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1 Introduction

It is well-known that an upstream firm may suffer from an opportunism problem when

it deals with multiple competing downstream firms through bilateral contracts. Although

the upstream firm wants to restrict the total quantity of its input in order to maintain

high prices and profits, it may be unable to commit not to engage in opportunistic moves

that increase the bilateral surplus with one downstream firm at the expense of other firms.

Therefore, the upstream firm may be unable to fully exert its market power, even if it

enjoys a monopoly position in the upstream market. This opportunism problem, which

was first analyzed by Hart and Tirole (1990), O’Brien and Shaffer (1992), and McAfee and

Schwartz (1994), occupies a central place in the literature on vertical contracting and has

been invoked as an explanation for vertical mergers and vertical restraints such as exclusive

dealing that allow the supplier to restore its market power (see Rey and Tirole (2007) for

an overview).1

The leading approach to modeling opportunism in vertical contracting is to assume that

an upstream monopolist makes simultaneous secret offers to competing downstream firms.

Under the commonly adopted equilibrium refinement that a downstream firm holds passive

beliefs when it receives an out-of-equilibrium offer, that is, the downstream firm does not

revise its beliefs about the offers received by its rivals upon reception of an ‘unexpected’

offer, the upstream firm is unable to fully exert its market power in equilibrium in this case.

If the upstream monopolist makes simultaneous public offers, on the other hand, then the

monopoly outcome arises in equilibrium.

This paper proposes a different approach to modeling the opportunism problem in verti-

cal contracting. Our approach is dynamic in nature, capturing the notion that opportunism

arises because an upstream “monopolist might gain by recontracting with another firm”

once “the initial firm is somewhat locked in” (McAfee and Schwartz (1994, p. 210)). Al-

though recontracting has long been recognized as an important source of opportunism,

previous attempts to model the opportunism problem dynamically are scarce. McAfee and

Schwartz (1994)’s seminal paper on opportunism in vertical contracting does consider a

1Important contributions on the opportunism problem and the various solutions to it include Rey and
Vergé (2004), Marx and Shaffer (2004), White (2007), Montez (2015), Reisinger and Tarantino (2015), and
Gaudin (2019).
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game in which the upstream monopolist makes sequential offers (see Section II of their

paper), but, as they explain, this game fails to capture that “all firms will be leery that

the monopolist might recontract with their rivals” (McAfee and Schwartz (1994, p. 218),

emphasis added). This weakness of the sequential-offers model prompts them to consider

a game with simultaneous secret offers, which has since become the workhorse model of

vertical contracting with opportunism in the literature. Our paper, in contrast, models

recontracting explicitly, using an infinite-horizon model in which each downstream firm an-

ticipates future recontracting between the upstream firm and its rival, as well as between

the upstream firm and itself.

In addition to capturing the inherently dynamic recontracting explanation for oppor-

tunism, our dynamic modeling approach has a number of advantages over the standard

secret-offers approach. First, the dynamic approach allows us to obtain new comparative

statics results. It delivers predictions about the degree of opportunism and how it varies

with the key parameters of our model—the discount rate and the absolute and relative

recontracting reaction speeds of the various bilateral upstream-downstream pairs. This is

useful for vertical merger policy and competition policy on vertical restraints, because when

the supplier’s opportunism problem is worse, the competitive damage from strategies such

as vertical intergration that restore the supplier’s monopoly power will be worse as well

(and the supplier’s incentive to use such strategies will be stronger).

Second and relatedly, our model yields less stark, and thus perhaps more realistic,

predictions about the degree of opportunism. As a function of the different parameter

values, our theory can explain steady-state outcomes that lie between the boundary cases

of (i) the integrated monopoly outcome (no opportunism), which would arise in equilibrium

under simultaneous public offers, and (ii) the pairwise-proof outcome (full opportunism),

which would arise in equilibrium under simultaneous secret offers and passive beliefs.

Third, no assumptions about out-of-equilibrium beliefs are needed to characterize the

degree of opportunism in our dynamic model. The equilibrium outcome of a game with

simultaneous secret offers, on the other hand, is highly sensitive to which out-of-equilibrium

belief refinement is adopted, with different assumptions often leading to radically different

equilibrium outcomes.

Our setting embeds a simple Cournot-style model of bilateral contracting between one
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upstream firm and two competing downstream firms, similar to the one set out by Rey

and Tirole (2007), into an infinite-horizon continuous-time framework. The upstream firm

(henceforth also called supplier) gets to make new contract offers to the downstream firms

(henceforth also called retailers) according to independent Poisson processes, one for each

retailer. The independence of the Poisson processes implies that recontracting occurs asyn-

chronously, that is, the probability of simultaneous offers is zero. Moreover, because a

higher Poisson rate implies that a retailer’s contract reacts more quickly (in expectation)

to changes in the other retailer’s contract, the Poisson rate that governs the arrival of recon-

tracting events between a supplier-retailer pair has a natural interpretation as the reaction

speed of that retailer’s contract. Contracts specify the quantity supplied by the supplier

and a fixed fee to be paid by the downstream firm per unit of time, and we focus on Markov

Perfect Equilibria (MPE).2

The supplier’s Markov strategy involves dynamic quantity reaction functions that spec-

ify how the quantity that the supplier offers to a retailer depends on the quantity that the

supplier currently supplies to the retailer’s rival. We characterize the first-order conditions

that differentiable dynamic quantity reaction functions must satisfy in a Markov Perfect

Equilibrium, and use them to derive a series of results about the equilibrium steady-state

quantities (assuming existence of a stable equilibrium with differentiable dynamic quantity

reaction functions). For the case of linear demand functions, we establish the existence of

a unique MPE with linear dynamic quantity reaction functions. This linear MPE is shown

to be dynamically stable, with the retailers selling symmetric quantities in the equilibrium

steady state when the reaction speeds are symmetric, and the retailer whose contract reacts

faster selling a larger quantity than its rival when the reaction speeds are asymmetric.

The analysis yields three broad takeaways about the degree of opportunism, as measured

by the (inverse of the) aggregate quantity sold in the equilibrium steady state. First, pa-

tience reduces opportunism. Second, a faster average reaction speed reduces opportunism.

And third, asymmetry in reaction speeds reduces opportunism.

The intuition for the first two insights can be understood as follows. When making an

offer to retailer Di, the supplier internalizes only the effect on Di’s own variable profit in the

2The restriction to Markov strategies reduces the large multiplicity of equilibria, and it allows us to focus
on the key trade-off between short-term incentives to behave opportunistically and longer-term incentives
to achieve collective surplus maximization.

3



time interval until the next recontracting with the retailer’s rival D−i, but it internalizes

the future effects on all retailers’ variable profits from the next recontracting with D−i

onwards (through its current and anticipated future fixed fees). Greater patience makes

the supplier care relatively more about profits earned after the next recontracting with

the rival retailer, the time for which it internalizes the effects of its current offer on total

surplus, thus weakening the supplier’s incentive to behave opportunistically. Similarly, fast

reaction speed reduces the expected length of time until the next recontracting with the

rival retailer, that is, the length of time during which effects on the rival retailer’s variable

profits are ignored, thereby weakening the supplier’s incentive to behave opportunistically.3

Nonetheless, under symmetric reaction speeds, some degree of opportunism prevails in

the equilibrium steady state even in the limit, when the discount rate goes to zero or the

reaction speed goes to infinity. Formally, the steady-state quantity is bounded below by a

quantity strictly above the per-firm monopoly quantity in any stable symmetric equilibrium

with differentiable dynamic quantity reaction functions. Asymmetries in reaction speeds

across supplier-retailer pairs, however, can further reduce the extent of opportunism, and

even eliminate it in a limiting case given the assumption that retailers sell perfect substi-

tutes. We find that (under some technical conditions) in any equilibrium steady state, the

aggregate quantity is close to the monopoly quantity when the reaction speed of one retailer

is close to zero and either the discount rate is close to zero or the reaction speed of the other

retailer is large enough. Moreover, in the linear-demand case, the aggregate equilibrium

steady-state quantity in the unique MPE with linear dynamic quantity reaction functions

is falling in the degree of asymmetry across reaction speeds, for any given average reaction

speed and discount rate.

Our results have implications for vertical merger policy and for competition policy on

vertical restraints. Models of vertical contracting with opportunism have been used to un-

derstand anticompetitive effects of vertical mergers and vertical restraints by noting that if

secret offers and passive beliefs are observed, then vertical intergration and contract provi-

sions that eliminate the opportunism problem reduce total output and harm downstream

3This result may appear surprising in the sense that fast reaction speed can be thought of as a lack of
commitment to refrain from recontracting. However, as our setting makes it clear, opportunism arises not
due to a lack of commitment to long contracts, but due to a lack of commitment on the terms of future
contracts.
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consumers. Our model shows that secret offers are not needed for opportunism to arise,

and that vertical mergers and opportunism-avoiding contract provisions can have anticom-

petitive effects even when contracts are public. Moreover, our results offer guidance on

when vertical mergers and opportunism-avoiding contract provisions are likely to be more

harmful, namely when firms are impatient, there are long time gaps between recontracting,

and reaction speeds are symmetric.

The paper is organized as follows. In Section 2, we discuss the connections of our

paper to the related literatures on dynamic vertical contracting and on dynamic oligopoly

games. In Section 3, we describe the model setup. Section 4 offers a brief summary of the

analysis and results in the benchmark case of simultaneous offers in a static game. Section 5

contains our analysis. In Section 5.1, we derive the equilibrium conditions, and we prove the

existence of a unique MPE with linear dynamic quantity reaction functions in the linear-

demand case. In Section 5.2, we derive limit results and comparative static results on the

equilibrium steady-state quantities for the case of symmetric reaction speeds. In Section

5.3, we extend these results, analyzing the implications of asymmetries in reaction speeds

across supplier-retailer pairs for the equilibrium steady state. Section 6 discusses strategies

the supplier could use to restore its monopoly power. In Section 7, we discuss the policy

implications of the results and some directions for further research. The appendix contains

all proofs that are omitted from the main text.

2 Related literature

In addition to the aforementioned literature on opportunism in static models of vertical

contracting, our paper contributes to the literatures on dynamic vertical contracting and

on dynamic oligopoly games.

Dynamic vertical contracting Although the literature on vertical contracting is vast,

previous attemps to model the opportunism problem dynamically are scarce. McAfee and

Schwartz (1994), Marx and Shaffer (2004), and Bedre-Defolie (2012) consider models in

which a supplier makes public sequential offers to competing retailers, so the supplier has

an incentive to behave opportunistically with the later retailer(s) in the sequence. However,

sequential-offer models fail to capture that all retailers may be wary of future opportunistic
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behavior, and they impose a strong ex ante asymmetry between firms. Our infinite-horizon

model is more general, encompassing sequential offers as a special limiting case when the

reaction speeds are allowed to be asymmetric.

Dequiedt and Martimort (2015) consider a model in which offers are made simultane-

ously but that nonetheless has a dynamic flavor, because the supplier is allowed to move

last, choosing each retailer’s quantity from a menu contract accepted by the retailer. Offers

are public but retailers have private information. The supplier’s ability to choose quantities

can thus be thought of as allowing the supplier to dynamically “respond to new information

as it arrives.” We focus on forcing contracts instead, and introduce dynamics explicitly by

considering repeated asynchronous contracting in an infinite-horizon model. Opportunism

arises due to the supplier’s inability to commit to the terms of future contracts in our

setting, whereas Dequiedt and Martimort (2015) focus on a new form of “informational”

opportunism due to private information on the retailer side.4

Lee and Fong (2013) analyze Markov perfect equilibria of an infinite-horizon dynamic

seller-buyer network formation game with transfers. However, the focus of their work is on

network formation (who trades with whom), whereas we are interested in the severity of the

opportunism problem that a monopolistic supplier faces. Closer to our setting, Farrell (2019,

Section 5) proposes to analyze a symmetric alternating-offers model of vertical contracting

between an upstream monopolist and competing downstream firms. However, the formal

analysis of the dynamic model in his paper is highly incomplete. It does not include a

characterization of the Markov perfect equilibrium strategies and steady-state quantities,

nor any comparative statics results. Moreover, Farrell (2019)’s main focus are partially

exclusionary contracts rather than the opportunism problem.5

4Segal and Whinston (2003) consider menu contracts, from which the principal chooses after the agents
have made their acceptance decisions, in a model without private information. They show that when
marginal production costs are nonincreasing (as we will assume), allowing menu contracts does not restrict
the equilibrium set in a game in which a principal makes simultaneous secret offers to competing agents:
Any profile of quantities and transfers such that total surplus is nonnegative can be sustained as a Weak
Perfect Bayesian Equilibrium in this case (see Proposition 6 in their paper).

5The broader literature on dynamic vertical contracting also includes work on dynamic common agency
games (Bergemann and Välimäki (2003), Pavan and Calzolari (2009)), in which multiple principals make
offers to a common agent rather than the opposite scenario considered in this paper, and research on the
implications of vertical market structure and contracting for firms’ ability to sustain collusion in a repeated
game (Nocke and White (2007), Piccolo and Miklós-Thal (2012), Gilo and Yehezkel (2020)).
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Dynamic oligopoly and asynchronous moves This paper is also related to the

literature on dynamic oligopoly, and more broadly the literature on dynamic games with

asynchronous moves. In a series of seminal articles on dynamic oligopoly, Maskin and Tirole

(1987, 1988a,b) analyze Markov Perfect Equilibria of repeated games in which duopolists

make alternating moves.6 Our continuous-time model in which contract timing is governed

by independent Poisson processes is inspired by the micro-foundation that Maskin and

Tirole (1988a, Section 4) propose for such games.

A key difference to the models considered by Maskin and Tirole and other work on

dynamic oligopoly is that we consider a vertical industry structure with a supplier that

makes asynchronous offers to two competing firms (who then accept or reject and compete

in the market), instead of two competing firms that make asynchronous strategic decisions.

Unsurprisingly, this leads to qualitatively different results. For instance, under symmetry

the equilibrium steady-state quantity lies below the static Cournot quantity in our set-

ting, whereas Maskin and Tirole (1987) obtain the opposite result in a dynamic game of

symmetric Cournot competition with linear demand functions.

An important feature of our dynamic model is that contract offers are asynchronous.

Asynchronous moves have also been analyzed in repeated coordination games (Lagunoff and

Matsui (1997)), and more recently in asynchronous revision games where players prepare

some actions at the beginning and then obtain revision opportunities according to indepen-

dent Poisson processes until some predetermined deadline (Kamada and Kandori (2012),

Calcagno et al. (2014)). Ambrus and Lu (2015) analyze a continuous-time finite-horizon

coalitional bargaining game in which opportunities to make offers arrive asynchronously

according to independent Poisson processes, until an agreement is reached. While these

papers share the asynchronous-moves assumption and some important modeling ingredi-

ents with our research, they differ substantially from our work in motivation, focus, and

analysis.

6Other important contributions to this literature include Eaton and Engers (1990) who consider dy-
namic price competition with differentiated goods, De Fraja (1993) who analyzes the impact of staggered
wage bargaining on wages in an oligopolistic industry, Davies (1991) who explores a dynamic entry deter-
rence model where two firms alternate in making price and entry choices, and Pastine and Pastine (2002)
who consider dynamic competition when duopolists choose advertisement and price levels and there are
consumption externalities among buyers. Jun and Vives (2004) analyze a dynamic duopoly model with
adjustment costs.
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3 Setting

We embed a simple Cournot-style model of vertical contracting, similar to the one set out by

Rey and Tirole (2007), into a continuous-time dynamic setting. Consider a vertical structure

with one upstream supplier, U , and two competing downstream firms Di (i = A,B, also

called retailers). The downstream firms purchase an input from the supplier, transform

it into a final good using a one-to-one technology, and sell the final good to consumers.

Upstream marginal costs are constant and equal to c ≥ 0, downstream marginal costs are

constant and normalized to zero.

Consumers have an inverse demand curve P (Q) : R+ → R for the product, where

Q = qA + qB denotes the total quantity put on the market by the downstream firms. We

make the following assumptions:

A1 P (Q) is continuous and strictly decreasing for all Q ≥ 0, and twice continuously

differentiable for all Q > 0.

A2 P ′ (Q) + P ′′ (Q)Q < 0 for all Q > 0.

A3 P (0) > c and limQ→∞ P (Q) < c.

A1 and A3 implies that there exists a unique quantity Qc > 0 such that price is equal

to total marginal cost: P
(
Qc

)
= c.7 This quantity will be useful because it represents a

natural upper bound to impose on quantities in order to obtain bounded action spaces.

