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characterize the impulse response function (IRF) of output following an aggregate “MIT” shock.
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fashion. We establish that complementarities may give rise to a non-monotone IRF, with a hump-
shaped profile. As the complementarity becomes large enough the IRF diverges and at a critical
point there is no equilibrium. Finally, we show that the amplification effect of the strategic
interactions is similar across models. For instance, the Calvo model and the Golosov-Lucas model
display a comparable amplification, in spite of the fact that the non-neutrality in Calvo is much
larger.
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1 Introduction

The seminal contributions of Bils and Klenow (2004) and Golosov and Lucas (2007) renewed

interest in state-dependent sticky price models, and triggered substantive progress both in the

empirical front, uncovering patterns about price setting behavior, as well as in the theoretical

characterization of the forces that determine the aggregate monetary non-neutrality.1 In

spite of this progress, the need for tractability led most models to either abstract from the

interactions between firms’ decisions in price setting – as in Golosov and Lucas (2007) – or

to explore their effects numerically – as in Klenow and Willis (2016) and Mongey (2021)

–, or to abstract from idiosyncratic shocks – as in Caplin and Leahy (1997) and Wang and

Werning (2020). In this paper we give a detailed analytic characterization of the effect of

a monetary shock in a relatively rich state-dependent model, featuring both idiosyncratic

shocks and strategic complementarities/substitutabilities.

The issue is relevant because absent strategic complementarities the current quantitative

macro models seem unable to produce the persistent non-neutrality of nominal shocks that is

seen in the aggregate data. Strategic complementarities in pricing decision are a key source

of “real rigidities” in a variety of sticky-price models, as in e.g. the classic state-dependent

model of Caplin and Leahy (1997).2 More recently, Nakamura and Steinsson (2010) and

Klenow and Willis (2016) explored the role of strategic complementarities in state-dependent

models with idiosyncratic shocks, a feature that allows the theory to connect with a wealth

of micro data on price-setting. Moreover, several empirical studies suggest the presence of

non-negligible complementaries, e.g. Cooper and Haltiwanger (1996); Amiti, Itskhoki, and

Konings (2014, 2019); Beck and Lein (2020).

A rigorous treatment of strategic complementarities in a general equilibrium model is

1Among others, see the contributions of Klenow and Malin (2010), Nakamura and Steinsson (2010),
Caballero and Engel (1999, 2007), Midrigan (2011), Alvarez and Lippi (2014), Alvarez, Le Bihan, and Lippi
(2016), Alvarez, Beraja, Gonzalez-Rozada, and Neumeyer (2019).

2The idea that strategic complementarities may contribute to amplify the aggregate stickiness has a long
tradition in macroeconomics, and was formalized by Cooper and John (1988) in a static setup, and surveyed
by Leahy (2011).
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involved, as emphasized by Caplin and Leahy (1997): decisions depend on aggregate variables,

which in turn depend on individual decisions. An analytic characterization of this fixed point

problem is difficult, especially so in a model with lumpy behavior, where the optimal decisions

are non-linear and time-varying (Ss rules). A recent analysis by Wang and Werning (2020)

presents analytic results for a dynamic oligopoly model. In this insightful paper, with rich

strategic behaviour, tractability is obtained by assuming that the timing of the firm’s price

adjustments is exogenous and that the state-space has a finite dimension related to the finite

number of firms in the market. Our approach shares with Caplin and Leahy (1997) and Wang

and Werning (2020) a quest for analytic results on the propagation of aggregate shocks with

strategic complementarity. An important difference with respect to these papers is that we

consider a problem with idiosyncratic shocks at the firm level. This feature allows us to relate

to the micro-data on price changes, which have been shown to encode powerful information

about shock propagation.3 Instead, due to the absence of idiosyncratic shocks, in Caplin

and Leahy (1997) and Wang and Werning (2020) all price changes are either increases or

decreases at a point in time.4

We present a set of analytical results that characterize the firm’s optimal policy and

the general equilibrium in a dynamic environment featuring strategic complementarities (or

substitutabilities). The key breakthrough is obtained by casting the problem using the math-

ematical structure of Mean Field Games (MFG), as laid out by Lasry and Lions (2007). The

problem takes the form of a system of two coupled partial differential equations: one Bellman

equation describing individual decisions, and one Kolmogorov equation describing aggrega-

tion. The usefulness of employing the MFG framework to study the dynamic behavior of

high-dimensional cross-sections is highlighted by Achdou, Han, Lasry, Lions, and Moll (2022);

Ahn, Kaplan, Moll, Winberry, and Wolf (2018) where numerical methods are discussed. Rel-

3In Alvarez, Le Bihan, and Lippi (2016) and Alvarez, Lippi, and Oskolkov (2021) it is argued that the
kurtosis of the distribution of price changes and the frequency of price changes are a sufficient statistic for
the cumulative impulse response of monetary shocks. Alvarez et al. (2021) and Gautier, Marx, and Vertier
(2021) explore whether cross sectional evidence is consistent with such theoretical prediction.

4Of course, not including idiosyncratic shocks both simplifies the analysis and allows the authors to address
other issues, as we further discuss below.
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ative to the MFG literature, and its applications to economics, this paper innovates in two

dimensions. First, we focus on an analytic characterization of the dynamics that ensue fol-

lowing a perturbation of the stationary equilibrium, i.e. an MIT shock.5 The presence of

strategic complementarities can create, even in simple static models, lack of equilibrium or

multiplicity, which makes analytical, as opposed to purely numerical methods, necessary.6

Second, we consider an impulse control problem, instead of drift control, i.e. we deal with

the case of lumpy adjustments which is the relevant one for price-setting. The case of lumpy

adjustments, appearing in several economic contexts, motivates our interest in this problem

and is mathematically more delicate since it requires to solve a problem with time-varying

boundaries. A notable example of a rigorous early analysis of a MFG with impulse control

is Bertucci (2017).

We consider an economy with random menu costs of the Calvo-plus type considered in

Nakamura and Steinsson (2010). We concentrate on an economy where, following Klenow

and Willis’s (2016) terminology, we can capture both micro and macro complementarities

(or substitutability) in the decision problem of the firm. These originate from the fact that

the firm’s flow profit in each period depends on its own markup and the markup (or price)

of the average firm, with a positive (negative) cross derivative. This model spans price-

setting models in between the pure Ss model of Golosov and Lucas (2007) to the pure time-

dependent model of Calvo (1983). The dynamic equilibrium of this model for an economy

without strategic interactions was solved analytically in Alvarez and Lippi (2021). The MFG

framework allows us to study analytically the effect of such interactions on the firm’s optimal

Ss rules after the shock as well as its effect on the aggregate dynamics.

5By an MIT shock we mean to solve for the equilibrium triggered by a small unexpected arbitrary per-
turbation of the stationary distribution – see Boppart, Krusell, and Mitman (2018) for numerical techniques
to solve for the similar type of perturbation, and for the same interpretation of the resulting equilibrium as
an impulse response.

6Note that the well-known “monotonicity condition” for uniqueness, developed by Lasry-Lions and used
in almost all papers in these area, corresponds to the case of strategic substitutability.
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Main results. The results allow us to make progress on substantive economic questions.

First, we establish conditions for the existence and uniqueness of the perturbed equilibrium

and analytically characterize the impulse response function (IRF) of output. We show that

the presence of the strategic complementarity makes the output IRF of a monetary shock

larger at each horizon. Not only the effect is larger at each horizon for higher strategic

complementarities, but it is also convex in the degree of strategic interactions. Indeed, there

is a critical value of the strength of the strategic complementarity at which the IRF becomes

arbitrarily large, and then the equilibrium ceases to exist. For strategic complementarities

larger than that critical value the equilibrium may not exists, or it may not be well behaved

(e.g. not necessarily continuous as function of the parameters). On the other hand, as

substitutability becomes arbitrarily large, the IRF converges to zero.

Second, we show that the presence of large enough strategic complementarities makes

the IRF hump-shaped as a function of time elapsed since the shock, in models where it

is otherwise monotone decreasing. This is a novel result that illustrates the substantive

economic consequences of strategic interactions.

Third, while we concentrate on the effect of a single shock and trace its impulse response,

we also characterize the unconditional variance of output if monetary shocks are i.i.d, an

experiment similar to the one in the classic article by Caplin and Leahy (1997). We show

that in this case the unconditional variance of output is an increasing function of the strength

of strategic complementarity. We also note that, while most of our analysis focuses on a small

monetary shock, our results are derived to characterize the effect on aggregate output and

prices after any small perturbation of the initial distribution. For instance, we can use our

analysis to study the impulse response to a shock to the average markup or to the idiosyncratic

volatility, or in general to any permanent perturbation which affects the economy’s steady-

state distribution.

Fourth, we show that for the models in the Calvo-plus class the strategic complementari-

ties amplify the Cumulative Impulse Response (CIR) by a measure that is roughly the same
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for all models within this class. For instance, the Calvo model and the Golosov-Lucas model

display a comparable amplification, in spite of the fact that the level of the CIR in these

models differs by a factor of 6.

Related Literature. Our model shares with the classic article by Caplin and Leahy (1997)

that we feature fixed cost of adjustment and that the firm’s objective function (a quadratic

form) depends on both its own markup as well as on the average markup. One difference

is that their framework does not feature idiosyncratic shocks, while ours does.7 Caplin and

Leahy (1997) study an equilibrium where the aggregate nominal shocks follow a driftless

brownian motion, while we mostly focus on an impulse response after a once and for all

shock, which makes it easier to connect to e.g. the VAR evidence.

As mentioned, the work by Nakamura and Steinsson (2010) and Klenow and Willis (2016)

is closely related to ours. The DSGE models in both papers consider an input-output struc-

ture, which makes the (sticky) price of other industries part of the cost of each industry

(i.e. “macro strategic complementarities”). Both papers, as well as ours, consider a fric-

tionless labor market, idiosyncratic shocks at the firm level, and menu cost paid by firms to

adjust prices. Nakamura and Steinsson (2010) allows, as we do, for a random menu cost.

Klenow and Willis (2016) allow, as we do, for a non-constant demand elasticity at the firm

level, which yields what they call “micro-strategic complementarities”. We show that, up to

second order, the two types of complementarities are additive, so we capture both of them

in a single parameter. Both papers use numerical techniques to characterize the effect of

monetary shocks in aggregate output and prices while we provide analytic results.

Our analysis also relates to Wang and Werning (2020), who analyze the propagation

of shocks in a sticky-price economy in the presence of strategic complementarities. They

present an insightful analytic solution for a case where firms follow a time dependent rule a

la Calvo. Some features of the underlying environment are similar: several forces creating

7An interesting feature of Caplin and Leahy (1991, 1997) is to produce a state-dependent reaction to
monetary shocks, perhaps the only model where a clear notion of “overheating” due to monetary policy
appears.
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complementarities (variable demand elasticity, decreasing returns, non-zero Frisch elasticity)

are fully summarized by a single parameter. Other modeling aspects are different: first they

consider a dynamic oligopoly without idiosyncratic shocks, while we focus on oligopolistically

competitive markets with idiosyncratic shocks, a feature that allows us to connect to the dis-

tribution of price changes in the data, as mentioned above. Second, the timing of adjustment

is exogenous in their paper, while the firms in our setup optimally choose both the timing

as well as the size of the price adjustments. The simplification of the exogenous-timing and

no-idiosyncratic shocks allows them to connect with the standard Phillips-curve and to an-

alyze the importance of strategic complementarities in the standard New Keynesian setup.

Third, the strategic complementarities are global in our set up while they are local in theirs.

This allows their work to relate to the concentration within an industry, a feature that our

formulation cannot address.

The paper is organized as follows. The next section lays out the general equilibrium

environment of the problem and the origins of strategic interactions. Section 3 sets up the

dynamic equilibrium as a MFG. Section 4 studies a linearized version of the MFG and derives

key results for the equilibrium analysis. Section 5 characterizes the dynamic equilibrium

and discusses the economic implications of strategic interactions. Section 6 concludes and

discusses future work.

2 General Equilibrium setup and Complementarities

This section presents an economy where households maximize the present value of lifetime

utility and firms maximize profits subject to costly price adjustments. We show that non-

negligible complementarities between the price setting strategies of firms can arise through

two channels. First, consumers’ preferences yield a demand system with a non-constant price

elasticity, a phenomenon that the literature dubbed micro-complementarities as in Kimball

(1995). Second, we consider a production structure that generates pricing complementarities
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through sticky intermediate goods, as in Klenow and Willis (2016); Nakamura and Steinsson

(2010), referred to as macro-complementarities. We will show that the effects of both channels

on the firm’s pricing strategy can be approximated by a single parameter and that at a

symmetric equilibrium the firm’s problem can be approximated by a quadratic return function

that depends on the own price and the aggregate price, as in the classic work of Caplin and

Leahy (1997).

Households: We consider a continuum of households with time discount ρ and lifetime

utility

∫ ∞
0

e−ρ t
(
U(C(t))− aL(t) + log

M(t)

P (t)

)
dt

where U denotes a CRRA utility function over the consumption composite C, the labor

supply is L, M is the money stock, P is the consumption deflator, and a > 0 is a parameter.

The linearity of the labor supply and the log specification for real balances are convenient

simplifications also used in Golosov and Lucas (2007) and Woodford (2009). We follow

Kimball (1995) in modeling the consumption composite C using an implicit aggregator over

a continuum of varieties k as follows

1 =

(∫ 1

0

Υ

(
ck(t)

C(t)
Ak(t)

)
dk

)

where Ak denotes a preference shock for variety k, and Υ(1) = 1, Υ′ > 0 and Υ′′ < 0. The

Kimball aggregator defines C implicitly, featuring an elasticity of substitution that varies with

the relative demand ck/C. The standard CES demand is obtained as a special case when Υ

is a power function.

The representative household chooses ck, money demand and labor supply to maximize
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lifetime utility subject to the budget constraint

M(0) +

∫ ∞
0

B(t)

[
Π̃(t) + τ(t) + (1 + τL)W (t)L(t)−R(t)M(t)−

∫ 1

0

p̃k(t)ck(t)dk

]
dt = 0

where R(t) is the nominal interest rates, B(t) = exp
(
−
∫ t

0
R(s)ds

)
the price of a nominal

bond, W (t) the nominal wage, τ(t) a lump sum nominal transfers, τL a constant labor subsidy,

Π̃(t) the aggregate (net) nominal profits of firms, and p̃k the price of each variety.

Firms. There is a continuum of firms indexed by k ∈ [0, 1], that use a labor input Lk

and an intermediate-good input Ik to produce the final consumption good using the CRS

technology (omit time index)

ck + qk =

(
Lk
Zk

)α
I1−α
k

Note that final goods are used by consumers, ck, and that they are also an input in the

production of the intermediate good Q through the production function (the same Kimball

aggregator) 1 =
∫ 1

0
Υ
(
qk
Q
Ak

)
dk. The total demand of intermediate goods is Q =

∫ 1

0
Ik dk.

Labor productivity is 1/Z and we assume that Zk(t) = exp (σWk(t)) where Wk are standard

BM’s, independent across k, so that the log of Zk follows a driftless Brownian motion with

variance σ2. Note that the aggregates Q and C have the same unit price, P , since they

are produced with identical inputs and the same function Υ. Finally the labor supply by

households, L is used to produce each of the k goods and to provide adjustment cost services

`, so L =
∫ 1

0
Lkdk + `.

The demand for final goods. The consumers’ first order conditions yield the demand

system, whose exact form depends on the function Υ. Given a total expenditure E (equal to

aggregate consumption in equilibrium) the demand for variety k, evaluated at a symmetric
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equilibrium, is

ck =
1

Υ−1(1)

E

PAk
D
( p
P

)
where D

( p
P

)
≡ (Υ′)

−1
( p
P

Υ′
(
Υ−1(1)

))
where p ≡ p̃/A .

The firm’s profit function. Let the nominal wage W be the numeraire, and p̃k = pAk

be the firm’s price. Notice that the firm’s marginal (and average) cost is (ZkW )α P 1−α

where P is the price of intermediate inputs. We can write the firm’s (nominal) profit as

ck · (pAk − (ZkW )α P 1−α). If we assume that Zα
k = Ak, i.e. that preference shocks are

proportional to marginal cost shocks, then we have that each firm maximizes Π(p̂, P ) =

ckAkW
(
p
W
−
(
P
W

)1−α
)

so the profits of the individual firm do not depend on Zk since ckAk =

E
Υ−1(1)P

D
(
p
P

)
. The notation emphasizes that the firm’s decision depends on both the own

price, p, and the aggregate price P , and that prices are homogenous in W .

Let us write the profit in terms of the demand D(p/P ) and the cost function χ = χ(P )

giving the marginal cost. We have Π(p, P )/W = D(p/P ) (p− χ(P )). The first order condi-

tion for optimality gives:

p∗(P ) =
η(p/P )

η(p/P )− 1
χ(P ) where η(p/P ) ≡ − p

D(p/P )

∂D(p/P )

∂p

so η is the elasticity of the demand D with respect to the own price p.

We have the following result:

Proposition 1. Consider a value for P such that p∗(P̄ ) = P̄ . Assume that D is decreasing

and that Π(p, P ) is strictly concave at (p∗(P̄ ), P̄ ) = (P̄ , P̄ ). We have

P̄

p∗(P̄ )

∂p∗(P̄ )

∂P
=

1

1 + η′(1)
η(1)(η(1)−1)

 η′(1)

η(1)(η(1)− 1)︸ ︷︷ ︸
micro elasticity

+
P

χ(P )

∂χ(P )

∂P︸ ︷︷ ︸
macro elasticity

 (1)
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where η(1) > 1 and 1 + η′(1)
η(1)(η(1)−1)

> 0. Moreover:

Π(p, P )

Π(P̄ , P̄ )
= 1− 1

2
B

(
p− P̄
P̄

+ θ
P − P̄
P̄

)2

+ ι(P ) + o

(∣∣∣∣∣∣∣∣p− P̄P̄ ,
P − P̄
P̄

∣∣∣∣∣∣∣∣2
)

(2)

where ι(·) is a function that does not depend on p, and where:

B ≡ −Π11(P̄ , P̄ )

Π(P̄ , P̄ )
P̄ 2 = [ η′(1) + η(1)(η(1)− 1) ] > 0 and θ ≡ Π12(P̄ , P̄ )

Π11(P̄ , P̄ )
= − P̄

p∗(P̄ )

∂p∗(P̄ )

∂P

∣∣∣
p∗=P̄

.

A few remarks are in order. First, equation (2) shows that the profit maximization

problem of the firm can be approximated as the minimization of the quadratic period return

B(x− θX)2 where x = p−P̄
P̄

and X = P−P̄
P̄

denote the percent deviation from the symmetric

equilibrium of the own and the aggregate price, respectively.

Second, as announced above, the extent of strategic interactions between the own price

and the other firms’ prices is captured by a single parameter, θ. Notice that static profits

are maximized by setting x = −θX. The parameters θ measures the presence of strategic

interactions. The firm’s strategy exhibits strategic complementarity if θ < 0, and it exhibits

strategic substitutability if θ > 0. Clearly, if θ 6= −1 the only static equilibrium is X = 0.

Third, in the absence of macro complementarity, e.g. if ∂χ
∂P

= 0, we have θ = − η′

η(η−1)+η′

so that θ < 0 occurs if η′(p/P ) > 0. This condition has a clear economic explanation: if

η′ > 0 a higher P lowers the demand elasticity, which induces the firm to raise its markup.

Thus η′ > 0 implies that the own price and the aggregate price are strategic complements.

Note moreover that if ∂χ
∂P

= 0 the strength of strategic complementarities is bounded, since

−θ < 1. Instead, as ∂χ
∂P

> 0, the size of strategic complementarities can be −θ > 1, a case

that will be of interest in the discussion of the existence of the solution.

Finally we note that for small shocks we don’t need to consider any other equilibrium

effects, beyond the path of X(t), in the objective function of the firm. In particular, in the
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set up described above, one can show that the path of nominal wages and nominal interest

rates are only functions of the path of money supply. Moreover, while there are other general

equilibrium effects, such as changes on real interest rates, etc, they are higher than second

order. More rigorously, Proposition 7 in Alvarez and Lippi (2014) can be adapted to show

the validity of the second order approximation to the set up of this paper.

Impulse response of Output to a monetary shock. Note that an increase in the

common component of cost for all firms reduces the average deviation of markups from its

optimal value, i.e. it lowers X. One of the most interesting objects of the solution of the

MFG interpreted as a price setting problem is the path of X(t) after a small displacement

from the steady state, i.e. we use an initial condition m0(x) with m0(x) = m̃(x + δ), where

m̃ is the stationary density. The value of X(t) is inversely proportional to the deviation from

steady-state output t periods after the monetary shock δ, or the impulse response function

for output. We will actually consider a general perturbation m0(x) = m̃(x) + δν(x).

3 General Equilibrium model of Price Setting

as a Mean Field Game

We describe the problem of a firm whose value function u depends on the state x and time

t. The one dimensional state x represents a deviation from an ideal price, which when

uncontrolled follows a Brownian motion with variance per unit of time σ2 and no drift. We

let X denote the cross sectional average of x. The firm seeks to minimize the discounted

value of the sum of flow cost F and fixed cost of adjustment ψ, where ρ ≥ 0 is the discount

rate. Additionally, with a Poisson probability rate ζ > 0 the firm firm can change its price

without paying any cost. The flow cost of the firm discussed in Proposition 1 is

F (x,X) = B (x+ θX)2 with B > 0 .

11



We consider the problem of a firm that takes as given a path for {X(t)} for t ∈ [0, T ),

and a terminal value function uT (x). We study the cases when T is finite, and also the limit

as T →∞. The optimal decision rule of the firm at each time t consists on dividing the state

space in a region where control is not exercised, the inaction region, and a complementary

region where control is exercised and the state is reset by an impulse. Three time paths

describe the decision rule: x(t), x̄(t) and x∗(t) for t ∈ [0, T ). At a given time t the optimal

rule is represented by the interval [x(t), x̄(t)] so that if x(t) is in this interval the firm does not

exercise control, i.e. inaction is optimal, but if x(t) /∈ (x(t), x̄(t)) the firm exercises control,

and immediately changes its price from x(t−) to x(t+) = x∗(t). The firm will also reset its

price so that x(t+) = x∗(t), if t is a time where a free adjustment opportunity occurs. We

refer to x(t) and x̄(t) as the boundaries of the range of inaction, to x∗(t) as the optimal

return point. The value function of the firm u(x, t) solves the Hamilton-Jacobi-Bellman

(HJB) equation (3), with appropriate boundary conditions, given in (6) - (8). Because of the

time dependence of X(t) the value function u must depend on time.

