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1 Introduction

Recent increases in income inequality across OECD countries have spurred researchers to inves-

tigate the dynamics of earnings, wages or incomes, and the insurance mechanisms that house-

holds can use to protect themselves against earnings shocks when markets are incomplete (see

Blundell, 2014 for a review). Most contributions analyse interactions between labour earnings

processes along the life-cycle and consumption dynamics (Meghir and Pistaferri, 2010), or house-

hold labour supply dynamics (Keane and Wasi, 2016). A few of them more narrowly focus on the

specification of earnings dynamics that can be studied using long panel survey or administrative

data (Guvenen et al., 2021).

Recently, there has been a few attempts to estimate earnings or wage equations à la Min-

cer (1974) while including lots of heterogeneity as in Browning, Ejrnaes and Alvarez (2012),

Polachek, Das and Thamma-Apiroam (2015) or Magnac and Roux (2021). These authors indi-

vidualize as much as possible earnings processes by estimating sets of individual specific para-

meters beyond the permanent effects that appear additively in equations commonly estimated

with panel data of earnings (Heckman, Lochner and Todd, 2006). Their object of interest is the

building up of inequalities over the life-cycle and their procedures lead to richer decompositions

of life-cycle profiles into permanent and transitory effects. Yet, in empirical analyses, survey or

administrative panel data on wages are plagued with missing data and attrition issues. The most

common attitude among researchers is to select wage histories which are suffi ciently long and

to treat missing observations in histories as random using so called missing at random (MAR)

procedures. The missing data issue is particularly important when parameters are individual

specific since their estimation uses individual time-series and consistency of those estimates relies

on the number of periods being large.

In this paper, we propose a general framework to study the evolution of wage inequalities

over the life-cycle which accomodates incomplete individual wage trajectories. Our approach

builds upon the structural linear model proposed by Magnac, Pistolesi and Roux (2018) for the

logarithm of wages over the life-cycle as a function of four individual specific parameters: the

initial level of human capital at entry in the labour market, the returns to human capital, their

costs and the terminal value of human capital stocks.

Our first contribution is to extend the model to the case of two sectors in which individual

parameters become sector-specific. This setting fits empirical analyses in which wages in one sec-

tor of the labour market are observed while wages in an alternative sector, if any, are not. This
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provides us with a way of modelling temporary or permanent attrition in the life-cycle histories

of wages. The differential structure of returns and costs of human capital investments across

sectors creates a wedge between the accumulation processes in human capital in the two sectors

(see for instance Blundell, Costa-Dias, Meghir and Shaw, 2016, for part-time/full-time evidence).

In particular, we expect that interruptions in the career have a sizeable effect on human capital

investments (Light and Ureta, 1995). This structural model makes us introduce additional linear

terms in wage equations reflecting the number of periods spent in the alternative sector. It pro-

vides a tractable approach with lots of individual heterogeneity and complements the literature

on the different impact of potential and actual experience on wages in a homogeneous set-up

(Eckstein and Wolpin, 1988, Altug and Miller, 1998).

Our second contribution is an original empirical strategy that deals with selection issues

under an assumption much weaker than MAR. We posit a factor structure for the residual

structural process of human capital prices and of sectoral preferences, and use the structural

restrictions on the wage and participation equations. The factor structure implies conditional

independence between the wage and sectoral choice equations when conditioning on histories,

unobserved factors and factor loadings. Such an approach with interactive effects is akin to the

one proposed by Aakvik, Heckman and Vytlacil (2005), and squares well with the fact that lots

of heterogeneity affect wage histories over the life-cycle. Econometric moment restrictions are

further vindicated by a "flat spot" approach introduced by Heckman et al. (1999) which allows

the distinction between volumes and prices of human capital, and the separate identification of

time, cohort and age effects.

In the empirical analysis, we resort to a long administrative panel dataset collected in France

for social security purposes, and which is typical of administrative datasets that can be found

in many countries. We study the building up of inequalities of wages in the private sector for

cohorts of males who entered in that sector between 1985 and 1992 and were followed until

2012 — if they do not leave the panel before. The other sector gathers all other employment

and non-employment alternatives. French data provide an attractive observational case because

wage inequalities in the population have been quite stable in the past 40 years. This stability

of wage inequalities contrasts with the US and the German experiences (Antonczy, DeLeire and

Fitzenberger, 2018), and is likely due to policy interventions such as steady increases in the

minimum wage, and payroll tax exemptions for the less skilled (Bozio, Breda and Guillot, 2020).

Our econometric procedure aims at estimating the reduced form wage equation derived from

the structural human capital model. Observed variables in this wage equation comprise a level,
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trend and curvature in potential experience, as well as the years of interruptions in participation

and its associated curvature term. As parameters of those variables are individual specific,

the wage equation is a random coeffi cient model that we estimate with a fixed-effect approach.

Additional unobserved factors and factor loadings are introduced to control for selection. We

estimate various specifications using Bai (2009)’s least-square method adapted to the presence

of missing data, and extended by Song (2013) to the case of individual specific coeffi cients. We

also use as the starting point to the Bai algorithm a consistent estimator proposed by Moon and

Weidner (2018). As derived by model selection procedures, our preferred specification includes

two factors.

To understand the building up of inequalities over the life-cycle, we estimate summaries

of the distribution of predicted wage profiles. Those summaries depend on individual specific

parameters which converge at rate
√
T , and the incidental parameter issue makes most summary

statistics asymptotically biased when N and T tend to infinity (e.g. Fernandez-Val and Weidner,

2018). We correct biases using methods proposed by Jochmans and Weidner (2019), and we

investigate the small sample properties of these methods in Monte Carlo experiments. We show

that variances are not well estimated even when T is greater than 20, and we prefer to measure

the dispersion of wages with quantiles, and particularly inter-decile ranges which are more robust.

Results based on our original empirical strategy constitute our third contribution. We first

show that omitting interruptions and unobserved factors strongly downward biases returns to

experience after 20 years. Second, most of this bias comes from the influence of interruptions on

human capital accumulation. In other words, selectivity seems mainly captured by interruptions

and not by the additional interactive effects. Third, we estimate average structural functions

(Blundell and Powell, 2003) that are constructed by manipulating interruptions. Accordingly,

we estimate the causal impact of the existence and timing of interruptions. Provided that

identification conditions akin to the ones developed in Chernozhukov et al. (2013) are satisfied,

we show that interruptions have a significant negative effect on average wages. More surprisingly

they also have a negative effect on the dispersion of wages after 20 years. This is mainly due to an

endogeneity issue: individual-specific parameters induce negative correlations in the population

between the effects of interruptions and wages reconstructed by setting interruptions to zero.

The outline of the paper is the following. We start with a brief literature review in Section

2. Section 3 describes empirical evidence about the panel data on wages that we use. Section

4 sets up the structural model and Section 5 the identifying restrictions of the econometric

model. Section 6 presents our estimation strategy and results are reported in Section 7. Section
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8 discusses remaining selection issues.

2 Literature review

Earning dynamics We first discuss the very extensive empirical literature on earnings

dynamics (see Meghir and Pistaferri, 2010, or Blundell, 2014, for a review). An important part

of this literature aims at fitting the empirical covariance structure of (log) earnings over the

life-cycle using competing specifications. Broadly speaking most studies assume that data are

missing at random while we adopt a conditional-on-factor version of this assumption. Our paper

also relates to the estimation of the traditional homogenous Mincer equation. Lagakos et al.

(2018) study a large set of countries and shows that experience-wage profiles are twice as steep

in rich countries as in poor countries. This literature has mostly remained in a linear framework

but there has been a few non-linear alternatives (Browning et al., 2012, Guvenen et al., 2020,

Bonhomme and Robin, 2009 or Arellano, Blundell and Bonhomme, 2017).

In a different vein, there is a more economically oriented literature trying to distinguish

theories of wage growth, namely human capital, job search or learning by doing. Rubinstein

and Weiss (2006) surveys the literature before 2005. There are a few recent papers pursuing

this research objective such as Bagger, Fontaine, Postel-Vinay and Robin (2014) or Sorensen

and Vejlin (2014) and they are reviewed in Magnac and Roux (2021). As we use a human

capital model as a maintained assumption, our analysis is not strictly comparable to theirs.

We rather follow Polachek et al. (2015) and Magnac et al. (2018) which set up Ben Porath

(1967) human capital model of earnings or wages over the life-cycle in different guises. In

their specifications, individual specific parameters governing wage equations have a structural

economic interpretation, and they can be related to individual characteristics. These parameters

are related to the abilities to learn and to earn of individuals (Browning, Heckman and Hansen,

1999, Rubinstein and Weiss, 2006).

Our paper also studies the impact of interruptions in participation on wages. The issue of

actual versus potential experience was dealt with as early as the 70s (see for instance, Polachek,

1975) and revisited in the 90s. More specifically, Light and Ureta (1995) use rich reported

information on breaks, and show that these additional variables have explanatory power over

and above the quadratic term in experience. Interestingly, the timing of interruptions matters

empirically. In our case, we use an admittedly restrictive structural model although it is much

richer in terms of individual specific heterogeneity. We also find that interruptions negatively
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affect average wages and that their timing has a significant impact. We only know of one

paper which reports results on the effect of interruptions on wage inequalities (Biewen et al.,

2018). They analyze German data between 1985 and 2010 with a focus on the evolution of

wage inequalities for the whole population over time, and not for specific cohorts as we do.

In a decomposition exercise of exogenous covariate effects, the authors show that inequalities

increased with the number of interruptions —which is trending upward over time. This is in sharp

contrast with what we obtained with an admittedly different focus on life cycle inequalities within

cohorts, using models with lots of heterogeneity, and controlling for endogeneity issues. Indeed,

we show that the negative effect on inequalities we obtain stems from the endogenous nature

of interruptions. Finally, our paper does not analyze female wages although a huge literature

assesses to what extent the gender wage gap can be explained by interruption patterns (see Das

and Polachek, 2019 for a survey).

Missing data The pattern of missingness considered in our paper is due to non-observed

outcomes (see Bollinger et al., 2019, for an example). In particular, time-series of wages are

irregularly observed over time because of interruptions in private sector participation. The miss-

ing at random (MAR) assumption, conditional or not on exogenous covariates, is well explored

in statistics (see Little and Rubin, 2019). Under this assumption, the focus of GMM literature

is the effi ciency of estimation (Abowd, Crépon and Kramarz, 2001), or the robust and effi cient

estimation (Graham, Pinto and Egel, 2012, and Chaudhury and Guilkey, 2016). Attrition using

other types of MAR assumptions are also explored by Sasaki (2015) who imposes ingenious non

standard exclusion restrictions.

Any Missing At Random (MAR) procedure might induce sizeable biases in wage equation

estimates if the degree of attachment to the private sector, as measured by the reciprocal of the

number of interruptions in individuals’careers, is somehow associated to individual parameters

such as the ones which describe abilities, returns to human capital investments or their costs.

Correcting for missing data issues is however diffi cult in the absence of exogenous variation which

would affect entry and exit from the panel without affecting wages i.e. the absence of credible

alternative exclusion restrictions. It is diffi cult to entertain the idea that such instrumental

variables can be derived from our administrative data.

Instead of relying on a usual MAR assumption, we impose structure derived from an eco-

nomic model and a Missing At Random Conditional On Factors (MARCOF) assumption. Our

restrictions can then be interpreted in an economic way. The generalization of selection-on-
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unobservable factors was also explored in a difference-in-differences setting by Gobillon and

Magnac (2016). Another direction away from MAR taken up recently is the literature on sensi-

tivity (e.g. Kline and Santos, 2013). An intermediate “breakdown”solution between MAR and

worst case bounds a la Manski is sought so that substantial results remain (just) significant.

Since wages are our outcome of interest, the worst case bounds, in our case, are infinite.

Factor models The development of factor models for panel data started with Holtz-Eakin,

Newey and Rosen (1989) and Ahn, Lee and Schmidt (2001). Pesaran (2006) proposes a restrictive

framework in which regressors are low rank, i.e. they are equal to the bilinear product of

individual specific effects and time varying factors. This framework is not adapted to our setting

since explanatory variables related to interruptions are high rank regressors (see Moon and

Weidner, 2017). Instead, we follow Bai (2009) who proposes to minimize a sum of squares

objective function, and uses principal component methods and asymptotics in both N and T .

More specifically, asymptotic properties of our estimation method are derived by Song (2013)

who extends Bai (2009) to the case of individual coeffi cients. We first complete the proof of

Song (2013) in which a step was missing. Furthermore, recent advances on the estimation of the

interactive effect model includes Moon and Weidner (2018) and Beyhum and Gautier (2019) who

propose to use an objective function which is convex in contrast with Bai’s. We experiment with

their objective function that ensures convergence (Hsiao, 2018), and find the same minimizers

as with Bai’s algorithm.

Because of interactive effects and missing data, we rely on an Expectation Maximization

(EM) algorithm for the estimation. Its use has a long tradition in the statistical literature and

its properties have been studied by Heyde and Morton (1996) in the case of pseudo-likelihood

maximization. Convergence issues of the EM algorithm and conditions that make our algorithm

a contractive mapping have been studied by Dominitz and Sherman (2005) and Balakrishnan,

Wainwright and Hu (2017).

3 Empirical Evidence on Wage Profiles

3.1 The data

The data are constructed from the 2011 DADS Grand Format-EDP panel dataset which merges

two different sources, DADS (Déclaration Annuelles des Données Sociales) on social security

and tax records and EDP (Echantillon Démographique Permanent) extracted from censuses.
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All individuals born in the first four days of October of an even year are followed over time,

and their jobs in the private sector are recorded between 1976 and 2011 except in 1990. The

information on spells in the public sector, self-employment, unemployment, and non-employment

is incomplete, and we focus on job spells in the private sector.

The data record job characteristics, and in particular whether jobs are full-time or part-time

as well as earnings and days of work. For every individual, we aggregate earnings and days

of work for all full-time jobs within a year, and construct the individual daily wage in every

year. Education as measured by diploma is recovered from EDP and the censuses, and the

highest education level is used to group individuals into four categories: high-school drop outs,

high-school graduates, some college —two years or less —and college graduates including top

engineering schools.

We focus on males who enter the market over the 1985-1992 period and who are 16 − 30

years old at the entry date. We recode person-year observations as missing when the daily wage

is lower than 80% of the minimum wage and when the number of days of work is lower than

180. A non-missing observed daily wage defines “employment in the private sector”, a sector

denoted e, while the alternative is denoted n. The year of entry into the panel is defined as

the first year an individual works in sector e. We finally select individuals whose wages in the

private sector are observed for at least 15 years, and we end up with a working sample of 137, 315

yearly observations involving 7, 004 males. Further details on the sample construction are given

in Appendix A.1.

3.2 Descriptive statistics

In Figure 1, we report the profile of statistical summaries of the logarithm of wages as a function

of potential experience by education level. We truncate profiles at 20 years of potential experience

since the youngest cohort enters in 1992 and the panel ends in 2011.

Figure 1(a) reports the profiles of average log wages for every education group. As expected,

they are increasing and concave in potential experience although the profiles are almost linear

when experience is large. The slope is steeper for higher education levels, a common finding in

most countries (Lagakos et al., 2018).

Mean log wage profiles reported above are the composition of the profile of (log) human

capital stocks and (log) human capital prices. We use a “flat spot”approach whose conditions

of validity are developed in Heckman, Lochner and Taber (1998) and Bowlus and Robinson

(2012) to estimate human capital prices. Its rationale is the following. Because individuals aged
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50 − 55 have presumably stopped investing in human capital, their median wages by year and

education level are consistent estimates of human capital prices conditionally on education level

and year if human capital is homogenous within education groups.

Figure 1(b) displays profiles of human capital prices over calendar years. It shows that prices

for high school dropouts increased between 1985 and 2011 in France by roughly 80%, mainly

because minimum wages have been increasing faster than average wages since at least the 1970s

(Cette et al., 2012). For other groups, increases sum up to about 45-50% over the whole period

except for high school graduates (about 30%). Albouy and Tavan (2007) document that the

supply of these groups increased at the beginning of the 1990s, which might have attenuated

their wage increases. Second, policies in France decoupling wages and the costs of labor such

as subsidies to lower skill employment help understand the contrasts between education groups

that differ greatly in the US (Bozio, Breda and Guillot, 2020).

Net log wages are defined as log wages from which we subtract the logarithm of the yearly

price of human capital at each education level, and correspond to individual specific human

capital stocks over the life-cycle. These net log wages will be the main outcome variable in

our analysis. As shown in Figure 1(c), their averages have profiles different from those obtained

for raw wages. The growth of net wages is more pronounced for college graduates and less

pronounced for high school dropouts while they are roughly the same for workers with some

college education and high school graduates.

To analyze wage dispersion, we display the profile of inter-decile ranges of log wages in Figure

1(d). Interestingly, both levels and slopes differ in a sizable way across education groups. College

graduates are characterized by a larger and steeper inter-decile range whereas ranges for high-

school graduates and workers with some college education are very close. There is also evidence

of a Mincer dip for college graduates (Mincer, 1974) while this dip for other groups is probably

masked by the aggregation of different cohorts (see Magnac and Roux, 2021 for a single cohort

analysis). We will return below to the significance of Mincer dips when analyzing our complete

specification estimates.

Serial correlations between log-human capital stocks at different periods are reported in Table

A.1 from which we derive important stylized facts.1 The one-year lag correlation starts at .83

and grows until 0.94 at the end of the observation period. Human capital stocks are getting more

and more persistent when potential experience increases, and this indicates that the variance of

idiosyncratic shocks on log-stocks tends to decrease over time (Magnac and Roux, 2021). Non

1All Tables and Figures which number is preceded by the A letter are relegated in Appendix.
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stationarity is an important element to model in wage dynamics and this will be captured by

factors in our empirical analysis. Furthermore, the correlation decreases at longer lags although

much less than at a geometric rate. At a 20-year lag, the correlation is equal to 0.28, which is

above (.83)20 = 0.024. This likely denotes the presence of unobserved permanent heterogeneity

which will be captured by the factor loadings of observed and unobserved factors in our empirical

analysis.

Interruptions in individual participation in the private sector make real and potential ex-

perience different and play an important role in our empirical results. In Table 1, we describe

these interruptions, including among those, attrition periods. For instance, for an individual

exiting the private sector in 2007 and absent until the end of the panel in 2011, we treat as an

interruption the periods between 2007 and 2011. This Table shows that the cumulative duration

outside the private sector is 3.7 years and the average length of private sector spells is about 21

years. The number of interruptions is equal to 1.44 while the distribution of these interruptions

is quite disperse. 523 males have more than 4 interruptions whose cumulative duration reaches

about 8 years.

4 The economic model

In this section, we set up the model, analyze its structural predictions and derive the reduced

form to be brought to the data.

4.1 Set up

We start with the description of human capital accumulation that extends the framework of

Magnac et al. (2018) to two distinct sectors. We then present the timing of decisions and define

value functions. We end up with the description of terminal conditions. For simplicity, we do

not index variables or parameters with an individual subscript i in this section although most

of them are supposed to be individual specific.

4.1.1 Human capital accumulation in two sectors

Entering the private sector at an initial date, t0, an individual participates, at each period t, in

a labour market sector chosen among two sectors, denoted st ∈ {e, n} for either the private or
the alternative sector. Participation in the private sector means a full-time job in that sector

while any other status, e.g. part-time, self-employment, public sector employment, and non
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employment, is classified in the alternative sector. Individual wages in the private sector if

st = e, or a wage-equivalent notion if st = n, are written as:

yst = exp(δst)Ht exp(−τ), (1)

in which Ht is the stock of human capital at the beginning of period t, δ
s
t is the rental rate or

“price”of human capital in sector s at time t, and τ is a decision variable such that the term

1− exp(−τ) can be interpreted as the fraction of non-leisure time, or alternatively the intensity

of effort, devoted to investing in human capital. This fraction is increasing in τ , equal to zero

when τ = 0 and equal to one when τ = +∞. This is why we call, τ st ≥ 0, the individual specific

investment in human capital at time t in sector s.

The technology of production of human capital in sector s is described by

Hs
t+1 = Ht exp[ρsτ st − λst ], (2)

in which ρs is the rate of return of human capital investments in sector s (fixed over time but in-

dividual specific) and λst is the depreciation of human capital in sector s at period t. Depreciation

λst embeds individual specific and aggregate shocks that depreciate previous vintages of human

capital. Shocks are state-specific if human capital depreciation is larger when in the alternative

sector than when in the private sector as on-the-job learning is more likely. Furthermore, the

individual rate of learning, ρs, differs across sectors. The individual prices of human capital, δst ,

and depreciations, λst , are treated as stochastic processes whose properties are presented below.

We assume that investing in human capital is the only way of smoothing consumption over

time. Magnac et al. (2018) derive predictions when relaxing this assumption which requires

consumption information that is not available in our data. Without consumption smoothing,

period-t utility in sector s is a function of income, effort and participation:

ln yst − c
(τ st)

2

2
+ ωt1{s = e}, (3)

in which the variable ωt is the difference in utility between sectors e and n. Furthermore, the cost

of investment is quadratic and indexed by an individual specific parameter, c, that we assume

independent of sector s as it is a parameter of the utility function. Moreover, we neglect the

linear component of the cost in terms of τ st because it cannot be identified, as log wages in sector

s are:

ln yst = δst + lnHt − τ st , (4)
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and the unit in which τ st is expressed, is not identified. Increasing marginal costs fits well with

the interpretation of τ st as an exerted effort which decreases current earnings and provides future

returns. This is what makes unique the solution in the dynamic programming decision problem.

4.1.2 Timing and value functions

The timing of revelation of shocks, state variables and decisions about sectors and human capital

investments is plotted in Figure 2. Our key assumption is that the revelation of sector preference

shocks, ωt, and the choice of sector, st, are made before shocks on prices and depreciations of

human capital are revealed, and decisions about human capital investments are made. This is a

specific version of the Roy model which is known, under conditions developed below, to lead to

the absence of selectivity of sector choice on earnings (Heckman and Robb, 1985). In the current

paper, this absence of selectivity results from the conditioning on factors and factor loadings,

which are unobserved by the econometrician and act as controls for selectivity.

The first row in this figure reports the timing of the revelation of shocks on sector preferences,

ωt, and on price and depreciation of human capital, δ
s
t and λ

s
t . The second row reports the history

of the time processes, δs, λs and ω up to the times described by the first row. In particular Zt

contains the history of ω up to period t and the history of δs, λs up to period t − 1. History

Zt+1/2 completes Zt with period t information on δ
s
t and λ

s
t . The third line reports the timing

of decisions: the choice of sector is made after sector preference shocks are revealed and human

capital investments after the revelation of shocks on prices and depreciation. The state variable

Ht is inherited from the past according to equation (2) at the very beginning of period t. Below

the timeline, the potential wage, yt, is a function of shocks on prices and depreciation.

Value functions at each stage of this timeline can now be constructed. If Vt+1 is the value

function at the beginning of period t + 1, its arguments are the state variables, Ht+1 and Zt+1.

At the previous interim stage t+ 1/2, these state variables are Ht, Zt+1/2. At time t, because of

equations (3) and (4), human capital investments are derived for each sector decision s ∈ {n, e}
from the following decision program:

W s
t (Ht, Zt+1/2) = max

τ

{
δst + lnHt −

(
τ + c

(τ)2

2

)
+ βEt+1/2

[
Vt+1(Hs

t+1, Zt+1)
]}

subject to the human capital accumulation equation (2),

In this expression, Et+1/2(.) = E(. | Ht, Zt+1/2) and β is the discount rate. This means in

particular that the delay between t and t + 1/2 is infinitely smaller than the delay between

t+ 1/2 and t+ 1 despite our abusive but clear notation, 1/2.
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At the beginning of period t, we model sector choice as resulting from:

st = e iff EtW e
t (Ht, Zt+1/2) + ωt > EtW n

t (Ht, Zt+1/2), (5)

where Et(.) = E(. | Ht, Zt), which allows us to complete the definition of the recursive equation

in Vt:

Vt(Ht, Zt) = max(EtW e
t (Ht, Zt+1/2) + ωt,EtW n

t (Ht, Zt+1/2)).

