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Abstract

We study information design in strategic settings when agents can publicly refuse
to view their private signals. The requirement that agents must be willing to view their
signals represents additional constraints for the designer, comparable to participation
constraints in mechanism design. Ignoring those constraints may lead to substantial
divergence between the designer’s intent and actual outcomes, even in the case where
the designer seeks to maximize the agents’ payoffs. We characterize implementable
distributions over states and actions. Requiring robustness to strategic ignorance un-
does two standard information design results: providing information conditional on
players’ choices rather than all at once may hurt the designer, and communication
between players may help her.

1 Introduction
In the standard setting of information design (e.g., Bergemann and Morris (2019), Taneva
(2019)), a designer commits to disclosing information about an uncertain payoff relevant
state to a group of interacting agents. The information structure comprises distributions of
joint signal realizations conditional on each possible realization of the state. Through the
release of information, the designer incentivizes the agents to take actions that will benefit
her. An implicit assumption in the information design literature is that players will agree to
get informed according to the information structure chosen by the designer. Crucially, that
setting does not permit players to refuse to observe the signals and to credibly signal this
choice to the other players. In many strategic environments, however, an agent may benefit

*We thank Ben Brooks, Erik Madsen, Elliot Lipnowski, and Leeat Yariv for helpful comments.
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from publicly remaining uninformed. Therefore, if we augment the standard information
design framework with a pre-play stage where players publicly choose whether or not to
observe the signal sent by the designer, then in many settings it is unreasonable to assume
that players can be induced to play under the designer-chosen information structure. In
such cases, the intended information structure provided by the designer gets transformed
through the strategic choices of the agents into a very different informational environment
— one where some or all agents act only given their prior information.

Suppose, for example, that the designer is a government agency that wants to find a
supplier of internet connectivity through a procurement auction. The agency does not have
the technical expertise to determine its own connectivity needs, but it can provide a report
on its operations, work protocols, etc., which will let the bidders identify its needs and the
corresponding best solution. There are two bidders: a large company, with many clients,
and a small company, which would serve only this agency. We model their interaction in
the payoff matrices in Figure 1, one for each equally likely state of the world, ω ∈ {A,B},
corresponding to whether the agency needs solutionA or solutionB. The row player is the
small company, which has three possible actions. Action A represents a choice to invest,
ahead of the auction, in technology that will let it provide solution A at a low cost and
hence a low bid; action B is the equivalent choice for solution B; action M corresponds to
no investment and a high bid to reflect the high costs of delivery without the preliminary
investment. The column player is the large company, which serves many other clients and
will not find it profitable to invest in a bespoke solution. Its choices are to bid high (H) or
low (L) in the auction.

H L

A 3, 0 1, 1

M 2, 2 0, 0

B 0, 0 −2, 1

ω = a

,

H L

A 0, 0 −2, 1

M 2, 2 0, 0

B 3, 0 1, 1

ω = b

Figure 1: Procurement auction example

The agency wants both companies to submit low bids, and it would like to have the
right bespoke solution if the small company wins the auction. Specifically, it gets a payoff
of 1 if (A,L) is played in state a or (B,L) is played in state b, and 0 otherwise. The agency
can achieve its goals through information design by providing a detailed report that both
companies inspect: when the realized state is common knowledge, then the small company
has a dominant strategy to match the state. The large company’s best response low bid L,
so the agency gets payoff 1. If, however, the small company can credibly signal to the big
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company that it has not read the report, for example by preparing and submitting its bid
before or immediately after the report is made available, then it would choose not to get
informed about the agency’s needs. Under the prior distribution over states, no investment
(M ) strictly dominates blindly investing in either solution, as shown in Figure 2. The
large company’s best response is high bid H , so by ignoring the report the small company
increases its payoff from 1 to 2. The agency, though, gets payoff 0.

H L

A 1.5 −0.5

M 2 0

B 1.5 −0.5

Pr (ω = a) = 1
2

Figure 2: Small company’s expected payoffs at the prior

We argue that in modeling information design, it is important to incorporate incentives
to accept information as well as the designer’s incentive to provide it. Most of the literature
on information design following Kamenica and Gentzkow (2011) focuses on the case of
a single agent, where information always has weakly positive value, and so the issue of
robustness to strategic ignorance does not arise. The gain from ignoring information comes
when other players change their behavior in response: that indirect, strategic benefit may
outweigh the agent’s reduced ability to tailor his own action to the state. There are many
economic settings where committing to ignorance is valuable, as we discuss below.

