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1 Introduction

Substitution patterns between differentiated products are crucial to understand many

important economic questions in industrial organization, international trade, public eco-

nomics and other fields. In their pioneering contributions, Berry (1994) and Berry, Levin-

sohn, and Pakes (1995, hereafter BLP) developed a discrete-choice random coefficients

logit model to account for unobserved consumer heterogeneity in the valuation of product

characteristics. The popularity of the BLP model stems from its ability to generate rich

substitution patterns using only market-level sales data and a limited number of parame-

ters.

The literature has paid considerable attention to account for unobserved consumer

heterogeneity through flexible specifications for the random coefficients. However, it has

largely neglected the role of demand curvature, i.e. the functional form through which a

product’s price enters the consumers’ indirect utility. Most of the discrete-choice literature

using market-level sales data has assumed that utility is linear in price or, more generally,

additive in income and price, so that utility-maximizing consumers purchase a single unit

of their preferred product. This functional form implies a tendency for price elasticities to

be increasing in price. This is most evident for logit and nested logit models, where price

elastictities are essentially linearly increasing with prices. Nevertheless, the typical random

coefficients logit models also contain restrictions on demand curvature, and it remains an

open question how this may bias parameter estimates. Björnerstedt and Verboven (2016)

consider an alternative utility specification where utility is linear in the logarithm of both

income and price. In this specification consumers have unit-elastic demand for their

preferred products, which implies a tendency for price elasticities to be independent of

price.1 From a different angle, Adao, Costinot, and Donaldson (2017) and Dubé, Hortaçsu,

and Joo (2021) posit essentially the same empirical model by directly incorporating random

coefficients in a representative consumer CES demand model. Adao et al. (2017) label this

a mixed CES, as opposed to BLP’s mixed logit model.

Against this background, we relax the demand curvature restrictions that are implicit

in aggregate discrete choice demand models by introducing a simple yet flexible Box-Cox

transformation of price and income (from Box and Cox, 1964). This joint Box-Cox and BLP

1Nair, Dubé, and Chintagunta (2005) take a related approach, with a more complicated income term.
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model implies that consumers do not necessarily have perfectly inelastic or unit-elastic

demand for their preferred products. Our approach is attractive for at least three reasons.

First, the joint model permits richer substitution patterns by allowing for a more flexible

price functional form in addition to unobserved consumer heterogeneity. This breaks the

mechanical link between price elasticities and prices, which may have been responsible for

biased elasticity estimates even under rich consumer heterogeneity. Second, the Box-Cox

specification nests both BLP’s mixed logit model and the mixed CES model as special cases,

and hence provides a unifying framework for existing models in various fields. Third, our

specification is tractable because it requires only a single additional parameter.

To illustrate our demand framework, we apply it to the “Ready-to-Eat” cereal market,

which several papers explain is particularly well suited for estimating demand in differ-

entiated product markets (Nevo, 2000, 2001; Backus, Conlon, and Sinkinson, 2021). We

observe product-level sales data from Dutch supermarkets at a weekly frequency during

2011-2013. A preliminary descriptive analysis reveals two stylized facts. First, there is

substantial price variation between different cereal products: the most expensive cereal is

priced an order of magnitude higher than the cheapest one. Second, descriptive log-log

regressions per product suggest that product-level elasticities are roughly independent of

average product prices. These findings indicate the importance of allowing for sufficient

flexibility in either unobserved consumer heterogeneity or demand curvature, or both.

Given this motivating evidence, we next assess the ability of our joint Box-Cox and BLP

model to recover more plausible elasticities (and markups) compared to several popular

but more restricted models. The estimates of the joint model show that there is significant

heterogeneity in price sensitivity, and that price enters utility somewhere in between the

linear form of BLP’s mixed logit and the log-linear form of the mixed CES. These findings

imply that restricting either the Box-Cox or the price heterogeneity parameter may entail

biased estimates, and hence restrict substitution patterns.

We illustrate the implications of greater flexibility by plotting the own-price elasticities

against prices for the various models. Using the descriptive estimates as guidance, we find

that the joint model successfully recovers own-price elasticities that are roughly indepen-

dent of price. The simple Box-Cox model, which abstracts from consumer heterogeneity,

also recovers this pattern, but has the drawback of restricting cross-price elasticities. By

contrast, the simple logit model has own-price elasticities that are linearly increasing in
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price (as is well-known), which is inconsistent with our descriptive estimates. Finally,

the BLP model (with substantial heterogeneity) entails a U-shaped profile of own-price

elasticities against price. This reflects the outcome of two opposing effects. First, because

price enters utility linearly, the own-price elasticities scale linearly with price (as in the

simple logit). Second, consumer heterogeneity means less price sensitive consumers are

more likely to purchase higher-priced products and vice versa. At low prices, the first

effect dominates, while at high prices the second effect is more important. Our application

also suggests that the estimated cross-price elasticities between similarly priced products

are lower in the joint Box-Cox and BLP model than in the standard BLP model.

We draw two implications for estimating differentiated products demand systems with

aggregate sales data. First, to uncover adequate substitution patterns, it is not sufficient

to focus on flexible random coefficients to account for consumer heterogeneity. It is also

important to incorporate a flexible functional form for price. This conclusion is particularly

relevant for applications that hinge on the demand curvature, such as the pass-through of

a tax, tariff or exchange rate. A second conclusion is more pragmatic. The simple Box-Cox

without random coefficients suggests that the CES model fits the data significantly better

than the logit model. Practitioners who make use of logit or nested logit models because

of data limitations or computational simplicity may therefore also consider the CES or

nested CES as simple alternatives.

Related Literature: This paper contributes to the growing literature on estimating models

of demand in differentiated products markets; for two recent surveys, see Berry and

Haile (2021) and Gandhi and Nevo (2021). Berry and Haile (2014) obtain non-parametric

identification results for differentiated products demand systems with market-level data.

Their framework allows for flexible specifications for price. Compiani (2021) builds on

their theoretical results to estimate a non-parametric analogue of the BLP model. While

certainly allowing for additional flexibility, a non-parametric approach presents at least two

practical challenges: the number of estimated parameters grows exponentially with the

number of products, and estimation requires sufficiently rich price variation. Compiani

therefore illustrates his framework to the market for fresh strawberries, which consists

of only two products and exhibits large seasonal price movements. Our more targeted

approach strikes a more pragmatic balance between flexibility and tractability. The Box-
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Cox approach easily accommodates many products and can be estimated using standard

levels of price variation. Moreover, it nests several popular but more restricted models, so

can pragmatically guide applied demand analysis.

