hi):4

wi = ω0s + ω1shi + ω2s

(
h2i − σ2s

)
(6)

= ω0s + ω1sgi + ω2sg
2
i + εwi,

gi = χ′xi,

4Strictly speaking, this specification violates our assumption thatws (h) is strictly increasing. In practice, the support
of h is limited to the domain [−2, 2], so that this will not be a problem as long as |ω2s| < ω1s/4.
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where we substitute equation (5) for hi in the second line and where xi is the standard vector
of observable personal characteristics like gender, marital status, age, race and education. This
specification implies that we allow for a separate fixed effect ω0s, a separate return to human capital
ω1s and a separate second-order effect ω2s for each economy s, while the parameter vector χ is
common to all economies. Using equation (5), we can work out the that the error term εw,i satisfies

εwi = (ω1s + 2ω2sgi) εi + ω2s

(
ε2i − σ2s

)
and has zero mean. Empirically, the error term captures not only unobserved human capital,
but also measurement error and the effect of search frictions. Angrist and Krueger (1991) show
that the measurement error accounts for 30% of the variance in log wages, while Gottfries and
Teulings (2021) show that search frictions account for another 10%. The actual interpretation of εi
does not matter for our estimation results, since we are only interested in the parameter vector χ
aggregating the components of xi into a single index for observed human capital gi.

Equation (6) allows full flexibility ω0s and ω1s across economies s. There are good reasons for
this: the return to human capital has increased between 1979 and 2019, in particular for higher lev-
els of human capital, see Autor and Dorn (2013). However, equation (6) allows too much flexibility.
In fact, it is under-identified.5 We therefore impose further structure:

E (xi) = 0 ⇒ E (gi) = 0, (7)

E (ω1s) = 1,

where the expectations are taken over all individuals in the sample in the first line and over all
economies in the second line.6 These assumptions imply that human capital index hi is scaled as
such that the ”average” worker in our sample (with hi = gi = 0) has a return to this index of unity
”on average” across regions and over the time span of our sample. This choice is just a normalization
facilitating the interpretation of our results. Furthermore, we impose additional structure on ω2s

ω2s = ωx (t− Et) , (8)

implying that ω2s is the same across regions, while the variation over time is restricted to a linear
time trend with zero mean over the time span of our sample. Hence, we impose ”on average lin-
earity” of ws (h,m) in h for the construction of the human capital index gi. Again, this is not really
a restriction, but a convenient normalization, since we can include everything and its square in
the vector xi to capture any non-linearity in the relation between gi and wi to an arbitrary degree
of precision. We do so in our empirical specification, by allowing for a number of well-known
non-linearities, e.g. the experience profile and the interaction between years of education and ex-
perience and by using dummies for each value of years of education. Moreover, deviating slightly
from our assumption that χ is constant across economies, we included cross effects of marital sta-

5We can apply a linear transformation to gi, g∗i = χ0 + χ1gi, that is observationally equivalent to equation (6) by
an appropriate change in the parameters ω0s, ω1s and ω2s:.ω∗0s = ω0s − ω1sχ0 − ω2sχ

2
0, ω∗1s = (ω1s − 2ω2sχ0) /χ1 and

ω∗2s = ω2s/χ
2
1

6E (xi) = 0 implies that xi cannot contain an intercept.

13



tus, gender, and a time trend to account for the changes in the attitude towards working women.
Similarly, we account for the differential impact of being black in Southern states.

Equation (6)-(8) is a simple NLLS model. It can be estimated in an iterative way, by first esti-
mating a standard OLS earnings with economy fixed effects

wi = ω0s + χ′xi + εwi.

These first round estimate of χ can be used to construct gi, which is then use to estimate ω0s, ω1s

and ωx by one OLS regression for all economies simultaneously

wi = ω0s + ω1sgi + ωx (t− Et) g2i + εwi, (9)

These estimates for ω0s, ω1s and ωx can be used to reestimate the vector χ, etc., until the procedure
converges. The converged results are the maximum likelihood estimates of the NLLS model. In
practice, we stop after the first two steps, since the value of χ obtained after the second iteration
hardly differs from the first iteration.

We run this regression for a subsample of the economies with the lowest spikes. We have two
reasons for doing so. First, a large spike implies that the wage function is flat for a substantial
part of the wage distribution since all workers in the spike earn the same wage, disturbing the
estimation of χ. Second, we have a mild preference for a human capital index hi which is ”on
average” linear in the counterfactual economy, where the minimum wage is only mildly binding.
We approximate this by omitting the economies with the highest spikes from the sample used for
the estimation of χ. Note that this is only a matter of presentation and does not affect the validity
of our method, since we will control for non-linearities in the relation between log wages and the
human capital index later on. We have experimented a bit by omitting 10%, 20%, 30%, and even
40% of the economies with the highest spike. It does not matter much for our estimates of the
parameters χ. Moving from 30% to 40% does not affect our estimates of χ in a significant way.
We choose to use the estimation results for χ excluding 30% of the economies to calculate gi for all
individuals, also for those for 30% of the economies that have been excluded in the estimation of
χ. Tables A3 and A4 shows the number states and years that are included in bottom 70% regarding
spike for each year and state respectively. The coefficients χ are presented in Table A5 in Appendix.

The mean of the distribution of gi in economy s evolves over time due to the rise in educational
attainment and it differs between regions, due to the strong agglomeration of highly educated
workers in metropolitan areas. For reasons discussed later on, it is convenient to define gi relative
to a proxy for its mean gs for economy s. However, we do not want to demean by the sample mean
for the same reasons as that we do not want to use the Kaitz index as a measure of the bindingness
of the minimum wage: the sample mean is endogenous. Hence, we regress gi on fixed time and
region effects and an instrument, based on a companion paper on the size of regional agglomera-
tion externalities, see Chen and Teulings (2021). In line with the evidence in Gennaioli et al. (2013),
we show that higher educated agglomerate in particular regions. We use a Bartik instrument for
gs, using the idea that its evolution is driven by its industry mix. We use nationwide changes in
the level of human capital in each industry. We hypothesize that regions where industries with
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rising human capital are overrepresented experience a rise in gs.7 We exclude the own region from
the calculation of nationwide mean of these instruments, see Chen and Teulings (2021) for details.
The coefficient of this Bartik instrument is 0.410 (t = 12.62), implying that when for the industry
mix of a region, the nationwide mean of g increases by one unit, the regional mean is predicted to
increase by 0.410. In the remainder of the paper, gi refers to this regionally demeaned version of
the index.

Figure 2 shows the overall distribution of gi, controlled for the local mean in the way described
above. This distribution has zero mean by construction, see equation (7), and its variance and
standard deviation are 0.135 and 0.367 respectively. It is approximately normal, though there are
some clear spikes, associated with spikes in the distribution of years of education at 12, 14, and 16
years.

Figure 2: Histogram of gi

5.2 Step 2: the upper support of the spike

The next step in our empirical strategy is to establish the uppersupport of the spike hs for each
economy. The challenge here is that we have to account for the fact that hi is only partially ob-
served. Equation (6) implies

wi = ws (hi) = ws (gi + εi) .

7Along the same lines, one can develop a second instrument, using nationwide changes in the industry mix rather
than nationwide changes in gs within industries. When entering both instruments in a first stage regression, this second
instrument was insignificant, so we omit it from our estimation results.
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Since ws (hi) > ms for hi > hs and ws (hi) ≤ ms for hi ≤ hs, hs can be estimated by means of a
simple Probit model:

Pr (wi < ms + .01|gi) = Pr (gi + εi < hs|gi) = Φ

(
hs − gi
σs

)
, (10)

where we add add .01 to ms to be consistent with the definition of the spike. We can estimate
this model separately for each economy. The Probit-parameter on gi is an estimate of −σ−1s ; the
intercept is an estimate of hs/σs.

For small values of qs, the number of observations in the spike is low: an average economy
has slightly less than 1500 observations on workers in our data. A spike of 1.5% is equivalent
to roughly 25 workers. For a smaller number, the estimate of hs becomes highly unreliable. We
estimate the model for all economies with qs > 1.5%; 1414 economies meet this restriction. In all
subsequent stages, we report both the results for the full sample of economies and for the restricted
sample for which qs ≥ 1.5%.