The requirement that agents must be incentivized to view their signals imposes new
constraints on the designer’s choice of information structure. Those constraints are con-
ceptually analogous to the participation constraints in mechanism design. Our goal in this
paper is to understand the impact of those “Look constraints” on the set of implementable
outcomes. Formally, we augment the baseline environment (that is, where agents must
view their signals) with a simultaneous-move pre-play stage where the players publicly
choose whether to “Look” at their private signals or “Ignore” them. We find that in some
settings, including two applications prominent in the literature on information design in
games, currency attacks and a binary investment game, if the designer provides the in-
formation structure that would be optimal in the baseline environment, then there is no
equilibrium where all players choose to Look at their signals. As a consequence, the out-
come is not what the designer intended.

A given distribution is implementable if it is the outcome of a sequential equilibrium
of the two-stage game. This requires three things: 1) for each combination of Look-Ignore
choices in the first stage, agents play a Bayes Nash equilibrium (BNE) of the correspond-
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ing incomplete information game in the second stage; 2) players who have chosen Ignore
in the first stage follow second-stage strategies that are independent of the state and the
other player’s information; and 3) the Look-Ignore choices in the first stage constitute an
equilibrium given the continuation equilibria chosen in 1).

In Theorem 1, we characterize the implementable distributions over actions and states
under strategic ignorance in general finite environments. We show that it is without loss
of generality to restrict the designer to direct information structures, where messages cor-
respond to (pure) action recommendations for each possible choice of the other players
in the pre-play Look-Ignore stage. What changes relative to the baseline environment is
that the direct information structures with single action recommendations are no longer
enough. Here a player’s message specifies a vector of actions, one for each combination
of Look-Ignore choices by the other players.

Our characterization demonstrates a subtlety: direct information structures are suffi-
cient for the designer only if we allow randomization at the Look-Ignore stage. Surpris-
ingly, in some cases the designer’s optimal outcome can be achieved via action recom-
mendations only in an equilibrium where some players Ignore their signals with positive
probability.1 We further elaborate on this in Section 2.2.

When the designer’s optimal information structure from the baseline environment fails
to be robust to strategic ignorance – because some player’s “on-path” payoff when ev-
eryone Looks at their signals is lower than his “post-deviation” payoff in the worst con-
tinuation BNE after he deviates unilaterally to Ignore – the designer has two methods of
adjusting the information structure in order to satisfy the Look constraints. Method 1 is to
raise the on-path payoff of the player(s) whose Look constraint is violated. Method 2 is
to lower the post-deviation payoff. Those changes interact with each other. If raising the
on-path payoff involves changing the information that players get, then that change also
affects the set of BNEs after a deviation to Ignore: the players who Looked still have that
different information. Analogously, giving players different information in order to lower
the payoff from the worst post-deviation BNE changes the on-path information structure
as well. As a consequence, giving the players the option to Ignore messages does not nec-
essarily make them better off. In some cases, all players get lower payoffs when strategic
ignorance is possible than under the baseline where messages are automatically observed.

We formulate the designer’s problem using the approach of Bergemann and Morris
(2016) and Taneva (2019), which exploits the equivalence between the set of Bayes corre-
lated equilibria (BCEs) and the set of all BNE outcomes across all information structures.
As in those papers, we assume that the designer costlessly commits to an information
structure without observing the state and that the agents cannot communicate with each

1We thank Elliot Lipnowski for pushing us to investigate this question.
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other, and we restrict attention to the best equilibrium for the designer.2 Our other key
assumption is that each agent’s choice of whether to Look or Ignore his signal is both ob-
served by the other agents and irrevocable. That is, agents publicly commit to their choices
of whether or not to become informed. Otherwise, that choice would not influence other
players’ subsequent actions, and the choice to Look would be weakly dominant, just as in
the single-agent case.

In order to further explore the impact of strategic ignorance, we consider a couple of
extensions. The first is to allow multistage communication by the designer. In our main
analysis, we assume that the designer sends signals only once. That is, a player sees all
of his recommendations before choosing an action, rather than just his recommendation
for the realized Look-Ignore decisions. An implication, as discussed above, is that any
information that the designer gives him to help punish a potential deviation to Ignore by
another player is also available on path. That extra information may limit what behavior
the designer can induce on path. For example, Player 2 may need information about the
state in order to punish Player 1 effectively, but knowing the state may make him unwill-
ing to play the designer’s preferred action on path. We find, however, that providing a
recommendation on how to punish a player only after that player has deviated by Ignoring
the original signal may give the designer a worse outcome than providing all contingent
recommendations simultaneously. The reason is that providing signals separately means
that players must be incentivized to view each separate signal. Instead of facing a single
constraint that players must be willing to view the bundle of recommendations when they
expect others to follow the equilibrium strategy, now the designer faces a new constraint
after each potential deviation.