A number of papers focus on obtaining more flexibility by using either micro-moments

(Berry, Levinsohn, and Pakes, 2004) or consumer-level data (Griffith, Nesheim, and O’Connell,

2018). Most relevant to our paper is Griffith et al. (2018), who use consumer-level data to

demonstrate how estimating correlations between consumer income, purchase patterns,

and demographics lead to economically meaningful differences in the pass-through of a

tax. Our approach shows how additional flexibility on demand curvature can also be

obtained in models with market-level data.

Finally, we contribute to the microfoundations of aggregate demand systems. Head

and Mayer (2021) analyze the ability of the CES model to generate predictions in line with

the BLP model. We show how our joint Box-Cox and BLP model can guide the choice

of functional form in empirical applications, as it provides a unifying framework that

is microfounded in a discrete choice theory. Our framework strikes a balance between

incorporating heterogeneity with linear price, and alternative functional forms such as

logarithmic price without heterogeneity. In an independent recent paper, Anderson and

De Palma (2020) use a variant of our specification, but their focus is different. They do

not provide an empirical framework, but instead analyze theoretical relationships between

equilibrium distributions of productivity, output, etc.

Overview: The paper proceeds as follows. Section 2 introduces the joint Box-Cox and

BLP demand model, develops the estimating equations and discusses the model’s implied

substitution patterns. Section 3 illustrates our framework with an empirical application.

Subsection 3.1 describes the data and provides motivating stylized facts, while next sub-

sections discuss the empirical results of the joint model, and compares them with more

restrictive models. Last, section 4 concludes.

2 Demand Model and Elasticities

This section derives the joint Box-Cox and BLP model, which allows for both flexibility

in the price functional form and for unobserved consumer heterogeneity. Subsection 2.1
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formulates the theoretical framework and subsection 2.2 derives the estimating equations.

Next, subsection 2.3 outlines implications for own- and cross-elasticities.

2.1 Utility and Demand

Consumers choose both their preferred product, and how many units to purchase of it. In

this subsection, we first specify utility and conditional demand for the preferred product,

then the choice probability of each product, and finally aggregate demand.

Utility: In each market, there exist 𝐿 consumers, 𝑖 = 1, . . . , 𝐿. Each consumer chooses one

alternative from 𝐽 + 1 differentiated products, 𝑗 = 0, . . . , 𝐽, where 𝑗 = 0 is the outside good.

Conditional on purchasing 𝑗, consumer 𝑖 has the following indirect utility function:

𝑢𝑖 𝑗 = 𝑥 𝑗𝛽 + 𝛼𝑖 𝑓 (𝑦𝑖 , 𝑝 𝑗) + 𝜉𝑗 + 𝜀𝑖 𝑗 , (1)

where 𝑥 𝑗 is a vector of observed product characteristics; 𝑦𝑖 and 𝑝 𝑗 denote consumer income

and price; and 𝑓 (𝑦𝑖 , 𝑝 𝑗) specifies how price and income enter indirect utility. For simplicity,

the taste parameter vector for the product characteristics, 𝛽, is common across consumers.

The price sensitivity parameter, 𝛼𝑖 , is a normally distributed random coefficient with mean

𝛼 and standard deviation 𝜎, i.e. 𝛼𝑖 = 𝛼 + 𝜎𝑣𝑖 where 𝜈𝑖 is a standard normal variable. Last,

𝜉𝑗 captures unobserved product characteristics, which are common to all consumers, and

𝜀𝑖 𝑗 is a consumer-specific taste term for good 𝑗.

Box-Cox specification and conditional demand: We specify that price and income enter utility

through a Box-Cox transformation (Box and Cox, 1964), i.e.:

𝑓 (𝑦𝑖 , 𝑝 𝑗) = 𝛾𝜆−1

𝑦𝜆
𝑖
− 1

𝜆
−
𝑝𝜆
𝑗
− 1

𝜆
, (2)

where 𝜆 ≤ 1 represents the Box-Cox parameter and 𝛾 is the fraction of income a consumer

allocates to the cereal category.2 Conditional on selecting product j, the demand of con-

sumer 𝑖 follows from Roy’s identity, 𝑞𝑖 𝑗(𝑦𝑖 , 𝑝 𝑗) = −𝜕𝑢𝑖 𝑗/𝜕𝑝 𝑗
𝜕𝑢𝑖 𝑗/𝜕𝑦𝑖 . Using (1) and (2), this is given

2One can in principle have a separate Box-Cox parameter for price (𝜆𝑝) and income (𝜆𝑦), but it is less

obvious how to identify 𝜆𝑦 from aggregate sales data. In their theoretical contribution, Anderson and de

Palma (2020) essentially specified 𝜆𝑦 = 1.
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by:

𝑞𝑖 𝑗(𝑦𝑖 , 𝑝 𝑗) =
(
𝛾𝑦𝑖
𝑝 𝑗

)
1−𝜆

, (3)

The Box-Cox parameter 𝜆 allows for flexibility, but also nests two existing specifications

in the literature. First, with 𝜆 = 1, price and income enter utility linearly, i.e., 𝑓 (𝑦𝑖 , 𝑝 𝑗) =
𝑦𝑖 − 𝑝 𝑗 , and a consumer purchases one unit of her preferred product (𝑞𝑖 𝑗(𝑦𝑖 , 𝑝 𝑗) = 1). This

linear price specification with unit demand is often adopted in the traditional BLP model.3

Second, as 𝜆 −→ 0, price and income enter utility logarithmically (from l’Hôpital’s rule),

i.e., 𝑓 (𝑦𝑖 , 𝑝 𝑗) = 𝛾−1
ln(𝑦𝑖)− ln(𝑝 𝑗)). In this case, a consumer spends a constant fraction of her

income to her preferred product (𝑞𝑖 𝑗(𝑦𝑖 , 𝑝 𝑗) = 𝛾𝑦𝑖
𝑝 𝑗

). This is essentially a CES specification

derived from a discrete choice model. Björnerstedt and Verboven (2016) refer to it as a

constant expenditures specification, and it is increasingly adopted in applied work (e.g.,

see Fang, 2019; Eizenberg, Lach, and Oren-Yiftach, 2021; Hatan, Fleischer, and Tchetchik,

2021).