The instantaneous variable profit of downstream firm Di (gross of any payments to the

supplier) is given by

π (qi, q−i) = qiP (qA + qB) ,

where qi denotes Di’s own quantity, and q−i its competitor’s quantity. We use sub-

scripts to denote derivatives, e.g., π2 (qi, q−i) = ∂π(qi,q−i)
∂q−i

. Assumptions A1-A2 imply that

π11 (qi, q−i) = ∂2π(qi,q−i)
∂q2i

< 0 and π12 (qi, q−i) = ∂2π(qi,q−i)
∂qi∂q−i

< 0.

The instantaneous industry profit, that is, the sum of all three firms’ profits, is given by

Π (qA + qB) = (qA + qB) (P (qA + qB)− c) .

7Note that for c = 0, A3 implies that price must be negative for high quantities. This assumption is
not crucial for our results. See Footnote 16 in section 5.1, where we discuss the implications of restricting
prices to be non-negative in the linear-demand case.
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We denote by RC (q−i) = arg maxq (q (P (q + q−i)− c)) = arg maxq (Π (q + q−i)− π (q−i, q))

the Cournot reaction function given the marginal production cost c. The per-firm Cournot

quantity qC is defined by qC = RC
(
qC
)
. The quantity that maximizes industry profits is

denoted by QM = arg maxQ Π (Q), and we let RM (q−i) = arg maxq Π (q + q−i) = QM − q−i
denote the “monopoly reaction function” and qM = QM/2 = RM

(
qM
)

the quantity per

downstream firm when they split the total monopoly quantity equally.

Time is continuous and infinite, indexed by t ∈ [0,∞), and all firms discount future

payoffs at a rate r > 0. A contract between U andDi consists of a vector (qi, fi) ∈
[
0, Qc

]
×R

that specifies a flow of input quantity qi from the supplier to the retailer and a fixed

payment fi from the retailer to the supplier per unit of time. For simplicity, we assume

that the supply contracts are quantity-fixing, that is, they fix how much quantity the retailer

transforms into the final output and sells to consumers per unit of time.8 The absence of a

contract between U and Di is equivalent to (qi, fi) = (0, 0).

Di’s flow payoff given the current contracts is thus π (qi, q−i)− fi, and U ’s flow payoff is

fA + fB − c (qA + qB) .

The sum of the three firms’ flow payoffs is equal to the industry profit Π (qA + qB).

The timing of contracts is governed by two independent Poisson processes with rates

λA > 0 and λB > 0, respectively. For a small time interval ∆t, the probability that the

current contract between U and Di terminates and recontracting occurs is λi∆t. In this

event, U instantaneously makes a new offer to Di, and Di immediately accepts or rejects

the offer.9 If Di accepts (rejects) an offer (qi, fi), its quantity becomes qi (zero) per unit of

8An alternative would be that after purchasing their input quantities, the downstream firms play the
Bertrand-Edgeworth game of downstream price competition with capacity constraints. In this alternative
specification, both retailers find it optimal to transform all their input and set their price at P (qA, qB) for

any (qA, qB) ∈
[
0, Qc

]2
if the following assumptions hold: the upstream marginal cost c is high enough,

stockpiling is infeasible (i.e., a retailer whose contract specifies quantity qi can sell at most qi∆t in a time
interval ∆t), and the retailers can adjust their prices instantaneously in response to a change in either
retailer’s contract. Our assumptions on contracts (quantity-transfer pairs, and quantity fixing) are in line
with those in Segal (1999)’s general analysis of contracting with externalities between one principal and
several agents.

9The assumption that time lapses between offers, but not between offers and acceptance decisions, goes
back to the classic bargaining models of Stahl (1972) and Rubinstein (1982). It has also been adopted more
recently by Ambrus and Lu (2015) in a continuous-time bargaining model where proposal opportunities
arrive according to a Poisson process over time. The assumption helps us to focus on the opportunism
problem and how the supplier’s contract with one retailer reacts to changes in its contract with the other
retailer.
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time until the contract terminates and the next recontracting between U and Di occurs.

We will refer to λi as the “reaction speed” of Di’s contract. A higher λi (shorter com-

mitment length) means that recontracting with Di occurs more frequently, therefore the

bilateral pair U − Di can react quickly to changes in the contract between U and D−i.

Conversely, a lower λi (longer commitment length) means that recontracting with Di oc-

curs less frequently, therefore the bilateral pair U −Di reacts less quickly to changes in the

contract between U and D−i.

We focus on (stationary) pure Markov strategies. The state variable when U is about

to make an offer to Di is the quantity in U ’s current contract with D−i.
10 Formally, a

Markov strategy of U is given by a pair of mappings (Ri, Fi)i=A,B where (Ri (q−i) , Fi (q−i))

is the contract offered to Di when U currently sells quantity q−i to D−i. We will refer to

(RA, RB) as the dynamic quantity reaction functions, because they capture how the quantity

in U ’s contract with one retailer reacts to the quantity in the competing retailer’s contract.

The quantity action spaces are restricted to a bounded set; specifically, we assume that

Ri :
[
0, Qc

]
→
[
0, Qc

]
for all i.11 The fixed fee offers are allowed to take on any value in

R. For Di, a pure Markov strategy is given by a function Mi (q, f ; q−i) ∈ {0, 1}, where

Mi (q, f ; q−i) = 1 (resp. Mi (q, f ; q−i) = 0) means that Di accepts (resp. rejects) the offer

(q, f) when U currently sells quantity q−i to D−i. All actions are public.

A strategy profile is called a Markov Perfect Equilibrium (MPE) if it is a subgame

perfect equilibrium in Markov strategies. We restrict attention to equilibria in which all

offers are accepted (Mi (Ri (q−i) , Fi (q−i) ; q−i) = 1 for all q−i and all i), which is without

loss of generality because an offer that would be rejected can be replaced by an accepted

null contract (qi, fi) = (0, 0) without any impact on expected present discounted payoffs.

10One may wonder why the state when U makes an offer to Di excludes the fixed fee f−i in U ’s current
contract with D−i, although this fixed fee affects U ’s (and D−i’s) payoff until the next recontracting with
D−i. The reason is that U ’s preferences over continuation strategies are independent of f−i. The fixed
fee f−i does not affect Di’s payoffs when deciding whether to accept or reject an offer (qi, fi) from U ,
which implies that U ’s continuation payoff functions for the same q−i but two different values of f−i are
positive affine transformations of one another. Applying the criterion set out in Maskin and Tirole (2001),
Markov strategies therefore only depend on the quantity that U currently supplies to the rival retailer in
our context.

11The assumption that the quantity action spaces are bounded ensures that the value functions are well
defined and that dynamic programming techniques are applicable. Our approach in the analysis will be to
ignore the upper and lower bounds on quantity when solving the supplier’s optimization problem and to
verify ex post that indeed Ri (q−i) ∈

[
0, Qc

]
for all q−i ∈

[
0, Qc

]
and i.
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Henceforth, a Markov perfect equilibrium is also referred to simply as equilibrium, and we

will say that an equilibrium is linear if the equilibrium dynamic quantity quantity reaction

functions are linear. All firms are risk neutral and seek to maximize expected present

discounted payoffs.

Remarks The results in our main model do not hinge on the assumption that contract

offers are publicly observed. They would remain unchanged if the offers were secret. As

the two Poisson processes according to which contracts terminate are independent, the

probability that the supplier makes simultaneous offers to the two downstream firms is

zero. Moreover, since contracts are quantity-forcing, a downstream firm can infer its rival’s

quantity from its own variable profit. When a downstream firm receives a contract offer, it

would thus be aware of the quantity in its rival’s current contract even if that contract offer

had been privately observed. The issue of beliefs about the supplier’s offer to another down-

stream firm, which is central to the analysis when the suuplier makes secret simultaneous

offers, is therefore moot in our setting.

It is also worth noting that the stochastic nature of the contract timing is not important

for our results. Given that the firms are risk neutral, formally the model is equivalent to

one in which all contracts have length ∆A + ∆B, where ∆i (i = A,B) denotes the time lag

with which the bilateral pair U −Di reacts to a change in D−i’s quantity.12 By the Poisson

property, the probability of contract termination is independent of a contract’s age in our

setting. Therefore, as in a model with alternating offers and deterministic contract lengths,

only the quantity that the rival retailer is committed to under its current contract, and

not contract age, is relevant for the negotiation between the supplier and a retailer. The

critical feature of our model is that recontracting events are asynchronous, not that they

are stochastic.

12Specifically, the setting with deterministic reactions lags ∆A and ∆B is analogue to our model when
e−r∆i = λi

r+λi
for each i (or, in a discrete-time version of the model with deterministic reaction lags, when

δTi = λi

r+λi
, where Ti denotes the number of periods before i’s contract reacts and δ the discount rate).

See also Maskin and Tirole (1988a) and Lagunoff and Matsui (1997, Section 3) for discussions of various
microfoundations of dynamic games with asynchronous moves.
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4 Benchmark: Static Model

Before we analyze the dynamic game, let us set out the benchmark of simultaneous offers in

a static game. Consider a game in which U makes simultaneous contract offers of the form

(qi, fi) to the retailers, and the retailers simultaneously and independently decide whether

to accept or reject these offers. The payoffs are the same as the flow payoffs in our dynamic

setting, namely π (qi, q−i)− fi for Di and fA + fB − c (qA + qB) for U , with (qi, fi) = (0, 0)

if Di rejects U ’s offer.

Public offers When the supplier’s offers are publicly observed by the retailers, the

supplier can fully exert its market power and obtains the entire monopoly profit in (a

subgame perfect) equilibrium. For instance, U can achieve this by offering the contract(
qM , π

(
qM , qM

))
to each retailer. Both retailers will accept and together they will sell the

monopoly quantity. The intuition for why the monopoly outcome arises in equilibrium is

that the supplier internalizes the effects on all retailers’ profits when making offers: Any

change in the quantity offered to Di affects the fixed fee that the supplier can obtain from

retailer D−i by an amount equal to the effect of the change on D−i’s variable profit.

Secret offers When Di cannot observe the contract offered to D−i, the (perfect Bayesian)

equilibrium of the game is sensitive to Di’s beliefs about the contract offered to D−i when

Di receives an out-of-equilibrium offer. A sensible and widely-used assumption in Cournot

settings like the one we consider is that retailers hold passive beliefs, whereby a retailer that

receives an out-of-equilibrium continues to believe that its rival was offered the equilibrium

contract.13

Let (q̂A, q̂B) denote the equilibrium quantities. With passive beliefs, retailer Di is willing

to accept an offer (q, f) if and only if f ≤ π (q, q̂−i). The equilibrium offer to Di must

therefore maximize the bilateral surplus of the pair U −Di given q̂−i, which in our setting

means that Di’s equilibrium quantity must be the Cournot best response to q̂−i:

q̂i = RC (q̂−i) = arg max
qi

(Π (qi + q̂−i)− π (q̂−i, qi)) .

13The passive beliefs refinement is appealing in Cournot-like settings because U has no incentive to
change the offer to D−i when it changes the offer to Di. See Hart and Tirole (1990), Rey and Vergé (2004),
or Rey and Tirole (2007) for more detailed discussions.
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In the unique equilibrium given passive beliefs, the retailers thus sell the Cournot quantities(
qC , qC

)
and the supplier earns Π

(
2qC
)
< Π

(
QM
)
. Intuitively, the supplier is unable to

fully exert its market power because when making an offer to Di, it does not internalize

the negative effect that a higher qi has on D−i’s variable profit.14

Different beliefs can lead to different equilibrium outcomes. In particular, the monopoly

outcome arises in equilibrium under symmetric beliefs, whereby a retailer that receives an

out-of-equilibrium offer believes that its rival was offered the same contract.15,16

The simultaneous-offer games analyzed in the literature thus all feature one of two

polar outcomes in our setting. Either the monopoly outcome arises in equilibrium (when

offers are public or offers are secret and beliefs symmetric) or opportunism leads to the

Cournot competition outcome in equilibrium (when offers are secret and beliefs passive or

wary). Other than through changes in parameters that affect the Cournot or the monopoly

outcome, these models do not accommodate varying degrees of opportunism.

5 Dynamic Model

5.1 Equilibrium conditions and existence

To solve for a Markov Perfect Equilibrium, we define four value functions. Given the

Markov strategies ((RA, FA, RB, FB) ,MA,MB), let WA(qB, fB) denote the expected present

discounted value of U ’s profits when U is about to make an offer to DA, the other retailer’s

14Some papers in the vertical contracting literature (e.g., O’Brien and Shaffer, 1992) use the “contract
equilibrium” concept pioneered by Cremer and Riordan (1987), which requires contracts to be pairwise
stable (i.e., each contract must maximize bilateral surplus given the contracts of other retailers) but does
not rule out multi-lateral deviations. In the model with Cournot competition and quantity-fixing contracts
considered here, the quantities in a passive-beliefs perfect Bayesian equilibrium coincide with the quantities
in such a contract equilibrium, hence this alternative solution concept would lead to the same conclusion.

15The third belief refinement in the literature are wary beliefs, first introduced by McAfee and Schwartz
(1994). Wary beliefs coincide with passive beliefs in our setting with quantity-fixing contracts, hence the
Cournot outcome would remain the equilibrium outcome under this alternative belief refinement. See In
and Wright (2018) for a more general analysis of “endogenous signaling games” that offers a game-theoretic
foundation for wary beliefs in vertical contracting games.

16In fact, in our setting, an equilibrium with any non-negative quantities (q̂A, q̂B) such that q̂A+ q̂B < Qc
can be sustained by appropriately defined out-of-equilibrium beliefs. To see this, suppose that if Di receives
an offer qi 6= q̂i, Di believes that D−i was offered the contract

(
Qc − qi, 0

)
and that D−i holds similar beliefs

(which makes accepting
(
Qc − qi, 0

)
optimal for D−i). The highest fixed fee Di is willing to pay is thus

equal to π
(
qi, Qc − qi

)
= qic, which makes a deviation unprofitable for the supplier.
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current contract is (qB, fB), and all firms play according to their Markov strategies hence-

forth. WB(qA, fA) is defined symmetrically. Let VA(q, f ; qB) denote the expected present

discounted value of DA’s profits when DA accepts the contract offer (q, f) it just received,

U currently supplies qB to the other retailer, and all firms play according to their Markov

strategies henceforth. VB(q, f ; qA) is defined symmetrically.

U ’s optimization problem when it is about to make an offer to Di can then be written

as17

Wi(q−i, f−i) = max
(q,f)

(
f + f−i − c (q + q−i)

r + λi + λ−i
+

λi
r + λi + λ−i

Wi(q−i, f−i) +
λ−i

r + λi + λ−i
W−i (q, f)

)
(1)

s.t. Vi(q, f ; q−i) ≥ Vi(0, 0; q−i).

The first term in the objective function captures the discounted present value of U ’s profits

in the time interval until the next recontracting. The second and third term capture the

discounted present value of U ’s continuation profits from the next recontracting onwards,

taking into account that either the contract with Di or the contract with D−i can terminate

first. Morover, the supplier is constrained by the condition that Di finds it optimal to accept

U ’s offer (q, f). Note that it is without loss of generality to require Di’s acceptance in U ’s

optimization problem, because any offer that Di’s strategy would reject can be replaced by

an offer (0, 0) such that Di is indifferent between acceptance and rejection.

We first show that the retailer’s acceptance condition boils down to an upper bound on

the fixed fee:

Lemma 1 It is optimal for Di to accept offer (q, f) when the rival’s current quantity is

q−i, i.e., Vi(q, f ; q−i) ≥ Vi(0, 0; q−i), if and only if

f ≤ fi(q; q−i) ≡
r + λi

r + λi + λ−i
π (q, q−i) +

λ−i
r + λi + λ−i

π (q, R−i (q)) .

The fixed payment fi(q; q−i) extracts the present discounted value of all variable profits

that Di earns (in expectation) during its current contract. Capturing the possibility of a

reaction in the rival’s contract before Di’s own contract terminates, it is a weighted average

of Di’s variable profit given its rivals’ current quantity q−i and Di’s variable profit given

its rival’s quantity R−i (q) after recontracting between U and D−i. The weights depend

17Details on how to derive the objective function in (1) can be found in Appendix B.
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on the relative reaction speeds of the two supplier-retailer pairs, with a smaller λi and a

higher λ−i increasing the relative weight of π (q, R−i (q)), and on the discount rate, with a

higher discount rate increasing the weight of the profit prior to the possible recontracting

with D−i. Variable profits beyond the current contract do not matter for the retailer’s

acceptance decision, because these profits will be fully extracted by the fixed fees in future

contracts.