The result that dynamic, sequential recommendations may be strictly worse for the
designer contrasts with the baseline information design setting where agents must observe
their signals (e.g., Makris and Renou (2021)). Our second extension yields another quali-
tative difference: allowing the players to communicate with each other after receiving their
private signals may improve outcomes for the designer. Suppose that Player 2 is willing
to punish Player 1 effectively only when Player 2 does not know the state,3 but that Player
2 must be informed on-path in order to play the designer’s state-contingent desired action.
In that case, the designer cannot always achieve her desired outcome, because she cannot
both deter a deviation to Ignore by Player 1 and give Player 2 the necessary information

2That is, we assume, first, that after a player deviates at the Look-Ignore stage, the worst continuation
BNE of the resulting belief system for the deviator is played. Second, we assume that on path agents play the
designer’s preferred BNE among those that satisfy the Look-Ignore constraints. We note, as a subtlety, that
there may be other BNEs at the second stage, given the on-path Look-Ignore choices, that give the designer
a higher payoff but that would not make the specified Look-Ignore choices optimal at the first stage.

3For example, because the punishment action is dominated by a different action in each state, but is
undominated at the prior.
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on path. She can, however, solve that problem if the players can communicate, by giv-
ing the information intended for Player 2 to Player 1. If Player 1 chooses Look, then he
can pass on Player 2’s information to Player 2 (assuming that he has the incentive to do
so, and that Player 2 has the incentive to receive it). If Player 1 deviates to Ignore, then
Player 2 remains uninformed and willing to punish, and so that deviation is deterred. As in
the standard information design environment, allowing communication may also harm the
designer because she cannot prevent the players from sharing information that she would
prefer to remain private.

The setting where players can communicate also provides an exception to the result
that providing direct information in the form of recommended actions is sufficient for the
designer. In the example in the previous paragraph, the designer may not want Player 1
to know the state. She can achieve that goal (again, subject to the appropriate incentive
constraints) by giving each player a coded signal that is uninformative on its own but that
reveals the state when combined with the other signal. For example, each players gets a
binary signal whose marginal distribution is uniform and independent of the state. The
signals are perfectly correlated in state 1 and perfectly negatively correlated in state 0.
Thus, seeing one signal gives no information, but knowing whether or not they match
perfectly identifies the state. In that way, Player 1 can pass on a signal without knowing
the meaning that Player 2 will assign to it. The two signals combined correspond to an
action recommendation, but neither does on its own.

Finally, it is important to emphasize that the issue of robustness to strategic ignorance
is distinct from the question of equilibrium selection – that is, of whether agents will play
the designer’s preferred equilibrium when there are multiple equilibria, and specifically
when there is one equilibrium where players coordinate their randomization by following
their signals and another equilibrium where they disregard their signals and randomize
independently of each other. We maintain the assumption that the designer’s preferred
equilibrium is played (advantageous selection) throughout, and so we consider an outcome
robust if it can be achieved in any equilibrium of the dynamic game (the Look-Ignore stage
followed by the action choice stage). The distinction between equilibrium selection and
robustness to strategic ignorance is especially clear when there is a unique BNE at the
action stage after any of the possible outcomes of the Look-Ignore stage, yet given those
continuation payoffs, Ignore is strictly dominant at the Look-Ignore stage. It follows that
in the unique sequential equilibrium of the dynamic game all players remain uninformed.

1.1 Relation to Literature
Ignoring free and payoff-relevant information is never beneficial in the standard single-
receiver environment of Kamenica and Gentzkow (2011). However, when beliefs directly
enter the agent’s utility function, avoidance of decision-relevant costless information can
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occur as shown by Lipnowski and Mathevet (2018). Other mechanisms such as time in-
consistency (Meng and Wang (2021)), temptation and self-control (Carrillo and Mariotti
(2000)), present bias (Benabou and Tirole (2002)), pro-social preferences (Grossman and
van der Weele (2017)) and enjoyment from suspense (Ely, Frankel, and Kamenica (2015))
can also lead to information avoidance in single-receiver settings. Additionally, depar-
tures from Bayesian updating can explain an ex-ante preference for less informative ex-
periments, as shown in Jakobsen (2021).

In contrast, in this paper we focus on the strategic rationale behind ignoring free and
payoff-relevant information, and the implications for the third party provider of this infor-
mation, the information designer. This rationale exists even though the agents in our model
are standard Bayesian-updating expected utility maximizers and it is purely by strategic
motives that are completely absent in the single-agent environment. When an agent pub-
licly commits not to observe the information provided by the designer, then other players
cannot rely on his knowledge when deciding on their own actions. This commitment to
ignoring information may thus lead to a better outcome for the agent by changing the
optimal behavior of the other players.

