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Training a Sluggish System
 

Abstract

Many organizational and biological systems need to maintain preparedness for external
challenges. However, such systems tend to change their capabilities only gradually. How should
we design training plans to enhance such systems' long-run preparedness? We present a model of
optimal training plans for a rational, slowly adjusting system. A "trainer" commits to a Markov
process governing the evolution of training intensity. At every time period, the system adjusts its
"capability", which can only change by one unit at a time. The trainer maximizes long-run
capability, subject to an upper bound on average training intensity. We consider two models of the
system's adjustment: myopic/mechanistic and forward-looking. We characterize the optimal
training plan in both cases and show how stochastic, time-varying intensity (resembling
"periodization" techniques familiar from exercise physiology) dramatically increases long-run
capability.
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1 Introduction

Many real-life systems are required to develop and maintain capabilities to

deal with external challenges. We want our bodies to build muscle mass in or-

der to perform physical tasks, and our brains to preserve cognitive functions

as we age. In the realm of organizational behavior, we expect organizations

like the military or emergency-management agencies to have the expediency

to respond to unexpected crises such as wars, natural disasters or epidemics.

For example, imagine a public health organization that is required to scale

up testing capacity in response to a sudden surge in demand for diagnostic

tests. However, organizations often struggle to make rapid changes. Un-

able to quickly adjust its capabilities, such organizations can only be ready

for sudden challenges if they consistently maintain a high level of prepared-

ness. Since this is costly, the organization’s capabilities are likely to slowly

deteriorate in the absence of frequent stimuli.

The literature on systems engineering and organizational behavior has

long recognized that organizations are “sluggish”in their response to exter-

nal challenges. Woods (2020) writes that “the strategic agility gap is the

difference between the rate at which an organization adapts to change and

the rise of new unexpected challenges at a larger industry/society scale”

(p.96) and that “for organizations to flourish in the gap they need to build

and sustain the ability to continuously adapt”(p. 101).1 Hannan and Free-

man (1984) write, “organizations are subject to strong inertial forces . . . they

seldom succeed in making radical changes in strategy and structure in the

face of environmental threats”(p. 149). They note that “just as in the case

of biotic creatures, there is a substantial metabolic overhead relative to the

amount of work performed”(p. 152).

While these works focus on the challenge of reducing organizational slug-

gishness, our paper takes this feature as given and studies the design of

1Other articles articulate similar ideas - see Hollnagel, Woods and Leveson (2006) for
a collection of papers.
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training programs that attempt to enhance capability by simulating external

challenges. Indeed, an intuitive principle of emergency planning is that pre-

paredness can be maintained by occasionally simulating worst-case scenarios.

For instance, Lakoff (2007) writes that “since the probability and severity of

such events cannot be calculated, the only way to avert catastrophes is to

have plans to address them already in place and to have exercised for their

eventuality – in other words, to maintain an ongoing capability to respond

appropriately”(p.254).

Our novel contribution is that we analyze the problem of designing train-

ing programs for slowly adapting systems from the perspective of economic

theory.2 We construct a simple model involving two parties, an “agent”,

which represents an organizational or physiological system (an army or emer-

gency planning unit, a brain function, a muscle), and a “trainer” of this

system. The agent adjusts its capability at every time period, in response

to varying training intensity. We capture sluggishness by assuming that the

agent’s capability can only change incrementally over time. Even when ex-

ternal stimuli change dramatically from one period to the next, capability

adjusts slowly. This observation holds for organizational as well as physiolog-

ical systems. For example, while intensity of physical exercise can fluctuate

wildly, our body cannot raise or lower its muscle mass instantaneously to

every level. In the same manner, a military unit cannot ramp up its per-

formance overnight. Conversely, if a well-prepared military unit faces no

challenges for a while, it will take time for its skills to deteriorate.

More specifically, we represent capability and training intensity by inte-

gers and measure them on the same scale. Incremental or sluggish adjustment

means that the agent can change its capability (in either direction) only by

one unit at any given period. The agent’s adjustment process balances two

opposing forces. On the one hand, maintaining capability is costly. For ex-

2Iliev and Welch (2013) is a precedent for an economic model of investment in capacity
for addressing sudden shocks. The element of sluggish adjustment, which is the defining
feature of the present study, is missing from their model.
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ample, a bigger muscle demands more energy to sustain; and higher testing

capacity requires more physical spaces and technically skilled staff. This

maintenance cost exerts a downward force on capability. On the other hand,

when capability falls below training intensity, the system records this as a

cost - for example, muscle tear or inflammation in the case of physical train-

ing, or loss of prestige and diminished prospects for promotion in the case

of organizational training. This “performance gap" cost exerts an upward

force on capability. Note that in the organizational setting, this cost could

be viewed as part of the mechanism for incentivizing preparedness. However,

we take it as given and focus on the training regime itself. The agent trades

off the two costs when choosing how to adjust its capability.

We assume that the trainer commits ex-ante to a Markov process that

governs the evolution of training intensity over time. The trainer is con-

strained by an upper bound on the average training intensity that the Markov

process induces (for example, a military organization has an allotted amount

of time for drills). The trainer’s objective is to maximize the agent’s long-run

capability - defined as the lowest value it gets under the long-run distribu-

tion induced by the two parties’behavior - taking into account the agent’s

adjustment process.

Clearly, our model is stylized and abstracts from specifics of the biological

and organizational systems that motivate this study. Nevertheless, we believe

this approach has value. In the tradition of economic theory, it conceptu-

alizes the problem of designing a training program for a slowly adjusting

system as a constrained optimization problem that takes into account the

system’s optimal response. Hopefully, our simple, abstract model can gener-

ate qualitative insights that are relevant to various systems, independently

of the details of their adjustment mechanisms.

To complete the economic model, we must specify the agent’s planning

horizon, as well as whether (and how) it forms expectations regarding future

stimuli. We consider two extreme cases. The first case involves a myopic
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agent that balances the two cost components only for the current period.