The objective function in the supplier’s optimization problem in (1) is strictly increasing

in f , as can be seen by noting that ∂W−i(q,f)
∂f

= 1
r+λi

> 0. It follows that f = fi(q; q−i) at the

solution of the supplier’s problem. Substituting the binding constraint into the objective

function, solving for Wi(q−i, f−i), and denoting by W i(q−i) = Wi(q−i, f−i) − f−i
r+λ−i

the

supplier’s value function net of the fixed payments already committed to in the past, the

supplier’s problem can be rewritten as

W i(q−i) =
1

r + λ−i
max
q

(
π (q, q−i)− c (q + q−i) +

λ−i
r + λi

π (q, R−i (q)) + λ−iW−i (q)

)
.

(2)

The strategies ((RA, FA, RB, FB) ,MA,MB) form a Markov Perfect equilibrium if and only

if there exist value functions
(
WA,WB

)
such that, for every i and q−i, (2) holds,

Ri (q−i) ∈ arg max
q

(
π (q, q−i)− c (q + q−i) +

λ−i
r + λi

π (q, R−i (q)) + λ−iW−i (q)

)
,

Fi (q−i) = fi(Ri (q−i) ; q−i), and Mi (q, f ; q−i) = 1 if and only if f ≤ fi(q; q−i).

For the remainder of the analysis, we will focus on characterizing the equilibrium dy-

namic quantity reaction functions (RA, RB), with the implicit understanding that Fi (q−i) =

fi(Ri (q−i) ; q−i) and Mi (q, f ; q−i) = 1 if and only if f ≤ fi(q; q−i).

Our first result on the equilibrium dynamic quantity reaction functions is that they must

be downward sloping (if they exist). As in dynamic oligopoly models, this result follows

from π12 < 0 (see Maskin and Tirole (1987, 1988a,b) or Vives (2005)).

Lemma 2 When an equilibrium exists, the equilibrium dynamic quantity reaction functions

are downward sloping: Ri (q) ≤ Ri (q
′) if q > q′, for i ∈ {A,B}.

Assuming that an equilibrium has differentiable dynamic quantity reaction functions,

we can use the first-order conditions of the supplier’s optimization problem to further
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characterize these functions. For each i = A,B, the first-order condition of the problem in

(2) is that, at q = Ri (q−i),

π1 (q, q−i)− c+
λ−i
r + λi

(
π1 (q, R−i (q)) + π2 (q, R−i (q))R

′
−i (q)

)
+ λ−i

dW−i (q)

dq
= 0.

By the envelope theorem,

dW−i (q)

dq
=

1

r + λi
(π2 (R−i (q) , q)− c) ,

which implies that the first-order condition for each i = A,B can be written as follows: at

q = Ri (q−i),

0 = −c+
r + λi

r + λi + λ−i
π1 (q, q−i)

+
λ−i

r + λi + λ−i

[
π1 (q, R−i (q)) + π2 (q, R−i (q))R

′
−i (q) + π2 (R−i (q) , q)

]
. (3)

The first-order condition in (3) has the following interpretation. Consider U ’s contract

offer to DA given that DB’s current contract specifies a quantity qB. At q = RA (qB), a

small change ∆q in the quantity that U and DA agree upon must have zero effect on the

present discounted joint profit of the bilateral pair U −DA. This effect can be decomposed

as follows. First, there is a direct effect −c∆q on upstream costs until U ’s next recontracting

with DA. Second, DA’s variable profit is affected, both at its rival’s current quantity qB and

after a possible reaction in the rival’s quantity during DA’s contract. At the rival’s current

quantity, the only effect on DA’s variable profit is the direct effect π1 (q, qB) ∆q, but after

a reaction in DB’s contract there is both a direct effect π1 (q, RB (q)) ∆q and an indirect

effect π2 (q, RB (q))R′B (q) ∆q due to the marginal reaction in DB’s quantity. Third, there

is the direct effect π2 (RB (q) , q) ∆q on DB’s variable profit after a reaction of DB’s contract

during DA’s contract. This change in DB’s variable profit is part of the present discounted

joint profit of U −DA, because it will be fully extracted by U through the fixed fee in its

next contract with DB. From the envelope theorem, ∆q has no additional first order effects.

In particular, the indirect effect of ∆q on DB’s variable profit due to the marginal reaction

in DB’s quantity in case of recontracting is not first order, because U ’s recontracting offer

to DB internalizes this change.18

18In contrast, U ’s recontracting offer to DB will not internalize the effect on DA’s variable profit in
the time interval until the next recontracting with DA, therefore the indirect effect π2 (q,RB (q))R′B (q)
appears in the first-order condition for U ’s offer to DA.
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The first-order conditions are necessary for an equilibrium given differentiable dynamic

quantity reaction functions, but they are not sufficient. For the case of linear demand

functions, however, we can show that there exists a unique set of linear dynamic quantity

reaction functions such that the necessary and sufficient condition of U ’s dynamic opti-

mization problem are satisfied:

Proposition 1 Suppose P (Q) = 1 − Q.19,20 For any parameter values r, λA, λB > 0 and

c ∈ [0, 1), there exists a unique linear MPE. This MPE is dynamically stable, i.e., for any

history, quantities converge to a steady state.

The next two subsections further analyze the properties of the steady state in a dy-

namically stable equilibrium. We first consider the case of symmetric reaction speeds and

then turn to the implication of asymmetries in reaction speeds. In each case, we first derive

results for the general model assuming equilibrium existence and differentiability of the

dynamic quantity reaction functions, and then we analyze the comparative statics of the

steady-state equilibrium quantities in the unique linear MPE under linear demand.

5.2 Symmetric reaction speeds

If λA = λB = λ, the equilibrium dynamic quantity reaction functions depend on r
λ
, the

discount rate scaled by the recontracting rate, but not on r and λ separately. Given

differentiability, this can be seen directly from the first-order condition, which can be written

as follows: at q = Ri (q−i),

0 = −c+
r
λ

+ 1
r
λ

+ 2
π1 (q, q−i)+

1
r
λ

+ 2

(
π1 (q, R−i (q)) + π2 (q, R−i (q))R

′
−i (q) + π2 (R−i (q) , q)

)
.

19Our specification allows for negative prices, but that is not essential for the results. The alternative
specification P (Q) = max {1−Q, 0} would yield the same equilibrium for high enough c, because the
equilibrium dynamic reaction functions in our unrestricted specification satisfy Ri (q−i) + q−i < 1 for all
q−i ∈

[
0, Qc

]
and i if c is large enough. In the case of small c, where Ri (q−i) + q−i > 1 for q−i close to

Qc = 1− c (although on path aggregate quantity never exceeds 1, that is, Ri (R−i (q)) +R−i (q) < 1 for all
q ∈

[
0, Qc

]
), restricting the quantity action space to

[
0, QM

]
re-establishes the equivalence between the two

specifications, because the equilibrium dynamic reaction functions in our specification satisfy Ri (q−i) +
q−i < 1 and Ri (q−i) ∈

(
0, QM

)
for all q−i ∈

[
0, QM

]
and i.

20Using P (Q) = 1−Q rather than P (Q) = a− bQ is without loss of generality. Given that the marginal
cost c is constant and a free parameter, setting a = 1 amounts to a choice of measurement units for output,
and setting b = 1 is a normalization of the market size.
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Intuitively, what matters for the firms’ present discounted payoffs is not the absolute value of

the discount rate but the discount rate relative to the expected time between recontracting

events.

The next proposition uses the result that the equilibrium dynamic reaction functions

must be downward-sloping together with the (local) stability condition for the steady-state

quantities, R′A (qeB)R′B (qeA) < 1,21 to establish upper and lower bounds on the equilibrium

steady-state quantity in a symmetric equilibrium:

Proposition 2 Suppose λA = λB = λ. In any dynamically stable equilibrium with symmet-

ric differentiable dynamic quantity reaction functions and a symmetric steady state (when

such an equilibrium exists),

(i) the steady-state quantity qe < qC.

(ii) the steady-state quantity qe ≥ q
(
r
λ

)
, where the lower bound q

(
r
λ

)
∈
(
qM , qC

)
is uniquely

defined by

Π′
(
2q
)
− π2

(
q, q
)

+
1

r
λ

+ 1
Π′
(
2q
)

= 0,

strictly increasing in r
λ

, and has limits

lim
r
λ
→0
q
( r
λ

)
∈
(
qM , qC

)
and lim

r
λ
→∞

q
( r
λ

)
= qC .

Proof. Let λA = λB = λ, and suppose that a dynamically stable equilibrium with

differentiable RA = RB = R and a symmetric steady state (qe, qe) exists. The first-order

condition (3) evaluated at (qe, qe) is

−c+
r + λ

r + 2λ
π1 (qe, qe) +

λ

r + 2λ

(
π1 (qe, qe) + π2 (qe, qe)R′

(
q2
)

+ π2 (qe, qe)
)

= 0

for each i = A,B, which, using Π′ (2qe) = π1 (qe, qe) + π2 (qe, qe)− c, can be rewritten as

Π′ (2qe)− π2 (qe, qe) +
1

r
λ

+ 1
(Π′ (2qe) + π2 (qe, qe)R′ (qe)) = 0. (4)

We first prove part (ii), and then part (i), of the proposition.

21The equilibrium reaction functions define a difference equation from (qA,t, qB,t−1) to (qA,t+2, qB,t+1) =
(RA (RB(qA,t)) , RB (RA(qB,t−1))). Then, its Jacobian matrix evaluated at a steady state (qeA, q

e
B) has two

equal real eigenvalues R′B(qeA)R′A(qeB), which must be strictly less than one for (local) stability. See Vives
(1999) for more details.
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Part (ii): By Lemma 2, R′ (qe) ≤ 0. Since π2 (q, q) ≤ 0 for all q ≥ 0, (4) and R′ (qe) ≤ 0

imply that

0 ≥ Π′ (2qe)− π2 (qe, qe) +
1

r
λ

+ 1
Π′ (2qe) . (5)

The function G(q) ≡ Π′ (2q)−π2 (q, q)+ 1
r
λ
+1

Π′ (2q) is strictly decreasing in q, because both

Π′ (2q) − π2 (q, q) and Π′ (2q) are strictly decreasing in q. Moreover, by the definitions of

qM and qC , G(qM) = −π2

(
qM , qM

)
> 0 and G(qC) = 1

r
λ
+1

Π′
(
2qC
)
< 0. Hence, for every

r
λ
> 0, there exists a unique q

(
r
λ

)
∈
(
qM , qC

)
such that

Π′
(
2q
)
− π2

(
q, q
)

+
1

r
λ

+ 1
Π′
(
2q
)

= 0, (6)

and (5) implies that qe ≥ q
(
r
λ

)
.

Applying the implicit function theorem to (6), we obtain that

dq

d
(
r
λ

) sign
= − 1(

r
λ

+ 1
)2Π′

(
2q
)
,

which is strictly positive because q > qM and thus Π′
(
2q
)
< 0. Moreover, it follows from

(6) that lim r
λ
→∞ q

(
r
λ

)
= qC and lim r

λ
→0 q

(
r
λ

)
∈
(
qM , qC

)
.

Part (i): By the stability condition and Lemma 2, R′ (qe) > −1. Moreover, the result

from part (ii) that qe > qM implies that π2 (qe, qe) < 0. (4) and R′ (qe) > −1 thus imply

that

0 <

(
1 +

1
r
λ

+ 1

)
(Π′ (2qe)− π2 (qe, qe)) . (7)

The function Π′ (2q) − π2 (q, q) is strictly decreasing in q and equal to zero for q = qC .

Hence, (7) implies that qe < qC .

Proposition 2 implies that any symmetric steady-state quantity (if it exists) lies strictly

between qM and qC . The intution for this finding is as follows. Consider U ’s contract

offer to DA. When making an offer, the supplier internalizes only the effect on DA’s own

variable profit in the time interval until the next recontracting with DB, but it internalizes

the effect on all retailers’ variable profits from the next recontracting with DB onwards

(because the fixed fee offered to DA takes into account expected changes in DA’s variable

profit due to recontracting with DB before DA’s own contract terminates, and similarly the

fixed fees in future contracts extract all expected future changes in the retailers’ variable

profits). Hence, it is intuitive that the steady state in the dynamic model falls in between
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the benchmark cases of simultaneous secret offers with passive beliefs, in which the supplier

only internalizes the effect on DA’s own variable profits when making an offer to DA and

each retailer sells qC in equilibrium, and the case of simultaneous public offers, in which the

supplier internalizes the effects on all retailers variable profits when making an offer and

each retailer sells qM in the symmetric equilibrium.22

By this reasoning, one might expect that lim r
λ
→∞ q

(
r
λ

)
= qC and lim r

λ
→0 q

(
r
λ

)
= qM ,

but the latter part of this intuition turns out to be wrong. While indeed lim r
λ
→∞ q

(
r
λ

)
= qC ,

we find that lim r
λ
→0 q

(
r
λ

)
> qM . Although the short-term gain from making an offer that

raises bilateral profits at the expense of industry profit goes to zero when reactions become

near instantaneous (λ → ∞),23 if an equilibrium exists its steady-state quantity must

nonetheless lie strictly above the monopoly quantity. Intuitively, that the short-term gain

from making an opportunistic offer goes to zero is not enough to guarantee that the supplier

has no incentive to behave opportunistically, because the expected present discount value of

the losses in future industry profits triggered by an opportunistic move also goes to zero in

this limit case. In a dynamically stable equilibrium, quantities converge back to the steady-

state level after a deviation from it (and do so “fast” for λ→∞), hence a deviation from

a candidate steady-state
(
qM , qM

)
does not have a persistent negative effect on industry

profits.24 For r
λ
→∞, on the other hand, the short-term gain from an opportunistic move

remains positive while the present discounted value of long-term effects goes to zero, hence

the supplier makes offers that maximize bilateral profits in equilibrium.

Consistent with these intuitions, we obtain the following comparative statics results on

the steady-state quantity in the linear-demand case:

22This insight may seem to suggest thatRM (q−i) < R (q−i) < RC (q−i) (which is equivalent to qM < qe <
qC for q−i = qe) for all q−i, but that intuition is incorrect. As will be illustrated later, RM (q−i) > R (q−i) for
small q−i in the linear-demand case. Intuitively, maximizing current industry profits given q−i is different
from maximizing future industry profits, because the quantity offered to Di today triggers reactions in
future recontracting offers and thus dynamically affects the quantities of both retailers.

23Or, in the case of r → 0, the weight put on the short-term gain goes to zero.

24The observation that both the short-term gain from an opportunistic offer and the net present value
of the effects on future industry profits go to zero for r

λ → 0 also holds for a deviation from a candidate
equilibrium steady-state with a symmetric quantity qe > qM . However, intuitively the supplier’s incentive
to behave opportunistically is smaller when the hypothetical steady-state quantity is larger, because (i) the
maximal gain in bilateral profits that U −Di can obtain is smaller for larger q−i, and (ii) since industry
profits are concave, the negative effect of a marginal increase in total quantity on industry profits is larger
when the aggregate quantity is farther above qM .
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Figure 1: The solid line shows the equilibrium steady-state quantity qe as a function of r
λ
,

the dashed lines the per-firm Cournot quantity (qC) and the per-firm symmetric monopoly

quantity (qM). All quantities are computed for P (Q) = 1−Q and c = 0.

Proposition 3 Suppose P (Q) = 1 − Q, λA = λB = λ, and c ∈ [0, 1). Then, the unique

linear MPE is symmetric (RA = RB) with steady-state quantities qeA = qeB = qe. The

steady-state quantity qe is strictly increasing in r
λ

, with lim r
λ
→0 q

e = 3(1−c)
10
∈ (qM , qC), and

lim r
λ
→∞ q

e = 1−c
3

= qC.

Figure 1 illustrates the comparative statics results of Proposition 3. The equilibrium

steady-state quantity is smaller, that is, the opportunism problem is less severe, for greater

patience (lower r) and faster reaction speed (higher λ). Intuitively, faster reaction speed

alleviates the opportunism problem, for a given discount rate, because it decreases the

length of time during which each supplier-retailer pair can gain from opportunistic moves

at the expense of the rival retailer, and greater patience alleviates the opportunism problem,

for a given reaction speed, because firms attach less weight to the short-term profit gains

from opportunistic moves. As also illustrated in the figure, the equilibrium steady state

approaches the Cournot quantity as r
λ

approaches infinity, but remains bounded strictly

above the per-firm monopoly quantity as r
λ

approaches zero.

It is worth noting that although the aggregate quantity always lies between QM and 2qC
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Figure 2: The dots show the sequence of aggregate quantities 0 + R(0), R (R(0)) + R(0),

R (R(0))+R(R (R(0))), etc. given the dynamic quantity reaction function R in the equilib-

rium from Proposition 3. The dashed lines show the aggregate Cournot quantity (2qC) and

the monopoly quantity (QM). All quantities are computed for P (Q) = 1−Q and c = 0.

in the equilibrium steady state, out of steady state the aggregate quantity can lie outside

of this range. This is illustrated in Figure 2, which shows how aggregate quantity changes

with each reaction in the rival retailer’s contract starting from the state q−i = 0.