Since the distribution of gi is approximately normal, see Figure 2, and using our assumption
that the distribution of εi is normal, we can calculate the share of workers that earn less or equal
to the minimum

Pr (wi < ms + .01) = Pr (hi < hs) = Φ

(
hs − gs
σhs

)
, (11)

σ2hs = σ2s + σ2gs,

where σ2gs and σ2hs are the variances of gi and hi respectively for economy s. The second line follows
from equation (5). We use E(εi|s) = 0 and hence E(hi|s) ≡ gs. The estimation results for equation
(10) provide an estimate of σs, while gs and σgs can be calculated from the data. Since σ2hs is subject
to substantial measurement error, we instrument σhs by region and time fixed effects; a hat on a
variable denotes the instrument (the explained part of a first stage regression)

σhs = σ̂hs + εσhs,

σ̂hs = σhr + σht.

where σhr and σht denote vectors of region and time fixed effects.
There is convenient way to evaluate the estimates of hs. Ignoring non-compliance (the part of

the wage distribution below the minimum wage) for the sake of the argument, Pr (wi < ms + .01)

is equal to the spike qs. Define hqs as the inverse of qs with respect to the normal distribution:

hqs = σ̂hsΦ
−1 (qs) . (12)

hqs is the equivalent of hs, but now derived form qs rather than from the Probit model. Hence

hqs ∼= hs − gs. (13)

Equation (13) can be tested. Since Var (hqs) = 0.128 > Var (hs) = 0.042, the measurement error
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in hqs is likely to be larger than in hs. Hence, we run equation (13) as a regression taking hqs as the
endogenous variable. The estimation results for the restricted sample of economies are reported
Table 1. Since hqs is a non-linear transformation of qs, we expect outliers among the error terms of
this regression. We therefore estimate this equation by both OLS and a robust method Hamilton
(1992), by performs a regression, calculates case weights from absolute residuals, and regresses
again using those weights, allowing for non-normality of the error term.

Table 1: OLS and Robust Regression results for hqs
(1) (2)

VARIABLES hqs hqs
hs 1.014 1.019

(59.45) (56.89)
ḡs 0.320 0.322

(2.04) (1.96)

R-squared 0.721 0.703
RMSE 0.108 0.114
Regression OLS Robust
Observations 1,414 1,414

t-statistics in parentheses

The coefficient for hs is indeed equal to unity. The coefficient for gs is positive, but much
smaller unity. However, most of the true variation in gs is already absorbed by the demeaning of
gi by means of region and time fixed effects and the Bartik instrument, see the discussion of Step
1. Hence, the share of measurement error in the remaining variance is substantial, compressing
the regression coefficient. OLS or robust estimation makes little difference in this case. We con-
clude that our estimation results for hs and the index hqs, which derived from the data for qs, are
mutually consistent.

5.3 Step 3: the first stage regression for the spike

We use the previous analysis of the relation between the spike qs and its upper support hs as the
benchmark for the construction of an instrument for the spike. Suppose that Meyer and Wise
(1983)’s model had applied. Then, the wage function above the minimum wage would be inde-
pendent of the minimum. Due to our normalization of the index gi, it would be linear ”on average”
in wi with a unit slope. The coefficient of a regression of hqs on ms would therefore be equal to
unity in that case; hqs is, therefore, a natural starting point for the construction of an instrument.

Three factors determine the evolution of the real regional minimum wage:

1. Increases in the federal nominal minimum wage; since the federal minimum is not binding
in all states, changes in the federal minimum are not fully absorbed by the inclusion of time
fixed effects;

2. Increases in the state nominal minimum wage;
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3. The gradual increase in nominal wages reduces the real value of a fixed nominal minimum
wage. Since the nominal minimum wage is adjusted at irregular intervals, this factor plays
an important role in the variation of the minimum. In fact, the fall in the real minimum wage
during the Reagan presidency was fully due to the nominal freeze of the federal minimum.
To the extent that the evolution of real wages is the same across regions, it is fully absorbed
by time dummies. However, we can expect interregional heterogeneity in the evolution of
wages.

Our first stage regression allows for these three factors.

hqs = αr + αt + αmms + αwwIVs + εqt, (14)

where αr and αt are region and time fixed effects, where ms is the maximum of the federal and
state minimum wage, and where wIVs is an instrument for the real wage. The first two factors
listed above are captured by ms. The third factor is captured by the region and time fixed effects
and by the Bartik instrument discussed in Step 2.

Table 2: Instrumental Variable First Stage Regression
(1) (2) (3) (4)

VARIABLES hqs hqs hqs hqs
ms 1.211 1.357 1.396 1.414

(21.97) (24.80) (34.24) (40.30)
Bartik IV -4.040 -4.319 -2.576 -3.138

(-7.01) (-7.55) (-3.60) (-5.09)

Observations 1,414 1,414 3,321 3,321
R-squared 0.886 0.890 0.838 0.870
RMSE 0.0724 0.0719 0.147 0.126
Time Dummy Y Y Y Y
Region Dummy Y Y Y Y
Regression OLS Robust OLS Robust

t-statistics in parentheses

Table 2 presents the estimation results for equation (14). We present results for both the full and
the restricted sample of economies 8. Again, we present both OLS and robust estimation results.
The instrument is strong. The regression results are very similar for all four regressions. The
coefficient on ms is between 1.2 and 1.4, where the estimation results for the full sample are in the
upper part of that bracket. Had Meyer and Wise (1983)’s model had applied, the coefficient would
have been equal to unity. The estimation results are in this order of magnitude. More remarkable is
the coefficient on the Bartik instrument. The sign is in accordance with the theoretical predictions
(higher nominal wages reduce the spike), but its magnitude is much higher. For demeaning of
gi, its coefficient was 0.410. Since the wage function has ”on average” a unit slope in gi, this effect
is ”reinstalled” by a coefficient of −0.410. The actual coefficient is 6 to 10 times larger. In our

8For some economies, the measured value of qs is zero. Hence, hqs cannot be calculated. For these economies, hqs is
set at the lowest value observed among other economies
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companion paper Chen and Teulings (2021), we argue that this points to substantial agglomeration
benefits. Since this result is discussed extensively in that paper, we do not discuss it here.

We use the results for the robust regression on the full sample and the inverse of equation (12)
to calculate the instrument q̂s

q̂s = Φ
(
ĥqs/σ̂s

)
. (15)

5.4 Step 4: the second stage regression for wages

A simple approach to the estimation of the effect of the spike on the wage function would be to
regress individual log wages wi on a second-order polynomial in gi similar to equation (6) for all
individuals earning more than the minimum wage, wi > ms + 0.01, and then to use simple regres-
sions to analyze how the coefficients ω0s, ω1s and ω2s depend on the instrument for the spike q̂s.
This approach fails, however, due to the selectivity at the lower bound: individuals in the sample
are positively selected on earning a wage above the minimum wage. This problem could be re-
solved by estimating a non-linear Tobit model for all economies simultaneously. This approach is
computationally infeasible, however, since there are several thousand economies in the full sam-
ple. Instead, we apply a 2-step procedure to correct for this selection bias similar to the classic
Heckman 2-step method.

First, we regress log wages on a second-order polynomial in gi as suggested above for each
economy s, simply ignoring the selection bias problem:

wi = w̃s (gi) + ε̃wi,

w̃s (gi) = ω̃0s + ω̃1sgi + ω̃2sg
2
i .

w̃ (gi) >E(wi|gi) due to the selection bias. Let Biass (gi) be this selection bias in economy s as a
function of the observed component of the human capital index gi

Biass (gi) ≡ w̃s (gi)− ws (gi) .