As sector choice, denoted by st, affects the accumulation of human capital, the optimal level

of investment is τ stt . The level of human capital at date t + 1 is then given by the simplified

notation, Ht+1 ≡ Hst
t+1, reflecting that human capital is single dimensional (see Taber and Vejlin,

2020, Lise and Postel-Vinay, 2020, for multidimensional alternatives).

4.1.3 Individual specific terminal conditions

The terminal condition of this decision program could be given by an individual specific date at

which investing in human capital stops (Ben Porath, 1967). We use here a dual formulation as

described by an individual specific value of human capital stocks at an arbitrary date, t0 + d, in

the future.2 Specifically, we write that at the future date t0 + d + 1 the value function or the

discounted value of the utility stream from t0 + d+ 1 onwards is given by:

Vt0+d+1(Ht0+d+1, Zt0+d+1) = at0+d+1(Zt0+d+1) + κ lnHt0+d+1, (6)

in which the level at0+d+1 generically depends on Zt0+d+1, and parameter κ is the individual

specific marginal valuation of log human capital in the final period. The latter commands the

horizon effects in wages as shown below. It is not indexed by t0 + d+ 1 for notational simplicity,

and is assumed to be independent of Zt0+d+1.

To complete the description of the economic model, we further assume that the distribution

of future shocks (ωl, δ
s
l , λ

s
l )l≥t conditionally on Zt−1/2 does not depend on the state variable

history Ht, Ht−1, ., H1.

4.2 Analysis

We now provide the steps leading to the resulting reduced form for log wages, through a sequence

of Propositions which are proved in Appendix B.

2d is either the length of the working life or of the observed working life in our empirical analysis further on.
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4.2.1 Value functions and life-cycle profile of investments

The sequence of investments between t = t0 and the terminal date, t0 + d, is called a life cycle

profile of investments. We can analytically solve the dynamic model backwards because of linear

assumptions, and the value functions are log-linear in human capital stocks.

Proposition 1 The sequence of value functions writes:

W s
t (Ht, Zt+1/2) = ast(Zt+1/2) + κt logHt for s = e, n

and:

Vt(Ht, Zt) = at(Zt) + κt logHt

in which

κt =
1

1− β + βt0+d−t(κ− 1

1− β ).

and the constant functions, ast(Zt+1/2) and at(Zt) are defined in Proposition 3.

From this Proposition, we derive a closed form for human capital investments that depends

on individual specific parameters.

Proposition 2 The sequence of potential investments between t = t0 and t = t0 + d in each

sector s is:

τ st = max{0, 1

c
(ρsβκt+1 − 1)} (7)

which in turn determines the dynamic equation for the additive terms in the value functions.

Proposition 3 The sector specific additive terms in Proposition 1 are:

ast(Zt+1/2) = δst − βκt+1λ
s
t + c

(τ st)
2

2
+ βEt+1/2 [at+1(Zt+1)] .

in which τ st is the optimal value of human capital investment when being in sector s as defined

in equation (7).

The determination of the value functions in each sector finally leads to the determination of

sectoral choice.

Proposition 4 The sectoral choice is determined by:

st = e iff (8)

ωt + Et
(
δet − βκt+1λ

e
t + c

(τ et )
2

2

)
≥ Et

(
δnt − βκt+1λ

n
t + c

(τnt )2

2

)
.

This is the equation that determines the structure of selection that we entertain below. We

now turn to our main object of interest, the profile of log wages in the private sector.
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4.3 The reduced form

Consider a worker who is in sector e at period t. As observations consist in wage histories starting

in the private sector beginning at time t0, st0 = e. Denote t1 = min{l; l ≥ t0, sl = n} ≥ t0 the

first period in sector n, t2 the first return in sector e i.e. t2 = min{l; l > t1, sl = e} > t1 + 1 and

so forth by induction, and Kt the overall number of spells in sector n before period t > t0. The

vector (t0, t1, t2, ., t2Kt) is the sequence of transition dates into sector e (even index values) and

into sector n (odd index values). We deduce from this setting that the mapping between date

l ≤ t and sectoral choice is given by:

sl = e for t2k ≤ l ≤ t2k+1 − 1,

= n for t2k+1 ≤ l ≤ t2k+2 − 1, for k 6 Kt.

Proposition 5 Consider a worker in sector e at date t ∈ {t0, ., t0 + d} and assume that τ sll >

0 for any t0 ≤ l < t0 + d+ 1. Log wages are:

ln yt = η0 + η1t+ η2β
−t + η3x

(3)
t + η4x

(4)
t + δet −

t−1∑
l=t0

λsll︸ ︷︷ ︸
vt

(9)

in which H = (η0, η1, η2, η3, η4) are functions of parameters (ρs, c, β, κ) as well as of the initial

value of human capital stock lnHt0 . Variables x
(3)
t and x(4)

t are defined by:

x
(3)
t =

Kt−1∑
k=0

(t2k+2 − t2k+1) ; x
(4)
t =

Kt−1∑
k=0

(
β−t2k+2+1 − β−t2k+1+1

)
. (10)

This reduced form is the wage equation we estimate in our empirical application.

5 Econometric model

In our empirical analysis, we use panel data on males from period t0 = 1 to T and rely on

information on wages observed during spells of employment in the private sector to estimate

equation (9). We allow structural parameters implicit in this equation to be individual specific.

It concerns returns in both sectors, ρei , ρ
n
i , the cost of effort, ci, the terminal value of human

capital, κi, and the initial value of (log) human capital stocks, log(Hi1). We restrict however

the discount factor β to be homogeneous, as is commonly assumed. The log wage equation can

thus be written as

ln yit = ηi0 + ηi1t+ ηi2β
−t + ηi3x

(3)
it + ηi4x

(4)
it + vit = xitηi + vit,
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where vit = δeit −
∑t−1

l=t0
λsilil in which sil is the sector chosen by individual i at period l, xit =

(1, t, β−t, x
(3)
it , x

(4)
it ) and ηi = (ηij)j=0,.,4.3

We first analyze the identification of parameters, ηi, when selection in private sector employ-

ment is exogenous. We then turn to stating the conditions under which selection is conditionally

exogenous.

5.1 Identification under exogenous selection

Assume that selection in the private sector is exogenous. Note that the number of structural

parameters and the number of reduced form parameters are both equal to 5 for each individual.4

Yet, a necessary condition for point identification is that there is enough individual mobility

across sectors. Indeed, consider an individual i who is employed during the whole period in

sector e, or who moves only once out of sector e to sector n, so that x(3)
it = x

(4)
it = 0 for

all dates t during which this individual is working in sector e. In consequence, parameters

ηi3 and ηi4 are not identified. Turn now to an individual making two transitions, one from

e to n first, and then a return from n to e later. In this case, x(3)
it = (t2i − t1i) 1{t>t2i} and

x
(4)
it =

(
β−t2i − β−t1i

)
1{t>t2i}, and the two variables x

(3)
it and x

(4)
it are proportional to 1{t>t2i}

where 1{A} is the indicator function of the event A. Parameters ηi3 and ηi4 are not separately

identified but the linear combination ηi3 (t2i − t1i)+ηi4
(
β−t2i − β−t1i

)
is. An additional final exit

from employment would not have any additional identifying power. It is only if an individual

makes four transitions (two from e to n and two from n to e) that parameters ηi3 and ηi4 are

identified separately. Note that underidentification of parameters ηi3 and ηi4 does not affect the

identification of the other parameters ηi0, ηi1 and ηi2. This issue is akin to the one identified by

Chernozhukov et al. (2013) in a treatment set-up.

5.2 Missing at random conditionally on factors (MARCOF) restric-
tion

We now discuss the identifying assumptions that we adopt and that make selection exogeneous

when we impose the structural model and in particular the participation equation (8). First,

stochastic processes ωit (i.e. private sector preference), δ
s
it (i.e. human capital price) and λ

s
it (i.e.

3From now on, we drop the superscript, e, to refer to the private sector by default. Otherwise, the superscript
gives the sector.

4The derivation of structural parameters from the reduced form, as well as suffi cient conditions for this
derivation, is available upon request.
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depreciation), are specified using factor structures:

ωit = ϕ
(ω)
t θ

(ω)
i + ω̃it, (11)

δsit = ϕ
(δ),s
t θ

(δ),s
i + δ̃

s

it, (12)

λsit = ϕ
(λ),s
t θ

(λ),s
i + λ̃

s

it. (13)

in which residual random shocks are assumed to be mean independent of factors and factor

loadings. In other words, they satisfy the following orthogonality restrictions for t ≥ 1, s ∈ {n, e}:

E (ω̃it |Υt, θi ) = E
(
δ̃
s

it

∣∣Υt+1/2, θi

)
= E

(
λ̃
s

it

∣∣Υt+1/2, θi

)
= 0.

in which we denote Υt =
{
ϕ

(ω)
t ,Υt−1

}
to mimic the construction of history Zt for factors, and

we define Υt+1/2 accordingly, that is Υt+1/2 =
{
ϕ

(δ),e
t , ϕ

(δ),s
t , ϕ

(λ),e
t , ϕ

(λ),n
t ,Υt

}
, consistently with

the timing of Figure 2. We also denote θ̃i =
{
ηi, θ

(ω)
i , θ

(δ),e
i , θ

(δ),n
i , θ

(λ),e
i , θ

(λ),n
i

}
.

We now strengthen this assumption into independence and mean independence restrictions

that condition on information available just before the revelation of those shocks:

Assumption M(issing)A(t)R(andom)C(onditionally)O(n)F(actors):

Pr(ω̃it ≤ ω | Z̃t−1/2,Υt, θ̃i) = Pr(ω̃it ≤ ω | Υt, θ̃i), (14)

E((δ̃
s

it, λ̃
s

it) | Z̃t,Υt+1/2, θ̃i) = 0. (15)

in which we extend the notation Zt and Zt+1/2 in a natural way to Z̃t and Z̃t+1/2 which now

include the histories of residual random shocks ω̃it, δ̃
s

it and λ̃
s

it.
5 Note that this assumption

implies that {ω̃it}t≥1 and {(δ̃
s

it, λ̃
s

it)}t≥1 are independent and that they are both independently

distributed over time.

We now prove that these assumptions in a linear factor setting imply that selection is exoge-

nous and that experience variables x(3)
it and x

(4)
it are exogenous. First rewrite the wage equation

under assumptions (11)-(13):

ln yit = xitηi + ϕ
(δ)
t θ

(δ)
i −

[
t−1∑
l=t0

ϕ
(λ),n
l 1{sil=n}

]
θ

(λ),n
i −

[
t−1∑
l=t0

ϕ
(λ),e
l 1{sil=e}

]
θ

(λ),e
i + ṽit (16)

where ṽit = δ̃
e

it −
∑t−1

l=t0
λ̃
sil

l .

Second, the sectoral choice equation (8) can be rewritten as:

ω̃it + Et
(
δ̃
e

it − βκit+1λ̃
e

it

)
− Et

(
δ̃
n

it − βκit+1λ̃
n

it

)
≥ f(Υt, θ̃i)

5Variables θ̃i and factors implicitly determine Hit.
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in which the notation, Et, is defined in Section 4.1.2, and conditions on available information,

and f(Υt, θ̃i) is a function of factors and factor loadings which subsumes investment terms like

ci
(τsit)

2

2
.6 Because of condition (15) we have that Et

(
δ̃
s

it − βκit+1λ̃
s

it

)
= 0 for s = e, n and the

selection equation rewrites as:

ω̃it ≥ f(Υt, θ̃i). (17)

Furthermore, conditions (14) and (15) imply that:

• ω̃it is independent of δ̃it given factors and factor loadings (Υt+1/2, θ̃i),

• ω̃it is independent of the history of depreciation shocks, λ̃
s

i , s ∈ {n, e} , up to date t − 1,

given factors and factor loadings (Υt+1/2, θ̃i),

• ω̃it is independent of the history of sector preferences, ω̃i, up to date t − 1, given factors

and factor loadings (Υt, θ̃i).

and this in turn implies that ω̃it and ṽit are independent given factors and factor loadings

(Υt+1/2, θ̃i). This proves that under conditions (14) and (15), selection is exogenous.7

Moreover, explanatory variables x(3)
it and x(4)

it are exogenous under the same conditions. In-

deed, these two variables can be written as functions of past sectoral choices as stated in equations

(10). We evaluate E
(
ṽit

∣∣∣x(3)
it , x

(4)
it ,Υt+1/2, θ̃i

)
as given by equation (16). First, (x

(3)
it , x

(4)
it ) and

δ̃
e

it are mean independent because of condition (15). Moreover, the second term of ṽit is such

that:

E

[(
t−1∑
l=t0

λ̃
s

il1{sil=s}

)
| x(3)

it , x
(4)
it ,Υt, θ̃i

]

= E

[
E

(
t−1∑
l=t0

λ̃
s

il1{sil=s} | ωit−1, ., ωi1,Υt+1/2, θ̃i

)
| x(3)

it , x
(4)
it ,Υt, θ̃i

]

= E

[(
t−1∑
l=t0

E(λ̃
s

il | ωit−1, ., ωi1,Υt+1/2, θ̃i)1{sil=s}

)
| x(3)

it , x
(4)
it ,Υt, θ̃i

]
= 0

because the processes {ω̃it}t≥1 and {(δ̃
s

it, λ̃
s

it)}t≥1 are independent over time conditional on factors

and factor loadings. This is why we obtain that covariates are exogenous since:

E
(
ṽit

∣∣∣x(3)
it , x

(4)
it ,Υt+1/2, θ̃i

)
= 0.

6Indeed, the sector choice depends on the terms τsit as shown by equation (8), which depend themselves on
ρsi through equation (7).

7These conditions are suffi cient but far from necessary, and they are stated this way for the sake of simplicity.
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5.3 Structural functions and counterfactuals

We now explain how we recover several interesting structural functions by using the set up of

Blundell and Powell (2003). Specifically, we assess the relative importance of selection effects

in the present and in the past of life-cycle histories as well as the impact of early versus late

interruptions in those histories. We start with the general definition of the structural objects

and then explain how to compute them in practice. We drop individual index i for simplicity.

These structural objects are obtained by manipulating the history of interruptions along

the life-cycle while keeping constant the individual structural parameters η = (η0, η1, η2, η3, η4).

First, denote St the counterfactual individual choice of a sector at time t and S(t) = {S1, ., St}
the counterfactual history.8 Second, denote x(3)

t (S(t−1)) and x(4)
t (S(t−1)) the reduced-form vari-

ables as defined by equations (10) but as functions of potential history S(t−1). By extension, the

observed values are x(3)
t = x

(3)
t (s(t−1)) and x(4)

t = x
(4)
t (s(t−1)). The list of counterfactual explana-

tory variables in equation (9) are defined as xt(S(t−1)) = (1, t, β−t, x
(3)
t (S(t−1)), x

(4)
t (S(t−1))). In

consequence, define the counterfactual outcomes as xt(S(t−1))η, the expectation of net log wages

of an individual given by a specific realization of η and S(t−1). Idiosyncratic shocks are integrated

out using the fact that the interactive effects controlling for selection have mean zero.

Given the distribution of η, and the counterfactual distribution of S(t−1), average structural

functions are defined as:

Eη,S(t−1)(Φ
(
xt(S

(t−1))η
)
), (18)

in which function Φ(.) can be of various types: the identity function to recover means, squares

to recover variances, or indicator functions to recover interquartile or inter-decile ranges. For

instance, if S(t−1) stands for the history of continuous participation in sector e, S(t−1) = (e, .., e),

this expression defines the average counterfactual net log wages at time t as if participation had

been continuous.

Two extensions are worth considering. First, structural functions can be defined conditionally

on observed participation in the private sector, e.g:

Eη,S(t−1)(Φ
(
xt(S

(t−1))η) | st = e
)
,

is the average counterfactual net wage for those who are working in sector e at time t and setting

the potential history to S(t−1). Another extension involves several periods in which instead of

being interested in the net log wage at a single period only, xt(S(t−1))η, we could be interested

8Recall that st is the observed sector at date t and by extension s(t) is the realized history of sectoral choices.
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in the discounted sum of net log wages as in

t∑
τ=1

βτxt(S
(t−1))η. (19)

We now review in more detail specific structural effects. We will have to keep in mind that

under-identification of (η3, η4) in the subpopulation with fewer than two interruptions makes

unidentified any counterfactual in which the individual specific numbers of interruptions increase

in that population.

5.3.1 Selection and interruption effects

We compute structural functions (18) contrasting the observed and counterfactual situations

where selection effects on wages are neutralized. We distinguish selection effects due to individ-

uals being out of the private sector at a given date, and interruption effects due to past spells

out of the private sector. We thus compute equation (18) in the following four cases:

• The benchmark case in which the potential history S(t−1) is equal to the observed value,

s(t−1), for those who currently participate:

Φ
(0)
t = Eη,s(t−1)(Φ

(
xt(s

(t−1))η | st = e
)
.

• The situation in which interruption effects are neutralized, i.e. S(t−1) = (e, ., e). There is

no career interruption and x(3)
t (S(t−1)) = x

(4)
t (S(t−1)) = 0 :

Φ
(1)
t = Eη(Φ (xt(e, ., e)η) | st = e) .

• The situation in which selection effects are neutralized:

Φ
(2)
t = Eη,s(t−1)(Φ

(
xt(s

(t−1))η
)
.

• The situation in which both selection and interruption effects are neutralized:

Φ
(3)
t = Eη(Φ (xt(e, ., e)η)) .

We can contrast {Φ(j)
t }j=1,.,3 with benchmark Φ

(0)
t . The same experiment can be performed

using discounted values as in equation (19).
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5.3.2 The impact of interruptions: Random, early or late interruptions

The effect of the timing of interruptions on wages can also be estimated using this framework.

This timing influences current wages and the sum of discounted wages since yearly wages are

partly determined by all past spells out of employment. We restrict our attention to individ-

uals whose parameters related to spells out of private sector are identified, i.e. to individuals

experiencing at least two such spells followed by employment spells (KT ≥ 2).

We then compute our statistics in three different counterfactual situations. In the first one,

years out of the private sector are randomly assigned over time for every individual. We hold the

total number of years of interruption constant and set the last year to which an interruption can

be randomly assigned to the last year of observation. The other counterfactual exercises consist

in reassigning interruptions either at the end of the observed life cycle (imposing at least one

year of presence in the private sector) or at the beginning. Comparing these two counterfactuals

to the benchmark, we can measure the wage change due to career interruptions at the beginning

and at the end of the life-cycle, for those individuals who have intermittent careers, in the same

spirit as Light and Ureta (1995). More details are given in Appendix A.3.

6 Estimation strategy

Our estimation strategy is driven by our available data which consist in employment status and

wage histories when employed in the private sector for cohorts of individuals entering the labour

market between 1985 and 1992 in France and potentially observed until 2012. No information

is available when individuals are not employed by the private sector.

6.1 Estimation procedure

We estimate the model pooling all cohorts together and making the simplifying assumption that

factors and factor loadings associated with the depreciation rate of human capital are the same

in both sectors: ϕ(λ),e
t = ϕ

(λ),n
t ≡ ϕ

(λ)
t and θ(λ),e

i = θ
(λ),n
i ≡ θ

(λ)
i . The wage equation becomes:

ln yit = xitηi + ϕ
(δ)
t θ

(δ)
i −

t−1∑
l=t0i

ϕ
(λ)
l θ

(λ)
i + ṽit

= −
(

T∑
l=t0i

ϕ
(λ)
l

)
θ

(λ)
i + xitηi + ϕ

(δ)
t θ

(δ)
i +

(
T∑
l=t

ϕ
(λ)
l

)
θ

(λ)
i + ṽit

Without loss of generality, we make the normalization
∑T

l=t0i
ϕ

(λ)
l = 0 (since this term enters

the additive individual fixed effect) and, denoting ϕ̃(λ)
t =

∑T
l=t ϕ

(λ)
l , we get:
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ln yit = xitηi + ϕ
(δ)
t θ

(δ)
i + ϕ̃

(λ)
t θ

(λ)
i + ṽit

Interactive terms associated with the rental price and depreciation rate of human capital enter

additively in a similar way in the wage equation and they are thus undistinguishable. Without

loss of generality, we relabel ϕ(δ)
t θ

(δ)
i + ϕ

(λ)
t θ

(λ)
i as ϕtθi:

ln yit = xitηi + ϕtθi + ṽit (20)

in which:

xit =
(

1, t, β−t, x
(3)
it , x

(4)
it

)
; ηi = {ηi0, ηi1, ηi2, ηi3, ηi4}′

To identify individual specific effects ηi0, ηi1 and ηi2 interacting with observed individual-

invariant explanatory variables, t and β−t, a restriction on factors is needed, and provided

by the flat spot approach:

ϕ ⊥
(
x(0), x(1), x(2)

)
(21)

with ϕ = (ϕ1, ..., ϕT )′, x(0) = (1, ..., 1)′, x(1) = (1, ..., T )′ and x(2) = (1, ..., β−T )′. Note that this

restriction yields, in particular, that the time average of factors is zero:
∑T

t=1 ϕt = 0 while there

is no such restriction on factor loadings θi that can be freely correlated with the terms ηi.

Our approach consists in minimizing the sum of squares of residuals for observations for which

wages are observed which is equivalent to maximizing the pseudo-likelihood function of normal

disturbances. As the model involves interactive effects and the panel is not balanced, we use an

Expectation-Maximization (EM) algorithm as suggested by Bai (2009). In the expectation step,

we replace wages with their linear predictions at dates at which workers have not yet entered

the labor market or are not employed (sector n). In the maximization step, we maximize the

pseudo-likelihood for observations corresponding to all individuals and dates.

Our iteration algorithm runs as follows. We use (k) as a superscript for parameters at step

k. To obtain initial values, we follow Moon and Weidner (2018), and first recover regularized

estimators of parameters ηi denoted η
(0)
i , by minimizing the nuclear-norm of residuals, a convex

program that has a unique solution. By contrast, the least squares minimization program is

not, and may yield several local solutions (se Hsiao, 2018). Second, we conduct a principal

component analysis of ln yit − xitη(0)
i (whose value is imputed to zero when yit is not observed),

and we get initial factor values ϕ(0) such that ϕ(0)(ϕ(0))′

T
= I. The updating from step k − 1 to

step k is the following:
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1. We regress yit on xit and ϕ
(k−1)
t for each individual, considering only periods at which they

are observed, and we recover the estimators η(k)
i and θ(k)

i .
9

2. We predict the values of yit when they are not observed using the formula: l̂n yit = xitη
(k)
i +

ϕ
(k−1)
t θ

(k)
i .

3. We estimate the factor model: ln yit − xitη(k)
i = ϕtθi + ˜̃vit, and recover the estimator ϕ(k)

t

using Bai (2009)’s approach. Stacking {ϕt}t=1,.,T into matrix ϕ and {θi}i=1,.,N into matrix

θ, we impose the usual identification restrictions that ϕϕ′/T = I, θθ′/N is diagonal, and the

first element of each row of ϕ1 is positive.
10 For the additional identification restrictions

(21) to be verified, we project ϕ(k) on the space orthogonal to x(0), x(1) and x(2). We

then re-normalize the projection within this space such that the identification restriction

ϕ(k)ϕ(k)′/T = I is still verified and such that ϕ1 > 0.

The stopping rule of the iterative procedure is detailed in Appendix D.1. In Appendix D.2,

we further show that this EM algorithm is valid using Heyden and Morton (1996). It delivers

the pseudo-ML estimators of parameters.

The asymptotic properties of consistency and asymptotic normality of our estimates are

obtained in a balanced panel data setting such that N and T tend to infinity. Proofs of Bai

(2009) are extended by Song (2013) to the case of individual specific coeffi cients of covariates.

We complete them in Appendix C by adding the proof of the invertibility of a matrix which was

missing. Note though that individual observations are incomplete because of non participation,

and we need to assume that Ti/T tends to an individual specific positive constant where Ti is

the number of observed periods for every individual i.