5.3 Asymmetric reaction speeds

This section considers the implications of asymmetries in reaction speeds. Specifically, we

assume that DB’s contract reacts faster than DA’s contract, i.e., that

λA ≤ λB,

which is without loss of generality but simplifies the exposition.

In order to disentangle the effects of asymmetry from effects of changes in the aggre-

gate recontracting rate, our comparative statics exercises will focus on the following two

parameters. First, the mean reaction speed, denoted by

λM =
λA + λB

2
,
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and second, the degree of asymmetry in reaction speeds, defined as

µ =
λM − λA
λM

∈ [0, 1) .

The reaction speeds of the two supplier-retailer pairs can be expressed as functions of these

two parameters as follows:

λA = (1− µ)λM ,

λB = (1 + µ)λM .

For a small time interval ∆q, the probability of a contract termination occuring is then

given by 2λM∆q, independently of the degree of asymmetry µ. Raising µ, in turn, makes

the reaction speeds more asymmetric without changing the mean recontracting rate.

Given these notations, the first-order equilibrium conditions in (3) can be rewritten as

functions of r
λM

and µ as follows: at q = RA (qB) ,

0 = −c+
r
λM

+ 1− µ
r
λM

+ 2
π1 (q, qB)+

1 + µ
r
λM

+ 2
(π1 (q, RB (q)) + π2 (q, RB (q))R′B (q) + π2 (RB (q) , q)) ,

(8)

and at q = RB (qA),

0 = −c+
r
λM

+ 1 + µ
r
λM

+ 2
π1 (q, qA)+

1− µ
r
λM

+ 2
(π1 (q, RA (q)) + π2 (q, RA (q))R′A (q) + π2 (RA (q) , q)) .

(9)

Using these first-order conditions together with the result that the dynamic quantity

reaction functions are non-increasing and the local stability condition, our next proposition

establishes a series of insights about the steady-state quantities under asymmetric reaction

speeds without imposing linear demand.

Proposition 4 Suppose λA ≤ λB. In any dynamically stable equilibrium with twice differ-

entiable dynamic quantity reaction functions that have uniformly bounded first and second

derivatives (when such an equilibrium exists),

(i) the steady-state quantities (qeA, q
e
B) satisfy qei < RC

(
qe−i
)

for at least one i ∈ {A,B};
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(ii) the aggregate steady-state quantity qeA + qeB ≥ Q
(

r
λM
, µ
)

, where the lower bound

Q
(

r
λM
, µ
)
∈
(
QM , 2qC

)
is uniquely defined by

Π′
(
Q
)
− π2

(
1

2
Q,

1

2
Q

)
+

r
λM

+ 1 + µ2(
r
λM

+ 1− µ
)(

r
λM

+ 1 + µ
)Π′

(
Q
)

= 0,

strictly decreasing in µ, strictly increasing in r
λM

, and has limits

lim
µ→0

Q

(
r

λM
, µ

)
= 2q

(
r

λM

)
> QM , lim

µ→1
lim
r
λM
→0
Q

(
r

λM
, µ

)
= QM , and

lim
r
λM
→∞

Q

(
r

λM
, µ

)
= 2qC ;

(iii) for any given ε > 0, the steady-state quantities satisfy

qeA < ε and
∣∣qeB −QM

∣∣ < ε

if r
λM

is close enough to 0 and µ is close enough to 1.

The key new insight in Proposition 4 is that asymmetry in reaction speeds can lead to

a lower aggregate quantity in the equilibrium steady state (when an equilibrium exists).

When the reaction speeds are symmetric, the aggregate steady-state quantity is bounded

below by an amount strictly above the monopoly quantity, as shown in part (ii) of the

proposition. When the degree of reaction speed asymmetry is sufficiently large (and r
λM

is

close enough to zero), however, the aggregate steady-state quantity is arbitrarily close to

the monopoly quantity, as shown in part (iii) of the proposition.

Consistent with this, our next proposition shows that in the linear-demand case, the

aggregate steady-state quantity is falling in the degree of reaction speed asymmetry in the

unique equilibrium with linear dynamic quantity reaction functions.

Proposition 5 Suppose P (Q) = 1−Q, c ∈ [0, 1), and λA ≤ λB. The steady-state quanti-

ties (qeA, q
e
B) in the unique linear MPE vary with r

λM
and µ as follows:

(i) The aggregate quantity qeA + qeB is strictly increasing in r
λM

.

(ii) The aggregate quantity qeA + qeB is strictly decreasing in µ, qeA is strictly decreasing in

µ, and qeB is strictly increasing in µ.
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(iii) limµ→1 lim r
λM
→0(q

e
A, q

e
B) = (0, QM).

Figures 3 and 4 provide graphical illustrations of these results. First, as illustrated in

Figure 3, reaction speed asymmetry alleviates the supplier’s opportunism problem: For a

given mean reaction speed, the aggregative quantity in the steady state is lower for higher

degrees of asymmetry. Second, and consistent with the results in the symmetric case, for a

given degree of asymmetry, the aggregate steady-state quantity is smaller when the firms

are more patient (smaller r) or the mean reaction speed is higher (greater λM). Third, as

illustrated in Figure 4, at the steady state the retailer whose contract reacts faster sells a

larger quantity than the retailer whose contract reacts more slowly. Finally, as r
λM
→ 0 and

µ → 1, the steady state approaches the “exclusive dealing outcome” in which one retailer

sells the entire monopoly quantity and its rival sells zero.

The intuition behind these findings can be understood as follows. First, keeping the

future dynamic quantity reaction functions fixed, a faster reaction of DB’s contract weakens

the supplier’s incentive to behave opportunistically when making offers to DA, because it

leaves less time for the bilateral pair U −DA to “free-ride” on DB’s variable profits. And

similarly, keeping the future dynamic quantity reaction functions fixed, a slower reaction of

DA’s contract raises the supplier’s incentive to behave opportunistically when making offers

to DB, because it means that the bilateral pair U − DB can “free-ride” on DA’s variable

profits for a longer time.

Second, the gap between the quantity RC (q−i) that maximizes Π (q, q−i)−π (q−i, q) and

the quantity RM (q−i) that maximizes Π (q, q−i), which can be thought of as the extent of

the conflict between collective surplus maximization and bilateral surplus maximization, is

rising in q−i.
25 For q−i = 0, the conflict vanishes altogether, as RC (0) = RM (0) = QM .

Hence, although reaction speed asymmetry strengthens the incentive for opportunism with

DB for a given current quantity qA, when qA is small the conflict between collective surplus

maximization and bilateral surplus maximization between the supplier and DB is weak

to begin with. By selling a small quantity to DA, exploiting the weakened incentive to

behave opportunistically when making offers to DA, the supplier thus also weakens its own

incentive to behave opportunistically when making the next contract offer to DB.

25Formally, RC (q−i) − RM (q−i) is strictly increasing for all q−i > 0 because ∂RM

∂q−i
= −1 while ∂RC

∂q−i
∈

(−1, 0) by assumptions A1 and A2.
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Figure 3: The solid lines show the aggregate equilibrium steady-state quantity qeA + qeB as a

function of the reaction speed asymmetry µ for two different values of r
λM

, the dashed lines

the aggregate Cournot quantity (2qC) and the monopoly quantity (QM). All quantities are

computed for P (Q) = 1−Q and c = 0.

Figure 4: The solid lines show the equilibrium steady-state quantities qeA and qeB as a

function of the reaction speed asymmetry µ, given r
λM
≈ 0. The dashed line indicates the

monopoly quantity QM . All quantities are computed for P (Q) = 1−Q and c = 0.
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Overall, this intuition suggests that, consistent with our results, the aggregate steady-

state quantity will be smaller under reaction speed asymmetry than under symmetry, and

that it will be allocated asymmetrically across retailers, with the retailer whose contract

reacts faster (DB) selling a larger quantity than its rival. In the limit case where µ→ 1 and

r
λM
→ 0, DA’s quantity converges to zero, eliminating the conflict between collective surplus

maximization and bilateral surplus maximization when U contracts with DB. Anticipating

the slow future reaction of DA’s contract (since λA → 0 when µ→ 1), the supplier therefore

optimally offers the quantity RC (0) = RM (0) = QM to DB. The supplier also has no

profitable deviation to offering a larger quantity to DA in this limit case, because doing so

would harm future industry profits and these negative effects are persistent when λA ≈ 0.

More generally, the steady state in the limit case where µ→ 1 and r
λM
→ 0 corresponds

to the equilibrium outcome of a sequential-move game in which U first offers a contract to

DA and then to DB, and the second retailers (DB) observes the first retailer’s (DA’s) con-

tract. The contract offered to the second retailer (DB) then maximizes the bilateral surplus

of the supplier and the second retailer given the contract accepted by the first retailer, while

the contract offered to the first retailer (DA) maximizes the bilateral surplus of the supplier

and the first retailer anticipating that the later contract will maximize the bilateral surplus

of the supplier and the second retailer (DB). In our setting, this means that the supplier of-

fers RC (qA) to DB, and, anticipating this, offers 0 to DA, which leads to quantities
(
0, QM

)
and a total profit of ΠM . While the result that the opportunism problem is fully solved in

the limit clearly hinges on the retailers selling perfect substitutes, the findings that reaction

speed asymmetry and patience alleviate the opportunism problem hold more broadly, as

Figure 5 illustrates in the context of a Cournot model with differentiated goods.26

26The same qualitative results also hold in a model of differentiated Bertrand competition with linear
demands when supply contracts fix the retailer’s downstream price. The result that reaction speed asym-
metry alleviates the opportunism problem also does not depend on the particular way in which asymmetry
was parametrized. In particular, they also hold when asymmetry is measured by λB − λA while keeping
constant 1

λA
+ 1
λB

, the expected time it takes for a retailer’s quantity to change out of steady state (i.e., the
expected time until Di’s quantity qi changes to Ri (R−i (qi))). Similarly, the result also holds in a model
with deterministic reaction lags where all contracts have length ∆A + ∆B , and asymmetry is measured by
|∆A −∆B | while keeping ∆A + ∆B fixed.
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Figure 5: Illustration of the aggregate steady-state quantity under differentiated Cournot

competition, letting Pi (qi, q−i) = 1−qi−0.8q−i and c = 0. The solid lines show the aggregate

equilibrium steady-state quantity qeA + qeB as a function of the reaction speed asymmetry µ

for two different values of r
λM

, the dashed lines the aggregate Cournot quantity (2qC) and

the aggregate monopoly quantity (2qM).

28



6 Restoring Monopoly Power

The extent of opportunism that prevails in the absence of any strategies used by the supplier

to restore its monopoly power has been the focus of our analysis so far. We now discuss

various strategies the supplier can use to overcome its opportunism problem in our dynamic

setting with asynchronous recontracting.

Vertical integration As in simultaneous secret-offer models, vertical integration helps

the upstream monopolist to overcome its opportunism problem in our dynamic setting. To

see this, suppose U is vertically intergrated with DA. Given a contract (qB, fB) signed with

DB, the vertical integrated firm then sets its quantity at

RC (qB) = arg max
q

(π (q, qB)− cq) = arg max
q

(Π (q + qB)− π (qB, q)) .

Anticipating this, the highest fixed fee DB is willing to accept in a contract with quantity

qB is π
(
qB, R

C (qB)
)
. Thus, the integrated firm’s flow profit becomes

Π
(
RC (qB) + qB

)
,

which is maximized and equal to ΠM at qB = 0. Hence, the vertically integrated upstream

monopolist forecloses the non-integrated downstream firm and earns monopoly profits in

equilibrium.27

Opt-out contracts One way to protect retailers against opportunistic moves by the

supplier in our dynamic context is to allow each retailer to “opt out” of its current contract,

that is, to stop selling and stop paying the supplier for the remaining duration of the

contract.28 To see why, suppose supplier D−i has signed a contract (q−i, f−i) with an opt-

out clause, and U offers a contract with quantity qi to Di, which is accepted. Then, D−i

will want to continue selling and paying the fixed fee if π (q−i, qi) > f−i, but will prefer to

exercise its opt-out clause if π (q−i, qi) < f−i. The supplier therefore loses the fixed payment

from D−i if it makes an opportunistic offer to Di that pushes D−i’s variable profit below

27Of course, this “extreme” conclusion depends on the absence of an alternative supplier and the assump-
tion that downstream firms sell undifferentiated final goods (see, e.g., Rey and Tirole, 2007, and Reisinger
and Tarantino, 2015).

28We are grateful to Volker Nocke for this suggestion.
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f−i. Thus, opt-out contracts, by protecting retailers against negative flow payoffs, limit the

supplier’s ability to profit from opportunistic offers.

Indeed, the supplier can earn ΠM , the maximum industry profit, by offering opt-out

contracts such that at any point in time only one of the retailers is active and sells the

monopoly quantity QM . To see this, suppose U offers an opt-out contract
(
QM , π

(
QM , 0

))
at every recontracting opportunity. Then, since π

(
QM , QM

)
< π

(
QM , 0

)
, D−i will exercise

its opt-out clause if Di accepts U ’s offer, which makes it optimal for Di to accept the offer

and sell QM until the next recontracting between U and D−i, at which point Di will

opt out of its current contract. And given that D−i currently has an opt-out contract(
QM , π

(
QM , 0

))
, the supplier cannot profitably deviate to making a different offer to Di

even in the limit case r → ∞ (in which opportunism was shown to be most severe in the

absence of opt-out clauses), because D−i will opt out if qi > 0 and the bilateral profit with

either one of the retailers cannot exceed π
(
QM , 0

)
= ΠM .

For a more formal analysis of opt-out contracts, see Appendix B, where we prove that

for r → ∞, there exists a MPE in which for any history, U eventually offers the opt-out

contract
(
QM , π

(
QM , 0

))
at every recontracting opportunity.

Exclusive dealing To see how a commitment to deal exclusively with one of the retailers

can help the supplier to restore its monopoly power, suppose that U makes the following

offers at every recontracting opportunity: it offers an exclusive contract
(
QM , π

(
QM , 0

))
to DA, and the null contract (0, 0), which is equivalent to no offer, to DB. An exclusive

contract commits the supplier not to offer a strictly positive quantity to the other retailer

for the duration of the contract. It is then optimal for DA to accept
(
QM , π

(
QM , 0

))
,

because (i) given that qB = 0, upon acceptance DA will earn variable profits of π
(
QM , 0

)
until the next recontracting between U and DB, and (ii) the exclusivity clause ensures DA

that it will continue to earn variable profits of π
(
QM , 0

)
even if U recontracts with DB

before DA’s own contract expires. Hence, DA is guaranteed variable profits that cover the

fixed payment for the entire duration of its contract. U cannot profitably deviate from

these offers. When making an offer to DB, U ’s hands are tied by its previous commitment

to deal exclusively with DA. And when making an offer to DA, U cannot profitably deviate

because first, conditional on using an exclusivity clause, offering
(
QM , π

(
QM , 0

))
is clearly

optimal, and second, dropping the exclusivity clause reduces the fixed fee DA is willing
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to pay for any qA without increasing industry profits from the next recontracting onwards

(which are already at the maximum level).

For a more formal analysis of exclusive dealing contracts, see Appendix B, where we

prove that for r →∞, there exists a MPE in which for any history, the aggregate quantity

eventually becomes QM when the supplier can offer exclusivity clauses. In our analysis, the

dynamic transition from a state without exclusive contracts to a state in which the supplier’s

good is distributed exclusively by one of the downstream firms is achieved by allowing the

supplier to commit not to offer Di’s rival a new contract with a strictly positive quantity

before termination of Di’s contract (even if the rival firm sells a strictly positive quantity

at the time Di’s contract is signed).

7 Concluding Remarks

We have analyzed a dynamic model of bilateral contracting between one supplier and mul-

tiple competing downstream firms. In our setting, each downstream firm anticipates future

recontracting between the supplier and its rival (as well as itself), and supplier suffers from

opportunism even if it can make public contract offers. The proposed dynamic model offers

an alternative to simultaneous secret-offers models of opportunism in vertical contracting.

Although characterizing equilibria tends to be more difficult in the dynamic model, we have

shown that a unique equilibrium in simple linear strategies, with closed-form solutions for

the strategies and equilibrium steady-state quantities, exists under linear demand. More-

over, the dynamic model overcomes a key weakness of simultaneous secret-offers models,

the sensitivity of the equilibrium outcome to out-of-equilibrium beliefs. The dynamic model

also unifies existing literature, by offering a setting that generates the equilibrium outcomes

of existing models, with either simultaneous or sequential offers, as special limit cases.