Choice Probability: We can write utility more compactly as:

𝑢𝑖 𝑗 = 𝐾𝑖 + 𝛿 𝑗 + 𝜇𝑖 𝑗 + 𝜀𝑖 𝑗 , (4)

where 𝐾𝑖 = 𝛼𝑖𝛾𝜆−1
𝑦𝜆
𝑖
−1

𝜆 is constant for each consumer over products; 𝛿 𝑗 = 𝑥 𝑗𝛽 − 𝛼
𝑝𝜆
𝑗
−1

𝜆 + 𝜉𝑗

is the mean valuation for product 𝑗 shared by all consumers; and 𝜇𝑖 𝑗 = 𝜎𝑣𝑖
𝑝𝜆
𝑗
−1

𝜆 is a

consumer-specific valuation for product 𝑗.

Each consumer 𝑖 chooses the product 𝑗 that maximizes her random utility𝑈𝑖 𝑗 . Assuming

the random taste parameter, 𝜀𝑖 𝑗 , follows an extreme value distribution and normalizing

𝛿0 = 0, the probability a consumer 𝑖 chooses product 𝑗 takes the form:

𝑠𝑖 𝑗 (δ, 𝜎,𝜆) ≡
exp

(
𝛿 𝑗 + 𝜇𝑖 𝑗

)
1 +∑𝐽

𝑘=1
exp (𝛿𝑘 + 𝜇𝑖𝑘)

, (5)

where the separable term 𝐾𝑖 cancels out from the choice probabilities.

3BLP consider an alternative specification where price and income enter through the term 𝛼 ln(𝑦𝑖 − 𝑝 𝑗).
Since both variables enter additively, this also results in unit demand. As we will see below, their specification

creates flexibility only through heterogeneity in price sensitivity.
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Aggregate Demand: Assuming that 𝑣𝑖 , 𝑦𝑖 and 𝜀𝑖 𝑗 are independent, aggregate demand for

product 𝑗 is given by:

𝑞 𝑗 =

∫
𝑠𝑖 𝑗 (δ, 𝜎,𝜆) 𝑞𝑖 𝑗

(
𝑦𝑖 , 𝑝 𝑗

)
𝑑𝑃𝜈(𝜈)𝑑𝑃𝑦(𝑦)𝐿 (6a)

=

∫
𝑠𝑖 𝑗 (δ, 𝜎,𝜆) 𝑑𝑃𝜈(𝜈)

∫
𝑞𝑖 𝑗(𝑦𝑖 , 𝑝 𝑗)𝑑𝑃𝑦(𝑦)𝐿 (6b)

=

∫
𝑠𝑖 𝑗 (δ, 𝜎,𝜆) 𝑑𝑃𝜈(𝜈)

∫ (
𝛾𝑦𝑖
𝑝 𝑗

)
1−𝜆

𝑑𝑃𝑦(𝑦)𝐿 (6c)

where (𝑝𝑦 , 𝑝𝑣) are the income and price sensitivity distributions.

2.2 Estimating equations

Rearranging the aggregate demand from equation (6c) into an estimating equation requires

two steps. A first step specifies the distribution of income. For simplicity, assume that

all consumers within a region share the average region income, 𝑦̄𝑟 , so

∫
𝑦1−𝜆
𝑖

𝑑𝑃𝑦(𝑦) =

𝑦̄1−𝜆
𝑟 . Appendix A.1.1 shows how one may incorporate income heterogeneity using two

approaches: income draws from an empirical distribution, or a Taylor expansion. The

second step approximates the integral over unobserved consumer heterogeneity 𝜈. We

follow the BLP methodology by taking 𝑛 simulated draws of a standard normal distribution

(see Berry et al., 1995). Combining these two steps and rearranging leads to the following

estimating equation for the joint Box-Cox and BLP model:

𝑝1−𝜆
𝑗

𝑞 𝑗

𝐿(𝛾 𝑦̄𝑟)1−𝜆
=

1

𝑛

𝑛∑
𝑖=1

exp

(
𝛿 𝑗 + 𝜇𝑖 𝑗

)
1 +∑

𝑘 exp (𝛿𝑘 + 𝜇𝑖𝑘)
. (7)

The right-hand side has the usual interpretation as averaging over consumer choice prob-

abilities (where the Box-Cox parameter implicitly enters through 𝛿 𝑗 and 𝜇𝑖 𝑗). The left-hand

side of equation (7) may be interpreted as a market share variable. For instance, a linear

price (𝜆 = 1) implies unit demand, so the market share variable simplifies to a product’s

aggregate demand relative to the total number of consumers,

𝑞 𝑗
𝐿 ; a log price (𝜆 = 0) im-

plies constant expenditures demand, so the market share variable simplifies to a product’s

aggregate revenue relative to the total budget,

𝑝 𝑗𝑞 𝑗
𝐿𝛾𝑦 .

Following BLP’s contraction mapping, the market share system (7), for 𝑗 = 1, · · · , 𝐽,
can be inverted to solve for the mean utilities 𝛿 𝑗 . Without unobserved heterogeneity, one
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can follow the analytical inversion approach from Berry (1994) (see Appendix A.1.2 for

details):

ln

(
𝑝1−𝜆
𝑗

𝑞 𝑗

𝐿(𝛾𝑦𝑟)1−𝜆 −∑
𝐽 𝑝

1−𝜆
𝑗

𝑞 𝑗

)
= 𝑥 𝑗𝛽 − 𝛼

𝑝𝜆
𝑗
− 1

𝜆
+ 𝜉𝑗 . (8)

2.3 Implications for own- and cross-elasticities

As shown in Appendix A.1.3, the own- and cross-price elasticities for the joint Box-Cox

and BLP model can be written as:

𝜂 𝑗𝑘 =


−
𝑝𝜆
𝑗

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
𝑑𝑃𝜈(𝜈) − (1 − 𝜆) if 𝑗 = 𝑘

𝑝𝜆
𝑘

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗𝑠𝑖𝑘𝑑𝑃𝜈(𝜈) if 𝑗 ≠ 𝑘.