6.2 Bias correction of counterfactuals

Using estimated parameters, we compute structural functions of potential outcomes as defined

in Section 5.3. Their empirical counterparts, however, generically suffer from the incidental

parameter issue. Variances and other summary statistics like quantiles are biased (Fernandez-Val

and Weidner, 2018). Biases of variances and covariances can be corrected when the covariance

9Note that we retain the estimator of θi at this step rather than the one from Bai’s procedure at step 3 of
previous iteration to avoid using imputed values of yit to estimate θi. This makes the algorithm converge faster.
Note also that even if θ(k)i θ

(k)′
i /N is not diagonal by construction at each iteration of our algorithm, it becomes

diagonal as the algorithm converges since estimated parameters converge to the least square solution as shown
in Appendix D.2.
10Alternatively, regressing yit− xitη(k)i on θ(k)i under the constraint ϕϕ′/T = I would deliver another estimate

of ϕ.
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matrix of idiosyncratic errors is restricted as shown by Arellano and Bonhomme (2012) (see

Appendix E.1). For quantiles and interquantile ranges, we resort to the bias-correction procedure

based on Taylor expansions proposed by Jochmans and Weidner (2019) as developed further in

Appendix E.2.

Bias corrections rely on asymptotic formulas established when the number of individuals and

the number of periods during which they are employed in the private sector tend to infinity.

Some individuals are employed during 15 periods only whereas the model involves up to 7 indi-

vidual parameters capturing the individual unobserved heterogeneity. Finite sample properties

of estimators are thus not granted and need to be investigated. For that purpose, we conducted

Monte-Carlo simulations whose results are presented in detail in Appendix F. As expected, these

simulations show that the means of individual parameters and of structural functions are barely

biased. Estimated variances are strongly biased however, and the bias-correction procedure re-

moves part of the bias only. By contrast, estimated quantiles are characterized by smaller biases

and those can be corrected satisfactorily using Jochmans and Weidner (2019). This is why we

focus mostly on estimating means, deciles and inter-decile ranges in our empirical application.

Monte Carlo results also show that bias-correction for centiles and inter-centile differences work

better when disturbances, vit, are homoskedastic. This is because bias correction terms involve

individual variances of residuals, and some of them can be poorly estimated. We therefore

assume that disturbances are homoskedastic when computing estimated standard errors.

7 Estimation Results

In this section, we first present estimation results of different specifications of the model, and

justify our preferrence for the specification given by equation (20) and including two unobserved

factors. We then characterize counterfactual wage profiles in the four cases introduced in Section

5.3.1, and in the case of random, early or late interruptions introduced in Section 5.3.2.

7.1 Model selection and comparisons

We estimated five models: a basic model that includes neither interruption variables nor factors

while the others include interruption variables and an increasing number of factors (0, 1, 2

and 3).11 Our preferred specification called main below, includes interruption variables and

two factors, and this preference rests on three arguments: (1) A significance test for estimated

11Appendix A.2 discusses results of the homogenous Mincer equation (20).
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coeffi cients of interruption variables and factor loadings in no-, one- and two-factor specifications

rejects that those are equal to zero; (2) Four out of six model selection criteria proposed by Bai

and Ng (2002) point to the two-factor model as the best one among the one- to three-factor

alternatives (see Table 2); (3) Estimates for the three-factor specification are quite unstable

signaling possible identification issues and overfitting.

We now report summaries of predicted wages over the life-cycle, and contrast results for basic

and main specifications. Specifically, Figure 3 displays profiles of mean, median, variance and

inter-decile range of potential log wage i.e. as if all spells in the private sector were uninterrupted.

Note that the potential log wage only depends on the estimates of the first three individual

specific coeffi cients, i.e. ηi0, ηi1, ηi2.

Figures 3(a) and 3(b) display mean and bias-corrected median profiles. There is a marked

contrast between the basic and main specifications. Mean or median profiles are steeper when

using the main specification. This indicates that either interruptions or selection into the private

sector have significant effects on wages, and that ignoring them downward biases returns to

potential experience.

Figure 3(c) displays the profiles of the uncorrected variance of potential log wages and the

bias-corrected estimates are displayed in Figure 3(d). The comparison between them shows how

large the bias in variances is. Furthermore, these graphs show that variance estimates are larger

for the main specification than the basic one. In particular, results for the main specification

display a Mincer dip in line with Mincer (1974) since the profile of variances is U-shaped. The

profile of high-return workers, who invest more in human capital at the beginning of their life-

cycle, crosses after a few years the profile of low-return workers. The crossing point is estimated

at about 5 years.

Monte Carlo experiments taught us, however, that biases in corrected variances might remain

sizable. This is why we now turn to the profile of the inter-decile range of potential log wages as

defined as the difference between the 90% quantile and the 10% quantile (Figure 3(e)). Correcting

the bias for the inter-decile range mildly affects these profiles by at most 10% (Figure 3(f)). The

inter-decile range for the main specification is hovering between 90% and 140%, and here also,

profiles are slightly higher than for the basic specification. In contrast with variances though,

the Mincer dip is slightly dampened although the trough is still estimated at about 5 years of

potential experience.

Overall, comparisons between model specifications have shown that omitting interruptions

and factors dampens the dispersion of log wages. We shall return to this important point when
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analyzing counterfactual results in Subsection 7.3.

7.2 Estimated coeffi cients and the components of wages

We present descriptive statistics on the distributions of estimated parameters for our main

specification.12 Table A.4 reports means as well as uncorrected and bias-corrected variances and

quantiles. The corrected median of individual specific parameters, capturing growth, ηi1, and

curvature, ηi2, are respectively positive and negative. This means that potential experience has

a positive effect on wages but its return decreases with the number of years consistently with

our theoretical model. These results on medians however mask important heterogeneity. For

instance, the 90% quantile of parameter, ηi1, is 6.2 times larger than the median when both are

bias-corrected. In the bottom, the estimate of the first quartile is negative indicating that the

estimated growth is negative for a non-negligible share of the population. In the same vein, the

bias-corrected estimate of the 10% quantile of the curvature parameter, ηi2, is around 10 times

larger in absolute value than the median estimate.

Parameters, ηi3 (years of interruptions), and, ηi4 (curvature in interruptions) are not identified

— and set to zero in Table A.4 — in the sub-sample of individuals who have no or only one

interruption during the observation period (see Section 5.1). This is why we report results on

their distribution in the subsample of individuals with 2 or more interruptions in Table A.5.

Bias-corrected medians of the effects of interruptions, ηi3, and the related curvature terms, ηi4,

are very close to zero although the heterogeneity in estimates of those parameters is even larger

than for the ηi1 and ηi2 estimates. Interestingly, the distributions of these effects seem quite

symmetric around zero.13

Components of wages Given parameter estimates, we decompose log wages into their dif-

ferent components: potential experience, interruptions and factors. A widespread approach to

quantify the importance of those components is to rely on a variance decomposition. As explained

already, we instead report the more robust inter-decile ranges and rank correlations. Results on

inter-decile ranges in Table A.3 show that the potential experience component is the largest but

the interruption component is sizable. Factors play a role albeit a minor one. Remarkably, the

potential experience and interruptions components are highly negatively rank-correlated. This

12Factor estimates are displayed in Figure S.1.
13We can also compare uncorrected and bias-corrected values. Medians of parameters are not affected by

correction. By contrast, bias-correction changes the values of quantiles, and the spread of parameter distributions
decreases. In particular, bias-corrected 90% (resp. 10%) quantile of parameter ηi1 (resp. ηi3 in absolute terms)
is 20% (resp. 27%) smaller. Such effect of bias correction can also be observed for ηi2 and ηi4.
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can be mostly explained by the negative correlation between the linear coeffi cients, ηi1 and ηi3.

Their Spearman rank correlation is equal to −0.32.

7.3 The counterfactual structural impacts of interruptions and current-
period selection

Using the results of the main specification and bias-correction, we now contrast different struc-

tural objects as defined in Section 5.3 to assess the economic importance of interruptions and

participation on the profile of log wages. We define the benchmark as the profile of log wages

for private sector employees when log wages are predicted including interruptions and excluding

factors.

We compare profiles of summary statistics in this benchmark and in three counterfactual

situations defined in the absence of current-period participation selection (“no selection”), in the

absence of interruptions (“no interruption”, that is the potential wage) or both (“no selection,

no interruption”). The last one corresponds to the potential log wages in the absence of current-

period selection that we studied above (see Figure 3, “Main”).

First, in every graph of medians, means, variances or inter-decile ranges that we report in

Figure 4, current-period selection does not have a significant effect. This agrees well with the

small magnitude of the inter-decile range of interactive effects due to factors that we found

in Table A.3. By contrast, interruptions have a strong and significant effect. Those results

highlight the importance of taking into account interruptions when predicting wage profiles. In

other words, both potential and real experience matter (e.g. Light and Ureta, 1995, Das and

Polachek, 2019).

Figures 4(a) and 4(b) show that potential experience increases log wages by around 65%

in 20 years. This result squares well with other studies which cover many countries and use

homogeneous Mincer equations (e.g. Lagakos et al., 2018). In addition, the average cost of

interruptions after 20 years is about 10%.

The impact on dispersion of wages, which has not been documented so far in the literature, is

shown in Figure 4(d) through the lens of inter-decile ranges (see also Figure 4(c) for variances).

After 20 years, the average duration of interruptions is 2.47 years, and interruptions decrease

dispersion by −0.52 (−38%). This effect plays both at the 90% quantile and the 10% quantile. It

is stronger at the 90% quantile (−0.34 after 20 years) than at the 10% quantile (+0.18) as shown

by Figure A.2. These results could be due to very different causes: minimum wage constraints

at the bottom of the distribution of wages, self-employment or employment abroad at the top of
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the distribution. Absent further information, we are not able to investigate those causes more

precisely.

These results on the impact of interruptions on dispersion stem from the negative rank

correlation between the potential wage and the interruptions effects that we mentioned when

commenting Table A.3. To go further, we can analyse counterfactuals in order to disentangle

the effects of the timing and length of interruption spells (i.e. x(3)
it and x

(4)
it ), and the impact of

differential sector-specific returns to investments (i.e. parameters ηi3 and ηi4).

Finally, we replicated results in this Section for every education group and the stylized facts

on the profiles of means, medians and inter-decile ranges were similar.14

7.4 The counterfactual timing of interruptions

For our additional counterfactuals, we have to restrict the population to workers with at least

two interruptions since parameters ηi3 and ηi4 are identified only for those. The impact of

interruptions on dispersion shown by Figure 4(d) persists and if anything is larger (Figure A.3).

The first counterfactual experiment we analyze regards the estimated effect of interruptions

on wages when years of interruption are randomly assigned over time for each worker. We hold

the number of years of interruption constant and set the last year to which an interruption can

be randomly assigned, to the last year of observation before definite attrition (the “Random”

case). We compare these counterfactual wage profiles to those for which years of interruptions

are the observed ones, and participation selection is absent (the “No selection”case). Results

reported in Figure 5 show that mean or median wage profiles are very close in the random and

no selection cases. In consequence, mean or median returns to potential experience are not much

affected by the likely endogenous choices of interruptions. By contrast, inter-decile ranges start

diverging after 5 years (Figure 5(c)) when wage dispersion increases more quickly in the random

case than in the no selection one. This divergence comes from changes in both the first and last

deciles (Figure 5(d)).

This result allows the economic interpretation of Figure 4(d) to be refined. It showed the

new stylized fact that interruptions in private sector participation shrink the dispersion of hu-

man capital stocks after 20 years. According to Figures 5(c) and 5(d), an explanation of this

stylized fact is the correlation between the timing of interruptions and potential log wages, and

not the correlation between the estimated coeffi cients of interruptions and potential log wages.

Surprisingly, endogenously-chosen interruptions smooth inequalities over time.

14Results are available upon request.
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We can also estimate other counterfactuals related to the structure of interruptions by reas-

signing interruptions either at the beginning or at the end of the observed life-cycle as was studied

by Light and Ureta (1995). Again, we contrast those counterfactuals with the counterfactual in

which selection is absent (“No selection”). Results are reported in Figure 6.

Reassigning interruptions at the beginning of the working life has an important negative

effect on mean and median log wages over the whole period (Figures 6(a) and 6(b)). Mean

log wages never catch up what they have initially lost while median log wages do. In contrast,

when reassigning interruptions at the end of observed life-cycle, mean log wages increase above

what is observed absent selection, for any number of years of experience. Effects are smaller and

insignificant for median log wage profiles.

Interestingly, reassigning interruptions at the beginning of observed life-cycle largely increases

the inter-decile range over the whole life-cycle with respect to the benchmark (Figure 6(c)). This

increase is larger at the beginning of the life-cycle as expected, and it slowly fans out after 6 years,

presumably because fewer and fewer interruptions are reallocated between the two scenarii.

This widening of the inter-decile range is due to both a higher 90% quantile and a lower 10%

quantile (Figure 6(d)). A higher 90% quantile can be explained by exits to self-employment

or employment abroad which enable a faster accumulation of human capital than when being

employed in the private sector. This gain does not disappear over time. In contrast, a lower 10%

quantile can be explained by a lower human capital accumulation at this quantile when being

out of the private sector. This is presumably due to unemployment or non-employment spells

with low human capital investments.

In the same Figure, we also report the results of the experiment when artificially moving

interruptions to the periods preceding the last period of observation of individual histories before

definite attrition. The rise in the inter-decile range first parallels the trend observed in Figure

5(d) before taking off quite steeply after 15 years. This is partly due to interruptions having

a stronger effect because of the geometric terms which enter the construction of x(4)
it whose

coeffi cient is ηi4.

8 Discussion

Our working sample excludes workers who have severely incomplete histories, since we selected

out workers for whom we have fewer than fifteen observations.

One can wonder whether such a selection has an effect on our results about the dispersion

29



of wages. For instance, within our working sample of 15+ observations, the dispersion seems

to decrease with the number of non-missing observations (Tables S.1, S.2 and S.3).15 There are

two explanations: The first one is the remaining asymptotic bias in 1/T 2 that our estimation

method entails; The second one is the substantive fact that the more incomplete observations

are, the more dispersed the wage profiles.

We can first assess to what extent our selection that wages are observed at least 15 years

alters observed wage profiles. The mean log wage and inter-decile range profiles for our restricted

sample displayed in Figure A.1 are found to be very similar to those for the whole population

but the power of this omnibus test might be low.

Amore robust exercise whose statistical properties are left for further research is the following.

Consider two samples: The first one comprises individuals who are observed between 10 and 14

years and who are excluded from our working sample; The second one comprises individuals in

our working sample who are observed more than 20 years. In the following, we set the values of

factors to those estimated in the working sample, and we thus assume that factors remain the

same when we extend the model to the additional population 10− 14.

In the second sample (20+), we randomly draw the number of periods of observations for

every individual so that the marginal distribution of this number is the same as its marginal

distribution in the first sample (10− 14). In other words, given the number of observations for

each individual i, say Ti, we set S
(1)
i = Ti in the first sample (10− 14). In the second sample, we

draw S
(2)
i < Ti in a way that respects the two conditions; (1) Marginal distributions of S

(1)
i and

S
(2)
i are the same (2) The first period observation for every individual is always included while

the S(2)
i − 1 further wage observations are randomly retained. Explanatory variables x(3)

it and

x
(4)
it remain the same as in the original sample and it is only the dependent variable, log wage,

of which more instances are considered as “missing”.

We then estimate the individual specific coeffi cients using the first incomplete sample (10-14),

and we re-estimate these parameters using the second censored sample. Both sample estimates

are then compared to the second sample original estimates. Biases due to the number of obser-

vations should then be neutralized if our selection of sample (10-14) and censored sample (20+)

is exogenous. We evaluate these biases by comparing profiles of log wages along the life-cycle.

Formally, consider wage observations, ln yi = (ln yi1, ., ln yit, ., ., ln yiT ) and participation

si = (si1, ., sit, ., ., siT ). In the original samples, non missing observations are ln yi ∗ si =

15All Tables and Figures which number is preceded by the S letter are relegated in the Online Supplementary
Appendix.
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(ln yi1si1, ., ln yitsit, ., ., ln yiT s i
T

) and the final data are (ln yi∗si, xi). Denote parameter estimates,
η̂

(1)
i (respectively η̂(2)

i in the sample (10-14) (resp. (20+)). When censoring sample (20+), we

replace si by s
(3)
i and the data is transformed into (ln yi ∗ s(3)

i , xi). Denote the corresponding

estimate η̂(3)
i . The experiment we performed is to compare the distributions of three predicted

variables, {xci η̂
(j)
i }j=1,.,3 while including or not interruptions in the definition of counterfactual

covariates, xci .

Figure 7(a) shows that median profiles for the uncensored and censored samples 20+ are

similar as well as inter-decile ranges displayed in Figure 7(b), although ranges are slightly more

dispersed when potential experience is greater than 7 in the censored sample. In contrast, Figure

7(c) and 7(d) show that profiles differ greatly between the samples (10-14) and censored (20+).

In particular, there are sizable median gaps increasing with potential experience between the

benchmark and no-interruption cases for the sample (10-14) but not for the censored sample

(20+). This can be explained by low returns to human capital outside the private sector for

sample (10-14). A larger heterogeneity of returns in sample (10-14) explains the larger inter-

decile range for sample (10-14) as well as its larger increase when interruptions are set to zero.

Overall, selection of the working sample seems to matter and the results which were derived

above are thus restricted to the working sample that we considered.

9 Conclusion

In this paper, we estimated models of human capital acccumulation with lots of heterogeneity to

assess how wage inequalities build up over the life cycle. We simultaneously deal with missing

data and wage processes within the same structural economic model. Furthermore, our empirical

strategy extends the common yet unconvincing MAR assumption, and relies on the assumption

of missing at random conditionally on factors and factor loadings (MARCOF).

In our empirical application, we use French administrative data for young cohorts of males

entering the private sector between 1985 and 1993, and followed until 2011. Life cycle inequal-

ities within cohorts can indeed be accurately measured since wage inequalities in the working

population remain stable during the 1985-2011 period in France.

We show how strong the dynamic selection effects are in the location and dispersion sum-

maries of wage profiles whereas current-period selection effects are much weaker. Furthermore,

past interruptions in participation in the private sector decrease mean and median wages as ex-

pected whereas surprisingly, the more interrupted participation is, the less dispersed wages are.
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Moreover, the latter result can be mainly attributed to the endogeneity of past participation

choices.

To save on space, we chose to display our results in terms of wage profiles. We could have

produced as well other statistics of interest such as the discounted sums of log wages, e.g.

the integral of wage profiles as in Magnac and Roux (2021). There also remains the issue of

external validity regarding selection since our working sample is restricted to individuals who

participated in the private sector during at least 15 years. Further research should explore the

empirical strategy of using restrictions on heterogeneity that would allow to weaken selection

issues. Trade-offs exist however because these restictions are affecting precisely what we want

to measure, i.e. wage inequalities.
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Altuğ, S., & Miller, R. A. (1998). "The effect of work experience on female wages and

labour supply", The Review of Economic Studies, 65(1), 45-85.
Antonczyk, D., DeLeire, T., & Fitzenberger, B. (2018), “Polarization and rising wage

inequality: comparing the US and Germany”, Econometrics, 6(2), 20.
Arellano M., & S., Bonhomme, 2012, “Identifying Distributional Characteristics in Ran-

dom Coeffi cient Panel Data Models”, The Review of Economic Studies, 79(3): 987-1020.
Arellano, M., R., Blundell and S., Bonhomme, 2017, "Earnings and consumption

dynamics: a nonlinear panel data framework", Econometrica, 85(3), 693-734.
Bai, J., & Ng, S., 2002, "Determining the number of factors in approximate factor models"

, Econometrica, 70(1), 191-221.
Baker, M., 1997, “Growth-rate heterogeneity and the covariance structure of life-cycle

earnings”, Journal of Labor Economics 15(2):338-375.
Balakrishnan, S., Wainwright, M. J., & Yu, B., 2017, Statistical guarantees for the EM

algorithm: From population to sample-based analysis. The Annals of Statistics, 45(1), 77-120.
Ben-Porath, Y., 1967, “The production of human capital and the life-cycle of earnings”,

Journal of Political Economy, 75(4, Part.1):352-365.
Beyhum, J., & Gautier, E., 2019, "Square-root nuclear norm penalized estimator for panel

data models with approximately low-rank unobserved heterogeneity", TSE Working Paper, n◦

19-1008.
Biewen, M., Fitzenberger, B., & de Lazzer, J., 2018, "The role of employment inter-

ruptions and part-time work for the rise in wage inequality", IZA Journal of Labor Economics,
7(1), 1-34.
Blundell, R., 2014, “Income Dynamics and Life-cycle inequality: Mechanisms and Contro-

versies”, The Economic Journal, 124:289-318.
Blundell, R., M., Costa-Dias, C., Meghir and J., Shaw, 2016, "Female Labor Supply,

Human Capital, and Welfare Reform", Econometrica, 84(5):1705—1753.
Blundell, R. W., & Powell, J. L., 2003, "Endogeneity in nonparametric and semipara-

metric regression models", Advances in Economics and Econometrics: Theory and Applications,
II: 312 & 357.(M. Dewatripont, LP Hansen, SJ Turnovsky, Eds.).
Bollinger, C. R., Hirsch, B. T., Hokayem, C. M., & Ziliak, J. P., 2019, “Trouble in

the Tails? What We Know about Earnings Nonresponse Thirty Years after Lillard, Smith, and
Welch.”, Journal of Political Economy, 127(5), 2143-2185.
Bowlus, A. and C. Robinson, 2012, “Human Capital Prices, Productivity, and Growth”,

American Economic Review, 102(7), 3483-3515.
Bozio, A., Breda, T., & Guillot, M. (2020), "The Contribution of Payroll Taxation to

Wage Inequality in France", unpublished manuscript.

33



Browning, M., Ejrnaes, M., & J., Alvarez, J., 2012, “Modelling income processes with
lots of heterogeneity”, Review of Economic Studies, 77(4):1353-1381
Browning, M., Hansen, L. P., & J. J., Heckman, 1999, “Micro data and general equi-

librium models”, in J.B. Taylor and M.Woodford (eds), Handbook of Macroeconomics, Elsevier
Science, Amsterdam.
Cette, G., Chouard, V., & G., Verdugo, 2012, “Les effets des hausses du Smic sur le

salaire moyen”, Économie et Statistique, 448-449:3-28.
Chaudhuri, S., & Guilkey, D. K., 2016, GMM with multiple missing variables. Journal

of Applied Econometrics, 31(4), 678-706.
Chernozhukov, V., Fernández-Val, I., Hahn, J., & Newey, W. (2013), "Average and

quantile effects in nonseparable panel models", Econometrica, 81(2), 535-580.
Das, T., & S., Polachek, 2019, "Microfoundations of Earnings Differences" inThe Palgrave

Handbook of Economic Performance Analysis, Palgrave Macmillan, Cham, p. 9-76.
Dominitz, J., & Sherman, R. P., 2005,. Some convergence theory for iterative estimation

procedures with an application to semiparametric estimation. Econometric Theory, 21(4), 838-
863.
Eckstein, Z., & Wolpin, K. I., 1989, "Dynamic labour force participation of married

women and endogenous work experience", The Review of Economic Studies, 56(3), 375-390.
Fernández-Val, I., & Weidner, M., 2018, "Fixed effects estimation of large-T panel data

models", Annual Review of Economics, 10, 109-138.
Gobillon, L., & T., Magnac, 2016, "Regional policy evaluation: Interactive fixed effects

and synthetic controls", Review of Economics and Statistics, 98(3), 535-551.
Graham, B. S., de Xavier Pinto, C. C., & Egel, D., 2012, Inverse probability tilting for

moment condition models with missing data. The Review of Economic Studies, 79(3), 1053-1079.
Graham, B. S., & Powell, J. L., 2012, "Identification and estimation of average partial

effects in “irregular” correlated random coeffi cient panel data models", Econometrica, 80(5),
2105-2152.
Guvenen, F., Karahan, F., Ozkan, S., & Song, J., 2021, "What Do Data on Millions

of US Workers Reveal about Life-Cycle Earnings Risk?", Econometrica, 89(5), 2303—2339
Heckman, J.J., L. Lochner, & C., Taber, 1998, “Explaining Rising Wage Inequality:

Explorations with a Dynamic General Equilibrium Model of Labor Earnings with Heterogeneous
Agents”, Review of Economic Dynamics, 1, 1 - 58.
Heckman, J. J., Lochner, L. L., & Todd, P.E., 2006, “Earnings functions, rates of

return and treatment effects: the Mincer equation and beyond”, in E. A. Hanushek and F.
Welch (eds), Handbook of Economics of Education, Elsevier Science, Amsterdam.
Heckman, J. J., & R., Robb, 1985, "Alternative methods for evaluating the impact of

interventions: An overview", Journal of Econometrics, 30(1), 239-267.
Heyde, C., & G., Morton, 1996, “Quasi-likelihood and generalizing the EM algorithm”,

Journal of the Royal Statistical Association B, 59(2), pp. 317-327.
Hoffmann, F., 2019, "HIP, RIP and the Robustness of Empirical Earnings Processes",

Quantitative Economics, 10, 1279-1315.
Hsiao, C., 2018, "Panel models with interactive effects", Journal of Econometrics, 206(2),

645-673.
Jochmans, K., & M., Weidner, 2019, "Inference on a distribution from noisy draws",

CEMMAP Working Paper 44/19.
Keane, M.P., and N., Wasi, 2016, "Labour supply: the roles of human capital and the

extensive margin" The Economic Journal, 126(592), 578-617.
Kline, P., & Santos, A., 2013, Sensitivity to missing data assumptions: Theory and an

evaluation of the US wage structure. Quantitative Economics, 4(2), 231-267.

