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as its most preferred action is a static best reply for the agent, or else con-

tinues disclosing information until the agent perfectly learns the principal’s

private information. If the agent perfectly learns the state, he learns it in fi-

nite time with probability one; the more patient the agent, the later he learns

it.

KEYWORDS: Dynamic, contract, information, revelation, disclosure, sender,

receiver, persuasion.

JEL CLASSIFICATION: C73, D82.

Date: October 5, 2021.
Wei Zhao gratefully acknowledges the support of the HEC Foundation. Claudio Mezzetti
thankfully acknowledges financial support from the Australian Research Council Discovery
grant DP190102904. Ludovic Renou gratefully acknowledges the support of the Agence Na-
tionale pour la Recherche under grant ANR CIGNE (ANR-15-CE38-0007-01) and through the
ORA Project “Ambiguity in Dynamic Environments” (ANR-18-ORAR-0005). Tristan Tomala
gratefully acknowledges the support of the HEC Foundation and ANR/Investissements
d’Avenir under grant ANR-11-IDEX-0003/Labex Ecodec/ANR-11-LABX-0047.

1



2

1. INTRODUCTION

We consider a dynamic “principal-agent” model, where the sole instrument

the principal has is information.1 Principal and agent are engaged in a long-

term relationship. The principal aims at inducing the agent to choose an ac-

tion – the principal’s most preferred action – as long as possible, and can only

do so by disclosing information about an unknown state. To give examples,

the agent is a politician and the principal a lobbyist who aims to maintain

the status-quo course of action. Or the principal is: (i) an external consul-

tant with a clear agenda about what a company (the agent) should do, (ii) a

department in a corporation aiming to maintain a central role while advising

the CEO, (iii) a technology leading, multinational firm in a joint venture with

another firm located in a less developed country, aiming for the joint venture

to continue, which may require not fully disclosing all information about the

multinational’s technology. We assume that the principal commits to a dis-

closure policy, which we refer to as the offer of a “contract.” The dynamic

contracting problem we study is, therefore, a dynamic persuasion problem.

The standard approach in the study of dynamic contracting models (e.g., Spear

and Srivastava (1987)) is to use the agent’s continuation value as a state vari-

able. The principal’s Bellman equation is then the fixed point of an operator,

which satisfies a promised keeping constraint in addition to incentive con-

straints. In dynamic persuasion models, there is an additional complication,

however. The information the principal commits to disclose to the agent gen-

erates a martingale of beliefs: the posterior beliefs of the agent must be equal

in expectation to his prior beliefs. We thus need to incorporate the agent’s

beliefs as an additional state variable and to impose the constraint that the

belief process is a martingale. In spite of the increased dimensionality of the

principal’s problem, we are able to provide a complete characterization of an
1That is, the principal cannot make transfers, terminate the relationship, choose allocations
or constrain the agent’s choices.
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optimal contract by simultaneously solving for the evolution of the agent’s be-

liefs and promised utility. To the best of our knowledge, we are the first to

tackle this difficulty.

We illustrate the main properties of our optimal policy – particularly how

beliefs evolve over time – with the help of Figure 1. Figure 1 plots four rep-

resentative evolutions of the agent’s belief about the “high opportunity cost”

state – the state where the cost to incentivize the agent relative to the bene-

fit is the highest. In each panel, the grey region “OPT” indicates the region

at which choosing the principal’s most preferred action is (statically) optimal

for the agent. An arrow pointing from one belief to another indicates how

the agent revised his belief within the period following a signal’s realization.

Multiple arrows originating from the same point thus represent the informa-

tion disclosed by the policy. Within a period, the agent takes a decision after

having revised his beliefs. Arrows have different colors/patterns. At all be-

liefs at the end of continuous black arrows, the agent chooses the principal’s

most preferred action. At all beliefs at the end of dotted magenta arrows, he

chooses what is best given his current belief.

Here are the general properties of our optimal policy. First, the agent updates

his belief until either he perfectly learns the state, or choosing the principal’s

most preferred action becomes (statically) optimal. Moreover, if the agent

learns the state, he learns it in finite time. After the agent has learned the

state, he will take his optimal action in that state, while as long as he keeps

getting pieces of information from the principal he will take the principal’s

preferred action. By trickling down bits of information the principal is able to

induce the agent to delay moving away from his favorite course of action. In

some instances, the principal will promise eventual full disclosure of the state

with probability one. In other instances, the principal will be able to stir the

agent’s beliefs so that with positive probability the agent takes the principal’s

favorite action forever. We provide a characterization of when this occurs.

Second, an important novel ingredient of our model is that the agent’s oppor-

tunity cost relative to the principal’s benefit of taking the principal’s preferred
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FIGURE 1. Evolution of actions and beliefs over time

action is different in different states. We show that along the paths at which

the agent plays the principal’s most preferred action, his beliefs about the

“high opportunity cost” state are decreasing. Intuitively, the optimal contract

exploits the asymmetry in opportunity costs and lowers the perceived oppor-

tunity cost – hence making it easier to incentivize the agent – by biasing

information disclosure in the direction of informing him when the opportu-

nity cost is high.2 For instance, suppose the agent is a company’s CEO and

the principal an advisor to the company who prefers the status quo. If the

company’s relatives benefit from moving away from the status quo to under-

take a new project is higher in state ω1, then the advisor would want to slowly

trickle down information about whether the state is indeed ω1. Such informa-

tion is more valuable to the company, hence can be packaged in smaller bits,

inducing the status quo to last longer.
2To be precise, under our policy, upon receiving the signal “the opportunity cost is high,” the
agent learns that this is indeed true. However, the signal is not sent with probability one.
This corresponds to the (magenta/dotted) arrows ending at 1.
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Third, with the exception of panel (D), the policy does not disclose informa-

tion to the agent at the first period. Thus, defining persuasion as the act

of changing the agent’s beliefs prior to his making decision, information dis-

closure rewards the agent for following the recommendation, but does not

persuade him in panels (A), (B) and (C). Yet, as panel (D) illustrates, the pol-

icy sometimes needs to persuade the agent. For instance, if the promise of

full information disclosure at the next period wouldn’t incentivize the agent,

then persuading the agent is necessary. That is, the policy must generate a

strictly positive value of information for the agent. There are other circum-

stances at which persuading the agent may be necessary. Persuasion may re-

duce the agent’s opportunity cost of following the principal’s recommendation

sufficiently enough to compensate the loss to the principal, due to providing

information at the start of the relationship.

Finally, with the exception of panel (B), the policy does not induce the agent

to believe that playing the principal’s most preferred action is optimal. This

is markedly different from what we would expect from the static analysis of

Kamenica and Gentzkow (2011). Intuitively, the “static” persuasion policy is

sub-optimal because it does not extract all the information surplus it creates.

Even in panel (B), the beliefs do not jump immediately to the “OPT” region.

In fact, the belief process may approach the “OPT” region only asymptotically.

Related literature. The paper is part of the literature on Bayesian persua-

sion, pioneered by Kamenica and Gentzkow (2011), and recently surveyed by

Kamenica (2019). The three most closely related papers are Ball (2019), Ely

and Szydlowski (2020), and Orlov et al. (2019). In common with our paper,

these papers study the optimal disclosure of information in dynamic games

and show how the disclosure of information can be used as an incentive tool.

The observation that information can be used to incentivize agents is not new

and dates back to the literature on repeated games with incomplete informa-

tion, e.g., Aumann et al. (1995). See Garicano and Rayo (2017) and Fudenberg

and Rayo (2019) for some more recent papers exploring the role of information

provision as an incentive tool.
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The classes of dynamic games studied differ considerably from one paper to

another, which makes comparisons difficult. In Ely and Szydlowski (2020),

the agent has to repeatedly decide whether to continue working on a project

or to quit (i.e., unlike our paper, there are only two actions); quitting ends

the game. The principal aims at maximizing the number of periods the agent

works on the project and can only do so by disclosing information about its

complexity, modeled as the number of periods required to complete it. Thus,

their dynamic game is a quitting game, while ours is a repeated game. When

the project is either easy or difficult (i.e., when there are two states), the op-

timal disclosure policy initially persuades the agent that the task is easy, so

that he starts working. (Naturally, if the agent is sufficiently convinced that

the project is easy, there is no need to persuade him initially.) If the project is

in fact difficult, the policy then discloses it at a later date, when completing

the project is now within reach. A main difference with our optimal disclosure

policy is that information comes in lumps in Ely and Szydlowski (2020), i.e.,

information is disclosed only at the initial period and at a later period, while

information is repeatedly disclosed in our model.3 Another main difference

is as follows. In Ely and Szydlowski, only when the promise of full informa-

tion disclosure at a later date is not enough to incentivize the agent to start

working does the principal persuade the agent initially. This is not so with

our policy: the principal persuades the agent in a larger set of circumstances.

This initial persuasion reduces the cost of incentivizing the agent in future

periods.

Orlov et al. (2019) also consider a quitting game, where the principal aims at

delaying the quitting time as far as possible. The quitting time is the time at

which the agent decides to exercise an option, which has different values to

the principal and the agent. The principal chooses a disclosure policy inform-

ing the agent about the option’s value. When, as in this paper, the principal

commits to a long-run policy, the optimal policy is to fully reveal the state
3When there are more than two states, the optimal policy discloses information more fre-
quently in Ely and Szydlowski (2020). The frequency of disclosure is thus a consequence of
the dimensionality of the state space in their model, while it is not so in our model.
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with some delay. (Note that the principal is referred to as the agent in their

work.) This policy is not optimal in Ely and Szydlowski (2020), or in our pa-

per. See Au (2015), Bizzotto et al. (Forthcoming), Che et al. (2020), Henry and

Ottaviani (2019) and Smolin (2018) for other papers on information disclo-

sure in quitting games, where the agent either waits and obtains additional

information, or takes an irreversible action and stops the game.

Ball (2019) studies a continuous time model of information provision, where

the state changes over time and payoffs are the ones of the quadratic example

of Crawford and Sobel (1982). Ball shows that the optimal disclosure policy

requires the sender to disclose the current state at a later date, with the delay

shrinking over time. The main difference between his work and ours is the

persistence of the state (also, we consider two different classes of games).

When the state is fully persistent, as in Ely and Szydlowski (2020) and our

model, full information disclosure with delay is not optimal in general. (See

the discussion of Example 1 in Section 3.)

Finally, there are a few papers on dynamic persuasion, where the agent takes

an action repeatedly. However, either the agent is myopic, e.g., Ely (2017)

and Renault et al. (2017), or the principal cannot commit, e.g., Escude and

Sinander (2020).

2. THE PROBLEM

A principal and an agent interact over an infinite number of periods, indexed

by t ∈ {1, 2, . . . }. At the first stage, before the interaction starts, the principal

learns a payoff-relevant state ω ∈ Ω, while the agent remains uninformed.

The prior probability of ω is p0(ω) > 0. At each period t, the principal sends a

signal s ∈ S and, upon observing the signal s, the agent takes decision a ∈ A.

The sets A, S and Ω are finite. The cardinality of S is as large as necessary

for the principal to be unconstrained in his information disclosure policy.4

4From Makris and Renou (2021), it is enough to have the cardinality of S as large as the
cardinality of A.
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We assume that there exists a∗ ∈ A such that the principal’s payoff is strictly

positive whenever a∗ is chosen, and zero otherwise. We refer to a∗ as the

principal’s preferred action. E.g., the principal wants the agent to purchase

its products, to follow its advice, or to maintain the status-quo. We let v :

A× Ω→ R be the principal’s payoff function, with v(a∗, ω) > v(a, ω) = 0 for all

ω ∈ Ω and a ∈ A \ {a∗}. The agent’s payoff function is u : A × Ω → R. The

(common) discount factor is δ ∈ (0, 1).

We write At−1 for A× · · · × A︸ ︷︷ ︸
t−1 times

and St−1 for S × · · · × S︸ ︷︷ ︸
t−1 times

, with generic elements

at and st, respectively. A behavioral strategy for the principal is a collection

of maps τ = (τt)
∞
t=1, with τt : At−1 × St−1 × Ω → ∆(S). Similarly, a behavioral

strategy for the agent is a collection of maps σ = (σt)
∞
t=1 with σt : At−1 × St−1 ×

S → ∆(A).

We write V(τ, σ) for the principal’s payoff and U(τ, σ) for the agent’s payoff

under the strategy profile (τ, σ). The objective is to characterize the maximal

payoff the principal achieves if he commits to a strategy τ , that is,

sup
(τ,σ)

V(τ, σ),

subject to

U(τ, σ) ≥ U(τ, σ′),

for all σ′.

Several comments are worth making. First, we interpret the strategy the

principal commits to as a contract specifying, as a function of the state, the

information to be disclosed at each history of realized signals and actions. In

other words, the contract specifies a statistical experiment at each history of

realized signals and actions, which enables the principal to punish the agent

for choosing the “wrong action.” The principal chooses the contract prior to

learning the state. An alternative interpretation is that neither the princi-

pal nor the agent know the state, but the principal has the ability to conduct

statistical experiments contingent on past signals and actions. We can par-

tially dispense with the commitment assumption. Indeed, since the choices
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of statistical experiments are observable, we can construct strategies that in-

centivize the principal to implement the specified statistical experiments.5

Second, the only additional information the agent obtains each period is the

outcome of the statistical experiment. Third, the state is fully persistent and

the principal perfectly monitors the action of the agent. Finally, the only in-

strument available to the principal is information. The principal can neither

remunerate the agent nor terminate the relationship nor allocate different

tasks to the agent. We purposefully make all these assumptions to address

our main question of interest: what is the optimal way to incentivize the agent

with information only?

3. OPTIMAL CONTRACTS

This section characterizes optimal contracts and discusses their most salient

properties.

3.1. A recursive formulation. The first step towards characterizing opti-

mal contracts is to reformulate the principal’s problem as a recursive prob-

lem. To do so, we introduce two state variables. The first state variable is

promised continuation payoff. It is well-known that classical dynamic con-

tracting problems admit recursive formulations if we introduce promised con-

tinuation payoff as a state variable and impose promise-keeping constraints,

e.g., Spear and Srivastava (1987). The second state variable we introduce is

beliefs. We now turn to the formal reformulation of the problem.6

We first need some additional notation. Denote p ∈ ∆(Ω) a generic belief

about the state. We let u(a, p) :=
∑

ω p(ω)u(a, ω) be the agent’s expected stage
5The simplest such strategy is for the agent to play a 6= a∗ in all future periods after a
deviation by the principal. This strategy may not be sequentially rational, however.
6A nearly identical reformulation already appeared in Ely (2015), one of the working ver-
sions of Ely (2017). We remind the reader that Ely (2017) analyzes the interaction between
a long-run principal and a sequence of short-run agents. (See also Renault et al. (2017).)
While discussing the extension of his model to the interaction between a long-run principal
and a long-run agent, Ely (2015) derived a recursive reformulation nearly identical to ours.
However, he didn’t study further the reformulated problem. We start from the recursive for-
mulation and use it to derive an optimal policy. See Section A.2 for a detailed comparison of
the two formulations.
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payoff of choosing a when his belief is p, m(p) := maxa∈A u(a, p) be the agent’s

optimal stage payoff when his belief is p, and M(p) :=
∑

ω p(ω) maxa∈A u(a, ω)

be the agent’s expected stage payoff if he learns the state prior to choosing

an action. Note that m is a piecewise linear convex function, that M is linear

and that m(p) ≤ M(p) for all p. Similarly, we let v(a, p) be the principal’s

payoff when the agent chooses a and the principal’s belief is p. Finally, let

P := {p ∈ ∆(Ω) : m(p) = u(a∗, p)} be the set of beliefs at which a∗ is optimal.

The set P is a closed convex set.

Let W ⊆ ∆(Ω) × R be such that (p, w) ∈ W if and only if w ∈ [m(p),M(p)].

Throughout, we consider functions V : W → R, with the interpretation that

V (p, w) is the principal’s payoff if he promises a continuation payoff of w to the

agent when the agent’s current belief is p.

The principal’s maximal payoff is V ∗(p0,m(p0)), where V ∗ is the unique fixed

point of the contraction mapping T , defined by

T (V )(p, w) :=



max(
(λs,(ps,ws),as)∈∆(Ω)×W×A

)
s∈S

∑
s∈S λs[(1− δ)v(as, ps) + δV (ps, ws)],

subject to:

(1− δ)u(as, ps) + δws ≥ m(ps) for all s such that λs > 0,∑
s∈S λs[(1− δ)u(as, ps) + δws] ≥ w,∑
s∈S λsps = p,

∑
s∈S λs = 1.

We briefly comment on this maximization program. The program maximizes

the principal’s expected payoff over policies, i.e., maps fromW to (∆(Ω)×W×

A)|S|. At each (p, w), a policy prescribes the probability λs that the realized

signal is s and conditional on s, the belief ps, the promised utility ws, and

the recommended action as. The first constraint is the incentive-compatibility

condition that the agent prefers to obey the recommendation as when ws is the

promised continuation payoff and ps is the agent’s belief. To understand the

right-hand side, observe that the agent can always play a static best reply to

any belief, so that his expected payoff must be at least m(ps) when his current
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belief is ps.7 Conversely, if the contract recommends action as and the agent

does not obey, the contract can specify no further information revelation, in

which case the agent’s payoff is at most m(ps). Therefore, m(ps) is the agent’s

min-max payoff. The second constraint is promise-keeping: if the principal

promises the continuation payoff w at a period, the contract must honor that

promise in subsequent periods. The third constraint states that the policy

selects a splitting of p, i.e. a distribution over posteriors with expectation p.

Throughout, we slightly abuse notation and write τ for a policy. Note that to

each contract corresponds a policy, and conversely. A policy is feasible if it

specifies a feasible tuple ((λs, (ps, ws), as))s∈S for each (p, w), i.e., a tuple satis-

fying the constraints of the maximization problem T (V )(p, w).

Two important observations are worth making. First, for any function V ,

T (V ) is a concave function of the pair (p, w). Concavity reflects the fact that

the more information the principal discloses, the harder it is to reward the

agent in the future. Second, T (V ) is a (weakly) decreasing function of w, that

is, the more the principal promises to the agent, the harder it is to incentivize

the agent to play a∗.

Proposition 1. The value function V ∗ is concave in both arguments and weakly

decreasing in w.

Proposition 1 together with the recursive formulation has a number of impli-

cations. First, if the principal induces the posterior ps while recommending

the action as and promising the continuation payoff ws, then he should not

have an incentive to disclose more information in that period, that is, we can-

not have V (ps, (1− δ)u(as, ps) + δws) > (1− δ)v(as, ps) + δV (ps, ωs). Indeed, if the

inequality was satisfied at some signal s, the principal would strictly benefit

from releasing further information at ps so as to achieve V (ps, (1− δ)u(as, ps) +

δws).
7More precisely, if the agent’s belief at period t is pt, he obtains the payoff m(pt) by playing a
static best-reply. Since the function m is convex and beliefs follow a martingale, his expected
payoff is therefore at least (1 − δ)

∑
t′≥t δ

t′−tE[m(pt′)|Ft] ≥ m(pt), where Ft is the agent’s
filtration at period t.
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Second, if the principal does not recommend a∗ at a period, then the principal

never recommends a∗ at a subsequent period, that is, the principal’s continua-

tion value is zero. In other words, as soon as an action other than a∗ is played,

the principal stops incentivizing the agent to play a∗. The intuition is simple.