The bias at the upper support of the spike hs can calculated using the fact that by construction
ws (hs) = ms. Hence

Biass (hs) = w̃s (hs)− ws (hs) = w̃s (hs)−ms. (16)

Alternatively, Biass (hs) can be calculated from a first-order Taylor expansion of ws (h) around
h = hs:

Biass (hs) = E [ws (hs + ε)− ws (hs) |ε > 0] (17)

= w′s (hs) E [ε|ε > 0] +O
(
E
[
ε2|ε > hs − gi

])
= σ̂sw

′
s (hs)

φ (0)

Φ (0)
+O

(
σ̂2s
)
,

This Taylor expansion would hold exactly if ws (h) were linear in h. It is a reasonable approxima-
tion for small non-linearities in ws (h) and for small σ̂s.
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Equation (17) can be generalized to the calculation of Biass (gi) for gi 6= hs:

Biass (gi) = E [ws (gi + ε)− ws (gi) |ε > hs − gi]

∼= w′s (hs) E [ε|ε > hs − gi] = σ̂sw
′
s (hs)

φ [(gi − hs) /σ̂s]
Φ [(gi − hs) /σ̂s]

= [w̃ (hs)−ms]
Φ (0)

φ (0)

φ [(gi − hs) /σ̂s]
Φ [(gi − hs) /σ̂s]

,

where we drop higher order terms and where the last step follows from combining equation (16)
and (17). Similar to the second step of the Heckman 2-step method, we use the last expression to
calculate

ŵi = wi − Biass (gi) ,

and then run the wage regression

ŵi = ω0s + ω1sgi + ω2sg
2
i + εwi.

The estimates for ω0s, ω1s and ω2s do not suffer from selection bias.
Next, we run a regression of the parameters ω0s for each economy s on a polynomial in q̂s, the

Bartik instrument and fixed region and time effects, and the same for ω1s and ω2s. Again, we run
this regression for both the full and the restricted sample of economies and we use both OLS and
robust regression techniques. The estimation results are in Table 3.

The results for the full and the restricted sample are qualitatively similar, but the coefficients
are larger when using the full sample. This is to be expected since the variance in the explanatory
variable q̂s is reduced in the restricted sample. This yields a lower signal-noise ratio. Hence, we
focus on the results for the full sample.

A comparison of Panel A and Panel B shows that the estimated coefficients are very similar in
OLS and robust regression, but that they are estimated more precisely when accounting for outliers
by using robust regression. We, therefore, focus on the latter results.

The difference between Panel B and C is that the former uses a second-order polynomial in q̂s,
while the latter uses q̂s and q̂s × ln q̂s as explanatory variables. Since the results in Panel C provide
a better fit, we use the latter for our counterfactual simulations in Section 6. However, the results
for the second-order polynomial in Panel B are easier to interpret. The subsequent discussion,
therefore, focuses on these results.

Recall that gs (the mean value of gi for economy s) is normalized to zero for each economy
by means of region and time fixed effects and by the Bartik instrument (see Step 1). Hence, ω0s

is the log wage ws (gi,ms) for the worker with mean level of human capital in economy s (since
gs
∼= 0), ω1s is the first derivative of this function for gi = 0 (i.e. her return to human capital), while

2ω2s is the second derivative. The regression results imply therefore that for a low spike q̂s, an
increase in the spike raises the wage of the median worker, reduces the return to additional human
capital for this worker, while it raises the second derivative. Due to the positive second derivative,
the negative effect on the first derivative is lower for higher levels of gi; it has disappeared for

20



Table 3: Regression with Biass corrected ω̂0s ω̂1s and ω̂2s

(1) (2) (3) (4) (5) (6)
VARIABLES ω̂0s ω̂1s ω̂2s ω̂0s ω̂1s ω̂2s

Panel A: with 2SLS Regression
q̂s 2.333 -2.403 2.864 2.720 -4.834 5.268

(4.16) (-3.79) (2.99) (9.87) (-13.82) (10.99)
q̂2s -4.753 28.30 -43.94 -7.524 46.35 -60.22

(-0.96) (5.06) (-5.20) (-2.73) (13.23) (-12.55)
Bartik IV 5.945 0.134 -6.216 4.071 0.224 -3.659

(15.49) (0.31) (-9.48) (17.49) (0.76) (-9.04)

R-squared 0.988 0.701 0.624 0.985 0.579 0.497
RMSE 0.0454 0.0514 0.0776 0.0464 0.0589 0.0807

Panel B: with Robust Regression
q̂s 2.506 -0.829 0.785 3.322 -4.914 5.297

(5.75) (-1.36) (0.86) (13.62) (-14.21) (10.94)
q̂2s -6.710 16.18 -29.02 -16.68 53.46 -68.89

(-1.84) (3.17) (-3.78) (-6.89) (15.57) (-14.34)
Bartik IV 6.933 0.00568 -6.333 4.329 0.496 -3.910

(23.09) (0.01) (-10.03) (23.35) (1.89) (-10.63)

R-squared 0.993 0.731 0.663 0.991 0.676 0.575
RMSE 0.0366 0.0512 0.0769 0.0369 0.0524 0.0733

Panel C: with Robust Regression
q̂s 0.427 3.484 -6.510 -1.262 7.527 -9.283

(0.85) (4.96) (-6.19) (-4.29) (18.22) (-15.75)
q̂s × lnq̂s -0.739 1.410 -2.284 -1.488 3.731 -4.111

(-2.79) (3.81) (-4.11) (-11.06) (19.75) (-15.25)
Bartik IV 6.987 -0.323 -5.784 4.889 -1.008 -2.255

(22.86) (-0.76) (-9.03) (26.21) (-3.85) (-6.03)

R-squared 0.993 0.731 0.665 0.991 0.689 0.579
RMSE 0.0366 0.0511 0.0767 0.0364 0.0511 0.0729

Time Dummy Y Y Y Y Y Y
Region Dummy Y Y Y Y Y Y
Observations 1,414 1,414 1,414 3,321 3,321 3,321

t-statistics in parentheses
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gi = 0.46,9 which is one and a quarter standard deviations of gi above its mean. This roughly fits
the theoretical notion developed in Section 2.1 that the effect should be zero at the uppersupport
of the distribution of gi, where the actual and counterfactual wage functions ws (h,m) run parallel.

For a higher spike, the marginal effect of a further increase in the spike switches signs for all
three variables; for the level ω0s, this occurs at a spike of 10%; for the return to human capital at 5%;
and for the second derivative at 4%. The wage of the median worker is 16% higher10 for a spike
of 10% rather than 0%, while the return to the human capital index gi is 11% lower11 for a spike
of 5% rather than 0%. At the upper support of the spike, the compression of the return to human
capital is even 30%. Summarizing: we find strong compression effects for wage levels above the
minimum, in accordance with the theoretical model in Section 2, which persist even for quite high
levels of the spike.

5.5 Step 5: the second stage regression for employment

The final step is to estimate the employment effect. We deal with this issue in two steps: first, we
analyze the effect on aggregate employment, and second on the distribution of observed human
capital among employed workers.

The results on the first step are reported in Table 4. We apply two specifications, one with a
second-order polynomial in q̂s as explanatory variables, and another with q̂s and q̂s× ln q̂s. In both
cases, we add the Bartik instrument as a control. Both specifications are estimated using both OLS
and Robust methods. Since the second-order polynomial in q̂s and the specification with q̂s and
q̂s × ln q̂s yield an equal fit for both estimation methods and since the former is easier to interpret,
we focus on the estimation results for the second-order polynomial. Since the Robust method
outperforms OLS, we focus on the former. Hence, we take column (3) as a benchmark for the
subsequent discussion. Aggregate employment is increasing in the spike, though at a declining
rate. The turning point is at a spike of 10%, where employment is 14% higher than at a spike of
zero;12 10% is about the highest value of the spike in our sample of economies, observed at the
beginning of our sample period around 1980 in some Southern states.

The second step uses the log density function of human capital as the endogenous variable. Let
gsp be the p-quantile of the distribution of gi among employment in economy s. We calculate gsp for
100 percentiles (p = .01, .02, .03...., 1.00). The log density is calculated as ln (.01)−ln (gsp − gs,p−.01).
As explanatory variables, we use a second-order polynomial in q̂s multiplied by a fourth-order
polynomial in p − 0.50, where use a full set of fixed effects for each percentiles p to account for
the general shape of the distribution. We present estimation results using both OLS and Robust
methods. Again, the Robust method outperforms OLS.