(9)

The first line is the own-elasticity, 𝜂 𝑗 𝑗 , which separates into a typical choice probability

elasticity and a conditional demand elasticity, and the second line is the cross-elasticity, 𝜂 𝑗𝑘 .

Equation (9) clarifies the role of both the Box-Cox parameter and consumer heterogeneity.4

The Box-Cox parameter 𝜆 relaxes the typical unit demand assumption, and creates

greater flexibility on demand curvature. Specifically, it reveals a relationship between

elasticities and prices across products 𝑗, as seen from the terms 𝑝𝜆
𝑗

and 𝑝𝜆
𝑘

in front of the

integral. With 𝜆 = 1, the own- and cross-price elasticities scale quasi-linearly with own-

and cross-prices. We say quasi-linearly because price also enters the choice probability,

𝑠𝑖 𝑗 in the integral term. A key insight is that with a more concave price functional form,

𝜆 < 1, this scaling becomes less than linear. For a log price specification, 𝜆 = 0, there is no

scaling between elasticities and price, while 𝜆 < 0 would imply a decreasing relationship.

Consumer heterogeneity affects substitution patterns in two ways. First, it affects the

link between price elasticities and price. Intuitively, price insensitive consumers tend

to purchase higher priced products. This counterbalances the increasing relationship

between price elasticities and price that arises for 𝜆 ∈ (0, 1). Second, heterogeneity in price

sensitivities affects the cross-price elasticities, as it implies stronger substitution between

4Table 2 in Appendix A.1.3 presents the elasticities in several special cases: 𝜆 = 1 or 𝜆 = 0, with and

without heterogeneity in 𝛼𝑖
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similarly price products (regardless of their price level).

3 Illustrative Application

To illustrate our demand framework, we apply it to the “Ready-to-Eat” cereal market,

consistent with a prior literature using the cereal category to demonstrate the performance

of different demand models (e.g., Nevo, 2000, 2001; Backus et al., 2021). Subsection 3.1

provides descriptive evidence to motivate our analysis. Subsection 3.2 discusses the spec-

ification and estimation of the joint Box-Cox and BLP demand model. Subsection 3.3 and

3.4 present the demand parameter estimates and the implications for price elasticities. A

detailed discussion of the data and summary statistics is provided in Appendix A.2.

3.1 Descriptive Evidence

Our data set on the “Ready-to-Eat” cereal market comes from IRI. The unit of observation

is a product 𝑗 (barcode), market or region 𝑟 (6 regions, i.e. provinces in the North of the

Netherlands) and week 𝑡 (156 weeks during 2011-2013). The total number of observations

is 50,836, amounting to an average number of products of 54.31 per market and week

(and 73 distinct products over the entire period). We have information on the following

variables: quantity sold (kg), revenues and price (
=C), and size (kg).

For each product 𝑗, we estimate the following descriptive regression

ln(𝑞 𝑗𝑟𝑡) = 𝜂 𝑗 ln(𝑝 𝑗𝑟𝑡) + 𝑤 𝑗𝑟𝑡𝜃𝑗 + 𝑢𝑗𝑟𝑡 , (10)

where ln(𝑞 𝑗𝑟𝑡) and ln(𝑝 𝑗𝑟𝑡) are the log quantity and log price of product 𝑗 in market 𝑟

for week 𝑡. The vector 𝑤 𝑗𝑟𝑡 includes market, year and month-of-year fixed effects. Our

main interest is in the price coefficient 𝜂 𝑗 , which we interpret as a descriptive estimate of

the own-price elasticity of product 𝑗 (i.e., without directly modeling substitution between

different products). The account for possible endogeneity issues, we include a standard

set of Hausman and BLP instruments (as in our structural demand model, explained in

more detail below).

Figure 1 presents these estimates by plotting the estimated own-elasticity against the

average price per product to make two points. First, cereal prices vary widely, with the
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most expensive cereal price an order of magnitude higher than the cheapest one. Second,

the own-price elasticities are roughly independent of price. The joint findings of wide

price variation and constant elasticities motivate a joint Box-Cox and BLP demand model.

Specifically, this model can evaluate to which extent a traditional BLP model with a linear

price variable can generate this constant pattern, or whether a more flexible functional

form through the Box-cox parameter 𝜆 is required.

Figure 1: Descriptive own-price elasticity vs. own-price

Explanation: Scatter plot of descriptive estimate of own-price elasticity against average price of

product. We estimate an own-elasticity separately per product using equation (10) for 73 products

in the Cereal category. The figure excludes 8 observations because the estimate is not statistically

significant, or the estimated elasticity is positive. The navy dashed line represents the estimated

relationship (i.e., fitted values) between own-price elasticity and price.

3.2 Estimation

We first provide details on the demand specification, then discuss our set of instruments

and identification of the Box-Cox parameter, and finally explain the estimating algorithm.

Specification: Our unit of observation is the product 𝑗 in region 𝑟 in week 𝑡, so we can
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add subscripts 𝑟 and 𝑡 to all variables in our (inverted) estimating equation (7), which

includes the unobserved quality or error term 𝜉𝑗𝑟𝑡 . We exploit the long weekly panel to

estimate a fixed effect for each product 𝑗 to account for time-invariant unobserved product

characteristics affecting mean utility. We further include a fixed effect per year-region, and

per month-of-year to capture unobserved demand shocks both across time and between

markets. The richness of these fixed effects, and in particular the product fixed effects,

enable us to focus attention on the joint role of the price functional form and consumer

heterogeneity in determining substitution patterns.

Defining the market share variable requires us to determine the size of the potential

market. In our setting this includes both the total number of potential consumers, 𝐿, and

the consumers’ total potential budget allocated to the cereal category, 𝛾 𝑦̄𝑟 . To obtain both

variables, we first calculate the total quantity and sales per market and week, we then

take the maximum of each variable across regions and weeks, and conservatively multiply

each variable by a factor of ten. Previous research typically finds the demand estimates

are robust to these assumptions (e.g., see Nevo, 2000).