Likewise, given time paths for the decision rules, x, x̄ and x∗, and the initial condition

for the cross sectional distribution m0(x), one can derive the evolution of the cross sectional

distribution m(x, t), which satisfies the Kolmogorov forward equation (KFE) in (4), with

appropriate boundary conditions given in (9) - (11). Because of the time varying decision

rules (as well as the initial condition), the cross sectional density must depend on time.

The evolution of u and m solve a fixed point problem, requiring that the average value

X(t) =
∫ x̄
x
xm(x, t)dx. We summarize these conditions below.

A Mean Field Game (MFG), given initial and terminal conditions m0, uT , is given by

functions u,m, mapping R× [0, T ] to R, and functions x, x̄, x∗, X mapping [0, T ] to R. The

equilibrium of the MFG is given by the solution of the coupled system of partial differential

equations: the HJB for the firm’s value function u, and the KFE for the cross sectional
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density m. For all t ∈ [0, T ] and for all x ∈ [x(t), x̄(t)] these equations are

0 = ut (x, t)− ρu(x, t) +
σ2

2
uxx(x, t) + F (x,X(t)) + ζ [u(x∗(t), t)− u(x, t)] (3)

0 = −mt (x, t) +
σ2

2
mxx(x, t)− ζm(x, t) and x 6= x∗(t) (4)

where, for all t ∈ [0, T ]

X(t) =

∫ x̄(t)

x(t)

xm(x, t)dx and x∗(t) = arg min
x
u(x, t) (5)

Additionally we have the boundary and terminal conditions for u are:

ux (x̄(t), t) = ux (x(t), t) = ux (x∗(t), t) = 0 for all t ∈ [0, T ] (6)

u (x̄(t), t) = u (x(t), t) = u (x∗(t), t) + ψ for all t ∈ [0, T ] (7)

u(x, T ) = uT (x) for all x (8)

The boundary and initial conditions for m are

0 = m (x̄(t), t) = m (x(t), t) for all t ∈ [0, T ] (9)

1 =

∫ x̄(t)

x(t)

m(x, t)dx for all t ∈ [0, T ] (10)

m(x, 0) = m0(x) for all x (11)

We now comment on the assumptions used above. First, the boundary conditions for the

HJB in equation (6) are typically referred to as “smooth pasting and “optimal return point”,

and the ones in equation (7) are referred to as “value matching”. They follow from optimality

and are a consequence of our assumption that for each t the value function u(·, t) is once

differentiable for all x, and twice differentiable in the range of inaction. In particular, for any

x outside the range of inaction, the value function must satisfy u(x, t) = u(x∗(t), t) + ψ. See
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Appendix H for the variational inequalities of the general case without smoothness.

Second, we will assume throughout that the inaction region is connected, i.e. given by a

single interval, namely [x(t), x̄(t)]. In principle, the inaction region could be a union of such

intervals.8

Third, under the assumption that the range of inaction is given by a single interval, then

there is zero density outside of the inaction, so m(x, t) = 0 for all x /∈ [x(t), x̄(t)]. Then,

assuming continuity of m(·, t) for all x we obtain the boundary condition in equation (9).

This is the condition to be expected at the boundaries of the range of inaction, since no mass

can accumulate at these “exit” points. Likewise, the Kolmogorov forward equation should

not hold at x = x∗(t) since this is an “entry” point, i.e. a point where the flux of density that

exits from x = x(t) and x̄(t) is entering. The integral condition in equation (10) states that

for every t, the function m(·, t) is a density and hence integrates to one, i.e mass is preserved.

Finally we require that m(x, t) ≥ 0 for all x, t. See Bertucci (2020) for a rigorous derivation

of the boundary conditions in a related problem.

Fourth, recall that in the static pricing game of Section 3 the condition θ < 0 corresponds

to the case of strategic complementarities, and θ > 0 to the case of strategic substitutability.

We are particularly interested in θ < 0 but we will cover both cases. The standard case treated

in the MFG literature considers θ > 0, which corresponds to “monotonicity” condition that

is at the center of the argument for uniqueness.9

No mass points. We have written the evolution of the cross sectional distribution under

the assumption that it has no mass point for all t ≥ 0. This will follow if the initial distri-

8For the stationary problem, one can show that this is not the case, but in the MFG the argument is more
involved. This is a moot point when we analyze the perturbation, since we explore variations of the problem
nearby the stationary solution.

9In term of the notions used for MFGs, letting mi be an arbitrary measure and Xi ≡
∫
xdmi, the definition

of monotonicity applied to the period return F (x,X) = B(x+θX)2 is that for any two m1 6= m2 must satisfy
the following inequality

0 <

∫ (
B(x+ θX1)2 −B(x+ θX2)2

)
(dm1(x)− dm2(x)) = 2Bθ(X1 −X2)2

Hence, the monotonicity condition in MFGs corresponds to θ > 0, or strategic substitutability.
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bution m0 has no mass points, and if the equilibrium decision rules are such the distribution

m(·, t) will not have mass points for all t ≥ 0. These conditions will be satisfied given the

perturbation method we will use.

Steady State: Initial and Terminal Conditions. We describe the stationary version

of the MFG. Let x̄ss, xss and x∗ss be three time-invariant thresholds, and let ũ and m̃ be two

time-invariant functions with domain in [xss, x̄ss] solving:

0 = −ρũ(x) +
σ2

2
ũxx(x) + F (x,Xss) + ζ (ũ(x∗ss)− ũ(x)) for all x ∈ [xss, x̄ss] (12)

0 =
σ2

2
m̃xx(x)− ζm̃(x) for all x ∈ [xss, x̄ss], x 6= x∗ss (13)

where Xss =
∫ x̄ss
xss

x m̃(x)dx, with boundary conditions: ũx (x̄ss) = ũx (xss) = ũx (x∗ss) = 0,

ũ (x̄ss) = ũ (xss) = ũ (x∗ss) + ψ, and 0 = m̃(xss) = m̃(x̄ss).

When ζ > 0 we have the symmetric stationary distribution m̃ given by

m̃(x) =
`

2

e`(2x̄ss−x) − e`x

(1− e`x̄ss)2 for x ∈ [0, x̄ss] (14)

where m̃(x) = m̃(−x) for x ∈ [−x̄ss, 0], and ` ≡
√

2ζ
σ2 .

In our model where F (x,X) = B(x + θX)2 we have that Xss = x∗ss = 0 and x̄ss = −xss.

Note that the steady state is independent of the value of θ. In this case the solution for ũ can

be obtained, up to an implicit equation in (ρ+ ζ)/σ2, a feature that we explore in Lemma 7.

Next we state a proposition on the uniqueness of the stationary state.

Proposition 2. If θ 6= −1, then Xss = 0 is the only stationary state and it is independent

of θ. If θ = −1 then any Xss is a steady state.

Notice that this result is reminiscent of the trivial result for the static game described

above. Nevertheless the result in Proposition 2 is non trivial given that the firm problem has

genuine dynamics and features adjustment costs.
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4 Equilibrium of the MFG for a small perturbation

In this section we develop results to analyze the dynamic response to a monetary shock in the

presence of strategic interactions. As standard in the analysis of dynamic equilibrium models

we analyze the effect of a shock by solving an equilibrium starting with an initial condition

different from the steady state, what is sometimes referred to as an “MIT shock”. In our

case the state is given by an infinite dimensional object, i.e. a cross sectional distribution.

Moreover, to preserve analytic clarity and tractability, we analyze the equilibrium that follows

a small perturbation of the economy around the steady state.

The section is organized in three main parts. In Section 4.1 we linearize the HJB equation

for the firm’s problem and solve it analytically. In Section 4.2 we linearize the KFE for the

dynamics of the cross sectional distribution and solve it analytically. In Section 4.3 we derive

the fixed point implied by the HJB and the KFE equations and provide a characterization

of the resulting kernel that will be central in the analysis of the equilibrium.

Terminal and Initial conditions for MFG. We use the stationary solution to define the

initial density m0 and the terminal value function uT . For the initial condition we consider a

perturbation ν of the stationary density m̃, where we use the parameter δ to index the size

of the perturbation, so:

m0(x) = m̃(x) + ν(x)δ, where

∫ x̄ss

xss

ν(x)dx = 0, for all x ∈ [xss, x̄ss]. (15)

In particular, we are interested in an initial condition that corresponds to the effect of an

unanticipated aggregate nominal shock δ, where δ is small. The interpretation of this initial

condition is that, after the monetary shock δ, the nominal cost jumps immediately by this

amount, and hence the value of the state x for each firms jumps from x to x− δ, so that the

density before any decision is taken is m0(x) = m̃(x+ δ).
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For the terminal condition we set:

uT (x) = ũ(x) for all x ∈ [xss, x̄ss] and uT (x) = ũ(x∗ss) + ψ for all x /∈ [xss, x̄ss]

so that at time t = T the continuation corresponds to the steady state value function. The

interpretation of the terminal condition uT (x) = ũ(t) is that the problem of the firm can be

regarded as an infinite horizon problem. In this case T measures the horizon over which the

strategic interactions apply.

Cases for T and ρ. We will consider the following combinations for T and ρ: (i) ρ > 0

and T <∞, (ii) ρ > 0 and T →∞, and (iii) ρ = 0 and T <∞, in which case we mean the

limit as ρ ↓ 0 and T <∞.

Normalization. To simplify the exposition we normalize the parameters of the problem

so that at steady state x̄ss = 1. In particular, given {σ2, B, ρ, ζ} we set the fixed cost ψ so

that x̄ss = 1. This amounts to measure the shock δ in units of standard deviation of steady

state price changes, i.e. in units of
√
V ar(∆p). Moreover we also define

k ≡ σ2

2
, η ≡

√
ρ+ ζ

k
, ` ≡

√
ζ

k

For future reference, the average number of price changes in steady state is given by

N = ζ

(
cosh(`)

cosh(`)− 1

)
for ζ > 0 and N = σ2 = 2k for ζ = 0.

The benchmark initial condition. In general m0 : [−1, 1] → R given by equation (15)

for some ν(x). In most of the analysis we focus on ν(x) = m̃x(x). Direct computation on
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equation (14) gives

m̃x(x) =


− `2

2
e`(2−x)+e`x

(1−e`)
2 for ` > 0 and x ∈ (0, 1]

−1 for ` = 0 and x ∈ (0, 1]

(16)

where for x ∈ [−1, 0) we use that m̃x is antisymmetric i.e. m̃x(x) = −m̃x(−x).

Equilibrium for symmetric initial conditions. Next we show that if the initial distri-

bution m0 is symmetric, i.e. if m0(x) = m0(−x), then the equilibrium cross-section average

has no dynamics X(t) = Xss = 0, i.e. a flat impulse response. This result is important

because it will allow us to ignore the symmetric component of the initial perturbation ν(x),

and to focus on the antisymmetric part in Proposition 5. We have:

Proposition 3. Let m0(x) be a symmetric distribution with support on [−1, 1], i.e.

m0(x) = m0(−x) and
∫ 1

−1
m0(x)dx = 1. Then there exists an equilibrium with X(t) = Xss =

0, x̄(t) = x̄ss = 1, x(t) = xss, and x∗(t) = x∗ss = 0 for all t ∈ [0, T ] and where m(x, t) is

symmetric in x for all t ∈ [0, T ]. This equilibrium is unique in the class of symmetric m.

A few comments are in order. First, while X(t) = Xss = 0, the distribution m(·, t) evolves

through time. Second, the proposition establishes uniqueness of the equilibrium only among

those in which m is symmetric. We return to uniqueness when we consider a perturbation.

Third, a symmetric displacement can be generated e.g. by shocking once and for all the

variance of the fundamental shocks σ2, or the market power of firms e.g. B. Fourth, we can

relax the condition that the support is the same, at the cost of a slightly more involved proof.

4.1 Linearization and Solution of the HJB equation

This section derives a linearization of the HJB. To do this we linearize the MFG defined above.

We consider an equilibrium with {x̄(t, δ), x(t, δ), x∗(t, δ), X(t, δ), u(x, t, δ),m(x, t, δ)}, where

δ indexes the perturbation of the initial condition for a given ν. We differentiate all the
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equilibrium objects with respect to δ and evaluate them at δ = 0. For all t ∈ [0, T ] we denote

these derivatives as follows:

v(x, t) ≡ ∂

∂δ
u(x, t, δ)|δ=0 for all x ∈ [−1, 1]

n(x, t) ≡ ∂

∂δ
m(x, t, δ)|δ=0 for all x ∈ [−1, 1], x 6= 0

z̄(t) ≡ ∂

∂δ
x̄(t, δ)|δ=0 , z(t) ≡ ∂

∂δ
x(t, δ)|δ=0 , z

∗(t) ≡ ∂

∂δ
x∗(t, δ)|δ=0 and

Z(t) ≡ ∂

∂δ
X(t, δ)|δ=0

In this subsection we study the evolution of the (derivative) of the value function, v(x, t),

as function of the path of the average price gap {Z(t)}. To do so we first obtain the pde

and boundary conditions that v(·, t) satisfies. We then look for an explicit solution of v(·, t),

which we use to compute the thresholds {z(t), z∗(t), z̄(t)} as a function of the path of {Z(t)}.

Linearization of the HJB and its boundary conditions. We differentiate the HJB

equation (3) for u(x, t, δ) with respect to δ at each (x, t) and use the boundary conditions to

obtain

0 = −(ρ+ ζ)v(x, t) + vt(x, t) + kvxx(x, t) + 2BθxZ(t) in x ∈ [−1, 1], t ∈ (0, T ) (17)

Furthermore, differentiating the two value matching boundary conditions for u(x̄(t, δ), t, δ) =

ψ + u(x∗(t, δ), t, δ) and u(x(t, δ), t, δ) = ψ + u(x∗(t, δ), t, δ) with respect to δ for each t and

evaluating them at δ = 0 we get for all t ∈ (0, T ):

v(−1, t) + ũx(−1)z(t) = v(0, t) + ũx(0)z∗(t) , v(1, t) + ũx(1)z̄(t) = v(0, t) + ũx(0)z∗(t) (18)

where we use the steady state value function ũ(x).

We also use the boundary condition at t = T , which imposes we go to steady state, or
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more generally to a function independent of δ, gives:

0 = v(x, T ) all x ∈ [−1, 1] (19)

Solution of the HJB equation. We prove two intermediate results before characterizing

the optimal thresholds.

Lemma 1. The function v(x, t) is antisymmetric in x for each t, i.e. v(x, t) = −v(−x, t) for

all x ∈ [−1, 1] and t ∈ [0, T ], and hence it satisfies the boundary condition:

0 = v(−1, t) = v(1, t) = v(0, t) all t ∈ (0, T ) (20)

We can solve the p.d.e. for v given by equation (17) for all t, x, which is the heat equation with

source 2BθxZ(t), with a zero space boundary at t = T , and with the boundary conditions

implied by value matching. We summarize this in the following lemma.

Lemma 2. Given the source Z(t) for all t ∈ [0, T ], then the unique solution of the heat

equation (17) with the two Dirichlet boundary conditions and the condition at x = 0 in

equation (20) for all t ∈ [0, T ], and with the terminal space condition v(x, T ) = 0 for all

x ∈ [0, 1] is:

v(x, t) = −4Bθ

∫ T

t

∞∑
j=1

e(η2+(jπ)2) k(t−τ) Z(τ)
(−1)j

jπ
sin(jπx)dτ (21)

Given this lemma, the next proposition summarizes the nature of the optimal decision rules

for a firm facing a path of future values for the cross sectional average price gap or markup:

Proposition 4. Taking as given a path Z(t) for t ∈ [0, T ] the solution to the firm’s
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problem implies the following path for its optimal thresholds {z(t), z∗(t), z̄(t)}:

z̄(t) = T̄ (Z)(t) ≡ θĀ

∫ T

t

H̄(τ − t)Z(τ)dτ for all t ∈ [0, T ) (22)

z∗(t) = T ∗(Z)(t) ≡ θA∗
∫ T

t

H∗(τ − t)Z(τ)dτ for all t ∈ [0, T ) (23)

where z(t) = z̄(t) and where H̄ and H∗ are defined as:

H̄(s) ≡
∞∑
j=1

e−(η2+(jπ)2) k s ≥ 0 , H∗(s) ≡
∞∑
j=1

e−(η2+(jπ)2) k s(−1)j ≤ 0 for all s > 0 (24)

Ā ≡ 4B

ũxx(1)
= k 2η2

[1−η coth(η)]
< 0 , and A∗ ≡ 4B

ũxx(0)
= k 2η2

[1−η csch(η)]
> 0 (25)

The ratio A∗/|Ā| is strictly increasing in η, with η2

[1−η csch(η)]
→ 6, | η2

[1−η coth(η)]
| → 3 as η → 0.

A few comments are in order. First, the current value of the thresholds z∗(t) and z̄(t),

depends on future values of the average price gap Z(τ) with τ ∈ (t, T ). In this sense, this

mapping is forward-looking.

Second, the result that z̄(t) = z(t) means that the width of the inaction region, but not

its position, is constant through time. The economics of this result is that the width of

the inaction region reflects the option value of waiting, that is mainly affected by σ2, the

curvature of the payoff function and the fixed costs. Since none of these objects is affected

by the monetary shock, the width of the inaction region stays constant. While the width is

constant, its position and the location of the optimal return point within it change through

time.

Third, θ only appears multiplicatively in the expressions for z∗ and z̄, since neither Ā, A∗

nor H̄,H∗ depend on it. Thus, in the special case without strategic interactions, θ = 0, the

thresholds are kept at the steady state values, i.e. z∗ = z̄ = 0.

Fourth, given the sign of the expressions above, if there is strategic complementarity

(θ < 0) a firm facing higher values of Z(τ) for τ ≥ t, sets a higher value of the optimal

return z∗(t), and a larger value of both the upper and lower thresholds of the inaction band,
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z̄(t), z(t). If θ > 0 the result is the opposite. The strength of the result depends on θ as

well as on η =
√

2(ρ+ ζ)/σ2. Also, as expected, values of Z(τ) closer to t receive higher

weight on the firm’s decision for its optimal return point and width of the inaction band. The

parameter η also enters into the expressions for Ā and A∗, which reflect how the curvature of

the value function changes as η changes. The reason that ũxx appears in the expressions is

because we are perturbing the economy around the steady state. Equation (25) shows that

the curvature of the steady state value function ũxx, characterized in Lemma 7, affects the

speed of convergence.

4.2 Linearization and Solution of the KF Equation

In this subsection we study the evolution of n(x, t) as function of the path of thresholds

{z(t), z∗(t), z̄(t)}. To do so we first obtain the pde and boundary conditions that n(·, t)

satisfies. We then look for an explicit solution of n(·, t), which we use to compute Z(t) as a

function of the path of thresholds {z(t), z∗(t), z̄(t)}.

Linearization of the KFE and its boundary conditions. We differentiate the KFE

for m(x, t, δ) given in equation (4) with respect to δ at each (x, t) to obtain:

0 = −nt(x, t) + knxx(x, t)− ζn(x, t) in x ∈ [−1, 1], t ∈ (0, T ), x 6= 0 (26)

Differentiating the boundary condition m(x̄(t, δ), t, δ) = 0 in equation (9) with respect to δ

for each t we get 0 = n(1, t) + m̃x(1)z̄(t). Likewise, differentiating the boundary condition

m(x(t, δ), t, δ) = 0 with respect to δ we get 0 = n(−1, t) + m̃x(−1)z(t). Then the boundary

conditions are

n(1, t) = −m̃x(1)z̄(t) and n(−1, t) = −n(1, t) all t ∈ (0, T ) (27)
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where we used that z̄(t) = z(t) from Proposition 4 and where the expression for m̃x(1) is

given in equation (16). The reason why m̃x appears is because we are perturbing the economy

around the steady state.

Differentiating the mass preservation equation (10) with respect to δ we obtain: 0 =∫ 1

−1
n(x, t)dx for all t ∈ (0, T ). Differentiating this equation with respect to time and using

the KFE in equation (26) we have:

0 = nx(1, t)− nx(0+, t) + nx(0
−, t)− nx(−1, t) all t ∈ (0, T ) (28)

The initial condition for n comes from differentiating m0(x) with respect to δ, this gives

n(x, 0) = ν(x) for x ∈ (−1, 1) (29)

which in the benchmark case of the small monetary shock is n(x, 0) = m̃x(x), whose expres-

sion is given by equation (16). Given n we can compute Z(t) as:

Z(t) =

∫ 1

−1

xn(x, t)dx all t ∈ (0, T ) . (30)

Equilibrium of the perturbed Mean Field Game. The equilibrium of the MFG with

initial condition given by the perturbation ν is described by functions {Z, z̄, z∗, n} that solve

equations (22), (23), (26), (27), (28), (29) and (30).

Irrelevance of the symmetric component of the perturbation ν. Any perturbation

ν can be written as the sum of a symmetric component and an antisymmetric component.

Given the linearity of the system, the equilibrium for a given ν is obtained as the sum of the

equilibrium that corresponds to each of the components. Next we argue that the equilibrium

when ν is symmetric has the feature that Z(t) = 0 for all t. Because of this we will focus

below on ν that are antisymmetric. We summarize this result next:

23



Proposition 5. Let ν(x) be symmetric around x = 0. Then there is an equilibrium for

this initial condition with Z(t) = 0 for all t ∈ [0, T ]. This equilibrium is unique in the class

of symmetric n(x, t).

Intuitively, a symmetric displacement of the steady state distribution has no effect on the

mean of the distribution, Z. Give the symmetric law of motion for x, the mean remains at the

steady state value. The proof of this proposition follows directly from Proposition 3 where we

showed a related result for an equilibrium with an arbitrary symmetric initial condition, not

just a perturbation. The perturbation can be obtained using n(x, t) = (m(x, t) − m̃(x))/δ,

including ν(x) = (m0(x, t)− m̃(x))/δ.

Solution of the KFE equation for an antisymmetric ν. We will look for a solution

of n that satisfies the p.d.e. given in equation (26), its boundary condition in equation (27),

mass preservation as given by equation (28), and the initial condition for n(·, 0).

First, we define the right and left limits of n(·, t) as a(t) and b(t) respectively:

n(0+, t) = b(t) all t ≥ 0 and n(0−, t) = a(t) all t ≥ 0

Given the conditions for boundary conditions and the initial conditions it is natural to

look for antisymmetric solutions. Indeed the next lemma shows that this has to be the case.