Our results are relevant for vertical merger policy as well as for competition policy on

vertical restraints. First, the results show that secret offers are not needed for opportunism

to arise, and that vertical mergers and opportunism-avoiding contract provisions like ex-

clusive dealing or opt-out clauses can have anticompetitive effects even when contracts are

public.

Second, the results offer guidance on when vertical mergers and opportunism-avoiding
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contract provisions are likely to be more harmful. We have found that the degree of oppor-

tunism is greater when firms are impatient, there are long time gaps between recontract-

ing, and reaction speeds are symmetric. This, in turn, suggests that vertical mergers and

opportunism-avoiding contract provisions are likely to be more harmful for downstream

consumers (and more attractive for suppliers) when firms are impatient, time gaps between

recontracting are long, and reaction speeds are symmetric. Proxies for the model’s key pa-

rameters that can potentially be observed and used by competition authorities to help assess

the likely competitive harm include the average duration of downstream firm i’s contracts

(as a proxy for 1
λi

) and the interest rate (as a proxy for r). Moreover, useful information to

assess the degree of asymmetries in reaction speeds would include observed asymmetries in

the time gap between a change in downstream firm A’s supply terms followed by a change

in downstream firm B’s supply terms versus the opposite order, and evidence of otherwise

similar downstream firms being treated asymmetrically prior to a vertical merger.

There are several interesting issues that we leave for future research. First, an important

yet difficult direction for future research is to endogenize the speed of contract reactions

and the associated contract durations. Second, the analysis could be extended to allow for

three or more downstream firms. Third, other forms of non-linear vertical contracts could

be considered, which would open up the possibility of a retailer adjusting the quantity it

orders from the supplier in reponse to a change in its rival’s contract.
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Appendix A: Proofs

Proof of Lemma 1. Let Vi (s) = Vi(Ri (s) , Fi (s) ; s) and recall that Mi (Ri (s) , Fi (s) ; s) = 1 for all i

and s. We have that

Vi(q, f ; s) =
π (q, s)− f
r + λi + λ−i

+
λi

r + λi + λ−i
Vi (s) +

λ−i
r + λi + λ−i

Ṽi (q, f) ,

Ṽi (q, f) =
π (q,R−i (q))− f

r + λi
+

λi
r + λi

Vi (R−i (q)) .

The first term in Vi(q, f ; s) captures the flow profit that Di earns until the next contract termination occurs.

The second term captures the case in which Di’s own contract terminates before D−i’s contract. The third

term captures the case in which D−i’s contract terminates first. In the latter case, Di earns flow profit

(π (q,R−i (q))− f) in the time interval between the termination of D−i’s contract and the termination of

its own current contract,29 and an expected discounted profit of Vi (R−i (q)) thereafter.30

Substituting Ṽi (q, f) into Vi(q, f ; s) yields

Vi(q, f ; s) = − f

r + λi
+

π (q, s)

r + λi + λ−i
+

λ−i
(r + λi + λ−i) (r + λi)

π (q,R−i (q))

+
λiλ−i

(r + λi + λ−i) (r + λi)
Vi (R−i (q)) +

λi
r + λi + λ−i

Vi (s) .

Firm Di prefers acceptance over rejection if Vi(q, f ; s) ≥ Vi(0, 0; s), which holds if and only if

f ≤ r + λi
r + λi + λ−i

π (q, s) +
λ−i

r + λi + λ−i
π (q,R−i (q)) +

λiλ−i
r + λi + λ−i

[Vi (R−i (q))− Vi (R−i (0))] . (10)

The supplier’s objective function in (1) is strictly increasing in f , because ∂W−i(q,f)
∂f = 1

r+λi
> 0. Hence,

the retailer’s acceptance condition must be binding in equilibrium, otherwise U could increase its profit by

offering a contract with the same quantity but a higher fixed payment. It follows that

Vi (s) ≡ Vi(Ri (s) , Fi (s) ; s) =
λiλ−i

(r + λi + λ−i) (r + λi)
Vi (R−i (0)) +

λi
r + λi + λ−i

Vi (s) ,

which can be rewritten as

Vi(s) =
λiλ−i

(r + λi) (r + λ−i)
Vi (R−i (0)) .

Since this must hold for all s including s = R−i (0), we can conclude that

Vi(s) = 0 for all s.

Hence, (10) simplifies to f ≤ fi(q; q−i) ≡ r+λi

r+λi+λ−i
π (q, q−i) + λ−i

r+λi+λ−i
π (q,R−i (q)).

29Note that if D−i’s contract terminates within this interval, D−i will be offered and accept a contract
with quantity R−i (q) again, hence Di’s flow profit remains constant until its own contract terminates.

30For details on how to derive the weights in Vi(q, f ; s) and Ṽi (q), see Appendix B, which presents the
ommitted details for the analysis of the supplier’s objective function.
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Proof of Lemma 2. The proof strategy follows that of Lemma 1 in Maskin and Tirole (1988a). Suppose

(in negation) that there exist q−i > q′−i such that Ri(q−i) > Ri(q
′
−i). By the definition of Ri, we have that

π(Ri(q−i), q−i)− c(Ri(q−i) + q−i) +
λ−i
r + λi

π(Ri(q−i), R−i(Ri(q−i))) + λ−iW−i(Ri(q−i))

≥ π(Ri(q
′
−i), q−i)− c(Ri(q′−i) + q−i) +

λ−i
r + λi

π(Ri(q
′
−i), R−i(Ri(q

′
−i))) + λ−iW−i(Ri(q

′
−i)), (11)

and similarly,

π(Ri(q
′
−i), q

′
−i)− c(Ri(q′−i) + q′−i) +

λ−i
r + λi

π(Ri(q
′
−i), R−i(Ri(q

′
−i))) + λ−iW−i(Ri(q

′
−i))

≥ π(Ri(q−i), q
′
−i)− c(Ri(q−i) + q′−i) +

λ−i
r + λi

π(Ri(q−i), R−i(Ri(q−i))) + λ−iW−i(Ri(q−i)). (12)

Adding (11) to (12), we obtain that

π(Ri(q−i), q−i)− π(Ri(q
′
−i), q−i) ≥ π(Ri(q−i), q

′
−i)− π(Ri(q

′
−i), q

′
−i),

which can be rewritten as ∫ q−i

q′−i

∫ Ri(q−i)

Ri(q′−i)

π12(x, y)dxdy ≥ 0.

This is a contradiction because π12 < 0.

Proof of Proposition 1. Suppose that P (Q) = 1 − Q and c ∈ [0, 1). We look for an equilbrium with

linear dynamic quantity reactions functions of the form

Ri(q−i) = αi − βiq−i,

where βi ≥ 0 for each i. Given linearity of the dynamic reaction functions, the first-order conditions (3)

simplify as follows: for q = Ri(q−i),

1− c− q−i − 2q +
λ−i
r + λi

(1− 2α−i − c+ (3β−i − 2)q) = 0,

or, equivalently,

Ri(q−i) =
1

2− λ−i

r+λi
(3β−i − 2)

(
1− c+

λ−i
r + λi

(1− 2α−i − c)− q−i
)
. (13)

Setting the right-hand side of (13) equal to αi − βiq−i for each i = A,B, we obtain that either (βA, βB) =

(β∗A, β
∗
B) or (βA, βB) = (β∗∗A , β

∗∗
B ), where

β∗i =
7λi + λ−i + 4r −

√
(λA + λB + 4r)2 + 12λAλB

12λi
> 0, (14)

and

β∗∗i =
7λi + λ−i + 4r +

√
(λA + λB + 4r)2 + 12λAλB

12λi
> 0. (15)

We first show that the solution (β∗A, β
∗
B) gives rise to a dynamically stable equilibrium, and then rule

out an equilibrium in which (βA, βB) = (β∗∗A , β
∗∗
B ). From the definition of β∗i ,

β∗i <
7λi + λ−i + 4r − λA − λB − 4r

12λi
=

1

2
.
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This observation implies that the second-order conditions of the supplier’s optimization problem hold when

(βA, βB) = (β∗A, β
∗
B). The second derivative of the supplier’s objective function is −2 + λ−i

r+λi

(
3β−i − 2

)
,

which is strictly negative for β−i = β∗−i <
1
2 . Hence, the necessary conditions in (13) are also sufficient.

Given the slope parameters, we can characterize the intercepts of the dynamic quantity reaction func-

tions. First, one can check from (13) that the following system of linear equations should be satisfied:

α∗i =
(1− c)(r + λi) + λ−i(1− 2α∗−i − c)

2(r + λi)− λ−i(3β∗−i − 2)
.

Solving for the intercepts yields

α∗i =

(1− c) (λA + λB + r)

(
7λi + λ−i + 4r −

√
(λA + λB + 4r)

2
+ 12λAλB

)
2λi

(
7λA + 7λB + 10r −

√
(λA + λB + 4r)

2
+ 12λAλB

) , (16)

for each i = A,B.

Letting R∗i (q−i) = α∗i − β∗i q−i, we check that R∗i (q−i) ∈ [0, Qc] = [0, 1 − c] for all q−i ∈ [0, 1 − c]

and i = A,B, i.e., that it was innocuous to ignore the lower and upper bound on the action space in the

supplier’s optimization problem. To economize on notation, let us define

x = (λA + λB + 4r)2 + 12λAλB .

We then obtain that

R∗i (0) =
(1− c) (λA + λB + r) (7λi + λ−i + 4r −

√
x)

2λi (7λA + 7λB + 10r −
√
x)

,

and

R∗i (Qc) = R∗i (1− c) =
(1− c) (

√
x− λA − λB − 4r) (7λi + λ−i + 4r −

√
x)

12λi (7λA + 7λB + 10r −
√
x)

.

It is immediate that R∗i (Qc) ≥ 0, and hence R∗i (q−i) ≥ 0 for all q−i ∈ [0, Qc]. Moreover, R∗i (0) ≤ 1 − c is

equivalent to

(λA + λB + r)
(
7λi + λ−i + 4r −

√
x
)
≤ 2λi

(
7λA + 7λB + 10r −

√
x
)

⇐⇒ (λ−i − λi + r)
(
7λA + 7λB + 10r −

√
x
)
≤ 6 (λ−i + r) (λA + λB + r) ,

which is true since 6λA + 6λB + 6r ≥ 7λA + 7λB + 10r −
√
x and λ−i + r ≥ λ−i − λi + r.

We can conclude that there exists an equilibrium with steady-state quantities (qeA, q
e
B) that satisfy

R∗A(qeB) = qeA and R∗B(qeA) = qeB and are given by

(qeA, q
e
B) =

(
α∗A − β

∗
Aα
∗
B

1− β∗Aβ
∗
B

,
α∗B − β

∗
Bα
∗
A

1− β∗Aβ
∗
B

)
. (17)

The steady state is dynamically stable because the slopes of the reaction functions are less than one in

absolute value.
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It remains to rule out the existence of an equilibrium with slope parameters (βA, βB) = (β∗∗A , β
∗∗
B ),

which would give rise to an unstable dynamic path because β∗∗A β
∗∗
B > 1.31 Computing the intercepts of the

dynamic quantity reaction functions that correspond to (β∗∗A , β
∗∗
B ), we obtain

α∗∗i =

(1− c) (λA + λB + r)

(
7λi + λ−i + 4r +

√
(λA + λB + 4r)

2
+ 12λAλB

)
2λi

(
7λA + 7λB + 10r +

√
(λA + λB + 4r)

2
+ 12λAλB

) . (20)

Denoting R∗∗i (q−i) = α∗∗i − β
∗∗
i q−i, it is easy to check R∗∗i

(
Qc
)
< 0. Thus, there is no MPE in which

the dynamic quantity reaction functions are (R∗∗A , R
∗∗
B ), because the restriction that Ri :

[
0, Qc

]
→
[
0, Qc

]
would be violated.

It is worth noting that this equilibrium inexistence result is not an artifact of the restriction to non-

negative quantities. First, if quantities were allowed to take on negative values and the supplier were to

follow (R∗∗A , R
∗∗
B ), its present discounted payoff when contracting with one retailer would tend to +∞ and

its present discounted payoff when contracting with the other retailer would tend to −∞. Hence, the

value functions would not be well defined. Second, an equilibrium with piece-wise linear dynamic quantity

reaction functions of the form Ri (q−i) = max {α∗∗i − β
∗∗
i q−i, 0} does not exist either, as shown in the next

lemma.32

31Since each β∗∗i is strictly increasing in r,

β∗∗A β
∗∗
B >

(
7λA + λB +

√
(λA + λB)2 + 12λAλB

)(
λA + 7λB +

√
(λA + λB)2 + 12λAλB

)
144λAλB

=
1

3
+

(λA + λB)
2

+ (λA + λB)
√

(λA + λB)2 + 12λAλB
18λAλB

, (18)

where the last equality is obtained by straightforward algebra. From (18), β∗∗A β
∗∗
B > 1 if

(λA + λB)
2

+ (λA + λB)
√

(λA + λB)2 + 12λAλB
18λAλB

≥ 2

3
,

which can be rewritten as

(λA + λB)
2

+ (λA + λB)
√

(λA + λB)2 + 12λAλB − 12λAλB ≥ 0. (19)

For a given λT = λA + λB , the derivative of the left-hand-side of (19) with respect to λAλB is

6λT√
λ2
T + 12λAλB

− 12 < 0.

Hence, if (19) holds for λA = λB = λT

2 , then it also holds for all other λA, λB > 0 such that λA +λB = λT .

For λA = λB = λT

2 , (19) becomes λ2
T + λT

√
λ2
T + 3λ2

T − 3λ2
T ≥ 0, which holds with equality. Thus,

β∗∗A β
∗∗
B > 1.

32In contrast, since R∗i (q−i) > 0 for all q−i ∈
[
0, Qc

]
, an equilibrium in which Ri (q−i) =

max {R∗i (q−i) , 0} exists and exhibits the same dynamics and steady-state quantities as the equilibrium
charaterized in this proof.

36



Lemma A1 Suppose P (Q) = 1 − Q and c ∈ [0, 1). There does not exist a MPE in which the dynamic

quantity reaction functions are

Ri (q−i) = max {α∗∗i − β
∗∗
i q−i, 0} for each i,

where α∗∗i and β∗∗i are as given in (20) and (15), respectively.

Proof of Lemma A1. Suppose (in negation) that there exists a MPE with the dynamic reaction functions

Ri(q−i) = max{α∗∗i − β
∗∗
i q−i, 0}

for each i = A,B. Moreover, without loss of generality, suppose that λA ≥ λB .

For all i = A,B,

α∗∗i − β
∗∗
i q−i = 0 ⇐⇒ q−i = q ≡ 6(1− c)(λA + λB + r)

7 (λA + λB) + 10r +
√
x
.

It is easy to check that

α∗∗B > q,

and thus RB(0) > q, if and only if

24λB(λA − λB + 2r) > 0,

which is true for λA ≥ λB .

Since RA (qB) = 0 for all qB ≥ q, we have that for all qB ≥ q,

WA(qB) = − cqB
r + λB

+
λB

r + λB
W̄B(0).

Now consider U ’s optimal offer to DB when DA’s current quantity is 0. According to the postulated

equilibrium strategies, RB (0) = α∗∗B > q, hence

WB(0) =
π(α∗∗B , 0)− cα∗∗B

r + λA
+

λA
(r + λA)(r + λB)

π(α∗∗B , 0) +
λA

r + λA
WA(α∗∗B )

=
π(α∗∗B , 0)− cα∗∗B

r + λA
+

λA
(r + λA)(r + λB)

π(α∗∗B , 0) +
λA

r + λA

(
− cα∗∗B
r + λB

+
λB

r + λB
WB(0)

)
.

Now consider a one-shot deviation to offering α∗∗B − ε, where α∗∗B − ε ≥ q. U ’s deviation profit is

W̃B(α∗∗B − ε, 0) ≡ π(α∗∗B − ε, 0)− c(α∗∗B − ε)
r + λA

+
λA

(r + λA)(r + λB)
π(α∗∗B − ε, 0) +

λA
r + λA

WA(α∗∗B − ε)

=
π(α∗∗B − ε, 0)− c(α∗∗B − ε)

r + λA
+

λA
(r + λA)(r + λB)

π(α∗∗B − ε, 0)

+
λA

r + λA

(
−c(α

∗∗
B − ε)

r + λB
+

λB
r + λB

WB(0)

)
.

Comparing U ’s deviation profit to its equilibrium profit, we obtain that

W̃B(α∗∗B − ε, 0)−WB(0) =

(
λA + λB + r

(r + λA)(r + λB)

)
ε (c+ 2α∗∗B − (1 + ε)) .
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Thus, U has a profitable deviation if there exists an ε > 0 such that α∗∗B − ε ≥ q and

c > 1 + ε− 2α∗∗B ⇐⇒ α∗∗B >
1− c+ ε

2
.