Identification and instruments: We start from the commonly used identification assumption

that the non-price product characteristics (in this case the various fixed effects) are uncor-

related with the error term 𝜉𝑗𝑟𝑡 . Under this assumption, the fixed effects are instruments

for themselves. We require additional instruments to identify the price coefficient, con-

sumer heterogeneity, and Box-Cox parameter (𝛼, 𝜎,𝜆). Following the literature, we firstly

use functions of the other product characteristics as instruments, i.e., BLP instruments

from Berry et al. (1995). The set consists of counts of own- and other-brand products

for the following segmentations: entire cereal category, broad product description (e.g.

cornflakes or children’s cereal), detailed product description (e.g., standard or organic

muesli), packaging type and package size. As explained in Berry and Haile (2014), BLP

instruments help identify distributional parameters. Secondly, we use the average prices

of the same product in other markets, i.e., Hausman instruments from Hausman (1996).

We extend the traditional Hausman instruments by also including the log and square-root

of these average prices. Intuitively, the different functional forms pin down the Box-Cox

parameter by providing information on the shape of the demand curve (e.g., see: Amemiya

and Powell, 1981; Powell, 1996).
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Berry and Haile (2014) establish identification in a setting that is more general than

ours. We fix attention on explaining how the Box-Cox parameter 𝜆 is separately identified

from the price heterogeneity parameter 𝜎. Different values of 𝜆 and 𝜎 imply differences in

how the own- and cross-elasticities vary with prices. In particular, 𝜆 mainly determines

how elasticities scale with prices. By contrast, 𝜎 affects this same link (but in a different

way) and additionally determines the extent to which consumers more readily substitute

to more similarly priced products. The first mechanism is identification from the shape of

the demand curve. The second mechanism relies on the covariance between the cross-price

elasticity and prices.

Estimation: Estimation of the joint model can proceed based on the well-documented BLP

algorithm as outlined in Berry et al. (1995) (where additional instruments can be helpful to

identify the shape parameter 𝜆). To facilitate estimation, we estimate the model for fixed

candidate values of 𝜆 to obtain the conditional utility parameters ((𝜎, 𝛼, 𝛽)|𝜆). We perform

a grid search to select the 𝜆 with the lowest GMM criterion value. We calculate Newey and

West (1987) likelihood ratio or distance test statistics for the optimal 𝜆 against alternative

values to construct a confidence interval for 𝜆 as in e.g. Moreira (2003).

3.3 Demand parameter estimates

Table 1 summarizes the parameter estimates relating to the price variable: the mean price

coefficient 𝛼, the standard deviation 𝜎 and the Box-Cox parameter 𝜆. Panel (A) reports

estimates for the simple models without consumer heterogeneity (𝜎 = 0). Panel (B) reports

estimates for the random coefficient models.

In all specifications, 𝛼 enters with the expected sign and significantly, indicating that

consumers on average dislike paying higher prices. Taken together, 𝛼, 𝜎 and 𝜆 show

quite some variation across specifications, because the free parameters partly take over

the imposed restrictions on the fixed parameters. Nevertheless, the resulting average

own-price elasticities are remarkably similar across all models.

In the simple model without consumer heterogeneity (panel (A)), we estimate a Box-

Cox parameter 𝜆 = −0.068. Interestingly, this is not significantly different from zero and

significantly less than 1. Hence, we cannot reject the CES model with log-linear price and

market shares in value terms, while we can reject the logit model with linear price and
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Table 1: Demand Parameter Estimates

(A) Simple (B) Random Coefficient

Logit Box-Cox Logit Box-Cox

Price (−𝛼) -0.46 -1.52 -0.91 -1.34

(0.004) (0.058) (0.005) (0.013)

Price Heterogeneity (𝜎) 0.00 0.00 0.30 0.43

– – (0.008) (0.020)

Box-Cox (𝜆) 1.00 -0.068 1.00 0.49

– (0.043) – (0.105)

Own-elasticity (𝜂 𝑗 𝑗) -2.50 -2.43 -2.62 -2.54

Notes: Simple refers to a model imposing zero consumer heterogeneity (𝜎 = 0), while

Random Coefficient refers to a model estimating consumer heterogeneity. Logit refers

to the traditional linear price and unit demand model (i.e., 𝜆 = 1, while Box-Cox

estimates the Box-Cox parameter as derived in equation (2). Robust standard errors

reported in parentheses (and “–” denotes an imposed values e.g., a linear price or zero

consumer heterogeneity). The standard error for the joint Box-Cox and BLP model

is estimated using an inverted distance test statistic. The parameters are estimated

using a sample of 50,836 observations for 2011–2013, where an observation represents

a product-province-week. The demand specification includes a fixed effect for each

product, year-market combination, and month.

market shares in volume terms.

Now consider the random coefficients models of panel (B). In the standard random

coefficients logit of BLP (with 𝜆 = 1), we estimate significant heterogeneity in price sensi-

tivity: the standard deviation 𝜎 = 0.30, compared with a mean price sensitivity parameter

𝛼 = 0.91. In the joint Box-Cox and BLP model, we appear to estimate even larger hetero-

geneity, 𝜎 = 0.43, but the mean price sensitivity parameter also increases to 𝛼 = 1.34. The

Box-Cox parameter 𝜆 equals 0.49, which is halfway between a linear and log form. This

contrasts with our earlier estimate of 𝜆 = −0.068 in the simple model without consumer

heterogeneity. In that model, 𝜆 entirely captured the earlier documented independence

between price elasticities and prices (Figure 1), while in the random coefficients model

both 𝜎 and 𝜆 take this role.

3.4 Implications for price elasticities

Figure 2 shows how the own-price price elasticities vary across the price distribution. This

allows us to evaluate the various demand models against the descriptive evidence on price
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elasticities in subsection 3.1 (Figure 1).

The simple logit with linear price (denoted using the yellow line on Figure 2) serves

as a reference model to explain how more flexible models may generate more plausible

elasticity patterns. Average product prices vary from
=C1.06 to

=C14.01 This implies, through

the logit structure, that own-price elasticities also vary by an order of magnitude from -0.49

to -6.50. Beyond the implausibly large variation of own-price elasticities, it is particularly

striking that the highest priced products are also the most price elastic.

Figure 2: Own-elasticity vs. own-price

Explanation: Figure is a binned scatter to smooth across randomness introduced in the BLP

simulation algorithm. We define ten equal sized bins and plot the average own-elasticity

against the average price for each bin. We calculate the own-elasticity for each model using

equations listed in Table 2 of Appendix A.1.3. Own-price is the average price per product.

The sample consists of 73 products in the cereal category.