Strategic ignorance can take different forms. In some games, committing to remain
uninformed of the previous action choice of an opponent can be beneficial for reversing
the opponent’s first-mover advantage (Schelling (1960), van Damme (1989), Ben-Porath
and Dekel (1992)). In the context of relationship-specific investments which may create
a hold-up problem, a public commitment by the party with the bargaining power to not
obtain the private information available to the vulnerable party may incentivize the lat-
ter to make an optimal investment in the relationship (Tirole (1986), Rogerson (1992),
Gul (2001)). Committing to information avoidance about a payoff-relevant state can be
used to prevent a situation of asymmetric information and the resulting adverse selection
problems of Akerlof (1970) or to preserve incentives for efficient risk-sharing as in Hir-
shleifer (1971) and Rothschild and Stiglitz (1976). Strategic ignorance about demand can
be utilized by a less risk-averse firm to create risk and thus induce a more risk-averse
opponent in a Cournot duopoly game to scale back its production, resulting in a higher
price, as in Palfrey (1982). Similarly, a public commitment to information avoidance can
be used to convincingly strengthen one’s bargaining position (Schelling (1956)).4 More
recent papers have pointed out that agents may strategically choose to remain less than per-
fectly informed about a payoff relevant state in the context of procurement costs (Kessler
(1998)), private-values in second-price auctions (McAdams (2012)), and buyer valuations
in bilateral trade (Roesler and Szentes (2017)).

4Goldman, Hagmann, and Loewenstein (2017) provide a detailed overview of the different motives be-
hind the avoidance of free and payoff-relevant information along with many examples from the theoretical
and experimental literature.
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In this paper, we focus on general finite environments with a common payoff-relevant
state and an information structure according to which players can learn about the state’s re-
alization. The information structure, which is provided with commitment by the designer,
contains information about the state and about the information received by other players,
as well as a component of pure correlation. Players first publicly decide whether to get
informed according to the given information structure or remain ignorant, and then actions
are taken simultaneously in the resulting game of incomplete information. Thus, in our
setting, information avoidance is not about previously taken actions by the other players,
but about the given information structure. Choosing to strategically ignore information re-
sults in both remaining uninformed about the state and unable to coordinate one’s actions
with those of other players.

Many of the papers mentioned above consider strategic ignorance as a choice between
becoming perfectly informed about the state or remaining fully uninformed. We find that
incorporating the designer’s strategic provision of information may broaden the class of
settings where player’s strategic incentives to ignore information are a relevant concern.
In the investment game in Section 3.1, for example, players faced with a choice between
learning the state perfectly or learning nothing would want to learn the state. We will see,
however, that if the designer provides the information structure that would maximize her
objective in the baseline case where players must observe their messages, then strategic
ignorance becomes important: the players will choose to Ignore.5

The most closely related work is Arcuri (2021), which we became aware of shortly
before posting the first draft of our paper. Motivated by a similar question, Arcuri (2021)
considers a weaker form of robustness to strategic ignorance: an information structure S
satisfies the “hear-no-evil” condition if for each player i, there is some BNE at the action
stage under S that player i prefers to the worst BNE for him under the information structure
that results if he unilaterally Ignores his message. Then an outcome σ mapping states to
action distributions is a “hear-no-evil Bayes correlated equilibrium” if it corresponds to
a BNE of some information structure S that satisfies the hear-no-evil condition. That
definition allows for the possibility that a player i prefers his worst BNE after deviating to
Ignore over his outcome under σ.

Due to the multi-stage nature of the interaction, our paper is related to the literature on
sequential information design and information design in multi-stage games (Doval and Ely
(2020), de Oliveira and Lamba (2019) and Makris and Renou (2021)). The main concep-
tual difference with these papers is that we do not allow the designer to provide information

5A related implication is that a collusive agreement (corresponding to a designer who seeks to maximize
players’ payoffs) on what types of information to obtain and observe may not be sustainable. Bergemann,
Brooks, and Morris (2017), for example, study the information structures over bidders’ values that would
minimize the distribution of winning bids in a first price auction.
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more than once. Specifically, we do not allow the designer to send additional messages to
players contingent on their action choices in the first stage. Instead, the players’ choices in
the first “Look-Ignore stage” determine how the fixed information structure provided ends
up being transformed into the informational environment that governs the second, action
stage. Importantly, as outlined in the introduction, conditioning the information sent to
players on their “Look-Ignore” decisions, and thus providing dynamic, sequential recom-
mendations, may be detrimental to the designer in our setting. In contrast, this is always
beneficial in the baseline information design setting explored in the aforementioned pa-
pers. An additional difference relative to Doval and Ely (2020) is that the extensive form
in our environment is fixed, with players taking actions simultaneously in both stages.