If α∗∗B > 1−c
2 , then both inequalities are satisfied for small enough ε > 0. Denoting x = (λA + λB + 4r)2 +

12λAλB , we obtain that α∗∗B > 1−c
2 if and only if

(λA + λB + r)(7λB + λA + 4r +
√
x) > λB(7λA + 7λB + 10r +

√
x),

which can be simplified to

7λA + 7λB + 10r +
√
x > 6λA + 6λB + 6r,

which is true. Hence, U has a strictly profitable deviation.

Proof of Proposition 3. Let λA = λB = λ, and suppose that P (Q) = 1 −Q and c ∈ [0, 1). From the

expressions for α∗i and β∗i in (16) and (14) in the proof of Proposition 1, it is immediate that α∗A = α∗B = α∗

and β∗A = β∗B = β∗. Specifically, letting r̃ ≡ r
λ , we obtain that

β∗ =
8λ+ 4r −

√
(2λ+ 4r)

2
+ 12λ2

12λ
=

2 + r̃ −
√

1 + r̃ + r̃2

3
,

and

α∗ =

(1− c)(2λ+ r)

(
8λ+ 4r −

√
(2λ+ 4r)

2
+ 12λ2

)
2λ

(
14λ+ 10r −

√
(2λ+ 4r)

2
+ 12λ2

)
= (1− c) (2 + r̃)

(
2 + r̃ −

√
1 + r̃ + r̃2

7 + 5r̃ − 2
√

1 + r̃ + r̃2

)
.

Given that the dynamic quantity reaction functions are symmetric, the steady-state quantities are sym-

metric as well and given by

qe =
α∗

1 + β∗
= (1− c) (2 + r̃) 3

2 + r̃ −
√

1 + r̃ + r̃2(
7 + 5r̃ − 2

√
1 + r̃ + r̃2

) (
5 + r̃ −

√
1 + r̃ + r̃2

) ,
which can be simplified to

qe =
(1− c) (2 + r̃) 3

19 + 8r̃ +
√

1 + r̃ + r̃2
. (21)

The symmetric steady-state quantity qe is strictly increasing in r̃ because

∂qe

∂r̃

sign
= 19 + 8r̃ +

√
1 + r̃ + r̃2 − (2 + r̃)

(
8 +

1 + 2r̃

2
√

1 + r̃ + r̃2

)
= 3 +

√
1 + r̃ + r̃2 −

2
(
1 + r̃ + r̃2

)
2
√

1 + r̃ + r̃2
− 3r̃

2
√

1 + r̃ + r̃2

= 3

(
1− r̃

2
√

1 + r̃ + r̃2

)
> 0.
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Next, observe that for r̃ = 0, (21) simplifies to qe = 3(1−c)
10 . It remains to show that qe converges to

qC = 1−c
3 as r̃ tends to +∞. From (21),

lim
r̃→∞

qe = 3(1− c) lim
r̃→∞

(
2 + r̃

19 + 8r̃ +
√

1 + r̃ + r̃2

)

= 3(1− c) lim
r̃→∞

 2
r̃ + 1

19
r̃ + 8 +

√
1+r̃
r̃2 + 1


= 3(1− c)1

9
,

which is equal to the Cournot quantity qC .

Proof of Proposition 4. Let r̃ = r
λM

thoughout the proof.

Part (i): The first-order conditions evaluated at a steady state (qeA, q
e
B) can be written as

R′B(qeA) = − (r̃ + 2) Π′ (Qe)− (r̃ + 1− µ)π2(qeB , q
e
A)

(1 + µ)π2(qeA, q
e
B)

,

R′A(qeB) = − (r̃ + 2) Π′ (Qe)− (r̃ + 1 + µ)π2(qeA, q
e
B)

(1− µ)π2(qeB , q
e
A)

,

where Qe = qeA + qeB denotes the aggregate quantity. The stability condition R′A(qeB)R′B(qeA) < 1 therefore

implies that

((r̃ + 2) Π′ (Qe)− (r̃ + 1 + µ)π2(qeA, q
e
B)) ((r̃ + 2) Π′ (Qe)− (r̃ + 1− µ)π2(qeB , q

e
A))

(1− µ)π2(qeB , q
e
A) (1 + µ)π2(qeA, q

e
B)

< 1,

or, equivalently,

((r̃ + 1− µ) (P (Qe)− c+ qeAP
′ (Qe)) + (1 + µ) (P (Qe)− c+QeP ′ (Qe)))

× ((r̃ + 1 + µ) (P (Qe)− c+ qeBP
′ (Qe)) + (1− µ) (P (Qe)− c+QeP ′ (Qe)))

<(1 + µ)(1− µ) (P ′ (Qe))
2
qeAq

e
B . (22)

Now suppose (in negation) that qeA ≥ RC(qeB) and qeB ≥ RC(qeA). By the definition of the Cournot

reaction function, we then have that P (Qe)− c+ qeAP
′ (Qe) ≤ 0 and P (Qe)− c+ qeBP

′ (Qe) ≤ 0. Moreover,

adding up these two conditions yields P (Qe)− c+ Qe

2 P
′(Qe) ≤ 0, and thus

P (Qe)− c+QeP ′(Qe) ≤ Qe

2
P ′(Qe) ≤ 0,

It follows that the left-hand side of (22) is greater than or equal to

(1 + µ)(1− µ)
(Qe)

2

4
(P ′(Qe))

2
. (23)

We now show that (23) is greater than or equal to the right-hand side of (22), thereby establishing

a contradiction. Since qeA + qeB = Qe and qei ≥ 0, there exists an α ∈ [0, 1] such that qeA = αQe, qeB =
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(1− α)Qe, and thus qeAq
e
B = α (1− α) (Qe)

2
. As α (1− α) ≤ 1

4 for all α ∈ [0, 1], it follows that the

right-hand side of (22) is smaller than or equal to

(1 + µ)(1− µ) (P ′ (Qe))
2 (Qe)

2

4
. (24)

Since (23) is equal to (24), condition (22) is violated. Hence, it cannot be that qeA ≥ RC(qeB) and qeB ≥
RC(qeA) in a stable equilibrium with differentiable dynamic quantity reaction functions.

Part (ii): From R′B ≤ 0, R′A ≤ 0, and the first-order conditions, we obtain that

r̃ + 1− µ
r̃ + 2

(Π′ (qeA + qeB)− π2 (qeB , q
e
A)) +

1 + µ

r̃ + 2
Π′ (qeA + qeB) ≤ 0,

r̃ + 1 + µ

r̃ + 2
(Π′ (qeA + qeB)− π2 (qeA, q

e
B)) +

1− µ
r̃ + 2

Π′ (qeA + qeB) ≤ 0,

which can be rewritten as

qeB
P ′ (Qe)

Π′ (Qe)
≤ r̃ + 2

r̃ + 1− µ
,

qeA
P ′ (Qe)

Π′ (Qe)
≤ r̃ + 2

r̃ + 1 + µ
.

Adding up these two conditions yields

QeP ′ (Qe)

Π′ (Qe)
≤ 2 (r̃ + 2) (r̃ + 1)

(r̃ + 1 + µ) (r̃ + 1− µ)
. (25)

The left-hand side of (25) is strictly decreasing in Qe, because

∂

∂Q

(
QP ′ (Q)

Π′ (Q)

)
=

(P ′(Q) +QP ′′(Q)) (P (Q)− c)−Q (P ′(Q))
2

(Π′(Q))
2 < 0, (26)

where the inequality follows from assumption A2 and P (Qe) ≥ c. Moreover, limQe→QM
QeP ′(Qe)

Π′(Qe) =∞ and

2qCP ′(2qC)
Π′(2qC)

= 2, while the right-hand side of (25) lies strictly above 2 for all r̃ > 0 and µ ∈ [0, 1). It follows

that, for each r̃ > 0 and µ ∈ [0, 1), there exists a unique Q (r̃, µ) ∈
(
QM , 2qC

)
such that

QP ′
(
Q
)

Π′
(
Q
) =

2 (r̃ + 2) (r̃ + 1)

(r̃ + 1− µ) (r̃ + 1 + µ)
, (27)

which can be rewritten as

Π′
(
Q
)
− π2

(
1

2
Q,

1

2
Q

)
+

r̃ + 1 + µ2

(r̃ + 1− µ) (r̃ + 1 + µ)
Π′
(
Q
)

= 0. (28)

The right-hand side of (27) is strictly increasing in µ, and strictly decreasing in r̃. Given (26), it follows

that Q (r̃, µ) is strictly decreasing in µ, and strictly increasing in r̃.

For µ = 0, (28) coincides with the condition that defines the lower bound q (r̃) in the symmetric case

(see Proposition 2), hence

Q (r̃, 0) = 2q (r̃) > QM .
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For r̃ = 0, the right-hand side of (27) is equal to 4
(1−µ)(1+µ) , which converges to infinity as µ tends to one.

It follows that

lim
µ→1

lim
r̃→0

Q (r̃, µ) = QM .

Finally, as r̃ tends to ∞, the right-hand side of (27) converges to 2, which implies that

lim
r̃→∞

Q (r̃, µ) = 2qC .

This completes the proof of part (ii).

Part (iii): We define E as the set of equilibrium dynamic reaction functions (RA, RB) such that Ri’s are

twice continuously differentiable, and sup |R′i| and sup |R′′i | are bounded by K. Although the set E can

depend on the choice of bounds K > 0, as well as the parameters r, λM , and µ, we omit them to simplify

the notations. In particular, it will be clear in the proof that, given equilibrium existence, the specific

choice of K > 0 does not affect our limit result.33

Our first intermediate result is that RB approaches the Cournot reaction function when the degree of

asymmetry µ converges to 1.

Lemma A2 Let ε > 0 be given. There exists µ̄ < 1 such that

max
qA∈[0,Q̄c]

|RB(qA)−RC(qA)| < ε,

for any (RA, RB) ∈ E when µ ≥ µ̄.

Proof of Lemma A2. Let ε > 0 be given. Recall that for q = RB(qA),

Π′(q + qA)− π2(qA, q) +
1− µ

r̃ + 1 + µ
(Π′(RA(q) + q) + π2(q,RA(q))R′A(q)) = 0,

while for q = RC(qA),

Π′(q + qA)− π2(qA, q) = 0.

Now, we choose µ̄ < 1 such that µ ≥ µ̄ implies(
1− µ

r̃ + 1 + µ

)
·max |Π′ + π2 ·K| ≤ ε ·min |π11| .

Then, we have for any qA ∈ [0, Q̄c] and (RA, RB) ∈ E with µ ≥ µ̄,∣∣π1(RB(qA), qA)− π1(RC(qA), qA)
∣∣ ≤ ε ·min |π11|.

By the mean-value theorem, there exists z between min{RC(qA), RB(qA)} and max{RC(qA), RB(qA)} such

that (
RB(qA)−RC(qA)

)
π11(z, qA) = π1 (RB(qA), qA)− π1

(
RC(qA), qA

)
,

33The existence of equilibria with bounded first and second derivaties will be satisfied in the case of linear
demand, where |R∗i ′| ≤ 1

2 for all i and all parameter values r > 0, λM > 0, and µ ∈ [0, 1).
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and hence

|RB(qA)−RC(qA)||π11(z, qA)| ≤ ε ·min |π11|.

We conclude that maxqA∈[0,Q̄c] |RB(qA)−RC(qA)| < ε for any (RA, RB) ∈ E with µ ≥ µ̄.

Our next intermediate result is that the slope of reaction function RB also converges to that of the

Cournot reaction function as µ approaches 1.

Lemma A3 Let ε > 0 be given. There exists µ̄ < 1 such that

max
qA∈[0,Q̄c]

|R′B(qA)−RC ′(qA)| < ε,

for any (RA, RB) ∈ E when µ ≥ µ̄.

Proof of Lemma A3. Let ε > 0 be given. Recall that for q = RB(qA),

Π′(q + qA)− π2(qA, q) +
1− µ

r̃ + 1 + µ
(Π′(RA(q) + q) + π2(q,RA(q))R′A(q)) = 0,

while for q = RC(qA),

Π′(q + qA)− π2(qA, q) = 0.

By the implicit function theorem,

R′B(qA) = −π12(RB(qA), qA)

H(RB(qA), qA)
, and RC ′(qA) = −π12(RC(qA), qA)

π11(RC(qA), qA)
,

where

H(q, qA) = π11(q, qA) +
1− µ

r̃ + 1 + µ
H̃(q),

for some H̃(q) such that there exists an upper bound K ′ > 0 with max |H̃| < K ′ for any (RA, RB) ∈ E .

Together with Lemma A2, this implies that for any given ε′ > 0, there exists µ̄′ < 1 such that for any

(RA, RB) ∈ E with µ ≥ µ̄′,

max
qA∈[0,Q̄c]

|H(RB(qA), qA)− π11(RC(qA), qA)| ≤ ε′. (29)

To see this, note first that

|H(RB(qA), qA)− π11(RC(qA), qA)|

≤|π11(RB(qA), qA)− π11(RC(qA), qA)|+ 1− µ
r̃ + 1 + µ

K ′

≤max |P ′′| · |RB(qA)−RC(qA)|+ max |RC | · |P ′′(RB(qA) + qA)− P ′′(RC(qA) + qA)|

+2|P ′(RB(qA) + qA)− P ′(RC(qA) + qA)|+ 1− µ
r̃ + 1 + µ

K ′.

Since P ′′ and P ′ are continuous functions on a compact interval, they are uniformly continuous. Thus, by

Lemma A2, we can choose µ̄′ < 1 such that for any (RA, RB) ∈ E with µ ≥ µ̄′,

|H(RB(qA), qA)− π11(RC(qA), qA)| < ε′.

42



Now, notice that

|R′B(qA)−RC ′(qA)|

=

∣∣∣∣π12(RB(qA), qA)

H(RB(qA), qA)
− π12(RC(qA), qA)

π11(RC(qA), qA)

∣∣∣∣
=

∣∣∣∣π12(RB(qA), qA)π11(RC(qA), qA)−H(RB(qA), qA)π12(RC(qA), qA)

H(RB(qA), qA)π11(RC(qA), qA)

∣∣∣∣ .
Observe that the denominator is strictly bounded away from zero when µ beccomes arbitrarily close to 1.

To see this, note that for each qA ∈ [0, Q̄],

|H(RB(qA), qA)π11(RC(qA), qA)|

=
∣∣∣(H (RB(qA), qA)− π11

(
RC(qA), qA

))
π11(RC(qA), qA) + π11

(
RC(qA), qA

)2∣∣∣
≥π11(RC(qA), qA)2 −

∣∣H(RB(qA), qA)− π11(RC(qA), qA)||π11(RC(qA), qA)
∣∣ .

Then, from (29) and the fact that min |π2
11| > 0, we have µ̄′′ > 0 such that the minimum of the right-hand

side is bounded below from some K ′′ > 0 for any (RA, RB) ∈ E with µ ≥ µ̄′′. Therefore, we have∣∣R′B(qA)−RC ′(qA)
∣∣

≤ 1

K ′′
∣∣π12(RB(qA), qA)π11(RC(qA), qA)−H(RB(qA), qA)π12(RC(qA), qA)

∣∣ .
Since π12(RB(qA), qA) and H(RB(qA), qA) approach to π12(RC(qA), qA) and π11(RC(qA), qA) respectively

as µ converges to 1, we can apply the same argument before and find µ̄ > 0 such that

max
qA∈[0,Q̄c]

∣∣R′B(qA)−RC ′(qA)
∣∣ < ε,

for any (RA, RB) ∈ E with µ ≥ µ̄.

Given Lemmas A2 and A3, we now prove the statement in part (iii). Let ε > 0 be given. Recall that

the first-order conditions evaluated at steady-state quantities (qeA, q
e
B) are given by, for RA(qeB) = qeA,

(r̃ + 1− µ) (Π′ (Qe)− π2 (qeB , q
e
A)) + (1 + µ) (Π′ (Qe) + π2 (qeA, q

e
B)R′B (qeA)) = 0,

and for RB(qeA) = qeB ,

(r̃ + 1 + µ) (Π′ (Qe)− π2 (qeA, q
e
B)) + (1− µ) (Π′ (Qe) + π2 (qeB , q

e
A)R′A (qeB)) = 0.