The blue line denotes the own-price elasticities from the BLP model. The BLP model

firstly shows a significantly flatter profile compared to the simple logit, and secondly

reveals an interesting U-shaped profile. The U-shaped profile reflects the outcome of

two opposing channels. First, the own-price elasticities tend to scale linearly with price

because price enters utility linearly (i.e., the same mechanism as in the simple logit).

Second, because of heterogeneity in the price coefficient, less price sensitive consumers
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are more likely to purchase higher-priced products and vice versa. From the lowest price

of roughly
=C1 up to roughly

=C6, the first channel of linear price dominates. As a result,

own-price elasticities increase from roughly -1 for the lowest priced product to roughly

-3 for the products priced around
=C6. At a price of around

=C6, the second channel of

consumer heterogeneity starts to dominate. Accordingly, demand becomes less elastic

and own-price elasticities become roughly -2.2 for the most expensive products. While

the range of these elasticities is certainly more plausible than the simple logit, the largest

elasticities still implausibly exceed the smallest elasticities by a factor of three. Further, the

specific U-shape profile of elasticities may not be realistic.

We next present the results for the simple Box-Cox and the joint Box-Cox and BLP model.

The green line reports the simple Box-Cox demand elasticities, which are roughly inde-

pendent of own-price. This constant elasticity pattern results from the Box-Cox parameter

𝜆 being close to zero, which breaks the mechanical linear scaling between elasticities and

prices. The red line represents the joint Box-Cox and BLP model, which generates a flatter

profile of elasticities when compared to the BLP model. More specifically, own-price elas-

ticities are roughly -2 for the cheapest products, and settle to roughly -2.5 from around
=C4.

Compared to the BLP model, the flatter U-profile arises because the estimated Box-Cox

parameter is less than one.

These findings are confirmed in the pattern of markups (reported in Figure A.1 in the

appendix). Both the logit and BLP model entail considerably higher markups for the

cheapest products; the BLP model has a similar U-shaped profile, while the Box-Cox and

joint Box-Cox and BLP model imply more stable markups over the price range.

We finally ask what the different models imply for the estimated pattern of cross-price

elasticities. We relate the cross-price elasticities between pairs of products to their absolute

price differences. As expected, in the simple logit and Box-Cox models without hetero-

geneity, the cross-price elasticities between two products are approximately independent

of their price differences. In contrast, in the BLP model there is a strong decreasing rela-

tionship: the cross-price elasticities are about three times higher for products with similar

prices than for products with the the largest price differences. This reflects the importance

of consumer heterogeneity in their price valuation. In the joint Box-Cox and BLP model

there is also a decreasing relationship, though it is less pronounced, as we illustrate in

Figure A.2 of the Appendix. This provides some suggestive evidence that the standard
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BLP model may overestimate localized substitution patterns between similar products.

This conclusion may not be generally true, but it suggests the importance of incorporating

demand curvature to get the substitution patterns correct.

Summary: Taken collectively, these empirical patterns lead to four conclusions. First, the

linear scaling between elasticities and prices is especially restrictive in the presence of large

price variation. This point is worth emphasizing, as it may be a source of misspecification

even if cross-price elasticities would be relatively symmetric. Second, consumer hetero-

geneity in the BLP model breaks this link in a very specific way, i.e. through a U-shaped

profile of both elasticities and markups. While not impossible, this pattern follows directly

from the assumed price functional form. Third, the joint Box-Cox and BLP model generates

a more plausible pattern for elasticities (and markups). Specifically, the additional flexi-

bility in the price functional form breaks the linear scaling between elasticities and prices.

By requiring a smaller role for consumer heterogeneity, the U-shaped profile still exists

but is significantly less pronounced. Fourth, the simple Box-Cox model recovers roughly

constant elasticities, which closely resembles the results from the joint model. While the

simple Box-Cox model may represent a useful approximation for many applications, we

caution it does not recover rich patterns of cross-elasticities.

4 Concluding Remarks

We extend the frontier approach to estimating demand in differentiated product markets

— the BLP approach — to relax functional form restrictions on price through a simple yet

flexible Box-Cox transformation. This extension breaks built-in links between elasticities

and prices.

We provide an illustrative application of our joint Box-Cox and BLP model to the market

for ready-to-eat cereals to draw two broad conclusions. First, our joint model creates more

flexibility to break the link between elasticities and prices across products. The BLP

model relies exclusively on consumer heterogeneity to break this link. This creates a U-

shaped profile between elasticities and prices. We also make a second, more pragmatic

contribution. Applied researchers often abstract from incorporating unobserved consumer

heterogeneity, or incorporate it in a simple way through a nested logit demand structure.
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These models can be easily modified to include a Box-Cox parameter, or alternatively a

sensitivity analysis to (nested) CES models (with𝜆 = 0) should be considered more widely.

This also provides guidance to practitioners in other fields such as trade, macro and labor.

We see several avenues for future research. First, it would be interesting to confirm

whether our findings generalize to a broad set of product categories and industries beyond

our illustrative application.

Second, our more flexible functional form relies on extending the typical assumption

that consumers have unit demand for the preferred products to allow for elastic condi-

tional demand. While such extension is realistic in many consumer goods markets, it may

seem less intuitive in durable goods industries such as automobiles (as in BLP’s original

application), where consumers purchase a single product on a purchase occasion. Nev-

ertheless, similar flexibility may arise by modeling elastic conditional demand over the

durable goods’ life-cycle, and exploring this would be interesting.

Finally, our model provides increased flexibility to account for demand curvature. In

the presence of market power, curvature plays a key role in the extent of pass-through

(e.g. Bulow and Pfleiderer, 1983). Applied research that relies on demand estimation to

study the pass-through of taxes, tariffs and exchange rates would thus especially benefit

from this increased flexibility. Nevertheless, we caution that our model mainly captures

curvature through the relationship between elasticities and prices in the cross-section of

products. Further extensions to model yet greater flexibility would also be very interesting

in future research.
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A Appendix

This Appendix provide additional details relating to the model and data.

A.1 Model

Section A.1.1 discusses the extension of the model to incorporate income heterogeneity.

Section A.1.2 derives the analytical Berry inversion in the case without consumer hetero-

geneity. Section A.1.3 derives the model’s own- and cross-price elasticities.

A.1.1 Income heterogeneity extension

Two methods can incorporate heterogeneous income per market into

∫
𝑦1−𝜆
𝑖

𝑑𝑃𝑦(𝑦). A

first method uses income tables or random draws, while a second method uses a Taylor

Expansion.