As shown in Figure 2, the actual distribution of gi is approximately normal, but with mass
points associated with spikes in the distribution of years of education 12, 14, and 16 years of ed-
ucation. Since we have demeaned the values of gi for each economy, using region and time fixed

94.9/ (2× 5.3)
10 1

4
3.32/16.5

11− 1
4

4.92/53.3. Note that the return to the human capital index gi is normalized to unity ”on average”. Hence, this
effect can be interpreted as a relative change in the return to human capital.

12The turning point is at 1
2
2.6/12.6 while the maximum employment effect is 1

4
2.62/12.6.

22



effects and the Bartik instrument, see Step 1, the location of these spikes differs between economies.
Hence, fixed effects for each p do not fully absorb these spikes. To correct for this, we use full sets
of fixed effects for each p both the original version of gi (dummy p in the table) and its demeaned
equivalent (dummy pg in the table). We present estimation results both with and without the latter
set of dummies. The additional set of dummies significantly improves the fit. Hence, we focus on
the results including this additional set of dummies and using the Robust estimation method, see
column 4 of Table A6. Standard errors are clustered at the economy level. The marginal signifi-
cance of the fourth-order terms q̂s × (p− 0.5)4 and q̂2s × (p− 0.5)4 suggests that the fourth-order
polynomial provides sufficient flexibility to cover the non-linearities in the relation between the
spike and the log density for various point in the distribution.

Table 4: Regression with weighted total employment ln(Ns)

(1) (2) (3) (4)
VARIABLES ln(Ns) ln(Ns) ln(Ns) ln(Ns)

q̂s 1.153 4.593 2.647 0.156
(1.14) (3.43) (4.30) (0.19)

q̂2s 13.08 -12.64
(1.28) (-2.03)

q̂s × ln q̂s 0.897 -0.580
(1.71) (-1.83)

Bartik IV 6.790 6.825 3.889 4.267
(7.78) (7.69) (7.35) (7.95)

Time Dummy Y Y Y Y
Region Dummy Y Y Y Y
Regression OLS OLS Robust Robust
Observations 3,321 3,281 3,321 3,281
R-squared 0.948 0.948 0.979 0.979
RMSE 0.174 0.174 0.105 0.105

t-statistics in parentheses

The results are presented in Table A6 in the Appendix. They can are hard to assess. However, a
graphical representation is easy to interpret, see Figure 3. They show the effect of q̂s (black), q̂2s/10

(red) and the Bartik instrument (green) as a function of p on the log density and the effect on log
aggregate employment, see Table 4 (clearly, the latter does not depend on p), joint with their one
standard deviation bands. The effect on log employment at percentile p is the sum of distribution
and aggregate effect.

The first-order effect of q̂s is monotonically declining in p. The combined aggregate and dis-
tribution effect is positive for low initial levels of q̂s roughly until the median of the distribution,
while it is declining for the upper half of the distribution. The second-order effect has the opposite
sign, such that the maximum employment gain for low values of p is achieved for a spike of 10%.
The switch of the sign of first- and second-order term of q̂s is almost at the same percentile, adding
to the credibility of the estimation results. If there were a substantial difference in the point of
crossing, the effect of q̂s would be convex rather than concave for the part of the support where the

23



Figure 3: Estimated Marginal Employment Effect of qs

first- and second-order term had the same sign.
The reported employment effects are large. One would like to have a plausibility test of this

methodology. The results on the Bartik instrument provide this. The pattern for the Bartik instru-
ment in Figure 3 shows two effects. First, there is polarization in the human capital distribution,
raising employment in both tails of the distribution, as reported by Autor and Dorn (2013). This
polarization can interpreted as a rising demand for personal services in economies with high em-
ployment of high paid high human capital workers who can afford to outsource these services.
Second, the mean of the human capital distribution goes up by 0.662 for a unit increase in the in-
strument.13 This number can be checked against the direct estimate of the effect of the instrument

13Let g (p) be the inverse of the distribution function of g. Assuming this distribution to be approximately normal, we
obtain p = Φ [g (p) /σg] or g (p) = σgΦ−1 (p). Since this relation applies identically for all p, its first derivative applies:
1 = g′ (p)φ [g (p) /σg] /σg . Hence

E [g] =

∫ ∞
−∞

g

σg
φ

(
g

σg

)
dg =

∫ 1

0

g (p)
g′ (p)

σg
φ

(
g (p)

σg

)
dp =

∫ 1

0

σgΦ−1 (p) dg

Let P (p) be the derivative of the polynomial reported in Table A6. Hence, using the approximation by the normal
distribution, we obtain

P (p) =
d log φ [g (p) /σg]

dBartik

Therefore

dE [g]

dBartik
=

∫ 1

0

σgΦ−1 (p)P (p) dp

= 0.367

∫ 1

0

Φ−1(p)

(
−4.4 + 2.1

(
p− 1

2

)
+ 96.5

(
p− 1

2

)2

+ 32.3

(
p− 1

2

)3

− 338.3

(
p− 1

2

)4
)

dp

= 0.662
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on the mean 0.410, see the demeaning gi for each economy s discussed in Step 1. These numbers
are roughly similar, lending credibility to our methodology and hence to the estimated positive
employment effects of an increase in the spike.

One might worry about the interaction between the effects of the Bartik instrument and the
spike. The Bartik instrument increases both the mean and the dispersion of the human capital
distribution, the former due to agglomeration externalities of high skilled workers and the latter
due to the induced polarization of the distribution. The increase in the mean makes the minimum
wage less binding and reduces therefore the spike, see Table 2. The estimation results in Figure
3 suggest that a lower spike reduces employment at the bottom, partly undoing the polarization-
effect of an increase in the Bartik instrument. Might the inclusion of the Bartik instrument in some
way artificially generate positive employment effect of an increase in the spike? To check this,
we rerun all regression without the Bartik instrument, see Appendix. The results are basically the
same, except for the turning point for the sign of the employment effect of an increase in the spike
from positive to negative, which is now not at a spike of 10%, but even of 20%. Our results are
therefore not driven by the inclusion of the Bartik instrument in our regressions.

The observed pattern is consistent with a monopsony model, where higher minimum wages
attract a larger supply of labor at the lower end of the human capital distribution, but which re-
duces employment at the upper end of the distribution. For higher levels of the spike (> 10%), the
adverse demand effect of higher wages stops the increase in employment in the lower tail of the
human capital distribution, while the negative effect on demand and supply reduces employment
in the upper tail.

6 Counterfactuals

Our empirical results can be used for an analysis of the impact of the changes in the spike on the
distribution of wages and employment over the past forty years. We consider the average impact
across all regions in 1980, 1991, 1998, 2004, 2010 and 2019, taking 1980 as the point of reference.
14 These years are chosen since they mark turning point in the policy regarding minimum wages,
see Table A2 in the Appendix. The counterfactuals raise the spike in all regions by the difference
between nation-wide mean with that in 1980, so that the counterfactual nation-wide mean is equal
to the actual mean in 1980.15 The details of the procedure for the calculation of the counterfactuals

14We can calculate counterfactuals for a higher, but not for a lower spike, because for a lower spike there is no one-
to-one correspondence of the actual and counterfactual wage for workers in the spike, since part of these workers may
remain in the spike, while others will earn more than minimum wage after its reduction.

In the Appendix we present counterfactuals taking 2010 (the year with the second highest spike) as the point of
reference, excluding the year with the highest spike.

15We adjust the share q−s of workers earning less than the minimum using a simple regression

q−s = β0 + βqs + εq.