Lemma 3. If n satisfies the p.d.e. equation (26), the boundary conditions equation (27), the

mass preservation equation (28), the initial conditions is antisymmetric, i.e. ν(x) = ν(−x),

and a(t) + b(t) is continuous as a function of time on (0, T ], then n(x, t) is antisymmetric in

x for all t, and thus a(t) = −b(t) for all t ∈ [0, T ].

Note that once that n is antisymmetric mass preservation holds automatically. Next we

use the antisymmetric nature of n to find an expression for b(t)−a(t) in terms of the threshold

z∗(t).

Lemma 4. Assume that m(x∗(t, δ), t, δ) is continuous, and right and left differentiable at
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δ = 0. Then z∗(t) = a(t)−b(t)
2 m̃x(0+)

.

The antisymmetric nature of n, which implies that a(t) = −b(t), and Lemma 4 have the

important implication that:

b(t) = n(0+, t) = −m̃x(0
+) z∗(t) = −n(0−, t) = −a(t) for all t ≥ 0

Next we are going to give a pde that n(x, t) has to satisfy. The key simplification is

that due to the antisymmetric nature of n(x, t) it suffices to define it for x ∈ (0, 1], for

every t. Moreover, being antisymmetric, the mass preservation is satisfied. Finally, the

characterization in Lemma 4 gives us a boundary condition at x = 0 for all t. Hence the

system given by equation (26), (27), (28) and (29) becomes the following system:

nt(x, t) = knxx(x, t)− ζn(x, t) for x ∈ [0, 1] and t > 0 (31)

n(1, t) = −m̃x(1)z̄(t) and n(0, t) = −m̃x(0
+) z∗(t) for all t > 0 (32)

n(x, 0) = ν(x) for x ∈ [0, 1] (33)

The above system is well understood. It corresponds to a one dimensional heat equation with

a bounded spatial domain, an initial spatial condition, and a specification of time varying

values on the boundaries of the domain (see Chapter 6 in Cannon (1984)). The initial

condition is given by ν and the time varying boundaries are given by z∗ and z̄. This equation

has a unique solution that can be written in terms of these three functions. The solution is

a linear functional of z∗, z̄ and ν, it is algebraic intensive and explicit expressions are given

in Lemma 8 in Appendix A. We use this explicit solution to write the impulse response of

the mean Z(t) for given path of the thresholds {z̄(t), z∗(t)}, using the expression for Z(t) in

equation (30). We have:

Proposition 6. Taking as given the paths of {z∗(t), z̄(t)}, and an initial condition given

by an antisymmetric perturbation ν(x), the solution of the KFE gives the following path for
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the average value {Z(t)}:

Z(t) = TZ(z∗, z̄)(t) ≡ Zν
0 (t) + 4k

∫ t

0

G∗(t− τ)z∗(τ)dτ + 4k

∫ t

0

Ḡ(t− τ)z̄(τ)dτ (34)

for all t ∈ [0, T ] and where Ḡ, G∗ and Zν
0 , are defined as

Ḡ(s) ≡ −m̃x(1)
∞∑
j=1

e−(`2+(jπ)2) k s > 0 and G∗(s) ≡ −m̃x(0
+)

∞∑
j=1

(−1)j+1e−(`2+(jπ)2)k s > 0

for all s ≥ 0, m̃x(1) and m̃x(0
+) are given in equation (16), and

Zν
0 (t) ≡ −4

∞∑
j=1

(−1)j
e−(`+(jπ)2) k t

jπ

∫ 1

0

sin(jπx)ν(x)dx .

This proposition gives the evolution of the average price gap or markup, Z(t), as a function

of the path of decisions up to time t, summarized by the boundaries of the inaction region and

the optimal return point, i.e. {z∗(τ), z̄(τ)} for 0 ≤ τ ≤ t. The current value of the average

markup Z(t), depends on past values of the thresholds z∗(τ) and z̄(τ) with τ ∈ (0, t). In this

sense, the mapping is backward-looking.

A few comments are in order. First, the expression for Z(t) is made of two parts: the

first one, Zν
0 (t), gives the dynamics of the average price gap due to the displacement ν of

the initial distribution when the thresholds are constant, i.e. z̄ = z∗ = 0. It corresponds to

the impulse response of the average price gap in an economy where there are no strategic

interactions, i.e. θ = 0, and it is studied in detail in Alvarez and Lippi (2021). The other

part, given by the two integrals, describes the effect on Z(t) caused by past changes of the

thresholds.

Second the mapping is monotone, in that larger values of past thresholds, lead to larger

values of the average markup Z(t), i.e. G∗(s) > 0 and Ḡ(s) > 0 for all s > 0. Finally, notice

that the values of the pairs (z∗(τ), z̄(τ)) for τ close to t have a higher weight than those
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further away in time. Given our normalization, the mapping TZ depends only on k ≡ σ2/2

and `.

Third, for the benchmark case of the initial condition for a monetary shock where ν = m̃x,

as in equation (16), we have

Zν
0 (t) = 2

∞∑
j=1

`2

`2 + (jπ)2

(
(−1)j

(
1 + e2`

)
− 2e`

(1− e`)2

)
e−(`2+(jπ)2)kt . (35)

For any value of ` the function Zν
0 (0) = −1 and Zν

0 (t) is increasing in t and converges to

zero as t→∞. For the special case when ζ = 0, corresponding to the pure Ss problem, the

expressions for the derivatives of m̃ simplify to m̃x(1) = m̃x(0
+) = −1 and we have

Zν
0 (t) = 4

∞∑
j=1

[(−1)j − 1]

(jπ)2
e−(jπ)2 k t .

4.3 Deriving the fixed point

In this section we put together the solution for the HBJ and KFE derived in Proposition 4

and in Proposition 6 respectively to arrive to a single linear equation that {Z(t)} must solve.

We denote the fixed point by Z = T (Z). The mapping T is the composition of TZ with T̄

and T ∗ described above, i.e. T (Z) = TZ
(
T ∗(Z), T̄ (Z)

)
. Direct computation gives:

Proposition 7. Let ν be an arbitrary perturbation. The equilibrium of a MFG must

solve Z = T (Z) given by:

Z(t) = T (Z)(t) ≡ Zν
0 (t) + θ

∫ T

0

K(t, s)Z(s)ds all t ∈ [0, T ] (36)

where Zν
0 is given by

Zν
0 (t) ≡ −2

∞∑
j=1

(−1)j
e−(`+(jπ)2) k t

jπ

∫ 1

−1

sin(jπx)ν(x)dx , (37)
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and where the kernel K is:

K(t, s) = (38)

4
∞∑
j=1

∞∑
i=1

[
Ā` − A∗` (−1)j+i

] [e[(jπ)2+(iπ)2+η2+`2]k(t∧s) − 1
]
e−(jπ)2kt−`2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2 + `2

with Ā` ≡ −m̃x(1) Ā and A∗` ≡ −m̃x(0
+)A∗, where m̃x is given in equation (16) and Ā and

A∗ in equation (25).

Equation (36) is a non-homogeneous Fredholm integral equation of the second kind, where

the parameter is given by θ. The path {Zν
0 } is the solution of the MFG when there are no

strategic interactions, i.e. when θ = 0, and the perturbation is given by ν. In our benchmark

case of a monetary shock ν = m̃x, and then Zν
0 is given by equation (35). The kernel K, given

in equation (38), is independent of θ as well as of the initial perturbation ν. This means that

the effect of strategic interactions on the equilibrium path Z depends on θ only as a scalar

multiplying the kernel K.10

We define three objects, related to the kernel, that will be used below. The first is a

notion of inner product between vectors, which we apply to functions of time. For any two

functions V,W , we define the inner product 〈·, ·〉 using weights given by time discount as

follows:

〈V,W 〉 ≡ ρ

1− e−ρT

∫ T

0

V (t)W (t)e−ρt dt (39)

The second is a linear operator, K, akin to a matrix multiplication:

(K) (V )(t) ≡
∫ T

0

K(t, s)V (s)ds for all t ∈ [0, T ] (40)

for any function V : [0, T ] → R. The third is a bound on the kernel K. This comes in two

types that are used for different analysis of the fixed point. One is a Lipschitz bound and

10Notice that since the kernel K arises from the composition of a backward and a forward operator, then
K(t, s) is different from zero for all t, s.
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the other is a form of L2 bound.

LipK ≡ sup
t∈[0,T ]

∫ T

0

|K(t, s)|ds and ||K||22 ≡
ρ2

(1− e−ρT )2

∫ T

0

∫ T

0

K2(t, s) e−ρ(t+s) dt ds (41)

The next lemma gathers important properties of the kernel K that will be used to char-

acterize the equilibrium. The lemma considers the case where ζ = 0, which corresponds to

the pure Ss model, as well as the case where `2 = ζ/k > 0, which typically regularizes the

kernel.11

Lemma 5. Consider the Kernel in equation (38) and the inner product in equation (39).

1. K is symmetric if ρ = 0, i.e. K(t, s) = K(s, t) for all (t, s). For ρ ≥ 0, the operator K

is self-adjoint, i.e. for any V,W we have 〈KV,W 〉 = 〈V,KW 〉:

∫ T

0

∫ T

0

K(t, s)V (s)W (t)e−ρt ds dt =

∫ T

0

∫ T

0

K(t, s)W (s)V (t)e−ρt ds dt ,

2. All elements of K are negative, i.e. K(t, s) < 0 for all (t, s) ∈ (0, T )2

3. K is negative semidefinite, 〈KV, V 〉 ≤ 0, i.e.
∫ T

0

∫ T
0
K(t, s)V (t)V (s)e−ρtdtds ≤ 0 ,

4. If ζ/k = `2 = 0, then LipK < η2

18

(
1

1−η csch(η)
− 4

1−η coth(η)

)
. Moreover, for small ρ we

have LipK < 1− 7
180
η2 + o(η2),

5. LetK(t, s; η, `) be the kernel as a function of η, `. Then |K(t, s; η, `)| ≤ |m̃x(0
+)| |K(t, s; η, 0)|

for all t, s ∈ [0, T ].

6. If `2 = 0, and ρ ≥ 0, then ||K||22 < c0
ρ2T

(1−e−ρT )2

(
η2

[1−η csch(η)]
− η2

[1−η coth(η)]

)
for a constant

c0 > 0 independent of any other parameters.

7. If ` ≥ 0 and ρ > 0, then ||K||22 < ρ
[

1−e−2ρT+6ρ
(1−e−ρT )2

]
c1 for a constant c1 > 0 independent of

ρ and T .

11We obtain a quite complete characterization even though the kernel K(t, s) diverges to −∞ for t = s
(see Appendix H.3 for the explicit calculation).
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A few remarks are in order. The lemma establishes that the operator K is self adjoint

(point 1). This property is key to the existence of an orthonormal basis for K and repre-

sent the impulse response using standard eigenvalue-eigenfunction projection methods. The

negative-definiteness of K (point 2), implies that the eigenvalues are all negative. Second,

the fact that K is negative for all t, s implies the monotonicity of the equilibrium for θ < 0.

Third, the lemma establishes bounds that allow us to study existence, uniqueness, and a

characterization of the solution. The Lipschitz bound (points 4 and 5) is used to find values

of θ for which the right hand side of equation (36) is a contraction in the case where T is

unbounded. Likewise, the bound for the norm ||K||2 (points 6 and 7) is used to establish the

compactness of the operator K, which together with the self-adjointness of K, allows us to

establish conditions for existence, uniqueness, and a characterization of the solution for the

case where T is finite.

5 Equilibrium Characterization for the Monetary Shock

In this section we characterize the dynamic equilibrium. As initial condition we consider

a perturbation ν to the stationary density, focusing on the monetary shock described in

equation (16). We cover both the pure Ss model (ζ/k ≡ `2 = 0) as in Golosov and Lucas

(2007)-Klenow and Willis (2016), as well as the Calvo-plus model (ζ/k ≡ `2 > 0) as in

Nakamura and Steinsson (2008) and Alvarez, Le Bihan, and Lippi (2016). In these models

output is negatively proportional to price gaps, so that letting Yθ(t) the impulse response

of output to a small monetary shock we have Yθ(t) = −Z(t) where we index the impulse

response by the parameter θ. Note that Y0(t) ≡ −Zν
0 (t) where ν(x) = −1 for x ∈ (0, 1] and

ν(−x) = −ν(x), which gives the interpretation of a monetary shock, as in equation (16).

The impulse response function solves Yθ = T Yθ as follows:

Yθ(t) = (T Yθ) (t) ≡ Y0(t) + θ

∫ T

0

K(t, s)Yθ(s)ds all t ∈ [0, T ] (42)
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Characterization. We study the existence and uniqueness of Yθ, solving the integral equa-

tion (42), for different cases. In Section 5.1 we restrict |θ| to be bounded and allow T to be

infinite provided that ρ > 0. In Section 5.2 we restrict T <∞ and consider θ arbitrary and

ρ ≥ 0: the finite T allows us to use projection methods to solve for the equilibrium impulse

response Yθ(t) and obtain an explicit expression for it. Each of these cases provides different

insights into the nature of the solution. A key result shows that the equilibrium exists, it

is unique, and it is well posed, provided that the strength of strategic complementarity is

smaller than some critical value (a bound on |θ|). We also give a characterization of the im-

pulse response as a function of θ, showing that the size of the response to a monetary shock

at any given time t is bigger, the larger the strength of strategic complementarity (smaller θ).

Moreover we show that larger strategic complementarity increase the variance of output due

to monetary shocks. Finally we show that for sufficiently strong strategic complementarity

the impulse response is hump shaped; we provide an expression for the impulse response,

based on the eigenvalues and eigenfunction of K, that provides a straightforward method for

numerical analysis. Our first simple result shows that all IRF start at the same point.

Proposition 8. Let Yθ be the solution of equation (43). Then its value at t = 0 is the

same as Yθ(0) = Y0(0) = 1.

5.1 Equilibrium with bounded strategic interactions

In this section we analyze the case where the strength of the strategic interactions θ is

bounded. For future reference we define the series

Sθ(t) =
∞∑
r=0

θr (K)r (Y0) (t) for all t ∈ [0, T ] (43)

where Kr is the rth iteration of K defined in equation (40), i.e.:

(K)r+1 (V ) (t) ≡
∫ T

0

K(t, s) (K)r (V ) (s)ds
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The next proposition gives a characterization of the equilibrium for the case of strategic

complementarity (θ < 0) and for initial perturbations such that Y0(t) > 0.

Proposition 9. Assume that T < ∞ if ρ = 0, but otherwise these parameters take

arbitrary values. Let ν be any perturbation such that Y0(t) > 0, and ||Y0||∞ <∞ and Y0(t)

is continuous. Let θ ∈ (θ, 0], where θ is such that the series Sθ in equation (43) converges.

The unique solution of equation (42) has the following properties:

1. For each t ∈ (0, T ) the fixed point is positive, i.e. Yθ(t) > 0,

2. For each t ∈ (0, T ), the fixed point Yθ(t) is (strictly) monotone decreasing in θ,

3. For each t ∈ (0, T ), the fixed point Yθ(t) is (strictly) convex in θ.

The proof of this proposition is straightforward, using that K ≤ 0 (Lemma 5), and thus

for θ < 0 we have that θK is monotone, it has a Lipschitz bound, and preserves the sign of

Y0. The positivity, and the monotonicity and convexity on θ whenever θ < 0, follow since

each term of the series for Sθ satisfies these properties. A few comments are in order. First,

if ν = m̃x(x), then Y0 satisfies the hypothesis for Y0 for the proposition, as can be seen in

equation (35). Second, and most importantly, this proposition shows that as the strategic

complementarity gets larger (more negative θ), then the aggregate response to the shock t is

larger at each horizon, i.e. Yθ(t) is decreasing in θ. This proposition shows that Yθ(t) is a

convex function of θ at each t. The monotonicity and convexity properties yield the following

important corollary:

Corollary 1. The assumptions of Proposition 9 imply that there is a 0 > θ > −∞ such

that Sθ(t) = +∞.

Thus, for sufficiently strong strategic complementarity the series Sθ does not converge.

This, in itself, does not imply that there is no equilibrium. We return to this question in the

next section, where we show that indeed for values of θ sufficiently large (in absolute value)
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the model is not well posed: it may fail to have an equilibrium or, even when it has one, the

equilibrium may not change continuously as a function of the parameters.

The next proposition establishes a bound for |θ|, in terms of the fundamental model

parameters, that ensures existence and uniqueness. In particular, we use Lemma 5 to verify

the conditions for the Banach contraction fixed point theorem. This establishes existence and

uniqueness of the solution of equation (42) for a range of θ including both positive (strategic

substitution) and negative values (strategic complementarity). Additionally, the proposition

allows for any arbitrary initial perturbation ν.

Proposition 10. Assume that T < ∞ if ρ = 0, but otherwise these parameters take

arbitrary values. Consider any perturbation ν. A sufficient condition for the existence and

uniqueness of the equilibrium IRF, i.e. of the uniqueness and existence of a solution to

equation (42) in L1([0, T ]) is that |θ|LipK < 1. In this case, Yθ(t) = Sθ(t) as in equation (43).

A sufficient condition |θ|LipK < 1 is :

|θ| `
2

2

e2`

(1− e`)2

η2

18

(
1

1− η csch(η)
− 4

1− η coth(η)

)
< 1

For the special case of `2 ≡ ζ/k = 0 this gives |θ| η2
18

(
1

1−η csch(η)
− 4

1−η coth(η)

)
< 1.

The proof of this proposition is an immediate application of the contraction theorem.

The modulus of the contraction is given by the θ LipK bound that was characterized in part

4 of Lemma 5 for the ζ = 0 case, and extended to the case of `2 = ζ/k > 0 in part 5. For

the pure Ss case, i.e. when ζ = 0, we can use the approximation for small ρ in 4 of Lemma 5

to obtain an expression for small η: |θ|
(
1− 7

180
η2
)
< 1. Thus for practical purposes in the

pure Ss case we can take the sufficient conditions for a contraction to be |θ| ≤ 1.12

While Proposition 9 was shown only for an interval of strictly negative values of θ, the

12For this case 2k = σ2 = N V ar(∆p) = N , where N is the expected number of price changes per unit
of time in steady state, and where we use the normalization x̄ss = 1 and the definition of k. Thus when
η2 = ρ/k we can write the bound as 1

|θ| > 1− 7
90

ρ
N .
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same properties hold in a neighbourhood of θ = 0. In particular

∂

∂θ
Yθ(t)|θ=0 = (K) (Y0)(t) < 0 and

∂2

∂θ2
Yθ(t)|θ=0 = 2 (K)2 (Y0)(t) > 0

and thus the monotonicity and convexity hold also in an interval of positive values, so that

the result extends (locally) to the case of strategic substitutability. This is shown by direct

computation since by Proposition 10 the series in equation (43) converge uniformly. Indeed,

numerically, we find all the properties in Proposition 9 hold for all positive values of θ.

Figure 1: Equilibrium path of thresholds
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In Figure 1 we display the time path of the equilibrium thresholds x̄(t), x∗(t) and x(t)

based on the linear approximation. The figure consider the case of δ = 0.05 and θ = −0.8.

The black thin lines are the steady state values of the thresholds, and the color solid lines

are the linear approximation to the equilibrium thresholds. The thresholds start just at the

edge of the initial displaced distribution, m0, and then evolve according to the equilibrium.

As shown above, the paths for both boundaries of the range of inaction x̄(t) and x(t), as

well as the path for the optimal return x∗(t), deviate from their steady state values with the

34



same sign, determined by θ. The fact that strategic complementarities lowers the thresholds

is what makes the impulse response larger, since fewer firms increase prices and, when they

do so, they return to a lower value of the price gap.

In the left panel of Figure 2 we display the IRF Yθ for five values of θ and for `2 = ζ/k =

0.01, so it is essentially the pure Ss model. The figure illustrates Proposition 9: at each t

it can be seen that Yθ(t) decreases in θ, in a convex fashion. Also, since all IRFs start at

the same value, i.e. Yθ(0) = 1, then for larger strategic complementarity the IRF has to be

more protracted. The right panel displays the IRF for `2 = ζ/k = 3, i.e. for a version of the

Calvo-plus model. Note that the time scale is different across the panels. As in the pure Ss

case, the IRF are decreasing and convex in θ for each t. But comparing the two IRFs for

the same θ across the two figures, it can be seen that the Calvo-plus model has a larger IRF

than the one for the pure Ss model.

Figure 2: Impulse response of Monetary Shock

Golosov-Lucas: ζ/k = `2 = 0.01 Calvo-plus: ζ/k = `2 = 5
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5.2 Equilibrium characterization with a finite T

In this section we focus on a finite horizon T < ∞ and analyze how the equilibria vary as

a function of θ. A main result is to provide an expression for the IRF Yθ in terms of the

projections onto an orthonormal base, and the associated eigenvalues, implied by the kernel

K. We begin by introducing a norm for linear operators, which is the analogue of the square

of the trace of matrix:

||K||2HS ≡
∑
i,j

|〈Kfi, fj〉|2 =
∑
i,j

(
ρ

1− e−ρT

∫ T

0

∫ T

0

K(t, s) fi(s) fj(t) e
−ρt ds dt

)2

(44)

where {fj} is any orthonormal base for the linear separable Hilbert space H of functions

V : [0, T ] → R with 〈V, V 〉 < ∞. The next proposition, which uses the results of Lemma 5,

gives the necessary preliminary results.

Proposition 11. Assume that T < ∞. The HS norm is bounded by ||K||2HS ≤ T 2||K||22.

In this case the operator K is self-adjoint and compact, and thus it has countably many

eigenvalues and eigenfunctions that we denote by {µj, φj}∞j=1. The eigenvalues µj are real,

negative, and ordered as |µ1| > |µ2| > |µ3| . . . , and they converge to zero |µj| → 0 as j →∞.

There are at most finitely many eigenfunctions associated with each non-zero eigenvalue.

The eigenfunctions {φj}∞j=1 form an orthonormal base for H.

The proposition is an instance of the spectral theorem for compact self-adjoint operators,

a basic result in functional analysis, see section 5 of Chapter II in Conway (2007). That

the operator is self-adjoint was shown in part 1 of Lemma 5. That the operator is compact

follows from finite Hilbert-Schmidt norm, which as stated in equation (44) it is equal to the

L2 norm of the kernel found in part 7 of Lemma 5. That the eigenvalues are negative follows

directly from part 3 of Lemma 5.