Suppose to the contrary that the principal were to recommend as 6= a∗ after

the signal s at period t and a∗ at the next period. Consider the policy change

where the principal anticipates the disclosure of the information: what in-

centivizes the agent to play a∗ at period t + 1 is disclosed in period t. This

policy change is feasible and increases the principal’s payoff, a contradiction.

This property justifies thinking of the principal’s preferred action a∗ as a sta-

tus quo, which the principal tries to induce the agent to maintain as long as

possible.

Third, there is at most one signal s∗ at which the principal recommends the

agent to play a∗. Moreover, whenever the principal recommends a∗, the agent

is indifferent between obeying the recommendation or deviating. In other

words, the promised continuation payoff does not leave rents to the agent.

Intuitively, if two signals recommended a∗, the principal would not lose from

merging them into one. If the agent were given a positive rent when signal

s∗ realizes, the principal would benefit by a change in policy that reduces the

agent’s promised utility associated with s∗ (since the value function is decreas-

ing in promised utility). For that change in policy to be feasible, the change

must increase the promised utility when some other signal s 6= s∗ is realized.

As we have already seen, this does not affect the principal’s payoff (since the

principal obtains a zero payoff in all periods which follow a recommendation

different from a∗).

These observations are summarized in Proposition 2.

Proposition 2. For all (p, w), there exists a solution (λs, ps, ws, as)s∈S to T (V ∗)(p, w)

such that

(i): For all s ∈ S such that λs > 0, we have

(1− δ) v (as, ps) + δV ∗ (ps, ws) = V ∗ (ps, (1− δ)u (as, ps) + δws) .



CONTRACTING OVER PERSISTENT INFORMATION 13

(ii): For all s ∈ S such that λs > 0 and as 6= a∗, V ∗(ps, ws) = 0.

(iii): There exists at most one signal s∗ ∈ S such that λs∗ > 0 and as∗ = a∗.

Moreover,

(1− δ)u(as∗ , ps∗) + δws∗ = m(ps∗).

Proposition 2 states key properties that an optimal policy possesses. We con-

clude this section with a partial converse, that is, we state properties that

guarantee optimality of a policy. This partial converse is at the heart of our

analysis, which consists in constructing a policy and proving that it satisfies

all the properties required for optimality.

We need some additional notation. First, let Q1 be the set of beliefs at which

the agent has an incentive to play a∗ if he is promised full information disclo-

sure at the next period. That is,

Q1 := {p ∈ ∆(Ω) : (1− δ)u(a∗, p) + δM(p) ≥ m(p)}.

If Q1 is empty, then all policies are optimal as the principal can never incen-

tivize the agent to play a∗. The set Q1 is convex.

Second, for all p ∈ Q1, we write w(p) ∈ [m(p),M(p)] for the continuation payoff

that makes the agent indifferent between playing action a∗ and receiving the

continuation payoff w(p) in the future, and playing a best reply to the belief p

forever. That is, w(p) solves:

(1− δ)u(a∗, p) + δw(p) = m(p).

Theorem 1. Consider any feasible policy inducing the value function Ṽ . If Ṽ

is concave in both arguments, decreasing in w and satisfies

Ṽ (p,m(p)) ≥ (1− δ)v(a∗, p) + δṼ (p,w(p)),

for all p ∈ Q1, then the policy is optimal.

Proof. We argue that Ṽ is the fixed point of the operator T , hence Ṽ = V ∗.

Let (λs, ps, ws, as)s∈S be a solution to the maximization problem T (Ṽ )(p, w). We
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start by the following observation. Consider any s such that as 6= a∗. We have

(1− δ)v(as, ps) + δṼ (ps, ws) = δṼ (ps, ws) ≤ Ṽ (ps, ws) ≤ Ṽ (ps, (1− δ)u(as, ps) + δws),

where the last inequality follows from the fact that Ṽ is decreasing in w and

m(ps) ≤ (1− δ)u(as, ps) + δws ≤ (1− δ)m(ps) + δws ≤ ws.

Consider now any s such that as = a∗. Since (λs, ps, ws, as)s∈S is feasible, we

have

(1− δ)u(a∗, ps) + δws ≥ m(ps),

hence ps ∈ Q1 and therefore,

Ṽ (ps,m(ps)) ≥ (1− δ)v(a∗, ps) + δṼ
(
ps,
−(1− δ)u(a∗, ps) +m(ps)

δ︸ ︷︷ ︸
w(ps)

)
.

The concavity of Ṽ implies that

Ṽ (ps, (1− δ)u(a∗, ps) + δws)− Ṽ (ps,m(ps)) ≥ δ
[
Ṽ (ps, ws)− Ṽ

(
ps,w(ps)

)]
,

where we use the identity (1 − δ)u(a∗, ps) + δws − m(ps) = δ(ws − w(ps)) and

observation (a) about concave functions in Section A.1.

Combining the above two inequalities implies,

Ṽ (ps, (1− δ)u(a∗, ps) + δws) ≥ (1− δ)v(a∗, ps) + δṼ (ps, ws).

It follows that

T (Ṽ )(p, w) =
∑
s∈S

λs

[
(1− δ)v(as, ps) + δṼ (ps, ws)

]
≤

∑
s∈S

λs

[
Ṽ (ps, (1− δ)u(as, ps) + δws)

]

≤ Ṽ

(∑
s∈S

λsps,
∑
s∈S

λs((1− δ)u(as, ps) + δws))

)
≤ Ṽ (p, w),

where the second inequality follows from the concavity of Ṽ and the third

inequality from Ṽ being decreasing in w.
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Conversely, since the policy inducing Ṽ is feasible, we must have that T (Ṽ )(p, w) ≥

Ṽ (p, w) for all (p, w). This completes the proof. �

We now turn to the construction of an optimal policy. We first build some

intuition.

3.2. Optimal policy: building intuition. From Proposition 2, any optimal

policy must satisfy three properties: (i) The principal should not have an in-

centive to disclose additional information at any period. (ii) If the principal

does not recommend a∗ at a period, then he never recommends it at any subse-

quent period. (iii) At the unique signal s∗ at which the principal recommends

the agent to play a∗, the promised continuation payoff ws∗ leaves no rents to

the agent, i.e., (1− δ)u(as∗ , ps∗) + δws∗ = m(ps∗).

This leaves important questions unanswered. What are the beliefs at which

the agent plays a∗? How does the principal compensate the agent for playing

a∗? Does the principal need to reveal information at the prior belief? Does the

agent learn the state? If so, does he learn it in finite time?

In the remainder of the paper, we answer these questions in the binary case

Ω = {ω0, ω1}. Throughout, probabilities refer to the probability of ω1 and abus-

ing notation write p for p(ω1). If non-empty, the set of beliefs P at which a∗ is

optimal is then a closed interval [p, p]. Similarly, if non-empty, the set of be-

liefs Q1 is a closed interval [q1, q1]. (Recall that Q1 is the set of beliefs at which

the agent has an incentivize to play a∗ if promised full information revelation

at the next period.) Note that q1 = 0 if and only if a∗ is optimal at p = 0 and

q1 = 1 if and only if a∗ is optimal at p = 1. For a graphical illustration, see

Figure 2.

An important feature of our model is that the agent’s opportunity cost of

choosing a∗ rather than his best action, relative to the principal’s benefit, dif-

fers in different states. When the state is ω0 (resp. ω1) the opportunity cost

relative to the benefit is [m(0)−u(a∗, 0)]/v(a∗, 0) (resp. [m(1)−u(a∗, 1)]/v(a∗, 1)).
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m(·)

M(·)

u(a∗, ·)
q1

m(q1)

1

m(1)

(1− δ)u(a∗, ·) + δM(·)

q1

FIGURE 2. Construction of the set Q1 when Ω = {ω0, ω1}

Without loss of generality, we assume that the agent’s opportunity cost rela-

tive to the principal’s benefit of a∗ is higher in state ω1 than in state ω0:

Assumption 1.
m(1)− u(a∗, 1)

v(a∗, 1)
≥ m(0)− u(a∗, 0)

v(a∗, 0)
.

Intuitively, Assumption 1 implies that it is more efficient to incentivize the

agent to take action a∗ at lower beliefs. As we shall see, the optimal policy

heavily exploits this observation. We note that if a∗ is optimal for the agent

at p = 1, i.e., m(1) = u(a∗, 1), then a∗ is also optimal at p = 0. Consequently, a∗

is optimal at all beliefs, i.e., P = [0, 1]. In what follows, we exclude this trivial

case and assume that 1 /∈ P .

To strengthen our intuition on the construction of an optimal policy, we briefly

return to the original description of the problem. Let (τ, σ) be a profile of

strategies and denote by Pτ,σ(·|ω) the distribution over signals and actions

induced by (τ, σ) conditional on ω. We can write the principal’s expected payoff

V(τ, σ) as:

(1− δ)
∑
ω

p0(ω)

∑
t

∑
st,at−1

δt−1Pσ,τ (st, at−1|ω)τt(a
∗|st, at−1)

 v(a∗, ω)

 = λ∗v∗(a∗, p∗),

with

λ∗ := (1− δ)
∑
ω

p0(ω)

∑
t

∑
st,at−1

δt−1Pσ,τ (st, at−1|ω)τt(a
∗|st, at−1)


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the discounted probability of recommending action a∗ and

p∗ :=
(1− δ)p0(ω1)

(∑
t

∑
st,at−1 δt−1Pσ,τ (st, at−1|ω1)τt(a

∗|st, at−1)
)

λ∗
,

the average discounted probability of ω1 when a∗ is played.8 As expected,

the principal’s payoff only depends on how often a∗ is played and the average

belief at which it is played.

We now make two observations, which will enable us to rewrite the principal’s

expected payoff and get important insights on optimal policies. First, if we let

p† be the average discounted probability of ω1 when a∗ is not recommended,

we have that λ∗p∗ + (1 − λ∗)p† = p0 since the belief process is a martingale.

Second, since the agent’s static payoff is bounded from above by M(p) when

his belief is p, his ex-ante expected payoff is bounded above by:

λ∗u(a∗, p∗) + (1− λ∗)M(p†) = λ∗[u(a∗, p∗)−M(p∗)] +M(p0). (1)

Since the agent’s ex-ante payoff must be at least m(p0), we can define c ≥ 0 as

the maximum agent’s rent:

c = λ∗[u(a∗, p∗)−M(p∗)] +M(p0)−m(p0). (2)

With the help of these two observations, we can rewrite the principal’s ex-

pected payoff as:

v(a∗, p∗)

M(p∗)− u(a∗, p∗)
×
(
M(p0)−m(p0)− c

)
.

The first term captures the benefit of incentivizing the agent to play a∗ rel-

ative to the cost. Since v(a∗,0)
v(a∗,1)

≥ m(0)−u(a∗,0)
m(1)−u(a∗,1)

, it is decreasing in p∗.9 Ceteris

paribus, the lower the average belief at which the agent plays a∗, the higher

the principal’s expected payoff.
8Note that p∗ cannot be lower than q1 since the agent would never play a∗ at beliefs lower
than q1.
9This follows from the observation that M(p∗) − u(a∗, p∗) = p∗[(m(1) − m(0)) − (u(a∗, 1) −
u(a∗, 0))] +m(0)− u(a∗, 0), v(a∗, p∗) = p∗(v(a∗, 1)− v(a∗, 0)) + v(a∗, 0), and simple algebra.
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The second term captures how the principal rewards the agent for playing a∗

with his only instrument: information. The termM(p0)−m(p0) is the maximal

value of information the principal can create. Ceteris paribus, the principal’s

payoff is decreasing in c, that is, the best is to leave no rents to the agent and

to create as much information as necessary to repay the agent. Notice that

c = 0 is only achieved by both leaving no rents to the agent and having the

agent informed of the state when he does not play a∗.

The above discussion thus suggests three guiding principles in constructing

an optimal policy. First, the policy perfectly informs the agent whenever the

recommendation differs from a∗, that is, the agent’s belief is either 0 or 1 when

he does not play a∗. Second, the policy leaves as little rent as possible to the

agent. Naturally, it is not always possible to leave no rents. E.g., when the

prior belief p0 /∈ Q1, the agent must be given some strictly positive rent if he

is to ever play a∗. Third, the policy must recommend a∗ at the lowest beliefs

possible.

Now, recall that we can always find optimal policies where a∗ is recommended

after at most one signal s∗. The guiding principles thus further hint that

all splittings must have at most three values ps∗, 0, and 1 in their support:

the belief ps∗ at which a∗ is recommended and the degenerate beliefs 0 and

1 at which the agent is perfectly informed. Moreover, we want ps∗ as low as

possible subject to satisfying all constraints. Finally, since the policy must

leave as little rents as possible, the best is to promise the continuation payoff

w(ps∗) that makes the agent indifferent between playing a∗ at the current

period and receiving w(ps∗) in the future and playing a best reply to the belief

ps∗ forever. As we see next, we can indeed construct an optimal policy with all

these features.

3.3. Optimal policy: a formal description. We define a family of policies

(τq)q∈[q1,q1] indexed by a belief q, and prove later the existence of q∗ ∈ [q1, q1]

such that the policy τq∗ is optimal. Recall that a policy prescribes a splitting

(λs, ps)s∈S, a profile of recommendations (as)s∈S and a profile of continuation
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payoffs (ws)s∈S for each (p, w) ∈ W. Policy τq is qualitatively the same in each

of the following four regions:

W1
q :=

{
(p, w) : p ∈ [0, q1), w ≤

q1 − p
q1

m(0) +
p

q1
m(q1)

}
,

W2
q :=

{
(p, w) : p ∈ (q, 1],

1− p
1− q

m(q) +
p− q
1− q

m(1) < w ≤ 1− p
1− q1

m(q1) +
p− q1

1− q1
m(1)

}
⋃{

(p, w) : p ∈ [q1, q], w ≤ 1− p
1− q1

m(q1) +
p− q1

1− q1
m(1)

}
,

W3
q :=

{
(p, w) : p ∈ (q, 1], w ≤ 1− p

1− q
m(q) +

p− q
1− q

m(1)
}
,

W4
q := W \ (W1

q ∪W2
q ∪W3

q ).

Figure 3 illustrates the four regions, withW1
q the black region,W2

q the region

with vertical lines, W3
q the gray region, and W4

q the region with northwest

lines. Observe that regions W1
q and W4

q do not depend on the parameter q,

while the other two do.

m(·)

M(·)

q1 p

w

q1q

FIGURE 3. The regionsW1
q ,W2

q ,W3
q andW4

q .

We now describe the policy τq starting with region W2
q . Define functions λ :

W → [0, 1] and ϕ :W → [0, 1] so that (λ(p, w), ϕ(p, w)) is the unique solution ofp
w

 = λ(p, w)

 ϕ(p, w)

m(ϕ(p, w))

+ (1− λ(p, w))

 1

m(1)

 (3)

for all w > m(p), and (λ(p,m(p)), ϕ(p,m(p))) = (1, p).

When (p, w) is in region W2
q , τq(p, w) induces belief and continuation payoff

(ϕ(p, w),m(ϕ(p, w))) with probability λ(p, w), and belief and continuation pay-

off (1,m(1)) with the complementary probability. In the former case, the policy
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recommends action a∗. (In the latter case, the policy obviously recommends

an action that is optimal at belief p = 1.)

The policy thus informs the agent when the state is ω1. As we already sug-

gested, the rationale for disclosing when the state is ω1 is two-fold. First, the

lower the agent’s belief, the lower the cost of incentivizing the agent to play

a∗ relative to the principal’s benefit. Second, to satisfy the promise-keeping

constraint, the policy needs to compensate the agent for playing a∗. Since the

principal’s payoff is zero when the agent takes any action different from a∗,

the best is to choose a compensation, which guarantees the highest proba-

bility of playing a∗. Putting these two observations together, at (p, w), policy

τq(p, w) finds two beliefs (p′, p′′) such that (i) the agent is asked to play a∗ at

p′, (ii) p′ < p since the agent should play a∗ at the lowest belief, and (iii) the

probability of p′ is as high as possible. The best splitting is to have p′ as close

as possible to p and p′′ as far as possible, i.e., equal to 1. Note that since

(1 − λ(p, w))m(1) + λ(p, w)m(ϕ(p, w)) = w, the policy leaves no rents to the

agent in regionW2
q . See Figure 4 for an illustration.

m(·)

M(·)

p

w

1

m(1)

ϕ(p, w)

m(ϕ(p, w))

FIGURE 4. Construction of λ and ϕ

Observe that starting with (p, w) ∈ W2
q , the decreasing sequence of beliefs

(ϕ(p, w), ϕ2(p, w), . . . ) (and corresponding payoffs) reaches either region W4
q –

as in Panels (A) and (C) of Figure 1 – or a belief in P at which it is statically

optimal for the agent to play a∗ – as in panel (B) of Figure 1.10 In the lat-

ter case, the policy recommends a∗ and stops disclosing information (i.e., the

belief stays constant).
10We write ϕ2(p, w) for ϕ(ϕ(p, w),m(ϕ(p, w))).
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When (p, w) is in region W4
q , the agent cannot be incentivized to play a∗ at

(p, w).11 In that case, the policy splits p into posteriors 0, q1, and 1 with re-

spective probabilities λ0, λq1 and λ1. Conditional on 0 (resp., 1), the policy

recommends action the action optimal at 0, (resp., the action optimal at 1),

and promises a continuation payoff of m(0) (resp., m(1)). Conditional on q1,

the policy recommends action a∗ and promises a continuation payoff of w(q1).

Doing so, the principal ensures that the agent plays a∗ one more time. The

probabilities (λ0, λq1 , λ1) ∈ R+ × R+ × R+ are the unique solution to:

λ0


0

m(0)

1

+ λq
1


q1

m(q1)

1

+ λ1


1

m(1)

1

 =


p

w

1

 .

A solution exists sinceW4
q is the convex hull of (0,m(0)), (q1,m(q1)) and (1,m(1)).

In this region, the policy leaves no rents to the agent either.

When (p, w) is in region W1
q , the policy splits p into 0 (i.e., discloses that the

state is ω0) and q1 with respective probabilities q1−p
q1

and p
q1

. If the realized

belief is 0, the policy recommends the action optimal at 0 and promises a con-

tinuation payoff of m(0). If the realized belief is q1, the policy recommends a∗

and promises a continuation payoff of w(q1). The agent is thus made indiffer-

ent between playing a∗ and receiving w(q1) in the future, and playing a best

reply to the belief q1 forever. Intuitively, in region W1
q , the principal cannot

incentivize the agent to take action a∗ by promising future information dis-

closure (since p < q1). Hence, the principal must first persuade the agent by

disclosing some information. Note that the policy leaves rents to the agent –

since q1−p
q1
m(0) + p

q1
m(q1) > w.