34



Light, A., & Ureta, M. 1995, "Early-career work experience and gender wage differentials".
Journal of Labor Economics, 13(1), 121-154.
Lise, J., & Postel-Vinay, F. (2020). Multidimensional skills, sorting, and human capital

accumulation. American Economic Review, 110(8), 2328-76.
Little, R. J., & Rubin, D. B., 2019. Statistical analysis with missing data (Vol. 793).

John Wiley & Sons.
Magnac, T., N., Pistolesi & S., Roux, 2018, “Post Schooling human capital investments

and the life-cycle variance of earnings”, Journal of Political Economy, 126(3), 1219—1249.
Magnac, T., & S., Roux, 2021, “Heterogeneity andWage Inequalities over the Life-Cycle”,

European Economic Review, 134, 103715.
Meghir, C. & L., Pistaferri, 2010, “Earnings, consumption and life-cycle choices”, in

O. Ashenfelter and D. Card (eds), Handbook of Labor Economics, Vol. 4b, Elsevier Science,
Amsterdam, pp. 773-854.
Mincer, J., 1974, Schooling experience and earnings, National Bureau of Economic Re-

search, New York.
Moon, H. R., & M., Weidner, 2017, "Dynamic linear panel regression models with

interactive fixed effects", Econometric Theory, 33(1), 158-195.
Moon, H. R., & M., Weidner, 2018, "Nuclear norm regularized estimation of panel

regression models", arXiv preprint arXiv:1810.10987.
Pesaran, M. H., 2006, "Estimation and inference in large heterogeneous panels with a

multifactor error structure", Econometrica, 74(4), 967-1012.
Polachek, S., 1975, “Differences in Expected Post-School Investments as a Determinant of

Market Wage Differentials”, International Economic Review, 16(2), 451-70.
Polachek, S., Das, T., & R., Thamma-Apiroam, 2015, “Heterogeneity in the Produc-

tion of Human Capital”, Journal of Political Economy, 123(6), 1410-1455.
Rubinstein, Y., Y., & Weiss, 2006, “Post schooling wage growth: investment, search

and learning”, in E. Hanushek and F. Welch (eds), Handbook of the Economics of Education,
Elsevier, Amsterdam, pp. 1-67.
Sasaki, Y., 2015, "Heterogeneity and selection in dynamic panel data". Journal of Econo-

metrics, 188(1), 236-249.
Song, M., 2013, "Asymptotic Theory for Dynamic Heterogenous Panels with Cross Section

Dependence and Its Apllications", unpublished manuscript.
Taber, C., & Vejlin, R. (2020). Estimation of a Roy/search/compensating differential

model of the labor market. Econometrica, 88(3), 1031-1069.

35



Table 1: Descriptive statistics on interruptions

Number of Number of Proportion in Cumulated Average
interruptions individuals interruption duration in number of

interruption interruptions
All 7004 0.154 3.7 1.44
0 1219 0.000 0.0 0.00
1 2279 0.110 2.6 1.00
2 1933 0.196 4.7 2.00
3 1050 0.261 6.3 3.00
4 383 0.321 7.7 4.00
5 118 0.355 8.5 5.00
6 22 0.378 9.3 6.00

Note: For a given individual, observations after the last year employed in the
private sector are treated as interruptions.
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Table 2: Minimization criteria used to select the number of factors

Number of factors 1 2 3
Criteria
PCp1 0.009936 0.006610 0.003839
PCp2 0.012717 0.012172 0.012181
PCp3 0.012714 0.012165 0.012172
ICp1 -4.654 -5.015 -5.348
ICp2 -4.307 -4.321 -4.306
ICp3 -4.307 -4.322 -4.307
Quantities used to compute criteria
N 7004 7004 7004
T −DF 16.000 16.000 16.000

V (k.ϕ̂t) 0.011 0.009 0.008

σ̂2 0.008 0.008 0.008
C2

N(T−DF ) 16.000 16.000 16.000

Note: This table reports the values of six minimiza-
tion criteria introduced by Bai and Ng (2002) to de-
termine the number of factors, PCpj and ICpj , with
j ∈ {1, 2, 3}. We also report quantities that are used
to construct these criteria. N is the number of in-
dividuals in our sample and T is the average num-
ber of periods per individual. We correct for the
avergae number of degrees of freedom: We consider
T − DF instead of T , were DF is the average num-
ber of individual-specific coefficients for the explana-

tory variables introduced in our specification. σ̂2 is
the estimated variance or residuals. Other quantities

V (k.ϕ̂t), with k the number of factors and C2
N(T−DF )

are given in Bai and Ng (2002), p. 201.
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Figure 1: Mean and inter-decile of log-wages as a function of potential experience for individuals in our
sample, by diploma

(a) Mean (d) Price of human capital
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Note: Individuals in our sample are individuals entering the labour market between 1985 and 1992 who are employed at least 15
years in our panel data. The price of human capital is measured with the median log-wage for individuals aged 50-55 in the whole
population of individuals. In panels (c) and (d), ”deflated” means that log-wages are deflated with prices of human capital.
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Figure 2: Timing of the model
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Figure 3: Mean, median, variance and inter-decile range of counterfactual log-wages as a function of
potential experience, main and basic specifications

(a) Mean: Main (solid), Basic (dashed) (b) Corrected median: Main (solid), Basic (dashed)
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(e) Raw inter-decile: Main (solid), Basic (dashed) (f) Corrected inter-decile: Main (solid), Basic (dashed)
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Note: “Corrected” statistics are obtained after bias correction as described in the Online Appendix. “Main”: main specification that
includes variables xi1, xi2, xi3 and xi4 as well as the additive individual effect and two interactive factors; “Basic”: specification
that includes only variables xi1 and xi2, and the additive individual effect. In panels (a) and (b), the levels of mean and corrected
median counterfactual log-wages are normalized using the value at period zero of the main specification.

40



Figure 4: Mean, median, variance and inter-decile range of counterfactual log-wage as a function of
potential experience, counterfactual scenarii 1-4

(a) Mean (b) Corrected median
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Note: “Corrected” statistics are obtained after bias correction as described in the Online Appendix. The levels of mean and
corrected median counterfactual log-wages are normalized using the value at period zero of the benchmark specification.
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Figure 5: Mean, median, deciles and inter-decile range of counterfactual log-wages as a function of
potential experience, counterfactual scenario 5 (non-employment in random years), sample of individuals
with two interruptions or more

(a) Mean (b) Corrected median
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Note: “Corrected” statistics are obtained after bias correction as described in the Online Appendix. In panels (a) and (b), the
levels of mean and corrected median counterfactual log-wages are normalized using the value at period zero of the “No Selection”
specification. In the “Random” case, non-employment years are drawn randomly in the period limited by the last year that an
individual is observed.)
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Figure 6: Mean, median, deciles and inter-decile range of counterfactual log-wages as a function of
potential experience, counterfactual scenario 5 (non-employment in the first or last years), sample of
individuals with two interruptions or more

(a) Mean (b) Corrected median
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(c) Corrected inter-decile range (d) Corrected deciles

0
1

2
3

4
5

6
7

R
an

ge
 o

f c
ou

nt
er

fa
ct

ua
l l

og
-w

ag
es

0 2 4 6 8 10 12 14 16 18 20
Potential experience

No selection First empty Last empty

-4
-3

-2
-1

0
1

2
3

4
Q

ua
nt

ile
 o

f c
ou

nt
er

fa
ct

ua
l l

og
-w

ag
es

0 2 4 6 8 10 12 14 16 18 20
Potential experience

Q10 Q10, First empty Q10, Last empty
Q90 Q90, First empty Q90, Last empty

Note: “Corrected” statistics are obtained after bias correction as described in the Online Appendix. In panels (a) and (b), the
levels of mean and corrected median counterfactual log-wages are normalized using the value at period zero of the “No Selection”
specification. “First empty” corresponds to the case where all non-employment years are assigned to the first years of observations
(except the very first one). “Last empty” corresponds to the case where non-employment years are assigned to the last years of the
period during which the individual is observed.
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Figure 7: Corrected median and inter-decile range of counterfactual log-wages as a function of potential
experience, counterfactual scenarii 1 and 3 (benchmark and no interruption), individuals in employment
10-14 or 20 years and more (without or with sampling of employment years consistently with individuals
in employment for 10-14 years)

(a) Corrected median, 20+ and 20+ (sampling 10-14) (b) Corrected inter-decile, 20+ and 20+ (sampling 10-14)
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(c) Corrected median, 10-14 and 20+ (sampling 10-14) (d) Corrected inter-decile, 10-14 and 20+ (sampling 10-14)
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Note: “Corrected” statistics are obtained after bias correction as described in the Online Appendix. In panels (a) and (c), the
levels of corrected median counterfactual log-wages are normalized using the value at period zero of the benchmark case for the
considered subsample (“10-14”: individuals in employment 10-14 years, ‘ ‘20+”: 20 years and more, or “20+ (s. 10-14)”: 20 years
and more after sampling 10-14 years according to the distribution of employment years for individuals employed 10-14 years).
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APPENDIX

A Data appendix

A.1 Data construction
In the raw data, there are 4, 884, 767 person-job-year observations in the public and private sector
over the 1976-2012 period corresponding to individuals born in the first four days of October. For
individuals born an odd year, there is no information before 2002. When restricting the sample
to males, we are left with 2, 658, 470 observations. For consistency across time, we restrict our
attention to individuals born on even years over the whole period, and this makes the sample
size drop to 2, 017, 624 observations. When considering only jobs in the private sector, we are
left with 1, 772, 511 observations, and when considering only full-time positions, the sample
size decreases to 1, 520, 615 observations. We also delete jobs for workers on a training period
and apprentices, and this leaves us with 1, 492, 091 observations. Once jobs are aggregated per
individual-year, we end up with 1, 365, 837 observations. We ignore overlaps of job spans because
they are exceptional for full-time jobs.
We then restrict the sample to jobs such that the wage is lower than 80% of the minimum

wage. To compute the minimum wage, we use a national time series of gross hourly values. Over
the 1976-1998 period, we transform them into monthly values by multiplying them with the
number of working hours fixed legally to 169 (ie. 39 hours per week). After 1998, some firms
change their number of working hours to 151.67 (ie. 35 hours per week) and this becomes the
legal number in 2001. Therefore, from 1999 onwards, we compute two monthly values depending
on whether the number of working hours is 169 or 151.67, and we consider that there is a
transition over the 1999-2006 period between the two values consistently with the evolution of
the proportion of individuals working 35 hours per week.A.1 From 2007 onwards, we consider
that the number of working hours is 151.67. We then decrease monthly values by 20% to remove
payroll taxes and obtain net monthly values. The deletion of observations such that the wage is
lower than 80% of the minimum wage makes the sample decrease to 1, 354, 104 observations.
We keep only individual-year observations such that the total amount of working days is

larger than 6 months, and the sample then includes 1, 192, 377 observations corresponding to
102, 425 males. We keep only observations for individuals entering the labor market over the
1985-1992 period (ie. individuals observed for the first time in the panel during that period),
and we are left with 200, 756 observations corresponding to 15, 039 are males. After restricting
the sample to individuals aged 16− 30, our sample includes 178, 111 observations corresponding
to 12, 216 males. We delete individuals for whom the education level is missing (4 individuals)
and this leaves us with 178, 098 observations corresponding to 12, 212 male individuals. Finally,
we keep individuals who were present at least 15 years, which leaves us with 7, 004 individuals
with 137, 315 observations.
The education level is defined as the highest diploma obtained by individuals. Using French

diploma names, high-school drop-outs includes no diploma, CAP, BEPC and CEP; high-school
graduates includes baccalauréat and low-level technical diplomas; short-track college graduates
gather BTS, DUT and DEUG diploma holders; college graduates include 3-year and more college
diplomas and Grandes Ecoles.
When constructing potential experience since entry in the private sector, we have to deal

with the issue that no information is available in 1990. We use an imputation rule to fill the hole

A.1We use as proportions for every year over the 1999-2006 period: 10%, 20%, 30%, 40%, 60%, 70%, 80% and
90%.
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that year for employment in the private sector. We consider that a worker is employed (resp.
non-employed) in 1990, if she was already employed (resp. non-employed) in 1989.

A.2 Flat spots and homogenous Mincer equations
The method of flat spots achieves the separation between human capital stocks and prices
(Figure 1(b)). In contrast with the US (Bowlus and Robinson, 2012), the increase in human
capital prices is lower for high skill groups (about 45% for college graduates and about 50% for
some college) than for the low skill group (about 80%) while price increases by only 30% for
high school graduates. These prices are nominal, and the INSEE Consumer Price Index over
the period increases by about 65%.
As a descriptive device, we ran homogeneous Mincer regressions with and without correction

for selection into the private sector (using Mill’s ratio with marriage and children variables as
exclusion restrictions in the selection equation). Estimates are reported in Table A.2. Coeffi cient
estimates of the interruption variables (x(3) and x(4)) are significant and negative even when
the selection correction term is introduced, and this selection is not significant. We can draw
three partial conclusions before the full analysis with heterogeneous parameters: (i) Years of
interruptions in the participation to the private sector negatively affect potential wages and
indicates that returns to human capital investments are lower when outside the private sector;
(ii) interruptions move the Mincer dip to a lower value of potential experience; (iii) the effect of
current-period selection is weak.

A.3 Counterfactuals
First, because our manipulations of potential histories to construct counterfactuals are related to
potential and actual experience impacts only, we harmonize them across the cohorts that enter
the private sector from 1985 to 1992. We change the timeline for each cohort to make them
start artificially in 1985 as for the first cohort we consider. Parameters are re-scaled according
to structural formulas (B.11)-(B.15) and verify:

(η̃i0, η̃i1, η̃i2, η̃i3, η̃i4) = (ηi0 + ηi1 (t0i − 1) , ηi1, ηi2β
−(t0i−1), ηi3, ηi4β

−(t0i−1)).

Second, in the counterfactuals developed in Section 5.3.2, either the first year or the last
year out of the private sector is replaced by a year in the private sector. In the former case,
the counterfactual first date of interruption is given by tc1 = t1 + 1 and counterfactual variables
denoted x(j)

t for j = 3 or 4 are defined as:

x
(3)
t = 0 and x(4)

t = 0 for t 6 tc1,

x
(3)
t = x

(3)
t − 1 and x(4)

t =

Kt−1∑
k=1

(
β−t2k+2 − β−t2k+1

)
+
(
β−t2 − β−tc1

)
for t > tc1.

After the counterfactual first date out of the private sector, the duration of interruptions is one
year lower than in the benchmark situation at all dates, and the curvature variable (x(4)

t ) is
modified.
In the case where the last year out of the private sector is replaced by a year in, the coun-

terfactual last date of entry into the private sector is given by tc2Kt+2 = t2Kt+2 − 1 and we
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have:

x
(3)
t = x

(3)
t and x(4)

t = x
(4)
t for t 6 tc2Kt+2

x
(3)
t = x

(3)
t − 1 and x(4)

t =
(
β−t

c
2Kt+2 − β−t2Kt−1

)
+

Kt−2∑
k=0

(
β−t2k+2 − β−t2k+1

)
for t > tc2Kt+2

The career interruption and curvature terms are the same as in the benchmark case until the
counterfactual last date of entry into the private sector. Afterwards, the duration of interruptions
is one year lower than in the benchmark situation and the curvature term is modified by the use
of the counterfactual last date of entry into the private sector instead of the observed one.

B Proofs of Section 4.2

B.1 Proof of Proposition 1
Consider an individual who evaluates the consequences of working in sector s and choosing
human capital investments, τ st , whether it is positive or equal to zero.
The marginal value of human capital can be expressed as the derivative of the interim value

function with respect to the level of human capital. Using the envelope theorem if τ st is an
interior solution, or replacing with the corner solution, τ st = 0, we have that for any Ht:

∂W s
t

∂Ht

=
1

Ht

+ β

{
exp (ρsτ st − λst)Et+1/2

[
∂Vt+1

∂Ht+1

]}
=

1

Ht

+
Ht+1

Ht

βEt+1/2

[
∂Vt+1

∂Ht+1

]
since we have Ht+1

Ht
= exp (ρsτ st − λst). This expression is equivalent to:

Ht
∂W s

t

∂Ht

= 1 + βEt+1/2

[
Ht+1

∂Vt+1

∂Ht+1

]
,

and implies that:

HtEt
∂W s

t

∂Ht

= 1 + βEt
[
Ht+1

∂Vt+1

∂Ht+1

]
. (B.1)

This shows that derivatives do not depend on s i.e. Et
∂W e

t

∂Ht
= Et

∂Wn
t

∂Ht
and this proves that:

Ht
∂Vt
∂Ht

= Ht
∂

∂Ht

(max(EtW e
t + ωt,EtW n

t )) = 1 + βEt
[
Ht+1

∂Vt+1

∂Ht+1

]
(B.2)

For t = t0 + d+ 1, specification (6) writes:

∂Vt0+d+1

∂Ht0+d+1

=
κ

Ht0+d+1

=⇒ Ht0+d+1
∂Vt0+d+1

∂Ht0+d+1

= κ. (B.3)

Denote:

κt = Ht
∂Vt
∂Ht

(B.4)
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By backward induction, using equation (B.2) and the initial condition (B.3), all values κt are
deterministic, that is, independent of Zt. We obtain that:

κt = 1 + βκt+1 =⇒ κt −
1

1− β = β(κt+1 −
1

1− β ) (B.5)

so that by backward induction:

κt =
1

1− β + βt0+d+1−t(κ− 1

1− β ). (B.6)

By integration of equations (B.1) and (B.4), we obtain the value functions of the Proposition in
which the arbitrary constants of integration, ast(Zt+1/2) and at(Zt) are further defined below. �

B.2 Proof of Proposition 2
The first order condition of the maximization problem for t ∈ [t0, t0 +d] with respect to the level
of investment τ t is

− (1 + cτ st) + βρsEt+1/2

[
Ht+1

∂Vt+1

∂Ht+1

]
= 0, (B.7)

in whichHt+1 is determined by equation (2). This first order condition delivers a positive optimal
human capital investment, τ st > 0, if the following condition holds:

βρsEt+1/2

[
Ht+1

∂Vt+1

∂Ht+1

]
> 1. (B.8)

Using equation (B.4), this condition is equivalent to βρsκt+1 > 1 and equation (B.7) yields the
optimal investment which verifies:

(1 + cτ st) = βρsκt+1, (B.9)

and the second term in equation (7) follows. When βρsκt+1 ≤ 1, we obtain that τ st = 0.
Furthermore, as the second left hand side term in (B.7) is constant, the second order condition
is satisfied if and only if c > 0.

B.3 Proof of Proposition 3
Using Proposition 1:

W s
t (Ht, Zt+1/2) = δst + lnHt −

(
τ st + c

(τ st)
2

2

)
+ βEt+1/2 [Vt+1]

= δst + lnHt −
(
τ st + c

(τ st)
2

2

)
+ βEt+1/2 [at+1(Zt+1) + κt+1 logHt+1]

= δst + lnHt −
(
τ st + c

(τ st)
2

2

)
+ βEt+1/2 [at+1(Zt+1) + κt+1(lnHt + ρsτ st − λst)] .

By identifying constant terms and using equation (B.9) and Proposition 2, we get:

ast(Zt+1/2) = δst +

(
βκt+1ρ

sτ st − τ st − c
(τ st)

2

2

)
− βκt+1λ

s
t + βEt+1/2 [at+1(Zt+1)] ,

= δst + c
(τ st)

2

2
− βκt+1λ

s
t + βEt+1/2 [at+1(Zt+1)] .
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B.4 Proof of Proposition 4
By equation (5) we have:

ωt + Et
[
δet + c

(τ et )
2

2
− βκt+1λ

e
t

]
+ βEt [at+1(Zt+1)] + κt log(Ht)

≥ Et
[
δnt + c

(τnt )2

2
− βκt+1λ

n
t

]
+ βEt [at+1(Zt+1)] + κt log(Ht).

and we note that neither initial conditions Ht nor terminal conditions Et [at+1(Zt+1)] depend on
current sector choice (absent any transition costs) and we obtain condition (8). It also yields:

at(Zt) = max(ωt + Et(δst − βκt+1λ
s
t + c

(τ st)
2

2
),Et(δnt − βκt+1λ

n
t + c

(τnt )2

2
)) + βEt [at+1(Zt+1)] .

B.5 Proof of Proposition 5
First, the stock of human capital in period t depends on previous investment choices and past
depreciation, that is:

Ht = Ht2Kt
exp

 t−1∑
l=t2Kt

ρeτ el −
t−1∑

l=t2Kt

λel


= Ht2Kt−1

exp

 t−1∑
l=t2Kt

ρeτ el −
t−1∑

l=t2Kt

λel +

t2Kt−1∑
l=t2Kt−1

ρnτnl −
t2Kt−1∑
l=t2Kt−1

λnl


...