2 Model & Characterization Result
There is a set I ofN > 1 expected-utility maximizing agents who will play a simultaneous-
move stage game. Each player i has a finite set of actions Ai; A ≡ A1 × . . . × AN is the
set of action profiles. There is a finite set of states of the world Ω, with generic element
ω. Agents’ payoffs are given by u : A × Ω → RN , where agent i’s payoff function
ui : A × Ω → R depends on the action profile and the (ex ante unknown) state. The
designer has a utility function uD : A × Ω → R, so that her payoff also depends on the
agents’ actions and the state. The agents and the designer share a common full-support
prior µ over Ω. Let G = ((A, u), µ) be the basic game.

An information structure (T, P ) consists of 1) a finite set of possible signal realizations
Ti for each agent i, with T ≡ T1 × . . . × TN ; and 2) conditional signal distributions
P : Ω→4 (T ), one for each state.

Given a basic game G, the designer publicly commits to an information structure
(T, P ). Play then proceeds as follows: the state ω ∈ Ω is realized according to µ. Then the
vector of signals t ∈ T is drawn according to P (·|ω), and the designer sends each agent i
his prvate signal ti.

At the Look-Ignore stage, each agent makes a choice si ∈ Si ≡ {`, g}: whether to Look
(`) at his signal and learn the realization of ti, or to Ignore (g) it and remain uninformed.
The Look-Ignore choices are public and simultaneous. Given a profile s ∈ S ≡ {`, g}N
of realized choices from the Look-Ignore stage, let L(s) := {i : si = `} and G(s) :=
I \ L(s). Given an information structure (T, P ), denote by (TL, PL) the informational
environment where it is common certainty that all i ∈ L have been informed according to
(T, P ) while all i ∈ G := I \ L do not observe any signal realization. That is, (TL, PL) is
the information structure induced by (T, P ), and the (publicly observed) choices of Look
by the agents in L and of Ignore by the agents in G. Upon choosing Look and observing ti
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and s, agent i updates his beliefs about the state and the signals observed by other agents
by applying Bayes’ rule to his own signal realization ti,

(
TL(s), PL(s)

)
and the prior µ. An

agent who chooses to Ignore his signal uses
(
TL(s), PL(s)

)
and µ to form beliefs about t−i

and does not update his beliefs about the state.
Given (T, P ) and s, define the action stage by the Bayesian game G

(
TL(s), PL(s)

)
. At

this stage, each agent i chooses an action ai ∈ Ai, and payoffs are realized. For a given
information structure (T, P ), we will refer to the basic game augmented by the Look-
Ignore and the action stage as the dynamic game, denoted by G∗ (T, P ). An outcome
v ∈ ∆(A × Ω) is a mapping from states to distributions over action profiles. A strategy
for player i in dynamic game G∗ is a tuple (γi, (β̃

s
i )s) with γi ∈ ∆{`, g}, β̃s

i : Ti → ∆Ai

if i ∈ L(s), and β̃s
i ∈ ∆Ai if i ∈ G(s). Let γ := (γi)i∈I and β̃s := (β̃s

i )i∈I .
Our solution concept for a dynamic game G∗ is sequential equilibrium. In particular,

continuation play in the action stage G
(
TL(s), PL(s)

)
after subset of agents L(s) choose

Look must constitute a BNE of that game (Definition 1). In the Look-Ignore stage, each
agent optimally chooses in order to maximize his expected continuation payoffs (Defini-
tion 2). Given a realized profile s of choices from the Look-Ignore stage, the information
structure

(
TL(s), PL(s)

)
is common knowledge. Agent i who has chosen Look and ob-

served s and ti updates his beliefs about ω and t by using Bayes’ rule. An agent who has
chosen Ignore observes only s so he updates his beliefs about t only.