This effectively means that the agent’s adjustment process is mechanistic:

when capability is below (above) the current challenge, it goes up (down).

That is, capability always changes incrementally in the direction of current

intensity. The second case involves a forward-looking agent that minimizes

the long-run average cost, taking into account the trainer’s Markov process

(which the agent monitors). Unlike the first case, here the agent’s behavior

is not mechanistic: it involves dynamic optimization that takes into account

the agent’s knowledge of the stochastic evolution of future challenges and

the constraints on its own ability to adjust. These two cases fit different

systems. For example, for muscle adjustment, the mechanistic case seems

more appropriate; while the forward-looking version seems better suited for

organizational adjustment. In addition, we use different proof methods to

analyze the two cases.

Despite the differences between them, the two cases share important com-

monalities. First, in a benchmark model with no sluggishness (in which the

agent can adopt any capability at any period), the maximal capability that

the trainer can implement coincides with the maximal average training in-

tensity she can administer. The trainer can attain this level with a constant-

intensity training regime, which elicits the same response from the agent,

whether it is myopic or forward-looking.

Second, the trainer’s optimal strategy under sluggish adjustment also

exhibits similar features. In both cases, the trainer’s policy generates high-

variance training intensity. Specifically, the optimal Markov process has two

states: a rest state with zero training intensity and a high-intensity state.

Some transitions between the two states are stochastic. For instance, in the

myopic case (and for some parameter values in the forward-looking case),

a high-intensity period is followed by another one with positive probability.

However, the role of stochastic transitions is different in the two cases. In the

myopic case, it ensures that the agent’s long-run capability is not sensitive
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to initial conditions. In the forward-looking case, it manages the agent’s

dynamic incentives. Randomization keeps the agent “on its toes”, deterring

it from “slacking off”and losing capability during rest periods.

In both cases, the trainer’s optimal plan sustains a long-run capabil-

ity that is considerably higher than what the trainer could achieve in the

flexible-adjustment benchmark. In the myopic case, long-run capability is

nearly twice as large. In the forward-looking case, the factor of increase

can be arbitrarily large when the agent’s “maintenance cost” parameter is

small. Thus, our main theoretical insight is that in the presence of sluggish

adjustment, stochastic training that involves rest and high-intensity phases

enhances long-run capability. Furthermore, given the conflict of interests

between the trainer and the agent, sluggish adjustment actually helps the

trainer achieve her objective.

Our optimal training plan may be viewed as a stochastic variant on “pe-

riodization”training techniques familiar from exercise physiology. Numerous

studies have documented the success of periodization in terms of increased

muscle mass and athletic performance.3 While the literature offers biological

explanations for the superiority of cyclical training (e.g., Issurin (2019)), our

results provide a complementary perspective, by deriving the effectiveness of

stochastic periodization as a logical conclusion of sluggish adaptation (result-

ing from rational cost-benefit calculus) to random physical stimuli. To our

knowledge, this perspective is new: we are not aware of life-science studies

that examined the hypothesis that building and maintaining long-run phys-

iological or neurological capabilities involves forward-looking mechanisms.

This theoretical conclusion does not require knowledge of details of the ad-

justment mechanism of the system in question (although it does make use

of a number of simplifying assumptions). Therefore, it might be relevant for

various biological and organizational systems that exhibit sluggish adjust-

ment.
3See Bompa and Buzzichelli (2018), Issurin (2010), Kiely (2012) and Kiely et al. (2019).
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2 The Model

We consider a principal-agent model in which the principal is referred to as a

“trainer”(she). We interpret the agent (it) as a biological or organizational

system that is trained to attain and maintain high capability. The trainer

commits ex-ante to a pair (P, f), where P is a discrete-time, finite-state

Markov process over some finite set of states S, and f : S → N+ is an output
function that assigns a challenge level to every state s ∈ S. The set of states
S is endogenous: the trainer can choose a set of any finite size. We denote

by st and dt the state and challenge level at period t. When there is no risk

of confusion, we replace the notation f(s) with d(s).

We impose the following constraints on (P, f). First, P is irreducible.

This ensures that it has a unique invariant distribution λP , and therefore

enables us to talk about long-run average quantities unambiguously. Second,∑
s∈S

λP (s)f(s) ≤ µ+ ε (1)

where µ ≥ 1 is an integer and ε ∈ (0, 1) can be arbitrarily close to zero.
That is, the long-run average challenge level cannot exceed µ by more than

a negligible amount (the approximate formulation of the constraint is due to

µ getting integer values).

After the trainer chooses (P, f) at period 0, the agent chooses a non-

negative integer mt ∈ {mt−1− 1,mt−1,mt−1 + 1} at every t = 1, 2, 3, .... The
agent’s choice at period t takes place after the realization of st. We refer to

mt as the agent’s capability at time t. Let m0 ∈ N+ be the agent’s initial
capability. The restricted choice set for mt reflects sluggish adaptation.

Define

Ct = cmt +max(0, dt −mt)

This is the total cost that the agent incurs at period t. It consists of two

terms. First, cmt is the “maintenance cost”of the capability level. Second,
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the gap between mt and dt (when the latter is higher) represents a perfor-

mance shortfall because the agent’s capability is lower than the challenge

it faces. For illustration, when mt represents muscle mass, cmt captures the

caloric cost of maintaining it, whereas dt−mt may represent physical damage

due to excessive stress that occurs when the agent trains at an intensity that

exceeds its capability.

Thus, the agent faces a trade-off whenever its current capability is not

enough to meet the training intensity: increasing capability requires higher

maintenance costs but lowers the performance-gap cost. Our piece-wise linear

cost specification implies that moving up to the next capability rung reduces

net costs by 1 − c in the current period, regardless of the agent’s current

capability (as long as it is below current training intensity). Of course, the

agent may still have to take into account that increasing m today will delay

its ability to scale it back down in response to future rest periods.

We consider two alternative specifications of the agent’s intertemporal

aggregation.