Our first result determines the values of θ for which the solution exists and is unique,

and provides a partial characterization through an explicit solution written in terms of the
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eigenvalues and eigenfunctions of K.

Proposition 12. Assume that T <∞. Then

1. For all θ < 1/µ1, then there exists a unique equilibrium solving equation (42) given by

Yθ(t) =
∞∑
j=1

〈Y0, φj〉
1− θµj

φj(t) for all t ∈ (0, T ) (45)

2. If θ → +∞, then Yθ(t)→ 0 for all t ∈ (0, T ).

3. If θ = 1/µ1, and ν is such that Y0 ≥ 0, then there is no solution to equation (42), i.e.

there is no equilibrium.

4. Assume that ν is such that Y0 ≥ 0. Then, there is no equilibrium for that value of θ,

and there is pole at θ = 1/µ1, i.e. for all t ∈ (0, T ):

lim
θ↓1/µ1

Yθ(t) = +∞ and lim
θ↑1/µ1

Yθ(t) = −∞ . (46)

5. If θ < 1/µ1, and ν is such that Y0 ≥ 0, then the equilibrium is not well posed, i.e. it

may not exist, and when it exist Yθ(t) may not be continuous on θ.

6. If ν is such that Y0 ≥ 0, Y0(·) is continuous, and Y0(0) > 0, then there are countably

many values of θ < 1/µ1 for which the equilibrium does not exist, and where Yθ(t) has

a pole at that value.

A few comments are in order. This proposition shows that an equilibrium exists and is

unique for θ > 1/µ1. Hence, it gives a generalization of our results in Proposition 10, in that it

covers all positive θ, i.e. all values of strategic substitutability, and also gives the limit of the

region where the equilibrium exists, i.e. θ ∈ (1/µ1,∞), as opposed to a sufficient condition.

Second, note that it also complements Proposition 9, showing that for θ very large the IRF

converges to the flexible price case. Third, note that as the strategic complementarity gets
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closer to the critical value, i.e. θ ↓ 1/µ1, the IRF Yθ(t) gets arbitrarily large. Since Yθ(0) = 1

for all θ this has the important corollary that the IRF becomes humped shaped.

Corollary 2. Assume that T < ∞. If the strategic complementarity is strong enough,

i.e. if θ approaches 1/µ1 from above, the IRF Yθ(t) has an increasing segment.

Figure 3 illustrates the effect of large values of the strategic complementarity, i.e. θ close

to 1/µ1, in producing hump shaped impulse responses.

Figure 3: Impulse response for the Monetary Shock
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Note: ζ/k = ` = 0.01, Golosov-Lucas case.

5.3 Output variance due to monetary shocks

Starting with the seminal analysis of Caplin and Leahy (1997) several well known papers have

used the output variance induced by monetary shocks as a summary measure of monetary

nonneutrality, as in e.g. Nakamura and Steinsson (2010); Midrigan (2011).

The linear expression for the impulse response given in equation (45) can be used to define

a stochastic process for the deviation of output outside of the steady state. In particular,
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assume that the monetary shock {dε(τ)} where ε(τ) is a continuous time process with inde-

pendent changes and E[dε] = 0 and E[dε] = σ2
δ dt for some parameter σδ > 0. Our preferred

example is a composite Poisson process for {ε(τ)}, where with probability % > 0 per unit of

time ε(τ) has a jump of size ±δ, each jump with probability 1/2. In this case σ2
δ = %δ2. The

process for {ε(τ)} generates the stationary stochastic process {y} as follows:

y(t) =

∫ t

−T
Yθ(t− τ)dε(τ) for all t ≥ 0 (47)

using the impulse response Yθ(t). The unconditional variance of this process is given by:

V arθ(y) = σ2
δ

∫ T

0

Y 2
θ (s) ds (48)

Proposition 13. Assume that ρ = 0, T < ∞ and that θ > 1/µ1. Assume the monetary

shocks are i.i.d. and bounded. Then the unconditional variance of output V arθ(y) decreases

with θ, i.e. V arθ(y) =
∑∞

j=1
〈φj ,Y0〉2
(1−θµj)2 and 0 > 1

V arθ(y)
∂V arθ(y)

∂θ
= 2

∑∞
j=1 ωj(θ)

µj
1−θµj > 2 µ1

1−θµ1

where the ωj(θ) ≡ 〈φj ,Y0〉2
(1−θµj)2V arθ(y)

are weights.

This proposition shows that the strength of strategic complementarities increases the

unconditional variance of output –recall that θ < 0 for strategic complementarities, and

θ > 0 for substitutability. This proposition complements the result in Proposition 9 that at

each t the impulse response increases with the strength of strategic complementarity. We

note that variance is also one of the measures used by Nakamura and Steinsson (2010). Note

that in the expression for V arθ(y) the parameter θ only enters in the factors 1/(1 − θµj)2,

since Y0, φj, µj do not depend on it. The functions Y0, φj, µj depend on the particular price

setting model, i.e. Golosov-Lucas, Calvo, or any variant of Calvo-plus.
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5.4 The case of the “pure” Calvo model: x̄(t) = −x(t)→∞

In this simple time dependent model a firm can only change prices at exogenously randomly

distributed times, independently of their state. In particular in each period a firm can change

its price with probability ζ > 0 per unit of time. The simple case of a time dependent model

with a constant hazard rate is the most common case analyzed in the literature, due to its

tractability, introduced by Calvo. The analysis we use here can draws on Alvarez, Borovicka,

and Shimer (2021) Appendix C.3, where a simple closed form expression for the impulse

response in the presence of strategic interactions is obtained. We can recast the problem as

a Mean Field Game, where the firm’s problem becomes

ρu(x, t) = B(x+ θX(t))2 + ut(x, t) + σ2

2
uxx(x, t) + ζ (u(x∗(t), t)− u(x, t)) for all x, and t ∈ [0, T ]

and final boundary condition u(x, T ) = ũ(x), where ũ is the stationary solution which cor-

responds to the problem with θ = 0. Compared to our benchmark model, in this case the

barriers are exogenously set at x̄(t) = +∞ and x(t) = −∞. The corresponding KFE for the

measure m(x, t) is:

0 = σ2

2
mxx(x, t)− ζm(x, t)−mt(x, t) for all x 6= x∗(t), and t ∈ [0, T ]

with 1 =
∫∞
−∞m(x, t)dx for all t ∈ [0, T ] and initial condition m(x, 0) = m̃(x + δ), where m̃

is the stationary density of the problem with θ = 0, which is a Laplace distribution.

Adapting the arguments in Alvarez, Borovicka, and Shimer (2021), we obtain a simple

closed form expression for Yθ(t) in the pure Calvo model:

Proposition 14. Consider the Calvo model: x̄(t) = −x(t) → ∞. Let µ be the negative

root of the quadratic equation: (µ − ρ − ζ)(ζ + µ) − θ(ρ + ζ)ζ = 0. For T → ∞ we get

limT→∞ Yθ(t) = eµt and limρ↓0 limT→∞ Yθ(t) = e−ζ
√

1+θ t for all t ≥ 0 .

It is remarkable that, as is the case in the Calvo model of Wang and Werning (2020),
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the impulse response of this involved problem is a simple exponential function (for the case

with T → ∞ and ρ ↓ 0). Some features seen above for the state dependent problem also

appear here: the impulse response tends to vanish as strategic substitutability gets large

(θ → ∞). On the contrary, large strategic complementarity θ → −1 yield a very persistent

impulse response. Finally, in this simple case the impulse response is monotone, i.e. it can

not display a hump shaped pattern.

5.5 Strategic Complementarity and Selection Effects

In this section we return to the analysis of the Calvo-plus , i.e. the model where we let

` > 0, the pure Ss model, the model with ` = 0, and the pure Calvo model described

above. We are interested in the relationship between strategic interactions, as measured by

θ and the selection effect in the price setting behaviour, measured by ζ. We focus on the

cumulative impulse function CIRθ as a summary measure of the effect of a monetary shock.

The main result of this section is that the effect of strategic interactions (θ) is approximately

multiplicative separable with the effect of selection in price setting (ζ).

Cumulative impulse response. We define the cumulative impulse response function as

CIRθ ≡
∫ T

0
Yθ(t)dt. The cumulative IRF is useful as it summarizes the IRF with a single

number.

Recall that absent strategic interactions, i.e. when θ = 0, Alvarez, Le Bihan, and Lippi

(2016) showed that the scaled cumulative response function CIR0/N ≡
∫∞

0
Y (t)dt/N de-

pends only on `2 = ζx̄2ss
σ2/2

.13 Motivated by these facts, we analyze (and display) the impulse

response for different values of ` =
√
k/σ2 where for each ζ we adjust σ2 so that we keep

constant the steady state number of price changes N (we keep the normalization x̄ss = 1).

13Indeed, in that paper it is shown that CIR0 = Kurt(`)/(6N), where Kurt(`) is the kurtosis of the price
changes using the stationary distribution m̃, and statistic that depends only on `.
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CIRθ for the “pure” Ss Model, i.e. ζ = 0. The next proposition shows the effect on

the cumulative response function CIRθ of a small change of the coupling parameter θ. The

approximation is obtained by differentiating Yθ(t) = Y0(t) + θ
∫ T

0
K(t, s)Yθ(s)ds with respect

to θ and evaluating it at θ = 0 obtaining ∂
∂θ
Yθ(t)|θ=0 =

∫ T
0
K(t, s)Y0(s)ds.

Proposition 15. Assume that ζ = 0. Consider the CIRθ for the undiscounted case in a

long horizon. Then

lim
ρ↓0

lim
T→∞

1

CIRθ

dCIRθ

dθ
|θ=0 = 192

∑
m=1,3,5,...

(
1

mπ

)5

[csch(mπ)− coth(mπ)] ≈ −0.578 (49)

The left panel of Figure 4 plots (CIRθ − CIR0)/CIR0 for a range of θ that includes both

strategic substitutes (θ > 0) and complements (θ < 0). It can be seen that the relative slope

around θ is close to 0.6. Also we can see that as θ becomes more negative, and gets closer to

the reciprocal of the dominant eigenvalue, then CIRθ diverges as predicted by Proposition 12.

Figure 4: Impulse response of Monetary Shock
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CIRθ for the “pure” Calvo Model. Using the characterization of Proposition 14 we

compute the CIRθ for the pure Calvo model obtaining:

lim
ρ↓0

lim
T→∞

CIRCalvo
θ =

1

ζ
√

1 + θ
, and lim

ρ↓0
lim
T→∞

1

CIRCalvo
θ

dCIRCalvo
θ

dθ
|θ=0 = −1

2
(50)

Note that in the Calvo model the proportional effect of θ on the cumulative impulse

response CIRθ at θ ≈ 0 is slightly smaller but overall very close to the value obtained for the

pure Ss model. In the Calvo model this elasticity is −0.5, as shown in equation (50), where

in the baseline Ss model the elasticity is about −0.578 –see equation (49) in Proposition 15.

It is intuitive that the elasticity will be higher in the baseline Ss model, since the firm can

also decide when prices are changed. Recall that while the elasticities are similar, the level

of the CIR0 are very different between the baseline Ss model and the Calvo model.14

The left panel of Figure 4 compares the CIR for the baseline Ss model and for the Calvo

model, over a large range of values of θ. In both cases the CIRθ is decreasing and convex in

θ, diverges towards +∞ at a critical (negative) value of θ, and converges to zero as θ →∞.

What is remarkable is that the effect of θ in both models is very similar (not just at θ ≈ 0),

as both curves are very close over the whole domain. The right panel analyzes five Calvoplus

models where 0 < ` < ∞. For each of these models we study the CIRθ relative to CIR0.

Overall, the figure shows that across several models, from the pure Ss to the Calvo model, the

effect of strategic interactions is approximately multiplicative across a large range of values of

the strategic complementarities. This means that in spite of the large level differences of the

CIR in these models, as in e.g. Calvo being approximately 6 times larger that the Ss model

when θ ≈ 0, the introduction of strategic interactions affects these models in a quantitatively

similar way.

14As mentioned, CIRCalvo0 = 6×CIRSs0 , provided that both models have the same steady state frequency
of price changes –as can be seen in Alvarez, Le Bihan, and Lippi (2016).
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6 Conclusions

We studied the propagation of monetary shocks in a sticky-price general-equilibrium economy

where firms set prices subject to strategic complementarities with the decision of other firms.

In the dynamic equilibrium the firm’s price-setting decisions depend on aggregates, which in

turn depend on firms’s decisions. We cast this fixed-point problem as a perturbation of a

Mean Field Game (MFG) and established several analytic results on equilibrium existence

and on the analytic characterization of an impulse response.

We think the framework develop in this paper is useful to study the dynamics of equilib-

rium in related problems. For instance, we are applying it the closely related topic of time

dependent price setting Alvarez, Borovicka, and Shimer (2021), and to the case of technology

adoption, in particular for the introduction of digital currencies, in Alvarez, Argente, Lippi,

Mendez-Chacon, and Van Patten (2022).
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A Proofs

Proof. (of Proposition 1.) Define the markup m(p/P ) ≡ η(p/P )
η(p/P )−1

. Let us totally differen-

tiate the first order condition p∗(P ) = m(p∗(P )/P )χ(P ) with respect to P to obtain:

∂p∗

∂P
= m′(p∗/P )

[
∂p∗

∂P

1

P
− p∗

P

1

P

]
χ(P ) +m(p∗/P )

∂χ(P )

∂P

Completing elasticities we have:

P

p∗
∂p∗

∂P
= m′(p∗/P )

[
P

p∗
∂p∗

∂P
− P

p∗
p∗

P

]
χ(P )

P
+
m(p∗/P )

p∗
P
∂χ(P )

∂P

solving for P
p∗
∂p∗

∂P
and rearranging terms

P

p∗
∂p∗

∂P
= −

m′(p∗/P )χ(P )
P

1−m′(p∗/P )χ(P )
P

+

m(p∗/P )
p∗

P ∂χ(P )
∂P

1−m′(p∗/P )χ(P )
P

Completing elasticities

P

p∗
∂p∗

∂P
= −

m(p∗/P )χ(P )
P

1−m′(p∗/P )χ(P )
P

(
m′(p∗/P )

m(p∗/P )

)
+

m(p∗/P )χ(P )
p∗

1−m′(p∗/P )χ(P )
P

(
P

χ(P )

∂χ(P )

∂P

)
Evaluating this expression at p∗ = P gives

P

p∗
∂p∗

∂P

∣∣∣
p∗=P

= −
m(1)χ(P )

p∗

1−m′(1)χ(P )
p∗

(
m′(1)

m(1)

)
+

m(1)χ(P )
p∗

1−m′(1)χ(P )
p∗

(
P

χ(P )

∂χ(P )

∂P

)
and using that χ(P )/p∗ = 1/m(1):

P

p∗
∂p∗

∂P

∣∣∣
p∗=P

=

[
1

1− m′(1)
m(1)

][
−m

′(1)

m(1)
+

P

χ(P )

∂χ(P )

∂P

]

To get the expression in equation (1) note that m(x) ≡ η(x)
η(x)−1

so

m′(x) =
η′(x)(η(x)− 1)− η(x)η′(x)

(η(x)− 1)2
= − η′(x)

(η(x)− 1)2

and hence:

m′(1)

m(1)
= − η′(1)

(η(1)− 1)2

(η(1)− 1)

η(1)
= − η′(1)

η(1)(η(1)− 1)

That η(1) > 1 is implied by the first order optimality condition.
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Next we show that 1 + η′(1)
η(1)(η(1)−1)

> 0. Recall the second order condition for a maximum

Π11(p∗, P ) = D′′(p∗/P )(p∗ − χ(P ))/P 2 + 2D′(p∗/P )/P < 0

Note that D′ < 0 and that U/p∗ = 1/m and rewrite the second order condition as

D′′(p∗/P )

D′(p∗/P )P

(
1− 1

m

)
+ 2 > 0 (51)

Next, let us differentiate the elasticity η(x) ≡ −∂D(x)
∂x

x
D(x)

and evaluate it at x = 1. We get

η′(1) = −D
′′(1)

D(1)
+

(
D′(1)

D(1)

)2

− D′(1)

D(1)
= −D

′′(1)

D(1)
+ η2 + η

where the second equality uses the elasticity definition. We can thus write the second order
condition equation (51) as

D′′(1)

D(1)

D(1)

D′(1)P

1

η
+ 2 > 0

or, using the expression for D′′/D

(
η′ − η2 − η

) 1

η2
+ 2 =

η′ + η(η − 1)

η2
> 0

which establishes that 1 + η′

η(η−1)
> 0, where all η are evaluated at p/P = 1.

Finally, the expression for B ≡ −Π11(P̄ ,P̄ )

Π(P̄ ,P̄ )
P̄ 2, is obtained by direct computation evaluating

the objects at p = P̄ . We get

Π11

Π
=
D′′
(
1− 1

m

)
p∗

P 2 + 2D
′

P

DP
(
1− 1

m

) =
1

P 2

(
D′′

D
+ 2

D′

D
η

)
= − 1

P 2
(η′ + η(η − 1)) .

Proof. (of Proposition 2) Here we argue that, if θ 6= −1, then the stationary solution
displayed above is unique. On the other hand, if θ = −1, then any number Xss corresponds
to a steady state.

As a preliminary comment, we note that the same property holds in the simple case of a
static game with costless adjustment case, i.e. in the case where ρ → ∞ and where ψ = 0.
In this case the firm best response is x∗(X) = arg minxB(x + θX)2 where X now represent
the common choice of all the other firms. Thus, trivially, x∗(X) = −θX. Then “solving” for
the fixed point, x∗(X) = X we get X = −θX, obtaining the desired result that if θ 6= −1,
only X = 0 is a Nash equilibrium, but if θ = −1 any X is a Nash equilibrium.

Now we argue that the result for the static game also holds for the stationary state.
For this, define w ≡ x + θXss. Consider the value function û corresponding to the control
problem:

û(w) = min
{τi,∆wi}

E

[∫ ∞
0

e−ρtBw2(t) +
∞∑
i=1

ψ1{τi 6=ti}e
−ρτi |w(0) = w

]
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where dw = σdW for t ∈ [τi, τi) and w(τ+
i ) = w(τ−i ) + ∆wi and where ti are the realiza-

tions of the exogenously given times at which the fixed cost is zero, which are exponentially
distributed with parameter ζ.

We start making two claims about this problem, and then a third claim about the sta-
tionary distribution. First, the value function û is symmetric around zero, i.e. û(w) = û(−w)
for all w. This follows because the flow cost Bw2 is symmetric around zero, and because a
standard BM W has, for any collection of times, increments that are normally distributed,
and hence symmetric around zero. Second, if the solution of the value function is C2 then it
must satisfy (primes denote derivatives):

(ρ+ ζ)û(w) = Bw2 + ûww(w)σ
2

2
+ ζu(w∗) for all w ∈ [−w, w̄]

with boundary conditions:

û(w̄) = û(w) = û(w∗) + ψ and 0 = ûw(w̄) = ûw(w) = ûw(w∗)

Thus, since û is symmetric, it must be the case that w̄ = −w and w∗ = 0.
Third, and finally, using the symmetry of the thresholds {w,w∗, w̄}, we can find the

stationary density m̂(w) which is the unique solution of

0 = m̂ww(w)σ
2

2
− ζm̂(w) for all w ∈ [w,w∗) ∪ (w∗, w̄]

with boundary conditions:

0 = m̂(w̄) = m̂(w), lim
w↑w∗

m̂(w) = lim
w↓w∗

m̂(w), and 1 =

∫ w̄

w

m̂(w)dw .

Importantly, the density m̂ must be symmetric, centered at w∗ = 0.15 Hence,
∫ w̄
w
w m̂(w)dw =

0. Thus, a stationary equilibrium solution of the original problem requires:

x∗ss = w∗ − θXss, xss = w − θXss, x̄ss = w̄ − θXss,

Xss =

∫ w̄

w

m̂(w) (w − θXss) dw =

∫ w̄

w

m̂(w)wdw − θXss

∫ w̄

w

m̂(w)dw

and thus we can construct a stationary state if and only if:

Xss = −θXss

Hence, just as in the static case with no adjustment cost, if θ 6= −1, then Xss = 0 is the only
stationary state, and if θ = −1 one can construct a stationary state for any Xss. �

Proof. (of Proposition 3). The proof proceed in five parts.
1. Optimal decision rules. First we argue that if X(t) = 0, then it is optimal for

the firm to set x̄(t) = x̄ss = 1, x(t) = xss and x∗(t) = x∗ss = 0. This is immediate since

15This can be shown since for [w, 0] and [0, w̄], the density is a linear combination of the same two exponen-
tials. Using the boundary conditions at w and w̄ we express each the density in each segment as function of
one constant of integration. Finally by continuity at w = 0 we find that the distribution must be symmetric.
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given X(t) = 0 the period flow cost for the firm is F (x,X) = B(x + θXss)
2 = Bx2, which

is identical to the one for the stationary problem whose HJB is in equation (12). Hence the
optimal policy must be the same as the one for the stationary problem.