= Ht0 exp

[
t−1∑
l=t0

ρslτ sll −
t−1∑
l=t0

λsll

]

At each date, we have that:

τ sl = max

{
0,

1

c
(ρslβκl+1 − 1)

}
As long as investments remain strictly positive in both sectors we have that:

lnHt = lnHt0 −
t−1∑
l=t0

λsll +

t−1∑
l=t0

ρslτ sll

= lnHt0 −
t−1∑
l=t0

λsll +

t−1∑
l=t0

ρsl

c
(ρslβκl+1 − 1)
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Using the sequence of periods in every sector and replacing κl+1 by its expression κl+1 = 1
1−β +

βt0+d−l(κ− 1
1−β ) (see Proposition 1), the term

∑t−1
l=t0

ρsl 1
c

(ρslβκl+1 − 1) can be decomposed into:

t−1∑
l=t0

ρs(l)

c

(
ρs(l)βκl+1 − 1

)
=

Kt−1∑
k=0

t2k+1−1∑
l=t2k

ρe

c

(
ρe

β

1− β − 1 + ρeβt0+d+1−l
(
κ− 1

1− β

))

+

t−1∑
l=t2Kt

ρe

c

(
ρe

β

1− β − 1 + ρeβt0+d+1−l
(
κ− 1

1− β

))

+
Kt−1∑
k=0

t2k+2−1∑
l=t2k+1

ρn

c

(
ρn

β

1− β − 1 + ρnβt0+d+1−l
(
κ− 1

1− β

))
where the first two right-hand-side terms correspond to the accumulation of human capital when
the worker is in sector e and the last one when she is in sector n. Since

s1−1∑
l=s0

ρe

c

(
ρe

β

1− β − 1 + ρeβt0+d+1−l
(
κ− 1

1− β

))

=
ρe

c

(
ρe

β

1− β − 1

)
(s1 − s0) +

(ρe)2

c
βt0+d+1−s0

(
κ− 1

1− β

) s1−s0−1∑
l=0

β−l

=
ρe

c

(
ρe

β

1− β − 1

)
(s1 − s0) +

(ρe)2

c

βt0+d+2

1− β

(
κ− 1

1− β

)(
β−s1 − β−s0

)
the term

∑t−1
l=t0

ρsl

c
(ρslβκl+1 − 1) simplifies into:

ρe

c

(
ρe

β

1− β − 1

)Kt−1∑
k=0

(t2k+1 − t2k) +
(ρe)2

c

(
κ− 1

1− β

)
βt0+d+2

1− β

Kt−1∑
k=0

(
β−t2k+1 − β−t2k

)
+
ρe

c

(
ρe

β

1− β − 1

)
(t− t2Kt) +

(ρe)2

c

(
κ− 1

1− β

)
βt0+d+2

1− β
(
β−t − β−t2Kt

)
+
ρn

c

(
ρn

β

1− β − 1

)Kt−1∑
k=0

(t2k+2 − t2k+1) +
(ρn)2

c

(
κ− 1

1− β

)
βt0+d+2

1− β

Kt−1∑
k=0

(
β−t2k+2 − β−t2k+1

)
This term can be rearranged considering the differential accumulation of human capital between
sectors e and n when the worker is in sector n. This leads to introducing the accumulation of

A.6



human capital if the individual had been employed in sector e during the whole period:

t−1∑
l=t0

ρsl

c
(ρslβκl+1 − 1)

=
ρe

c

(
ρe

β

1− β − 1

){Kt−1∑
k=0

[(t2k+1 − t2k) + (t2k+2 − t2k+1)] + (t− t2Kt)

}

+

[
ρn

c

(
ρn

β

1− β − 1

)
− ρe

c

(
ρe

β

1− β − 1

)]Kt−1∑
k=0

(t2k+2 − t2k+1)

+
(ρe)2

c

βt0+d+2

1− β

(
κ− 1

1− β

){Kt−1∑
k=0

[
β−t2k+1 − β−t2k + β−t2k+2 − β−t2k+1

]
+ β−t − β−t2Kt

}

+
(ρn)2 − (ρe)2

c

βt0+d+2

1− β

(
κ− 1

1− β

)Kt−1∑
k=0

(
β−t2k+2 − β−t2k+1

)
=

ρe

c

(
ρe

β

1− β − 1

)
(t− t0) +

(ρe)2

c

βt0+d+2

1− β

(
κ− 1

1− β

)(
β−t − β−t0

)
+

[
ρn

c

(
ρn

β

1− β − 1

)
− ρe

c

(
ρe

β

1− β − 1

)]Kt−1∑
k=0

(t2k+2 − t2k+1)

+
(ρn)2 − (ρe)2

c

βt0+d+2

1− β

(
κ− 1

1− β

)Kt−1∑
k=0

(
β−t2k+2 − β−t2k+1

)
Defining

x
(3)
t =

Kt−1∑
k=0

(t2k+2 − t2k+1) (B.10)

x
(4)
t =

Kt−1∑
k=0

(
β−t2k+2 − β−t2k+1

)
and

η3 =
ρn

c

(
ρn

β

1− β − 1

)
− ρe

c

(
ρe

β

1− β − 1

)
η4 =

1

c

βT+2

1− β

(
κ− 1

1− β

)(
(ρn)2 − (ρe)2)

Human capital at date t has the following expression:

lnHt = lnHt0 −
t−1∑
l=t0

λsll + η3x
(3)
t + η4x

(4)
t

+
ρe

c

(
ρe

β

1− β − 1

)
(t− t0)

+
(ρe)2

c (1− β)
βt0+d+2

(
κ− 1

1− β

)(
β−t − β−t0

)
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This expression can then be plugged into the earnings equation which becomes:

ln yt = δt + lnHt − τ t

= δt + lnHt0 −
t−1∑
l=t0

λsll + η3x
(3)
t + η4x

(4)
t

+
ρe

c

(
ρe

β

1− β − 1

)
(t− t0) +

(ρe)2

c (1− β)
βt0+d+2

(
κ− 1

1− β

)(
β−t − β−t0

)
−1

c

(
ρeβ

1− β + ρeβt0+d+1−t(κ− 1

1− β )− 1

)
= lnHt0 −

ρet0 + 1

c

(
ρeβ

1− β − 1

)
− (ρe)2 β

c

βd+1

1− β

(
κ− 1

1− β

)
+
ρe

c

(
ρe

β

1− β − 1

)
t

+
ρe

c

(
ρeβ

1− β − 1

)
βt0+d+1

(
κ− 1

1− β

)
β−t

+δt −
t−1∑
l=t0

λsll + η3x
(3)
t + η4x

(4)
t

We can then set

η0 = lnHt0 −
ρet0 + 1

c

(
ρeβ

1− β − 1

)
− (ρe)2 β

c

βd+1

1− β

(
κ− 1

1− β

)
(B.11)

η1 =
ρe

c

(
ρe

β

1− β − 1

)
(B.12)

η2 = βt0+d+1ρ
e

c

(
κ− 1

1− β

)(
ρeβ

1− β − 1

)
(B.13)

η3 =

(
ρn

c

(
ρnβ

1− β − 1

)
− ρe

c

(
ρeβ

1− β − 1

))
(B.14)

η4 =
1

c

(
(ρn)2 − (ρe)2)(κ− 1

1− β

)
βt0+d+1

1− β (B.15)

and obtain the reduced form given by equation (9).

C Complement to Song (2013)’s proof
In this Appendix, we establish the invertibility of a high-dimensional matrix that is used to
establish the asymptotic properties of coeffi cient estimators as given by Proposition 1 in Song
(2013). Indeed, the initial proof ignores the fact that this matrix has dimensions that tend to
infinity as the number of individuals tends to infinity. This can be an issue as this matrix is
inverted whereas its eigenvalues may tend to zero. We establish that this is not the case making
use of results given by Su and Ju (2018).
We can rewrite the equation of Song’s page 74 (top of the page) as:

∆i
[K,1]

= ξ∗i
[K,1]

+
1

N

N∑
j=1

aijS
−1/2
ii Sij

[K,K]

S
−1/2
jj ∆j + oP (1) (C.16)
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in which :

• Sij =
x′iMϕxj

T
, where xj is a [T,K] matrix and Mϕ a [T, T ] matrix (notation of Song, page

73).

• ξ∗i = 1√
T
S
−1/2
ii x

′
iMϕεi = S

−1/2
ii ξi (the latter using notation of Song, page 73). Sii is invertible

because of Assumption B.ii and B.iii page 7 uniformly in i (eigenvalue bound)

• the random vector ∆i =
√
TS

1/2
ii (η̂i − ηi) (our notation)

• the scalar, aij = θ′j(
Θ′Θ
N

)−1θi in which Θ = (θ1, ., θn)′ and the matrix A = [aij] (our
notation)

The issue at stake is the invertibility of this linear system of equations (C.16) with unknowns
∆ = (∆1, .,∆N) that we can write as:

∆ = ξ + Γ∆,

where
Γ = Block matrix[Γij]i,j

in which Γij =
aij
N
S
−1/2
ii Sij

[K,K]

S
−1/2
jj . The issue is the invertibility of I − Γ.

First, approximate Θ′Θ
N

= Σθ + oP (1). Thus the random variable

Ξi := θ′i(
Θ′Θ

N
)−1θi = θ′i(Σθ)

−1θi + oP (1),

is well defined since all eigenvalues of Σθ are bounded from below. Set θ
∗
i = Σ

−1/2
θ θi, and observe

that Eθ∗i = 0, V(θ∗i ) = Ir as well as aii = θ∗′i θ
∗
i + oP (1) = θ′i(Σθ)

−1θi + oP (1). Note that
EΞi = r + o(1) and VΞi <∞ since by Assumption A2i, we have that E ‖θi‖4 <∞.
Second, we follow the same technique of proof as Su and Ju (2018, page 3 in the Online

Appendix) and write Γ = C1 + C ′1 − Cd in which:

C1 = N−1


a11IK a12S

−1/2
11 S12S

−1/2
22 · · · a1NS

−1/2
11 S1NS

−1/2
NN

0 a22IK · · · a2NS
−1/2
22 S2NS

−1/2
NN

... 0
. . .

...
0 · · · 0 aNNIK


and Cd = N−1A⊗ IK . Denote by µmax(M) the maximal eigenvalue of matrix M . Using the fact
that eigenvalues of a block upper/lower triangular matrix are the combined eigenvalues of its
diagonal block matrices, as well as Weyl’s inequality, we get:

µmax(Γ) ≤ 2µmax(C1)− µmin(Cd)

≤ 2N−1 max
1≤i≤N

(aii) = 2N−1( max
1≤i≤n

(θ∗′i θ
∗
i ) + oP (1))

= 2N−1 max
1≤i≤N

(‖θ∗i ‖
2) + oP (N−1) = oP (N−3/4).

sincemax1≤i≤N(‖θ∗i ‖
2) = oP (N1/4) by the Markov inequality and strengthening Assumption A2.i

in Song into Assumption A1.ii of Su and Ju (2018). Therefore I − Γ is invertible and equation
(C.16) leads to:

∆
[KN,1]

= (I − Γ)−1 ξ∗

[KN,1]

+ oP (1).
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D Computational Appendix

D.1 The stopping rule of the iterative procedure
The stopping rule of the iterative procedure that we use is a combination of two rules con-
cerning factors and factor loadings. In the principal components approach, factors can be re-
covered as the K normalized eigenvectors corresponding to the K largest eigenvalues of matrix
N∑
i=1

(
ln yi − xiη(k)

i

)(
ln yi − xiη(k)

i

)′
in which ln yi = (ln yi1, ..., ln yiT )′ and xi = (x′i1, ..., x

′
iT )′ so

that the estimated space spanned by these eigenvectors converges to the true value. Our first
criterium to assess convergence is thus: C1 ≡

∥∥Mϕ(k−1)ϕ
(k)
∥∥ /RT . Second, as it is very demand-

ing to have each factor loading converge, we evaluate convergence through studentized averages
and covariance matrices. Formally, our second criterium is: C2 ≡ min (c1, c2) where:

c1 = N
(
θ

(k) − θ(k−1)
)′
V
(
θ

(k−1)
i

)−1 (
θ

(k) − θ(k−1)
)

with θ
(k−1)

=

N∑
i=1

θ
(k−1)
i /N (the inverse of variance V

(
θ

(k−1)
i

)
being used to give less weight to

averages of factor loadings estimated with more uncertainty), and:

c2 = tr

[(
V
(
θ

(k)
i

)
− V

(
θ

(k−1)
i

))(
V
(
θ

(k)
i

)
− V

(
θ

(k−1)
i

))′]
/tr
[
V
(
θ

(k−1)
i

)]
using the fact that tr

[
(A−B)′ (A−B)

]
is a distance between matrices A and B, and dividing

by tr
[
V
(
θ

(δ)
i

)]
as a normalization. Our overall stopping rule is based on C = min (C1, C2) such

that there is convergence when C < 1e− 4.

D.2 Convergence of the iterative estimation procedure
We use a specific iterative procedure to find the solution of the sum-of-squares minimization
program. We show in this section that our iterative procedure converges to the solution of this
program as the number of iterations tends to infinity. Doing so, we follow Heyden and Morton
(1996) (see also Dominitz and Sherman (2005) for a general framework).
The sum of squares we consider is given by:

C (θ, ϕ, η) =
∑

i,t|sit=1

(ln yit − xitηi − ϕtθi)
2 (D.17)

For a given set of parameters, say for instance ηi, we denote by η
(k)
i the value of the estimates

at the kth iteration.
As explained in the text, the first stage of our algorithm consists in minimizing C

(
θ, ϕ(k−1), η

)
with respect to θ and η —maintaining ϕ(k−1) constant. We denote the values of the arguments
of the minimizer as η(k) = (η

(k)
i )i=1,.,n and θ

(k) = (θ
(k)
i )i=1,.,n.

At the second stage, we impute wages that are not observed using the formula:A.2

ln y
(k)
it = xitη

(k)
i + ϕ

(k−1)
t θ

(k)
i (D.18)

A.2A few workers are more than 50 years old and according to the flat-spot approach we assume that they
no longer accumulate human capital. We also replace their wages by their linear prediction after 50 as a mere
statistical device to balance the panel.
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At the third stage, we recover values of θ and ϕ —fixing the values of y(k)
it and η

(k)
i —that minimize

the sum of squares:

C̃
(
θ, ϕ, η(k)

)
= C

(
θ, ϕ, η(k)

)
+

∑
i,t|sit=n

(
ln y

(k)
it − xitη

(k)
i − ϕtθi

)2

(D.19)

using Bai’s algorithm and we denote these values, θ̃
(k)
and ϕ(k).

We now show that the sum of squares decreases at each iteration of our algorithm.

Lemma 6
C
(
θ̃

(k)
, ϕ(k), η(k)

)
6 C

(
θ̃

(k−1)
, ϕ(k−1), η(k−1)

)
. (D.20)

Proof. From the first stage of our algorithm, we have that:

C
(
θ(k), ϕ(k−1), η(k)

)
6 C

(
θ̃

(k−1)
, ϕ(k−1), η(k−1)

)
, (D.21)

since θ(k), η(k) are minimizers of the left-hand side. Using the definition of y(k)
it , we also have that

C̃
(
θ(k), ϕ(k−1), η(k)

)
= C

(
θ(k), ϕ(k−1), η(k)

)
, (D.22)

since the sum of squares on the right hand side of equation (D.19) is equal to zero. The third
stage of our algorithm yields, by minimization:

C̃
(
θ̃

(k)
, ϕ(k), η(k)

)
6 C̃

(
θ(k), ϕ(k−1), η(k)

)
. (D.23)

and we get, using equations (D.23), (D.22) and (D.21) successively:

C
(
θ̃

(k)
, ϕ(k), η(k)

)
6 C̃

(
θ̃

(k)
, ϕ(k), η(k)

)
(D.24)

6 C̃
(
θ(k), ϕ(k−1), η(k)

)
= C

(
θ(k), ϕ(k−1), η(k)

)
(D.25)

6 C
(
θ̃

(k−1)
, ϕ(k−1), η(k−1)

)
. (D.26)

This shows that the sum of squares is decreasing at each iteration. In fact, it is strictly
decreasing as shown by the following lemma:

Lemma 7

C
(
θ̃

(k)
, ϕ(k), η(k)

)
= C

(
θ̃

(k−1)
, ϕ(k−1), η(k−1)

)
=⇒

(
θ̃

(k)
, ϕ(k), η(k)

)
=
(
θ̃

(k−1)
, ϕ(k−1), η(k−1)

)
.

Proof. The left-hand side equality implies that:

C
(
θ̃

(k)
, ϕ(k), η(k)

)
= C̃

(
θ̃

(k)
, ϕ(k), η(k)

)
according to equation (D.26). Using (D.19), this yields∑

i,t|sit=n

(
ϕ

(k−1)
t θ

(k)
i − ϕ

(k)
t θ̃

(k)

i

)2

= 0
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and thus ϕ(k−1)
t θ

(k)
i = ϕ

(k)
t θ̃

(k)

i for all i, t such that s (i, t) = 0. Considering also that there are

identification restrictions on parameters, we then have generically ϕ(k−1)
t = ϕ

(k)
t and θ̃

(k)

i = θ
(k)
i

for all i, t. From equation (D.26), we also have that

C
(
θ(k), ϕ(k−1), η(k)

)
= C

(
θ̃

(k−1)
, ϕ(k−1), η(k−1)

)
.

As C is strictly concave, the solution in the first step is unique for a given ϕ(k−1), and we get

that θ(k) = θ̃
(k−1)

and η(k) = η(k−1). Putting all the equalities on parameters together, we obtain(
θ̃

(k)
, ϕ(k), η(k)

)
=
(
θ̃

(k−1)
, ϕ(k−1), η(k−1)

)
.

Using the contraposition of the lemma and equation (D.20), we have that(
θ̃

(k)
, ϕ(k), η(k)

)
6=
(
θ̃

(k−1)
, ϕ(k−1), η(k−1)

)
=⇒ C

(
θ̃

(k)
, ϕ(k), η(k)

)
< C

(
θ̃

(k−1)
, ϕ(k−1), η(k−1)

)
,

which shows that the sum of squares is strictly decreasing at each iteration. As it is bounded
below by zero, it converges to a value C and parameters converge to the value of its minimizers(̂̃
θ, ϕ̂, η̂

)
. As θ(k) minimizes C

(
θ, ϕ(k−1), η(k)

)
, and ϕ(k−1) and η(k) converge respectively to ϕ̂

and η̂, θ(k) converges to the value of θ denoted θ̂ that minimizes C (θ, ϕ̂, η̂). We also have that

θ̃
(k)
is the value that minimizes:

C̃ (θ, ϕ̂, η̂) = C (θ, ϕ̂, η̂) +
∑

i,t|sit=n

(
ϕ̂
(
θ̂i − θi

))2

As C (θ, ϕ̂, η̂) is minimum in θ̂, and the second (positive) right-hand side term is positive but

zero for θ = θ̂, then C̃ (θ, ϕ̂, η̂) is minimized at θ̂ and we have ̂̃θ = θ̂. Overall, step 1 yields that θ̂
and η̂ verify the least squares first-order conditions, and step 3 makes ϕ̂ verify the least squares
first-order conditions. Hence,

(
θ̂, η̂, ϕ̂

)
is the least squares solution.
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Table A.2: Mincer regression in line with the theoretical model

(1) (2) (2)

2nd stage 1st stage (probit)

x1
it = t 0.058∗∗∗ 0.058∗∗∗ 0.037∗∗∗

(0.001) (0.001) (0.005)

x2
it = β−t -0.295∗∗∗ -0.289∗∗∗ -1.511∗∗∗

(0.009) (0.020) (0.055)
x3
it -0.009∗∗∗ -0.008∗ -0.409∗∗∗

(0.002) (0.005) (0.009)
x4
it -0.178∗∗∗ -0.208∗∗ 9.014∗∗∗

(0.027) (0.099) (0.115)
Married -0.071∗∗∗

(0.017)
Marriage 0.006∗∗∗

tenure 0.002
Having a -0.010
child (0.018)
Number of -0.055∗∗∗

children 3+ (0.012)
Number of 0.017∗∗

children 18+ (0.009)
λ (p̂∗it) -0.003

(0.008)
Cohort fixed effects X X X
N 138,447 138,447 158,194
R2 0.234 0.234

Note: Column (1) reports OLS estimates. Column (2) reports
OLS estimates when including a Mill’s ratio in the specification
to take into account selection. Results of the probit model used
to compute the Mill’s ratio are presented in Column (3).
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Table A.3: Corrected inter-centile ranges and rank correlations of the effects, main specification

Inter- Rank correlation
decile Log-wage Potential Non-

experience employment Factors
effect effect effect

Log-wage 0.876 1.000 0.579 0.000 0.057
Potential experience effect 1.275 0.579 1.000 -0.570 -0.211
Non-employment effect 0.674 0.000 -0.570 1.000 -0.048
Effect of factors 0.323 0.057 -0.211 -0.048 1.000

Note: “Potential experience effect”: sum of all effects related to potential experience and the
individual additive effect: ηi0 + ηi1t + ηi2β

−t; “Non-employment effect”: sum of all effects

related to being absent from the panel: ηi3x
(3)
it

+ ηi4x
(4)
it

; “ Factors effect”: .
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Table A.4: Descriptive statistics on distributions of uncorrected and corrected parameters, estimation
sample

ηi0 ηi1 ηi2 ηi3 ηi4 δ1 δ2
Mean -0.50 0.07 -0.36 -0.05 0.33 -0.03 -0.01
Variance 1.65 0.11 6.22 1.53 166.58 0.11 0.01
Corrected Variance 1.20 0.07 4.24 1.14 126.18 0.07 0.01
Q5 -2.04 -0.38 -3.72 -1.40 -11.17 -0.45 -0.14
Q10 -1.53 -0.20 -2.49 -0.75 -5.11 -0.29 -0.10
Q25 -0.94 -0.02 -1.09 -0.19 0.00 -0.12 -0.05
Median -0.51 0.06 -0.29 0.00 0.00 -0.03 -0.01
Q75 -0.08 0.17 0.38 0.15 0.00 0.06 0.02
Q90 0.45 0.35 1.78 0.64 5.29 0.25 0.07
Q95 1.00 0.53 3.13 1.20 12.41 0.44 0.11
Corrected Q5 -1.76 -0.26 -2.99 -1.10 -8.15 -0.37 -0.12
Corrected Q10 -1.39 -0.14 -2.03 -0.58 -3.92 -0.24 -0.08
Corrected Q25 -0.87 -0.01 -0.94 -0.16 0.00 -0.11 -0.04
Corrected Median -0.49 0.06 -0.29 0.00 0.00 -0.03 -0.01
Corrected Q75 -0.15 0.15 0.26 0.14 0.00 0.05 0.02
Corrected Q90 0.23 0.29 1.38 0.46 4.11 0.20 0.05
Corrected Q95 0.84 0.44 2.30 0.89 9.32 0.35 0.09
N 7004 7004 7004 7004 7004 7004 7004

Note: For individuals with fewer than 2 interruptions, parameters ηi3 and ηi4
are normalized as they are not identified, and this normalization contaminates
descriptive statistics. “Corrected” statistics are obtained after bias correction as
described in the Online Appendix.

Table A.5: Descriptive statistics on distributions of uncorrected and corrected parameters, individuals
with two interruptions and more in the estimation sample

ηi0 ηi1 ηi2 ηi3 ηi4 δ1 δ2
Mean -0.52 0.07 -0.32 -0.10 0.81 -0.03 -0.02
Variance 2.03 0.15 8.25 4.19 470.87 0.15 0.01
Corrected Variance 1.36 0.10 5.37 3.00 338.01 0.10 0.01
Q5 -2.25 -0.48 -4.19 -3.14 -27.91 -0.54 -0.17
Q10 -1.70 -0.26 -2.82 -1.89 -15.88 -0.35 -0.12
Q25 -1.05 -0.04 -1.18 -0.72 -5.77 -0.14 -0.06
Median -0.52 0.06 -0.26 0.01 -0.12 -0.03 -0.01
Q75 0.00 0.18 0.54 0.64 6.04 0.08 0.03
Q90 0.63 0.40 2.15 1.64 19.35 0.31 0.08
Q95 1.26 0.59 3.86 2.69 30.27 0.50 0.14
Corrected Q5 -1.81 -0.36 -3.30 -2.80 -26.54 -0.43 -0.14
Corrected Q10 -1.51 -0.18 -2.29 -1.48 -12.14 -0.28 -0.10
Corrected Q25 -0.94 -0.03 -1.04 -0.58 -4.61 -0.13 -0.05
Corrected Median -0.49 0.06 -0.26 0.01 -0.04 -0.03 -0.01
Corrected Q75 -0.13 0.16 0.39 0.48 4.97 0.07 0.02
Corrected Q90 0.36 0.33 1.66 1.26 15.08 0.27 0.07
Corrected Q95 0.98 0.49 2.98 2.24 25.60 0.39 0.11
N 1795 1795 1795 1795 1795 1795 1795

Note: “Corrected” statistics are obtained after bias correction as described in the
Online Appendix.
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Figure A.1: Mean and inter-decile of log-wages as a function of potential experience for all individuals
entering the labour market between 1985 and 1992, by diploma

(a) Mean (b) Inter-decile

3.
5

4
4.