Myopic/mechanistic adjustment. At every period t ≥ 1, the agent chooses
mt to minimize Ct. That is, the agent is myopic: it does not take into ac-

count future costs. Because c ∈ (0, 1), this immediately implies the following
strategy for the agent:

mt = mt−1 + sign(dt −mt−1) (2)

That is, capability always moves in the direction of the current challenge

level. This adjustment rule can be interpreted mechanistically: it does not

require the agent to know the trainer’s Markov process or to monitor the

evolution of its state.

Forward-looking adjustment. The agent knows the trainer’s choice of (P, f).

At every period t, it observes the realized state st before choosing mt. The
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agent’s objective is to minimize

lim
T→∞

sup
1

T

T∑
t=1

Ct (3)

This is the long-run average cost that the agent incurs. The lim sup criterion

reflects the assumption that the agent is not only forward-looking but also

arbitrarily patient.

The mechanistic-adjustment model is probably a better fit for physio-

logical systems such as muscles. The forward-looking-adjustment model is

perhaps better suited for organizational systems, whose members form ex-

pectations about future challenge levels and care about their long-run cost

flows.

Under both models of the agent’s behavior, the agent faces an extended

Markov problem, in which the state at period t is (mt−1, st). Therefore, the

agent has an optimal response that is also Markovian with respect to this

extended state space. In the myopic case, this strategy is explicitly given

by (2). We assume that the agent plays a Markovian best-response in the

forward-looking case as well. This ensures that the extended Markov process

induced by the two parties’strategies has a unique invariant distribution over

(dt,mt). Consequently, all the limit quantities we will invoke below are well-

defined. In particular, m∗ = limt→∞minmt - namely, the lowest value that

m takes beyond a suffi ciently large t, also referred to as the lowest long-run

capability - is well-defined, independently of the initial condition m0.

The trainer’s objective is to maximize m∗ subject to the feasibility con-

straint (1). A higher m∗ means that the system has greater “preparedness”

- i.e., it can consistently meet bigger actual challenges - i.e. challenges that

arise naturally and by surprise, independently of the training regime. Being

able to meet such challenges is the whole purpose of the training program.

Note that the trainer’s Markov process P does not condition on the

agent’s history of capability realizations. This restriction means that the
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training program can be implemented even when the trainer cannot monitor

the agent’s capability (or its performance relative to the challenge it faces)

along the play path. In particular, it can neglect the initial condition m0.

We discuss this assumption further in Section 5.1.

2.1 Benchmark: Completely Flexible Adjustment

Suppose the agent could choose any mt ∈ N+ at every period, regardless of
mt−1. In particular, it could always choose mt to minimize Ct. In this case,

it would set mt = dt at every t. Under this flexible-adjustment rule, the

long-run average of mt coincides with the long-run average of dt, which by

assumption cannot exceed µ (more than negligibly). Therefore, the best the

trainer can do is play a constant strategy dt = µ at every period, such that

the flexible agent’s mass will be µ as well. This deterministic process attains

the same long-run capability of µ also when the agent is sluggish (because the

agent will eventually reach this capability level and stay there indefinitely).

The question is whether the trainer can outperform this benchmark with a

non-degenerate Markov process.

2.2 Comments on the Model’s Interpretation

Under the biological interpretation of our model, the trainer engages in phys-

ical or cognitive training of a biological system such as a muscle or a neuro-

logical function. The variable d represents a physical or cognitive challenge,

and the system adjusts its capability m in a way that trades off the energy

cost of maintaining capability against a cost of failing to meet the challenge.

The system’s energy-saving objective creates an agency problem, because

the trainer does not share this objective. We should emphasize that under

the biological interpretation, the agent is the biological system itself, not the

person of which it is part of.

We can think of two interpretations of the cost of failure to meet the
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challenge. First, as mentioned above, when dt > mt, the system experiences

stress that can lead to injury or inflammation, hence the cost of over-stress is

physical. This seems to fit the physical-training interpretation. Second, the

system may record failure to meet a challenge as a negative outcome even

when no physical damage is involved. This may fit the cognitive-training

interpretation.

Under the organizational interpretation, it is better to think of the chal-

lenge dt in terms of auditing or inspection. High dt corresponds to an in-

spection that tests high capability. The system adapts its capability to the

testing regime because of underlying incentives, which are captured by the

cost function C. When the organization fails a test, its members experience

a loss, which can take various forms: diminished prospects of promotion,

bonus freeze, loss of perks and general embarrassment. Unlike most of the

economic literature on organization design (e.g. Bolton and Dewatripont

(2005)), we take these incentives as given and focus on the problem of de-

signing a dynamic, stochastic inspection regime in the presence of sluggish

adaptation.

The feasibility constraint

We can regard (1) as a hard “budget constraint”that limits the resources (e.g.

hours, ammunition) that the trainer can devote to training. Alternatively,

we can view µ as a parameter of the trainer’s problem. According to this

interpretation, the trainer can modify µ at a cost. Our analysis characterizes

the trainer’s gross payoff as a function of µ, and a more complete analysis

would trade off this payoff against the cost of increasing µ.

The cost function

The key assumption embodied by the cost function Ct is that if dt ≥ mt−1,

the maintenance cost saved when the agent lowersm by one unit is more than

offset by the increase in the “performance gap”cost. In the case of a myopic

agent, this feature leads to the mechanistic adjustment rule (2) - namely,

mt always chases dt. In the case of a forward-looking agent, our analysis in
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Section 4 will also make use of the piece-wise linearity of the performance-

gap cost component. We conjecture that our results will remain intact if

we replace the term max(0, dt − mt) by g(max(0, dt − mt)), where g is an

increasing, convex function satisfying g(0) = 0 and g(1) > c.

3 Myopic/Mechanistic Adjustment

In this section we analyze the trainer’s problem when the agent behaves

according to the myopic/mechanistic adjustment model.