When (p, w) is in region W3
q , the policy splits p into q and 1 with respective

probabilities 1−p
1−q and p−q

1−q . Conditional on 1, the policy recommends the action

optimal at 1 and promises a continuation payoff of m(1). Conditional on q,

the policy recommends a∗ and promises a continuation payoff of w(q). The

agent is thus made indifferent between playing a∗ and receiving w(q) in the
11Recall that q1 is the lowest belief at which the agent can be incentivized to play a∗.
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future, and playing a best reply to the belief q forever. The policy in this

region is analogous to the one in region W1
q– the policy starts by disclosing

some information. When q = q1, the reason for the analogy is immediate, as

q1 is the highest belief at which the agent is willing to take action a∗ at the

current period in exchange for full information at the next period. As we shall

see later, the optimal policy τq∗ may require q∗ < q1, in order to guarantee that

the principal’s value function is concave, a necessary requirement to minimize

the cost of incentivizing the agent relative to the benefit to the principal. This

completes the description of the policy τq.

3.4. A worked-out example. We now illustrate our construction with the

help of an example.

Example 1. The agent has three possible actions a0, a1 and a∗, with a0 (resp.,

a1) the agent’s optimal action when the state is ω0 (resp., ω1) and a∗ the prin-

cipal’s favorite action. The prior probability of ω1 is 3
20

and the discount factor

is 1
2
. The per-period payoffs are in Table 1, with the first entry corresponding

to the principal’s payoff.

TABLE 1. Payoff table of Example 1

a0 a1 a∗

ω0 0, 1 0, 0 1, 3/4
ω1 0, 0 0, 2 1, 3/4

An interpretation of this example is that the principal is a lobbyist, an expert

advisor or a multi- national firm, that wants to maintain the status quo action

a∗ (e.g., an import tariff, on ongoing project, or a joint venture). There are

two alternatives to the status quo, each being optimal for the agent in the

matched state, but worse than the status quo if adopted in the wrong state.

For example, if it knew the state (i.e., the technology), the local firm would

break the joint venture with the multinational firm, but without knowing the

technology it is unclear what the best course of action is.

In Example 1,M(p) = 1+p,m(p) = max(1−p, 3/4, 2p) and w(p) = 2 max(2p, 3/4, 1−

p)−(3/4). The set Q1 (where a∗ is incentivized by the promise of full disclosure
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next period) is [1/12, 7/12], and the set P (where a∗ is statically optimal for the

agent) is [1
4
, 3

8
]. Since 3

20
< 1

4
, a∗ is not optimal at the prior belief.

We now describe the policy τq for q = 3/8, the highest prior at which the

agent finds it statically optimal to choose a∗. We argue later that the choice of

q = 3/8 is optimal.

The initial pair of belief and (promised continuation) payoff at t = 1 is (p0,m(p0)) =

(3/20, 17/20). This pair is on the lower boundary of regionW2
3/8, hence ϕ(p0,m(p0)) =

p0 and w(p0) = 19/20. In words, the policy does not provide any information to

the agent, recommend action a∗ and promise the continuation payoff 19/20.

The belief-payoff pair at the start of t = 2 is therefore (3/20, 19/20), which is

in the interior of regionW2
3/8. The policy splits (3/20, 19/20) into

(ϕ(3/20, 19/20),m(ϕ(3/20, 19/20))

and (1,m(1)) with probability λ(3/20, 19/20) and 1−λ(3/20, 19/20), respectively.

Simple algebra gives ϕ(3/20, 19/20) = 2/19 and λ(3/20, 19/20) = 19/20.12 The

policy thus reveals that the state is ω1 with probability 1/20, in which case

the agent takes action a1 forever and obtains payoff 2. With the remaining

probability, the agent’s beliefs becomes p = 2
19

. In such a case, the agent is

recommended to take action a∗ and promised continuation payoff w(2/19) =

79/76.

If the state has not been revealed, the belief-payoff pair at t = 3 is then

(2/19, 79/76), which is in region W4
3/8. In that region, the policy induces the

belief 0, 1, and q1 = 1
12

, that is, either the state is revealed or the agent is made

indifferent between playing a∗ and being promised full information disclosure

at the next period and playing an (statically) optimal action. In the latter

case, at the start of t = 4 the belief-payoff pair is (1/12, 13/12) which is on

the upper boundary of regionW4
3/8 (i.e., 13/12 = M(1/12)), where the principal

fully reveals the state.
12We stress that the policy describes the “equilibrium path.” If the agent disobeys the rec-
ommendation, no further disclosure ever happens and the agent repeatedly plays a statically
optimal action.
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Figure 5 summarizes the evolution of beliefs under the policy τ3/8. The ex-

pected number of times the agent takes action a∗ is 93
40

= 2.325 and the princi-

pal obtains a payoff of 251/320 ≈ 0.78.

3
20

3
20

1

2
19

1

1
12

0

1

0

t = 1 t = 2 t = 3 t = 4

FIGURE 5. Evolution of the beliefs in Example 1

It remains to explain how to choose the parameter q∗ to guarantee the opti-

mality of τq∗.

3.5. Construction of q∗ and optimality. For all q ∈ [q1, q1], let Vq : W → R

be the value function induced by the policy τq. For all q, note that Vq(1,m(1)) =

0 since a∗ is not optimal at p = 1, and Vq(0,m(0)) = 0 if a∗ is not optimal at p = 0

(resp., = v(a∗, 0)) if a∗ is optimal at p = 0). Also, Vq(q1,m(q1)) = (1 − δ)v(a∗, q1)

if q1 > 0 (resp., Vq(0,m(0)) = v(a∗, 0) if q1 = 0, since a∗ is then optimal at

p = 0). Therefore, any two policies τq and τq′ induce the same values at all

(p, w) ∈ W1
q ∪W4

q =W1
q′ ∪W4

q′. (Remember that the regionsW1
q andW4

q do not

vary with q – see Figure 3.)

Similarly, any two policies τq and τq′ induce the same values at all (p, w) ∈

W2
min(q,q′). Thus, in particular, τq and τq1 induce the same values at all (p, w) ∈

W \W3
q . Finally, at all (p, w) ∈ W3

q , Vq(p, w) = 1−p
1−qVq(q,m(q)) = 1−p

1−qVq1(q,m(q)).

(See Section A.4 for more details.)

Recall that V ∗ is the unique solution to the fixed-point problem – to be optimal,

a policy must therefore induce the value function V ∗. Let

q∗ = sup
{
p ∈ [q1, q1] : Vq1(p,m(p)) ≥ Vq1(p, w) for all w

}
.

We are now ready to state our main result.

Theorem 2. The policy τq∗ is optimal: Vq∗ = V ∗.



CONTRACTING OVER PERSISTENT INFORMATION 25

To understand the role of q∗, recall that for all p ∈ [q∗, 1], the policy leaves

rents to the agent.13 To minimize these rents, the principal therefore would

like to have q∗ as high as possible, i.e., equal to q1, the highest belief at which

the agent is willing to play a∗ in exchange for full information disclosure at

the next period. However, Vq1(·,m(·)) is not guaranteed to be concave in p, a

necessary condition for optimality. To see that V ∗(·,m(·)) must be concave in

p, consider any pair (p, p′) ∈ [0, 1]× [0, 1] and α ∈ [0, 1]. We have

αV ∗(p,m(p)) + (1− α)V ∗(p′,m(p′)) ≤ V ∗(αp+ (1− α)p′, αm(p) + (1− α)m(p′))

≤ V ∗(αp+ (1− α)p′,m(αp+ (1− α)p′)),

where the first inequality follows from the concavity of V ∗ in both arguments

and the second from V ∗ decreasing in w and the convexity of m. The optimal

choice of q∗ is thus the largest q, which guarantees Vq(·,m(·)) to be concave.

More precisely, as we show in Section A.5, the definition of q∗ guarantees that

Vq∗ is concave in both arguments and decreasing in w, so that Vq∗(·,m(·)) is

a concave function of p. We also prove that Vq∗(p,m(p)) ≥ Vq1(p,m(p)) for all

p. Since it is clearly the smallest such function, Vq∗ is the concavification of

Vq1 . In particular, q∗ = q1 if Vq1(·,m(·)) is already concave. Figure 6 illustrates

the concavification in the context of Example 1. In black is the value function

of policy τq1; in red its concavification – the value function of policy τq∗, with

q∗ = 3
8
.

The policy τq∗ leaves rents to the agent, that is, the (ex-ante) participation

constraint does not bind, for all priors in [0, q1) ∪ (q∗, 1]. This is quite natural

for all priors in [0, 1] \ Q1 since the agent cannot be incentivized to play a∗

even once. In the language of Ely and Szydlowski (2020), “the goalposts need

to move,” that is, one needs to disclose information at the ex-ante stage to

persuade the agent to play a∗. However, our policy also leaves rents for all

priors in (q∗, q1]. The intuitive reason is that the initial information disclosure

reduces the cost of incentivizing the agent in subsequent periods sufficiently
13That is, the agent is promised a payoff of 1−p

1−q∗m(q∗) + p−q∗

1−q∗m(1) > m(p).
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FIGURE 6. The concavification of Vq1(·,m(·)) in Example 1

enough to compensate for the initial loss. (When the realized posterior is 1,

the agent never plays a∗, thus creating the loss.)

4. OPTIMAL POLICY: PROPERTIES AND COMPARISON WITH ALTERNATIVES

4.1. Evolution of the beliefs. The optimal policy discloses information grad-

ually over time, with beliefs evolving until either the agent learns the state

or believes that a∗ is (statically) optimal. We can be more specific. First, we

consider the instances when the policy converges with positive probability to

a belief p ∈ P = [p, p], the set of beliefs at which a∗ is statically optimal. Let

Q∞ = [p, q∞], with q∞ the solution to

m(q∞) = (1− δ)u(a∗, q∞) + δ

(
1− q∞

1− p
m(p) +

q∞ − p
1− p

m(1)

)
,

if P is non-empty, and Q∞ = ∅, otherwise. Note that P ⊆ Q∞. See Figure 7 for

a graphical illustration.

Intuitively, the set Q∞ has the “fixed-point property,” that is, if one starts with

a belief p ∈ Q∞ and promised utility w(p), then the belief ϕ(p,w(p)) ∈ Q∞. To

see this, note that the pair (p,w(p)) is in regionW2
q . Since ϕ(p,w(p)) ≤ p (with

a strict inequality if p /∈ P ), we then have a decreasing sequence of beliefs

converging to an element in P . This is because, at all beliefs p ∈ Q∞, the
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m(p)

u(a∗, p)

(1− δ)u(a∗, p) + δ
(

1−p
1−pm(p) +

p−p
1−pm(1)

)

q∞pp p

FIGURE 7. Construction of q∞

policy splits p into p′ = ϕ(p,w(p)) and 1, then splits p′ into p′′ = ϕ(p′,w(p′)) and

1, etc. The decreasing sequence (p, p′, p′′, . . . ) converges, either in finite time

or asymptotically, to a belief in P , at which no further splitting occurs and the

agent plays a∗ forever. See panel (B) of Figure 1 for an an illustration.

Recall that if the prior p0 is larger than q∗, the policy first splits p0 into q∗ and

1. Hence, if q∗ ≤ q∞, the agent’s belief enters the set Q∞ with strictly positive

probability.14 Therefore, if the agent’s prior beliefs are in the set Q∞q∗ , then the

agent will choose action a∗ forever with positive probability, where

Q∞q∗ :=

Q
∞ if q∗ > q∞,

[p, 1) otherwise.

Second, at all priors in [0, 1] \ Q∞, there exists Tδ < ∞ such that the belief

process is absorbed in the degenerate beliefs 0 or 1 after at most Tδ periods.

In other words, the agent learns the state for sure in finite time. The number

of periods Tδ corresponds to the maximal number of periods the agent can be

incentivized to play a∗. We provide an explicit computation in Section A.4, in

Example 1, we have Tδ = 3. Moreover, the number Tδ is increasing in δ and

converges to +∞ as δ converges to 1. (Note that the convergence is uniform

in that it does not depend on p0 ∈ [0, 1] \ Q∞.) Thus, we have the following

corollary:
14From the definition of q∗, we have that q∗ ≥ p since Vq1(p,m(p)) = u(a∗, p) for all p ∈ P .
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Corollary 1. Under the optimal disclosure policy τq∗, the agent chooses action

a∗ forever with positive probability if, and only if, p0 ∈ Q∞q∗ .

The interval Q∞q∗ includes the sub-interval [p, p̄], where the agent takes action

a∗ with probability one. In the complementary set Q∞q∗ \ [p, p̄], the probability

that the agent takes action a∗ forever is strictly less than 1. That is, the princi-

pal discloses the state with positive probability, and with the complementary

probability he lowers the agent’s belief so that it converges to the region where

taking action a∗ is statically optimal. Convergence may be asymptotic or may

happen in finite time.

We now highlight the novelty of our optimal policy by comparing it with two

alternatives commonly found in the literature. (See Appendix B for a formal

discussion.)

4.2. Comparison with the KG policy. The KG policy aims at persuading

the agent to choose a∗ forever by disclosing information at the initial stage

only (KG stands for Kamenica-Gentzkow). In Appendix B, we show that it

is optimal in all problems with two actions. In problems with three or more

actions, the KG policy may, however, be strictly sub-optimal. In Example 1,

it gives the principal a payoff of 3/5, which is strictly lower than the optimal

payoff of about 0.78.15 We now discuss several reasons why this is the case.

Recall that P = [p, p] is the set of beliefs under which it’s statically optimal for

the agent to choose a∗. The KG policy splits the prior beliefs of the agent so as

to move the posterior into the set P at the lowest possible “cost.” Once beliefs

are in P , the agent takes the principal’s preferred action a∗ forever. The first

reason why the KG policy may be strictly dominated is that this splitting may

generate information value and leave “too large” a rent to the agent.

Second, even if as in Example 1 the KG policy does not generate positive infor-

mation value, it may be strictly dominated when the prior belief is p0 ∈ (0, p).

In this case, the KG policy increases the (discounted) average belief at which

a∗ is recommended relative to our policy. As a consequence, it recommends
15In Example 1, the KG policy splits the prior p0 = 3/20 into 0 and 1/4 with probability 2/5
and 3/5, respectively.
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a∗ forever with lower probability. Our optimal policy provides incentives to

choose a∗ more often.

Third, the KG policy may be dominated since the set P may be empty. In

such a case, the KG policy cannot incentivize the agent ever to take action

a∗ whereas our optimal policy can. This is because our optimal policy allows

the principal to condition his information disclosure on the agent’s actions,

which is not permitted by the KG policy. Consider the following modification

of Example 1 in which the agent’s payoff from action a∗ is 1/2 rather than 3/4.

TABLE 2. Payoff table of Example 1 modified

a0 a1 a∗

ω0 0, 1 0, 0 1, 1/2
ω1 0, 0 0, 2 1, 1/2

Action a∗ is not optimal, no matter the initial beliefs of the agent. However,

there are beliefs under which the promise of full disclosure at the next period

induces the agent to play a∗, i.e. Q1 = [1
6
, 1

2
]. Suppose that the prior belief is

p0 = 1
3
. Our optimal policy is τ1/3 and it splits beliefs as shown on Figure 8.

At all beliefs other than 0 and 1, the agent is recommended to play a∗. The

principal’s expected payoff is 1285
1536

, i.e., about 0.83.

1
3

1
3

1

3
11

1

7
39

1

1
6

0

1

0
t = 1 t = 2 t = 3 t = 4 t = 5

FIGURE 8. Evolution of the beliefs.

Figure 9 illustrates the value function of our optimal policy for this modifi-

cation of Example 1; it is the concavification of the value function of policy

τq1.
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FIGURE 9. The concavification of Vq1(·,m(·)) in the modification
of Example 1

4.3. Comparison with the policy of fully disclosing the state with de-

lay. Another alternative policy, which plays a prominent role in the work of

Ball (2019), Ely and Szydlowski (2020), and Orlov et al. (2019), is to incen-

tivize the agent to play a∗ with the promise of fully disclosing the state at

a later period. The policy of fully disclosing the state with delay selects the

largest integer T ∗ such that

(1− δ)
(
u(a∗, p)(δ0 + δ1 + · · ·+ δT

∗−1) +M(p)(δT
∗

+ · · ·)
)
≥ m(p).

Usually, this constraint does not bind and, therefore, the policy leaves strictly

positive rent to the agent. This is the case in the modification of Example

1 presented in Table 2, where the constraint would bind for the non-integer

value ln(5)/ ln(2) and hence T ∗ = 2. However, this rounding problem could

be solved by adopting instead a recursive policy of random full disclosure, in

which at each period t the principal fully discloses the state with some prob-

ability α if the agent plays a∗ at period t − 1 (and withholds all information

with the complementary probability). In continuous time, the policies of ran-

dom disclosure and disclosure with delay are equivalent. Intuitively, in the
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modification of Example 1, random disclosure performs better than disclo-

sure with delay because it makes it possible to incentivize the agent to play a∗

a discounted number of periods slightly larger than 2, namely ln(5)/ ln(2) by

picking α = 1/4.

This “integer problem” is only part of the reason for the sub-optimality of the

policy of disclosure with delay, since in Example 1 the constraint binds at

prior 3/20 with T ∗ = 2. The remaining reason is that this policy (or the policy

of full random disclosure) does not exploit the asymmetries in opportunity

costs. In fact, we show in Appendix B that if there are no asymmetries, i.e. if
m(0)−u(a∗,0)

v(a∗,0)
= m(1)−u(a∗,1)

v(a∗,1)
, then the random disclosure policy is also optimal. In

Example 1, the policy of fully disclosing the state with delay does not alter the

belief that the state is ω1 when a∗ is played; the belief stays fixed at the prior

p0 = 3/20. By contrast, at each period in which information is disclosed and

a∗ is played, our policy decreases the belief; the average discounted beliefs is

p∗ = 133/1004 ≈ 0.13 < 3/20. Information disclosure plays two roles in our

optimal policy. First, the generated information value is a carrot to motivate

the agent to take action a∗ in early periods. Second, information disclosure

decreases the discounted average belief that the state is the high opportunity

cost state ω1 and, therefore, makes it easier to incentivize the agent to take

action a∗ for a longer expected time.

APPENDIX A. PROOFS

A.1. Mathematical preliminaries. We collect without proofs some useful

results about concave functions. Let f : [a, b] → R be a concave function and

a ≤ x < y < z ≤ b. The following properties hold:

(a) f(y)−f(x)
y−x ≥ f(z)−f(y)

z−y ,

(b) f(y)−f(a)
y−a ≥ f(z)−f(a)

z−a ,

(c) f(b)−f(x)
b−x ≥ f(b)−f(y)

b−y .

(d) f(y)−f(x)
y−x ≥ f(y+∆)−f(x+∆)

y−x for all ∆ ≥ 0 such that y + ∆ ≤ b.