By Lemma A3, we have max |R′B | ≤ L for some L ∈ (0, 1) for any (RA, RB) ∈ E with µ being close

enough to 1, because the Cournot reaction function has a slope whose absolute value is strictly less than

than 1. As a result, we obtain

0 = (r̃ + 1− µ) (Π′ (Qe)− π2 (qeB , q
e
A)) + (1 + µ) (Π′ (Qe) + π2 (qeA, q

e
B)R′B (qeA))

≤ (r̃ + 1− µ) (Π′ (Qe)− π2 (qeB , q
e
A)) + (1 + µ) (Π′ (Qe)− Lπ2 (qeA, q

e
B))

= (r̃ + 1− µ) (Π′ (Qe)− π2 (qeB , q
e
A)) + (1 + µ) (π1 (qeB , q

e
A)− c) + (1 + µ) (1− L)π2 (qeA, q

e
B) ,
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which is equivalent to

0 ≤
(
r̃ + 1− µ

1 + µ

)
(Π′ (Qe)− π2 (qeB , q

e
A)) + π1 (qeB , q

e
A)− c+ (1− L)π2 (qeA, q

e
B) .

Now, choose µ̄ < 1 and r̄ > 0 such that(
r̃ + 1− µ

1 + µ

)
(Π′ (Qe)− π2 (qeB , q

e
A)) ≤ ε (1− L) min |P ′|

2
,

and

π1(qeB , q
e
A)− c = π1 (RB(qeA), qeA)− c ≤ ε(1− L) min |P ′|

2
,

for any (RA, RB) ∈ E with µ ≥ µ̄ and r̃ ≤ r̄, where the latter inequality follows from Lemma A2. As a

result, we have

0 ≤
(
r̃ + 1− µ

1 + µ

)
(Π′(Qe)− π2(qeB , q

e
A)) + π1(qeB , q

e
A)− c+ (1− L)π2(qeA, q

e
B)

≤ (1− L) (εmin |P ′|+ P ′(Qe)qeA) ,

implying

0 ≤ εmin |P ′|+ P ′(Qe)qeA.

Therefore,

(−P ′(Qe)) qeA ≤ εmin |P ′| ⇐⇒ qeA ≤
εmin |P ′|
|P ′(Qe)|

< ε.

By Lemma A2, we also obtain

|qeB −QM | = |RB(qeA)−RC(0)| < ε,

provided that µ is sufficiently close to 1. This completes the proof of part (iii).

Proof of Proposition 5. Letting r̃ = r
λM

and x̃ = (2 + 4r̃)2 + 12(1 − µ2), the intercepts and slopes of

the equilibrium dynamic quantity reactions (R∗A, R
∗
B) from the proof of Proposition 1 become

α∗A =
(1− c) (2 + r̃)

(
2 + 4r̃ + 6 (1− µ)−

√
x̃
)

2 (1− µ)
(

14 + 10r̃ −
√
x̃
) ,

α∗B =
(1− c) (2 + r̃)

(
2 + 4r̃ + 6 (1 + µ)−

√
x̃
)

2 (1 + µ)
(

14 + 10r̃ −
√
x̃
) ,

β∗A =
1

2
−
√
x̃− (2 + 4r̃)

12 (1− µ)
,

β∗B =
1

2
−
√
x̃− (2 + 4r̃)

12 (1 + µ)
.

The steady-state quantities are given by

(qeA, q
e
B) =

(
α∗A − α∗Bβ

∗
A

1− β∗Aβ
∗
B

,
α∗B − α∗Aβ

∗
B

1− β∗Aβ
∗
B

)
.
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We first prove part (iii), and then parts (i) and (ii) of the proposition.

Part (iii): Note that

lim
r̃→0

β∗B =
1

2
−
√

4 + 12(1− µ2)− 2

12 (1 + µ)
,

and

lim
µ→1

lim
r̃→0

β∗B =
1

2
.

Similarly, one can check

lim
r̃→0

β∗A =
1

2
−
√

4 + 12(1− µ2)− 2

12 (1− µ)
.

Applying the L’Hospital’s rule, we have

lim
µ→1

lim
r̃→0

β∗A = 0.

On the other hand,

lim
r̃→0

α∗B =
2 (1− c)

(
2 + 6 (1 + µ)−

√
4 + 12 (1− µ2)

)
2 (1 + µ)

(
14−

√
4 + 12 (1− µ2)

) ,

and

lim
µ→1

lim
r̃→0

α∗B =
1− c

2
= QM .

Similarly,

lim
r̃→0

α∗A =
2 (1− c)

(
2 + 6 (1− µ)−

√
4 + 12 (1− µ2)

)
2 (1− µ)

(
14−

√
4 + 12 (1− µ2)

) ,

and by L’Hospital’s rule,

lim
µ→1

lim
r̃→0

α∗A = 0.

The result follows from evaluating (qeA, q
e
B) =

(
α∗A−α

∗
Bβ
∗
A

1−β∗Aβ∗B
,
α∗B−α

∗
Aβ
∗
B

1−β∗Aβ∗B

)
at these limit values.

Part (i): Note that the aggregate steady-state quantity is given by

Qe =

(
12 (1− c) (2 + r̃)

14 + 10r̃ −
√
x̃

) 36(1− µ2)− (2 + 4r̃ −
√
x̃)2

108 (1− µ2)− 12
(

2 + 4r̃ −
√
x̃
)
−
(

2 + 4r̃ −
√
x̃
)2

 .

To simplify notations, let us write X = 2 + 4r̃ −
√
x̃ < 0. Then, we have

x̃ = (2 + 4r̃ −X)2 ⇐⇒ 12(1− µ2) = X2 − 2X(2 + 4r̃),

and so

Qe =

(
12 (1− c) (2 + r̃)

6 (2 + r̃) +X

)(
2X2 − 6X (2 + 4r̃)

8X2 − 18X (2 + 4r̃)− 12X

)
=

(
12 (1− c) (2 + r̃)

12 + 6r̃ +X

)(
X − 6− 12r̃

4X − 24− 36r̃

)
=12(1− c) ·

(
6 +

X

2 + r̃

)−1

·
(

4 +
12r̃

X − 6− 12r̃

)−1

.
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Since (
6 +

X

2 + r̃

)
·
(

4 +
12r̃

X − 6− 12r̃

)
=24 + 4

(
18r̃

X − 6− 12r̃
+

X

2 + r̃
+

3r̃X

(2 + r̃)(X − 6− 12r̃)

)
,

it sufficies to show that

18r̃

X − 6− 12r̃
+

X

2 + r̃
+

3r̃X

(2 + r̃)(X − 6− 12r̃)

is strictly decreasing in r̃. One can check that the denominator of its first-order derivative is

(2 + r̃)
2
√

4 (1 + r̃ + r̃2)− 3µ2
(

2 + 4r̃ +
√

4 (1 + r̃ + r̃2)− 3µ2
)2

> 0,

and the numerator is

− 3
(

8− 6µ4 + 2r̃
(
10 + 7r̃ + 3r̃2

)
+ µ2

(
10 + 13r̃2 + 16r̃

)
+ 2

(
2 + 4r̃ + 3r̃2 + 10µ2 + 8r̃µ2

)√
4 (1 + r̃ + r̃2)− 3µ2

)
< 0.

Therefore, we conclude that Qe is strictly increasing in r̃.

Part (ii): Finally, we prove part (ii). Remark that if Qe is strictly decreasing in µ, and qeB is strictly

increasing in µ, then qeA must be strictly decreasing in µ. Therefore, it sufficies to show the monotonicity

of Qe and qeB with respect to µ.

Recall that with X = 2 + 4r̃ −
√
x̃,

Qe =

(
12 (1− c) (2 + r̃)

12 + 6r̃ +X

)(
X − 6− 12r̃

4X − 24− 36r̃

)
.

Thus, Qe is strictly decreasing in µ if and only if

(12 + 6r̃ +X) (4X − 24− 36r̃)

X − 6− 12r̃

is strictly increasing in µ. Since ∂X
∂µ > 0, it sufficies to show that

∂

∂X

(
(12 + 6r̃ +X) (4X − 24− 36r̃)

X − 6− 12r̃

)
> 0,

which is equivalent to

(4X − 24− 36r̃ + 4 (12 + 6r̃ +X)) (X − 6− 12r̃)− (12 + 6r̃ +X) (4X − 24− 36r̃) > 0

⇐⇒ (4X − 24− 36r̃) (X − 6− 12r̃ − 12− 6r̃ −X) + 4 (12 + 6r̃ +X) (X − 6− 12r̃) > 0

⇐⇒ 18 (1 + r̃) (24 + 36r̃ − 4X) > 4 (6 + 12r̃ −X) (12 + 6r̃ +X)

⇐⇒
(

3

2
(24 + 36r̃ − 4X)

)
(12 (1 + r̃)) > (24 + 48r̃ − 4X) (12 + 6r̃ +X) .

Note that the first term in the left-hand side is greater than the first term in the right-hand side. To see

this,

3

2
(24 + 36r̃ − 4X)− 24− 48r̃ + 4X = 12 + 6r̃ − 2X > 0,
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where the inequality follows from X < 0. Similarly, the second term in the left-hand side is greater than

the second term in the right-hand side, because

12 (1 + r̃)− 12− 6r̃ −X = 6r̃ −X > 0.

We conclude that the aggregate quantity Qe is strictly decreasing in µ.

Now, we show that qeB is strictly increasing in µ, which completes the proof of part (ii). Note that

qeB =

(
6(1− c)(2 + r̃)

14 + 10r̃ −
√
x̃

)(
36(1− µ2) + 12µ(

√
x̃− (2 + 4r̃))− (

√
x̃− (2 + 4r̃))2

108(1− µ2) + 12(
√
x− (2 + 4r̃))− (

√
x− (2 + 4r̃))2

)
.

Using our previous notation X = 2 + 4r̃ −
√
x̃ < 0, it is rewritten as

qeB =

(
6(1− c)(2 + r̃)

12 + 6r̃ +X

)(
2X2 − 6X(2 + 4r̃)− 12µX

8X2 − 48X − 72r̃X

)
=

(
6(1− c)(2 + r̃)

12 + 6r̃ +X

)(
X − 3(2 + 4r̃)− 6µ

4X − 24− 36r̃

)
.

Thus, it sufficies to show that
X − 3(2 + 4r̃)− 6µ

(12 + 6r̃ +X) (4X − 24− 36r̃)

is strictly increasing in µ. Letting X ′ = ∂X
∂µ , one can check that

∂

∂µ

(
X − 3(2 + 4r̃)− 6µ

(12 + 6r̃ +X) (4X − 24− 36r̃)

)
> 0

is equivalent to

X ′ (4X − 24− 36r̃) (12 + 6r̃ +X −X + 3(2 + 4r̃) + 6µ)

−X ′ (48 + 24r̃ + 4X) (X − 6− 12r̃ − 6µ)− 6 (12 + 6r̃ +X) (4X − 24− 36r̃) > 0

⇐⇒ X ′ ((4X − 24− 36r̃) (18 + 18r̃ + 6µ)− (48 + 24r̃ + 4X) (X − 6− 12r̃ − 6µ))

>6 (12 + 6r̃ +X) (4X − 24− 36r̃)

⇐⇒ X ′
(

3 + 3r̃ + µ

12 + 6r̃ +X
− X − 6− 12r̃ − 6µ

6(X − 6− 9r̃)

)
< 1,

where the last equivalence follows from dividing each side by 6 (4X − 24− 36r̃) (12 + 6r̃ +X), which is

negative. Since ∂X
∂µ = 12µ√

x̃
= 12µ

2+4r̃−X , it can be shown to be equivalent to

(2µ(6 + 6µ+ 12r̃ −X) + (2 + 4r̃ −X)(6 + 9r̃ −X)) (12 + 6r̃ +X)

> 12µ(6 + 9r̃ −X)(3 + 3r̃ + µ).

Noting that 12µ = 2 · 6µ, we show that each term in the left-hand side is greater than each term in the

right-hand side. More precisely, note first that

12 + 6r̃ +X > 2(3 + 3r̃ + µ) = (6 + 6r̃ + 2µ)

⇐⇒ 6 +X > 2µ

⇐⇒ 2(2 + 4r̃)(6− 2µ) + (6− 2µ)2 > 12(1− µ2),
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where the last equivalence follows from X = 2 + 4r̃ −
√
x̃. Certainly, the left-hand side is strictly greater

than the right-hand side.

In addition, we have

2µ(6 + 6µ+ 12r̃ −X) + (2 + 4r̃ −X)(6 + 9r̃ −X) > 6µ(6 + 9r̃ −X)

⇐⇒ 2µ(6 + 6µ+ 12r̃ −X) > (6 + 9r̃ −X)(6µ− 2− 4r̃ +X)

⇐⇒ 2µ(6 + 9r̃ −X + 6µ+ 3r̃) > (6 + 9r̃ −X)(6µ− 2− 4r̃ +X)

⇐⇒ 2µ(6µ+ 3r̃) > (6 + 9r̃ −X)(4µ− 2− 4r̃ +X)

⇐⇒ 6µ(2µ+ r̃) > (6 + 9r̃ −X)(4µ− 2− 4r̃ +X).

Now, substituting X = 2 + 4r̃ −
√
x̃, it reduces to

6µ(2µ+ r̃) > (4 + 5r̃ +
√
x̃)(4µ−

√
x̃)

⇐⇒ 6µ(2µ+ r̃)− (4 + 5r̃ +
√
x̃)(4µ−

√
x̃) > 0. (30)

One can check that the left-hand side is strictly decreasing in µ:

∂

∂µ

(
6µ(2µ+ r̃)− (4 + 5r̃ +

√
x̃)(4µ−

√
x̃)
)

=−
2
(

16(1 + r̃ + r̃2)− 24µ2 + 3µ(4 + 5r̃) + (8 + 7r̃)
√

4(1 + r̃ + r̃2)− 3µ2
)

√
4(1 + r̃ + r̃2)− 3µ2

<0.

Thus, it sufficies to show that the inequality (30) is satisfied at µ = 1:

6(2 + r̃)− (4 + 5r̃ + 2 + 4r̃)(4− 2− 4r̃) > 0

⇐⇒ 6(2 + r̃)− (6 + 9r̃)(2− 4r̃) = 36r̃2 + 12r̃ > 0.

Thus, we conclude that qeB is strictly increasing in µ.

Appendix B: Omitted details and additional results

Derivation of the objective function in (1) Let τ i ∈ R+ be the random variable capturing

the length of time until termination of U and Di’s current contract (i = A,B). Given the independent

Poisson assumption, the probability of τ i ≤ t is given by Gi (t) = 1 − e−λit, with corresponding density

gi (t) = λie
−λit. The objective function in (1) can then be written as

E
[
1τ i≤τ−i

∫ τ i

t=0

e−rtdt+ 1τ i>τ−i

∫ τ−i

t=0

e−rtdt

]
(f + f−i − c (q + q−i))

+ E
[
1τ i≤τ−ie

−rτ i
]
Wi (q−i, f−i) + E

[
1τ i>τ−ie

−rτ−i
]
W−i (q, f) , (31)
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where

E
[
1τ i≤τ−i

e−rτ i
]

=

∫ ∞
τ−i=0

∫ τ−i

τ i=0

e−rτ igi(τ i)g−i(τ−i)dτ idτ−i

= λiλ−i

∫ ∞
τ−i=0

e−λ−iτ−i

(∫ τ−i

τ i=0

e−(r+λi)τ idτ i

)
dτ−i

=
λi

r + λi + λ−i
, (32)

and

E
[
1τ i≤τ−i

∫ τ i

t=0

e−rtdt

]
=

1

r

(
E
[
1τ i≤τ−i

]
− E

[
1τ i≤τ−ie

−rτ i
])

=
1

r

(∫ ∞
τ−i=0

Gi (τ−i) g−i (τ−i) dτ−i
−
∫ ∞
τ−i=0

∫ τ−i

τ i=0

e−rτ igi (τ i) dτ ig−i (τ−i) dτ−i

)

=
1

r

(
λi

λi + λ−i
− λi
r + λi + λ−i

)
=

λi
(r + λi + λ−i) (λi + λ−i)

. (33)

Similarly,

E
[
1τ i>τ−i

e−rτ−i
]

=
λ−i

r + λi + λ−i
, (34)

E
[
1τ i>τ−i

∫ τ−i

t=0

e−rtdt

]
=

λ−i
(r + λi + λ−i) (λi + λ−i)

. (35)

Substituting (32) to (35) into (31) yields the expression in the text.

Opt-out contracts

Proposition 6 Suppose contracts can contain opt-out clauses. Then, for r
λM
→ ∞, there exists a MPE

in which after any history, the aggregate quantity eventually becomes QM .