Proposition 1 Assume the agent follows the strategy given by (2). Then:

(i) For any trainer strategy, the lowest long-run capability is at most 2µ− 1.

(ii) This upper bound can be implemented by the following (P, f). The Markov

process P has two states, H and L, and a transition matrix given by

Pr(st → st+1) L H

L 0 1

H β 1− β

where β is arbitrarily close to 1. The output function is f(H) = 2µ and

f(L) = 0. In the β → 1 limit, the invariant capability distribution assigns

probability 1
2
to m = 2µ and m = 2µ− 1.

Thus, a slightly perturbed cyclic training program can dramatically in-

crease the long-run capability of a sluggish agent, relative to the flexible-

adjustment benchmark. When µ is large - corresponding to a very sluggish

agent, given that we normalized the adjustment increment to 1 - the increase

is by a factor of nearly 2.

The training regime approximately consists of alternating periods of high

intensity (d = 2µ) and rest (d = 0). After a period of high-intensity train-

ing, there is a small chance 1 − β that the high-intensity episode will be
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repeated. This stochastic perturbation ensures that the set of capability

values {2µ, 2µ − 1} is absorbing: the agent will reach it in finite time with
probability one, regardless of m0. The role of randomness in the trainer’s

strategy is thus to ensure that the agent’s long-run behavior is not sensitive

to the initial condition, which the trainer cannot monitor. Note that the

long-run average intensity under the trainer’s strategy is 2µ/(1 + β). There-

fore, for every ε > 0, we can select β to be suffi ciently close to 1 such that

average intensity will not exceed µ+ ε.

The intuition for the result is that changes in m depend only on the sign

of d − m, whereas the trainer’s “budget constraint” is expressed in terms

of the average of d. The contrast between the ordinal adjustment rule and

the cardinal constraint is the key to our result. The most economical way

to get the agent’s capability to go up at period t is to set dt = mt−1 + 1;

and the most economical way to bring it down is to set dt = 0. In the long

run, since the agent’s capability moves around in increments of one unit, m

goes up and down with equal frequencies. This explains the approximate

factor 2 by which the trainer can increase long-run capability, relative to the

flexible-benchmark µ.

Proof of part (i) of Proposition 1
Consider an arbitrary strategy for the trainer. Let (mt−1, dt)t=1,2,... be a

possible sample path that results from the extended process. The long-run

frequency of every (m, d) in the sample path, denoted λ(m, d), coincides with

the probability of this pair according to the invariant distribution induced

by the two parties’strategies. Let X be the set of recurrent pairs (m, d) in

the sample path. Partition X into three classes:

X+ = {(m, d) ∈ X | d > m}
X− = {(m, d) ∈ X | d < m}
X0 = {(m, d) ∈ X | d = m}
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The proof now proceeds by a series of steps. Recall that we use the notation

d(s) as a substitute for f(s).

Step 1: λ satisfies∑
(m,d)∈X+

λ(m, d)(m+ 1) =
∑

(m,d)∈X−
λ(m, d)m (4)

Consider some period t along the sample path such that (mt, dt+1) ∈ X+.

By definition, this pair is recurrent. Therefore, mt must be visited again in

some later period. Let t′ + 1 be the earliest such period (while mt′+1 = mt,

we do not require dt′+2 = dt+1). Since (mt, dt+1) ∈ X+, ms > mt for every

s = t + 1, ..., t′. Therefore, by the definition of t′, it must be the case that

mt′ = mt + 1 and (mt′ , dt′+1) ∈ X−. In other words, since the trajectory of
m is upward at t, it must be downward at t′ by the definition of this period.

We have thus defined a one-to-one mapping from periods t for which

(mt, dt+1) ∈ X+ to periods t′ for which (mt′ , dt′+1) ∈ X−, such that mt′ =

mt + 1. It follows that

lim
T→∞

∑T
t=1 1[(mt, dt+1) ∈ X+] · (mt + 1)

T
= lim

T→∞

∑T
t=1 1[(mt, dt+1) ∈ X−] ·mt

T

we can rewrite this equation as (4), since

lim
T→∞

∑T
t=1 1[(mt, dt+1) = (m, d)]

T
= λ(m, d)

�

Step 2: The average long-run m is at most 2µ (approximately)

The long-run average of m induced by the trainer’s strategy can be written

as

E(m) =
∑

(m,d)∈X+

λ(m, d)m+
∑

(m,d)∈X−
λ(m, d)m+

∑
(m,d)∈X0

λ(m, d)m (5)
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By the feasibility constraint,∑
(m,d)∈X+

λ(m, d)d+
∑

(m,d)∈X−
λ(m, d)d+

∑
(m,d)∈X0

λ(m, d)d / µ

By definition, d ≥ m+1 for every (m, d) ∈ X+, d ≥ 0 for every (m, d) ∈ X−,
and d = m for every (m, d) ∈ X0. Therefore,∑

(m,d)∈X+

λ(m, d)(m+ 1) +
∑

(m,d)∈X−
λ(m, d) · 0 +

∑
(m,d)∈X0

λ(m, d)m / µ

This means that∑
(m,d)∈X+

λ(m, d)m ≤
∑

(m,d)∈X+

λ(m, d)(m+ 1) / µ−
∑

(m,d)∈X0

λ(m, d)m

By (4), it follows that∑
(m,d)∈X−

λ(m, d)m / µ−
∑

(m,d)∈X0

λ(m, d)m

as well. Plugging the last two inequalities in (5), we obtain

E(m) / 2µ−
∑

(m,d)∈X0

λ(m, d)m ≤ 2µ

�

Step 3: The minimal long-run m is at most 2µ− 1
Suppose the long-run distribution over d is degenerate at some d∗. Therefore,

d∗ / µ. The agent’s myopic best-reply implies that eventually, its capability

coincides with d∗. It follows that to reach a minimal long-run capability

above µ, the long-run distribution over d must assign positive probability to

at least two values. This means there are infinitely many periods t in which

dt 6= mt−1. By myopic best-replying, this precludes the possibility that the
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long-run distribution over m is degenerate. Since the long-run average of

m cannot exceed 2µ by more than an infinitesimal amount, there must be

infinitely many periods t in which mt ≤ 2µ− 1. This completes the proof of
part (i). �

Proof of part (ii) of Proposition 1
Consider the trainer’s strategy described in part (ii) of the statement of the

result. As long as β ∈ (0, 1), the Markov process over m that is induced

by the strategy and the agent’s best-reply (given by Step 1) has a unique

invariant distribution, with m = 2µ and m = 2µ−1 being the only recurrent
capability values. The reason is that ifmt > 2µ,mt+1 = mt−1 with certainty;
if mt < 2µ − 1, there is a positive probability that there will be a streak of
realizations d = 2µ such that m will keep adjusting upward until it reaches

m = 2µ; and finally, if dt = 0 then dt+1 = 2µ for sure, which means that once

m hits 2µ and later goes down to 2µ − 1, it will return to 2µ immediately
in the next period. As the exogenous upper bound on average intensity gets

arbitrarily close to µ, β can be made arbitrarily close to one. In the β → 1

limit, the invariant distribution over m assigns probability 1
2
to each of the

values m = 2µ and m = 2µ− 1. �

4 Forward-Looking Adjustment

In this section we characterize the solution to the trainer’s problem when the

agent is forward-looking. For expositional convenience, we assume µ/c is an

integer.

Proposition 2 Assume the agent evaluates cost streams by (3). Then:

(i) The lowest long-run capability is at most µ/c− 1.

(ii) This upper bound can be implemented by the following (P, f). The Markov
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process P has two states, H and L, and a transition matrix given by

Pr(st → st+1) L H

L 1− α α

H β 1− β

where α = 1 if c ≥ 1
2
, β = 1 if c < 1

2
, and α/(α + β) is arbitrarily close

to c from above. The output function is f(H) = µ/c and f(L) = 0. In the

α/(α + β)→ c limit, the invariant capability distribution assigns probability

c to m = µ/c and probability 1− c to m = µ/c− 1.

When c < 1
2
, the upper bound on the agent’s lowest long-run capability

is higher than in the myopic case. Moreover, it gets arbitrarily high when

c → 0. As c gets closer to one, the highest minimal long-run capability

approaches the flexible-agent benchmark µ.4 Note that the long-run average

intensity under the trainer’s strategy is

α

α + β
· µ
c

For every ε > 0, we can set α/(α+ β) to be suffi ciently close to c, such that

the average intensity does not exceed µ+ ε.

The Markov process that attains the upper bound is similar to the one

in Section 3, but the reasoning behind the result is different. Because the

mechanistic agent of Section 3 responds only to the current realization of d,

the role of randomization in that case is only to ensure a unique invariant ca-

pability distribution. In contrast, a forward-looking patient agent responds

to trainer’s entire continuation strategy. Randomization serves as an in-

centive to keep the agent “on its toes”and deter it from lowering its level

of preparedness during periods of rest. In particular, when c < 1
2
, a rest

period is followed by another one with probability approximately equal to
4Because µ/c is an integer, we rule out the possibility that c is arbitrarily close to one.

In that case, the trainer cannot outperform the flexible-agent benchmark of µ.
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(1 − 2c)/(1 − c). Thus, when c < 1
2
, the trainer’s optimal program allows

for a streak of d = 0 realizations. When this happens, the agent does not

lower its capability below µ/c − 1 because it takes into account the future
loss d−m in the event that d switches to d = µ/c.

The trainer designs the transition probabilities such that the agent’s in-

tertemporal trade-offs lead it to be nearly indifferent between lowering its

capability and remaining at m = µ/c− 1. In contrast, the mechanistic agent
cannot be made indifferent when faced with a streak of d = 0 realizations: it

repeatedly lowers its capability. This difference enables the trainer to achieve

a higher minimal long-run capability when the agent is forward-looking, as

long as c < 1
2
.

To further elucidate why randomization is necessary, consider the fol-

lowing example, which shows that the minimal long-run capability attained

by the optimal stochastic strategy cannot be sustained by a particular de-

terministic strategy with the same long-run distribution over d. Suppose

µ = 4 while c is slightly below 4
11
. Then, the optimal training strategy of

Proposition 2 induces an invariant distribution that assigns probability 4
11

to d = 11 and probability 7
11
to d = 0. This strategy sustains a minimal

long-run capability level of m = 10.

Now consider a deterministic strategy that induces the same long-run

frequencies of d. The strategy follows an 11-period cycle consisting of four

consecutive periods of d = 11 and seven consecutive periods of d = 0. If the

agent plays m = 11 when d = 11 and m = 10 when d = 0 - as it does against

the strategy presented in Proposition 2 - the minimal long-run capability is

m = 10. Moreover, this strategy is optimal for the agent among all strategies

that induce this minimal long-run capability. However, given the predictable

evolution of d under the cyclic deterministic strategy, a forward-looking agent

can do better. Suppose that it plays the following sequence of m against the
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cyclic sequence of d:

d 11 11 11 11 0 0 0 0 0 0 0

m 11 11 11 10 9 8 7 7 8 9 10

Compared with the benchmark strategy of playing m = 11 (10) against

d = 11 (0), the agent saves approximately

c · (1 + 1 + 2 + 3 + 3 + 2 + 1)− 1 ≈ 41
11

per cycle. It follows that the agent’s best-reply to the cyclic deterministic

strategy leads to a minimal long-run capability below m = 10.

This example highlights a key role of the stochasticity of the trainer’s

optimal strategy in the forward-looking case. The fact that there is always

a chance that the agent will face a big challenge following a rest period

incentivizes the agent not to lower its capability. In contrast, the predictable

nature of the cyclic deterministic strategy allows the agent to gradually lower

its capability and gain it back by the time the big challenge arrives. In

particular, it is profitable for the agent to lower its capability already in the

final period of the high-intensity phase of the cycle, even though this involves

a costly performance gap during that period, because this is more than offset

by the cumulative maintenance-cost saving over the cycle.