Definition 1. Given (T, P ) and s ∈ S, β̃s is a BNE of G(TL(s), PL(s)) if:
for each i ∈ L(s), ti ∈ Ti, and ai ∈ Ai with β̃s

i (ai|ti) > 0, we have

∑
a−i,tL(s)\i,ω

µ(ω)PL(s)(ti, tL(s)\i|ω)

 ∏
j∈L(s)\i

β̃s
j (aj|tj)

∏
k∈G(s)

β̃s
k(ak)

ui(ai, a−i, ω)

≥
∑

a−i,tL(s)\i,ω

µ(ω)PL(s)(ti, tL(s)\i|ω)

 ∏
j∈L(s)\i

β̃s
j (aj|tj)

∏
k∈G(s)

β̃s
k(ak)

ui(a
′
i, a−i, ω),

(1)

for all a′i ∈ Ai;
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and for each i ∈ G(s) and ai ∈ Ai with β̃s
i (ai) > 0, we have

∑
a−i,tL(s),ω

µ(ω)PL(s)(tL(s)|ω)

 ∏
j∈L(s)

β̃s
j (aj|tj)

∏
k∈G(s)\i

β̃s
k(ak)

ui(ai, a−i, ω)

≥
∑

a−i,tL(s),ω

µ(ω)PL(s)(tL(s)|ω)

 ∏
j∈L(s)

β̃s
j (aj|tj)

∏
k∈G(s)\i

β̃s
k(ak)

ui(a
′
i, a−i, ω), (2)

for all a′i ∈ Ai.
Then v(β̃s) ∈ ∆(A× Ω) defined as

v(β̃s)(a, ω) :=
∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)

 ∏
j∈L(s)

β̃s
j (aj|tj)

∏
i∈G(s)

β̃s
i (ai)

 (3)

for all a ∈ A and ω ∈ Ω is a BNE outcome of G(TL(s), PL(s)).

Definition 2. A strategy profile
(
γ,
(
β̃s
)
s

)
is a sequential equilibrium of G∗ (T, P ) if for

each s ∈ S, β̃s is a BNE of G(TL(s), PL(s)), and for each i ∈ I and si ∈ {`, g} with
γi(si) > 0,∑

s−i,a,ω

∏
j 6=i

γj(sj)v(β̃si,s−i)(a, ω)ui(ai, a−i, ω)

≥
∑

s−i,a,ω

∏
j 6=i

γj(sj)v(β̃s′i,s−i)(a, ω)ui(ai, a−i, ω), (4)

for all s′i ∈ {`, g}.
Then v ∈ ∆(A× Ω) defined as

v(a, ω) :=
∑
s∈S

∏
i∈I

γi(si)v(β̃s)(a, ω)

for all a ∈ A and ω ∈ Ω is a sequential equilibrium outcome of G∗ (T, P ).

Definition 3. Let SE (G∗ (T, P )) denote the set of sequential equilibrium outcomes of
G∗ (T, P ).

The designer chooses an information structure (T, P ) to maximize her expected payoff
across the set of all sequential equilibrium outcomes ∪(T,P )SE (G∗ (T, P )).
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2.1 Characterization
The designer maximizes over a very large space, the set of all information structures
(T, P ). We show in Theorem 1, however, that without loss of generality we can restrict
the designer to selecting a direct information structure. In a direct information structure,
each signal realization for agent i corresponds to a list of recommended actions, one for
each combination of Look-Ignore choices by the other N − 1 agents. That is, in a direct
information structure Ti = Ai for each agent i, where Ai ≡ A

|S−i|
i denotes the set of

agent i’s (pure) mappings from S−i to Ai. We will denote a generic element of Ai by mi,
for message, and denote the action recommended after combination s−i of other agents’
Look-Ignore choices by mi (s−i) ∈ Ai. Let A ≡ A1 × . . . × AN . Say that an outcome
v ∈ ∆(A×Ω) is implementable with direct recommendations if there exists a conditional
message distribution P : Ω → ∆ (A ) such that v is a sequential equilibrium outcome of
G∗ (A , P ).

Theorem 1. An outcome v is a sequential equilibrium outcome if and only if it is imple-
mentable with direct recommendations.

Theorem 1 follows immediately from Theorem 3, which states that the outcome of
any sequential equilibrium can be achieved in a BCE with appropriate restrictions on the
correlation structure. In the standard information design environment, the set of BNEs
across all possible information structures equals the set of BCEs. The latter set is much
easier to work with (as in Bergemann and Morris (2016) and Taneva (2019)), because it
circumvents the need to specify the information structures explicitly. In our environment
with strategic ignorance, the analogous result – that the set of sequential equilibria across
all possible information structures equals the set of BCEs of the two-stage game in our
setting – is too strong. The designer can provide correlation of strategies (with the state
or with the strategies of other players) only at the action stage and not at the Look-Ignore
stage, and only for those players who choose Look. Therefore, we get a more limited
result: we can view the designer as optimizing over the set of correlated equilibria that
satisfy the corresponding constraints on the feasible correlation structure. In Appendix
A we provide the appropriate definition of correlated equilibrium for this purpose in our
setting and present the equivalence result.