Note that property (a) implies (d) and is true irrespective of whether x+∆ T y.

We will repeatedly use these properties in most of the following proofs.
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To prove Lemma 6, we will use the following property: if f : [a, b]→ R satisfies
f(x)−f(a)

x−a ≥ f(y)−f(a)
y−a for all a < x ≤ y ≤ b, then f is concave.

A.2. Recursive formulation: Theorem 4 of Ely (2015, p. 44). We first

note that the operator T is monotone, i.e., for all V ≥ V ′, T (V ) ≥ T (V ′). It also

satisfies T (V + c) ≤ T (V ) + δc for all positive constant c ≥ 0, for all V . Hence,

it is indeed a contraction by Blackwell’s theorem.

Ely (2015) proves that the principal’s maximal payoff is maxw∈[m(p0),M(p0)] V̂
∗(p0, w),

with V̂ ∗ the unique fixed point of the contraction T̂ , with T̂ differing from T

in that the promise-keeping constraint is as an equality; all other constraints

are the same. Note that the operator T̂ is also monotone.

We now argue that that V ∗(p0,m(p0)) = maxw∈[m(p0),M(p0)] V̂
∗(p0, w). (Note that

we are not arguing that T = T̂ .)

As a preliminary observation, note that T (V )(p, w) ≥ T̂ (V )(p, w) for all (p, w) ∈

W, for all V . Let w0 ∈ arg maxw∈[m(p0),M(p0)] V̂
∗(p0, w). We have that

V ∗(p0,m(p0)) ≥ V ∗(p0, w0) = T (V ∗)(p0, w0) ≥ T̂ (V ∗)(p0, w0) ≥ T̂ 2(V ∗)(p0, w0) ≥ · · · ≥

≥ lim
n→∞

T̂ n(V ∗)(p0, w0) = V̂ ∗(p0, w0),

where the first inequality follows from V ∗ being decreasing in w.

Conversely, let (λ∗s, p
∗
s, w

∗
s , a
∗
s)s∈S be a maximizer of T (V ∗)(p0,m(p0)). We have

that

M(p0) =
∑
s∈S

λ∗sM(p∗s) ≥
∑
s∈S

λ∗s[(1−δ)u(a∗s, p
∗
s)+δw

∗
s ] := ŵ0 ≥

∑
s∈S

λ∗sm(p∗s) ≥ m(p0),

hence (λ∗s, p
∗
s, w

∗
s , a
∗
s)s∈S is a maximizer for T (V̂ ∗)(p0, ŵ0) and, consequently,

V ∗(p0,m(p0)) = V̂ ∗(p0, ŵ0) ≤ max
w∈[m(p0),M(p0)]

V̂ ∗(p0, w).

A.3. Proposition 2. We break Proposition 2 into several lemmata.
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Lemma 1. Let (λs, ps, ws, as)s∈S be a solution to the maximization program

T (V ∗)(p, w). For all s ∈ S such that λs > 0, we have

(1− δ) v (as, ps) + δV ∗ (ps, ws) = V ∗ (ps, (1− δ)u (as, ps) + δws) .

Proof. By contradiction, assume that there exists s′ ∈ S such that λs′ > 0 and

(1− δ) v (as′ , ps′) + δV ∗ (ps′ , ws′) < V ∗ (ps′ , (1− δ)u (as′ , ps′) + δws′) .

Let (λ∗s, p
∗
s, w

∗
s , a
∗
s)s∈S be the policy, which achieves V ∗(ps′ , (1−δ)u(as′ , ps′)+δws′),

and consider the new policy

((λs, ps, ws, as)s∈S\{s′}, (λs′λ
∗
s, p
∗
s, w

∗
s , a
∗
s)s∈S).

By construction, the new policy is feasible. Moreover, we have that∑
s∈S\{s′}

λs[(1− δ)v(as, ps) + δV ∗(ps, ws)] + λs′
∑
s∈S

λ∗s[(1− δ)v(a∗s, p
∗
s) + δV ∗(p∗s, w

∗
s)] =

∑
s∈S\{s′}

λs[(1− δ)v(as, ps) + δV ∗(ps, ws)] + λs′V
∗(ps′ , (1− δ)u(as′ , ps′) + δws′) >

∑
s∈S

λs[(1− δ)v(as, ps) + δV ∗(ps, ws)],

a contradiction with the optimality of (λs, ps, ws, as)s∈S.

Since the fixed point satisfies V ∗(ps, (1 − δ)u(as, ps) + δws) ≥ (1 − δ)v(as, ps) +

δV ∗(ps, ws), we have the desired result. �

Lemma 2. Let (λs, ps, ws, as)s∈S be a solution to the maximization program

T (V ∗)(p, w). For all s ∈ S such that λs > 0, V ∗(ps, ws) = 0 if as 6= a∗.

Proof. Let s ∈ S such that λs > 0 and as 6= a∗. We have

(1− δ)v(as, ps) + δV ∗(ps, ws) = δV ∗(ps, ws) ≥ V ∗(ps, (1− δ)u(as, ps) + δws) ≥ V ∗(ps, ws),

where the first inequality follows from Lemma 1 and the second follows from

V ∗ decreasing in w and ws ≥ u(as, ps) for

(1− δ)u(as, ps) + δws ≥ m(ps),

to hold. It follows that V ∗(ps, ws) = 0. �
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Lemma 3. If there exists a solution (λ′s, p
′
s, w

′
s, a
′
s)s∈S′ to the maximization pro-

gram T (V ∗)(p, w), then there exists a solution (λs, ps, ws, as)s∈S such that as = a∗

for at most one s ∈ S with λs > 0.

Proof. Let (λ′s, p
′
s, w

′
s, a
′
s)s∈S′ be a solution to the maximization program T (V ∗)(p, w).

Let S∗ ⊆ S ′ be the set of signals such that as = a∗ and λs > 0. If S∗ is empty,

there is nothing to prove. If S∗ is non-empty, define p∗ as∑
s∈S∗

( λ′s∑
s∈S∗ λ

′
s

)
ps = p∗,

and
∑

s∈S∗ λ
′
s = λ∗. From the concavity of V ∗, we have that∑

s∈S∗
λ′s(v(a∗, p′s)(1− δ) + δV ∗(p′s, w

′
s)) = λ∗

(
v(a∗, p∗)(1− δ) + δ

∑
s∈S∗

(λ′s
λ∗

)
V (p′s, w

′
s)
)

≤ λ∗
(
v(a∗, p∗)(1− δ) + δV (p∗, w∗)

)
,

where

w∗ =
∑
s∈S∗

( λ′s∑
s∈S∗ λ

′
s

)
w′s.

Notice that w∗ ∈ [m(p∗),M(p∗)] since the convexity of m implies

M(p∗) =
∑
s∈S∗

( λ′s∑
s∈S∗ λ

′
s

)
M(p′s) ≥

∑
s∈S∗

( λ′s∑
s∈S∗ λ

′
s

)
ws ≥

∑
s∈S∗

( λ′s∑
s∈S∗ λ

′
s

)
m(p′s) ≥ m(p∗).

It is routine to verify that the new contract

((λ′s, p
′
s, w

′
s, a
′
s)s∈S′\S∗ , (λ

∗, p∗, a∗, w∗))

is feasible and, therefore, also optimal. �

Lemma 4. For any ω ∈ Ω , denote by qω the degenerate belief which puts

probability 1 on ω, and denote by â(qω) the optimal action at belief qω for the

agent. If there exists a solution (λ′s, p
′
s, w

′
s, a
′
s)s∈S′ to the maximization program

T (V ∗)(p, w), then there exists a solution (λs, ps, ws, as)s∈S such that for all s ∈ S

with as 6= a∗ it is ps = qω and as = â(qω) for some ω ∈ Ω.

Proof. We must argue that it is without loss of generality to focus on a subset

of policies such that, if a∗ is not recommended at some signal s, then ps is

a degenerate belief. Consider an optimal policy τ = (λs, ps, ws, as)s∈S as the
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solution to T (V ∗)(p, w). Recall that ps(ω) is the agent’s belief that the state is

ω after observing signal s. By Lemma 3, we can restrict attention to a solution

τ such that there is at most one signal s∗ ∈ S at which a∗ is recommended.

Define the alternative policy τ ′,

τ ′ =

( ∑
s∈S,s6=s∗

λs · ps(ω), qω,m(qω), â(qω)

)
ω∈Ω

, (λs∗ , ps∗ , ws∗ , a
∗)

 .

According to policy τ ′, with probability λs∗, the agent forms a posterior beliefs

ps∗ while the principal recommends a∗ and promises future payoff ws∗. With

probability
∑

s∈S,s6=s∗ λs · ps(ω), the agent knows that the state is ω for sure

while the principal recommends â(qω) and promises future payoff m(qω). It’s

a property of τ ′ that whenever a∗ is not recommended at some signal, then

the posterior at that signal is degenerate. We must show that τ ′ is an optimal

policy. We begin by showing that τ ′ is a feasible policy. Note first that∑
ω∈Ω

∑
s∈S,s6=s∗

λs · ps(ω) + λs∗ =
∑

s∈S,s6=s∗
λs + λs∗ = 1.

Second, for any ω′ ∈ Ω, we have that∑
ω∈Ω

[ ∑
s∈S,s6=s∗

λs · ps(ω)
]
qω(ω′) + λs∗ps∗(ω

′) =
∑

s∈S,s6=s∗
λs · ps(ω′) + λs∗ps∗(ω

′) = p(ω′),

where the equality holds since qω is a degenerate belief such that

qω(ω′) =

1 if ω′ = ω

0 otherwise
.

Third, the following equation holds,

λs∗ [(1− δ)u(a∗; ps∗) + δws∗ ] +
∑
ω∈Ω

∑
s∈S,s6=s∗

λs · ps(ω)[(1− δ)u(â(qω); qω) + δm(qω)]

=λs∗ [(1− δ)u(a∗; ps∗) + δws∗ ] +
∑
ω∈Ω

∑
s∈S,s6=s∗

λs · ps(ω)m(qω)

=λs∗ [(1− δ)u(a∗; ps∗) + δws∗ ] +
∑

s∈S,s6=s∗
λs ·M(ps)

≥λs∗ [(1− δ)u(a∗; ps∗) + δws∗ ] +
∑

s∈S,s6=s∗
λs · [(1− δ)u(as; ps) + δws ≥ w.
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This shows that τ ′ is feasible, as it satisfies all the constraints in the opti-

mization problem with value T (V ∗)(p, w). It remains to show that it is opti-

mal. By Lemma 2, when a∗ is not recommended at signal s, i.e., as 6= a∗, it is

V ∗(ps, ws) = 0. Therefore, we have that

V ∗(p, w) =
∑
s∈S

λs[(1− δ)v(as; ps) + δV ∗(ps;ws)]

= λs∗ [(1− δ)v(a∗; ps∗) + δV ∗(ps∗ ;ws∗)],

which is also the value that the principal achieves under policy τ ′, which is

then optimal. �

Lemma 5. If there exists a solution (λ′s, p
′
s, w

′
s, a
′
s)s∈S′ to the maximization pro-

gram T (V ∗)(p, w), then there exists a solution (λs, ps, ws, as)s∈S such that

(1− δ)u(as, ps) + δws = m(ps),

for all s such that λs > 0 and as = a∗.

Proof. By Lemma 3, there exists a solution (λs, ps, ws, as)s∈S such that there

is at most one s∗ ∈ S such that as∗ = a∗. If m(ps∗ )−(1−δ)u(a∗;ps∗ )
δ

= w∗s , then the

lemma holds. Hence from now on we consider the case:

w∗s >
m(ps∗)− (1− δ)u(a∗; ps∗)

δ
. (4)

By Lemma 1, we have that

V ∗(ps∗ , (1− δ)u(a∗, ps∗) + δws∗) = (1− δ)v(a∗, ps∗) + δV ∗(ps∗ , ws∗).

Define w̄ ≥ ws∗ as follows:

w̄ := sup
{
w ∈ [m(ps∗), (1− δ)u(a∗, ps∗) + δM(ps∗)] : V ∗(ps∗ , w) = (1− δ)v(a∗, ps∗) + δV ∗

(
ps∗ ,

w − (1− δ)u(a∗, ps∗)

δ

)}
.

We now show that, for all ∀w′ ∈ [m(ps∗), w̄) it is

V ∗(ps∗ , w
′) = (1− δ)v(a∗, ps∗) + δV ∗

(
ps∗ ,

w′ − (1− δ)u(a∗, ps∗)

δ

)
. (5)
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By the definition of w̄, for all w′ < w̄ there exists wo ∈ (w′, w̄] such that

V ∗(ps∗ , w
o) = (1− δ)v(a∗, ps∗) + δV ∗

(
ps∗ ,

wo − (1− δ)u(a∗, ps∗)

δ

)
. (6)

Take any w′, w′′ such that m(ps∗) ≤ w′ ≤ w′′ ≤ (1 − δ)u(a∗, ps∗) + δM(ps∗).

Note that w′′ ≤ w′′−(1−δ)u(a∗;ps∗ )
δ

and w′ ≤ w′−(1−δ)u(a∗;ps∗ )
δ

≤ w′′−(1−δ)u(a∗;ps∗ )
δ

, since

u(a∗; ps∗) ≤ m(ps∗). Hence, we can find α, β ≤ [0, 1] such that

w′ − (1− δ)u(a∗; ps∗)

δ
= αw′ + (1− α)

w′′ − (1− δ)u(a∗; ps∗)

δ

w′′ = βw′ + (1− β)
w′′ − (1− δ)u(a∗; ps∗)

δ

Moreover, since for any w′, w′′,

w′ + δ
w′′ − (1− δ)u(a∗; ps∗)

δ
= w′′ + δ

w′ − (1− δ)u(a∗; ps∗)

δ

=

[
βw′ + (1− β)

w′′ − (1− δ)u(a∗; ps∗)

δ

]
+δ

[
αw′ + (1− α)

w′′ − (1− δ)u(a∗; ps∗)

δ

]
= (β + δα)w′ + [(1− β) + δ(1− α)]

w′′ − (1− δ)u(a∗; ps∗)

δ

we have that (β + δα) = 1

[(1− β) + δ(1− α)] = δ

Therefore it is

V ∗(ps∗ ;w
′′) + δV ∗

(
ps∗ ;

w′ − (1− δ)u(a∗; ps∗)

δ

)
= V ∗

(
ps∗ ; βw

′ + (1− β)
w′′ − (1− δ)u(a∗; ps∗)

δ

)
+ δV ∗

(
ps∗ ;αw

′ + (1− α)
w′′ − (1− δ)u(a∗; ps∗)

δ

)
≥ (β + δα)V ∗(ps∗ ;w

′) + [(1− β) + δ(1− α)]V ∗
(
ps∗ ;

w′′ − (1− δ)u(a∗; ps∗)

δ

)
= V ∗(ps∗ ;w

′) + δV ∗
(
ps∗ ;

w′′ − (1− δ)u(a∗; ps∗)

δ

)
, (7)
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where the inequality follows from the concavity of V ∗ with respect to w.

Moreover, by (6), for all w′ ∈ [m(ps∗), w̄) there exists wo ∈ (w′, w̄] such that

(1− δ)v(a∗; ps∗) = V ∗(ps∗ ;w
o)− δV ∗

(
ps∗ ;

wo − (1− δ)u(a∗; ps∗)

δ

)
≥ V ∗(ps∗ ;w

′)− δV ∗
(
ps∗ ;

w′ − (1− δ)u(a∗; ps∗)

δ

)
,

where the inequality follows from (7), and is equivalent to

V ∗(ps∗ , w
′) ≤ (1− δ)v(a∗, ps∗) + δV ∗

(
ps∗ ,

w′ − (1− δ)u(a∗, ps∗)

δ

)
.

Since V ∗ is a value function, it is also

V ∗(ps∗ ;w
′) ≥ (1− δ)v(a∗; ps∗) + δV ∗

(
ps∗ ;

w′ − (1− δ)u(a∗; ps∗)

δ

)
.

Hence, (5) holds and for all w′ ∈ [m(ps∗), w̄) it is

V ∗(ps∗ , w
′) = (1− δ)v(a∗, ps∗) + δV ∗

(
ps∗ ,

w′ − (1− δ)u(a∗, ps∗)

δ

)
,

It follows that, for all w′, w′′ ∈ [m(ps∗), w̄), we have

(1− δ)v(a∗; ps∗) = V ∗(ps∗ ;w
′)− δV ∗

(
ps∗ ;

w′ − (1− δ)u(a∗; ps∗)

δ

)
= V ∗(ps∗ ;w

′′)− δV ∗
(
ps∗ ;

w′′ − (1− δ)u(a∗; ps∗)

δ

)
or

V ∗(ps∗ , w
′)+δV ∗

(
ps∗ ,

w′′ − (1− δ)u(a∗, ps∗)

δ

)
= V ∗(ps∗ , w

′′)+δV ∗
(
ps∗ ,

w′ − (1− δ)u(a∗, ps∗)

δ

)
.

(8)

We now prove by contradiction that, for w ∈
[
m(ps∗),

w̄−(1−δ)u(a∗,ps∗ )
δ

)
, V ∗(ps∗ , ·)

is linear in w. Suppose, to the contrary, that it is not; then, since V ∗(ps∗ , ·)

is concave in w, there exists w̄′ ∈
(
m(ps∗ )−(1−δ)u(a∗,ps∗ )

δ
, w̄−(1−δ)u(a∗,ps∗ )

δ

)
such that,

for all α ∈ (0, 1)

αV ∗(ps∗ ,m(ps∗)) + (1− α)V ∗(ps∗ , w̄
′) < V ∗(ps∗ , αm(ps∗) + (1− α)w̄′).
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Since w̄′ > m(ps∗ )−(1−δ)u(a∗,ps∗ )
δ

, we then have that(1− δ)u(a∗, ps∗) + δw̄′ ∈ (m(ps∗), w̄
′)

m(ps∗ )−(1−δ)u(a∗,ps∗ )
δ

∈ (m(ps∗), w̄
′)

.

Therefore, there exists γ, η ∈ (0, 1) such that(1− δ)u(a∗, ps∗) + δw̄′ = ηm(ps∗) + (1− η)w̄′

m(ps∗ )−(1−δ)u(a∗,ps∗ )
δ

= γm(ps∗) + (1− γ)w̄′
. (9)

andV
∗(ps∗ , (1− δ)u(a∗, ps∗) + δw̄′) > ηV ∗(ps∗ ,m(ps∗)) + (1− η)V ∗(ps∗ , w̄

′)

δ
[
V ∗(ps∗ ,

m(ps∗ )−(1−δ)u(a∗,ps∗ )
δ

)
]
> δ [γV ∗(ps∗ ,m(ps∗)) + (1− γ)V ∗(ps∗ , w̄

′)]
.