2. Symmetry of solution of KFE. Now we turn to show that m is symmetric. Let m
be a solution to

mt(x, t) = mxx(x, t)− ζm(x, t) for (x, t) ∈ (−1, 0) ∪ (0, 1)× [0, T ]

m(−1, t) = m(1, t) = 0 for t ∈ ×(0, T ]

m(x, 0) = m0(x) with m0(x) = m0(−x) for all x ∈ [0, 1] and∫ 1

−1

m(x, t)dx = 1,

and where m(x, t) is continuous at x = 0. Then m(·, t) is also symmetric on x
Define M(x, t) = m(x, t)−m(−x, t). Then:

Mt(x, t) = Mxx(x, t)− ζM(x, t) for (x, t) ∈ (−1, 0) ∪ (0, 1)× [0, T ]

M(−1, t) = M(1, t) = 0 for t ∈ ×(0, T ]

M(x, 0) = 0 for all x ∈ [0, 1] and M(0, t) = 0 for all t ∈ [0, T ]∫ 1

−1

M(x, t)dx = 0,

Differentiating M we get Mx(x, t) = m(x, t) +m(−x, t). Let 0 < ε < 1, so

Mx(ε, t) = mx(ε, t) +mx(−ε, t) and Mx(−ε, t) = mx(−ε, t) +mx(ε, t)

Taking ε ↓ 0:

Mx(0
+, t) = mx(0

+, t) +mx(0
−, t) and Mx(0

−, t) = mx(0
−, t) +mx(0

+, t)

Thus, M(·, t) is once differentiable at x = 0 for all t.
Next we show that for any smooth function with φ(−1, t) = φ(1, t) = 0 all t ∈ [0, T ] and

with φ(x, T ) = 0 for x ∈ [−1, 1], then

0 =

∫ T

0

∫ 1

−1

M(x, t) [−φt(x, t)− kφxx(x, t) + ζφ(x, t)] dxdt (52)

To see why equation (52) must hold, we proceed in three steps. Fix x ∈ [−1, 1], and
integrating by parts∫ T

0

M(x, t)φt(x, t)dt =

∫ T

0

Mt(x, t)φ(x, t)dt−M(x, t)φ(x, t)|T0
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using the boundary conditions φ(x, T ) = M(0, x) = 0 for all x ∈ [−1, 1] we have:∫ 1

−1

∫ T

0

M(x, t)φt(x, t)dtdx =

∫ 1

−1

∫ T

0

Mt(x, t)φ(x, t)dt

Fix any t ∈ (0, T ), using that Mx is continuous in x:∫ 1

−1

M(x, t)φxx(x, t)dx = −
∫ 1

−1

Mx(x, t)φx(x, t)dx+M(x, t)φx(x, t)|1−1

and using that M(−1, t) = M(1, t) we have∫ 1

−1

M(x, t)φxx(x, t)dx = −
∫ 1

−1

Mx(x, t)φx(x, t)dx

Integrating by parts again:∫ 1

−1

Mφxxdx =

∫ 0

−1

Mxxφdx+

∫ 1

0

Mxxφx −Mxφ|0−1 −Mxφ|10

using that Mx(x, t) and φ(x, t) are continuous in x = 0, and that φ(−1, t) = φ(1, t) = 0, then∫ 1

−1

M(x, t)φxx(x, t)dx =

∫ 1

−1

Mxx(x, t)φ(x, t)dx

Third, integrating with respect to t the last expression, and adding to the first we get:∫ T

0

∫ 1

−1

M(x, t) [−φt(x, t)− kφxx(x, t) + ζφ(x, t)] dxdt

=

∫ T

0

∫ 1

−1

φ(x, t) [Mt(x, t)− kMxx(x, t) + ζM(x, t)] dxdt

But since Mt(x, t) = kMxx(x, t) + ζM(x, t) for all (x, t) ∈ (−1, 0) ∪ (0, 1)× [0, T ] the second
integral is zero.

Now we show that if equation (52) holds for such φ function, it must be that M(x, t) = 0
for all (x, t) ∈ (−1, 0) ∪ (0, 1)× [0, T ]. Let φ be the solution of the KBE equation φt(x, t) +
kφxx(x, t)− ζφ(x, t) = −M(x, t) for (x, t) ∈ [−1, 1]× [0, T ] with final boundary φ(x, T ) = 0
for x ∈ [−1, 1]. The solution of this p.d.e. is smooth, in particular C2 in (x, t) and hence
satisfies the hypothesis. We have:

0 =

∫ T

0

∫ 1

−1

(M(x, t))2 dxdt

Finally, since M(x, t) = 0 is the solution, thus m(x, t) = m(−x, t), i.e. m is symmetric.

3. Existence of solution to KFE. Finally, we turn to the existence of a solution to
the p.d.e. with the relevant boundary conditions. We will only sketch the argument, which
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is based on finding a fixed point for a path A : [0, T ] → R+. Given the symmetry of m it
suffices to find m in half of its domain solving:

mt(x, t) = kmxx(x, t)− ζm(x, t) for all (x, t) ∈ [0, 1]× [0, T ]

m(0, t) = A(t), and m(1, t) = 0 for all t ∈ [0, T ] and

m(x, 0) = m0(x) for all x ∈ [0, 1]

Note that the solution depend on A. This solution can be found, given A and given the
Fourier coefficients of the function m0 denoted by 〈m0, ϕj〉 and the ones for (1− x) denoted
by 〈1− x, ϕj〉

m(x, t) = A(t)(1− x)

+
∞∑
j=1

(
[〈m0, ϕj〉 − A(0)〈1− x, ϕ〉] e−λjt − 〈1− x, ϕj〉

∫ t

0

eλj(τ−t) [A′(τ) + ζA(τ)] dτ

)
ϕj(x)

where ϕj(x) = sin(jπx) and where λj = (jπ)2k + ζ. Using∫ t

0

eλj(τ−t)A′(τ)dτ = −
∫ t

0

λje
λj(τ−t)A(τ)dτ + A(t)− e−λjtA(0)

Then

m(x, t) = A(t)(1− x) +
∞∑
j=1

[〈m0, ϕj〉 − A(0)〈1− x, ϕ〉] e−λjtϕj(x)

−
∞∑
j=1

(
〈1− x, ϕj〉

(
A(t)− A(0)e−λjt +

∫ t

0

eλj(τ−t)A(τ) [−λj + ζ] dτ

))
ϕj(x)

Simplifying

m(x, t) =
∞∑
j=1

(
〈m0, ϕj〉+ 〈1− x, ϕjk(jπ)2

∫ t

0

eλjτA(τ)dτ

)
e−λjtϕj(x)

The fixed point is obtained by requiring:

1

2
=

∫ 1

0

m(x, t)dx for all t ∈ [0, T ]

or

1

2
=
∞∑
j=1

e−λjt
1− cos(jπ)

jπ

(
〈m0, ϕj〉+ 〈1− x, ϕj〉k(jπ)2

∫ t

0

eλjτA(τ)dτ

)
where we use that ∫ 1

0

ϕj(x)dx =
1− cos(jπ)

jπ
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We can rewrite this equation as:

1

2
=
∞∑
j=1

e−λjt
(

1− cos(jπ)

jπ

)
〈m0, ϕj〉

+
∞∑
j=1

e−λjt
(

1− cos(jπ)

jπ

)
〈1− x, ϕj〉k(jπ)2

∫ t

0

eλjτA(τ)dτ

or

1

2
=
∞∑
j=1

e−λjt
(

1− cos(jπ)

jπ

)
〈m0, ϕj〉

+

∫ t

0

[
∞∑
j=1

e−λjt
(

1− cos(jπ)

jπ

)
〈1− x, ϕj〉k(jπ)2eλjτ

]
A(τ)dτ

Use that

〈1− x, ϕj〉 =

∫ 1

0
(1− x)ϕj(x)dx∫ 1

0
ϕj(x)2dx

=
2

πj

1− cos(jπ) = 2 if j is odd and 0 otherwise

Thus we have

1

2
=

∞∑
j=1,3,...

e−λjt
2

jπ
〈m0, ϕj〉+ 4k

∫ t

0

[
∞∑

j=1,3,...

eλj(τ−t)

]
A(τ)dτ

Note that if ||A||∞ <∞ for all t ∈ [0, T ] then:

∣∣∣4k ∫ t

0

[
∞∑

j=1,3,...

eλj(τ−t)

]
A(τ)dτ

∣∣∣ ≤ 4k||A||∞
∞∑

j=1,3,...

∫ t

0

eλj(τ−t)dτ

≤ ||A||∞
∞∑

j=1,3,...

4

(jπ)2
= ||A||∞

1

6

This is a first order Volterra integral equation with a difference kernel, for which we can
obtain a solution to A.

4. Path of X(t). Having established that given x̄(t) = x̄ss, x(t) = xss and x∗(t) = x∗ss,

there m(x, t) exists and it is symmetric in x for each t, then X(t) =
∫ 1

−1
m(x, t)dx = 0 = Xss.

5. Uniqueness. That the solution is unique on the class of symmetric m, follows from
two observations. First, that if m is symmetric, then X(t) = 0. Second, that the solution to
the KFE in step 3 is unique.

�

Proof. (of Lemma 1). First we show that v is antisymmetric. For that we use that the source
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2BθxZ(t) is antisymmetric as a function of x. To see this, define w : [0, 1]× [0, T ] as w(x, t) =
v(x, t)+v(−x, t), which is identically zero and solves 0 = wt(x, t)+kwxx(x, t)−ρw(x, t) with
boundary conditions w(1, t) = v(1, t) + v(−1, t) = 2v(0, t) and w(0, t) = 2v(0, t) all t and
w(x, T ) = 0 all x.

We can use the maximum principle that shows that the maximum and minimum of w
has to occur at the given boundaries, i.e. at either x ∈ {0, 1} and any t ∈ [0, T ) or at any
x ∈ [0, 1] and t = T . To see this, notice that since w(x, T ) = 0 for all x ∈ [0, 1], then if a
minimum will be interior, i.e. if it will occur at 0 < x̃ < 1 and 0 ≤ t̃ < T , then w(x̃, t̃) < 0.
Hence, wt(x̃, t̃) = −kwxx(x̃, t̃) + ρw(x̃, t̃) < 0 since wxx(x̃, t̃) ≤ 0 because (x̃, t̃) is an interior
minimum and k > 0, and since w(x̃, t̃) < 0. Hence w(x̃, t′) < w(x̃, t̃) for t′ close to t̃, a
contradiction with (x̃, t̃) being an interior minimum. A similar argument shows that there
can’t be an interior maximum.

Now we show that the maximum and minimum has to occur at t = T . For this we use
that w(x, t) = v(x, t) + v(−x, t) implies wx(0, t) = vx(0, t)− vx(0, t) = 0 for all t < T . Thus,
suppose that the minimum occurs at (x, t) = (0, t1) where t1 < T . Then w(0, t1) = 2v(0, t1)
and wt(0, t1) = 2vt(0, t1), so 2ρv(0, t1) = kwxx(0, t1)+2vt(0, t1). Since (0, t1) is a minimum, we
have vt(0, t1) ≥ 0 and since the minimum occurs at t1 < T , then v(0, t1) < 0, so wxx(0, t1) < 0.
But since wx(0, t1) = 0, then we obtain a contradiction with (0, t1) being a minimum. A
similar argument shows that the maximum cannot occur at (x, t) = (0, t2) where t2 < T .
Thus the minimum and maximum occur at t = T , where w(x, T ) = 0.

So we have shown that w(x, t) = 0 for all (x, t), and hence v(x, t) = −v(−x, t) all (x, t).
Since v is antisymmetric we have v(0, t) = −v(−0, t) and hence v(0, t) = 0.

Second, using smooth pasting at the boundaries ( ũx(−1) = ũx(1) = 0) and optimality at
x∗ = 0 (ũx(0) = 0) in equation (18), we can write the boundary conditions as

v(−1, t) = v(0, t) = v(1, t) = 0 all t ∈ (0, T )

which gives the desired result. �

Lemma 6. Let f be the solution of the heat equation

0 = ft(x, t) + kfxx(x, t)− ρf(x, t) + s(x, t) for all x ∈ [−1, 1] and t ∈ [0, T ) (53)

and boundaries
f(1, t) = φ̄(t) and f(−1, t) = φ(t) for all t ∈ (0, T ) (54)

and
f(x, T ) = Φ(x) for all x ∈ [−1, 1] (55)

for functions φ̄, φ,Φ and s. Assume that ρ ≥ 0 and k > 0. The solution is unique.

Proof. (of Lemma 6). As a contradiction, assume that there are two solutions f 1 and f 2.
Let F (x, t) ≡ f 2(x, t) − f 1(x, t). Note that the p.d.e. in equation (53) is linear, so that F
must satisfy

0 = Ft(x, t) + kFxx(x, t)− ρF (x, t) for all x ∈ [−1, 1] and t ∈ (0, T ) (56)
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with boundaries:

F (1, t) = 0 and F (−1, t) = 0 for all t ∈ (0, T ) and (57)

F (x, T ) = 0 for all x ∈ [−1, 1] (58)

We can either use the Maximum principle or a conservation of energy type of argument.
We pursue the second.

Define I(t) ≡
∫ 1

−1
(F (x, t))2dx ≥ 0 for t ∈ [0, T ]. Then use the boundary condition

I(T ) = 0 to write 0 = I(T ) = I(0) +
∫ T

0
I ′(t)dt. Next compute:

I ′(t) =

∫ 1

−1

d
dt

(F (x, t))2dx = 2

∫ 1

−1

F (x, t)Ft(x, t)dx = 2

∫ 1

−1

F (x, t)[ρF (x, t)− kFxx(x, t)]dx

= 2ρ

∫ 1

−1

F (x, t)2dx+ 2k

(∫ 1

−1

Fx(x, t)
2dx− F (x, t)Fx(x, t)

∣∣∣1
−1

)
where we have substituted the p.d.e. and integrated by parts. Using the boundary conditions
in equation (57) we have:

I ′(t) = 2ρ

∫ 1

−1

F (x, t)2dx+ 2k

∫ 1

−1

Fx(x, t)
2dx ≥ 0

Thus I(T ) = 0 only if I is zero for almost all t, and hence F (x, t) = 0 for almost all x, which
in turns implies that f 1 = f 2. �

Proof. (of Lemma 2) Uniqueness follows from the argument given in Lemma 6.
That equation (21) satisfies the zero boundary condition at t = T follows immediately

since at t = T equation (21) becomes an integral with zero length. That the Dirichlet
boundary condition holds at x = 1 and x = −1 follows since sin(xjπ) = 0 for all integers j.
Note also that the v(0, t) = 0 since sin(0) = 0. It only remains to show that equation (21)
satisfies the heat equation with source CxZ(t), where C ≡ 2Bθ. Direct computation gives

vt(x, t) = CZ(t) 2
∞∑
j=1

(−1)j

jπ
sin(jπx)

− 2C

∫ T

t

∞∑
j=1

e(ρ+k(jπ)2)(t−τ)(ρ+ k(jπ)2)Z(τ)
(−1)j

jπ
sin(jπx)dτ

vxx(x, t) = 2C

∫ T

t

∞∑
j=1

e(ρ+k(jπ)2)(t−τ)Z(τ)
(−1)j

jπ
(jπ)2 sin(jπx)dτ

and notice that the Fourier series for x in the interval [0, 1] is x = −2
∑∞

j=1
(−1)j

jπ
sin(jπx),

since
∫ 1

0
x sin(jπx)dx/

∫ 1

0
sin2(jπx)dx = −2 (−1)j

jπ
. Replacing these expressions in the equation

for vt(x, t) we can verify that 0 = vt(x, t) + kvxx(x, t)− ρv(x, t) + CxZ(t) for all x ∈ (−1, 1)
and t ∈ [0, T ). �
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For use in Proposition 4 we compute the expressions for the second derivative of ũ when
we use the normalization x̄ss = 1, i.e. the choice of ψ so that is attained.

Lemma 7. Fix the parameters σ,B, ζ and ρ and let ψ be such that x̄ss = 1. For such case
the second derivatives of ũ evaluated at the thresholds are given by:

0 < ũxx(0) =
2B

ρ+ ζ
[1− η csch(η)] , and 0 > ũxx(1) =

2B

ρ+ ζ
[1− η coth(η)] (59)

where η ≡
√

(ρ+ ζ)/k. Moreover |ũxx(0)| < |ũxx(1)|.

Proof. (of Lemma 7). The solution for ũ is of the form of a sum of the particular solution
a0 + a2x

2 and the two homogenous solutions, which given the symmetry can be written
as A cosh(ηx), so that ũ(x) = a0 + a2x

2 + A cosh(ηx). From the o.d.e. of ũ we obtain
that η =

√
(ρ+ ζ)/k. To determine the coefficients a0, a2 note the particular solution must

satisfy:

(ρ+ ζ)(a0 + a2x
2) = Bx2 + k2a2 + ζ(a0 + a2(x∗)) = Bx2 + k2a2 + ζa0

where we use that x∗ = 0, and hence a2 = B/(ρ + ζ) and a0 = 2kB/(ρ(ρ + ζ)). It remains
to find the value of A. For this we use smooth pasting at x̄ = 1. We have:

ũx(x̄) = 0 =
2B

ρ+ ζ
x̄+ Aη sinh(ηx̄)

and using x̄ = 1 we get

A = − 2B

(ρ+ ζ)η sinh(η)

Since ũxx(x) = 2B
ρ+ζ

+ Aη2 cosh(ηx) then the second derivatives are:

ũxx(0) =
2B

ρ+ ζ
+ Aη2 =

2B

ρ+ ζ
− 2Bη2

(ρ+ ζ)η sinh(η)
=

2B

ρ+ ζ
[1− η csch(η)]

ũxx(1) =
2B

ρ+ ζ
+ Aη2 cosh(η) =

2B

ρ+ ζ
− 2Bη2 cosh(η)

(ρ+ ζ)η sinh(η)
=

2B

ρ+ ζ
[1− η coth(η)]

The inequality is equivalent to:

1− η

sinh(η)
< −1 +

η cosh(η)

sinh(η)
or 2 < η

1 + cosh(η)

sinh(η)
or 2 sinh(η) < η(1 + cosh(η))

�
Proof. (of Proposition 4). Consider the smooth pasting and optimal return conditions from
the original problem, i.e.

0 = ux(x(t, δ), t, δ) , 0 = ux(x̄(t, δ), t, δ), and 0 = ux(x
∗(t, δ), t, δ)
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Differentiate them w.r.t. δ to find z̄, z and z∗:

z̄(t) = −vx(1, t)
ũxx(1)

for all t ∈ [0, T )

z(t) = −vx(−1, t)

ũxx(−1)
= z̄(t) for all t ∈ [0, T )

z∗(t) = −vx(0, t)
ũxx(0)

for all t ∈ [0, T ) .

Differentiating equation (21) obtained in Lemma 2 we obtain:

vx(1, t) = −2C

∫ T

t

∞∑
j=1

e−(ρ+k(jπ)2)(τ−t)Z(τ)dτ

vx(0, t) = −2C

∫ T

t

∞∑
j=1

e−(ρ+k(jπ)2)(τ−t)Z(τ)(−1)jdτ

The equality of z̄ = z follows from the antisymmetry of v established in Lemma 1 and from
z̄(t) = −vx(1,t)

ũxx(1)
and z(t) = −vx(−1,t)

ũxx(−1)
since ũ is symmetric, and hence ũxx(−1) = ũxx(1).

The expressions for Ā and A∗ in equation (25) follow from Lemma 7.
That H̄(s) > 0 is immediate using that k and s are positive. That H∗(s) < 0 follows

from grouping each pair of consecutive terms as in

H∗(s) = −
∑

j=1,3,5,...

e−(η2+(jπ)2) k s
[
1− e−(η2+((j+1)2−j2)π2) k s

]
< 0

where the inequality follows because k and s are strictly positive. �

Proof. (of Lemma 3.) The proof strategy is to define N(x, t) = n(x, t) + n(−x, t) defined in
(x, t) ∈ [0, 1]× [0, T ] satisfying:

Nt(x, t) = kNxx(x, t)− ζN(x, t) for (x, t) ∈ [0, 1]× [0, T ]

N(x, 0) = ν(x) + ν(−x) = 0 for all x ∈ [0, 1]

N(1, t) = n(1, t) + n(−1, t) = 0 for all t ∈ [0, T ]

N(0, t) = b(t) + a(t) ≡ C(t) for all t ∈ [0, T ]∫ 1

0

N(x, t)dx =

∫ 0

−1

n(x, t)dx+

∫ 1

0

n(x, t)dx = 0 for all t ∈ [0, T ]

for some function A(t). We will show that A(t) = 0 for all t and that N(x, t) = 0 for all
(x, t) ∈ [0, 1]× [0, T ].

The proof proceed by contradiction. Suppose that max{(x,t)∈[0,1]×[0,T ]}N(x, t) > 0 and

min{(x,t)∈[0,1]×[0,T ]}N(x, t) < 0. The two extremes has to have different sign since
∫ 1

0
N(x, t)dx =

0 and N(1, t) = 0 for all t. We argue that the maximum and the minimum of N(x, t) on the
set [0, 1] × [0, T ] has to occur on {(x, t) : t = 0} ∪ {(x, t) : x = 0} ∪ {(x, t) : x = 1}. This is
based on the strong maximum/minimum principle for the case for ζ ≥ 0, see Evans (2010)
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Theorem 12, Section 7.1.c. But since N(1, t) = 0 for all t, and N(x, 0) = 0 for all x, then the
maximum and the minimum are attained at x = 0 for two values 0 ≤ t < t̄ ≤ T . Assume,
without loss of generality, that C(t̄) > 0 > C(t). Since C(t) is non-zero, there must be some
0 < t0 < T for which C(t) does not change and it attains a strictly either positive or negative
value. Assume, without loss of generality, that it attains a positive value. Then by redefining
the p.d.e. considered above in the range t ∈ [0, t0] we have that C(t) ≥ 0 and C(t1) > 0 for
some t′ ∈ [0, t0]. But in this case, using the comparison principle, N(x, t) will be positive
everywhere in this domain, which is a contradiction.