In the rest of the paper, we exploit Theorem 1 in order to characterize the solution to
designer’s problem. We maximize the designer’s payoff over direct information struc-
tures (A , P ), Look-Ignore strategies γ, and post-Ignore contingent (mixed) strategies
βg
i : S−i → ∆Ai, subject to the specified behavior being a sequential equilibrium. Con-

ceptually, think of the designer as optimizing over direct information structures (A , P ) by
choosing P , and then nature optimizes on the designer’s behalf over the set of sequential
equilibria of G∗ (A , P ).

12



2.2 The necessity of ignorance
The characterization above would be much simpler if we focused only on equilibria where
all agents choose to Look at their private messages with probability one. Surprisingly,
though, that restriction turns out not to be innocuous.

Theorem 2. A sequential equilibrium outcome v may be implementable only if γi(g) > 0
for some i ∈ I.

In Appendix B we present a two-agent example where the designer does strictly better
by relying on an equilibrium where one agent randomizes between Look and Ignore, which
proves this result. In the example, the binding constraint for the designer is to incentivize
Player 1 to Look at his signal. The structure of the basic game is such that there is no
BNE that gives Player 1 a low enough payoff to deter his deviation to Ignore unless Player
2 also is completely uninformed. On path, however, the designer must give Player 2
information so that he can play her state-dependent desired action. The optimal solution
is a compromise. Sometimes Player 2 Looks at his signal and plays the designer’s desired
action, while Player 1 is incentivized to Look by the possibility that Player 2 may Ignore
his signal and then be willing to punish Player 1 harshly for deviating.

Importantly, the reason why equilibria in which there is strict randomization between
Look and Ignore are necessary is because we are restricting attention to direct information
structures. If we were to enlarge the signal space of the information structures to include
information about whether the messages of the other players are informative or uninfor-
mative, we could restrict attention to pure strategy Look equilibria by the agents and the
designer could do the randomization between informative and uninformative messages.
Relatedly, we can without loss of generality disregard equilibria in which any agent plays
Ignore with certainty, as this is simply equivalent to the designer choosing a completely
uninformative message for that agent and the agent choosing Look with certainty.

2.3 The harm of ignorance
Given the many examples from game theory where in equilibrium flexibility harms a
player, it is not surprising that in some cases all agents are worse off when they have the
option to Ignore their messages, relative to the baseline where messages are automatically
observed. We provide such an example in Appendix C.

In that example, an information structure that reveals the state perfectly maximizes the
players’ payoffs. However, if players have the ability to exercise strategic ignorance, then
it is a conditionally dominant strategy to Ignore that information structure. The example
has the flavor of a prisoners’ dilemma, where Look corresponds to Cooperate, and Ignore
corresponds to Defect. Roughly, an informed Player 2’s best response to an uninformed

13



Player 1’s optimal action is much better for Player 1 than the best response to an informed
Player 1’s optimal action would be. That benefit from ignorance outweighs Player 1’s loss
from not being able to tailor his own action to the state. Against an uninformed opponent, a
player also benefits from being uninformed. Thus, Ignore is strictly dominant. As a result,
a designer who wants to maximize the total expected payoff of the players must provide
a direct information structure that is less than perfectly informative, and the players get
lower payoffs than they would if messages were automatically observed.

In this particular example, the ability to strategically ignore information is harmful to
the players due to their own choices given a fixed information structure. It is also possible
to construct examples where the potential for strategic ignorance harms the players indi-
rectly, by leading the designer to adjust the information structure in a way that benefits her
but is detrimental to the players. That is, the result that strategic ignorance may be harmful
does not rely on the presence or absence of a designer with a particular objective.

3 Two economic examples
Here we examine the impact of strategic ignorance on information design in two economic
settings, investment choice and currency attacks. Each setting illustrates two important
general findings. First, even when strategic ignorance would not benefit any agent in the
underlying basic game, it can still impose restrictions on an information designer. Second,
a key tension for the designer is whether or not, if an agent i deviates and Ignores his
message, the other agent(s) are still willing to follow their original recommendations. If
so, then agent i cannot gain from the deviation. If not – because their recommendations
no longer provide information about player i’s action, although they are still informative
about the state – then unless there is another BNE worse for player i than the original
target outcome, the designer must adjust the information structure. The designer has a
variety of ways to make that adjustment. In the investment game, her optimal response is
to provide less information about the state of the world. For currency attacks, she provides
more information.

3.1 Investment game
First we study a version of the parameterized basic game from Taneva (2019). There are
two symmetric firms seeking to coordinate on one of two possible projects. Which project
has the potential to succeed depends on an unknown state of the world. The profitability
of a successful project increases with the total investment, so choosing the right project
yields a higher payoff if the other firm invests in it as well. We capture that setting in the
payoff matrices in Figure 3, where w > u > 0 and each state is equally likely.