Recall that in our discussion of the organizational interpretation of the

model (see Section 2), we drew a connection between our notion of a chal-

lenge and an audit or an inspection. The idea that optimal inspection may

involve random audits is very familiar in game theory and economics: when

auditing is costly, making it unpredictable deters the agent from shirking

(e.g., Lazear (2006), Eeckhout et al. (2010), Varas et al. (2020), Solan and

Zhao (2021)). Likewise in our model, the “budget constraint”(1) represents

limited resources for auditing. From this perspective, the novelty in our

model is that successive periods of shirking can magnify the agent’s failure
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at an audit, and that sustained effort may be required to rebuild the ability

to pass.

As to the proof of Proposition 2, in part (i) we actually prove a somewhat

stronger result: to attain a strictly positive minimal long-run capability, the

average long-run capability cannot exceed µ/c− 1 + c. The Markov process
we construct in part (ii) approximates this upper bound. This means that

among all trainer strategies that attain the minimal long-run capability of

µ/c− 1, this process cannot be outperformed in terms of average capability.
Before we give the complete proof, we provide a brief outline of its struc-

ture. The proof of part (i) proceeds in several steps. First, note that by

playing a constant d = µ, the trainer can attain a long-run capability of µ.

Therefore, the trainer can attain a minimal long-run capability that is at least

as large as µ. Hence, the invariant distribution over (m, d) - induced by an

optimal trainer strategy and an agent’s best-reply - satisfies Pr(m > 0) = 1.

Second, we establish a lower bound on the long-run frequency of positive

training intensity: under the invariant distribution induced by the two parties’

strategies, Pr(d > 0) ≥ c. To prove this, we consider the following possible

deviation by the agent: pick a history in which m is at its lowest long-run

value (which is positive, as we saw); move one notch below the original plan;

afterwards, proceed as if the deviation never took place. The piece-wise

linearity of the cost function enables a simple calculation of the net long-

run profit from this deviation. This deviation saves c per period, but raises

the “performance gap”cost by one unit whenever d ≥ m under the original

strategy. When the agent is forward-looking, this deviation is unprofitable

only if Pr(d ≥ m) ≥ c. Since Pr(m > 0) = 1, we have that Pr(d > 0) ≥
Pr(d ≥ m) ≥ c.

The third and final step of the proof shows that the long-run average

capability cannot exceed µ/c− 1 + c. If this were not true, then the average
long-run cost would exceed µ − c(1 − c). But then, using the previous step,
we obtain that the following deviation is profitable for the agent: descend all
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the way to m = 0 and play m = 1(d > 0) thereafter. The upper bound on

the lowest long-run capability then immediately follows.

The proof of part (ii) begins by noting that the agent has a best-reply

to the trainer’s strategy that induces two (and therefore adjacent) long-run

values of m (this is a consequence of the fact that P has two states and

αβ = 0). We then show that by the piecewise linearity of the agent’s cost

function and the condition on α, β, c, the two long-run capability values are

µ/c and µ/c−1. The induced long-run average capability is then µ/c−1+c.

Proof of part (i) of Proposition 2
Let p be the unique invariant distribution over (dt,mt) that results from the

trainer’s strategy and the agent’s best-replying strategy. (Note the different

time subscripts of d and m, compared with the proof of Proposition 1 in

Section 3; our different notation highlights this difference.) We abuse nota-

tion and write p(d), p(m) and p(d | m) to represent marginal and conditional
distributions induced by p. As in the myopic-agent case, we first derive an

upper bound on the expected capability according to p, which we use to de-

rive the upper bound on the minimal long-run capability. Then, we show

how to implement this upper bound.

In Section 2, we saw that the trainer can implement a minimal long-run

capability of at least µ (by playing d = µ at every period). Therefore, we

take it for granted that the minimal value of m in the support of p is at least

µ ≥ 1.

Step 1: p(d > 0) ≥ c

Consider the following deviation by the agent. Pick some period-t history

for which mt−1 ≥ 1 is at the lowest value according to p. Therefore, mt =

m ∈ {mt−1,mt−1 + 1}. At this history, the agent deviates to m′t = m − 1.
Subsequently, the agent behaves according to its original strategy as if the

deviation did not occur.

This deviating strategy induces an invariant distribution p′ such that for

every (d,m) in the support of p, p′(d,m − 1) = p(d,m). Therefore, the
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deviation saves c at every period, but raises costs by one unit per period

whenever d ≥ m under the original strategy. In order for this deviation

to be unprofitable for an arbitrarily patient agent, it must be the case that

p(d ≥ m) ≥ c. Since m > 0 with probability one, p(d > 0) ≥ p(d ≥ m),

hence p(d > 0) ≥ c. �

Step 2: The expectation of m according to p is at most µ/c− 1 + c

Assume the contrary. Then, the agent’s average long-run cost exceeds

c · [µ
c
− 1 + c] = µ− c(1− c)

Now consider a deviation to the following strategy. Descend from m0 to

m = 0, and then implement the following rule: mt = 0 whenever dt = 0, and

mt = 1 whenever dt > 0. When the agent is arbitrarily patient, the average

long-run cost from this strategy is approximately

p(d = 0) · 0 + p(d > 0) · [c+
∑
d>0

p(d | d > 0)d− 1]

/ p(d > 0)(c− 1) + µ

Since c < 1, Step 1 implies that

p(d > 0)(c− 1) + µ < µ− c(1− c)

such that the deviation is profitable, a contradiction. �

Step 3: The minimal long-run capability is at most µ/c− 1
Since µ/c is an integer, µ/c− 1 + c is not an integer. Hence, in order for the
average long-run cost to be weakly below µ/c− 1 + c, the minimal long-run

capability cannot exceed µ/c− 1.5 �
5The proof of this step utilizes the convenient assumption that µ/c is an integer. An

alternative proof that does not rely on this assumption is analogous to Step 3 in the proof
of Proposition 1 (i).
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Proof of part (ii) of Proposition 2
Consider the strategy described in the statement of part (ii). Our objective is

to show that given this strategy, there is a best-reply for the agent such that

for every suffi ciently high t, mt = µ/c whenever st = H and mt = µ/c − 1
whenever st = L.