5
5

5.
5

M
ea

n 
lo

g-
w

ag
e

0 2 4 6 8 10 12 14 16 18 20
Potential experience

High School Dropouts High School Graduates
Some College College Graduates

.5
.8

1.
1

1.
4

In
te

r-d
ec

ile
 ra

ng
e 

of
 lo

g-
w

ag
es

0 2 4 6 8 10 12 14 16 18 20
Potential experience

High School Dropouts High School Graduates
Some College College Graduates

Note: Summary statistics presented here are computed using the sample of all individuals entering the labour market between 1985
and 1992.
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Figure A.2: Corrected deciles of counterfactual log-wage as a function of potential experience, counter-
factual scenarii 1-4
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Note: “Corrected” statistics are obtained after bias correction as described in the Online Appendix. .
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Figure A.3: Corrected inter-deciles of counterfactual log-wage as a function of potential experience,
counterfactual scenarii 1-4, two interruptions and more
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Note:“Corrected” statistics are obtained after bias correction as described in the Online Appendix.
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E Computation of counterfactual measures and their vari-

ances

In this appendix, we consider the specification of the paper:

ln yit = xitηi + ϕtθi + σεit (S.1)

where we assume that terms εit are identically and independently distributed, and verify E (εit) =

E (ε3
it) = 0, and we denote E (ε2

it) = σ2 < 0 and E (ε4
it) = ς/σ4 < +∞. We focus on the unfeasible

estimation when ϕt is observed since replacing ϕt by ϕ̂t induces an additional but negligible bias.

E.1 Counterfactual means

E.1.1 Estimator

We want to estimate counterfactual means of the formMt = E (Xc
tH |Θc

t ) where H are random

variables corresponding to individual effects, Xc
t are counterfactual random explanatory variables

and Θc
t is a subset of individuals, for instance those who are employed at date t in a counterfactual

situation. We do not observe individual effects but we can recover their unbiased OLS estimators

which corresponding random variables are denoted Ĥ. These estimators are obtained from the

Frisch-Waugh theorem applied to equation (??) and verify:

η̂i = (x′iMϕi
xi)
−1
x′iMϕi

ln yi

= ηi + σ (x′iMϕi
xi)
−1
x′iMϕi

εi (S.2)

where, for a given quantity qit, we denote qi =
(
q′iti1 , ..., q

′
itiTi

)′
where ti1,ti2,...,tiTi are the dates

at which individual i is employed where Ti is the number of periods individual i is employed,

and ϕi =
(
ϕ′ti1 , ..., ϕ

′
tiTi

)′
. Our estimator of the counterfactual mean is given by:

M̂t =
1

N c
t

∑
i∈Θc

t

xcitη̂i (S.3)

with N c
t = Card Θc

t . Using equation (S.2), note that our estimator of the counterfactual mean

(??) is consistent since we have E (η̂i |xcit, ηi ) = ηi. Indeed, we can apply the law of large numbers

and we get:

M̂t → E
(
Xc
t Ĥ |Θc

t

)
= E

[
Xc
tE
(
Ĥ |Xc

t ,H
)
|Θc

t

]
= E (Xc

tH |Θc
t ) =Mt
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E.1.2 Variance of the estimator

We now turn to the computation of the variance of the mean estimator. We have:

V
(
M̂t |xct

)
= V

 1

N c
t

∑
i∈Θc

t

xcitη̂i |xct


=

1

N c2
t

∑
i,j∈Θc

t

cov
(
xcitη̂i, x

c
jtη̂j |xct

)
where xct =

(
xc
′
i1t
..., xc

′
iNc

t
t

)′
. Using equation (S.2), covariances in the right-hand side sum are

given by:

cov
(
xcitη̂i, x

c
jtη̂j |xct

)
= E

[
xcit (x′iMϕi

xi)
−1
x′iMϕi

εiε
′
jMϕj

xj
(
x′jMϕi

xj
)−1

xc′jt |xct
]

These covariances are zero for i 6= j and we get:

V
(
M̂t |xct

)
=

σ2

N c2
t

∑
i∈Θc

t

xcit (x′iMϕi
xi)
−1
xc′i

and an estimator of this variance is obtained by replacing ϕi with its estimator ϕ̂i, and σ2 with

its unbiased OLS estimator verifying

σ̂2 =
∑
i

̂̃vi′ ̂̃vi/ [(Ti −Ki − L)N ] (S.4)

where ̂̃vi is the unfeasible OLS estimator of the residual, Ki is the number of identified parameters

of individual variables (between 3 and 5) and L is the number of unobserved factors.

E.2 Bias-corrected counterfactual covariances and variances

E.2.1 Estimator

We show here how to compute the bias-corrected empirical counterpart of the covariance statistic

cov (Xc
t1H,X

c
t2H |St = e) where Xc

tj are explanatory variables in counterfactual situation j. For

readability, we ignore the conditioning with respect to St = e but we explain how formula are

modified when taking it into account. We also introduce the notations: Mtj = XtH where Xt

are the observed explanatory variables, Mtj = Xc
tjH and M̂tj = Xc

tjĤ where Ĥ is an unbiased

OLS estimator of H, and mitj = xcitjηi and m̂itj = xcitj η̂i, where xcitj are realization of Xc
tj and η̂i

is given by equation S.2.

We have cov (Mt1,Mt2) = cov (Mt1−E (Mt1) ,Mt2−E (Mt2)). Hence, we can consider the case

where Mtj are centered (and center m̂itj with respect to their mean). This is inocuous to compute
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an estimator of the covariance statistics, but it will be useful to compute a variance of this

estimator. The covariance statistic embeds the variance which is obtained when fixing Mt1 =

Mt2. We have:

cov
(
M̂t1, M̂t2 |St = e

)
= E

[
cov
(
M̂t1, M̂t2 |Mt,Mt1,Mt2

)]
+cov

[
E
(
M̂t1 |Mt,Mt1

)
, E
(
M̂t2 |Mt,Mt2

)]
Using equation (S.2), we get E

(
M̂tj |Mt,Mtj

)
= Mtj and we then have:

cov (Mt1,Mt2) = cov
(
M̂t1, M̂t2

)
− E

[
cov
(
M̂t1, M̂t2 |Mt,Mt1,Mt2

)]
(S.5)

We now explain how to construct estimators of the two right-hand side terms. Denote by Φt the

subset of individuals who are employed at date t. An estimator of the first right-hand side term

is given by:

ĉov
(
M̂t1, M̂t2

)
=

1

N − 1

∑
i

(
m̂it1 −

1

N

∑
i

m̂it1

)(
m̂it2 −

1

N

∑
i

m̂it2

)
(S.6)

Using equation (S.2), the second right-hand side term of equation (??) can be rewritten as:

E
[
cov
(
M̂t1, M̂t2 |Mt,Mt1,Mt2

)]
= cov

(
σxcit1 (x′iMϕi

xi)
−1
x′iMϕi

εi, σx
c
it2 (x′iMϕi

xi)
−1
x′iMϕi

εii

)
= σ2E

[
xcit1 (x′iMϕi

xi)
−1
xc′it2 |xit, xcit1, xcit2

]
(S.7)

An estimator of expression (S.7) is then given by:

Ê
[
cov
(
M̂t1, M̂t2 |Mt,Mt1,Mt2

)]
=
σ̂2

N

∑
i

xcit1 (x′iMϕi
xi)
−1
xc′it2 (S.8)

where σ̂2 is the unbiased OLS estimator of σ2 given by equation (??). Finally, a consistent

estimator of the covariance is given by:

ĉov (Mt1,Mt2) = ĉov
(
M̂t1, M̂t2

)
− Ê

[
cov
(
M̂t1, M̂t2 |Mt,Mt1,Mt2

)]
(S.8)

where we replace factors ϕt with their estimators.

Reintroducing the conditioning St = e, sum should involve only observations at date t when

individuals are in employment and N should be replaced by Nt (the number of individuals in

employment at date t).
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E.2.2 Variance of the estimator

We now compute the variance of the covariance estimator that can be rewritten as:

ĉov (Mt1,Mt2) =
1

N − 1

∑
i

m̂it1m̂it2 −
1

(N − 1)N

∑
i,j

m̂it1m̂jt2 −
σ̂2

N

∑
i

1

T
xcit1Ψix

c′
it2

where Ψi =
(
x′iMϕixi

T

)−1

. As shown by Fernandez-Val and Weidner (2018), the debiasing term

can be ignored in the computation, and we are thus interested in the variance of:

c̃ov (Mt1,Mt2) =
1

N − 1

∑
i

m̂it1m̂it2 −
1

(N − 1)N

∑
i,j

m̂it1m̂jt2

The expectation of this covariance is given by:

E [c̃ov (Mt1,Mt2)] =
1

N − 1

∑
i

E (m̂it1m̂it2)− 1

(N − 1)N

∑
i,j

E (m̂it1m̂jt2)

=
1

N

∑
i

E (m̂it1m̂it2)− 1

(N − 1)N

∑
i,j

E (m̂it1m̂jt2)

We consider that individual observed and unobserved characteristics are identically and inde-

pendently distributed across individuals (except xc in the case where it is deterministic or partly

deterministic, with deterministic parts taking the same values for all individuals). Using also

that fact that E (m̂itj), we get:

E [c̃ov (Mt1,Mt2)] = E (m̂it1m̂it2)

and thus:

E [c̃ov (Mt1,Mt2)]2 = [E (m̂it1m̂it2)]2 (S.9)

We also have:

E
[
c̃ov (Mt1,Mt2)2] = E

(
1

Nt − 1

∑
i

E (m̂it1m̂it2)− 1

(N − 1)N

∑
i,j

E (m̂it1m̂jt2)

)2

= E

(
1

(N − 1)2

∑
i,j

m̂it1m̂it2m̂jt1m̂jt2

)

+E

(
1

(N − 1)2N2

∑
i,j,k,l

m̂it1m̂jt2m̂kt1m̂lt2

)

− 2

(N − 1)2N
E

(∑
i,k,l

m̂it1m̂it2m̂kt1m̂lt2

)
(S.10)
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We are going to compute the three right-hand side terms. We have for the first one:

E

(∑
i,j

m̂it1m̂it2m̂jt1m̂jt2

)
=

∑
i

E
(
m̂2
it1m̂

2
it2

)
+
∑
i,j|i 6=j

E (m̂it1m̂it2)E (m̂jt1m̂jt2)

= NE
(
m̂2
it1m̂

2
it2

)
+N (N − 1)E (m̂it1m̂it2)2 (S.11)

We have for the second term of expression (S.10):

E

(∑
i,j,k,l

m̂it1m̂jt2m̂kt1m̂lt2

)
= E

(∑
i

m̂2
it1m̂

2
it2

)
+ 2E

 ∑
i,j|i 6=j

m̂it1m̂it2m̂jt1m̂jt2


Developping this expression leads to:

E

(∑
i,j,k,l

m̂it1m̂jt2m̂kt1m̂lt2

)
= NE

(
m̂2
it1m̂

2
it2

)
+ 2N (N − 1)E (m̂it1m̂it2)2 (S.12)

Finally, we have for the third term of expression (S.10):

E

(∑
i,j,k

m̂it1m̂it2m̂jt1m̂kt2 |St = e

)
= E

(∑
i

m̂2
it1m̂

2
it2

)
+ E

 ∑
i,j|i 6=j

m̂it1m̂it2m̂jt1m̂jt2


Developping this expression leads to:

E

( ∑
i,j,k∈Φt

m̂it1m̂it2m̂jt1m̂kt2

)
= NE

(
m̂2
it1m̂

2
it2

)
+N (N − 1)E (m̂it1m̂it2)2 (S.13)

Finally, equations (S.11), (??) and (??) can be used to compute E
[
c̃ov (Xc

t1H, X
c
t2H)2] on the

left-hand side of equation (S.10) after replacing expectations by their empirical counterparts:

E
[
c̃ov (Mt1,Mt2)2] =

1

(N − 1)2

[
NE

(
m̂2
it1m̂

2
it2

)
+N (N − 1)E (m̂it1m̂it2)2]

+
1

(N − 1)2N2

[
NE

(
m̂2
it1m̂

2
it2

)
+ 2N (N − 1)E (m̂it1m̂it2)2]

− 2

(N − 1)2N

[
NE

(
m̂2
it1m̂

2
it2

)
+N (N − 1)E (m̂it1m̂it2)2]

=

[
N

(N − 1)2 +
1

(N − 1)2N
− 2

(N − 1)2

]
E
(
m̂2
it1m̂

2
it2

)
+

[
N

N − 1
+

2

(N − 1)N
− 2

N − 1

]
E (m̂it1m̂it2)2

+

[
1− 1

N
+

1

N (N − 1)

]
E (m̂it1m̂it2)2 (S.14)
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Using equations (??) and (S.14), we obtain:

V [c̃ov (Mt1,Mt2)] =
1

N

[
E
(
m̂2
it1m̂

2
it2

)
− E (m̂it1m̂it2)2]+

1

N (N − 1)
E (m̂it1m̂it2)2

=
1

N

[
E
(
m̂2
it1m̂

2
it2

)
− E (m̂it1m̂it2)2]+O

(
1

N2

)
This formula can be computed from the data using the empirical counterparts of E (m̂it1m̂it2)

and E (m̂2
it1m̂

2
it2). When considering again only observations when individuals are employed,

sum should involve only observations at date t when individuals are in employment, N should

be replaced by Nt, xi should involve only observations of individual i when she is employed, and

T should be replaced by Ti, the number of observations that individual i is employed.

E.3 Bias-corrected couterfactual inter-centile gaps

E.3.1 Estimator

We can get a formula for bias-corrected quantile differences in the unfeasible case in which factors

ϕt are known using the approach of Jochmans and Weidner (2019). Our objects of interest are

of the form:

∆qt (τ1, τ2) = qt (τ2)− qt (τ1)

with qt (τ) = infq {q |Ft (q) > τ } where Ft (•) is the cumulative of Xc
tH (the individual-specific

effect of counterfactual explanatory variables). Realizations of Xc
tH are denoted xcitηi, but ηi are

not observed and are replaced by their estimators η̂i given by equation (S.2). As previously,

denote Mit = Xc
tH, mit = xcitηi and m̂it = xcitη̂i. For a given value of potential experience t, m̂it

is of the form studied by Jochmans and Weidner (2019):

m̂it = mit +
1√
T
σitε̃it (S.15)

in which σ2
it = T

Tl
σ2xcit

(
x′iMϕixi

Ti

)−1

xc′it and ε̃it is a centered disturbance with unit variance.

Consider a given t and suppose that individuals are sorted in increasing order of values m̂it.

The plug-in estimator for quantiles of the distribution of m̂it is given by:

q̂t (τ) = m̂bτNc
t ct

where b•c denotes the integer function and N c
t is the number of individuals who are employed

at period t in the counterfactual scenario. According to Jochmans and Weidner (2019), we have:√
N c
t

(
q̂t (τ)− qt (τ)− bt (τ)

T

)
−→ N

(
0, σ2

t (τ)
)

(S.16)
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where:

bt (τ) = −b
F
t (qt (τ))

ft (qt (τ))
(S.17)

σ2
t (τ) =

τ (1− τ)

ft (qt (τ))2 (S.18)

with ft (•) the density fonction of Mit and

bFt (q) =
∂gt (q)

∂q
with gt (q) = E

(
σ2
it |mit = q, ϕ

)
ft (q) /2

In fact, Jochmans and Weidner (2019) argue that a direct analytical correction of the bias is not

very suitable because it has the unattractive property that it requires a non-parametric estimator

of the density ft (•), which further shows up in the denominators of bt (τ). Consequently, they

rather propose the following correction:

∨
qt (τ) = m̂bτ̂∗t (τ)Nc

t ct (S.19)

with:

τ̂ ∗t (τ) = τ +
1

T
b̂Ft (q̂t (τ))

where:

b̂Ft (q) = − 1

2N c
t h

2

∑
i|scit=e

σ̂2
itκ
′
(
m̂it − q
h

)
with scit ∈ {e, n} the employment status of individual i at period t in the counterfactual scenario,

κ′ is the derivative of a Gaussian kernel and h is the bandwidth, and σ̂2
it is an estimator of σ2

it.

To construct this estimator, we recover as before the OLS estimator of σ2 denoted σ̂2 and use

the formula:

σ̂2
it =

T

Ti
σ̂2xcit

(
x′iMixi
Ti

)−1

xc′it

The idea of the bias correction given by equation (??) is to correct the ranks at which quantiles

are computed because the sampling error inflates quantiles. Jochmans and Weidner (2019) show

in fact that:
√
N
(
∨
qt (τ)− qt (τ)

)
−→ N

(
0, σ2

t (τ)
)

(S.20)

A bias-corrected estimator of any inter-quantile range is then given by:

∆̂qt (τ1, τ2) =
∨
qt (τ2)− ∨qt (τ1)
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E.3.2 Asymptotic variance of the estimator

We now explain how to compute the asymptotic variance of the bias-corrected estimator. Jochmans

and Weidner (2019) establish the asymptotic distribution of only one quantile
∨
qt (τ). But consis-

tently with the literature on sample quantiles (see for instance Moore, 1969), it can be generalized

such that we have for 0 < τ1 < τ2 < 1:

√
N c
t

((
∨
qt (τ1)
∨
qt (τ2)

)
−
(
qt (τ1)
qt (τ2)

))
−→ N

(
0,

(
σ2
t (τ1) ct (τ1, τ2)

ct (τ1, τ2) σ2
t (τ2)

))
(S.21)

with:

ct (τ1, τ2) =
τ1 (1− τ2)

ft (qt (τ1)) ft (qt (τ2))

It is easy to show from (??) that ∆̂qt (τ1, τ2) is asymptotically normal with variance:

V
(

∆̂qt (τ1, τ2)
)

= σ2
t (τ1) + σ2

t (τ2)− 2ct (τ1, τ2)

E.4 Bias-corrected rank correlation

Consider two variables M1 = Xc
1H and M2 = Xc

2H such that we do not observe their values

for every individual and date, mit1 and mit1, but rather some estimators m̂it1 and m̂it2 that are

realizations of M̂1 and M̂2. We are interested in the Spearman correlation which is the rank

correlation given by:

rs =
cov (τM1 , τM2)

στ
M1
στM2

(S.22)

where τM1 = FM1 (M1) and τM2 = FM2 (M2). Note that, in contrast with previous section, we are

pooling all the years when constructing an empirical counterpart of this rank correlation. We

want to compute this correlation using empirical counterparts of the covariance and standard

deviations, but we do not observe the empirical ranks F̂M1 (mit1) and F̂M2 (mit2). We rather

observe τ̂ 1
it ≡ F̂M̂1

(m̂it1) and τ̂ 2
it ≡ F̂M̂2

(m̂it2). There are two problems here. The distributions

of M̂1 and M̂2 are distorted compared to those of M1 and M2 due to sampling error, and this

creates biases on rank estimators. Also, we resort to estimators m̂it1 and m̂it2 of quantities mit1

and mit2.

First note that:

√
T

(
m̂it1 −mit1

m̂it2 −mit2

)
−→ N

(
0,

(
σ2

1it σ12it

σ12it σ2
2it

))
(S.23)
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where σ2
jit = σ2p lim

[
T
Ti
xcjit

(
x′iMixi
Ti

)−1

xcj′it

]
and σ2

12it = σ2p lim

[
T
Ti
xc1it

(
x′iMixi
Ti

)−1

xc2′it

]
. Hence,

we can write that:

m̂itj −mitj =
σ2
jit√
T
ωjit + oP

(
1/
√
T
)

(S.24)

where ωjit follows a standard normal distribution.

To estime the covariance term entering the rank correlation (??), we consider the consistent

estimors of cumulatives proposed by Jochmans and Weidner (2019):

F̆ j(m) = F̂ j (m)− bF̂
j
(m)

T
(S.25)

with:

b̂F
j

(m) = − 1

2N c
· h

2

T∑
t=1

∑
i|scit=e

σ̂2
itκ
′
(
m̂itj −m

h

)

where N c
· =

T∑
t=1

N c
t . We have:

Cov
(
F̆ 1(m̂it1), F̆ 2(m̂it2)

)
= Cov

(
F̆ 1(m̂it1)− F 1(m̂it1) + F 1(m̂it1), F̆ 2(m̂it2)− F 2(m̂it2) + F 2(m̂it2)

)
= Cov

(
F 1(m̂it1), F 2(m̂it2)

)
+ cov

(
F̆ 1(m̂it1)− F 1(m̂it1), F̆ 2(m̂it2)− F 2(m̂it2)

)
+cov

(
F 1(m̂it1), F̆ 2(m̂it2)− F 2(m̂it2)

)
+ cov

(
F 2(m̂it2), F̆ 1(m̂it1)− F 1(m̂it1)

)
(S.26)

We are first going to compute the first right-hand side term and then show that the three

additional right-hand side terms are negligible. We have:

Cov
(
F 1(m̂it1), F 2(m̂it2)

)
= E

[
F 1(m̂it1)F 2(m̂it2)

]
− E

[
F 1(m̂it1)

]
E
[
F 2(m̂it2)

]
As F is 3 times differentiable, we get:

F j(m̂itj) = F j(mitj) + f j(mitj)(m̂itj −mitj) + f j′(mitj)(m̂itj −mitj)
2/2 + oP ((m̂itj −mitj)

2)

Hence, we have:

E
[
F 1(m̂it1)F 2(m̂it2)

]
= E

[
F 1(mit1)F 2(mit2)

]
+E

[
F 1(mit1)

[
f 2(mit2)(m̂it2 −mit2) + f 2′(mit2)(m̂it2 −mit2)2/2 + oP ((m̂it2 −mit2)2)

]]
+E

[
F 2(mit2)

[
f 1(mit1)(m̂it1 −mit1) + f 1′(mit1)(m̂it1 −mit1)2/2 + oP ((m̂it1 −mit1)2)

]]
+E

[
[f 2(mit2)(m̂it2 −mit2) + f 2′(mit2)(m̂it2 −mit2)2/2 + oP ((m̂it2 −mit2)2)]
× [f 1(mit1)(m̂it1 −mit1) + f 1′(mit1)(m̂it1 −mit1)2/2 + oP ((m̂it1 −mit1)2)]

]
(S.27)
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For a centered bivariate normal (X, Y ), we have E (X2Y ) = 0. We can thus use the following

equalities obtained from (??):

E [(m̂it1 −mit1)(m̂it2 −mit2) |mit1,mit2 ] = σ12it/T + oP (1/T )

E
[
(m̂it1 −mit1)(m̂2 −mit2)2 |mit1,mit2

]
= oP

(
1/T 3/2

)
E
[
(m̂it2 −mit2)(m̂it1 −mit1)2 |mit1,mit2

]
= oP

(
1/T 3/2

)
Equation (S.27) can then be rewritten as:

E
[
F 1(m̂it1)F 2(m̂it2)

]
= E

[
F 1(mit1)F 2(mit2)

]
+

1

T
E
[
F 1(mit1)f 2′(mit2)σ2

2it

]
+

1

T
E
[
F 2(mit2)f 1′(mit1)σ2

1it

]
+

1

T
E
[
f 1(mit1)f 2(mit2)σ2

12it

]
+ oP (1/T ) (S.28)

We also have:

E [F (m̂itj)] = E [F (mitj)] +
1

T
E
[
f ′(mitj)σ

2
jit

]
+ oP (1/T )

Hence:

E
[
F 1(m̂it1)

]
E
[
F 2(m̂it2)

]
= E

[
F 1(m̂it1)

]
E
[
F 2(m̂it2)

]
+

1

T
E
[
F 1(mit1)

]
E
[
f 2′(mit2)σ2

2it

]
+

1

T
E
[
F 2(mit2)

]
E
[
f 1′(mit1)σ2

1it

]
+ oP (1/T ) (S.29)

Putting together (S.28) and (S.29), we get:

Cov
(
F 1(m̂it1), F 2(m̂it2)

)
= Cov

(
F 1(mit1), F 2(mit2)

)
+

1

T
Cov

(
F 1(mit1), f 2′(mit2)σ2

2it

)
+

1

T
Cov

(
F 2(mit2), f 1′(mit1)σ2

1it

)
+

1

T
E
[
f 1(mit1)f 2(mit2)σ12it

]
+ oP (1/T ) (S.30)

We now show that the three other terms in equation (S.26) are negligible. Applying Cauchy-
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Schwartz inequality, we get:

cov
(
F 1(m̂it1), F̆ 2(m̂it2)− F 2(m̂it2)

)
6 V

(
F 1(m̂it1)

)1/2
V
(
F̆ 2(m̂it2)− F 2(m̂it2)

)1/2

(S.31)

cov
(
F 2(m̂it2), F̆ 1(m̂it1)− F 1(m̂it1)

)
6 V

(
F 2(m̂it2)

)1/2
V
(
F̆ 1(m̂it1)− F 1(m̂it1)

)1/2

(S.32)

cov
(
F̆ 1(m̂it1)− F 1(m̂it1), F̆ 2(m̂it2)− F 2(m̂it2)

)
6 V

(
F̆ 1(m̂it1)− F 1(m̂it1)

)1/2

V
(
F̆ 2(m̂it2)− F 2(m̂it2)

)1/2

(S.33)

where terms V (F j(m̂itj)) are bounded since F j(·) is bounded by 1. We now show that terms

V
(
F̆ j(m̂itj)− F j(m̂itj)

)
are negligible. Using (??), (??) and (S.18), we then get (see Proposition

1 in Jochmans and Weidner, 2019):[
F̆ j(m)− F j(m)

]2

=
F j(m) [1− F j(m)]

N c
·

+ oP

(
1

NT

)
(S.34)

since that the total number of observations in the counterfactual sample N c
· grows at the same

speed as NT . As a consequence, we have:

E

([
F̆ j(m̂itj)− F j(m̂itj)

]2
)

= E

[
E

([
F̆ j(m̂itj)− F j(m̂itj)

]2

| m = m̂itj

)]
= E

[
F j(m̂itj) [1− F j(m̂itj)]

N c
·

]
+ oP

(
1

NT

)
≤ Mσ/N

c
· + oP

(
1

NT

)
(S.35)

in which E

[
F j(m̂itj)[1−F j(m̂itj)]

Nc
·

]
is bounded, say be Mσ, since F j(m̂itj) is bounded by one. The

bound also applies to the variance when assuming that N/T 4 → 0 since, according to Proposition

1 in Jochmans and Weidner (2019), we have:

E
([
F̆ j(m̂itj)− F j(m̂itj)

])
= E

[
E
([
F̆ j(m̂itj)− F j(m̂itj)

]
| m̂itj = m

)]
= oP (1/T 2) (S.36)

Finally, we get under the assumption N/T 2 → c > 0 that :

Cov
(
F 1(mit1), F 2(mit2)

)
= Cov

(
F̆ 1(m̂it1), F̆ 2(m̂it2)

)
− 1

T
Cov

(
F 1(mit1), f 2′(mit2)σ2

2it

)
− 1

T
Cov

(
F 2(mit2), f 1′(mit1)σ2

1it

)
− 1

T
E
[
f 1(mit1)f 2(mit2)σ12it

]
+oP (1/T )
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A consistent estimator of the covariance of ranks can then be computed from the empirical

counterparts of the first four right-hand side terms after replacing F j(mitj), f
j(mitj) and f j′(mitj)

with their empirical counterparts F̆ j(m̂itj), f
j(m̂itj) and f j′(m̂itj). We can also recover the

variances from this expression using F j(mitj) for the two arguments of the covariance. Finally,

we are able to derive an estimate of the rank correlation (??).