Adding up lhs and rhs of the two inequalities, we obtain

V ∗(ps∗ , (1− δ)u(a∗, ps∗) + δw̄′) + δV ∗
(
ps∗ ,

m(ps∗)− (1− δ)u(a∗, ps∗)

δ

)
> (η + δγ)V ∗(ps∗ ,m(ps∗)) + [(1− η) + δ(1− γ)]V ∗(ps∗ , w̄

′)

= V ∗(ps∗ ,m(ps∗)) + δV ∗(ps∗ , w̄
′), (10)

where the last equality follows from the fact that, by (9), (η + δγ) = 1 and

[(1− η) + δ(1− γ)] = δ, since

(1− δ)u(a∗, ps∗) + δw̄′ + δ
m(ps∗)− (1− δ)u(a∗, ps∗)

δ
= m(ps∗) + δw̄′

= (η + δγ)m(ps∗) + [(1− η) + δ(1− γ)]w̄′.

Letting w′′ = (1 − δ)u(a∗, ps∗) + δw̄′ and w′ = m(ps∗), inequality (10) can be

written as

V ∗(ps∗ , w
′′) + δV ∗

(
ps∗ ,

w′ − (1− δ)u(a∗, ps∗)

δ

)
> V ∗(ps∗ , w

′) + δV ∗
(
ps∗ ,

w′′ − (1− δ)u(a∗, ps∗)

δ

)
,

which contradicts (8) and hence proves that, for w ∈
[
m(ps∗),

w̄−(1−δ)u(a∗,ps∗ )
δ

)
,

V ∗(ps∗ , ·) is linear in w.
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Recall that, by Lemma 3, there exists a solution τ = (λs, ps, ws, as)s∈S such

that there is at most one s∗ ∈ S such that as∗ = a∗. We now define an al-

ternative policy τ ′ associating tuple (λ′s, p
′
s, w

′
s, a
′
s)s∈S′ to each (p, w) and show

that it is also optimal. First, pick any ŵ ∈
(
w̄, w̄−(1−δ)u(a∗,ps∗ )

δ

)
and denote by

(λ̂s, p̂s, ŵs, âs)s∈Ŝ a solution to T (V ∗)(ps∗ , ŵ). Note that, by the definition of w̄,(
1, ps∗ ,

ŵ−(1−δ)u(a∗,ps∗ )
δ

, a∗
)

is not a solution to T (V ∗)(ps∗ , ŵ). The alternative dis-

closure policy τ ′ is defined as follows, starting from any state (p, w): (i) For all

signals s ∈ S\{s∗} the policy is the same as the solution τ = (λs, ps, ws, as)s∈S:

signal s is send with probability λs and is associated with beliefs ps, promised

utility ws and recommended action as; (ii) signal s∗ is sent with probability

λs∗
(
ŵ−[(1−δ)u(a∗,ps∗ )+δws∗ ]

ŵ−m(ps∗ )

)
and is associated with beliefs ps∗, promised utility

m(ps∗), and recommended action a∗; (iii) with the remaining probability the

solution (λ̂s, p̂s, ŵs, âs)s∈Ŝ to T (V ∗)(ps∗ , ŵ) is adopted. More precisely, signal

ŝ ∈ Ŝ is send with probability λs∗λ̂ŝ
(

(1−δ)u(a∗,ps∗ )+δws∗−m(ps∗ )
ŵ−m(ps∗ )

)
and is associated

with beliefs p̂ŝ, promised utility ŵŝ and recommended action âŝ.

We now argue that the policy τ ′ is a solution to T (V ∗)(p, w). First, for signals

s ∈ S\{s∗}, τ ′ coincides with the solution τ = (λs, ps, ws, as)s∈S. Second, since

V ∗(ps∗ , w) is linear in w ∈
[
m(ps∗),

w̄−(1−δ)u(a∗,ps∗ )
δ

)
and τ ′ splits what the solu-

tion τ = (λs, ps, ws, as)s∈S does at s∗, we only need to check that for the signals

s∗ and ŝ, τ ′ is a solution. This is the case because (λ̂s, p̂s, ŵs, âs)s∈Ŝ is a solution

to T (V ∗)(ps∗ , ŵ) and, for signal s∗ and state (ps∗ ,m(ps∗)),

V ∗(ps∗ ,m(ps∗)) = (1− δ)v(a∗; ps∗) + δV ∗
(
ps∗ ,

m(ps∗)− (1− δ)u(a∗, ps∗)

δ

)
,

which implies that
(

1, ps∗ ,
m(ps∗ )−(1−δ)u(a∗,ps∗ )

δ
, a∗
)

is a solution to T (V ∗)(ps∗ ,m(ps∗)).

By Lemma 3, besides τ ′ there also exists a solution τ ′′ = (λ′′s , p
′′
s , w

′′
s , a
′′
s)s∈S′′ such

that there is at most one s∗ ∈ S ′′ at which a′′s∗ = a∗ and λ′′s∗ = λ′s∗ < λs∗. We

can then define an alternative optimal policy τ ′′′ in the same way we have de-

fined τ ′. By Lemma 3, we can find a new solution such that there is at most

one signal s∗ at which a∗ is recommended, and by Lemma 4, we can guar-

antee that the principal sends at most |Ω| + 1 signals. Call such a solution

τ 1 := ((λ1
ω, qω,m(qω), â(qω))ω∈Ω, (λ

1
s∗ , p

1
s∗ , w

1
s∗ , s

∗)). According to τ 1, after signal

s∗ the agent’s belief is p1
s∗, the principal recommends a∗ and promises future
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payoff w1
s∗. For any ω ∈ Ω, there exists a signal where the agent believes the

state is ω for sure, the principal recommends the agent’s optimal action â(qω)

and promises future payoff m(qω).

Iterating this process leads to defining a sequence of optimal policies {τn}n≥1,

such that λns∗ is decreasing, while λnω is increasing, in n. Therefore, the se-

quences {λns∗} and {λnω}must converge. Furthermore, the sequences are strictly

decreasing and strictly increasing unless they converge in a finite number of

steps. Denote by λs∗ and λω their limits and denote by ps∗ the solution of the

Bayesian plausibility constraint

λs∗ps∗ +
∑
ω∈Ω

λω = p.

We now argue that the policy sequence {τn} converges to the limit policy τ∞,

τ∞ :=

(
(λω, qω,m(qω), â(qω))ω∈Ω,

(
λs∗ , ps∗ ,

m(ps∗)− (1− δ)u(a∗; ps∗)

δ
, a∗
))

Under this policy, when a∗ is recommended at signal s∗, the principal promises

future payoff w∞s∗ = m(ps∗ )−(1−δ)u(a∗;ps∗ )
δ

, and it is thus the case that, as stated by

the lemma,

(1− δ)u(a∗; ps∗) + δw∞s∗ = m(ps∗).

As we have already argued that {λns∗} and {λnω} converge to λs∗ and λω, to

conclude the proof it only remains to show that {wns∗} converges to w∞s∗ . By

(4) and the definition of τn, unless {λns∗} and {λnω} have converged in a finite

number of steps less than n, it is

wns∗ >
m(pns∗)− (1− δ)u(a∗, pns∗)

δ
,

and λns∗ is strictly decreasing. Hence in the limit, it must be the case that

w∞s∗ =
m(ps∗)− (1− δ)u(a∗; ps∗)

δ
.

. �

A.4. Value functions, Ω = {ω0, ω1}. This section characterizes the value

function Vq induced by the policy τq in the binary case. As explained in the
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text, it is enough to characterize Vq1. We first start with the definition of

important subsets of [0, 1].

A.4.1. Construction of the sets Qk. Let Q0 := [0, 1]. We define inductively the

set Qk ⊆ [0, 1], k ≥ 0. We write qk (resp., qk) for inf Qk (resp., supQk). For any

k ≥ 0, define the function Uk : [qk, 1]→ R:

Uk(q) :=
1− q
1− qk

m(qk) +
q − qk

1− qk
m(1),

with the convention that Uk ≡ m(1) if qk = 1. Note that U0(q) = M(q) and

Uk(q) ≥ m(q) for all k. We define Qk+1 as follows:

Qk+1 = {q ∈ Qk : (1− δ)u(a∗, q) + δUk(q) ≥ m(q)}.

For a graphical illustration, see Figure 10.

m(·)

Uk(·)

u(a∗, ·)
qk

m(qk)

1

m(1)

(1− δ)u(a∗, ·) + δUk(·)

qk+1 qk+1

FIGURE 10. Construction of the thresholds

Few observations are worth making. First, we have that P ⊆ Qk for all k.

Second, we have a decreasing sequence, i.e., Qk+1 ⊆ Qk for all k. Third, if

Qk and P are non-empty, then they are closed intervals. Fourth, the limit

Q∞ = limk→∞Q
k =

⋂
kQ

k exists and includes P . Moreover, if P 6= ∅, then

q∞ = p, where p := inf P . If P = ∅, then Q∞ = ∅. Consequently, there exists

k∗ <∞ such that ∅ = Qk∗+1 ⊂ Qk∗ 6= ∅.

The first to the third observations are readily proved, so we concentrate on

the proof of the fourth observation. The limit exists as we have a decreasing

sequence of sets.
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We prove that if P = ∅, then Q∞ = ∅. So, assume that P = ∅. We first argue

that it cannot be that Qk = Qk−1 6= ∅ for some k ≥ 0. To the contrary, assume

that Qk = Qk−1 6= ∅ for some k ≥ 0, hence Qk′ = Qk−1 for all k′ ≥ k. From the

convexity and continuity of m and the linearity of u, Qk−1 is the closed interval

[qk−1, qk−1], with the two boundary points solution to

(1− δ)u(a∗, q) + δUk−2(q) = m(q).

Therefore, if (qk, qk) = (qk−1, qk−1), we have that:

m(qk−1) = (1− δ)u(a∗, qk−1) + δm(qk−1),

m(qk−1) = (1− δ)u(a∗, qk−1) + δ
[1− qk−1

1− qk−1
m(qk−1) +

qk−1 − qk−1

1− qk−1
m(1)

]
,

≤ (1− δ)u(a∗, qk−1) + δm(qk−1).

This implies that u(a∗, qk−1) = m(qk−1) and u(a∗, qk−1) = m(qk−1) and, therefore,

∅ 6= Qk−1 ⊆ P , a contradiction.

We thus have an infinite sequence of strictly decreasing non-empty closed

intervals. Let ε := minp∈[0,1]m(p) − u(a∗, p). Since P = ∅, we have that ε > 0.

For all p ∈ Q∞, for all k,

m(p) ≤ (1− δ)u(a∗, p) + δUk(p),

≤ (1− δ)(m(p)− ε) + δUk(p).

Assume that Q∞ is non-empty and let q∞ its greatest lower bound. Since

q∞ ∈ Qk for all k, we have that Uk(q∞) ≥ m(q∞) + ε(1 − δ)/δ for all k. Since

limk→∞ U
k(q∞) = m(q∞), we have that m(q∞) ≥ m(q∞) + ε(1 − δ)/δ, a contra-

diction.

We now prove that if P 6= ∅, then q∞ = p. From above, we have that if

Qk = Qk−1 6= ∅ for some k ≥ 0, hence Qk′ = Qk−1 for all k′ ≥ k, then P = Qk

since P ⊆ Qk. If we have an infinite sequence of strictly decreasing sets, for
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all q ∈ Q∞,

(1− δ)u(a∗, q) + δ
[ 1− q

1− q∞
m(q∞) +

q − q∞

1− q∞
m(1)

]
≥ m(q).

Taking the limit q ↓ q∞, we obtain that u(a∗, q∞) = m(q∞), i.e., q∞ ∈ P . Hence,

q∞ = p.

A.4.2. Value functions. We first derive Vq1for all (p, w) ∈ W \W2
q1

.

To start with, Vq1(1,m(1)) = 0 since a∗ is not optimal at p = 1. Similarly,

Vq1(0,m(0)) = 0 if a∗ is not optimal at p = 0, while Vq1(0,m(0) = v(a∗, 0) if

a∗ is optimal at p = 0. Also, Vq1(q1,m(q1)) = (1 − δ)v(a∗, q1) if q1 > 0; while

Vq1(0,m(0)) = v(a∗, 0) if q1 = 0, since a∗ is then optimal at p = 0.

With the function Vq1 defined at these three points, it is then defined at all

points (p, w) inW1
q1
∪W4

q1
. In particular, it is easy to show that

Vq1(q
1, w) =

M(q1)− w
M(q1)−m(q1)

(1− δ)v(a∗, q1) =
M(q1)− w

M(q1)− u(a∗, q1)
v(a∗, q1),

for all w ∈ [m(q1),M(q1)].

At all points (p, w) ∈ W3
q1

,

Vq1(p, w) =
1− p
1− q1Vq1(q

1,m(q1)).

Therefore, Vq1 is well-defined at all (p, w) ∈ W \W2
q1

.

At all points (p, w) ∈ W2
q1

, Vq1(p, w) is defined via the recursive equation:

Vq1(p, w) = λ(p, w)[(1− δ)v(a∗, ϕ(p, w)) + δVq1(ϕ(p, w),w(ϕ(p, w))]

= λ(p, w)Vq1(ϕ(p, w),m(ϕ(p, w))).

Since Vq1(p, w) = λ(p, w)Vq1(ϕ(p, w),m(ϕ(p, w)), the value function is well-defined

at all (p, w) if it is well-defined at all (p,m(p)), which we now prove.

By construction of the sets Qk, observe that if p ∈ Qk \ Qk+1, then w(p) ∈

(Uk(p), Uk+1(p)] and, therefore, ϕ(p,w(p)) ∈ [qk−1, qk) ⊂ Qk−1 \ Qk. Moreover,

ϕ(qk,w(qk)) = qk. We now use these observations to complete the derivation

of Vq1 .
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For all p ∈ Q1 \Q2, we have that w(p) ∈ Q0 \Q1, so that (p,w(p)) ∈ W4
q1

. Since

Vq1(p,m(p)) = (1− δ)v(a∗, p) + δVq1(p,w(p)),

Vq1(p,m(p)) is well-defined for all p ∈ Q1 \ Q2. By induction, assume that it

is well-defined for all p ∈
⋃
`<kQ

` \ Q`+1. We argue that it is well-defined

for all p ∈ Qk \ Qk+1. Fix any p ∈ Qk \ Qk+1. From our initial observation,

ϕ(p,w(p)) ∈ [qk−1, qk) and, therefore, Vq1(p,m(p)) is well-defined since

Vq1(p,m(p)) = (1− δ)v(a∗, p) + δVq1(p,w(p))

= (1− δ)v(a∗, p) + λ(p,w(p))Vq1(ϕ(p,w(p)),m(ϕ(p,w(p))))︸ ︷︷ ︸
defined by the induction step

.

Therefore, Vq1(p,m(p)) is well-defined for all p ∈
⋃
`Q

` \ Q`+1 = Q1 \ Q∞. It

remains to argue that it is well-defined for all p ∈ Q∞.

From the definition of Q∞, we have that w(p) ≤ 1−p
1−q∞m(q∞) +

p−q∞

1−q∞m(1) and,

therefore, ϕ(p,w(p)) ∈ Q∞. In other words, if p ∈ Q∞, then ϕ(p,w(p)) ∈ Q∞, so

that the restriction of Vq1(·,m(·)) to Q∞ is entirely defined by its value on Q∞

via the contraction:

Vq1(p,m(p)) = (1− δ)v(a∗, p) + δλ(p,w(p))Vq1(ϕ(p,w(p)),m(ϕ(p,w(p))).

The unique solution to this fixed point problem is given by:

Vq1(p,m(p)) = v(a∗, p)− m(p)− u(a∗, p)

m(1)− u(a∗, 1)
v(a∗, 1),

for all p ∈ Q∞. To see this, with a slight abuse of notation, write (λ, ϕ) for

(λ(p, w), ϕ(p,w(p))), and note that:

(1− δ)v(a∗, p) + δλ

[
v(a∗, ϕ)− m(ϕ)− u(a∗, ϕ)

m(1)− u(a∗, 1)
v(a∗, 1)

]
= (1− δ)v(a∗, p) + δ [v(a∗, p)− (1− λ)v(a∗, 1)]

− m(p)− (1− λ)m(1)− u(a∗, p)(1− δ)
m(1)− u(a∗, 1)

v(a∗, 1) + δ
u(a∗, p)− (1− λ)u(a∗, 1)

m(1)− u(a∗, 1)
v(a∗, 1)

= v(a∗, p)− m(p)− u(a∗, p)

m(1)− u(a∗, 1)
v(a∗, 1),
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where we use the identities λϕ+ (1−λ)1 = p, λm(ϕ) + (1−λ)m(1) = w(p), and

δw(p) = m(p)− (1− δ)u(a∗, p).

This completes the characterization of Vq1. Note that Vq1 and, therefore, all

value functions Vq, are continuous functions.

A.4.3. Value functions: another representation. We now present another con-

struction of Vq. For any q ∈ [q1, q1], define the function mq : [0, 1]→ R as

(
1− p

q1

)
m(0) + p

q1
m(q1) if p ∈ [0, q1],

m(p) if p ∈ (q1, q],

1−p
1−qm(q) + p−q

1−qm(1) if p ∈ (q, 1].

Note that mq is convex, mq(p) ≥ m(p) for all p ∈ [0, 1], mq(0) = m(0) and

mq(1) = m(1). For a graphical illustration, see Figure 11.

m(·)

M(·)

q1 1

m(1)

q1q

mq(·)

FIGURE 11. The function mq

It is straightforward to check that we have the following formula:

Vq(p, w) = λ(p, w)Vq(ϕ(p, w),mq(ϕ(p, w)), (11)

where the functions λ and ϕ are defined as in the main text, but with mq

instead of m. See Equation (3).

A.5. Theorem 2. To prove Theorem 2, we prove the following proposition

and invoke Theorem 1.

Proposition 3. Let Vq∗ be the value function induced by the policy τ ∗, with

q∗ = sup
{
p ∈ Q1 : Vq1(p,m(p)) ≥ Vq1(p, w) for all w

}
.
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Then, Vq∗ is concave in (p, w), decreasing in w, and satisfies:

Vq∗(p,m(p)) ≥ (1− δ)v(a∗, p) + δVq∗(p
∗,w(p)),

for all p ∈ Q1.

We start with two preliminary observations.

OBSERVATION A. For all q ∈ [q1, q1], we have the following identity:

Vq(p, w) =
1− p
1− p′

Vq

(
p′,

1− p′

1− p
w +

p′ − p
1− p

mq(1)

)
.

The proof is as follows. Let w′ = 1−p′
1−p w + p′−p

1−pmq(1).

Assume that w′ > mq(p
′). Since

λ(p′, w′)

 ϕ(p′, w′)

mq(ϕ(p′, w′))

+
(
1− λ(p′, w′)

) 1

mq(1)

 =

p′
w′

 ,

we have

1− p
1− p′

λ(p′, w′)

 ϕ(p′, w′)

mq(ϕ(p′, w′))

+

(
1− 1− p

1− p′
λ(p′, w′)

) 1

mq(1)

 =

p
w

 .