Since the agent faces a Markovian decision problem with an extended

state space (s,m), there exists a best-reply that is Markovian with respect

to this state space. To derive such a best reply, we proceed in four steps.

Step 1: There is no best-reply in which the invariant distribution assigns
probability one to a single m.

Proof. Assume the contrary. If m < µ/c, then it is profitable for the agent

to deviate to a strategy that plays m + 1 whenever s = H and m whenever

s = L. Likewise, if m > 0, it is profitable for the agent to deviate to a

strategy that plays m whenever s = H and m− 1 whenever s = L. �

Step 2: The set of recurrent values of m (according to the unique invariant

distribution induced by the two parties’ strategies) is a set of consecutive

numbers m,m+ 1, ...,m, where m ≤ µ/c.

Proof. The agent’s sluggishness implies that if the agent visits two non-

adjacent capabilities m and m′, then it must also visit every m′′ between

them. Therefore, if m and m′ are recurrent, so is m′′. Suppose m > µ/c.

Then, there is a profitable deviation for the agent that instructs to remain

at m− 1 whenever the original strategy instructs to switch to m. �

Step 3: There is a best-reply that induces an invariant distribution that
assigns positive probability to exactly two values of m.

Proof. Consider the invariant distribution over (d,m) induced by the trainer’s

strategy and the agent’s best-reply. By Step 1, m −m ≥ 1. If m −m = 1,

we are done. Therefore, assume m−m > 1. There are two cases to consider.

First, let α = 1 (this fits the case of c ≥ 1/2). This means that whenever
s = L, the state switches immediately to s = H in the next period. Consider

the top two values ofm in the invariant distribution, namelym andm−1. By
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Step 2, m ≤ µ/c. Moreover, when s = L (at which d attains its lowest value

according to the trainer’s strategy), the agent strictly prefers m − 1 to m.
Consider some t for which mt = m (there are infinitely such periods because

m is recurrent). If st+1 = L, the agent necessarily switches to mt+1 = m− 1.
If, on the other hand, st+1 = H, we need to consider two possibilities.

• Suppose that when st+1 = H, it is not optimal for the agent to play

mt+1 = m. That is, the agent switches from mt = m to mt+1 = m− 1
for any realization of st+1. But this also means that if mt′ = m − 1
at some period t′ and st′+1 = H, it cannot be optimal for the agent to

switch to mt′+1 = m. The reason is that by revealed preference, the

agent prefers being at m− 1 to being at m when the state is H. And

since we already saw that the agent prefers being at m − 1 to being
at m when the state is L, this means that the agent will never switch

from m−1 to m, contradicting the definition of m as a recurrent state.

• Suppose that when st+1 = H, it is optimal for the agent to playmt+1 =

m. This reveals a weak preference form overm−1 when the state isH.
Therefore, there is a best-reply for the agent that prescribes mt+1 = m

whenever the extended state (st+1,mt) is (H,m − 1) or (H,m). We
already saw that when the extended state is (L,m), the agent switches

to m − 1. Since α = 1, this means that we have constructed a best-

reply for the agent such that once it reaches m, it will only visit m and

m−1 from that period on, contradicting the assumption that there are
additional recurrent values of m.

Thus, we have ruled out the possibility that m − m > 1 when α = 1.

Now suppose β = 1 (this fits the case of c ≤ 1/2). An analogous argument
establishes that there is a best-reply for the agent that induces an invariant

distribution with only two recurrent capability values, m and m+ 1.
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It follows that we can restrict attention to strategies of the agent that in-

duce an invariant distribution which assigns positive probability to precisely

two consecutive capability values, m and m− 1, where 0 < m ≤ µ/c. �

Step 4: There is a best-reply for the agent that induces an invariant distri-
bution on the capability values µ/c and µ/c− 1.
Proof. Given Step 3, it is clearly optimal for the agent to be at m when

s = H and at m− 1 when s = L. In addition, when m > µ/c (m < µ/c− 1),
the agent clearly wants to move downward (upward).

The invariant distribution of the trainer’s two-state Markov process as-

signs probability α/(α+ β) to state H and β/(α+ β) to state L. Therefore,

since the agent is arbitrarily patient, its long-run expected payoff is approx-

imately

− α

α + β
· (cm+ µ

c
−m)− β

α + β
· c(m− 1)

It is now easy to see that given that α/(α+ β) > c, this expression increases

with m, such that the optimal value of m is µ/c. The expected value of m

according to this strategy is

α

α + β
· µ
c
+

β

α + β
· (µ
c
− 1)

which is arbitrarily close to the upper bound. �

5 Discussion

In this section we discuss two features of our model.

5.1 Conditioning on the Agent’s Past Capability

Recall that in our model, the trainer does not condition the choice of d on

past realizations of m. There are several reasons for this modeling decision.
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First, in some contexts, we think of the trainer’s policy as an “off-the-

shelf”training program, which can be self-implemented without any external

monitoring.

Second, in the myopic/mechanistic case, monitoring m is irrelevant be-

cause the agent’s adjustment rule is not forward-looking and hence, does not

respond to threats of changing the evolution of d if m fails to meet some

target. Therefore, in what follows we focus on the case of a forward-looking

agent. For expositional ease, we will let ε = 0 when discussing the trainer’s

budget constraint (1).