We find β = 0.52 (t = 34.8). Hence

qs,counterfactual = qs + q1980 − qt,
q−s,counterfactual = q−s + β (q1980 − qt) ,

where qt denotes the mean of the spike for year t.
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are relegate to Appendix A.
The results are summarized in Table 5. The spike in the benchmark year 1980 is 5.4%. A

decade of keeping the minimum nominally constant reduced the spike to 0.6% in 1991. Raising the
spike back to the level applying 1980 would require an increase in the average nominal minimum
wage of 0.335 log points or 40%. Employment in the bottom quintile of the distribution would
increase by 0.029 log points. During that decade, the 50-10 log wage differential increased by 0.073
log points. The fall in the minimum wage fully explains this increase (0.010 + 0.065 = 0.075);
85% of the explanation comes from the compression effect, the remaining 15% from the truncation
effect. Following the logic of Meyer and Wise (1983) that truncation due to a higher minimum
wage leads to compression of the wage distribution, one would expect that the reversal of the
sign of the employment effect would lead to a decompression. However, the positive employment
effect in the lower half of the human capital distribution reduces the human capital of the median
worker and therefore 50-10 log wage differential. Obviously, this effect is offset by larger wage
differentials due to truncation in the upper tail. Since the compression and the truncation effect
have opposite signs, the net effect of an increase in the spike on the 90-50 log wage differential is
small. Altogether, the fall in the minimum wage explains 76% of the increase in wage dispersion
during the eighties. The increase in the minimum raises the total wage bill by 7%, largely due to
the higher wages paid to workers in the bottom half of the wage distribution. In 2004, when the
spike is even lower than in 1991, the fall in the minimum wage compared to 1980 explains only
45% of the increase in wage dispersion.

We add a counterfactual for 2019 where the federal minimum wage is increased by 40%. Since
the federal minimum is not binding in all states, the actual increase is smaller, only 0.181 log points.
This experiment is predicted to raise the spike from 1% to 2.9%. The truncation effect reduces the
wage bill by 1.5% due to an increase in employment at lower skill levels, while the compression
effect would increase the wage bill by 4.5%. Employment in the lowest quintile would increase
with 0.029 log points.
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Table 5: Counterfactual Estimation with q̂
∆log employment(3) log wage differential(4)

year qt
(1) q−t ∆mt

(2) 1% 5% 10% 20% 50-10 50-15 50-20 90-50 ∆ln ΣW
(5)
i

1980 actual 0.054 0.061 actual 0.580 0.526 0.446 0.683
1991 actual 0.006 0.024 dens 0.221 0.185 0.143 0.073 actual 0.073 0.036 0.024 0.041

c.fact. 0.054 0.051 0.344 distr 0.002 0.010 0.018 0.029 trunc. -0.010 -0.011 0.003 0.028 -0.036
compr. -0.065 -0.041 -0.019 -0.035 0.107

1998 actual 0.013 0.041 dens 0.178 0.150 0.117 0.059 actual 0.079 0.045 0.024 0.051
c.fact. 0.054 0.064 0.271 distr 0.002 0.008 0.015 0.024 trunc. -0.006 -0.012 0.007 0.013 -0.030

compr. -0.062 -0.019 -0.014 -0.013 0.091
2004 actual 0.006 0.025 dens 0.223 0.186 0.145 0.074 actual 0.094 0.044 0.027 0.080

c.fact. 0.054 0.053 0.437 distr 0.002 0.010 0.019 0.029 trunc. -0.007 -0.009 0.005 0.010 -0.038
compr. -0.055 -0.020 -0.019 -0.027 0.117

2010 actual 0.018 0.040 dens 0.148 0.126 0.098 0.049 actual 0.098 0.055 0.045 0.105
c.fact. 0.054 0.061 0.210 distr 0.001 0.007 0.012 0.020 trunc. -0.014 -0.006 -0.008 0.010 -0.026

compr. -0.040 -0.009 -0.009 -0.011 0.076
2019 actual 0.010 0.055 dens 0.192 0.161 0.126 0.064 actual 0.080 0.029 0.011 0.131

c.fact. 0.054 0.080 0.338 distr 0.002 0.009 0.016 0.025 trunc. -0.003 0.004 0.007 0.015 -0.032
compr. -0.065 -0.048 -0.018 -0.025 0.099

Counterfactual for a 40% increase in the federal minimum wage
2019 actual 0.010 0.055 dens 0.085 0.072 0.056 0.029 actual 0.664 0.554 0.456 0.814

c.fact. 0.029 0.065 0.181 distr 0.001 0.004 0.007 0.011 trunc. -0.003 0.001 0.006 0.004 -0.015
compr. -0.039 -0.025 -0.007 -0.009 0.045

Note: 1. The unweighed average of the spike qs across regions for a particular year. 2. The unweighed average of the log minimum wage ms across regions
for a particular year. 3. ∆ ln employment: (c.fact.) see Appendix A. 4. The actual and counter-factual log wage differentials among the workers. 5. The
difference between the actual and the counter-factual log of the sum of wage for all workers earning more than the minimum wage.
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7 Conclusion

We reexamined the evidence on the effect of minimum wages on wage spillovers and employ-
ment, by addressing the problems of (i) the endogeneity of the median wage, (ii) disentangling the
truncation and compression effect, (iii) its non-linearity/dependence on the initial level of the min-
imum wage, and (iv) the heterogeneity of the employment effect for different points in the human
capital distribution. We find strong evidence for an increase of the minimum wage to raise median
of the wage distribution and to compress wage differentials above the minimum wage, largely
confirming Lee (1999) and Teulings (2003), though unlike the former reference, the compression
is heavily concentrated in the bottom half of the distribution. Moreover, we find strong evidence
for ”reverse truncation”: employment in the bottom half of the distribution responds positively to
an increase in the minimum wage. There is a turning point where these effects switch signs, but
for most metrics, this turning point is at a surprisingly high level of the spike of about 10%; this
is about the highest spike observed in our sample of 3000 economies, occurring in some Southern
states in 1980. We find that 75% of the increase in wage dispersion during the eighties of the pre-
vious century was due to the erosion of the real minimum wage by inflation. The contribution of
the minimum wage to raising wage inequality in the next twenty years was much smaller.

From a theory point of view, our results are inconsistent with the hedonic pricing model dis-
cussed in Section 2. The compression of the wage differentials is fully consistent with the the-
oretical predictions of this model, but the increase in the average wage and the combination of
wage compression and positive employment effects in the bottom tail is not: compression can
only be rationalized in this model by negative employment effects in the bottom tail, such that
workers who remain employed have to take the low complex left vacant by the disemployment
of the workers with lower human capital. Only a monopsony model seems to be able to explain
these results, suggesting that the Hosios condition is violated to the detriment of workers. This
conclusion is consistent with an increasing body of evidence in favour of the monopsony model,
see Ashenfelter et al. (2021).

From a policy point of view, we have not attempted to provide a welfare evaluation of the
cost and benefits for various parts of the human capital distribution and of the rewards for other
factors of production than labor. However, for those with a strong preference for an equal wage
distribution and a higher labor share this paper provides arguments for a much higher spike than
we currently observe.
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A Appendix

Our numerical procedure is as follows. The superscript c denotes a counterfactual. For each econ-
omy s we do:

1. Sort observations by wi (i = 1 is the lowest wage).

2. Calculate the quantile for all i in the actual distribution: pi = i/Ns.

3. Calculate the employment change for observation i

fi = exp
[
σ−1g [P (p, qcs)− P (p, qs)]

]
where P (p, qs) is the polynomial in p and qs, using the estimation results from Table A6,
column (4).

4. Calculate the counterfactual quantile for all i: pci = Σi
j=1fj/Σ

Ns
i=1fi.

5. Define i−s and is such that pc
i−s

= q−cs and pcis = q−cs +qcs respectively (the value of i at the lower-
and uppersupport respectively of the spike in the counterfactual human capital distribution).

6. Calculate the counterfactual wage for wci for all i

(a) For all i ≥ is (those earning more than minimum wage in the counterfactual)

wci = wi + ws (gi, q
c
s)− ws (gi, qs)

using the estimation results for ws (gi, qs) from Table 4, column (3).

(b) We use this step to calculate to the counterfactual minimum wage mc
s = wcis .

(c) For i−s < i ≤ i (the counterfactual spike), wci = mc
s.

(d) For all i ≤ i−s (those earning less than the minimum wage in the counterfactual),wci =E(wi|pi < q−s ).