F Monte-Carlo simulations

We carried out Monte-Carlo simulations to investigate biases, bias correction and the statistics

particularly affected by bias in a setting which is inspired by our working sample and the model

we use. We describe the empirical setting and present results under correct specification. We

also explore results under incorrect specification mimicking our empirical models whereby we

omit factors only – and thus neglect selection and endogeneity of experience – or we omit factors

as well as variables describing interruptions in participation (xi3, xi4).

F.1 Experimental setting

We consider a single cohort and the time horizon is the one of the cohort that has the longest

horizon in the data (T = 27). The wage specification is:

ln yit = xitηi + ϕtθi + σεit

in which the idiosyncratic errors, εit, are normal, homoskedastic and independent over time and

in which (ηi, θi) is normally distributed. The mean of individual specific parameters (E (ηi) , E (θi))

is fixed at the estimated value obtained in our preferred estimations when using two factors. Val-

ues of factors ϕt are as well taken to be equal to their estimates.

If the specification is correct, means are unbiased asymptotically. In contrast, the estimated

covariance matrix, V (ηi, θi), is biased upwards. In order to reduce this bias, we use the estimated

value of the variance in our preferred experiment and extract its eigenvalues, say λ̂, ordered

from λ̂max to λ̂min. We then replace these eigenvalues with λ∗ = λ̂min(λ̂/λ̂min).8 because it

reduces their range while holding fixed the minimum value. We also experiment with a less

truncated experiment by replacing .8 with .9. We then reconstruct the covariance matrix using

the estimated eigenvectors. The value of the standard deviation σ is derived from the estimated

residual variance.

The construction of wages is sequential over time since wages depend on real experience.
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Participation is modelled such that a worker is in the private sector in year t if and only if:

E(ln yit | xit, ηi, ϕt, θi) > ln y∗it

in which:

ln y∗it = a1 + a2bi (xitηi + ϕtθi) + σζζit

where bi is drawn in a uniform distribution [0, 1] and ζit is drawn in a normal distribution,

N (0, 1), both independently of any other random variables. Parameters (a1, a2, σζ) are calibrated

by minimum distance so that generated data are in line with the estimates. Note that ln y∗it is

correlated with E(ln yit | xit, ηi, ϕt, θi) and selection exists if we do not condition on individual-

specific parameters and factors while selection is absent if we do condition on them.

The experiment involves 8, 000 individuals although the sample is truncated by imposing

that the number of years of interruptions is less than 12 in each Monte Carlo experiment. It

does not affect much the number of individuals – a few units at most in our replications. Bias

is corrected under the assumption of homoskedasticity.

The implementation is as follows:

� The number of replications is 1000.

� For each replication, parameters ηi, θi and ϕt are estimated using the procedure proposed

in the paper.

� We compute empirical counterparts of functions of estimated parameters η̂i – such as

means, medians, variances and quantiles (q10, q25, q75, q90) – and of estimated potential

wages, η̂i0 +xit1η̂i1 +xit2η̂i2, predicted wage xitη̂i and factor effects ϕ̂tθ̂i for different values

of potential experience at selected periods t = 1, 9, 17, 25.

� Functions of estimated parameters η̂i3 and η̂i4 are computed using only observations such

that ηi4 is identifiable. Nonetheless, we chose not to report statistics related to the

experience parameters, η̂i3 and η̂i4, but only to their contribution to predicted wages,

xit3η̂i3 + xit4η̂i4, since the former estimates are more biased than the latter. Statistics rel-

ative to experience parameters magnify the bias results that we obtain, and cannot but

reinforce our conclusions. Results are available upon request.
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� Functions of estimated potential wage, contribution of interruptions and predicted wage

are computed for a given value of potential experience t using observations alternatively

for all workers or for those who are not in the private sector at period t.

� We are interested in differences between these empirical means, and those constructed

from random draws of true parameters ηi across Monte Carlo experiments. We do not look

at differences between these draws and their expectations since we are not interested in

conducting a standard analysis of sampling variation.

We assess the quality of the estimation method for a specific statistic from: 1/ Its bias

(Bias), 2/ The mean absolute deviation (MAD) 3/ The root mean square error (RMSE ) 4/ The

standard deviation (SD) 5/ The coverage probabilities (CP) of Monte Carlo confidence intervals

at a 95% level constructed using the aggregate standard error, SD. The average of true values

(True) is also reported in Tables S.4 to S.25.

F.2 Results under correct specification

We assess the quality of the estimation method either by computing the ratio of RMSE and

SD – a ratio of 1 meaning that the bias is absent, and a ratio of 10 meaning that the bias is

very important – or by using the coverage probabilities (CP) – a value of .95 meaning that the

estimation is of high quality, and a value between .50 and .80 meaning that the estimation is

slightly biased. CP values which are less than .5 indicate an important bias. As standard errors

are not biased (see Jochmans and Weidner, 2019, and all our Monte Carlo experiments below),

the coverage probabilities are almost never greater than .95.

Here is a summary of Monte-Carlo results for parameters:

� Biases in means and medians for parameters ηi0, ηi1 and ηi2 are negligible (Table S.4).

There are some significant biases in means and medians for parameters ηi3 and ηi4 (results

not reported here). There are only very small biases on the mean and median for the first

factor loading θi1, and the biases are slightly larger for the second factor θi2 (results not

reported here).

� Biases are large in variances for parameters ηi0, ηi1 and ηi2. The coverage probabilities are

equal to 0 (Table S.5). The correction of biases is partly successful only since the bias is

still at the same level for (ηi1, ηi2) or 2 times greater than the standard deviation for ηi0,

and the confidence intervals remain uncentered. In consequence, the coverage probabilities
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are between .43 to .83. The biases are huge for parameters ηi3 and ηi4 and are sizable for

the two factors loadings θi, especially the second one (results not reported here).

� Table S.6 show large biases in estimated quantiles of parameters, ηi0, ηi1, ηi2 at percentiles

10, 25, 75 and 90 (but not for median). These biases are nonetheless less sizeable than the

ones affecting variances since the coverage probabilities are in the range between 0 and

0.6. Parameter ηi0 is particularly biased and the coverage probability is small (between

0 and 0.02 across percentiles). The parameters associated to slope and curvature are less

biased since the coverage probabilities are between 0.3 and 0.6 for slope parameters, and

0.14 to 0.48 for curvature ones. It is thus not a surprise to find that bias correction is

particularly successful for the coefficients associated to slope and curvature. The bias-

corrected coverage probabilities are greater than .92. Bias correction is less successful for

the level parameter, ηi0 but the coverage probability is above .75 for the 90% quantile to

be compared with .43 for the variance.

Here is a summary of Monte-Carlo results for potential wages, contribution of interruptions,

predicted wages and factor effects:

� For potential wages, there are negligible biases in means all along the period for the full

sample of males as well as for the subsample of non working males only (Table S.7).

� Table S.8 reports strong biases for variances in line with results for parameters ηi0, ηi1

and ηi2. Bias correction is more successful in the first period of observation (the coverage

probability is equal to .92) since there is no interruption but it becomes much worse

afterwards (the coverage probability is between .14 and .35).

� Table S.9 reports the behavior of estimated quantiles. The raw estimated quantiles are

slightly biased (except in period 1 and the medians), and the coverage probabilities can

become as low as .05. Nonetheless, bias correction is achieving a much better job since

the coverage probabilities are now no less than .8 and vary up to .92 (at t = 20 for 25%

quantile).

� For the contribution of interruptions, ηi3xi3+ηi4xi4, results are similar to those for potential

wages. In particular, biases in means (Table S.10) and medians (Table S.12, middle panel)

are absent although this variable, ηi3xi3 + ηi4xi4, has an accumulation point at 0 for those

who have no interruptions up until period t. Variances are as strongly biased as the ones
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for potential wages (Table S.11), while the analysis of quantiles is complicated by the

bunching at zero. In particular, bias correction is failing when the coverage probabilities

of the raw quantiles are zero and the underlying conditions for bias correction do not seem

to be satisfied because of the bunching.

� For predicted wages, there are negligible biases for means and medians (Tables S.13 and

S.15). Variances are biased but bias correction works much better than for potential wages

and for the predicted wage effect of interruptions (Table S.14). Coverage probabilities are

in the range .73 to .95 (Period 25) and are U-shaped with potential experience. This is

consistent with a compensation of biases affecting potential wage and the wage effect of in-

terruptions. Interestingly, lower biases are confirmed by the analysis of estimated quantiles

(Table S.15). Biases on estimated raw quantiles are relatively small (coverage probabilities

above .82) and in particular absent in Period 25. Unsurprisingly, bias correction virtually

solves the bias issue. Bias-corrected coverage probabilities are all between .93 and .96.

� For factor effects, there are negligible biases for means and medians, sizable biases for non-

corrected variances and quantiles, but rather small biases for corrected variances (results

not reported here).

F.3 Results under incorrect specification

Using the same 1000 replication samples, we also estimate parameters in two misspecified cases:

1. The basic model: regressors are reduced to (1, t, β−t) and interruption variables are omit-

ted as well as factors. Interruptions are supposed to have no impact and selection and

endogeneity issues are neglected.

2. The no factor model: regressors are reduced to (1, t, β−t) and (x
(3)
t , x

(4)
t ) but factors are

omitted. Selection and endogeneity issues are neglected.

Generally speaking, estimates are biased for the two models, including means and medians,

and the biases do not disappear when T →∞ in contrast with the previous case. More surpris-

ingly, the biases for the basic model are equal or smaller than the biases for the no factor one.

This means that biases due to selection and endogeneity on the one hand and the omission of

interruption variables are going in opposite directions.

More precisely we have the following results:
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� Biases in means and medians of estimates of parameters η0,1,2 are similar for the two models

(Tables S.16 and S.21). Bias corrections in the medians are ineffective (Tables S.18 and

S.23, middle panel) and we expect the same for means. On the other hand, variances are

highly biased. The biases are larger for the no factor model than for the basic one, by a

factor varying between 3 and 10 (Tables S.17 and S.22). Bias correction reduces somewhat

the magnitude of biases but this is far from enough and the bias-corrected variances are

still much more biased for the no factor model than for the basic one. This broad set of

results is also true for quantiles as shown in Tables S.18 and S.23.

� Results are also similar for the predicted potential wages. Means and medians are strongly

biased and the more so for the no factor model except when the missing data subsample

(which consists in the observations out of the private sector) is used, in which case biases

are the same for the basic and no factor models (Tables S.19 and S.24). In contrast,

variances are always less biased for the basic model than for the no factor one (Tables S.20

and S.25). This is also true for quantiles (results not reported here).
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Figure S.1: Median, variance and inter-decile range of counterfactual log-wages as a function of potential
experience, main and basic specifications, by education and number of interruptions

(a) Corrected median: Main (solid), Basic (dashed) (b) Corrected median: Main (solid), Basic (dashed)
by diploma by number of interruptions
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(c) Corrected variance: Main (solid), Basic (dashed) (d) Corrected variance: Main (solid), Basic (dashed)
by diploma by number of interruptions
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(e) Corrected inter-decile: Main (solid), Basic (dashed) (f) Corrected inter-decile: Main (solid), Basic (dashed)
by diploma by number of interruptions
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Note: “Main”: main specification that includes variables xi1, xi2, xi3 and xi4 as well as the additive individual effect and two
interactive factors; “Basic”: specification that includes only variables xi1 and xi2, and the additive individual effect. In panels (a)
and (b), for each diploma and number of interruptions, the levels of corrected median counterfactual log-wages are normalized for
the two specifications using the value at period zero of the benchmark specification. “Corrected” statistics are obtained after bias
correction as described in the Online Appendix.
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Table S.1: Descriptive statistics on distributions of uncorrected and corrected parameters, individuals in
employment 15-19 years

ηi0 ηi1 ηi2 ηi3 ηi4 δ1 δ2
Mean -0.56 0.08 -0.35 -0.09 0.54 -0.02 -0.01
Variance 3.45 0.24 13.59 2.56 258.52 0.22 0.02
Corrected Variance 2.44 0.16 9.19 1.99 206.04 0.15 0.01
Q5 -2.97 -0.65 -5.82 -2.06 -14.58 -0.70 -0.20
Q10 -2.10 -0.40 -3.83 -1.14 -8.36 -0.45 -0.14
Q25 -1.28 -0.10 -1.71 -0.39 -2.14 -0.19 -0.07
Median -0.59 0.07 -0.29 -0.00 0.00 -0.03 -0.01
Q75 0.07 0.25 1.04 0.32 2.27 0.15 0.05
Q90 0.94 0.54 3.34 0.99 9.44 0.45 0.12
Q95 1.85 0.81 5.13 1.65 17.31 0.71 0.18
Corrected Q5 -2.53 -0.56 -4.70 -1.66 -11.47 -0.59 -0.17
Corrected Q10 -1.81 -0.29 -2.95 -0.92 -6.16 -0.37 -0.11
Corrected Q25 -1.16 -0.07 -1.45 -0.34 -1.89 -0.17 -0.06
Corrected Median -0.56 0.07 -0.31 -0.00 0.00 -0.03 -0.01
Corrected Q75 -0.06 0.22 0.79 0.27 1.72 0.12 0.04
Corrected Q90 0.56 0.43 2.62 0.74 7.04 0.35 0.09
Corrected Q95 1.40 0.65 4.18 1.30 15.49 0.65 0.14
N 2256 2256 2256 2256 2256 2256 2256

Note: For individuals with fewer than 2 interruptions, parameters ηi3 and ηi4
are normalized as they are not identified, and this normalization contaminates
descriptive statistics. “Corrected” statistics are obtained after bias correction as
described in the Online Appendix.
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Table S.2: Descriptive statistics on distributions of uncorrected and corrected parameters, individuals in
employment 20 years and more

ηi0 ηi1 ηi2 ηi3 ηi4 δ1 δ2
Mean -0.48 0.07 -0.36 -0.03 0.23 -0.03 -0.01
Variance 0.79 0.05 2.72 1.04 122.86 0.05 0.00
Corrected Variance 0.60 0.03 1.89 0.74 88.20 0.03 0.00
Q5 -1.62 -0.23 -2.74 -1.06 -8.65 -0.35 -0.10
Q10 -1.26 -0.12 -1.91 -0.53 -3.11 -0.23 -0.07
Q25 -0.86 -0.01 -0.91 -0.11 0.00 -0.10 -0.04
Median -0.49 0.06 -0.29 0.00 0.00 -0.03 -0.01
Q75 -0.13 0.15 0.24 0.10 0.00 0.04 0.02
Q90 0.31 0.28 1.09 0.47 2.70 0.17 0.05
Q95 0.68 0.40 1.91 0.97 8.88 0.29 0.08
Corrected Q5 -1.44 -0.16 -2.37 -0.81 -6.34 -0.29 -0.09
Corrected Q10 -1.16 -0.07 -1.62 -0.45 -2.76 -0.19 -0.06
Corrected Q25 -0.82 0.00 -0.82 -0.09 0.00 -0.09 -0.03
Corrected Median -0.49 0.06 -0.29 0.00 0.00 -0.03 -0.01
Corrected Q75 -0.17 0.13 0.16 0.10 0.00 0.03 0.01
Corrected Q90 0.18 0.25 0.78 0.38 2.67 0.13 0.04
Corrected Q95 0.52 0.35 1.46 0.63 6.79 0.24 0.07
N 4748 4748 4748 4748 4748 4748 4748

Note: For individuals with fewer than 2 interruptions, parameters ηi3 and ηi4
are normalized as they are not identified, and this normalization contaminates
descriptive statistics. “Corrected” statistics are obtained after bias correction as
described in the Online Appendix.
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Table S.3: Descriptive statistics on distributions of uncorrected and corrected parameters, individuals in
employment 10-14 years

ηi0 ηi1 ηi2 ηi3 ηi4 δ1 δ2
Mean -0.67 0.08 -0.37 0.02 -0.56 -0.02 -0.01
Variance 45.15 1.88 132.79 7.86 929.70 1.08 0.11
Corrected Variance 29.11 1.30 90.75 5.87 716.40 0.66 0.07
Q5 -8.19 -1.34 -13.81 -2.22 -21.09 -1.27 -0.42
Q10 -5.08 -0.84 -9.23 -1.33 -10.34 -0.78 -0.26
Q25 -2.20 -0.28 -3.36 -0.43 -2.50 -0.31 -0.12
Median -0.57 0.06 -0.26 0.00 0.00 -0.04 -0.01
Q75 0.93 0.43 2.68 0.39 2.21 0.23 0.09
Q90 3.93 1.09 7.70 1.28 9.85 0.74 0.23
Q95 7.42 1.76 11.94 2.40 20.01 1.26 0.41
Corrected Q5 -6.96 -1.02 -11.50 -1.66 -14.78 -0.83 -0.34
Corrected Q10 -4.09 -0.74 -6.32 -0.93 -7.83 -0.58 -0.20
Corrected Q25 -1.89 -0.21 -2.77 -0.36 -2.25 -0.27 -0.09
Corrected Median -0.55 0.07 -0.35 0.00 0.00 -0.05 -0.01
Corrected Q75 0.71 0.37 1.99 0.33 1.86 0.18 0.07
Corrected Q90 2.37 0.79 6.26 0.91 6.86 0.53 0.15
Corrected Q95 6.36 1.50 9.11 1.76 14.20 0.87 0.32
N 1896 1896 1896 1896 1896 1896 1896

Note: For individuals with fewer than 2 interruptions, parameters ηi3 and ηi4
are normalized as they are not identified, and this normalization contaminates
descriptive statistics. “Corrected” statistics are obtained after bias correction as
described in the Online Appendix.
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Monte Carlo experimental results

Table S.4: Means and medians of ηj estimates under correct specification

Statistics Means Medians
Parameter η0 η1 η2 η0 η1 η2
True -0.23 0.075 -0.43 -0.23 0.075 -0.43
Bias 9.7e-05 5.4e-06 -7.4e-05 0.00091 -4.8e-06 0.00054
MAD 0.0019 0.00025 0.0021 0.0041 7e-04 0.0056
RMSE 0.0024 0.00031 0.0026 0.0051 0.00089 0.0071
SD 0.0024 0.00031 0.0026 0.0051 0.00089 0.0071
CP 0.94 0.94 0.95 0.94 0.95 0.95

Note: 8000 individuals, 27 time periods, 1000 replications. “Correct speci-
fication”: the estimated model coincides with the Data Generating Process.
“True”: Average true value of parameters; “Bias”: Bias; “MAD”: Mean abso-
lute deviation; “RMSE”: Root mean square error; “SD”: standard deviation;
“CP”: Monte Carlo confidence intervals at a 95% level constructed using the
aggregate standard deviation, SD.

Table S.5: Variances of ηj estimates under correct specification

Raw variance Bias-corrected
Parameter η0 η1 η2 η0 η1 η2
True 0.31 0.019 1 0.31 0.019 1
Bias 0.046 0.00078 0.055 0.0068 9.8e-05 0.0061
MAD 0.046 0.00078 0.055 0.0069 0.00011 0.0069
RMSE 0.046 0.00079 0.055 0.0075 0.00014 0.0084
SD 0.0032 9.4e-05 0.0058 0.0031 9.4e-05 0.0058
CP 0 0 0 0.43 0.83 0.83

Note: See Table S.4.
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Table S.6: Quantiles of ηj estimates under correct specification

Raw quantile Bias-corrected
Parameter η0 η1 η2 η0 η1 η2
10%-Quantile
True -0.94 -0.1 -1.7 -0.94 -0.1 -1.7
Bias -0.048 -0.0035 -0.033 -0.012 -0.00064 -0.006
MAD 0.048 0.0035 0.033 0.013 0.0013 0.011
RMSE 0.048 0.0037 0.035 0.015 0.0017 0.013
SD 0.008 0.0014 0.011 0.0095 0.0015 0.012
CP 0 0.32 0.14 0.77 0.93 0.92
25%-Quantile
True -0.6 -0.019 -1.1 -0.6 -0.019 -1.1
Bias -0.023 -0.0018 -0.017 -0.0059 -0.00044 -0.0033
MAD 0.023 0.0019 0.017 0.0074 0.00096 0.0074
RMSE 0.024 0.0021 0.019 0.0091 0.0012 0.0093
SD 0.0058 0.0011 0.0081 0.0069 0.0011 0.0087
CP 0.021 0.6 0.48 0.88 0.93 0.93
Median
True -0.23 0.075 -0.43 -0.23 0.075 -0.43
Bias 0.00091 -4.8e-06 0.00054 2e-04 -4.8e-06 0.00042
MAD 0.0041 7e-04 0.0056 0.0048 0.00073 0.006
RMSE 0.0051 0.00089 0.0071 0.006 0.00093 0.0076
SD 0.0051 0.00089 0.0071 0.006 0.00093 0.0076
CP 0.94 0.95 0.95 0.95 0.95 0.95
75%-Quantile
True 0.15 0.17 0.25 0.15 0.17 0.25
Bias 0.025 0.0018 0.017 0.0066 0.00039 0.0035
MAD 0.025 0.0018 0.017 0.0079 0.00095 0.0077
RMSE 0.025 0.0021 0.019 0.0095 0.0012 0.0096
SD 0.0058 0.001 0.0084 0.0069 0.0011 0.009
CP 0.01 0.61 0.46 0.83 0.94 0.92
90%-Quantile
True 0.48 0.25 0.87 0.48 0.25 0.87
Bias 0.047 0.0034 0.033 0.012 0.00064 0.006
MAD 0.047 0.0034 0.033 0.013 0.0013 0.011
RMSE 0.048 0.0037 0.035 0.015 0.0016 0.014
SD 0.0078 0.0015 0.011 0.0093 0.0015 0.012
CP 0 0.35 0.17 0.75 0.93 0.92

Note: See Table S.4.