Therefore, λ(p, w) = 1−p
1−p′λ(p′, w′) and ϕ(p′, w′) = ϕ(p, w) since the solution

(λ(p′, w′), ϕ(p′, w′)) is unique when w′ > mq(p
′). The statement then follows

from Equation (11).

Assume that w′ = mq(p
′). From the convexity of mq, this requires that w =

mq(p), so thatmq(p
′) = 1−p′

1−pmq(p)+
p′−p
1−pmq(1). The result follows from continuity

as:

Vq(p,mq(p)) = lim
w→mq(p)

Vq(p, w),

= lim
w→mq(p)

1− p
1− p′

Vq

(
p′,

1− p′

1− p
w +

p′ − p
1− p

mq(1)

)
,

=
1− p
1− p′

Vq

(
p′,

1− p′

1− p
mq(p) +

p′ − p
1− p

mq(1)

)
,

=
1− p
1− p′

Vq (p′,mq(p
′)) .
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Note that this implies that

Vq(p,w(p) + c) = λ(p,w(p))Vq

(
ϕ(p,w(p)),mq(ϕ(p,w(p))) +

c

λ(p,w(p))

)
,

where c is a positive constant.

OBSERVATION B. The value function Vq1(p, ·) : [mq1(p),M(p)] → R is concave

in w, for each p. See Lemma 6 in section A.6.

A.5.1. Proposition 3(a). We prove that Vq∗ is decreasing in w. To start with,

fix p ∈ [0, 1] and (w,w′) ∈ [mq∗(p),M(p)]× [mq∗(p),M(p)], with w′ > w.

First, assume that p ≤ q∗. If w = mq∗(p), then Vq∗(p, w
′) ≤ Vq∗(p, w) by con-

struction of q∗. If w > mq∗(p), we have that

Vq∗(p, w
′)− Vq∗(p, w)

w′ − w
=

Vq1(p, w
′)− Vq1(p, w)

w′ − w

≤
Vq1(p, w)− Vq1(p,mq∗(p))

w −mq∗(p)

=
Vq∗(p, w)− Vq∗(p,mq∗(p))

w −mq∗(p)
≤ 0,

where the inequality follows from the concavity of Vq1 with respect to w, for

all w ≥ mq1(p). (Recall that mq∗(p) = mq1(p) for all p ≤ q∗.)

Second, assume that p > q∗. We show in detail how to make use of Observation

A to deduce the result. We repeatedly use similar computations later on. We

have

Vq∗(p, w
′) = λ(p, w′)Vq∗(ϕ(p, w′),mq∗(ϕ(p, w′)))

= λ(p, w′)
1− ϕ(p, w′)

1− ϕ(p, w)
Vq∗

(
ϕ(p, w),

1− ϕ(p, w)

1− ϕ(p, w′)
mq∗(ϕ(p, w′)) +

(
1− 1− ϕ(p, w)

1− ϕ(p, w′)

)
mq∗(1)

)
= λ(p, w)Vq∗

(
ϕ(p, w),

λ(p, w′)

λ(p, w)
mq∗(ϕ(p, w′)) +

(
1− λ(p, w′)

λ(p, w)

)
mq∗(1)

)
= λ(p, w)Vq∗

(
ϕ(p, w),mq∗(ϕ(p, w)) +

w′ − w
λ(p, w)

)
,

where the first line follows from the construction of Vq∗, the second line from

Observation A, the third line from the definition of the functions λ and ϕ and



CONTRACTING OVER PERSISTENT INFORMATION 49

the last line from the following computations:

λ(p, w′)

λ(p, w)
mq∗(ϕ(p, w′)) +

(
1− λ(p, w′)

λ(p, w)

)
mq∗(1) =

1

λ(p, w)
w′ +

(
1− 1

λ(p, w)

)
mq∗(1)

=
1

λ(p, w)
w′ +

(
1− 1

λ(p, w)

)[
w − λ(p, w)mq∗(ϕ(p, w))

1− λ(p, w)

]
= mq∗(ϕ(p, w)) +

w′ − w
λ(p, w)

.

Thus, we are able to express Vq∗(p, w
′) as λ(p, w)Vq∗(ϕ(p, w), w̃), with w̃ the

above expression. Moreover, ϕ(p, w) ≤ q∗ as w ≥ mq∗(p). We can use the

(already established) concavity of Vq∗ in w for each p ≤ q∗ to deduce the desired

result. More precisely, we have that:

Vq∗(p, w
′)− Vq∗(p, w)

w′ − w
=

λ(p, w)
(
Vq∗
(
ϕ(p, w),mq∗(ϕ(p, w)) + w′−w

λ(p,w)

)
− Vq∗ (ϕ(p, w),mq∗(ϕ(p, w)))

)
w′ − w

≤ 0,

where the inequality follows from the concavity of Vq∗ in w at all p ≤ q∗.

Lastly, since Vq∗(p, w) = Vq∗(p,mq∗(p)) for all w ∈ [m(p),mq∗(p)], the result im-

mediately follows for all (w,w′), with w ∈ [m(p),mq∗(p)].

A.5.2. Proposition 3(b). We prove the concavity of Vq∗ with respect to both

arguments (p, w).

LetW = {(p, w) : w ≥ mq∗(p)}. Let (p, w) ∈ W, (p′, w′) ∈ W and α ∈ [0, 1]. Write

(pα, wα) for

α

p
w

+ (1− α)

p′
w′

 .

Without loss of generality, assume that p ≤ p′. We have that:
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αVq∗(p, w) + (1− α)Vq∗(p
′, w′)

= α
1− p
1− p′

Vq∗
(
p′,

1− p′

1− p
w +

p′ − p
1− p

mq∗(1)︸ ︷︷ ︸
≥mq∗ (p′)

)
+ (1− α)Vq∗(p

′, w′)

≤
(
α

1− p
1− p′

+ (1− α)

)
Vq∗

p′, α 1−p
1−p′

(
1−p′
1−p w + p′−p

1−pmq∗(1)
)

+ (1− α)w′

α 1−p
1−p′ + (1− α)


=

1− pα
1− p′

Vq∗

(
p′,

1− p′

1− pα
wα +

p′ − pα
1− pα

mq∗(1)

)
= Vq∗(pα, wα),

where the inequality follows from the concavity of Vq1 with respect to w for

each p and the property that Vq∗(p, w) = Vq1(p, w) for all (p, w) such that w ≥

mq∗(p). Notice that we use twice Observation A.

Finally, for all (p, w) ∈ W, for all (p′, w′) ∈ W and for all α, we have that:

αVq∗(p, w) + (1− α)Vq∗(p
′, w′) = αVq∗(p,max(w,mq∗(p))) + (1− α)Vq∗(p

′,max(w′,mq∗(p
′)))

≤ Vq∗(pα, αmax(w,mq∗(p)) + (1− α) max(w,mq∗(p
′)))

≤ Vq∗(pα, wα),

since αmax(w,mq∗(p)) + (1 − α) max(w,mq∗(p
′)) ≥ wα and the fact that Vq∗ is

decreasing in w for all p. This completes the proof of concavity.

A.5.3. Proposition 3 (c). We prove that Vq∗(p,m(p)) ≥ (1−δ)v(a∗, p)+δVq∗(p,w(p))

for all p ∈ Q1.

The statement is true for all p ≤ q∗ by definition since Vq∗(p, w) = Vq1(p, w) for

all w.

Assume that p > q∗. From Lemma 7, there exists q such that ϕ(p,w(p)) ≥

ϕ(p′,w(p′)) for all p′ ≥ p ≥ q. Moreover, it follows from A.6.3 and A.6.4 that

V (p,m(p)) ≥ V (p, w) for all w, for all p ≤ q. Therefore, we must have that

q∗ ≥ q. It follows that ϕ(p,w(p)) < ϕ(q∗,w(q∗)) ≤ q∗, hence w(p) ≥ mq∗(p). We

therefore have that Vq∗(p,w(p)) = Vq1(p,w(p)).
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Since Vq1(p,m(p)) = (1−δ)v(a∗, p)+δVq1(p,w(p)) for all p ∈ Q1 and Vq∗(p,m(p)) =

Vq∗(p,mq∗(p)) = Vq1(p,mq∗(p)), it is enough to prove that Vq1(p,mq∗(p)) ≥ Vq1(p,m(p)).

Clearly, there is nothing prove if mq∗(p) = m(p) for all p ∈ Q1, i.e., if q∗ = q1

(remember that mq1(p) = m(p) for all p ∈ Q1).

So, assume that mq∗(p) > m(p) for some p ∈ (q∗, q1), hence mq∗(p) > m(p) for all

p ∈ (q∗, q1). We now argue that if Vq1(p, w) > Vq1(p,m(p)) for some w ≥ mq∗(p),

then

Vq1(p
′,m(p′)) <

1− p′

1− p
Vq1(p, w),

for all p′ > p. To see this, observe that w > m(p) and, accordingly,

1− p′

1− p
w +

p′ − p
1− p

m(1)−m(p′) > 0,

since m is convex. Hence,

0 <
Vq1(p, w)− Vq1(p,m(p))

w −m(p)

=

1−p
1−p′

[
Vq1
(
p′, 1−p′

1−p w + p′−p
1−pm(1)

)
− Vq1

(
p′, 1−p′

1−pm(p) + p′−p
1−pm(1)

)]
w −m(p)

≤
Vq1
(
p′, 1−p′

1−p w + p′−p
1−pm(1)

)
− Vq1 (p′,m(p′))

1−p′
1−p w + p′−p

1−pm(1)−m(p′)
,

where the equality follows Observation A and the inequality from the concav-

ity of Vq1 in w for each p. Since

Vq1(p, w) =
1− p
1− p′

Vq1

(
p′,

1− p′

1− p
w +

p′ − p
1− p

m(1)

)
,

we have the desired result.

Finally, from the definition of q∗, for all n > 0, there exist pn ∈ (q∗,min(q∗ +

1
n
, q1)] and wn ≥ m(pn) such that Vq1(pn,m(pn)) < Vq1(pn, wn). From the concav-

ity of Vq1 in w for all p, Vq1(pn,m(pn)) < Vq1(pn,mq∗(pn)) for all n.

From the above argument, for all p, for all n sufficiently large, i.e., such that

pn < p, we have that

Vq1(p,m(p)) <
1− p
1− pn

Vq1(pn,mq∗(pn)).
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Taking the limit as n→∞, we obtain that

Vq1(p,m(p)) <
1− p
1− q∗

Vq1(q
∗,mq∗(q

∗)) = Vq1(p,mq∗(p)),

which completes the proof.

A.6. Concavity of Vq1 with respect to w for each p.

Lemma 6. The value function Vq1(p, ·) : [mq1(p),M(p)]→ R is concave in w, for

each p.

This section proves that Vq1 is concave in w for each p. To do so, we prove that

Vq1(p,mq1(p) + η(mq1(1)− u(a∗, 1)))− Vq1(p,mq1(p))

η
≥

Vq1(p,mq1(p) + η′(mq1(1)− u(a∗, 1)))− Vq1(p,mq1(p))

η′
,

for all (η, η′) such that η′ ≥ η. (See the observations on concave functions.) We

start with some preliminary results.

A.6.1. Preliminary Results. We study how the function ϕ(p,w(p)) varies with

p.

Lemma 7. There exists a non-empty interval [q, q] such that:

(1) For any p′ < p ≤ q or p′ > p ≥ q̄, ϕ(p,w(p)) ≥ ϕ(p′,w(p′)),

(2) The ratio m(1)−m(ϕ(p,w(p))
1−ϕ(p,w(p))

is constant for all p ∈ [q, q].

Proof of Lemma 7. Observe that

m(1)−w(p)

1− p
=
m(1)−m(ϕ(p,w(p))

1− ϕ(p,w(p))
.

Therefore, the convexity ofm implies that if m(1)−w(p)
1−p < m(1)−w(p′)

1−p′ , then ϕ(p,w(p)) <

ϕ(p′,w(p′)).
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Consider the function h : [0, 1]→ R, defined by h(p) = m(1)−w(p)
1−p . We argue that

h is quasi-concave. For all (p, p′) and α ∈ [0, 1], we have that

m(1)−w(αp+ (1− α)p′)

α(1− p) + (1− α)(1− p′)
≥ α(m(1)−w(p)) + (1− α)(m(1)−w(p′))

α(1− p) + (1− α)(1− p′)

=
α(1− p)

α(1− p) + (1− α)(1− p′)
m(1)−w(p)

1− p
+

(1− α)(1− p′)
α(1− p) + (1− α)(1− p′)

m(1)−w(p′)

1− p′

≥ min

(
m(1)−w(p)

1− p
,
m(1)−w(p′)

1− p′

)
,

where the first inequality follows form the convexity of w. (Note that the

inequality is strict if w(αp+ (1− α)p′) < αw(p) + (1− α)w(p′).)

It follows that if h(p′) ≥ h(p), then it is also true for all p′′ ∈ (p, p′). Since h is

quasi-concave and continuous, the set of maxima is a non-empty convex set

[q, q], and the function is increasing for all p < q and decreasing for all p > q.

(Note that m(1) − w(1) = (1−δ)(u(a∗,1)−m(1))
δ

< 0, hence the function is equal to

−∞ at p = 1.) �

We can make few additional observations about the interval [q, q]. Let k∗ :=

sup{k : Qk 6= ∅}. Since ϕ(qk,w(qk)) = qk, the function h is decreasing for all

p ≥ qk
∗. Similarly, since ϕ(qk,w(qk)) = qk−1, the function h is increasing for all

p ≤ qk
∗. Therefore, [q, q] ⊂ Qk∗.

If P 6= ∅, so that k∗ = ∞, then for all p ∈ P , the function h is increasing by

convexity of m since w(p) = m(p). (This is clearly true since ϕ(p,m(p)) = p in

that region.) Therefore, p ≤ q if P 6= ∅.

Finally, let p̃ := inf{p : m(p) = u(a1, p)}. By construction, m is linear from p̃ to

1, i.e., [p̃, 1] is the utmost right linear piece of m. We have that q < p̃. To see

this, observe that for all p ≥ p̃,

m(1)−w(p)

1− p
=

(1− δ)(
<0︷ ︸︸ ︷

u(a∗, 1)− u(a1, 1))

1− p
+

(u(a1, 0)− u(a1, 1))− (1− δ)(u(a∗, 0)− u(a∗, 1))

δ
,
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hence it is decreasing in p. (If there are multiple optimal actions at p = 1, the

argument applies to all of them and, therefore, to the one that induces the

smallest p̃.)

The second preliminary result is technical. For any p ∈ (0, 1) and any η ∈[
0,

M(p)−mq1 (p)

mq1 (1)−u(a∗,1)

]
, define w(p; η) as

mq1(p) + η
[
mq1(1)− u(a∗, 1)

]
,

and write (λη, ϕη) for (λ(p, w(p; η)), ϕ(p, w(p; η))). To ease notation, we do not

explicitly write the dependence of (λη, ϕη) on p. We have the following:

Lemma 8. ϕη, λη, and 1−λη
η

are all decreasing in η.

The proof follows directly from the definition of (λη, ϕη) and is omitted.

Finally, we conclude with the following implication of Observation A, which

wel use throughout. For all (p, w, w′) with w ≤ w′, we have that:

Vq1(p, w)− Vq1(p, w′) = λ(p, w)

[
Vq1(ϕ(p, w),mq1(p, w))− Vq1

(
ϕ(p, w),mq1(p, w) +

w′ − w
λ(p, w)

)]
.

A.6.2. Proof of Lemma 6. We now prove that the gradient G(p; η) :=
Vq1 (p,mq1 (p))−Vq1 (p,w(p;η))

η

is increasing in η ∈
[
0,

M(p)−mq1 (p)

mq1 (1)−u(a∗,1)

]
, for all p. We prove it on three separate

intervals I1, I2 and I3. If P = ∅, the three intervals are [0, q], (q, q] and (q, 1],

respectively. If P 6= ∅, the three intervals are [0, p], (p, q∞] and (q∞, 1], respec-

tively.

A.6.3. For all p ∈ I1, G(p; η) is increasing in η. We limit attention to the case

P 6= ∅. (The case P = ∅ is identical.) The proof is by induction. First, consider

the interval [0, q1]. Remember that at q1, we have a closed-form solution for

Vq1(q
1, w) for all w given by

Vq1(q
1, w) =

M(q1)− w
M(q1)− u(a∗, q1)

v(a∗, q1).
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Therefore,

Vq1(q
1,mq1(q

1))− Vq1(q1, w(q1; η))

η
=

1

η

[
M(q1)−mq1(q

1)

M(q1)− u(a∗, q1)
v(a∗, q1)−

M(q1)− w(q1; η)

M(q1)− u(a∗, q1)
v(a∗, q1)

]
=

v(a∗, q1)

M(q1)− u(a∗, q1)

[mq1(q
1) + η(mq1(1)− u(a∗, 1))]−mq1(q

1)

η

=
q1v(a∗, 1) + (1− q1)v(a∗, 0)

q1[mq1(1)− u(a∗, 1)] + (1− q1)[mq1(0)− u(a∗, 0)]

w(q1; η)−mq1(q
1)

η

= v(a∗, 1)
q1 + (1− q1)v(a∗,0)

v(a∗,1)

q1 + (1− q1)
mq1 (0)−u(a∗,0)

mq1 (1)−u(a∗,1)︸ ︷︷ ︸
≥1 since v(a

∗,0)
v(a∗,1)≥

m
q1

(0)−u(a∗,0)

m
q1

(1)−u(a∗,1)

≥ v(a∗, 1).

We now consider any p ∈ [0, q1). From Observation A, we have that:
Vq1(p,mq1(p)) =

1− p
1− q1

Vq1

(
q1,

1− q1

1− p
mq1(p) +

(
1−

1− q1

1− p

)
mq1(1)

)
Vq1(p, w(p; η)) =

1− p
1− q1

Vq1

(
q1,

1− q1

1− p
mq1(p) +

(
1−

1− q1

1− p

)
mq1(1) +

1− q1

1− p
η
[
mq1(1)− u(a∗, 1)

])
It follows that
Vq1(p,mq1(p))− Vq1(p, w(p; η))

η

=
1− p

1− q1

Vq1
(
q1,

1−q1

1−p mq1(p) +
(
1− 1−q1

1−p

)
mq1(1)

)
− Vq1

(
q1,

1−q1

1−p mq1(p) +
(
1− 1−q1

1−p

)
mq1(1) +

1−q1

1−p η
[
mq1(1)− u(a∗, 1)

])
η

=
1− p

1− q1
1− q1

1− p

mq1(1)− u(a∗, 1)

M(q1)− u(a∗, q1
v(a∗, q1) =

1− p

1− q1
1− q1

1− p
v(a∗, 1)

q1 + (1− q1) v(a
∗,0)

v(a∗,1)

q1 + (1− q1)
m
q1

(0)−u(a∗,0)
m
q1

(1)−u(a∗,1)

>
1− p

1− q1
1− q1

1− p
v(a∗, 1) = v(a∗, 1).