7. Define isp such that pisp = p and icsp such that pcisp = p for p = .01, .05, .10, .20, .50, .90 (the
factual and counterfactual values of i corresponding with these quantiles).

8. Calculate the cumulative relative change in employment from the lowest quantile 0 up till
quantile p: p−1Σisp

i=1 (fi − 1).

9. Calculate the actual log wage differentials: ∆wsp = wisp − wis.50 (reversing sign for ∆ws.90)

10. Calculate the change in the log wage differential: ∆2wsp = ∆wsp − ∆wbsp (where the super-
script b denotes the benchmark year).

11. Calculate the change in the log wage differential due to truncation: ∆2wsptrunc = wicsp−wisp−
wics.50 + wis.50

12. Calculate log wage differential due to compression: ∆2wspcomp = wcicsp − wicsp − w
c
ics.50

+ wis.50
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13. Calculate the relative change in the total wage sum due to truncation: ∆ logWitrunc = log Σi∈tfie
wi−

log Σi∈te
wi

14. Calculate the relative change in the total wage sum due to compression: ∆ logWicomp =

log Σi∈tfie
wc

i − log Σi∈tfie
wi
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Table A1: CBSA Observations Distribution Among States
CBSA State I State II State III State IV Pct SI Pct SII Pct SIII Pct SIV NAME
31100 CA 100.00% Los Angeles-Long Beach-Anaheim, CA
40140 CA 100.00% Riverside-San Bernardino-Ontario, CA
41740 CA 100.00% San Diego-Carlsbad, CA
41860 CA 100.00% San Francisco-Oakland-Hayward, CA
41940 CA 100.00% San Jose-Sunnyvale-Santa Clara, CA
19740 CO 100.00% Denver-Aurora-Lakewood, CO
47900 DC VA MD WV 45.91% 25.90% 28.19% 0.00% Washington-Arlington-Alexandria, DC-VA-MD-WV
33100 FL 100.00% Miami-Fort Lauderdale-West Palm Beach, FL
45300 FL 100.00% Tampa-St. Petersburg-Clearwater, FL
12060 GA 100.00% Atlanta-Sandy Springs-Roswell, GA
16980 IL IN WI 98.23% 1.77% 0.00% Chicago-Naperville-Elgin, IL-IN-WI
26900 IN 100.00% Indianapolis-Carmel-Anderson, IN
35380 LA 100.00% New Orleans-Metairie, LA
14460 MA NH 86.75% 13.25% Boston-Cambridge-Newton, MA-NH
12580 MD 100.00% Baltimore-Columbia-Towson, MD
19820 MI 100.00% Detroit-Warren-Dearborn, MI
33460 MN WI 99.99% 0.01% Minneapolis-St. Paul-Bloomington, MN-WI
28140 MO KS 45.36% 54.64% Kansas City, MO-KS
41180 MO IL 80.98% 19.02% St. Louis, MO-IL
24660 NC 100.00% Greensboro-High Point, NC
15380 NY 100.00% Buffalo-Cheektowaga-Niagara Falls, NY
35620 NY NJ 69.24% 30.76% New York-Newark-Jersey City, NY-NJ
40380 NY 100.00% Rochester, NY
17140 OH KY IN 77.70% 22.30% 0.00% Cincinnati, OH-KY-IN
17460 OH 100.00% Cleveland-Elyria, OH
18140 OH 100.00% Columbus, OH
38900 OR WA 91.57% 8.43% Portland-Vancouver-Hillsboro, OR-WA
37980 PA NJ DE MD 62.06% 23.32% 14.62% 0.00% Philadelphia-Camden-Wilmington, PA-NJ-DE-MD
38300 PA 100.00% Pittsburgh, PA
19100 TX 100.00% Dallas-Fort Worth-Arlington, TX
26420 TX 100.00% Houston-The Woodlands-Sugar Land, TX
47260 VA NC 100.00% 0.00% Virginia Beach-Norfolk-Newport News, VA-NC
42660 WA 100.00% Seattle-Tacoma-Bellevue, WA
33340 WI 100.00% Milwaukee-Waukesha-West Allis, WI

Note: Information for 34 city areas: CBSA code in 2013, city belong to which state(s) and the percentage of sample observations in the CPS 1979-2015, name
of cities. Data sources: the Current Population Survey MORG and the US Census Bureau.
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Table A5: Individual Level Mincer Regression

(1) (2) (3) (4) (5)
VARIABLES β w̃ w̃ w̃ w̃ w̃

Full Obs. excl. 10% excl. 20% excl. 30% excl. 40%

Male 0.310 0.303 0.285 0.269 0.260
(179.08) (155.45) (129.15) (106.57) (92.36)

Male × Trend 0.00548 0.00499 0.00419 0.00354 0.00321
(131.11) (104.32) (75.88) (54.84) (43.75)

Single 0.0126 0.0121 0.00997 0.00863 0.00975
(9.11) (7.51) (5.31) (3.84) (3.82)

Single × Trend -0.00242 -0.00223 -0.00206 -0.00197 -0.00197
(-44.50) (-36.34) (-29.48) (-24.20) (-21.32)

Divorced 0.0257 0.0296 0.0267 0.0269 0.0268
(16.78) (16.36) (12.59) (10.61) (9.29)

Divorced × Trend -0.00164 -0.00175 -0.00164 -0.00162 -0.00160
(-25.43) (-24.00) (-19.67) (-16.86) (-14.67)

Male × Single -0.211 -0.216 -0.213 -0.207 -0.206
(-112.79) (-99.02) (-83.67) (-67.93) (-59.17)

Male × Single × Trend 0.00398 0.00399 0.00380 0.00353 0.00345
(54.11) (48.10) (39.97) (31.84) (27.43)

Male × Divorced -0.113 -0.117 -0.116 -0.115 -0.117
(-45.36) (-40.38) (-34.22) (-28.59) (-25.48)

Male × Divorced × Trend 0.00164 0.00182 0.00176 0.00173 0.00182
(15.94) (15.70) (13.41) (11.42) (10.61)

South 0.00609 0.00583 0.00716 0.00736 0.00714
(1.76) (1.67) (1.98) (2.01) (1.89)

Black -0.100 -0.104 -0.110 -0.117 -0.120
(-103.19) (-103.42) (-102.89) (-100.16) (-96.59)

Other Race -0.0764 -0.0790 -0.0820 -0.0815 -0.0826
(-73.75) (-73.54) (-71.08) (-64.42) (-60.07)

South × Black -0.0349 -0.0314 -0.0246 -0.0158 -0.00996
(-25.71) (-21.57) (-16.05) (-9.59) (-5.63)

South ×Others 0.00133 0.00405 0.00889 0.00739 0.0104
(0.58) (1.71) (3.60) (2.84) (3.70)

Edu = 0 -0.637 -0.637 -0.622 -0.602 -0.594
(-107.31) (-98.90) (-88.62) (-77.16) (-69.69)

Edu = 1 -0.532 -0.518 -0.500 -0.465 -0.423
(-36.52) (-27.67) (-22.09) (-15.16) (-12.28)

Edu = 2 -0.530 -0.531 -0.509 -0.467 -0.456

Continued on next page
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Table A5 – continued from previous page

(1) (2) (3) (4) (5)
VARIABLES β w̃ w̃ w̃ w̃ w̃

Full Obs. excl. 10% excl. 20% excl. 30% excl. 40%

(-72.20) (-60.87) (-50.08) (-35.15) (-30.42)
Edu = 3 -0.525 -0.523 -0.520 -0.513 -0.509

(-80.23) (-65.61) (-55.10) (-40.58) (-35.31)
Edu = 4 -0.453 -0.459 -0.449 -0.419 -0.429

(-68.01) (-55.38) (-45.67) (-32.23) (-29.15)
Edu = 5 -0.465 -0.468 -0.451 -0.449 -0.436

(-103.70) (-88.79) (-75.07) (-59.31) (-50.99)
Edu = 6 -0.427 -0.436 -0.437 -0.412 -0.418

(-118.86) (-101.40) (-87.31) (-62.13) (-55.21)
Edu = 7 -0.357 -0.371 -0.365 -0.362 -0.363