Third, the trainer’s gain (in terms of her objective function) from condi-

tioning on m can only be modest. Recall that the max-min capability in the

case of forward-looking adjustment is µ/c − 1. By playing mt = 0 for every

suffi ciently large t, the agent can guarantee a long-run cost of E(d) ≤ µ, be-

cause of the trainer’s budget constraint (where E(d) is the long-run average
d). Therefore, the highest minimal capability that the trainer can hope to

sustain with a more complex policy is µ/c. This means a maximal gain of

one capability unit. This gain may be outweighed by the implicit cost of a

more complex training program that monitors m.

Finally, training programs that condition on m and attain a minimal

capability of µ/c are not credible, in the following sense. In order to incen-

tivize the agent not to deviate to a capability below µ/c, the trainer needs to

threaten the agent that such a deviation would trigger a “punishment”phase

in which d > µ/c with some probability. For example, the trainer could use

a “grim trigger”strategy in which d � µ/c with a small probability p and

d = 0 with probability 1− p, such that pd = µ. If for some reason the agent

“trembles”and lowers its capability below µ/c, the agent’s optimal response

to the ensuing punishment is to gradually lower its capability to zero and

remain there in the long-run. This follows from the fact that at m = 0, the
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cost of the agent is at most µ, whereas the cost of being at any m > 0 is

cm+ p(d−m) = µ+m(c− p) = µ+m(c− µ

d
) > µ+m(c− µ

µ/c
) > µ

Clearly, zero long-run capability is the worst possible outcome for our trainer.

Therefore, if the trainer is interested in meeting her objective after any his-

tory - including those that result from trembles by the agent - she would not

want to use a strategy that relies on such punishments.

Although we demonstrated this argument for a particular “grim trigger”

strategy, the argument holds for any policy that sustains a long-run capability

of m = µ/c on the equilibrium path. It follows that designing a Markov

training policy that does not condition on the history of m entails no loss

of generality if the trainer wants to maximize the minimal level of m both

on and off the equilibrium path. This also means that the trainer’s optimal

policy in Section 4 is also robust to relaxing the assumption that the trainer

commits to her policy ex-ante, whereas policies that condition on m and

implement a minimal capability above µ/c− 1 fail this criterion.

5.2 The Trainer’s Objective

In our model, the trainer’s objective is to maximize the agent’s minimal

long-run capability. Alternatively, we could use the long-run average m as

a criterion. However, this criterion is less attractive in our context because

it does not reflect the idea of “preparedness”. In particular, the average

criterion allows zero to be a recurrent value for m, which means that the

agent will sometimes be completely unprepared for any positive challenge.

A by-product of our analysis in Section 3 is that in the myopic case,

2µ is an upper bound on the average long-run capability that the trainer

can attain. It can be shown that this upper bound can be approximated

arbitrarily well, but this must come at the price of arbitrarily long recur-

rent stretches of mt = 0 realizations (which are compensated for by periods
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in which mt reaches arbitrarily high values). Obviously, such paths imply

that the agent’s minimal long-run capability is zero. By comparison, the

process we constructed in Section 3 induces an average long-run capability

of approximately 2µ− 1
2
and a minimal long-run capability of 2µ− 1.

A similar diagnosis pertains to the forward-looking case (consider µ as a

precise upper bound on average intensity, for the sake of the argument). An

upper bound on the average long-run capability is µ/c. The reason is that

if average m exceeds this value, it implies that the agent’s average long-run

cost is above µ. However, the agent can ensure an average cost of µ by always

playing m = 0, hence a long-run capability in excess of µ/c is inconsistent

with the agent’s best-replying. We believe that as in the myopic case, this

upper bound can be approximated arbitrarily well, at the same price of long

stretches of m = 0 realizations. By comparison, the process we constructed

in Section 4 induces an average long-run m of approximately µ/c−1+c, and
a minimal long-run m of µ/c− 1. It follows that many combinations of the
minimal and average criteria would lead to the same result.

References

[1] Bolton, P. and M. Dewatripont (2005), Contract theory, MIT press.

[2] Bompa, T. and C. Buzzichelli (2018), Periodization: theory and method-

ology of training, Human kinetics.

[3] Eeckhout, J., N. Persico and P. Todd (2010), A theory of optimal random

crackdowns, American Economic Review 100(3), 1104-35.

[4] Hannan, M. and J. Freeman (1984), Structural inertia and organiza-

tional change. American sociological review 49(2), 149-164.

[5] Hollnagel, E., D. Woods and N. Leveson (2006), Resilience engineering:

Concepts and precepts. Ashgate Publishing.

27



[6] Iliev, P. and I. Welch (2013), A model of operational slack: The short-

run, medium-run, and long-run consequences of limited attention capac-

ity, Journal of Law, Economics and Organization 29(1), 2-34.

[7] Kiely, J. (2012), Periodization paradigms in the 21st century: evidence-

led or tradition-driven? International journal of sports physiology and

performance, 7(3), 242-250.

[8] Kiely, J., C. Pickering and I. Halperin (2019), Comment on “Biological

background of block periodized endurance training: a review”, Sports

Medicine, 49(9), 1475-1477.

[9] Issurin, V.B. (2010), New horizons for the methodology and physiology

of training periodization,Sports Medicine, 40(3), 189-206.

[10] Issurin, V.B. (2019), Biological background of block periodized en-

durance training: A review, Sports Medicine 49, 31—39.

[11] Lakoff, A. (2007), Preparing for the next emergency. Public Culture

19(2), 247-271.

[12] Lazear, E. (2006), Speeding, terrorism, and teaching to the test, Quar-

terly Journal of Economics 121(3), 1029-1061.

[13] Solan, E. and C. Zhao (2021), Dynamic monitoring under resource con-

straints, Games and Economic Behavior 129, 476-491.

[14] Varas, F., I. Marinovic and A. Skrzypacz (2020), Random inspections

and periodic reviews: Optimal dynamic monitoring, Review of Economic

Studies 87(6), 2893-2937.

[15] Woods. D. (2020), The strategic agility gap: How organizations are

slow and stale to adapt in turbulent worlds. Human and Organisational

Factors (pp. 95-104), Springer.

28