Table S.7: Means of potential wages under correct specification

Means All observations Missing obs.
Parameter t = 1 t = 9 t = 17 t = 25 t = 9 t = 17 t = 25

True -0.61 -0.24 0.011 0.086 -0.29 -0.1 -0.13
Bias 2.4e-05 2.8e-05 1.2e-05 -3.5e-05 3.9e-05 -0.00067 -0.00015
MAD 0.00062 0.001 0.0015 0.0018 0.0053 0.0073 0.0083
RMSE 0.00076 0.0012 0.0019 0.0023 0.0066 0.0091 0.011
SD 0.00076 0.0012 0.0019 0.0023 0.0066 0.0091 0.011
CP 0.95 0.94 0.95 0.96 0.95 0.95 0.95

Note: See Table S.4.

Table S.8: Variances of potential wages under correct specification

Raw variance Bias-corrected
Parameter t = 1 t = 9 t = 17 t = 25 t = 1 t = 9 t = 17 t = 25
True 0.48 0.18 0.42 0.74 0.48 0.18 0.42 0.74
Bias 0.0043 0.012 0.027 0.039 0.00058 0.0038 0.0073 0.0099
MAD 0.0043 0.012 0.027 0.039 0.00095 0.0038 0.0073 0.01
RMSE 0.0044 0.012 0.028 0.039 0.0012 0.004 0.0077 0.011
SD 0.001 0.0012 0.0027 0.0042 0.001 0.0012 0.0027 0.0042
CP 0.011 0 0 0 0.92 0.14 0.25 0.35

Note: See Table S.4.
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Table S.9: Quantiles of potential wages under correct specification

Raw quantile Bias-corrected
Parameter t = 1 t = 9 t = 17 t = 25 t = 1 t = 9 t = 17 t = 25
10%-Quantile
True -1.5 -0.79 -0.82 -1 -1.5 -0.79 -0.82 -1
Bias -0.0057 -0.024 -0.036 -0.041 -0.00048 -0.006 -0.0087 -0.009
MAD 0.007 0.024 0.036 0.041 0.0041 0.0067 0.0097 0.011
RMSE 0.0086 0.025 0.037 0.043 0.0051 0.008 0.012 0.014
SD 0.0065 0.0066 0.0096 0.013 0.0051 0.0053 0.0078 0.01
CP 0.88 0.087 0.055 0.15 0.96 0.8 0.80 0.85
25%-Quantile
True -1.1 -0.53 -0.43 -0.49 -1.1 -0.53 -0.43 -0.49
Bias -0.0019 -0.007 -0.011 -0.012 -0.00031 -0.0026 -0.0037 -0.0035
MAD 0.0033 0.007 0.011 0.012 0.003 0.0036 0.0055 0.0063
RMSE 0.0042 0.0077 0.013 0.014 0.0038 0.0045 0.0068 0.0079
SD 0.0037 0.0033 0.0053 0.0067 0.0038 0.0036 0.0058 0.0071
CP 0.91 0.44 0.43 0.57 0.94 0.88 0.91 0.92
Median
True -0.61 -0.24 0.011 0.086 -0.61 -0.24 0.011 0.086
Bias 0.00026 0.0014 0.0015 0.0029 0.00014 0.00075 0.00084 0.0015
MAD 0.0026 0.0025 0.0039 0.0053 0.0026 0.0026 0.0041 0.0052
RMSE 0.0033 0.0032 0.0049 0.0067 0.0033 0.0033 0.0052 0.0066
SD 0.0033 0.0029 0.0047 0.006 0.0033 0.0032 0.0051 0.0064
CP 0.94 0.92 0.94 0.92 0.94 0.95 0.95 0.94
75%-Quantile
True -0.14 0.049 0.45 0.67 -0.14 0.049 0.45 0.67
Bias 0.0021 0.0087 0.013 0.015 0.00044 0.0034 0.0048 0.005
MAD 0.0034 0.0087 0.013 0.015 0.0029 0.0041 0.006 0.0069
RMSE 0.0042 0.0093 0.014 0.017 0.0037 0.005 0.0072 0.0085
SD 0.0036 0.0033 0.005 0.0066 0.0036 0.0036 0.0054 0.0069
CP 0.91 0.25 0.22 0.36 0.95 0.84 0.87 0.89
90%-Quantile
True 0.28 0.31 0.85 1.2 0.28 0.31 0.85 1.2
Bias 0.0038 0.015 0.024 0.025 0.00063 0.0055 0.0074 0.0072
MAD 0.0051 0.015 0.024 0.025 0.004 0.0061 0.0085 0.0096
RMSE 0.0063 0.016 0.025 0.027 0.0051 0.0073 0.01 0.012
SD 0.0051 0.0044 0.0065 0.0091 0.0051 0.0048 0.0073 0.0094
CP 0.88 0.07 0.04 0.21 0.94 0.8 0.83 0.88

Note: See Table S.4.

Table S.10: Means of η3x3 + η4x4 under correct specification

Means All observations Missing obs.
Parameter t = 1 t = 9 t = 17 t = 25 t = 9 t = 17 t = 25
True -0.015 -0.023 -0.028 -0.024 -0.044 -0.091
Bias 0 -5.1e-05 1e-05 1.6e-05 -0.00019 0.00066 0.00014
MAD 0 0.001 0.0015 0.0018 0.0043 0.0066 0.0077
RMSE 0 0.0013 0.0019 0.0022 0.0054 0.0082 0.0097
SD 0 0.0013 0.0019 0.0022 0.0054 0.0082 0.0097
CP 0 0.95 0.95 0.95 0.95 0.95 0.95

Note: See Table S.4.

Table S.11: Variances of η3x3 + η4x4 under correct specification

Raw variance Bias-corrected
Parameter t = 1 t = 9 t = 17 t = 25 t = 9 t = 17 t = 25
True 0.036 0.09 0.2 0.036 0.09 0.2
Bias 0 0.013 0.026 0.037 0 0.0039 0.0065 0.0091
MAD 0 0.013 0.026 0.037 0 0.0039 0.0065 0.0091
RMSE 0 0.014 0.027 0.038 0 0.0042 0.0069 0.0098
SD 0 0.0015 0.0023 0.0038 0 0.0014 0.0023 0.0037
CP 0 0 0 0 0 0.22 0.19 0.32

Note: See Table S.4.
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Table S.12: Quantiles of η3x3 + η4x4 under correct specification

Raw quantile Bias-corrected
Parameter t = 9 t = 17 t = 25 t = 9 t = 17 t = 25
10%-Quantile
True -0.2 -0.33 -0.49 -0.2 -0.33 -0.49
Bias -0.029 -0.049 -0.05 -0.029 -0.049 -0.05
MAD 0.029 0.049 0.05 0.029 0.049 0.05
RMSE 0.03 0.05 0.051 0.03 0.05 0.051
SD 0.0059 0.0069 0.0095 0.0059 0.0069 0.0095
CP 0.001 0 0 0.85 0.65 0.79
25%-Quantile
True 0 -0.098 -0.18 0 -0.098 -0.18
Bias 0 -0.013 -0.021 0 -0.0043 -0.0078
MAD 0 0.013 0.021 0 0.0058 0.0083
RMSE 0 0.014 0.022 0 0.0073 0.0098
SD 0 0.0045 0.0051 0 0.0059 0.006
CP 0 0.16 0.014 0 0.89 0.75
Median
True 0 0 0 0 0 0
Bias 0 0 0 0 0 0
MAD 0 0 0 0 0 0
RMSE 0 0 0 0 0 0
SD 0 0 0 0 0 0
CP 0 0 0 0 0 0
75%-Quantile
True 0 0.05 0.14 0 0.05 0.14
Bias 0 0.012 0.022 0 0.004 0.0084
MAD 0 0.012 0.022 0 0.0058 0.0089
RMSE 0 0.013 0.022 0 0.0073 0.01
SD 0 0.0047 0.0049 0 0.0061 0.0059
CP 0 0.24 0.01 0 0.9 0.71
90%-Quantile
True 0.14 0.27 0.43 0.14 0.27 0.43
Bias 0.029 0.05 0.05 0.0092 0.016 0.014
MAD 0.029 0.05 0.05 0.011 0.016 0.015
RMSE 0.03 0.05 0.051 0.013 0.018 0.017
SD 0.0059 0.0066 0.0079 0.0094 0.0086 0.0096
CP 0.003 0 0 0.82 0.55 0.71

Note: See Table S.4.

Table S.13: Means of predicted wages under correct specification

Means All observations Missing obs.
Parameter t = 1 t = 9 t = 17 t = 25 t = 9 t = 17 t = 25
True -0.61 -0.25 -0.011 0.059 -0.31 -0.15 -0.22
Bias 2.4e-05 -2.3e-05 2.2e-05 -1.9e-05 -0.00015 -5.1e-06 -9e-06
MAD 0.00062 4e-04 0.00038 0.00041 0.0028 0.0022 0.0031
RMSE 0.00076 0.00051 0.00047 0.00051 0.0035 0.0028 0.004
SD 0.00076 0.00051 0.00047 0.00051 0.0035 0.0028 0.004
CP 0.95 0.95 0.95 0.95 0.95 0.94 0.95

Note: See Table S.4.

Table S.14: Variances of predicted wages under correct specification

Raw variance Bias-corrected
Parameter t = 1 t = 9 t = 17 t = 25 t = 1 t = 9 t = 17 t = 25
True 0.48 0.19 0.42 0.8 0.48 0.19 0.42 0.8
Bias 0.0043 0.002 0.0017 0.0021 0.00058 0.00062 0.00037 0.00049
MAD 0.0043 0.002 0.0017 0.0021 0.00095 0.00066 0.00058 0.00094
RMSE 0.0044 0.0021 0.0018 0.0024 0.0012 0.00078 0.00071 0.0013
SD 0.001 0.00048 6e-04 0.0012 0.001 0.00048 6e-04 0.0012
CP 0.011 0.008 0.2 0.62 0.92 0.73 0.91 0.95

Note: See Table S.4.
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Table S.15: Quantiles of predicted wages under correct specification

Raw quantile Bias-corrected
Parameter t = 1 t = 9 t = 17 t = 25 t = 1 t = 9 t = 17 t = 25
10%-Quantile
True -1.5 -0.81 -0.84 -1.1 -1.5 -0.81 -0.84 -1.1
Bias -0.0037 -0.0032 -0.0016 -0.0017 -0.00048 -0.0012 -0.00039 -0.00059
MAD 0.0051 0.0038 0.0033 0.0042 0.0041 0.0029 0.0031 0.004
RMSE 0.0063 0.0046 0.0042 0.0052 0.0051 0.0036 0.0039 0.005
SD 0.005 0.0033 0.0038 0.0049 0.0051 0.0034 0.0038 0.0049
CP 0.88 0.84 0.93 0.94 0.96 0.93 0.95 0.94
25%-Quantile
True -1.1 -0.54 -0.44 -0.52 -1.1 -0.54 -0.44 -0.52
Bias -0.0019 -0.0015 -0.00083 -0.00056 -0.00031 -0.00061 -2e-04 -3.7e-05
MAD 0.0033 0.0022 0.0024 0.0028 0.003 0.0019 0.0023 0.0028
RMSE 0.0042 0.0028 0.0029 0.0035 0.0038 0.0024 0.0028 0.0035
SD 0.0037 0.0023 0.0028 0.0034 0.0038 0.0023 0.0028 0.0035
CP 0.91 0.9 0.94 0.94 0.94 0.94 0.95 0.94
Median
True -0.61 -0.25 -0.008 0.072 -0.61 -0.25 -0.008 0.072
Bias 0.00026 8.7e-05 8.1e-05 0.00022 0.00014 2.5e-05 4.5e-05 0.00021
MAD 0.0026 0.0018 0.002 0.0023 0.0026 0.0018 0.002 0.0023
RMSE 0.0033 0.0022 0.0025 0.0029 0.0033 0.0022 0.0025 0.0029
SD 0.0033 0.0022 0.0025 0.0029 0.0033 0.0022 0.0025 0.0029
CP 0.94 0.95 0.95 0.96 0.94 0.95 0.95 0.96
75%-Quantile
True -0.14 0.041 0.42 0.66 -0.14 0.041 0.42 0.66
Bias 0.0021 0.0015 0.001 0.00075 0.00044 0.00048 0.00041 2e-04
MAD 0.0034 0.0022 0.0023 0.0027 0.0029 0.0019 0.0022 0.0027
RMSE 0.0042 0.0027 0.0029 0.0034 0.0037 0.0024 0.0027 0.0033
SD 0.0036 0.0023 0.0027 0.0033 0.0036 0.0023 0.0027 0.0033
CP 0.91 0.9 0.93 0.94 0.95 0.94 0.94 0.95
90%-Quantile
True 0.28 0.3 0.81 1.2 0.28 0.3 0.81 1.2
Bias 0.0038 0.0029 0.0019 0.0013 0.00063 0.00098 0.00061 0.00025
MAD 0.0051 0.0034 0.0032 0.0038 0.004 0.0025 0.0029 0.0037
RMSE 0.0063 0.0042 0.004 0.0048 0.0051 0.0031 0.0036 0.0047
SD 0.0051 0.003 0.0035 0.0046 0.0051 0.003 0.0036 0.0047
CP 0.88 0.82 0.92 0.95 0.94 0.93 0.95 0.95

Note: See Table S.4.

Table S.16: Means and medians of ηj estimates when using the basic model

Statistics Means Medians
Parameter η0 η1 η2 η0 η1 η2
True -0.23 0.075 -0.43 -0.23 0.075 -0.43
Bias -0.013 -0.0026 0.014 -0.013 -0.0022 0.014
MAD 0.013 0.0026 0.014 0.013 0.0022 0.015
RMSE 0.014 0.0026 0.015 0.015 0.0025 0.017
SD 0.0047 0.00054 0.005 0.0071 0.0012 0.0097

Note: 8000 individuals, 27 time periods, 1000 replications. The basic
model omits interruptions and factors; the estimated model thus does
not coincide with the Data Generating Process. “True”: Average true
value of parameters; “Bias”: Bias; “MAD”: Mean absolute deviation;
“RMSE”: Root mean square error; “SD”: standard deviation.

Table S.17: Variances of η0,1,2 estimates when using the basic model

Raw variance Bias-corrected
Parameter η0 η1 η2 η0 η1 η2
True 0.31 0.019 1 0.31 0.019 1
Bias 0.11 0.00075 0.14 0.067 -0.00029 0.053
MAD 0.11 0.00075 0.14 0.067 0.00029 0.053
RMSE 0.11 0.00077 0.14 0.068 0.00033 0.054
SD 0.0074 0.00016 0.012 0.0074 0.00016 0.012

Note: See Table S.16.
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Table S.18: Quantiles of η0,1,2 estimates when using the basic model

Raw quantile Bias-corrected
Parameter η0 η1 η2 η0 η1 η2
10%-Quantile
True -0.94 -0.1 -1.7 -0.94 -0.1 -1.7
Bias -0.11 -0.0058 -0.055 -0.062 -0.0014 -0.0083
MAD 0.11 0.0058 0.055 0.062 0.0019 0.015
RMSE 0.11 0.0061 0.057 0.064 0.0024 0.019
SD 0.011 0.0019 0.015 0.012 0.002 0.017
25%-Quantile
True -0.6 -0.019 -1.1 -0.6 -0.019 -1.1
Bias -0.056 -0.0038 -0.018 -0.033 -0.0015 0.0054
MAD 0.056 0.0038 0.019 0.033 0.0017 0.011
RMSE 0.057 0.004 0.022 0.034 0.0021 0.013
SD 0.0078 0.0014 0.011 0.0084 0.0014 0.012
Median
True -0.23 0.075 -0.43 -0.23 0.075 -0.43
Bias -0.013 -0.0022 0.014 -0.013 -0.0022 0.014
MAD 0.013 0.0022 0.015 0.013 0.0022 0.015
RMSE 0.015 0.0025 0.017 0.015 0.0025 0.018
SD 0.0071 0.0012 0.0097 0.0077 0.0013 0.01
75%-Quantile
True 0.15 0.17 0.25 0.15 0.17 0.25
Bias 0.029 -0.00092 0.048 0.0062 -0.0032 0.024
MAD 0.029 0.0013 0.048 0.0084 0.0032 0.024
RMSE 0.03 0.0016 0.049 0.01 0.0035 0.027
SD 0.0077 0.0014 0.011 0.0084 0.0014 0.012
90%-Quantile
True 0.48 0.25 0.87 0.48 0.25 0.87
Bias 0.078 3.9e-05 0.084 0.033 -0.0044 0.037
MAD 0.078 0.0014 0.084 0.033 0.0044 0.038
RMSE 0.078 0.0018 0.085 0.036 0.0048 0.041
SD 0.011 0.0018 0.015 0.012 0.0019 0.016

Note: See Table S.16.

Table S.19: Means of potential wage when using the basic model

Means All observations Missing obs.
Parameter t = 1 t = 9 t = 17 t = 25 t = 9 t = 17 t = 25
True -0.61 -0.24 0.011 0.086 -0.29 -0.1 -0.13
Bias -0.00085 -0.014 -0.023 -0.027 -0.036 -0.047 -0.092
MAD 0.0011 0.014 0.023 0.027 0.036 0.047 0.092
RMSE 0.0013 0.014 0.024 0.028 0.038 0.051 0.096
SD 0.001 0.0021 0.0035 0.0051 0.012 0.018 0.028

Note: See Table S.16.

Table S.20: Variances of potential wage when using the basic model

Raw variance Bias-corrected
Parameter t = 1 t = 9 t = 17 t = 25 t = 1 t = 9 t = 17 t = 25
True 0.48 0.18 0.42 0.74 0.48 0.18 0.42 0.74
Bias 0.015 0.0054 -0.003 0.059 0.0018 0.0024 -0.0069 0.052
MAD 0.015 0.0054 0.0045 0.059 0.002 0.0026 0.0072 0.052
RMSE 0.015 0.0058 0.0056 0.06 0.0023 0.0031 0.0084 0.053
SD 0.0015 0.0019 0.0047 0.01 0.0015 0.0019 0.0047 0.01

Note: See Table S.16.

Table S.21: Means and medians of η0,1,2 estimates when using the no-factor model

Statistics Means Medians
Parameter η0 η1 η2 η0 η1 η2
True -0.23 0.075 -0.43 -0.23 0.075 -0.43
Bias -0.038 -0.0019 0.016 -0.021 -0.0016 0.019
MAD 0.038 0.0019 0.016 0.022 0.0018 0.019
RMSE 0.039 0.0021 0.018 0.023 0.0021 0.022
SD 0.0071 0.00091 0.0072 0.0085 0.0014 0.011

Note: 8000 individuals, 27 time periods, 1000 replications. The no-
factor model omits factors; the estimated model thus does not coincide
with the Data Generating Process. “True”: Average true value of pa-
rameters; “Bias”: Bias; “MAD”: Mean absolute deviation; “RMSE”:
Root mean square error; “SD”: standard deviation.
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Table S.22: Variances of η0,1,2 estimates when using the no-factor model

Raw variance Bias-corrected
Parameter η0 η1 η2 η0 η1 η2
True 0.31 0.019 1 0.31 0.019 1
Bias 0.33 0.007 0.42 0.2 0.0048 0.25
MAD 0.33 0.007 0.42 0.2 0.0048 0.25
RMSE 0.33 0.007 0.42 0.2 0.0049 0.25
SD 0.014 0.00036 0.023 0.014 0.00035 0.023

Note: See Table S.21.

Table S.23: Quantiles of η0,1,2 estimates when using the no-factor model

Raw quantile Bias-corrected
Parameter η0 η1 η2 η0 η1 η2
10%-Quantile
True -0.94 -0.1 -1.7 -0.94 -0.1 -1.7
Bias -0.28 -0.022 -0.14 -0.2 -0.014 -0.058
MAD 0.28 0.022 0.14 0.2 0.014 0.058
RMSE 0.28 0.022 0.14 0.2 0.014 0.062
SD 0.017 0.0024 0.02 0.02 0.0026 0.023
25%-Quantile
True -0.6 -0.019 -1.1 -0.6 -0.019 -1.1
Bias -0.13 -0.0087 -0.035 -0.093 -0.0042 0.0092
MAD 0.13 0.0087 0.035 0.093 0.0042 0.014
RMSE 0.13 0.0088 0.037 0.093 0.0045 0.017
SD 0.0099 0.0016 0.013 0.012 0.0018 0.015
Median
True -0.23 0.075 -0.43 -0.23 0.075 -0.43
Bias -0.021 -0.0016 0.019 -0.023 -0.0018 0.02
MAD 0.022 0.0018 0.019 0.023 0.002 0.02
RMSE 0.023 0.0021 0.022 0.025 0.0023 0.023
SD 0.0085 0.0014 0.011 0.01 0.0015 0.012
75%-Quantile
True 0.15 0.17 0.25 0.15 0.17 0.25
Bias 0.078 0.0055 0.069 0.037 0.00085 0.026
MAD 0.078 0.0055 0.069 0.037 0.0017 0.026
RMSE 0.079 0.0057 0.07 0.039 0.002 0.029
SD 0.0094 0.0017 0.012 0.011 0.0019 0.014
90%-Quantile
True 0.48 0.25 0.87 0.48 0.25 0.87
Bias 0.19 0.019 0.16 0.11 0.01 0.081
MAD 0.19 0.019 0.16 0.11 0.01 0.081
RMSE 0.19 0.019 0.17 0.11 0.011 0.084
SD 0.014 0.0027 0.018 0.017 0.0029 0.021

Note: See Table S.21.

Table S.24: Means of potential wage when using the no-factor model

Means All observations Missing obs.
Parameter t = 1 t = 9 t = 17 t = 25 t = 9 t = 17 t = 25
True -0.61 -0.24 0.011 0.086 -0.29 -0.1 -0.13
Bias -0.023 -0.03 -0.033 -0.028 0.0048 -0.041 -0.038
MAD 0.023 0.03 0.033 0.028 0.016 0.042 0.041
RMSE 0.024 0.03 0.033 0.029 0.02 0.048 0.048
SD 0.002 0.0042 0.0062 0.0066 0.019 0.026 0.03

Note: See Table S.21.

Table S.25: Variances of potential wage when using the no-factor model

Raw variance Bias-corrected
Parameter t = 1 t = 9 t = 17 t = 25 t = 1 t = 9 t = 17 t = 25
True 0.48 0.18 0.42 0.74 0.48 0.18 0.42 0.74
Bias 0.15 0.14 0.25 0.32 0.13 0.12 0.2 0.24
MAD 0.15 0.14 0.25 0.32 0.13 0.12 0.2 0.24
RMSE 0.15 0.14 0.25 0.32 0.13 0.12 0.2 0.25
SD 0.0046 0.0067 0.011 0.015 0.0045 0.0066 0.011 0.015

Note: See Table S.21.
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