(-109.67) (-93.89) (-80.11) (-66.97) (-60.03)
Edu = 8 -0.262 -0.268 -0.278 -0.277 -0.282

(-119.28) (-98.37) (-84.43) (-67.22) (-60.17)
Edu = 9 -0.259 -0.270 -0.272 -0.270 -0.272

(-166.68) (-155.34) (-142.54) (-127.25) (-117.00)
Edu = 10 -0.194 -0.200 -0.204 -0.206 -0.208

(-167.84) (-155.40) (-143.73) (-131.43) (-121.51)
Edu = 11 -0.157 -0.163 -0.166 -0.171 -0.172

(-148.07) (-138.94) (-129.94) (-120.72) (-111.43)
Edu = 13 0.0574 0.0549 0.0508 0.0439 0.0423

(60.89) (52.55) (43.56) (33.33) (29.18)
Edu = 14 0.165 0.170 0.174 0.176 0.178

(187.37) (177.70) (166.44) (151.76) (139.95)
Edu = 15 0.209 0.217 0.223 0.224 0.226

(135.36) (126.84) (116.73) (104.21) (95.54)
Edu = 16 0.420 0.429 0.433 0.435 0.437

(369.70) (347.58) (324.91) (298.35) (275.43)
Edu = 17 0.399 0.409 0.421 0.425 0.432

(167.36) (148.71) (129.95) (107.31) (95.26)
Edu = 18 0.574 0.586 0.593 0.594 0.597

(330.35) (311.82) (291.81) (267.91) (247.55)
Year of Experience (Exp) 0.0248 0.0243 0.0220 0.0188 0.0181

(40.85) (36.61) (30.49) (23.61) (20.82)
Exp2/100 -0.0400 -0.0354 -0.0229 -0.00666 -0.00221

(-14.39) (-11.59) (-6.89) (-1.81) (-0.55)
Exp3/100000 0.235 0.174 0.00153 -0.216 -0.283

Continued on next page
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Table A5 – continued from previous page

(1) (2) (3) (4) (5)
VARIABLES β w̃ w̃ w̃ w̃ w̃

Full Obs. excl. 10% excl. 20% excl. 30% excl. 40%

(6.44) (4.31) (0.03) (-4.43) (-5.31)
Exp × Edu 0.00165 0.00169 0.00181 0.00197 0.00200

(37.30) (35.07) (34.65) (34.30) (32.10)
Exp2/100 × Edu -0.00888 -0.00919 -0.00983 -0.0106 -0.0108

(-43.79) (-41.37) (-40.80) (-39.96) (-37.47)
Exp3/100000 × Edu 0.107 0.111 0.120 0.130 0.134

(39.56) (37.39) (37.22) (36.63) (34.48)
Male × Exp 0.00581 0.00568 0.00605 0.00657 0.00683

(22.72) (20.51) (20.26) (20.16) (19.27)
Exp2/100 ×Male 0.00459 0.00356 0.000249 -0.00338 -0.00564

(3.52) (2.51) (0.16) (-2.02) (-3.10)
Exp3/100000 ×Male -0.233 -0.216 -0.168 -0.119 -0.0838

(-12.13) (-10.31) (-7.41) (-4.81) (-3.11)

Observations 5,803,821 5,146,824 4,541,693 3,916,580 3,351,354
R-squared 0.584 0.547 0.515 0.489 0.474
R-MSE 0.449 0.453 0.456 0.458 0.460
Time x Region Dummy Y Y Y Y Y

t-statistics in parentheses
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Table A2: Summary Statistics
Year s.d. gi mean qs(=) mean qs(<) #Region qs > 1.5% #≤FedMW
1979 0.346 0.045 0.060 79 80
1980 0.346 0.054 0.061 81 80
1981 0.345 0.050 0.066 81 80
1982 0.345 0.047 0.052 78 78
1983 0.344 0.048 0.045 79 80
1984 0.344 0.045 0.040 80 80
1985 0.345 0.038 0.035 76 79
1986 0.345 0.036 0.035 69 75
1987 0.347 0.032 0.032 69 74
1988 0.346 0.026 0.029 55 72
1989 0.359 0.018 0.025 41 56
1990 0.360 0.012 0.038 26 0
1991 0.360 0.006 0.024 7 63
1992 0.353 0.023 0.026 50 76
1993 0.354 0.020 0.024 50 75
1994 0.361 0.012 0.036 22 73
1995 0.366 0.011 0.030 18 72
1996 0.367 0.008 0.027 7 69
1997 0.368 0.008 0.033 10 70
1998 0.369 0.013 0.041 24 0
1999 0.371 0.011 0.034 19 0
2000 0.371 0.010 0.030 14 0
2001 0.370 0.007 0.030 10 0
2002 0.371 0.006 0.029 7 0
2003 0.372 0.007 0.026 7 0
2004 0.372 0.006 0.025 6 0
2005 0.371 0.007 0.025 9 0
2006 0.371 0.006 0.026 8 0
2007 0.371 0.008 0.032 12 0
2008 0.370 0.009 0.034 16 25
2009 0.368 0.011 0.038 19 34
2010 0.367 0.018 0.040 41 55
2011 0.370 0.016 0.039 38 51
2012 0.377 0.016 0.040 39 48
2013 0.368 0.015 0.038 33 46
2014 0.369 0.014 0.052 29 32
2015 0.369 0.014 0.043 28 32
2016 0.369 0.015 0.043 22 32
2017 0.368 0.013 0.040 21 32
2018 0.368 0.011 0.045 18 32
2019 0.368 0.010 0.055 16 32
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Table A3: Frequency table by year with the spike in the bottom 70%
Year Regions Year Regions Year Regions
1979 7 1993 54 2007 75
1980 1 1994 71 2008 72
1981 4 1995 75 2009 73
1982 8 1996 81 2010 62
1983 4 1997 77 2011 67
1984 7 1998 70 2012 69
1985 14 1999 73 2013 71
1986 17 2000 74 2014 73
1987 24 2001 77 2015 69
1988 42 2002 77 2016 68
1989 57 2003 77 2017 68
1990 72 2004 77 2018 70
1991 76 2005 77 2019 71
1992 45 2006 78 Total 2324

Table A4: Frequency table by region with the spike in the bottom 70%
Region ID Freq. Region ID Freq. Region ID Freq.
Atlanta, GA 35 St Louis, MO 31 Delaware 31
Baltimore, MD 33 San Diego, CA 18 Maryland 29
Boston, MA 35 San Francisco, CA 35 Virginia 31
Buffalo, NY 28 San Jose, CA 33 West Virginia 20
Chicago, IL 36 Seattle, WA 39 North Carolina 31
Cincinnati, OH 32 Tampa, FL 31 South Carolina 28
Cleveland, OH 31 Virginia Beach, VA 31 Georgia 24
Columbus, OH 33 Maine 30 Florida 31
Dallas, TX 37 New Hampshire 35 Kentucky 26
Denver, CO 35 Vermont 32 Tennessee 27
Detroit, MI 32 Massachusetts 29 Alabama 25
Greensboro, NC 33 Rhode Island 32 Mississippi 24
Houston, TX 33 Connecticut 34 Arkansas 24
Indianapolis, IN 32 New York 31 Louisiana 22
Kansas City, MO 33 Pennsylvania 30 Oklahoma 26
Los Angeles, CA 5 Ohio 26 Texas 21
Miami, FL 32 Indiana 30 Montana 28
Milwaukee, WI 33 Illinois 23 Idaho 28
Minneapolis, MN 39 Michigan 28 Wyoming 29
New Orleans, LA 30 Wisconsin 31 Colorado 29
New York, NY 36 Minnesota 28 New Mexico 21
New Jersey, NJ 33 Iowa 28 Arizona 28
Philadelphia, PA 34 Missouri 26 Utah 29
Pittsburgh, PA 29 North Dakota 29 Nevada 31
Portland, OR 28 South Dakota 28 Washington 18
Riverside, CA 10 Nebraska 30 Oregon 13
Rochester, NY 29 Kansas 27 California 9
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Table A6: Employment Regression with ln ∆gsp = ln(0.01)− ln(gs,p − gs,p−0.01)
(1) (2) (3) (4)