�

Proof. (of Lemma 4) In this lemma we use that m(x, t, δ) is continuous around x = x∗(t, δ)
for all t and δ. Under the assumption that m(x, t, δ) is right and left differentiable at x =
x∗(t, δ), we have

m(x, t, δ) =

{
m(0, t, 0) +mx(0

−, t, 0) ∂
∂δ
x∗(0, 0)δ + ∂

∂δ
m(0−, t, 0)δ + o(δ) if x < x∗(t, δ)

m(0, t, 0) +mx(0
+, t, 0) ∂

∂δ
x∗(0, 0)δ + ∂

∂δ
m(0+, t, 0)δ + o(δ) if x > x∗(t, δ)

We can write these expressions in the notation developed above:

m(x, t, δ) =

{
m̃(0) + m̃x(0

−)z∗(t)δ + n(0−, t)δ + o(δ) if x < x∗(t, δ)

m̃(0) + m̃x(0
+)z∗(t)δ + n(0+, t)δ + o(δ) if x > x∗(t, δ)

Using the continuity of m, we equate both expansions to obtain:

m̃(0) + m̃x(0
−)z∗(t)δ + n(0−, t)δ + o(δ) = m̃(0) + m̃x(0

+)z∗(t)δ + n(0+, t)δ + o(δ)

using that m̃x(0
−) = −m̃x(0

+) > 0, and the notation a(t) = n(0−, t) and b(t) = n(0+, t) we
have: −m̃x(0

+)z∗(t) + a(t) + o(δ)/δ = z∗(t)m̃x(0
+) + b(t) + o(δ)/δ or taking δ → 0:

z∗(t) =
b(t)− a(t)

−2 m̃x(0+)

�

Lemma 8. The solution of the heat equation given by equation (31),(32) and (33) is

n(x, t) = r(x, t) +
∞∑
j=1

cj(t)ϕj(x) all x ∈ [0, 1] and t > 0 where

r(x, t) = w∗(t) + x [w̄(t)− w∗(t)] all x ∈ [0, 1], t > 0
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where w∗(t) = −m̃x(0
+) z∗(t) and w̄(t) = −m̃x(1)z̄(t) and for all j = 1, 2, . . . we have:

ϕj(x) = sin(jπx) for all x ∈ [0, 1] , 〈ϕj, h〉 ≡
∫ 1

0

h(x)ϕj(x)dx

cj(t) = cj(0)e−λjt +

∫ t

0

qj(τ)eλj(τ−t)dτ all t > 0 , where λj = (`2 + (jπ)2)k ,

qj(t) =
〈ϕj ,−rt(·, t)− ζr(·, t)〉

〈ϕj, ϕj〉
= 2

[
cos(jπ)− 1

jπ

]
w?′(t) + 2

(−1)j

jπ
[w̄′(t)− w?′(t)]

+ 2ζ

[
cos(jπ)− 1

jπ

]
w?(t) + 2ζ

(−1)j

jπ
[w̄(t)− w?(t)] all t > 0

cj(0) =
〈ϕj , ν − r(·, 0)〉
〈ϕj, ϕj〉

=
〈ϕj , ν〉
〈ϕj, ϕj〉

+ 2

[
cos(jπ)− 1

jπ

]
w?(0) + 2

(−1)j

jπ
[w(0)− w?(0)]

where for the benchmark case of ν = m̃x we get:

〈ϕj , ν〉
〈ϕj, ϕj〉

=
〈ϕj , m̃x〉
〈ϕj, ϕj〉

=

− `2jπ
`2+(jπ)2

(
1+e`(−1)j+1

(1−e`)
2 + 1+e−`(−1)j+1

(1−e−`)
2

)
if ζ > 0

−21+(−1)j+1

jπ
if ζ = 0

(60)

Proof. (of Lemma 8) This follows from the explicit solution of the heat equation in {(x, t) :
x ∈ [0, 1], t ∈ [0, T ]} and using n(x, t) = n(−x, t) to extend it to the negative values of
x. We use the general solution of the heat equation using Fourier series with two moving
boundaries at x = 0 and x = 1, a given initial condition, and no source. We reproduce
this general solution in Proposition 16. In terms of the notation in Proposition 16 we set
w(x, t) = n(x, t), no source, i.e. s(x, t) = 0, initial conditions given by f(x) = ν(x), lower and
upper space boundaries A(t) = −m̃x(0

+) z∗(t), B(t) = −m̃x(1)z̄(t) and killing rate ι = ζ. �

Proof. (of Proposition 6.)
We replace the expression from Lemma 8 for n into the integral for Z obtaining:

Z(t) = 2

∫ 1

0

xn(x, t)dx = w∗(t)
2

2
+ [w̄(t)− w∗(t)]2

3
+ 2

∞∑
j=1

cj(t)

∫ 1

0

x sin(jπx)dx

= w∗(t) + [w̄(t)− w∗(t)]2
3
− 2

∞∑
j=1

cj(t)
(−1)j

jπ
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Note that using the expression in Lemma 8 we can write

cj(t) =

(
〈ϕj , ν〉
〈ϕj, ϕj〉

+ 2

[
cos(jπ)− 1

jπ

]
w∗(0)

)
e−λjt + 2

(−1)j

jπ
[w̄(0)− w∗(0)]e−λjt

+ 2

[
cos(jπ)− 1

jπ

] ∫ t

0

w∗′(τ)eλj(τ−t)dτ + 2
(−1)j

jπ

∫ t

0

[w̄′(τ)− w∗′(τ)]eλj(τ−t)dτ

+ ζ2

[
cos(jπ)− 1

jπ

] ∫ t

0

w∗(τ)eλj(τ−t)dτ + ζ2
(−1)j

jπ

∫ t

0

[w̄(τ)− w∗(τ)]eλj(τ−t)dτ

Integration by parts, and using the expression for λj = ζ + (jπ)2k and cancelling the terms
with ζ we get:

cj(t) =

(
〈ϕj , ν〉
〈ϕj, ϕj〉

+ 2

[
cos(jπ)− 1

jπ

]
w∗(0)

)
e−λjt + 2

(−1)j

jπ
[w̄(0)− w∗(0)]e−λjt

− 2

[
cos(jπ)− 1

jπ

]
(jπ)2k

∫ t

0

w∗(τ)eλj(τ−t)dτ − 2
(−1)j

jπ
(jπ)2k

∫ t

0

[w̄(τ)− w∗(τ)]eλj(τ−t)dτ

+ 2

[
cos(jπ)− 1

jπ

] [
w∗(t)− w∗(0)e−λjt

]
+ 2

(−1)j

jπ

[
w̄(t)− w∗(t)− (w̄(0)− w∗(0)) e−λjt

]
Cancelling the terms evaluated at t = 0, and simplifying:

cj(t) =
〈ϕj , ν〉
〈ϕj, ϕj〉

e−λjt

− 2 [cos(jπ)− 1] jπk

∫ t

0

w∗(τ)eλj(τ−t)dτ − 2(−1)jjπk

∫ t

0

[w̄(τ)− w∗(τ)]eλj(τ−t)dτ

+ 2

[
cos(jπ)− 1

jπ

]
w∗(t) + 2

(−1)j

jπ
[w̄(t)− w∗(t)]

Multiplying the expression for cj(t) by 2 (−1)j

jπ

2
(−1)j

jπ
cj(t) = 2

(−1)j

jπ

〈ϕj , ν〉
〈ϕj, ϕj〉

e−λjt

− 4(−1)j [cos(jπ)− 1] k

∫ t

0

w∗(τ)eλj(τ−t)dτ − 4k

∫ t

0

[w̄(τ)− w∗(τ)]eλj(τ−t)dτ

+ 4(−1)j
[

cos(jπ)− 1

(jπ)2

]
w∗(t) + 4

1

(jπ)2
[w̄(t)− w∗(t)]
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using that cos(jπ) = (−1)j:

2
(−1)j

jπ
cj(t) = 2

(−1)j

jπ

〈ϕj , ν〉
〈ϕj, ϕj〉

e−λjt

+ 4
[
(−1)j − 1

]
k

∫ t

0

w∗(τ)eλj(τ−t)dτ − 4k

∫ t

0

[w̄(τ)− w∗(τ)]eλj(τ−t)dτ

− 4

[
(−1)j − 1

(jπ)2

]
w∗(t) + 4

1

(jπ)2
[w̄(t)− w∗(t)]

Replacing the 2 (−1)j

jπ
cj(t) back into Z(t) we

Z(t) = w∗(t) + [w̄(t)− w∗(t)]2
3
−
∞∑
j=1

4
[
(−1)j − 1

]
k

∫ t

0

w∗(τ)eλj(τ−t)dτ

+
∞∑
j=1

4k

∫ t

0

[w̄(τ)− w∗(τ)]eλj(τ−t)dτ +
∞∑
j=1

4

[
(−1)j − 1

(jπ)2

]
w∗(t)

−
∞∑
j=1

4
1

(jπ)2
[w̄(t)− w∗(t)] − 2

∞∑
j=1

(−1)j

jπ

〈ϕj , ν〉
〈ϕj, ϕj〉

e−λjt

collecting terms and simplifying:

Z(t) = w∗(t)

[
1

3
+ 4

∞∑
j=1

(−1)j

(jπ)2

]
+ w̄(t)

[
2

3
− 4

∞∑
j=1

1

(jπ)2

]
−
∞∑
j=1

4
[
(−1)j − 1

]
k

∫ t

0

w∗(τ)eλj(τ−t)dτ

+
∞∑
j=1

4k

∫ t

0

[w̄(τ)− w∗(τ)]eλj(τ−t)dτ − 2
∞∑
j=1

(−1)j

jπ

〈ϕj , ν〉
〈ϕj, ϕj〉

e−λjt

Using that
∞∑
j=1

(−1)j

(jπ)2
= − 1

12
and

∞∑
j=1

1

(jπ)2
=

1

6

we get

Z(t) = −
∞∑
j=1

4k
[
(−1)j − 1

] ∫ t

0

w∗(τ)eλj(τ−t)dτ +
∞∑
j=1

4k

∫ t

0

[w̄(τ)− w∗(τ)]eλj(τ−t)dτ

− 2
∞∑
j=1

(−1)j

jπ

〈ϕj , ν〉
〈ϕj, ϕj〉

e−λjt

collecting the terms inside the integrals:

Z(t) =
∞∑
j=1

4k(−1)j+1

∫ t

0

w∗(τ)eλj(τ−t)dτ +
∞∑
j=1

4k

∫ t

0

w̄(τ)eλj(τ−t)dτ − 2
∞∑
j=1

(−1)j

jπ

〈ϕj , ν〉
〈ϕj, ϕj〉

e−λjt
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Using the definition of w∗(t) = −m̃x(0
+)z∗(t) and w̄(t) = −m̃x(1)z̄(t) and exchanging the

integral with the sum and replacing λj = (`2 + (jπ)2)k we get:

Z(t) = 4k

∫ t

0

(
−m̃x(0

+)
∞∑
j=1

(−1)j+1e(`2+(jπ)2)k(τ−t)

)
z∗(τ)dτ

+ 4k

∫ t

0

(
−m̃x(1)

∞∑
j=1

e(`2+(jπ)2)k(τ−t)

)
z̄(τ)dτ − 2

∞∑
j=1

(−1)j

jπ

〈ϕj , ν〉
〈ϕj, ϕj〉

e−(`2+(jπ)2)kt

Finally computing the projections for ν:

Z(t) = 4k

∫ t

0

(
−m̃x(0

+)
∞∑
j=1

(−1)j+1e(`2+(jπ)2)k(τ−t)

)
z∗(τ)dτ

+ 4k

∫ t

0

(
−m̃x(1)

∞∑
j=1

e(`2+(jπ)2)k(τ−t)

)
z̄(τ)dτ

− 4
∞∑
j=1

(−1)j
e−(`2+(jπ)2)kt

jπ

∫ 1

0

sin(jπx)ν(x)dx

which gives the expression for TZ given the definitions of Ḡ, G∗ and Zη
0 .

That Ḡ(s) > 0 is immediate. That G∗(s) ≥ 0 follows by noticing that we can write:

G∗(s) =
∑

j=1,3,5,...

e−(`2+(jπ)2)k s
[
1− e−((j+1)2−j2)π2k s

]

and each term
[
1− e−((j+1)2−j2)π2k s

]
> 0 since k and s are positive. �

Proof. (of Proposition 7)
First we note that we can decompose ν into its symmetric and antisymmetric part. By

linearity, the solution is the sum of the solutions for each part. But, due to Proposition 5 the
solution for the symmetric part is zero, so we can assume without loss of generality that ν is
antisymmetric. Given Z, we replace z∗ = T ∗(Z), given by equation (23), and z̄ = T̄ (Z), given
by equation (22), into TZ(z∗, z̄), given by equation (34), to get T (Z) = TZ

(
T ∗(Z), T̄ (Z)

)
.

Note that, except for the term with Zν
0 , each term is a double integral. Changing the order

of integration and using that Ḡ, H̄ and G∗, H∗ satisfy:

−m̃x(1)H̄(s) = e−ρ s Ḡ(s) ≥ 0 and − m̃x(0
+)H∗(s) = e−ρ sG∗(s) ≤ 0 for all s > 0 (61)

we obtain:

Z(t) = Zν
0 (t) + θ

∫ T

0

K(t, s)Z(s)ds
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where

K(t, s) = 4 k

∫ min {t,s}

0

e−ρ (s−τ)

[
Ā`

Ḡ(s− τ)

m̃x(1)

Ḡ(t− τ)

m̃x(1)
− A∗`

G∗(s− τ)

m̃x(0+)

G∗(t− τ)

m̃x(0+)

]
dτ (62)

Performing the integration of the exponentials we obtain the desired expression.
The expression for Zν

0 uses that, since the sin is antisymmetric, for any function we have:∫ 1

0

sin(jπx)ν(x)dx = 1
2

∫ 1

−1

sin(jπx)ν(x)dx .

�

Proof. (of Lemma 5.)
The symmetry of K when ρ = 0 in 1 follows directly from its definition in equation (62).

That K ≤ 0 as in 2 uses the expression equation (62) and that G∗ ≥ 0, A∗ > 0, Ḡ ≥ 0, and
Ā < 0.

For part 1 with ρ > 0 and 3 we use the expression for the kernel K derived in the proof
of Proposition 7 (see equation (62)). Using that expression we can write K:

K(t, s) = −

(∫ min{t,s}

0

e−ρ(s−τ)G1(s− τ)G1(t− τ)dτ +

∫ min{t,s}

0

e−ρ(s−τ)G2(s− τ)G2(t− τ)dτ

)

= −
(∫ T

0

e−ρ(s−τ)G1(s− τ)G1(t− τ)dτ +

∫ T

0

e−ρ(s−τ)G2(s− τ)G1(t− τ)dτ

)
where G1(s) = 4k|Ā`|Ḡ(s) > 0 for s ≥ 0 and G1(s) = 0 otherwise. Likewise G2(s) =
4k|A∗` |G∗(s) > 0 for s ≥ 0 and G2(s) = 0 otherwise.

Part 1 establishes that K is self adjoint. For this we compute

K̃ab ≡
∫ T

0

∫ T

0

K(t, s)Va(s) ds Vb(t)e
−ρt dt

= −
2∑
j=1

∫ T

0

∫ T

0

∫ T

0

[
e−ρ(s−τ)Gj(s− τ)Gj(t− τ)dτ

]
Va(s) ds Vb(t)e

−ρtdt

= −
2∑
j=1

∫ T

0

eρτ
[∫ T

0

e−ρsGj(s− τ)Va(s) ds

∫ T

0

Gj(t− τ)Vb(t)e
−ρtdt

]
dτ
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Likewise we compute

K̃ba ≡
∫ T

0

∫ T

0

K(t, s)Vb(s) ds Va(t)e
−ρt dt

= −
2∑
j=1

∫ T

0

∫ T

0

∫ T

0

[
e−ρ(s−τ)Gj(s− τ)Gj(t− τ)dτ

]
Vb(s) ds Va(t)e

−ρtdt

= −
2∑
j=1

∫ T

0

eρτ
[∫ T

0

e−ρsGj(s− τ)Vb(s) ds

∫ T

0

Gj(t− τ)Va(t)e
−ρtdt

]
dτ

Clearly K̃ab = K̃ab, which establishes the desired result.
Part 3 establishes that K is negative definite. We will show that

Qi ≡ −
∫ T

0

∫ T

0

(∫ T

0

e−ρ(s−τ)Gi(s− τ)Gi(t− τ)dτ

)
V (s)V (t) e−ρt ds dt < 0

To see why this has to hold, we write:

Qi = −
∫ T

0

∫ T

0

∫ T

0

e−ρ(s−τ)Gi(s− τ)Gi(t− τ)V (s)V (t)e−ρt dτ ds dt

= −
∫ T

0

eρτ
∫ T

0

∫ T

0

e−ρsGi(s− τ)V (s)Gi(t− τ)e−ρtV (t) ds dt dτ

= −
∫ T

0

eρτ
(∫ T

0

Gi(s− τ)e−ρsV (s) ds

)(∫ T

0

Gi(t− τ)e−ρtV (t) dt

)
dτ

= −
∫ T

0

eρτ
(∫ T

0

Gi(s− τ)V (s)e−ρs ds

)2

dτ ≤ 0

with strictly inequality if V 6= 0.
Part 4 of the proof establishes the bounds for the integral

∫ T
0
|K(t, s)|ds.

As a preliminary step we write
∫ T

0
|K(t, s)|ds ≤

∫∞
0
|K(t, s)|ds as:∫ ∞

0

|K(t, s)|ds = 4
∞∑
j=1

∞∑
i=1

[
Ā − A∗ (−1)j+i

]
κi,j where

κi,j(t) ≡
∫ ∞

0

[
e[(jπ)2+(iπ)2+η2]k(t∧s) − 1

]
e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds
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Direct computation gives

κi,j(t) =

∫ t

0

e[(jπ)2+(iπ)2+η2]k(t∧s)e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds+

∫ ∞
t

e[(jπ)2+(iπ)2+η2ks]k(t∧s)e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds

−
∫ ∞

0

e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds

=

∫ t

0

e[(jπ)2+(iπ)2+η2]kse−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds+

∫ ∞
t

e[(jπ)2+(iπ)2+η2]kte−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds

− e−(jπ)2kt

∫ ∞
0

e−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds

= e−(jπ)2kt

∫ t

0

e(jπ)2ks

(jπ)2 + (iπ)2 + η2
ds+ e(iπ)2kt+η2kt

∫ ∞
t

e−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds

− 1

(jπ)2 + (iπ)2 + η2

e−(jπ)2kt

k(iπ)2 + kη2

=

(
1− e−(jπ)2kt

)
(jπ)2 + (iπ)2 + η2

1

(jπ)2k
+

1

(jπ)2 + (iπ)2 + η2

1

(iπ)2k + η2k
− 1

(jπ)2 + (iπ)2 + η2

e−(jπ)2kt

k(iπ)2 + η2k

=

(
1− e−(jπ)2kt

)
(jπ)2 + (iπ)2 + η2

(
1

(jπ)2k
+

1

(iπ)2k + η2k

)

=

(
1− e−(jπ)2kt

)
(jπ)2 + (iπ)2 + η2

1

k

(
(jπ)2 + (iπ)2 + η2

((jπ)2) ((iπ)2 + η2)

)
=

1− e−(jπ)2kt

k ((jπ)2) ((iπ)2 + η2)

Thus we get:

κi,j(t) =
1− e−(jπ)2kt

k (jπ)2 ((iπ)2 + η2)

We expand κij around η = 0 to obtain:

κi,j(t) =
1− e−(jπ)2kt

k ((jπ)2) ((iπ)2 + η2)
=

1− e−(jπ)2kt

k ((jπ)2) ((iπ)2)

(iπ)2

((iπ)2 + η2)

=
1− e−(jπ)2kt

k (jπ)2 (iπ)2

(
1− η2

(iπ)2
+ o(η2)

)
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Thus∫ T

0

|K(t, s)|ds ≤ −
∫ ∞

0

K(t, s)ds

= 4
∞∑
j=1

∞∑
i=1

[
−Ā+ A∗ (−1)j+i

](1− e−(jπ)2kt

k

)
1

(jπ)2(iπ)2

(
1− η2

(iπ)2

)
+ o(η2)

≤ 4
−Ā
k

 ∞∑
j=1

∞∑
i=1

1

(iπ)2

(
1− e−(jπ)2kt

)
(jπ)2

(1− η2

(iπ)2

)

+ 4
A∗

k

 ∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

(
1− e−(jπ)2kt

)
(jπ)2

(1− η2

(iπ)2

)
+ o(η2)

< 4
−Ā
k

[
∞∑
j=1

∞∑
i=1

1

(iπ)2

1

(jπ)2

](
1− η2

(iπ)2

)

+ 4
A∗

k

[
∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

1

(jπ)2

](
1− η2

(iπ)2

)
+ o(η2)

were we use that 1− e−(jπ2)kt < 1 and that :

−Ā
k

= − 2η2

1− η coth(η)
= 6 +

2

5
η2 + o(η2)

A∗

k
=

2η2

1− η csch(η)
= 12 +

7

5
η2 + o(η2)
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to write:∫ T

0

|K(t, s)|ds ≤ −
∫ ∞

0

K(t, s)ds

< 4
−Ā
k

[
∞∑
j=1

∞∑
i=1

1

(iπ)2

1

(jπ)2

](
1− η2

(iπ)2

)

+ 4
A∗

k

[
∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

1

(jπ)2

](
1− η2

(iπ)2

)
+ o(η2)

= 4

(
6 +

2

5
η2

)[ ∞∑
j=1

∞∑
i=1

1

(iπ)2

1

(jπ)2

](
1− η2

(iπ)2

)

+ 4

(
12 +

7

5
η2

)[ ∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

1

(jπ)2

](
1− η2

(iπ)2

)
+ o(η2)

= 4× 6

[
∞∑
j=1

∞∑
i=1

1

(iπ)2

1

(jπ)2

]
+ 4× 12

[
∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

1

(jπ)2

]

+ 4

[
∞∑
j=1

∞∑
i=1

1

(iπ)2

1

(jπ)2

](
2

5
− 6

(iπ)2

)
η2

+ 4

[
∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

1

(jπ)2

](
7

5
− 12

(iπ)2

)
η2 + o(η2)

Using the values for the following series into the previous expression

∞∑
j=1

1

(jπ)2
=

1

6
,
∞∑
j=1

(−1)j+1

(jπ)2
=

1

12
,
∞∑
j=1

1

(jπ)4
=

1

90
=

1

6

1

15
and

∞∑
j=1

(−1)j+1

(jπ)4
=

7

720
=

1

12

7

60

we obtain:∫ T

0

|K(t, s)|ds ≤ −
∫ ∞

0

K(t, s)ds

< 4× 6
1

62
+ 4× 12

1

62

1

4
+ 4

(
1

62

2

5
− 1

6

6

90

)
η2 + 4

(
7

5

1

62

1

4
− 1

6

12

12

7

60

)
η2 + o(η2)

= 1− 7

180
η2 + o(η2)

which is the expression for the case of small ρ.
To obtain the bound in 4 for any η and t ≥ 0 we note we note that

κi,j(t) =
1− e−(jπ)2kt

k ((jπ)2) ((iπ)2 + η2)
< κ̂i,j ≡

1

k (jπ)2 (iπ)2
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hence∫ ∞
0

|K(t, s)|dt = 4
∞∑
j=1

∞∑
i=1

[
Ā − A∗ (−1)j+i

]
κi,j(t) ≤ 4

∞∑
j=1

∞∑
i=1

[
Ā − A∗ (−1)j+i

]
κ̂i,j

Again, following the same steps as above we get:∫ T

0

|K(t, s)|ds ≤ −
∫ ∞

0

K(t, s)ds ≤ 4
−Ā
k

[
∞∑
j=1

∞∑
i=1

1

(iπ)2

1

(jπ)2

]

+ 4
A∗

k

[
∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

1

(jπ)2

]

Using the series obtained above we have:∫ T

0

|K(t, s)|ds < 4

62

(
−Ā
k

+
A∗

k

1

4

)
Using the expressions for −Ā/k and A∗/k we have:∫ T

0

|K(t, s)|ds < η2

18

(
1

1− η csch(η)
− 4

1− η coth(η)

)
We establish part 5, a bound for the kernel when ` > 0 in terms of the kernel for ` = 0. The

bound uses the expression derived in the proof of Proposition 6, which shows in equation (62)

K(t, s; `, η) =4 k

∫ min {t,s}

0

e−ρ (s−τ)
[

Ā`
Ḡ(s− τ ; `)

−m̃x(1)

Ḡ(t− τ ; `)

−m̃x(1)
− A∗`

G∗(s− τ ; `)

−m̃x(0+)

G∗(t− τ ; `)

−m̃x(0+)

]
dτ

where direct computation gives

0 <
Ḡ(s; `)

−m̃x(1)
=
∞∑
j=1

e−(`2+(jπ)2) k s ≤ Ḡ(s; 0)

1
=
∞∑
j=1

e−(jπ)2 k s and

0 <
G∗(s; `)

−m̃x(0+)
=
∞∑
j=1

(−1)j+1e−(`2+(jπ)2)k s ≤ G∗(s; 0)

1
=
∞∑
j=1

(−1)j+1e(jπ)2k s

where we use that for ` = 0 we have m̃x(x) = −1 all x > 0. Finally, using

Ā` = −m̃x(1)Ā < 0 and A∗` = −m̃x(0
+)A∗ > 0
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Thus fix a t, s and τ

|Ā`|
Ḡ(s− τ ; `)

−m̃x(1)

Ḡ(t− τ ; `)

−m̃x(1)
+ |A∗` |

G∗(s− τ ; `)

−m̃x(0+)

G∗(t− τ ; `)

−m̃x(0+)

≤ |Ā`| Ḡ(s− τ ; 0)Ḡ(t− τ ; 0) + |A∗` |G∗(s− τ ; 0)G∗(t− τ ; 0)

= |m̃x(1)||Ā| Ḡ(s− τ ; 0)Ḡ(t− τ ; 0) + |m̃x(0
+)||A∗|G∗(s− τ ; 0)G∗(t− τ ; 0)

≤ |m̃x(0
+)|
[
|Ā| Ḡ(s− τ ; 0)Ḡ(t− τ ; 0) + |A∗|G∗(s− τ ; 0)G∗(t− τ ; 0)

]
where we use that |m̃x(0

+)| > |m̃x(1)|. Integrating with respect to τ we obtain the desired
bound.