1) Income table or random draws: An income table lists the fraction of consumers,Φ𝑔

with income 𝑦𝑔 per group g, such that

∑𝐺
𝑔=1

Φ𝑔 = 1. Substitute this definition into the joint

Box-Cox and BLP estimating equation:

𝑝1−𝜆
𝑗

𝑞 𝑗

𝐿𝛾1−𝜆 ∑𝐺
𝑔=1

Φ𝑔𝑦
1−𝜆
𝑟𝑔

=

∫
𝑠𝑖 𝑗 (δ, 𝜎) 𝑑𝑃𝜈(𝜈) (A.1)

Alternatively one may take simulated income draws e.g., by assuming the data is normally

distributed and one knows the mean and standard deviation.

2) Taylor Expansion: We may approximate the income integral,

∫
𝑦1−𝜆
𝑖

𝑑𝑃𝑦(𝑦) using a

Taylor expansion. Write 𝑦𝑖 as the mean income plus a deviation from the mean, so∫
𝑦1−𝜆
𝑖

𝑑𝑃𝑦(𝑦) =
∫
(𝑦𝑖 + (𝑦𝑖 − 𝑦𝑖))1−𝜆 𝑑𝑃𝑦(𝑦). Taking the second-order Taylor expansion of

the bracketed term gives:

(𝑦 + (𝑦𝑖 − 𝑦𝑖))1−𝜆 = (𝑦̄)1−𝜆 + (1 − 𝜆)(𝑦̄)−𝜆 (𝑦𝑖 − 𝑦̄) −
𝜆(1 − 𝜆)(𝑦̄)−𝜆−1

2

[
(𝑦𝑖 − 𝑦̄)2

]
(A.2)
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Noting that

∫
(𝑦𝑖 − 𝑦̄) 𝑑𝑃𝑦(𝑦) = 0 and

∫
(𝑦𝑖 − 𝑦̄)2 𝑑𝑃𝑦(𝑦) = 𝜎2

𝑦 , we rewrite equation (A.2):

∫
𝑦1−𝜆
𝑖 𝑑𝑃𝑦(𝑦) = (𝑦̄)1−𝜆 −

𝜆(1 − 𝜆)𝜎2

𝑦

𝑦̄1+𝜆 . (A.3)

One may feasibly substitute this into the estimating equation. The Taylor expansion also

allows us to sign the bias from ignoring income heterogeneity. For example, unit- or

constant expenditures-demand 𝜆 = 0, 1 implies no bias. Otherwise, for intermediate 𝜆

values, bias depends on the combination of 𝜆, 𝑦, 𝜎2

𝑦 .

A.1.2 Berry Inversion

Abstracting from consumer heterogeneity implies that the estimating equation (7) becomes:

𝑝1−𝜆
𝑗 𝑞 𝑗

𝐿 (𝛾 𝑦̄𝑟)1−𝜆
=

exp

(
𝛿 𝑗

)
1 +

𝐽∑
𝑘=1

exp (𝛿𝑘)

. (A.4)

Because the market share of the outside good 0 equals the total budget minus the budget

allocated to all inside goods, we may write the following choice probability for good 0:

𝐿(𝛾𝑦)1−𝜆 −
∑
𝐽

𝑝1−𝜆
𝑗 𝑞 𝑗

𝐿(𝛾𝑦)1−𝜆
=

1

1 +
𝐽∑
𝑘=1

exp (𝛿𝑘)

. (A.5)

Dividing the choice probability for each product 𝑗 by the choice probability of the outside

good 0 leads to the following ratio of choice probabilities:

𝑝1−𝜆
𝑗 𝑞 𝑗

𝐿(𝛾𝑦)1−𝜆 −
𝐽∑
𝑘=1

𝑝1−𝜆
𝑗 𝑞 𝑗

= exp

(
𝛿 𝑗

)
. (A.6)

Taking logs arrives at equation (8).
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A.1.3 Elasticities

We derive the own- and cross-elasticities for the joint Box-Cox and BLP model and then

list the elasticities for special cases.

Own-elasticity:

𝜂 𝑗 𝑗 =
𝜕𝑞 𝑗

𝜕𝑝 𝑗

𝑝 𝑗

𝑞 𝑗
(A.7)

=

(∫
𝜕𝑠𝑖 𝑗

𝜕𝑝 𝑗
𝑑𝑃𝜈(𝜈)

(
𝛾 𝑦̄

𝑝 𝑗

)
1−𝜆

𝐿 +
∫

𝑠𝑖 𝑗𝑑𝑃𝜈(𝜈)
𝜕

𝜕𝑝 𝑗

(
𝛾 𝑦̄

𝑝 𝑗

)
1−𝜆

𝐿

)
𝑝 𝑗

𝑞 𝑗
(A.8)

=

[
−

∫
𝛼𝑖𝑝

𝜆
𝑗 𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
𝑑𝑃𝜈(𝜈) −

∫
𝑠𝑖 𝑗𝑑𝑃𝜈(𝜈)(1 − 𝜆)

]
1

𝑠 𝑗
(A.9)

= −
𝑝𝜆
𝑗

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
𝑑𝑃𝜈(𝜈) − (1 − 𝜆). (A.10)

The second line follows from the product rule, since price enters both through the choice

probability and conditional demand. The third line firstly inserts the share deriva-

tive of

𝜕𝑠𝑖 𝑗
𝜕𝑝 𝑗

= −𝛼𝑝𝜆−1

𝑗
𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
, secondly inserts the conditional demand derivative of

𝜕
𝜕𝑝 𝑗
𝑝𝜆−1

𝑗
= (𝜆 − 1)𝑝𝜆−2

𝑗
, and thirdly cancels one conditional demand term. Last, the fourth

line recognizes that

∫
𝑠𝑖 𝑗𝑑𝑃𝜈(𝜈) = 𝑠 𝑗 .