VARIABLES ln ∆gsp ln ∆gsp ln ∆gsp ln ∆gsp

q̂s 4.380 -0.874 2.388 -2.053
(11.78) (-1.53) (4.82) (-4.19)

q̂s × (p− 0.5) -27.71 -25.84 -23.34 -20.68
(-15.11) (-15.06) (-13.22) (-11.89)

q̂s × (p− 0.5)2 -23.85 -16.33 -8.053 9.152
(-3.17) (-1.59) (-0.83) (0.94)

q̂s × (p− 0.5)3 65.86 -3.410 36.83 -18.20
(5.97) (-0.32) (3.27) (-1.62)

q̂s × (p− 0.5)4 -76.48 165.8 -72.08 65.44
(-2.23) (3.88) (-1.58) (1.44)

q̂2s -49.99 5.322 -53.15 -1.915
(-11.33) (0.80) (-9.16) (-0.34)

q̂2s × (p− 0.5) 260.0 297.7 160.3 191.8
(11.37) (13.37) (6.61) (8.13)

q̂2s × (p− 0.5)2 602.3 248.8 796.8 376.1
(6.32) (1.90) (5.94) (2.85)

q̂2s × (p− 0.5)3 -881.6 -668.4 -435.1 -294.3
(-6.28) (-4.91) (-2.81) (-1.95)

q̂2s × (p− 0.5)4 -971.6 -1,475 -2,097 -1,912
(-2.23) (-2.76) (-3.35) (-3.12)

Bartik IV -2.679 -4.240 -2.934 -4.399
(-11.56) (-11.73) (-8.46) (-13.05)

Bartik IV ×(p− 0.5) -3.100 -0.241 -1.464 2.048
(-4.68) (-0.37) (-2.28) (3.20)

Bartik IV ×(p− 0.5)2 51.18 107.2 45.83 96.46
(16.14) (24.60) (12.93) (27.38)

Bartik IV ×(p− 0.5)3 41.46 49.37 33.20 32.26
(10.35) (12.06) (8.12) (7.89)

Bartik IV ×(p− 0.5)4 -126.1 -408.8 -95.02 -338.3
(-9.19) (-22.21) (-5.75) (-20.54)

Time Y Y Y Y
Region Y Y Y Y
Dummy p Y Y Y Y
Dummy pg N Y N Y
Regression OLS OLS Robust Robust
Observation 325,346 325,346 325,346 325,346
R-squared 0.423 0.461 0.442 0.487
RMSE 0.691 0.667 0.646 0.625

41



Table A7: Instrumental Variable First Stage Regression without Bartik IVs
(1) (2) (3) (4)

VARIABLES hqs hqs hqs hqs
ms 1.224 1.340 1.398 1.426

(21.81) (23.92) (34.23) (40.34)

Observations 1,414 1,414 3,321 3,321
R-squared 0.882 0.884 0.837 0.868
RMSE 0.0737 0.0736 0.147 0.127
Time Dummy Y Y Y Y
Region Dummy Y Y Y Y
Regression OLS Robust OLS Robust

t-statistics in parentheses

Table A8: Regression with Biass corrected ω̂0s ω̂1s and ω̂2s without Bartik IVs
(1) (2) (3) (4) (5) (6)

VARIABLES ω̂0s ω̂1s ω̂2s ω̂0s ω̂1s ω̂2s

Panel A: with 2SLS Regression
q̂s 2.119 -3.192 4.321 2.511 -5.184 6.002

(3.18) (-4.51) (3.90) (8.36) (-14.10) (11.71)
q̂2s -1.986 36.36 -58.91 -4.075 50.40 -69.48

(-0.33) (5.68) (-5.87) (-1.32) (13.32) (-13.17)

R-squared 0.986 0.686 0.574 0.984 0.571 0.468
RMSE 0.0496 0.0527 0.0825 0.0486 0.0595 0.0829

Panel B: with Robust OLS Regression
q̂s 3.045 -1.059 1.288 3.273 -5.020 5.639

(6.03) (-1.72) (1.35) (12.52) (-14.36) (11.44)
q̂2s -9.997 19.30 -36.12 -15.65 56.56 -76.83

(-2.30) (3.65) (-4.41) (-5.85) (15.80) (-15.23)

R-squared 0.991 0.730 0.637 0.990 0.678 0.568
RMSE 0.0420 0.0512 0.0793 0.0391 0.0523 0.0737

Panel C: with Robust OLS Regression
q̂s -0.392 3.982 -7.328 -1.090 7.981 -10.52

(-0.66) (5.49) (-6.52) (-3.39) (18.85) (-17.31)
q̂s × lnq̂s -1.299 1.642 -2.631 -1.425 3.933 -4.617

(-4.17) (4.31) (-4.46) (-9.73) (20.39) (-16.68)

R-squared 0.991 0.731 0.639 0.990 0.692 0.574
RMSE 0.0418 0.0510 0.0791 0.0387 0.0509 0.0731

Time Dummy Y Y Y Y Y Y
Region Dummy Y Y Y Y Y Y
Observations 1,414 1,414 1,414 3,321 3,321 3,321

t-statistics in parentheses
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Table A9: Regression with weighted total employment ln(Ns) without Bartik IVs
(1) (2) (3) (4)

VARIABLES ln(Ns) ln(Ns) ln(Ns) ln(Ns)

q̂s 0.724 4.835 2.092 0.970
(0.70) (3.40) (3.38) (1.15)

q̂2s 19.43 -5.264
(1.81) (-0.82)

q̂s × ln q̂s 0.984 -0.250
(1.78) (-0.76)

Time Dummy Y Y Y Y
Region Dummy Y Y Y Y
Regression OLS OLS Robust Robust
Observations 3,321 3,281 3,321 3,281
R-squared 0.947 0.947 0.980 0.980
RMSE 0.175 0.175 0.105 0.104

t-statistics in parentheses
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Table A10: Counterfactual Estimation with q̂ using 2010 as base year
∆log employment(3) log wage differential(4)

year qt
(1) q−t ∆mt

(2) 1% 5% 10% 20% 50-10 50-15 50-20 90-50 ∆ln ΣW
(5)
i

2010 actual 0.018 0.040 actual 0.684 0.582 0.491 0.788
1991 actual 0.006 0.024 dens 0.063 0.052 0.041 0.023 actual -0.025 -0.019 -0.021 -0.064

c.fact. 0.018 0.030 0.154 distr 0.001 0.003 0.005 0.009 trunc. -0.004 0.003 0.000 0.010 -0.013
compr. -0.029 -0.007 -0.010 -0.017 0.033

1998 actual 0.013 0.041 dens 0.025 0.021 0.017 0.009 actual -0.019 -0.010 -0.021 -0.054
c.fact. 0.018 0.044 0.070 distr 0.000 0.001 0.002 0.004 trunc. -0.005 -0.004 0.001 -0.003 -0.006

compr. -0.007 -0.010 -0.002 0.001 0.015
2004 actual 0.006 0.025 dens 0.065 0.054 0.042 0.023 actual -0.004 -0.012 -0.018 -0.025

c.fact. 0.018 0.032 0.206 distr 0.001 0.003 0.006 0.009 trunc. -0.002 -0.006 0.000 0.002 -0.014
compr. -0.028 -0.006 -0.012 -0.009 0.042

2019 actual 0.010 0.055 dens 0.038 0.031 0.025 0.014 actual -0.018 -0.028 -0.034 0.026
c.fact. 0.018 0.059 0.104 distr 0.000 0.002 0.003 0.005 trunc. -0.000 -0.003 0.004 0.002 -0.008

compr. -0.016 -0.012 -0.006 -0.015 0.022

Note: 1. The unweighed average of the spike qs across regions for a particular year. 2. The unweighed average of the log minimum wage ms across regions
for a particular year. 3. ∆ ln employment: (c.fact.) see Appendix A. 4. The actual and counter-factual log wage differentials among the workers. 5. The
difference between the actual and the counter-factual log of the sum of wage for all workers earning more than the minimum wage.
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