Now we establish the bound in 6. We do so by proving a stronger bound, i.e. we find a
bound for

ρ2

(1− e−ρT )2

∫ T

0

∫ T

0

K(t, s)2e−ρ(t+s)dsdt ≤ ρ2

(1− e−ρT )2

∫ T

0

∫ T

0

K(t, s)2dsdt

which covers the case where ρ = 0. The proof for the bound on the integral of K2 consists
on a long computation of the double integral.

Note that

|K(t, s)| ≤ 4
∞∑
j=1

∞∑
i=1

|
[
Ā − A∗ (−1)j+i

]
|

∣∣∣∣∣∣
[
e[(jπ)2+(iπ)2+η2]k(t∧s) − 1

]
e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2

∣∣∣∣∣∣
Thus using a change on variables we have:∫ T

0

∫ T

0

K2(t, s)dtds ≤
[
|Ā|+ |A∗|

] 4

k2π6

∫ Q

0

∫ Q

0

K̃2(t, s)dtds (63)

where

K̃(t, s) ≡
∞∑
j=1

∞∑
i=1

[
e[j2+i2+d](t∧s) − 1

]
e−j

2t−i2s−ds

j2 + i2 + d
with d ≡ η2

π2
and Q ≡ Tkπ2 (64)

We define
f(τ) ≡

(
e(j2+i2+d)τ − 1

)(
e(l2+m2+d)τ − 1

)
(65)

and then write:

K̃2(t, s) =
∑
j

∑
i

∑
l

∑
m

f(t ∧ s)e−(j2+l2)t−(i2+d+m2+d)s

(j2 + i2 + d)(m2 + l2 + d)
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Fix j, i,m, l, and consider the double integral in s and t:∫ Q

0

∫ Q

0

f(t ∧ s)e−(j2+l2)t−(i2+d+m2+d)sdsdt = A+ B (66)

≡
∫ Q

0

∫ t

0

f(t ∧ s)e−(j2+l2)t−(i2+d+m2+d)sdsdt+

∫ Q

0

∫ Q

t

f(t ∧ s)e−(j2+l2)t−(i2+d+m2+d)sdsdt

where A and B were implicitly defined. Solving the integral for A by parts we have:

A =

∫ Q

0

(∫ t

0

f(s)e−(i2+d+m2+d)sds

)
e−(j2+l2)tdt

=

(∫ t′

0

f(s)e−(i2+d+m2+d)sds

) (
e−(j2+l2)t′

−(l2 + j2)

)∣∣Q
0
−
∫ Q

0

f(t)e−(i2+d+m2+d)t e
−(j2+l2)t

−(l2 + j2)
dt

= −e
−(j2+l2)Q

(l2 + j2)

∫ Q

0

f(s)e−(i2+d+m2+d)sds+
1

(l2 + j2)

∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt

We also have:

B =

∫ Q

0

f(t)e−(j2+l2)t

(∫ Q

t

e−(i2+d+m2+d)sds

)
dt

=

∫ Q

0

f(t)e−(j2+l2)t

(
e−(i2+d+m2+d)Q − e−(i2+d+m2+d)t

−(i2 + d+m2 + d)

)
dt

=
1

(i2 + d+m2 + d)

∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt

− 1

(i2 + d+m2 + d)

∫ Q

0

f(t)e−(j2+l2)te−(i2+d+m2+d)Qdt

Since f(s) ≥ 0 we can write:

A = −e
−(j2+l2)Q

(l2 + j2)

∫ Q

0

f(s)e−(i2+d+m2+d)sds+
1

(l2 + j2)

∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt

≤ 1

(l2 + j2)

∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt (67)

and

B =
1

(i2 + d+m2 + d)

∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt

− 1

(i2 + d+m2 + d)

∫ Q

0

f(t)e−(j2+l2)te−(i2+d+m2+d)Qdt

≤ 1

(i2 + d+m2 + d)

∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt (68)

71



Thus

A+ B ≤ C(j, i, l,m) ≡
(

1

(l2 + j2)
+

1

(i2 + d+m2 + d)

)∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt (69)

Thus we want to compute the upper bound:∫ Q

0

∫ Q

0

K̃2(t, s)dsdt ≤
∑
j

∑
i

∑
l

∑
m

C(j, i, l,m)

(j2 + i2 + d)(l2 +m2 + d)
(70)

The next step is to compute the integral
∫ Q

0
f(t)e−(j2+i2+d+l2+m2+d)tdt. We have

f(t)e−(j2+i2+d+l2+m2+d)t (71)

≡
(
e(j2+i2+d)t − 1

)(
e(l2+m2+d)t − 1

)
e−(j2+i2+d+l2+m2+d)t

=
[
e(j2+i2+d+l2+m2+d)t + 1− e(j2+i2+d)t − e(l2+m2+d)t

]
e−(j2+i2+d+l2+m2+d)t

= 1 + e−(j2+i2+d+l2+m2+d)t − e−(l2+m2+d)t − e−(j2+i2+d)t

Now we compute the time integral:∫ Q

0

(
1 + e−(j2+i2+d+l2+m2+d)t − e−(l2+m2+d)t − e−(j2+i2+d)t

)
dt

= Q+
1− e−(j2+i2+d+l2+m2+d)Q

(j2 + i2 + d+ l2 +m2 + d)
− 1− e−(l2+m2+d)Q

(l2 +m2 + d)
− 1− e−(j2+i2+d)Q

(j2 + i2 + d)

≤ Q+
1

(j2 + i2 + d+ l2 +m2 + d)
+

1

(l2 +m2 + d)
+

1

(j2 + i2 + d)

Hence

C(j, i, l,m) ≤
(

1

(l2 + j2)
+

1

(i2 + d+m2 + d)

)
×
(
Q+

1

(j2 + i2 + d+ l2 +m2 + d)
+

1

(l2 +m2 + d)
+

1

(j2 + i2 + d)

)
and thus we have:∫ Q

0

∫ Q

0

K̃2(t, s)dsdt (72)

≤
∞∑
j=1

∞∑
i=1

∞∑
l=1

∞∑
m=1

(
1

(j2 + i2 + d)(l2 +m2 + d)

)(
1

(l2 + j2)
+

1

(i2 + d+m2 + d)

)
×
(
Q+

1

(j2 + i2 + d+ l2 +m2 + d)
+

1

(l2 +m2 + d)
+

1

(j2 + i2 + d)

)
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We have∫ Q

0

∫ Q

0

K̃2(t, s)dsdt ≤ 4QD

D ≡
∞∑
j=1

∞∑
i=1

∞∑
l=1

∞∑
m=1

(
1

(j2 + i2 + d)(l2 +m2 + d)

)(
1

(l2 + j2)
+

1

(i2 + d+m2 + d)

)
In turn, it suffices to show that

E ≡
∞∑
j=1

∞∑
i=1

∞∑
l=1

∞∑
m=1

1

(j2 + i2 + d)(l2 +m2 + d)

1

(l2 + j2)
<∞

To find a bound for this series we use the following integral:

F ≡
∫ ∞

1

∫ ∞
1

∫ ∞
1

∫ ∞
1

1

(x2
1 + x2

2 + d)

1

(y2
1 + y2

2 + d)

1

(x2
1 + y2

1)
dx1dx2dy1dy2

Thus using
∫∞

1
1/(z2 + a2)dz = tan−1(a)/a we have:

F =

∫ ∞
1

dx1

∫ ∞
1

dy1
1

(x2
1 + y2

1)

∫ ∞
1

1

(x2
1 + x2

2 + d)
dx2

∫ ∞
1

1

y2
1 + y2

2

dy2

=

∫ ∞
1

dx1

∫ ∞
1

dy1
1

(x2
1 + y2

1)

∫ ∞
1

1

(x2
1 + x2

2 + d)
dx2

tan−1(y1)

y2
1

≤
∫ ∞

1

dx1

∫ ∞
1

dy1
1

(x2
1 + y2

1)

∫ ∞
1

1

(x2
1 + x2

2)
dx2

tan−1(y1)

y2
1

=

∫ ∞
1

dx1

∫ ∞
1

dy1
1

(x2
1 + y2

1)

tan−1(x1)

x1

tan−1(y1)

y1

Using that tan−1(z) ≤ π/2 for z ≥ 1 we have

F ≤ π2

4

∫ ∞
1

∫ ∞
1

1

(x2
1 + y2

1)

1

x1

1

y1

dx1dy1

Using that
∫∞

1
1

(z2+a2)
1
z
dz = log(a2 + 2)/(2a) we have

F ≤ π2

4

∫ ∞
1

log(y2
1 + 2)

2y1

1

y1

dy1 =
π2

8

∫ ∞
1

log(y2
1 + 2)

y2
1

dy1

≤ π2

8

∫ ∞
1

log(y2
1)

y2
1

dy1 =
π2

4

∫ ∞
1

log(y1)

y2
1

dy1 =
π2

4
<∞

since
∫∞

1
log(z)
z2

dz = 1.
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Combining all the inequalities obtained above we have:∫ T

0

∫ T

0

K2(t, s)dsdt ≤ 4Q
π2

4

4

k2π6

(
A∗ − Ā

)
= Tkπ2 4

k2π4

(
A∗ − Ā

)
= T

4

kπ2

(
A∗ − Ā

)
Since

Ā = k 2η2

[1−η coth(η)]
< 0 and A∗ = k 2η2

[1−η csch(η)]
> 0

We have ∫ T

0

∫ T

0

K2(t, s)dsdt ≤ 8

π2
T
(

η2

[1−η csch(η)]
− η2

[1−η coth(η)]

)
and

ρ2

(1− e−ρT )2

∫ T

0

∫ T

0

K2(t, s)dsdt ≤c0
ρ2T

(1− e−ρT )2

(
η2

[1−η csch(η)]
− η2

[1−η coth(η)]

)
The proof for the bound of ||K||22 for the general case, i.e. the proof of part 7, follows the

same steps as the proof of part 6, except that: i) we use the bound for the case of `2 > 0
between the two Kernels, and ii) the discount e−ρ(t+s) in the definition of ||K||22 is introduced
in the relevant expressions. Given the similarity of the calculations, we only present the steps
that given rise to different expressions.

Using the same change of variables as above we can write:∫ T

0

∫ T

0

K2(t, s)e−ρ(t+s)dtds ≤
[
|Ā|+ |A∗|

] 4|m̃x(0
+)|

k2π6

∫ Q

0

∫ Q

0

K̃2(t, s)e−r(t+s)dtds (73)

where r ≡ ρ/π2, and where we use the same definitions of K̃ and f as in equation (64) and
equation (65) respectively. We proceed as above and define A + B incorporating the term
with discount, so that we get:∫ Q

0

∫ Q

0

f(t ∧ s)e−(j2+r+l2)t−(i2+r+d+m2+d)sdsdt = A+ B (74)

Following exactly the same steps we arrive to the following inequality:

A+ B ≤ C(j, i, l,m) (75)

≡
(

1

(l2 + j2)
+

1

(i2 + d+m2 + d)

)∫ Q

0

f(t)e−(2r+j2+i2+d+l2+m2+d)tdt
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We thus get:∫ Q

0

∫ Q

0

K̃2(t, s)e−r(t+s)dsdt ≤
∑
j

∑
i

∑
l

∑
m

C(j, i, l,m)

(j2 + i2 + d)(l2 +m2 + d)
(76)

The next step is to compute the integral
∫ Q

0
f(t)e−(2r+j2+i2+d+l2+m2+d)tdt. We have

f(t)e−(2r+j2+i2+d+l2+m2+d)t (77)

= e−2rt + e−(2r+j2+i2+d+l2+m2+d)t − e−(2r+l2+m2+d)t − e−(2r+j2+i2+d)t

Following the same steps as in the previous case:∫ Q

0

(
e−2rt + e−(2r+j2+i2+d+l2+m2+d)t − e−(2r+l2+m2+d)t − e−(2r+j2+i2+d)t

)
dt

≤ 1− e−2rQ

2r
+

1

(j2 + i2 + d+ l2 +m2 + d)
+

1

(l2 +m2 + d)
+

1

(j2 + i2 + d)

Following the same steps we obtain:∫ Q

0

∫ Q

0

K̃2(t, s)e−r(t+s)dsdt (78)

≤
∞∑
j=1

∞∑
i=1

∞∑
l=1

∞∑
m=1

(
1

(j2 + i2 + d)(l2 +m2 + d)

)(
1

(l2 + j2)
+

1

(i2 + d+m2 + d)

)
×
(

1− e−2rQ

2r
+

1

(j2 + i2 + d+ l2 +m2 + d)
+

1

(l2 +m2 + d)
+

1

(j2 + i2 + d)

)
and thus we have∫ Q

0

∫ Q

0

K̃2(t, s)e−r(t+s)dsdt ≤
[

1− e−2rQ

2r
+ 3

]
D

D ≡
∞∑
j=1

∞∑
i=1

∞∑
l=1

∞∑
m=1

(
1

(j2 + i2 + d)(l2 +m2 + d)

)(
1

(l2 + j2)
+

1

(i2 + d+m2 + d)

)
In the previous case we have shown that the series D converges to a finite limit. Going back
to the original variables for the integration, we obtain the desired bound. In particular we
get:

ρ2

(1− e−ρT )2

∫ T

0

∫ T

0

K2(t, s)e−ρ(t+s)dsdt ≤ ρ2

(1− e−ρT )2

[
1− e−2ρT

2ρ
+ 3

]
D

= ρ

[
1− e−2ρT + 6ρ

(1− e−ρT )2

]
D
2

�
Proof. (of Proposition 8)The proof of Proposition 8 is immediate, since using the definition
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of K in equation (38), it is straightforward to compute K(0, s) = 0 for all s ∈ [0, T ] hence

Yθ(0) = Y0(0) + θ
∫ T

0
K(0, s)Yθ(s)ds = Y0(0). Finally that Y0(0) = −Zν

0 (0) = 1 follows from
evaluation of the series equation (35) for any ` ≥ 0. �

Proof. (of Proposition 9 )
That the series in equation (43), whenever it converges, is the solution of equation (42)

follows from replacing the series into the integral equation.
That Yθ(0) = 1 follows from the fact that Y0(0) = 1 and that K(0, s) = 0 for all s ∈ (0, T ).
To establish that Yθ(t) > 0 and θ < 0, so we have θK(t, s) > 0 for all (t, s) ∈ (0, T )2

and hence (θK)r(Y0) > 0 for t ∈ (0, T ). Note that, for each t, the sequence Sn(θ, t) ≡∑n
r=0 θ

r(K)r(Y0)(t) is monotone increasing in n, and, by assumption converges. Hence,
Yθ(t) > 0. Moreover if θ′ < θ < 0 we have Sn(θ′, t) > Sn(θ, t). Thus, the limit preserves this
inequality.

To establish that Yθ(t) is convex, we differentiate twice the series with respect to θ,
obtaining:

∂2

∂θ2
Yθ(t) =

∞∑
r=2

r(r − 1)θr−2 (K)r (Y0)(t)

for t ∈ (0, T ). If r is even we have θr−2 > 0 and (K)r (Y0)(t) > 0. If r is odd we have
θr−2 < 0 and (K)r (Y0)(t) < 0, hence all the terms in the sum are strictly positive, and thus
∂2

∂θ2
Yθ(t) > 0.
�

Proof. (of Proposition 11.)
We show here a bound for the HS operator norm in terms of the L2 norm of the kernel.

We use that

||K||22 ≡
ρ2

(1− e−ρT )2

∫ T

0

∫ T

0

K2(t, s) e−ρ(s+t) ds dt (79)

=
∑
i,j

(
ρ2

(1− e−ρT )2

∫ T

0

∫ T

0

K(t, s) fi(s) fj(t) e
−ρ(s+t) ds dt

)2

(80)

This equality follows from projecting K(t, s) first as a function of s into {fi(s)}. In particular,
fix a t:

K(t, s) =
∞∑
i=1

〈K(t, ·), fi〉fi(s) =
ρ

1− e−ρT
∞∑
i=1

∫ T

0

K(t, s′)fi(s
′)e−ρs

′
ds′ fi(s)

And then project this expression as a function of t into the base {fj(t)}

K(t, s) =
ρ2

(1− e−ρT )2

∞∑
i=1

∞∑
j=1

∫ T

0

∫ T

0

K(t′, s′)fj(t
′)fi(s

′)e−ρs
′
e−ρt

′
ds′dt′ fi(s)fj(t)
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To simplify we can write this expression as:

K(t, s) =
∞∑
i=1

∞∑
j=1

κi,j fi(s)fj(t)

Now we can write:

(K(t, s))2 =
∞∑
i=1

∞∑
j=1

∞∑
m=1

∞∑
n=1

κi,jκm,n fi(s)fj(t)fm(s)fn(t)

Then integrating with respect to ρ2e−ρ(t+s)/(1− e−ρT )2 then:

ρ2

(1− e−ρT )2

∫ T

0

∫ T

0

(K(t, s))2 e−ρ(t+s)dtds

=
∞∑
i=1

∞∑
j=1

∞∑
m=1

∞∑
n=1

κi,jκm,n
ρ

1− e−ρT

∫ T

0

fi(s)fm(s)e−ρsds
ρ

1− e−ρT

∫ T

0

fj(t)fn(t)e−ρtdt

=
∞∑
i=1

∞∑
j=1

∞∑
m=1

∞∑
n=1

κi,jκm,nδi,mδj,n =
∞∑
i=1

∞∑
j=1

(κi,j)
2

where we use {fi} are orthonormal, and δ·,· is the Kroneker symbol, and thus we obtain
equation (80).

Let Kρ be defined as Kρ(t, s) = K(t, s)eρs. Then

||Kρ||22 =
∑
i,j

(
ρ2

(1− e−ρT )2

∫ T

0

∫ T

0

Kρ(t, s) fi(s) fj(t) e
−ρ(s+t) ds dt

)2

=
∑
i,j

(
ρ2

(1− e−ρT )2

∫ T

0

∫ T

0

K(t, s) fi(s) fj(t) e
−ρt ds dt

)2

and using Cauchy-Schwarz

||Kρ||22 ≤ ||K||22 ||eρs||22 = ||K||22
(ρT )2

(1− e−ρT )2

so

||K||2HS ≤
(1− e−ρT )2

ρ2

(ρT )2

(1− e−ρT )2
||K||22 = T 2||K||22

Thus, using this inequality and the results in Lemma 5 we obtain the bound on ||K||HS,
and thus operator is compact. The rest of the proof is directly from the spectral theorem.
�
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Proof. (of Proposition 15) We set T =∞. For this value we want to compute

d
dθ
CIRθ|θ=0 =

∫ ∞
0

d
dθ
Yθ(t)|θ=0dt =

∫ ∞
0

∫ ∞
0

K(t, s)Y0(t) ds dt

which can be written as

Q ≡
∫ ∞

0

∫ ∞
0

K(t, s)Y0(s)ds dt =
∞∑
m=1

Qm where Qm = 4

∫ ∞
0

∫ ∞
0

K(t, s)
1− cos(mπ)

(mπ)2
ds dt

where we have replaced the expression for Y0

Replacing the expression for K we get that for each m

Qm =
∞∑
i=1

∞∑
j=1

16 (1− cos(mπ))
(
Ā− A∗(−1)i+j

)
ω̃i,j,m

where ω̃i,j,m is defined as

ω̃i,j,m =
1

k2π8

1

(i2 + j2 + r2)m2
ωi,j,m and

ωi,j,m =

∫ ∞
0

∫ ∞
0

(
e(j2+i2+r2)s∧t − 1

)
e−j

2t−i2s−r2s−m2sds dt

were we have used a change on variables for t, and where we use r ≡ η2/π2.
Now we compute ωi,j,m letting ρ ↓ 0, or equivalently r → 0. For this note that we can

write the inner integral in ωi,j,m as follows:∫ t

0

e−j
2te−(m2−j2)sds+

∫ ∞
t

ei
2te−(i2+m2)sds−

∫ ∞
0

e−j
2te−(i2+m2)sds

= ej
2t

[
1− e−(m2−j2)t

]
(m2 − j2)

+
ei

2te−(i2+m2)t

(i2 +m2)
− e−j

2t

(i2 +m2)

=
e−j

2t − em2t

(m2 − j2))
+
e−m

2t − e−j2t

(i2 +m2)

Then, integrating the resulting expression with respect to t between 0 and ∞ we get:

ωi,j,m =
1

(m2 − j2)

[
1

j2
− 1

m2

]
+

1

(i2 +m2)

[
1

m2
− 1

j2

]
=

1

m2j2
+

1

(i2 +m2)

(j2 −m2)

m2j2

=
1

m2j2

(
i2 + j2

i2 +m2

)
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Now we replace this expression into ω̃i,j,m

ωi,j,m =
1

k2π8

1

m2

1

(j2 + i2)
ωi,j,m =

1

k2π8

1

m2

1

(j2 + i2)

1

m2j2

(
i2 + j2

i2 +m2

)
=

1

k2π8

1

m2

1

m2j2

(
1

i2 +m2

)
=

1

k2

1

(mπ)4

1

(jπ)2

1

(i2π2 +m2π2)

Finally we want to compute the infinite sums of the expression for ωi,j,m over i, j,m. For this
we will use that when m is odd:

∞∑
i=1

1

i2π2 +m2π2
=
mπ coth(mπ)− 1

2m2π2

∞∑
i=1

(−1)i

i2π2 +m2π2
=
mπ csch(mπ)− 1

2m2π2

∞∑
i=1

(−1)i+1

i2π2 +m2π2
=

1−mπ csch(mπ)

2m2π2

and we will also use that

∞∑
j=1

1
(jπ)2

=
1

6
and

∞∑
j=0

1

π2(j + 1)2
=

1

8
.