Cross-elasticity:

𝜂 𝑗𝑘 =
𝜕𝑞 𝑗

𝜕𝑝𝑘

𝑝𝑘

𝑞 𝑗
(A.11)

=

(∫
𝜕𝑠𝑖 𝑗

𝜕𝑝𝑘
𝑑𝑃𝜈(𝜈)

(
𝛾 𝑦̄

𝑝 𝑗

)
1−𝜆

𝐿

)
𝑝𝑘

𝑞 𝑗
(A.12)

=
𝑝𝜆
𝑘

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗𝑠𝑖𝑘𝑑𝑃𝜈(𝜈), (A.13)

where line three follows by inserting

𝜕𝑠𝑖 𝑗
𝜕𝑝𝑘

= 𝑠𝑖 𝑗𝑠𝑖𝑘𝛼𝑖𝑝𝜆−1

𝑘
and rearranging.

Table of Elasticities: Table 2 list the own- and cross-elasticities for each model.
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Table 2: Own- and Cross-elasticities for each model

RC Model Own-elasticity, 𝜂 𝑗 𝑗 Cross-elasticity, 𝜂 𝑗𝑘

Yes

Box-Cox

𝑝𝜆
𝑗

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
𝑑𝑃𝜈(𝜈) + (𝜆 − 1) 𝑝𝜆

𝑘

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗𝑠𝑖𝑘𝑑𝑃𝜈(𝜈)

Unit

𝑝 𝑗
𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
𝑑𝑃𝜈(𝜈) 𝑝𝑘

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗𝑠𝑖𝑘𝑑𝑃𝜈(𝜈)

Const Exp
1

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗

(
1 − 𝑠𝑖 𝑗

)
𝑑𝑃𝜈(𝜈) - 1

1

𝑠 𝑗

∫
𝛼𝑖𝑠𝑖 𝑗𝑠𝑖𝑘𝑑𝑃𝜈(𝜈)

No

Box-Cox 𝑝𝜆
𝑗
𝛼

(
1 − 𝑠 𝑗

)
+ (𝜆 − 1) 𝑝𝜆

𝑘
𝛼𝑠𝑘

Unit 𝑝 𝑗𝛼
(
1 − 𝑠 𝑗

)
𝑝𝑘𝛼𝑠𝑘

Const Exp 𝛼
(
1 − 𝑠 𝑗

)
− 1 𝛼𝑠𝑘

Notes: RC refers to Random Coefficient for price. Unit and Const exp refers to unit-

demand and constant expenditures. For instance, the standard BLP is RC = yes and

Model = Unit.

A.2 Data

The data on the “Ready-to-Eat” cereal market come from IRI, who provide scanning

technology for supermarkets. The IRI data records weekly sales revenue and quantities

per barcode for over 1,262 supermarkets in the Northern Netherlands from January 2011

to December 2013. A barcode defines a product, which is a distinct combination of a

brand, flavor, packaging, and size. This product definition implies a 375-gram box of

Kellogg’s Special K is a different product than a 550-gram box or a 375-gram box of the

dark chocolate flavor. The data is largely comparable to the widely used Nielsen data

covering US retailers, as summarized in Einav, Leibtag, and Nevo (2010).

We refer to Statistics Netherlands to define a geographic market as a province. We

have information on the following six provinces: Noord-Holland, Friesland, Groningen,

Drenthe, Utrecht, and Flevoland.

We aggregate across all supermarkets within a province, so an observation of product 𝑗

in geographic market 𝑚 in week 𝑡 is the total revenue, 𝑟 𝑗𝑚𝑡 , and total quantity, 𝑞 𝑗𝑚𝑡 . Using

these two variables, we calculate the price by dividing the total revenue by total quantity,

so 𝑝 𝑗𝑚𝑡 =
𝑟𝑗𝑚𝑡
𝑞 𝑗𝑚𝑡

. This step only aggregates over the 903 supermarkets for which we have

complete data (i.e., open for the full three-year sample, meaning we drop supermarkets,

which open or close partway through the sample period). As is common in the discrete

choice literature, we normalize prices to a common size, in our case to a price per kg.

For tractability, we trim the data to keep only economically meaningful products. We
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select these products by first ranking them by total sales revenue, and second dropping

the long tail of products, which make up the bottom 30% of revenue. After dropping these

products, the final data set covers 73 products, 6 geographic markets, and 156 weeks. This

aggregates to 50,836 total product-market-week observations. Table 3 provides context by

summarizing the main variables. The mean revenue is
=C1,641. The standard deviation is

large, as some products have considerably larger sales than other products. The median

price per serving equals
=C5,39/kg, but product prices vary widely. For further context,

the average size equals 0.50 kg, so half a kilogram. Last, the average market-week contains

observations for 54 products.

Table 3: Summary Statistics for Cereal 2011-2013

Mean Median P25. P75. St Dev Min Max

Revenue (
=C) 1,641 700 333 1,833 2,495 18.93 34,325

Quantity (kg) 424 151 63 418 804 1.72 24,155

Price (
=C/kg) 5.39 5.12 3.96 6.57 2.50 0.97 15.12

Size (kg) 0.52 0.50 0.40 0.50 0.23 0.10 1.00

Products 54.31 54.00 52.00 57.00 2.84 48.00 59.00

Notes: Observation is product-market-week. Data covers 73 products, 6 geographic

markets, and 156 weeks, which aggregates to over 50,836 total product-market-week

observations. Products is number of products per category-market-week.

A.3 Additional Figures

This section reports the following two figures: First, Figure A.1 shows how implied product

markups vary with own price. Second, Figure A.2 plots how cross-elasticities vary with

price differences.
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Figure A.1: Markups vs. own-price

Explanation: Figure is a binned scatter to smooth across randomness introduced in the BLP

simulation algorithm. We define ten equal sized bins and plot the average markup against

the average price for each bin. We calculate the product markups as inverse price elasticities

using the elasticity for each model using equations listed in Table 2. Own-price is the average

price per product. The sample consists of 73 products in the cereal category.
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Figure A.2: Cross-elasticity vs. price-difference

Explanation: Figure is a binned scatter to smooth across randomness introduced in the

BLP simulation algorithm and variation caused by differences in product shares driven by

popularity (i.e., cross-elasticity is greater to a popular product independently of the price

difference). We define ten equal sized bins and plot the average cross-elasticity against

average price-difference for each bin. We calculate the cross-elasticity between each product

j and k for each model using equations listed in Table 2. For interpretability, we scale these

cross-elasticities by dividing by the mean cross-elasticity for each model. The X-axis is the

absolute price difference, which we calculate as |𝑝 𝑗 − 𝑝𝑘 |. The sample consists of 73 products

in the cereal category.
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