Proof. Let r
λM
→∞. We first prove equilibrium existence and then dynamic stability. Each contract offer

can contain an opt-out clause, and we use the indicator variable o ∈ {0, 1} to denote whether a contract

includes an opt-out clause (o = 1) or not (o = 0). The state when U makes an offer to Di now consists of a

triplet (q−i, f−i, o−i), where the fixed fee is included because when o−i = 1, f−i matters for D−i’s decision

whether to opt out of its current contract or continue selling q−i. We restrict attention to states such that

f−i ≤ π (q−i, 0), since it would have been optimal for D−i to reject the contract (q−i, f−i, o−i) otherwise.

Since r
λM
→∞, each firm must myopically maximize its payoff in equilibrium.

Let us define q̄ (q−i, f−i) as follows: if q−i = 0, then q̄ (q−i, f−i) = 0 for all f−i; and if q−i > 0, then

q̄ (q−i, f−i) is the unique solution to q̄ : f−i = π (q−i, q̄).
34 Note that q̄ (q−i, f−i) > 0 implies q−i > 0. Also,

recall that QM = RC (0) ≥ RC (q−i) for all q−i, with a strict inequality for q−i > 0.

Consider the following strategy profile:

34Since f−i ≤ π (q−i, 0) and π2 < 0 for q−i > 0, there exists a unique solution q̄ (q−i, f−i) ≥ 0 for all
q−i > 0.
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(i) Given Di accepts (q, f, o), D−i opts out if and only if o−i = 1 and q ≥ q̄ (q−i, f−i).

(ii) Given U offers (q, f, o) to Di,

• if q ≥ q̄ (q−i, f−i) and o−i = 1, then Di accepts if and only if π (q, 0) ≥ f .

• if q < q̄ (q−i, f−i) or o−i = 0, then Di accepts if and only if π (q, q−i) ≥ f .

(iii) U ’s offer to Di is given by

•
(
QM , π

(
QM , 0

)
, 1
)

if q̄ (q−i, f−i) ≤ QM and o−i = 1,

• (q̄ (q−i, f−i) , π (q̄ (q−i, f−i) , 0) , 1) if q̄ (q−i, f−i) > QM , o−i = 1, and Π (q̄ (q−i, f−i)) ≥ f−i +

π
(
RC (q−i) , q−i

)
− c

(
RC (q−i) + q−i

)
•
(
RC (q−i) , π

(
RC (q−i) , q−i

)
, 1
)

otherwise.

We can show that this is an equilibrium by backward induction. First, consider D−i’s decision whether

to opt out when Di accepts (q, f, o) and o−i = 1. D−i obtains 0 if it opts out and π (q−i, q) − f−i if it

continues selling, hence opting out if and only if q ≥ q̄ (q−i, f−i) is optimal. Next, consider Di’s acceptance

decision when it is offered (q, f, o). If q ≥ q̄ (q−i, f−i) and o−i = 1, acceptance is followed by D−i opting

out, thus accepting if and only if π (q, 0) ≥ f is optimal for Di. If q < q̄ (q−i, f−i) or if o−i = 0, then D−i

will not opt out after Di’s contract acceptance, and thus accepting if and only if π (q, q−i) ≥ f is optimal

for Di.

Finally, consider the contract offer stage. First, note that since firms myopically maximize payoffs,

offering an opt-out clause (o = 1) is always (weakly) optimal. It remains to show that is is optimal for U to

offer the quantities and fixed fees in the specified strategy profile. We divide our analysis into three cases :

Case 1(a). 0 ≤ q̄ (q−i, f−i) ≤ RC (q−i) and o−i = 1

Let us consider offers that are accepted. For q ≥ q̄ (q−i, f−i), U will optimally set f = π (q, 0) since D−i will

opt out. Thus, it is optimal for U to offer
(
QM , π

(
QM , 0

)
, 1
)

in this case, which yields a payoff Π
(
QM

)
for U . On the other hand, if q < q̄ (q−i, f−i), then q̄ (q−i, f−i) > 0 and so q−i > 0. Clearly, U will optimally

set f = π (q, q−i), since D−i will not opt out. Thus, U ’s payoff from offering a contract (q, π (q, q−i) , 1)

with q < q̄ (q−i, f−i) is strictly lower than

f−i + π (q̄ (q−i, f−i) , q−i)− c (q̄ (q−i, f−i) + q−i)

=π (q−i, q̄ (q−i, f−i)) + π (q̄ (q−i, f−i) , q−i)− c (q̄ (q−i, f−i) + q−i)

=Π (q−i + q̄ (q−i, f−i)) ≤ Π
(
QM

)
.

where the first equality follows from the definition of q̄ (q−i, f−i) for q−i > 0. Thus, it is optimal for U to

offer
(
QM , π

(
QM , 0

)
, 1
)
, which induces D−i to opt out and yields payoff Π

(
QM

)
for U .35

35We can ignore rejection cases: if U offers a contract that is rejected, then U obtains f−i− cq−i. In this
case, if q−i > 0, then f−i − cq−i = π (q−i, q̄ (q−i, f−i)) − cq−i ≤ π (q−i, 0) − cq−i = Π (q−i) ≤ Π

(
QM

)
. If

q−i = 0, then U obtains f−i = 0 < Π
(
QM

)
.
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Case 1(b). RC (q−i) < q̄ (q−i, f−i) ≤ QM and o−i = 1

Let us consider offers that are accepted, as there is again no incentive to offer a contract that is rejected

for the same reasons as in Case 1. For q ≥ q̄ (q−i, f−i), U will optimally set f = π (q, 0) since D−i will

opt out. Thus, conditional on q ≥ q̄ (q−i, f−i), the optimal contract is given by
(
QM , π

(
QM , 0

)
, 1
)
, in

which case U obtains Π
(
QM

)
. On the other hand, consider q < q̄ (q−i, f−i). Clearly, U will optimally set

f = π (q, q−i) since D−i will not opt out. Thus, conditional on q < q̄ (q−i, f−i), the optimal contract is

given by
(
RC (q−i) , π

(
RC (q−i) , q−i

)
, 1
)
, in which case U obtains

f−i + π
(
RC (q−i) , q−i

)
− c

(
RC (q−i) + q−i

)
=π (q−i, q̄ (q−i, f−i)) + π

(
RC (q−i) , q−i

)
− c

(
RC (q−i) + q−i

)
<π
(
q−i, R

C (q−i)
)

+ π
(
RC (q−i) , q−i

)
− c

(
RC (q−i) + q−i

)
=Π

(
q−i +RC (q−i)

)
≤Π

(
QM

)
.

Thus, it is optimal for U to offer
(
QM , π

(
QM , 0

)
, 1
)
, which induces D−i to opt out and yields payoff

Π
(
QM

)
to U .

Together, Cases 1(a) and 1(b) imply that if q̄ (q−i, f−i) ≤ QM and o−i = 1, then offering
(
QM , π

(
QM , 0

)
, 1
)

is optimal for U .

Case 2. QM < q̄ (q−i, f−i) and o−i = 1, or o−i = 0

Let us consider offers that are accepted. For q ≥ q̄ (q−i, f−i) and o−i = 1, U will optimally set f = π (q, 0)

since D−i will opt out. Thus, the optimal contract is given by (q̄ (q−i, f−i) , π (q̄ (q−i, f−i) , 0) , 1) in this case,

and U obtains Π (q̄ (q−i, f−i)). On the other hand, if either q < q̄ (q−i, f−i) and o−i = 1 or o−i = 0, then

it is clearly optimal for U to set f = π (q, q−i), because D−i will not opt out in these cases. Thus, if either

q < q̄ (q−i, f−i) and o−i = 1 or if o−i = 0, the optimal contract is given by
(
RC (q−i) , π

(
RC (q−i) , q−i

)
, 1
)

and U obtains f−i + π
(
RC (q−i) , q−i

)
− c

(
RC (q−i) + q−i

)
.

Hence, for o−i = 1, it is optimal for U to offer (q̄ (q−i, f−i) , π (q̄ (q−i, f−i) , 0) , 1) if

Π (q̄ (q−i, f−i)) ≥ f−i + π
(
RC (q−i) , q−i

)
− c

(
RC (q−i) + q−i

)
,

and offer
(
RC (q−i) , π

(
RC (q−i) , q−i

)
, 1
)

otherwise. Note that we can ignore rejection cases since, by

offering
(
RC (q−i) , π

(
RC (q−i) , q−i

)
, 1
)
, U can guarantee its payoff

f−i + π
(
RC (q−i) , q−i

)
− c

(
RC (q−i) + q−i

)
≥f−i − cq−i + π

(
RC (q−i) , q−i

)
− cRC (q−i)

≥f−i − cq−i

where the last term is the payoff when an offer is rejected.

This proves equilibrium existence. Next, we show that given the above equilibrium strategies, the

aggregate eventually becomes QM for any history. We again consider two cases separately.

Case 1. Transition from (q−i, f−i, 1) such that 0 ≤ q̄ (q−i, f−i) ≤ QM .

In the equilibrium, U will offer
(
QM , π

(
QM , 0

)
, 1
)

to Di, which is accepted and induces D−i to opt out.

51



Suppose U makes an offer to D−i at the next recontracting opportunity. Since Di’s existing contract will

be
(
QM , π

(
QM , 0

)
, 1
)
, we have q̄

(
QM , π

(
QM , 0

))
= 0. Therefore, U will offer

(
QM , π

(
QM , 0

)
, 1
)

to D−i,

and Di will opt out. Now suppose U makes an offer to Di again at the next recontracting opportunity.

Then, since D−i has opted out, the state is (0, 0), which implies that q̄ (0, 0) = 0 and thus that U will

offer
(
QM , π

(
QM , 0

)
, 1
)

to Di again.36 Note that in either case, one firm always opts out; the aggregate

quantity is QM ; and U obtains Π
(
QM

)
.

Case 2. Transition from (q−i, f−i, 1) such that q̄ (q−i, f−i) > QM .

In the equilibrium, U ’s offer to Di is either (i) (q̄ (q−i, f−i) , π (q̄ (q−i, f−i) , 0) , 1), which is accepted and

induces D−i to opt out, or (ii)
(
RC (q−i) , π

(
RC (q−i) , q−i

)
, 1
)
, which is accepted and does not induce D−i

to opt out.

Consider case (i) first. Suppose U makes an offer to D−i at the next recontracting opportunity. Since

Di’s existing contract will be (q̄ (q−i, f−i) , π (q̄ (q−i, f−i) , 0) , 1), we have q̄ (q̄ (q−i, f−i) , π (q̄ (q−i, f−i) , 0)) =

0. Thus, the optimal offer and subsequent equilibrium path are as given in Case 1. Now suppose Umakes an

offer to Diagain at the next recontracting opportunity. Then, since D−ihas opted out, its existing contract

is (0, 0, 1), which implies q̄ (0, 0) = 0. Thus, the optimal offer and subsequent equilibrium path are again as

given in Case 1.37

Next, consider the case (ii). If U makes an offer to Di again at the next recontracting opportunity,

then it will offer the same contract because D−i has not opted out and the state has remained the same.

Now suppose that U makes an offer to D−i at the next recontracting opportunity. Since Di’s contract is(
RC (q−i) , π

(
RC (q−i) , q−i

)
, 1
)
, we have q

(
RC (q−i) , π

(
RC (q−i) , q−i

))
= q−i, that is, Di will opt out if

and only if U offers a quantity greater than q−i to D−i. Thus, if q−i ≤ QM , U will offer
(
QM , π

(
QM , 0

)
, 1
)

to D−i and the subsequent path is as given in Case 1. If q−i > QM , then the offer and subsequent

equilibrium path are again as given in Case 2. If Case 2(i) applies, the transition to Case 1 occurs at the

next recontracting opportunity. If Case 2(ii) applies again, then at the next recontracting opportunity with

D−i, U offers
(
RC

(
RC (q−i)

)
, π
(
RC

(
RC (q−i)

)
, RC (q−i)

)
, 1
)
, which again does not induce Di to opt out.

Now,

q
(
RC

(
RC (q−i)

)
, π
(
RC

(
RC (q−i)

)
, RC (q−i)

))
= RC (q−i) .

Since RC (q−i) < RC (0) = QM for all q−i > 0 and q̄ (q−i, f−i) > QM implies q−i > 0, we know that

RC (q−i) < QM . Hence, at the next recontracting opportunity with Di , U offers
(
QM , π

(
QM , 0

)
, 1
)

and

D−i opts out, and the subsequent equilibrium path is again as given in Case 1.

In summary, starting at a state that belongs to Case 2, the transition to Case 1 occurs after a finite

number of alternations of offers to DA and DB , from which point onwards the aggregate flow quantity is

equal to QM .

36This implicitly assumes that a downstream cannot opt back in a contract after opting out of it, but
the results would unchanged if opting back in were allowed. The state would be (q−i, f−i, 1) in this case,
and given q̄ (q−i, f−i) ≤ QM , U would again offer

(
QM , π

(
QM , 0

)
, 1
)
.

37If D−i could opt back in after opting out, we would be back to Case 2(i) and the transition would to
Case 1 would occur at the next recontracting between U and D−i.
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Exclusive contracts We define a contract between U and Di as exclusive if the contract commits

U not to offer any contract with a strictly positive quantity to D−i while the contract between U and Di

is in place. If q−i = 0 at the time when U and Di sign an exclusive contract, this implies that q−i = 0 for

the entire duration of their contract. If q−i > 0 at the time when U and Di sign an exclusive contract, the

exclusivity commitment implies that if D−i’s contract terminates before Di’s contract, D−i will be offered

q−i = 0. In other words, Di will become the exclusive downstream reseller in the time between termination

of its rival’s contract and termination of its own contract.

Proposition 7 Suppose contracts can contain exclusivity clauses. Then, for r
λM
→∞, there exists a MPE

in which after any history, the aggregate quantity eventually becomes QM .

Proof. Let r
λM
→∞. We first prove equilibrium existence and then dynamic stability. Each contract offer

can contain an exclusivity clause, and we use the indicator variable e ∈ {0, 1} to denote whether a contract

includes an exclusivity clause (e = 1) or not (e = 0). The state when U makes an offer to Di now consists

of the vector (q−i, e−i), and a contract between U and Di is a vector (qi, fi, ei). Since r
λ → ∞, each firm

myopically maximizes its current payoff in equilibrium.

Consider the following strategy profile:

(i) U ’s offer to Di in state (q−i, e−i) is

• (0, 0, 0) if e−i = 1

•
(
RC (q−i) , π

(
RC (q−i) , q−i

)
, 1
)

if e−i = 0

(ii) Di accepts U ’s offer in state (q−i, e−i) if and only if π (q, q−i) ≥ f .

We can show that this is an equilibrium by backward induction. First, since Di maximizes its current

payoff, it is optimal for Di to accept (q, f, o) if π (q, q−i) ≥ f and reject otherwise. Second, consider the

contract offer stage. If e−i = 1, U is bound to offering q = 0 to Di, hence the highest fixed fee consistent

with contract acceptance is zero. Moreover, since U maximizes current payoff, it is indifferent between

offering an exclusivity clause or not to Di. Thus, offering (0, 0, 0) is optimal for U given e−i = 1. If

e−i = 0, U ’s current payoff is maximized by offering the quantity RC (q−i) that maximizes the bilateral

current profit of U and Di and extracting Di’s entire variable profit via the fixed fee. Moreover, for any

quantity and fixed fee offered, U is again indifferent between offering an exclusivity clause or not to Di.

Hence, offering
(
RC (q−i) , π

(
RC (q−i) , q−i

)
, 1
)

is optimal for U in state (q−i, 0).

Next, we show that given the above equilibrium strategies, the aggregate eventually becomes QM for

any history. First, consider any state (q−i, e−i) with e−i = 1. According to the equilibrium strategy

profile, U offers (0, 0, 0) to Di in such a state. If Di’s contract terminates before D−i’s contract, the state

remains (q−i, 1), and U will offers (0, 0, 0) to Di again. Once D−i’s contract terminates, the state at the

recontracting between U and D−i is (0, 0) and U will offer
(
RC (0) , π

(
RC (0) , 0

)
, 1
)

=
(
QM , π

(
QM , 0

)
, 1
)

to D−i. Hence, starting from any state (q−i, e−i) with e−i = 1, the aggrate quantity will be QM from the

next recontracting between U and D−i onwards.
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Second, consider any state (q−i, e−i) with e−i = 0. According to the equilibrium strategy profile,

U offers
(
RC (q−i) , π

(
RC (q−i) , q−i

)
, 1
)

to Di in such a state. If Di’s contract terminates before D−i’s

contract, the state remains (q−i, 0), and U will offer
(
RC (q−i) , π

(
RC (q−i) , q−i

)
, 1
)

to Di again. Once

D−i’s contract terminates, the state at the recontracting between U and D−i is
(
RC (q−i) , 1

)
, and hence,

as shown in previous paragraph, the aggregate quantity will be QM after one more round of alternating

contract reactions.
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