We write Q = QI −QII :

QI =
∑

m=1,3,5,...

2× 16 Ā
∞∑
i=1

∞∑
j=1

ω̃i,j,m =
∑

m=1,3,5,...

32
Ā

k

1

k

1

(mπ)4

∞∑
j=1

1

(jπ)2

∞∑
i=1

1

(i2π2 +m2π2)

=
∑

m=1,3,5,...

32

6

Ā

k

1

k

1

(mπ)4

∞∑
i=1

1

(i2π2 +m2π2)

=
∑

m=1,3,5,...

32

12

Ā

k

1

k

1

(mπ)6
(mπ coth(mπ)− 1)
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Now we write the second term of Q:

QII =
32

k

A∗

k

∑
1,3,5,...

1

(mπ)4

∞∑
j=1

1

j2π2

∞∑
i=1

(−1)i+1

π2i2 + π2m2
=

32

k

A∗

k

∑
m=1,3,5,...

1

(mπ)4
(O + E) where

O =
∑

j=1,3,5,...

1

(πj)2

∞∑
i=1

(−1)i+1

(i2π2 +m2π2))
=
∞∑
j=0

1

π2(j + 1)2

(1−mπ csch(mπ))

2m2π2

=
1

8

(1−mπ csch(mπ))

2m2π2
and

E =
∑

j=2,4,6,...

1

(πj)2

∞∑
i=1

(−1)i

(i2π2 +m2π2))
=

[
1

6
− 1

8

] ∞∑
i=1

(−1)i

(i2π2 +m2π2))

=
1

8

1

3

(mπ csch(mπ)− 1)

2m2π2

Thus

QII =
32

k

A∗

k

∑
m=1,3,5,...

1

(mπ)4
(O + E) =

32

k

A∗

k

1

8

(
1

3
− 1

) ∑
m=1,3,5,...

1

(mπ)4

(mπ csch(mπ)− 1)

2m2π2

=
32

k

A∗

k

1

8

1

3

∑
m=1,3,5,...

1−mπ csch(mπ)

(mπ)6

Recall that as ρ→ 0 then Ā/k → −6 and A∗/k → 12, and thus

Q = QI −QII =
∑

m=1,3,5,...

32

12

Ā

k

1

k

1

(mπ)6
(mπ coth(mπ)− 1)− 32

k

A∗

k

1

8

1

3

∑
m=1,3,5,...

1−mπ csch(mπ)

(mπ)6

=
∑

m=1,3,5,...

32

12
6

1

k

1

(mπ)6
(1−mπ coth(mπ))− 32

k
12

1

8

1

3

∑
m=1,3,5,...

1−mπ csch(mπ)

(mπ)6

=
16

k

∑
1,3,5,...

(
1−mπ coth(mπ)

(mπ)6
− 1−mπ csch(mπ)

(mπ)6

)
=

16

k

∑
m=1,3,5,...

csch(mπ)− coth(mπ)

(mπ)5

Finally we have:

CIR0 =

∫ ∞
0

Y0(t)dt =
∑

1,3,5,...

8

∫ ∞
0

e−π
2m2kt

(mπ)2
dt

=
8

k

∑
1,3,5,...

1

(mπ)4
=

8

k

1

96
=

1

12 k
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Thus

1

CIRθ

dCIRθ

dθ
|θ=0 =

Q

CIR0

= 16× 12
∑

m=1,3,5,...

csch(mπ)− coth(mπ)

(mπ)5

and using 16× 12 = 192 we get our final result.
�

Proof. (of Proposition 14.)
Since firms can only change prices at times independent to their state x, writing the

control problem of the firm we obtain that the solution for x∗(t) is:

x∗(t) = arg min
x

∫ ∞
t

e−(ρ+ζ)sE
[(
x+ σW (s) + θX(t+ s)1{t+s≤T}

)2 |W (t) = 0
]
ds

= −θ(ζ + ρ)

∫ T−t

0

e−(ζ+ρ)τX(t+ τ)dτ

= −θ(ζ + ρ)

∫ T

t

e−(ζ+ρ)(s−t)X(s)ds for all t ≥ 0

and thus we get the o.d.e.:

d

dt
x∗(t) ≡ ẋ∗(t) = θ(ζ + ρ)X(t) + (ζ + ρ)x∗(t) for all t ≥ 0

In this simple case we can solve for the dynamics of the cross-sectional average evolves
X(t) directly, without solving for the entire density. At time t a fraction ζe−ζτdτ of firms
have prices that have change at time t− τ . At this times, they set the price to be x∗(t− τ).
We also use that before the initial period, i.e. t ≤ 0, the optimal reset price x∗(t) = −0, so
boundary condition right after the shock is X(0) = −1, using the normalization δ = 1. We
thus have

X(t) = ζ

∫ t

0

e−ζτx∗(t− τ)dτ − e−ζt for all t ≥ 0

which implies

d

dt
X(t) ≡ Ẋ(t) = ζ (x∗(t)−X(t)) for all t ≥ 0

We can write a simple constant coefficient o.d.e. for the vector (X(t), x∗(t)) as(
ẋ∗(t)

Ẋ(t)

)
=

(
ρ+ ζ θ(ρ+ ζ)
ζ −ζ

)(
x∗(t)
X(t)

)
Letting µ be the eigenvalues of the matrix, we have (µ− ρ− ζ)(ζ + µ)− θ(ρ+ ζ)ζ = 0. For
instance if ρ = 0 we get (µ+ζ)(µ−ζ) = θζ2, with solution µ = ±ζa, so that (a+1)(a−1) = θ
or a2 − 1 = θ, so µ = ±

√
1 + θ.

�
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Online Appendix:

Price Setting with Strategic Complementarities
as a Mean Field Game

Fernando Alvarez, Panagiotis Souganidis, Francesco Lippi

G Solution to the Heat Equation

In this appendix we collect well known results for the solution of one dimensional heat
equation with given initial (or terminal) conditions, defined in a strip, with time varying
boundaries, and allowing for source.

Consider the heat equation in the domain (x, t) ∈ [0, 1] × R+, with a source s, and
with time boundaries given by the time varying functions A,B. In particular to solve for
w : [0, 1]×R+ → R given parameter k > 0, ι ≥ 0, source s : [0, 1]×R+ → R, space boundary
at time zero f : [0, 1]× R, and value at the boundaries given by a, b : R+ → R satisfying:

0 = −wt(x, t)− ιw(x, t) + kwxx(x, t) + s(x, t) all x ∈ [0, 1] and t > 0

w(x, 0) = f(x) all x ∈ [0, 1]

w(0, t) = A(t) all t > 0 and

w(1, t) = B(t) all t > 0

Proposition 16. The solution for the KFE equation for w is given by:

w(x, t) = r(x, t) +
∞∑
j=1

aj(t)ϕj(x) all x ∈ [0, 1] and t > 0 where

r(x, t) = A(t) + x[B(t)− A(t)] all x ∈ [0, 1], t > 0

and where for all j = 1, 2, . . . we have:

ϕj(x) = sin(jπx) for all x ∈ [0, 1] , 〈ϕj, h〉 ≡
∫ 1

0

h(x)ϕj(x)dx

aj(t) = aj(0)e−λjt +

∫ t

0

qj(τ)eλj(τ−t)dτ all t > 0 ,

qj(t) =
〈ϕj , s(·, t)− rt(·, t)− ιr(·, t)〉

〈ϕj, ϕj〉
all t > 0

λj = ι+ (jπ)2k and aj(0) =
〈ϕj , f − r(·, 0)〉
〈ϕj, ϕj〉

.
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The proof can be done by verifying that the equation hold at the boundaries, that for
t > 0 the p.d.e. holds in the interior since

a′j(t) = −λjaj(t) + qj(t) for all t > 0 and j = 1, 2, . . .

and since {ϕj(x)} form an orthogonal bases for functions on {h : [0, 1] → R}, and finally
that the boundary holds at t = 0 for all x.

Consider now the KBE equation, which only changes the sign of the time derivative, the
range of time, and the time at which the space boundary condition holds, so w : [0, 1] ×
[0, T ]→ R, where:

0 = wt(x, t)− ιw(x, t) + kwxx(x, t) + s(x, t) all x ∈ [0, 1] and t > 0

w(x, T ) = f(x) all x ∈ [0, 1],

w(0, t) = A(t) all t ∈ [0, T ], and

w(1, t) = B(t) all t ∈ [0, T ]

Proposition 17. The solution for the KBE for w is given by:

w(x, t) = r(x, t) +
∞∑
j=1

aj(t)ϕj(x) all x ∈ [0, 1] and t ∈ [0, T ] where

r(x, t) = A(t) + x[B(t)− A(t)] all x ∈ [0, 1], t ∈ [0, T ]

and where for all j = 1, 2, . . . we have:

ϕj(x) = sin(jπx) for all x ∈ [0, 1] , 〈ϕj, h〉 ≡
∫ 1

0

h(x)ϕj(x)dx

aj(t) = aj(T )e−λj(T−t) +

∫ T

t

qj(τ)eλj(t−τ)dτ all t ∈ [0, T ) ,

qj(t) =
〈ϕj , s(·, t) + rt(·, t)− ιr(·, t)〉

〈ϕj, ϕj〉
all t ∈ [0, T )

λj = ι+ (jπ)2k and aj(T ) =
〈ϕj , f − r(·, T )〉
〈ϕj, ϕj〉

.

As in the previous case the proof can be done by verifying that the equation hold at the
boundaries, that for t ∈ [0, T ] the p.d.e. holds in the interior since

−a′j(t) = −λjaj(t) + qj(t) for all t ∈ [0, T ) and j = 1, 2, . . .

Note that qj(t) and aj(t) are also defined differently than for the KFE.
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H Additional material

H.1 Variational Inequality

In general, we should write the problem of the firm as solving the following variational
inequalities:

ρu(x, t) = (81)

min

{
ut (x, t) +

σ2

2
uxx(x, t) + F (x,X(t)) + ζ

(
min
x′

u(x′, t)− u(x, t)
)
, ρ
(
ψ + min

x′
u(x′, t)

)}
which must hold for all t ∈ [0, T ] and for all x. We can define x∗(t) = arg minx u(x, t). Note
that this formulation does not assume that u(·, t) is once differentiable, nor that range of
inaction is given by a single interval. If the value function is well behaved, we can write
equation (81) as the classical formulation which we described above, i.e. as the p.d.e equa-
tion (3) and the boundary conditions equation (6)-equation (7).

H.2 Equations for the ζ = 0 case.

If ζ = 0, the stationary distribution m̃ given by a triangular tent-map:

m̃(x) =

{
2

x̄ss−xss
− (x− x∗ss) 2

(x̄ss−xss)(x̄ss−x∗ss)
for x ∈ [x∗ss, x̄ss]

2
x̄ss−xss

+ (x− xss) 2
(x̄ss−xss)(x∗ss−xss)

for x ∈ [xss, x
∗
ss]

(82)

H.3 Kernel evaluation on the diagonal.

Consider the case where ζ = 0. The limit of K(s, t) for 0 < t = s <∞ gives

|K(t, t)| =

∣∣∣∣∣4
∞∑
j=1

∞∑
i=1

[
Ā − A∗ (−1)j+i

] 1− e−(jπ)2kt−(iπ)2kt−η2kt

(jπ)2 + (iπ)2 + η2

∣∣∣∣∣
≥ 4|Ā|

∞∑
j=1

∞∑
i=1

1− e−(jπ)2kt−(iπ)2kt−η2kt

(jπ)2 + (iπ)2 + η2

= −4|Ā|
∞∑
j=1

∞∑
i=1

e−(jπ)2kt−(iπ)2kt−η2kt

(jπ)2 + (iπ)2 + η2
+ 4|Ā|

∞∑
j=1

∞∑
i=1

1

(jπ)2 + (iπ)2 + η2

The first term of the last equality converges for t > 0, and j integer since

e−(jπ)2kt−(iπ)2kt−η2kt

(jπ)2 + (iπ)2 + η2
<
e−π

2ktj

(iπ)2

and so
∞∑
j=1

∞∑
i=1

e−(jπ)2kt−(iπ)2kt−η2kt

(jπ)2 + (iπ)2 + η2
<

∞∑
j=1

e−π
2ktj

∞∑
i=1

1

(iπ)2
=

1

1− e−π2kt

1

6
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The second term of the last equality diverges since the
∑∞

j=1

∑∞
i=1

1
(jπ)2+(iπ)2+η2

diverges to
+∞.

I The demand system with Kimball’s aggregator

Basic Set up. Let C(c1, c2, . . . , cK) be a homogeneous of degree one aggregator defined
implicitly by:

1 =
K∑
s=1

Υ
(cs
C

) 1

K
(83)

Note that the derivative of C with respect to ck is given by:

∂C
∂ck

(c1, c2, . . . , cK) =
Υ′
(
ck
C

)
1
K∑K

s=1 Υ′
(
cs
C

)
cs
C

1
K

Household maximization problem. We are interested in solving:

U(p1, p2, . . . , pK , E) ≡ max
{c1,c2,...,cK}

C(c1, c2, . . . , cK) + λ

(
E −

K∑
s=1

pscs
1

K

)
(84)

The first order conditions can be written as:

λpk
1

K
=
∂C
∂ck

=
Υ′
(
ck
C

)
1
K∑K

s=1 Υ′
(
cs
C

)
cs
C

1
K

for k = 1, 2, . . . , K

or

λpk =
Υ′
(
ck
C

)∑K
s=1 Υ′

(
cs
C

)
cs
C

1
K

for k = 1, 2, . . . , K (85)

We can write the expenditure as:

E =
K∑
s=1

pscs
1

K
=

1

λ

K∑
s=1

∂C
∂cs

cs (86)

Define the (relative) demand function for good k

qk ≡
ck

C(c1, c2, . . . , cK)

Thus we can write the solution to the maximization problem above as K + 2 variables
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{q1, q2, . . . , qK , C, λ} solving the following K + 2 equations:

λpk =
Υ′ (qk)∑K

s=1 Υ′ (qs) qs
1
K

for k = 1, 2, . . . , K

1 =
K∑
s=1

Υ (qs)
1

K
, C =

E∑K
s=1 psqs

1
K

We note that this corresponds to the following continuum case as K →∞:

λpk =
Υ′ (qk)∫ 1

0
Υ′ (qs) qsds

for k ∈ [0, 1] , 1 =

∫ 1

0

Υ (qs) ds , C =
E∫ 1

0
psqsds

Symmetric limit case. Returning to the finite case, we are interested in the case where
k = 1 has a price p1 = p and p2 = p3 = · · · = pK = P for the rest of the goods. In this case
we will let q1 = q and qk = q̄ for k = 2, 3, . . . , K, and we can write the system as

1 = Υ (q)
1

K
+ Υ (q̄)

K − 1

K
, C =

E

pq 1
K

+ P q̄K−1
K

λp =
Υ′ (q)

Υ′ (q) q 1
K

+ Υ′ (q̄) q̄K−1
K

and , λP =
Υ′ (q̄)

Υ′ (q) q 1
K

+ Υ′ (q̄) q̄K−1
K

And if we let K →∞ we obtain the simple recursive system:

1 = Υ (q̄) , λP q̄ = 1 , C =
E

P q̄
and , λp =

Υ′ (q)

Υ′ (q̄) q̄

Which we can solve as:

1 = Υ (q̄) =⇒ q̄ = Υ−1 (1) , λ = 1/(P q̄) and C =
E

PΥ−1 (1)

Υ′ (q) =
p

P
Υ′ (q̄) =⇒ q = (Υ′)

−1
( p
P

Υ′
(
Υ−1 (1)

))
Preference shocks. Finally, we introduce preference shocks As in each good to have:
1 =

∑K
s=1 Υ

(
cs
C , As

)
1
K

. In particular we assume the following multiplicative form:

1 =
K∑
s=1

Υ (qsAs)
1

K

This implies:

λ
pk
Ak

=
Υ′ (qkAk)∑K

s=1 Υ′ (qsAs)Asqs
1
K

for k = 1, 2, . . . , K , C =
E∑K

s=1 psqs
1
K

(87)
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One case of interest is to consider A′s such that ps = PAs so the shocks happens to be
proportional to the prices. In this case we can write Qs ≡ qsAs and get:

λP =
Υ′ (Qk)∑K

s=1 Υ′ (Qs)Qs
1
K

for k = 1, 2, . . . , K

1 =
K∑
s=1

Υ (Qs)
1

K
and , C =

E

P
∑K

s=1Qs
1
K

which clearly has a solution with Qk = Q.
Let us consider the case where A1 = A is arbitrary and pk = PAk for k = 2, . . . , K, as

before. We have

1 = Υ (qA)
1

K
+ Υ (Q)

K − 1

K
, C =

E

pq 1
K

+ PQK−1
K

λ
p

A
=

Υ′ (qA)

Υ′ (qA) qA 1
K

+ Υ′ (Q)QK−1
K

and , λP =
Υ′ (Q)

Υ′ (qA) qA 1
K

+ Υ′ (Q)QK−1
K

whose limit as K →∞ is:

1 = Υ (Q) , C =
E

PQ
, λ

p

A
=

Υ′ (qA)

Υ′ (Q)Q
and , λPQ = 1

The demand function can be written as:

Υ′ (qA) =
p

PA
Υ′
(
Υ−1(1)

)
=⇒ q =

1

A
(Υ′)

−1
( p

PA
Υ′
(
Υ−1(1)

))
and letting c1 = c = q C

c =
C
A

(Υ′)
−1
( p

PA
Υ′
(
Υ−1(1)

))
=

1

Υ−1(1)

E

PA
(Υ′)

−1
( p

PA
Υ′
(
Υ−1(1)

))
(88)

The firm’s real profit function. Let the nominal wage W be the numeraire, Z be the

firm’s real marginal cost and p = p̂A be the firm’s price. We can write the firm’s profit

function as

Π(p̂, P, Z) = c ·
( p
W
− Z

)
=

E

Υ−1(1)P
(Υ′)

−1

(
p̂

P
Υ′
(
Υ−1(1)

))( p̂

W
− Z

A

)
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where the second equality uses equation (88). If we assume that Z = A, i.e. that preference

shocks are proportional to marginal cost shocks, then we have that each firm solves

max
p̂

Π(p̂, P ) =
E

Υ−1(1)PW

[
max
p̂

D

(
p̂

P

)
(p̂−W )

]
(89)

where p̂ ≡ p/A , and D

(
p̂

P

)
≡ (Υ′)

−1

(
p̂

P
Υ′
(
Υ−1(1)

))
(90)

so the profit of the individual firm does not depend on Z.

The first order condition for profit maximization gives

Π1(p̂, P ) = D′
(
p̂

P

)
p̂−W
P

+D

(
p̂

P

)
= 0 (91)

evaluated at a symmetric equilibrium where p̂ = P we have that the optimal price p̂∗ solves

D′ (1)
p̂∗ −W
p̂∗

+D (1) = 0

or that the profit maximizing markup, µ = p̂∗/W , satisfies µ−1
µ

= p̂∗−W
p̂∗

= D(1)
−D′(1)

.

Comparative statics for the optimal pricing. We want to characterize how the optimal

price u varies as a function of the aggregate price P around an optimum.

Recall the first order condition

Π1(p̂, P ) = D′
(
p̂

P

)
p̂−W
P

+D

(
p̂

P

)
= 0 (92)

We first notice that the aggregate expenditure E/P enters the profit function multiplicatively

in equation (89). This implies that changes in aggregate expenditure will have no first order

effect on the price setting choice of the firm (around the optimal choice), or that ∂p̂
∂E

∣∣∣
p̂∗

= 0.

From now on we omit the argument of the function D(·) and simply write D. From the

first order condition Π1(p̂, P ) = 0 we have that

∂p̂

∂P

P

p̂
= −Π12

Π11

P

p̂
(93)

Compute the cross partial derivative

Π12 = −D′′
(
p̂−W
P

p̂

P 2

)
−D′

(
p̂−W
P 2

+
p̂

P 2

)
= −D′′

(
D

−D′
p̂

P 2

)
−D′

(
D

−D′P
+

p̂

P 2

)
(94)
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where the second equality uses equation (92).

Let us define the own price elasticity

η ≡ −∂D
∂p̂

p̂

D
= −D

′

D

p̂

P
(95)

Using this definition we compute

∂η

∂p̂
=

1

DP

(
−D′′ p̂

P
−D′ + (D′)2

D

p̂

P

)
(96)

Using the definition in equation (95) we rewrite equation (94) as

P

p̂
Π12 =

1

η P

(
−D′′ p̂

P
−D′ + (D′)2

D

p̂

P

)
= D

1

η

∂η

∂p̂
(97)

where the second equality uses the expression in equation (96).

We have

∂p̂

∂P

P

p̂
=

D

−Π11

1

η

∂η

∂p̂

Note for instance that if the demand system is CES, so that the function D is a power

function, the elasticity eta has a zero elasticity w.r.t. P at the symmetric equilibrium where

p̂ = P , or ∂η
∂p̂

= 0 as can be readily verified from equation (96). This implies that the optimal

firm price u is unresponsive to the aggregate price P at the symmetric equilibrium.
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