Therefore, G(p; η) ≥ v(a∗, 1) for all η, for all p ∈ [0, q1]. Moreover, the gradient

G(p; η) is independent of η for all p ∈ [0, q1], hence is (weakly) increasing.

By induction, assume that G(p; η) ≥ v(a∗, 1) for all p ∈ [0, qk] and is increasing

in η, we want to prove that both properties also hold for all p ∈ (qk, qk+1].
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We rewrite Vq1(p, w(p; η)) as follows:

Vq1(p, w(p; η)) = ληVq1(ϕη,mq1(ϕη)) = λη
[
(1− δ)v(a∗, ϕη) + δVq1(ϕη,w(ϕη))

]
= (1− δ)ληv(a∗, ϕη) + δληVq1(ϕη,w(ϕη))

= (1− δ)ληv(a∗, ϕη) + δVq1
(
p, ληw(ϕη) + [1− λη]mq1(1)

)
= (1− δ)ληv(a∗, ϕη) + δVq1

(
p,w(p) +

η − (1− δ)(1− λη)
δ

[mq1(1)− u(a∗, 1)]

)
.

The second to last equality follows from Observation A, while the last equality

follows from:

ληw(ϕη) + [1− λη]mq1(1) = λη
−(1− δ)u(a∗, ϕη) +mq1(ϕη)

δ
+ [1− λη]mq1(1)

=
−(1− δ)

δ
ληu(a∗, ϕη) +

1

δ
ληmq1(ϕη) + [1− λη]mq1(1)

=
−(1− δ)

δ
[u(a∗, p)− (1− λη)u(a∗, 1)] +

1

δ

[
w(p; η)− (1− λη)mq1(1)

]
+ [1− λη]mq1(1)

=
−(1− δ)

δ
[u(a∗, p)− (1− λη)u(a∗, 1)] +

1

δ

[
mq1(p) + η(mq1(1)− u(a∗, 1))− (1− λη)mq1(1)

]
+ [1− λη]mq1(1)

=

[
−(1− δ)

δ
u(a∗, p) +

1

δ
mq1(p)

]
+
η − (1− δ)(1− λη)

δ
[mq1(1)− u(a∗, 1)].

For future reference, recall that

ληw(ϕη) + (1− λη)mq1(1) = λη
[
λ(ϕη,w(ϕη))mq1(ϕ(ϕη,w(ϕη))) + (1− λ(ϕη,w(ϕη))mq1(1)

]
+(1− λη)mq1(1),

so that

ϕ

(
p,w(p) +

η − (1− δ)(1− λη)
δ

[mq1(1)− u(a∗, 1)]

)
= ϕ(ϕη,w(ϕη)),

and

λ

(
p,w(p) +

η − (1− δ)(1− λη)
δ

[mq1(1)− u(a∗, 1)]

)
= ληλ(ϕη,w(ϕη)).

Since ϕη is decreasing in η, we have that ϕη′ ≤ ϕη when η′ > η and, therefore,

we have that ϕ(ϕη,w(ϕη)) ≤ ϕ(ϕη′ ,w(ϕη′)) since ϕη′ ≤ ϕη ≤ p ≤ q. Simi-

larly, since ϕη < p ≤ q, we have that ϕ(ϕη,w(ϕη)) ≤ ϕ(p,w(p)) and, therefore,
η−(1−δ)(1−λη)

δ
> 0.
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We now return to the computation of the gradient. We have:

=

[
(1− δ)v(a∗, p) + δVq1(p,w(p))

]
−
[
(1− δ)ληv(a

∗, ϕη) + δVq1
(
p,w(p) +

η−(1−δ)(1−λη)
δ

[m(1)− u(a∗, 1)]
)]

η

=
(1− δ)

η
[v(a∗, p)− ληv(a

∗, ϕη)] +
δ

η

[
Vq1(p,w(p))− Vq1

(
p,w(p) +

η − (1− δ)(1− λη)

δ
[m(1)− u(a∗, 1)]

)]
=

(1− δ)

η
(1− λη)v(a

∗, 1) +
δ

η

[
Vq1(p,w(p))− Vq1

(
p,w(p) +

η − (1− δ)(1− λη)

δ
[m(1)− u(a∗, 1)]

)]
.

(12)

We further develop the above expression. To ease notation, we write (ϕ(p), λ(p))

for (ϕ(p,w(p)), λ(p,w(p))). Note that ϕ(p) ∈ (qk−1, qk], since p ∈ (qk, qk+1]. As
η−(1−δ)(1−λη)

δ
> 0, we have that:

=
(1− δ)

η
(1− λη)v(a

∗, 1) +
δ

η

[
Vq1(p,w(p))− Vq1

(
p,w(p) +

η − (1− δ)(1− λη)

δ
[m(1)− u(a∗, 1)]

)]

=
(1− δ)

η
(1− λη)v(a

∗, 1) +
δ

η

η − (1− δ)(1− λη)

δ

Vq1(p,w(p))− Vq1
(
p,w(p) +

η−(1−δ)(1−λη)
δ

[m(1)− u(a∗, 1)]
)

η−(1−δ)(1−λη)
δ

=
(1− δ)

η
(1− λη)v(a

∗, 1) +

[
1− (1− δ) (1− λη)

η

] λ(p) [Vq1(ϕ(p),mq1(ϕ(p)))− Vq1
(
ϕ(p),mq1(ϕ(p)) +

η−(1−δ)(1−λη)
δλ(p)

[m(1)− u(a∗, 1)]
)]

η−(1−δ)(1−λη)
δ

=
(1− δ)

η
(1− λη)v(a

∗, 1) +

[
1− (1− δ) (1− λη)

η

] Vq1(ϕ(p),mq1(ϕ(p)))− Vq1
(
ϕ(p),mq1(ϕ(p)) +

η−(1−δ)(1−λη)
δλ(p)

[m(1)− u(a∗, 1)]
)

η−(1−δ)(1−λη)
δλ(p)

>
(1− δ)

η
(1− λη)v(a

∗, 1) +

[
1− (1− δ) (1− λη)

η

]
v(a∗, 1) = v(a∗, 1),

where we use Observation A and the induction step.

We now show that the gradient is increasing in η. To start with, note that
η−(1−δ)(1−λη)

δ
is increasing in η since 1−λη

η
is decreasing in η (see Lemma 8). For



58 WEI ZHAO, CLAUDIO MEZZETTI, LUDOVIC RENOU, AND TRISTAN TOMALA

any η > η′, we have the following

Vq1(p,w(p))− Vq1
(
p,w(p) + η−(1−δ)(1−λη)

δ

[
mq1(1)− u(a∗, 1)

])
η−(1−δ)(1−λη)

δ

=
λ(p)Vq1(ϕ(p),mq1(ϕ(p)))− λ(p)Vq1

(
ϕ(p),mq1(ϕ(p)) + η−(1−δ)(1−λη)

δλ(p)

[
mq1(1)− u(a∗, 1)

])
η−(1−δ)(1−λ)

δ

=
Vq1(ϕ(p),mq1(ϕ(p)))− Vq1

(
ϕ(p),mq1(ϕ(p)) + η−(1−δ)(1−λη)

δλ(p)

[
mq1(1)− u(a∗, 1)

])
η−(1−δ)(1−λ)

δλ(p)

>
Vq1(ϕ(p),mq1(ϕ(p)))− Vq1

(
ϕ(p),mq1(ϕ(p)) +

η′−(1−δ)(1−λη′ )
δλ(p)

[
mq1(1)− u(a∗, 1)

])
η′−(1−δ)(1−λη′ )

δλ(p)

=
Vq1(p,w(p))− Vq1

(
p,w(p) +

η′−(1−δ)(1−λη′ )
δ

[
mq1(1)− u(a∗, 1)

])
η′−(1−δ)(1−λη′ )

δ

,

where the inequality follows from the fact that ϕ(p) ∈ (qk−1, qk] and, therefore,

the gradient G(ϕ(p); η) being increasing in η by the induction hypothesis.

Finally, we have that

1

η

[
Vq1(p,mq1(p))− Vq1(p, w(p; η))

]
=

(1− δ) (1− λη)

η
v(a∗, 1) +

[
1− (1− δ) (1− λη)

η

] Vq1(p,w(p))− Vq1
(
p,w(p) +

η−(1−δ)(1−λη)
δ

[m(1)− u(a∗, 1)]
)

η−(1−δ)(1−λη)
δ

>
(1− δ) (1− λη)

η
v(a∗, 1) +

[
1− (1− δ) (1− λη)

η

] Vq1(p,w(p))− Vq1

(
p,w(p) +

η′−(1−δ)(1−λη′ )
δ

[
mq1(1)− u(a∗, 1)

])
η′−(1−δ)(1−λη′ )

δ

=
(1− δ) (1− λη′)

η′
v(a∗, 1) +

[
1− (1− δ) (1− λη′)

η′

] Vq1(p,w(p))− Vq1

(
p,w(p) +

η′−(1−δ)(1−λη′ )
δ

[
mq1(1)− u(a∗, 1)

])
η′−(1−δ)(1−λη′ )

δ

+

[
(1− δ) (1− λη′)

η′
− (1− δ) (1− λη)

η

]Vq1(p,w(p))− Vq1

(
p,w(p) +

η′−(1−δ)(1−λη′ )
δ

[
mq1(1)− u(a∗, 1)

])
η′−(1−δ)(1−λη′ )

δ

− v(a∗, 1)


>

1

η′
[
Vq1(p,mq1(p))− Vq1(p, w(p; η

′))
]

+

[
(1− δ) (1− λη′)

η′
− (1− δ) (1− λη)

η

]

×

Vq1(ϕ(p),mq1(ϕ(p)))− Vq1

(
ϕ(p),mq1(ϕ(p)) +

η′−(1−δ)(1−λη′ )
δλ(p)

[
mq1(1)− u(a∗, 1)

])
η′−(1−δ)(1−λη′ )

δλ(p)

− v(a∗, 1)


>

1

η′
[
Vq1(p,mq1(p))− Vq1(p, w(p; η

′))
]
.
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The last inequality follows from the fact that the gradient in the second

bracket is weakly larger than v(a∗, 1) by the induction hypothesis and the

fact that 1−λη
η

<
1−λη′
η′

(Lemma 8).

Since limk→∞ q
k = p when P 6= ∅, this completes the proof that the gradient is

greater than v(a∗, 1) for all p ∈ [0, p].

A.6.4. For all p ∈ I2, G(p; η) is increasing in η. We first treat the case P 6=

∅. Recall that for all p ∈ (p, q∞], we have an explicit definition of the value

function Vq1(p,mq1(p)) as:

v(a∗, p)−
mq1(p)− u(a∗, p)

mq1(1)− u(a∗, 1)
v(a∗, 1).

Define η̄(p) as the solution to ϕη̄(p) = ϕ(p, w(p; η̄(p))) = p. Note that for any

p ∈ (p, q∞], for any η ≤ η̄, ϕη ∈ [p, q∞]. Therefore,

Vq1(p, w(p; η)) = ληVq1(ϕη,mq1(ϕη)) = λη

[
v(a∗, ϕη)−

mq1(ϕη)− u(a∗, ϕη)

mq1(1)− u(a∗, 1)
v(a∗, 1)

]
= v(a∗, p)− w(p; η)− u(a∗, p)

mq1(1)− u(a∗, 1)
v(a∗, 1).

It follows that the gradient is equal to v(a∗, 1) for all p ∈ (p, p∗], for all η ≤ η̄.

Consider now η > η̄. We rewrite the gradient G(p; η) as follows:

Vq1(p,mq1(p))− Vq1(p, w(p; η))

η

=
Vq1(p,mq1(p))− Vq1(p, w(p; η1(p)))

η
+
Vq1(p, w(p; η1(p)))− Vq1(p, w(p; η))

η

=
η1(p)

η

Vq1(p,mq1(p))− Vq1(p, w(p, η1(p)))

η1(p)
+
η − η1(p)

η

Vq1(p, w(p; η1(p)))− Vq1(p, w(p; η))

η − η1(p)

=
η1(p)

η
v(a∗, 1) +

η − η1(p)

η

1−p
1−p

[
Vq1(p,mq1(p))− Vq1

(
p, w

(
p; η−η1(p)

1−p
1−p

))]
η − η1(p)

=
η1(p)

η
v(a∗, 1) +

η − η1(p)

η
G

(
p;
η − η1(p)

1−p
1−p

)
.

Since we have already shown that G(p; η) is increasing in η and weakly larger

than v(a∗, 1), we have that the gradient G(p; η) is also weakly increasing in η

(and greater than v(a∗, 1)).
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We now treat the case P = ∅. Define η̄(p) as the solution to ϕη̄(p) = ϕ(p, w(p; η̄(p))) = q.

Note that for any p ∈ [q, q], for any η ≤ η̄, ϕη ∈ [q, q]. Therefore, for all

η ≤ η̄, η = (1 − δ)(1 − λη) since the ratio
mq1 (1)−w(ϕη)

1−ϕη is constant in η and

so is ϕ(ϕη,w(ϕη)). (Recall that we vary η at a fixed p.) It follows then from

Equation (12) that

G(p; η) =
(1− δ)
η

(1− λη)v(a∗, 1) +
δ

η

[
Vq1(p,w(p))− Vq1

(
p,w(p) +

η − (1− δ)(1− λη)
δ

[m(1)− u(a∗, 1)]

)]
,

=
(1− δ)
η

(1− λη)v(a∗, 1) = v(a∗, 1).

We have that the gradient G(p; η) is equal to v(a∗, 1) for all p ∈ (q, q], for all

η ≤ η̄. Finally, when η > η̄, the same decomposition as in the case P 6= ∅

completes the proof.

A.6.5. For all p ∈ I3, the gradient G(p; η) is increasing in η.

We only treat the case P 6= ∅. (The case P = ∅ is treated analogously.) Define

η̄(p) as the solution to ϕη̄(p) = ϕ(p, w(p; η̄(p))) = q∞. By construction, for all

p ∈ (q∞, 1], for all η ≤ η̄(p), we have that ϕη ∈ (q∞, 1]. Therefore, ϕη > q.

Choose η̄(p) ≤ η′ ≤ η. We have that ϕη′ ≥ ϕη ≥ q since q∞ ≥ q and, therefore,

ϕ

(
p,w(p) +

η − (1− δ)(1− λη)
δ

[mq1(1)− u(a∗, 1)]

)
= ϕ(ϕη,w(ϕη)) ≥

ϕ(ϕη′ ,w(ϕη′) = ϕ

(
p,w(p) +

η′ − (1− δ)(1− λη′)
δ

[mq1(1)− u(a∗, 1)]

)
.

Also, since q ≤ ϕη ≤ p, we have that ϕ(ϕη,w(ϕη)) ≥ ϕ(p,w(p)) and, therefore,
η−(1−δ)(1−λη)

δ
≤ 0. The same applies to η′. Finally, as already shown,

η − (1− δ)(1− λη)
δ

<
η′ − (1− δ)(1− λη′)

δ
.

To ease notation, define (λ̃η, ϕ̃η) as follows:
λ̃η = λ

(
p,w(p)− (1− δ)(1− λη)− η

δ
[m(1)− u(a∗, 1)]

)
ϕ̃η = ϕ

(
p,w(p)− (1− δ)(1− λη)− η

δ
[m(1)− u(a∗, 1)]

) (13)

Notice that ϕ̃η = ϕ(ϕη,w(ϕη)) ∈ I1 since ϕη > q∞.
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The rest of the proof is purely algebraic and mirrors the case p ∈ I1. First, we

have the following:

Vq1(p,w(p))− Vq1
(
p,w(p)− (1−δ)(1−λη)−η

δ

[
mq1(1)− u(a∗, 1)

])
(1−δ)(1−λη)−η

δ

=
λ̃ηVq1

(
ϕ̃η,mq1(ϕ̃η) + (1−δ)(1−λη)−η

δλ̃η

[
mq1(1)− u(a∗, 1)

])
− λ̃ηVq1

(
ϕ̃η,mq1(ϕ̃η)

)
(1−δ)(1−λη)−η

δ

=
Vq1
(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
− Vq1

(
ϕ̃η,mq1(ϕ̃η)

)
(1−δ)(1−λη)−η

δλ̃η

,

where we again use Observation A. Similarly, we have:

Vq1(p, w(p))− Vq1
(
p, w(p)− (1−δ)(1−λη′ )−η′

δ

[
mq1(1)− u(a∗, 1)

])
(1−δ)(1−λη′ )−η′

δ

=
λ̃ηVq1

(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
− λ̃ηVq1

(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

− (1−δ)(1−λη′ )−η′

δλ̃η

))
(1−δ)(1−λη′ )−η′

δ

=
Vq1
(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
− Vq1

(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

− (1−δ)(1−λη′ )−η′

δλ̃η

))
(1−δ)(1−λη′ )−η′

δλ̃η

,

where again we use Observation A and the fact

(1− δ)(1− λη)− η
δλ̃η

>
(1− δ)(1− λη′)− η′

δλ̃η
.

Since ϕ̃η ∈ I1, we have that:

Vq1
(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
− Vq1

(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

− (1−δ)(1−λη′ )−η′

δλ̃η

))
(1−δ)(1−λη′ )−η′

δλ̃η

6
Vq1
(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
− Vq1

(
ϕ̃η,mq1(ϕ̃η)

)
(1−δ)(1−λη)−η

δλ̃η

,

where the inequality follows from our previous argument on the interval I1.
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It follows that:

Vq1(p, w(p))− Vq1
(
p, w(p)− (1−δ)(1−λη′ )−η′

δ

[
mq1(1)− u(a∗, 1)

])
(1−δ)(1−λη′ )−η′

δ

6
Vq1(p, w(p))− Vq1

(
p, w(p)− (1−δ)(1−λη)−η

δ

[
mq1(1)− u(a∗, 1)

])
(1−δ)(1−λη)−η

δ

.

From Equation (12), we then have that

1

η

[
Vq1(p,mq1(p))− Vq1(p,w(p; η))

]
=

(1− δ) (1− λη)

η
v(a∗, 1) +

[
(1− δ) (1− λη)

η
− 1

] Vq1(p, w(p))− Vq1
(
p, w(p)− (1−δ)(1−λη)−η

δ
[m(1)− u(a∗, 1)]

)
(1−δ)(1−λη)−η

δ

>
(1− δ) (1− λη)

η
v(a∗, 1) +

[
(1− δ) (1− λη)

η
− 1

] Vq1(p, w(p))− Vq1

(
p, w(p)− (1−δ)(1−λη′ )−η

′

δ

[
mq1(1)− u(a∗, 1)

])
(1−δ)(1−λη′ )−η′

δ

=
(1− δ) (1− λη)

η
v(a∗, 1) +

[
1− (1− δ) (1− λη)

η

] Vq1 (p, w(p)− (1−δ)(1−λη′ )−η
′

δ

[
mq1(1)− u(a∗, 1)

])
− Vq1(p, w(p))

(1−δ)(1−λη′ )−η′

δ

=
(1− δ) (1− λη′)

η′
v(a∗, 1) +

[
1− (1− δ) (1− λη′)

η′

] Vq1 (p, w(p)− (1−δ)(1−λη′ )−η
′

δ

[
mq1(1)− u(a∗, 1)

])
− Vq1(p, w(p))

(1−δ)(1−λη′ )−η′

δ

+

[
(1− δ) (1− λη′)

η′
− (1− δ) (1− λη)

η

]Vq1
(
p, w(p)− (1−δ)(1−λη′ )−η

′

δ

[
mq1(1)− u(a∗, 1)

])
− Vq1(p, w(p))

(1−δ)(1−λη′ )−η′

δ

− v(a∗, 1)


>

1

η′
[
Vq1(p,mq1(p))− Vq1(p, w(p; η

′))
]
,

where the last inequality follows from:

Vq1
(
p, w(p)− (1−δ)(1−λη′ )−η′

δ

[
mq1(1)− u(a∗, 1)

])
− Vq1(p, w(p))

(1−δ)(1−λη′ )−η′
δ

=
λ̃η′Vq1(ϕ̃η′ ,mq1(ϕ̃η′))− λ̃η′Vq1

(
ϕ̃η′ , w

(
ϕ̃η′ ;

(1−δ)(1−λη′ )−η′

δλ̃η′

))
(1−δ)(1−λη′ )−η′

δ

> v(a∗, 1).
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We now show that the the gradient G(p; η) is smaller than v(a∗, 1) for any
η ≤ η̄(p). From Equation (12), we have that:

1

η

[
Vq1(p,mq1(p))− Vq1(p,w(p; η))

]
=

(1− δ)(1− λη)

η
v(a∗, 1)−

[
(1− δ) (1− λη)

η
− 1

] Vq1 (p, w(p)− (1−δ)(1−λη)−η
δ

[m(1)− u(a∗, 1)]
)
− Vq1(p, w(p))

(1−δ)(1−λη)−η
δ

= v(a∗, 1)−
[
(1− δ) (1− λη)

η
− 1

]Vq1
(
p, w(p)− (1−δ)(1−λη)−η

δ
[m(1)− u(a∗, 1)]

)
− Vq1(p, w(p))

(1−δ)(1−λη)−η
δ

− v(a∗, 1)


= v(a∗, 1)−

[
(1− δ) (1− λη)

η
− 1

] λ̃ηVq1(ϕ̃η,mq1(ϕ̃η))− λ̃ηVq1
(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
(1−δ)(1−λη)−η

δ

− v(a∗, 1)


= v(a∗, 1)−

[
(1− δ) (1− λη)

η
− 1

]
︸ ︷︷ ︸

≥0

Vq1(ϕ̃η,mq1(ϕ̃η))− Vq1
(
ϕ̃η, w

(
ϕ̃η;

(1−δ)(1−λη)−η
δλ̃η

))
(1−δ)(1−λη)−η

δλ̃η

− v(a∗, 1)


︸ ︷︷ ︸

≥0

6 v(a∗, 1),

where the inequality follows from the fact that ϕ̃η ≤ p (therefore, from our

arguments on the interval I1, where we show that the gradient is larger than

v(a∗, 1)).

Finally, we can use a similar decomposition as in the case p ∈ I2 to prove that

the gradient is increasing for all η.

APPENDIX B. A FORMAL DISCUSSION OF OTHER POLICIES

B.1. Non-uniqueness and comparison with the KG policy. Our policy is

not always uniquely optimal. We demonstrate the non-uniqueness with the

help of a simple example and then discuss how our policy compares with the

KG policy (for Kamenica-Gentzkow’s policy).

Example 2.

The agent has two possible actions a0 and a1, with a0 (resp., a1) the agent’s

optimal action when the state is ω0 (resp., ω1). The principal wants to induce

a0 as often as possible, i.e., a∗ = a0. The discount factor is 1/2. The payoffs are

in Table 3, with the first coordinate corresponding to the principal’s payoff.
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TABLE 3. Payoff table of Example 2

a0 a1

ω0 1, 1 0, 0
ω1 1, 0 0, 1

In Example 2, we have that: m(p) = max(1 − p, p), M(p) = 1 and u(a∗, p) =

1 − p. Thus, a∗ is optimal for all p ∈ P = [0, 1/2]. Moreover, Q1 = [0, 2/3] and

w(p) = 3p− 1 for p ∈ (1/2, 2/3].

We now provide an explicit characterization of the value function. We first

compute the value function Vq1(·,m(·)) and check whether it is concave. For

p ∈ [0, 1/2], the policy recommends a∗ and promises a continuation payoff of

m(p). That is, since a∗ is optimal, the principal does not need to incentivize

the agent. For p ∈ (1/2, 2/3], the policy recommends a∗ and promises a contin-

uation payoff of w(p). At (p,w(p)) with p ∈ (1/2, 2/3], the policy splits p into

ϕ(p,w(p)) and 1, with probability λ(p,w(p)) and 1−λ(p,w(p)) respectively. (See

Equation (3).)

We obtain that λ(p,w(p)) = (3−4p) and ϕ(p,w(p)) = 2−3p
3−4p

. Note that ϕ(p,w(p)) =

2−3p
3−4p

< 1
2

since p ∈ (1/2, 2/3]. After splitting p into ϕ(p,w(p)), the principal

therefore obtains a payoff of 1 in all subsequent periods. It follows that the

principal’s expected payoff is

1

2
+

1

2
λ(p,w(p)) = 2(1− p).

Finally, if p ∈ (2/3, 1], the policy splits p into 2/3 and 1 with probability 3(1−p)

and (1− 3(1− p)), respectively. The principal’s expected payoff is then

3(1− p)×
[1

2
+

1

2
λ

(
2

3
,w

(
2

3

))]
= 3(1− p)× 2

(
1− 2

3

)
= 2(1− p).

So, the value function Vq1 induced by the policy τq1 is such Vq1(p,m(p)) = 1 for

all p ∈ [0, 1/2] and Vq1(p,m(p)) = 2(1− p) for all p ∈ (1/2, 1]. Since it is concave

in p, this guarantees that q∗ = q1 and, thus, the policy is indeed optimal.

We now consider another policy, which we call the KG policy. The aim of

the KG policy is to persuade the agent to choose a∗ as often as possible by

disclosing information at the initial stage only. The best payoff the principal
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can obtain with a KG policy is:

max
(λs,ps,as)

∑
s

λsv(as, ps),

subject to

∀s, u(as, ps) ≥ m(ps),and
∑
s

λsps = p.

In Example 2, the KG policy differs from our policy only when p ≥ 1/2, and

consists in splitting p into 1/2 and 1, with probability 2(1− p) and 1− 2(1− p)

respectively. The KG policy induces the same value function as our policy,

hence is also optimal. We now prove that this is not accidental.

Suppose that there are only two actions, a0 and a1, such that a0 (resp., a1) is

optimal at state ω0 (resp., ω1). The principal aims at implementing a0 as often

as possible, i.e., a∗ = a0.16 Remember that a0 is optimal at all beliefs in [p, p].

Since a0 is optimal at 0, p = 0. To streamline the exposition, assume that the

prior p0 > p. (If p0 ≤ p, an optimal policy is to never reveal any information.)

It is then immediate to see that the KG policy consists in splitting the prior

p0 into p and 1, with probability 1−p0
1−p and 1− 1−p0

1−p , respectively. Intuitively, the

principal designs a binary experiment, with one signal perfectly informing

the agent that the state is ω1 and the other partially informing the agent so

that his posterior beliefs is p.

We can contrast the KG policy with our policy. Unlike the KG policy, our policy

does not reveal information to the agent at the first period, and only reveals

information to the agent if he plays a0. If the agent plays a0 at the first period,

the policy splits p0 into ϕ(p0,w(p0)) and 1 with probability λ(p0,w(p0)) and

1 − λ(p0,w(p0)), respectively. Note that ϕ(p0,w(p0)) ≤ p since w(p0) ≥ m(p0).

Thus, our policy guarantees that the agent plays a∗ for sure at the first period.

However, this comes at a cost: the principal needs to reveal more information

to the agent at the next period and, consequently, inducing the agent to play

a0 with a lower probability. Somewhat surprisingly, both policies are optimal,

regardless of the discount factor.
16If a∗ = a1, then 0 = m(1)− u(a1, 1) ≥ (m(0)− u(a1, 0))v(a∗,1)

v(a∗,0) = (u(a0, 0)− u(a1, 0)) v(a∗,1)
v(a∗,0) ≥ 0,

i.e., a1 is also optimal when the agent believes that the state is ω0 with probability 1.
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Corollary 2. If there are only two actions, then the KG policy is also optimal.

As Example 1 shows, the KG policy is not always optimal. Yet, if a∗ is not

strictly dominated and the function m is linear from p to 1, then the KG policy

is also optimal at all priors above p. (A proof is available upon request.) More

generally, whenever the value function V ∗ is linear in (p, w), the KG policy is

also optimal. We conjecture, however, that the value function V ∗ is generically

non-linear.

B.2. Comparison with the “random disclosure” policy. Remember that

the policy of fully disclosing the state with delay plays a prominent role in the

work of Ball (2019) and Orlov et al. (2019). Since we study a discrete time

model, we do not directly compare our policy with the policy of fully disclosing

the state with delay, but with the “random disclosure” policy. The “random

disclosure” policy consists in fully disclosing the state with probability α at

period t + 1 (and to withhold all information with the complementary proba-

bility) if the agent plays a∗ at period t.17

We first compute the principal’s payoff if he commits to the best “random

disclosure” policy. To ease the exposition, we assume that a∗ is not optimal at

the belief p = 0.18 Assume that p ∈ Q1. The best “random disclosure” policy is

solution to the maximization problem:

V = max
α∈[0,1]

(1− δ)v(a∗, p) + δ(1− α)V,

subject to

U = (1− δ)u(a∗, p) + δ [αM(p) + (1− α)U ] ≥ m(p).

The optimal solution is

α∗ =
w(p)−m(p)

M(p)−m(p)
=

1− δ
δ

m(p)− u(a∗, p)

M(p)−m(p)
,

17In continuous time, the policy of fully disclosing the state with delay yields the same payoff
as the “random disclosure” policy.
18When a∗ is optimal at p = 0, we need to add the term δα(1−p)v(a∗, p) to the objective, which
corresponds to the payoff the principal obtains when the disclosed state is ω0.
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inducing the value

(1− δ)
∑
t

δt
(
M(p)−w(p)

M(p)−m(p)

)t
v(a∗, p) =

M(p)−m(p)

M(p)− u(a∗, p)
v(a∗, p).

The formula has a natural interpretation. Whenever the agent is recom-

mended to play a∗, no information has been revealed yet, so that the maximal

value of information the principal can create is M(p) − m(p). To incentivize

the agent, the principal needs to promise a continuation payoff of w(p) in the

future and thus needs to create an information value of w(p)−m(p). To create

an information value of w(p)−m(p), the principal commits to fully disclose the

state with some probability, hence foregoing the opportunity to incentivize the

agent to play a∗ in the future. Therefore, the highest probability with which

the principal can incentivize the agent to play a∗ is (M(p) − w(p))/(M(p) −

m(p)).

To understand why and when the principal can do better than following the

“random recursive policy,” we study the relaxed version of our problem, where

only the (ex-ante) participation constraint needs to be satisfied. Consider the

following policy. The principal discloses information at the ex-ante stage, i.e.,

chooses a splitting (λs, ps)s of p, and recommends the agent to play a∗ at all pe-

riods with probability βs when the realized signal is s. We continue to assume

that p ∈ Q1. The policy satisfies the participation constraint if∑
s

λs [βsu(a∗, ps) + (1− βs)m(ps)] ≥ m(p).

We can rewrite the participation constraint as:∑
s

λs(1− βs)(m(ps)− u(a∗, ps)) ≥ m(p)− u(a∗, p), (14)

where m(ps)−u(a∗, ps) is the opportunity cost of following the recommendation

at belief ps. The principal maximizes
∑

s λsβsv(a∗, ps) subject to the participa-

tion constraint. Clearly, the participation constraint binds at a maximum.

Moreover, since m is convex, the best for the principal is to fully disclose all

information, i.e., to split p into 0 and 1.



68 WEI ZHAO, CLAUDIO MEZZETTI, LUDOVIC RENOU, AND TRISTAN TOMALA

Note that if the principal recommends a∗ with the same probability at all s,

his payoff is
M(p)−m(p)

M(p)− u(a∗, p)
v(a∗, p),

which is precisely the payoff of the “random recursive” policy.19

The principal can do better by exploiting the difference in opportunity costs

at the two extreme beliefs 0 and 1. Writing β1 (resp., β0) for the probability of

recommending a∗ conditional on the posterior being 1 (resp., 0), the principal

maximizes pβ1v(a∗, 1) + (1− p)β0v(a∗, 0) subject to:

pβ1(m(1)− u(a∗, 1)) + (1− p)β0(m(0)− u(a∗, 0)) ≤M(p)−m(p).

The right-hand side is the maximal value of information the principal can cre-

ate, while the left-hand side is the expected opportunity cost of following the

recommendation. As with the “random disclosure” policy, the principal needs

to generate the maximal value of information; this is the maximal value the

principal can use to incentivize the agent. However, unlike the “random dis-

closure” policy, the principal needs to use the surplus created asymmetrically,

as it is easier to incentivize the agent in state ω0 than ω1.

More precisely, the problem is linear in (β0, β1). Therefore, since the slope
v(a∗,0)
v(a∗,1)

is larger than the slope m(0)−u(a∗,0)
m(1)−u(a∗,1)

, the optimal solution is to set β0 as

high as possible. For instance, if M(p) − m(p) ≤ (1 − p)(m(0) − u(a∗, 0)), the

best is to set (β0, β1) = ( M(p)−m(p)
(1−p)(m(0)−u(a∗,0))

, 0), resulting in a payoff of

M(p)−m(p)

m(0)− u(a∗, 0)
v(a∗, 0) ≥ M(p)−m(p)

M(p)− u(a∗, p)
v(a∗, p),

with a strict inequality if the opportunity cost is strictly higher in state ω1.20

This is the solution to the relaxed constraint.

While our policy also needs to incentivize the agent to follow the recommen-

dation, it exploits the same asymmetries in opportunity costs as the above

policy, which explains why it outperforms the “random disclosure” policy.

19When a∗ is optimal at p = 0, we need to add the term (1− p)
(

1− M(p)−m(p)
M(p)−u(a∗,p)

)
v(a∗, p).

20See Appendix B.4 for the full characterization.
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To conclude, note that if v(a∗,0)
v(a∗,1)

= m(0)−u(a∗,0)
m(1)−u(a∗,1)

, then the random disclosure policy

solves the relaxed problem and, therefore, is also optimal.

B.3. Proof of Corollary 2. We first compute the principal’s payoff induced

by our policy. To ease notation, we write ϕ for ϕ(p,w(p)). We first assume that

q∗ = q1, compute the value function Vq1(p,m(p)) for all p and check that it is

concave. By construction, the principal’s payoff satisfies:

Vq1(p,m(p)) = (1− δ)v(a∗, p) + δVq1(p,w(p)) = (1− δ)v(a∗, p) + δ
1− p
1− ϕ

v(a∗, ϕ).

Remember that

w(p) =
m(p)− (1− δ)u(a0, p)

δ
=

1− p
1− ϕ

m(ϕ) +
p− ϕ
1− ϕ

m(1).

Since w(p) = m(p) = u(a0, p) when p ≤ p, we have that ϕ = p and, therefore,

the principal payoff is 1 when p ≤ p. Assume that p > p. We have that:

w(p) =
u(a1, p)− (1− δ)u(a0, p)

δ
=

1− p
1− ϕ

u(a0, ϕ) +
p− ϕ
1− ϕ

u(a1, 1),

since m(ϕ) = u(a0, ϕ) and ϕ ≤ p. (To see this, if ϕ > p, then m(ϕ) = u(a1, ϕ),

hence w(p) = m(p), a contradiction with w(p) > m(p) when p > p.) The above

equation is equivalent to:

(1− ϕ)[u(a1, p)− (1− δ)u(a0, p)] = δ[(1− p)u(a0, ϕ) + (p− ϕ)u(a1, 1)].

Observing that u(a, p) = (1−p)(u(a, 0)−u(a, 1))+u(a, 1) for all a and, similarly,

for ϕ, we can simplify the above expression to

δ
1− p
1− ϕ

= δ − p+ (1− p)u(a0, 0)− u(a1, 0)

u(a1, 1)− u(a0, 1)
.

Lastly, remember that the threshold p is given by:

1− p =
u(a1, 1)− u(a0, 1)

u(a0, 0)− u(a0, 1) + u(a1, 1)− u(a1, 0)
,
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and, therefore,

Vq1(p,m(p)) = v(a∗, p) + δ

(
1− 1− p

1− ϕ

)
v(a∗, 1)

=
1− p
1− p

v(a∗, p) +

[
1− 1− p

1− p
+ δ

(
1− 1− p

1− ϕ

)]
v(a∗, 1)

=
1− p
1− p

v(a∗, p).

Since the KG policy induces the same payoff, it is also optimal.

B.4. First best. This section provides detail about the solution to the first-

best problem, which we study when comparing our policy with the random

disclosure policy. Let

α∗1 = 1− m(p)− u(a∗, p)

p(m(1)− u(a∗, 1))
=
M(p)−m(p)− (1− p)(m(0)− u(a∗, 0))

p(m(1)− u(a∗, 1))
.

Note that α∗1 ≤ 1, with equality if m(p) = u(a∗, p)), and α∗1 < 0 if M(p)−m(p)−

(1− p)(m(0)− u(a∗, 0)) < 0.

At an optimum, the participation constraint clearly binds. If m(0)− u(a∗, 0) =

0, the solution is clearly (1, M(p)−m(p)
p(m(1)−u(a∗,1))

). Assume that m(0)− u(a∗, 0) > 0. We

can rewrite the principal’s objective as a function of α1:
pα1v(a∗, 1) + (1− p)v(a∗, 0) if α1 ≤ max(0, α∗1),

pα1

(
v(a∗, 1)− v(a∗, 0)m(1)−u(a∗,1)

m(0)−u(a∗,0)

)
+ M(p)−m(p)

m(0)−u(a∗,0)
v(a∗, 0) if max(0, α∗1) ≤ α1 ≤ M(p)−m(p)

p(m(1)−u(a∗,1))
,

−∞ otherwise.

Note that the objective is continuous in α1. The optimal payoff is therefore:

pmax(0, α∗1)v(a∗, 1) + (1− p) max

(
M(p)−m(p)

(1− p)(m(0)− u(a∗, 0))
, 1

)
v(a∗, 0),

obtained with (α0, α1) =
(

M(p)−m(p)
(1−p)(m(0)−u(a∗,0))

, 0
)

if M(p)−m(p)
(1−p)(m(0)−u(a∗,0))

≤ 1 and (α0, α1) =

(1, α∗1), otherwise.
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