The designer wants the project to fail. In particular, she gets a payoff of 1 if (B,B) is
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A B

A w,w u, 0

B 0, u 0, 0

ω = a

,

A B

A 0, 0 0, u

B u, 0 w,w

ω = b

Figure 3: Investment game

played in state a or (A,A) is played in state b, and 0 otherwise.

3.1.1 Baseline

In the baseline information design environment, where agents automatically observe their
private signals from the designer, the designer’s optimal direct information structure is
(A, P̃ ) with

P̃ (A,A|ω = a) = P̃ (B,B|ω = b) =
u

w + u
,

P̃ (B,B|ω = a) = P̃ (A,A|ω = b) =
w

w + u
.

The designer’s payoff is w/(w + u) > 0.5, and each firm’s payoff is wu/(w + u).
Under (A, P̃ ), the designer sends a public signal. She exploits the firms’ desire to co-

ordinate their investment by recommending the “correct” project with probability u/(w +
u) < 0.5. Each firm is just willing to obey the recommendation given that the other firm
will: switching to the other project means matching the state with higher probability but
mismatching the other firm: obedience yields w with probability u/(w+u), and switching
yields u with probability w/(w + u).6

3.1.2 With strategic ignorance

If the firms can publicly Ignore their signals, then that baseline information structure
(A, P̃ ), will not lead to the designer’s desired outcome. There is no equilibrium in which
both firms Look at their signals and then follow their recommendations. To see why not,
suppose that Firm 1 chooses to Ignore his signal while Firm 2 looks at his. The worst
BNE for Firm 1 under the resulting information structure involves Firm 1 randomizing
uniformly between A and B. Firm 2’s best response is to choose the opposite of the

6We note the role of advantageous equilibrium selection here. Under mbaseline, there is also a BNE
where the firms do the opposite of their recommendations, and that BNE gives them higher payoffs. In fact,
the designer’s preferred BNE gives them payoffs below those of the worst BNE (randomizing uniformly
between projects) in the basic game without a designer.
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project that the designer recommended: now that Firm 1 cannot coordinate by following
the designer’s recommendation, Firm 2 just wants to pick the project that is more likely to
succeed. Under (A, P̃ ), the project that the designer recommends is more likely to be the
wrong one, so Firm 2 will pick the other project.

In that BNE, Firm 1 gets an expected payoff of

1

2

(
w

w + u
w +

u

w + u
u

)
,

which is strictly greater than the payoff wu/(w+ u) from playing the designer’s preferred
BNE under (A, P̃ ). Thus, Firm 1 gained by choosing to Ignore his signal. By deviating to
Ignore, Firm 1 forgoes the chance to coordinate perfectly with Firm 2. But because Firm 2
will now choose the correct project more frequently, Firm 1 has increased the probability
of choosing correctly conditional on matching the other firm. The complementarity in
payoffs means that at (A, P̃ ) that tradeoff is beneficial.

In order to satisfy the constraint that firms be willing to Look at their signals, the de-
signer’s optimal adjustment is to reduce the probability that Firm 2 can choose the correct
project if Firm 1 deviates to Ignore. That is, to reduce the probability of recommending
the wrong project, π, from π = w/(w + u). Under the new optimal information structure,
the value of π is (2w − u)/(3w − u), which is lower than w/(w + u) but still greater
than 1

2
. Formally, the best that the designer can do when we require robustness to strategic

ignorance comes from the direct information structure (A , P ∗) with

P ∗ (AB,AB|ω = a) = P ∗ (BA,BA|ω = b) =
w

3w − u
,

P ∗ (BA,BA|ω = a) = P ∗ (AB,AB|ω = b) =
2w − u
3w − u

.

The first term in the message is the recommendation after the other firm chooses Look,
and the second term is the recommendation after the other firm chooses Ignore.

The probability of recommending the wrong project, π, is the designer’s payoff, so
(A , P ∗) is the information structure that maximizes π subject to the constraint that a
firm’s payoff when both follow their recommendations exceeds the worst BNE payoff
after unilaterally deviating to Ignore. For π > 1

2
, that worst BNE is still Firm 1 (the

deviator) randomizing uniformly between A and B, and Firm 2 choosing the opposite of
the project that was recommended on-path:

2w − u
3w − u

= max

[
π : (1− π)u ≥ 1

2
(πw + (1− π)u)

]
.
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Under (A , P ∗), it is an equilibrium for both firms to Look at and follow their signals: a
firm gets the same payoff from choosing Look as from deviating to Ignore. Relative to
the baseline case, the ability to Ignore a signal improves the firms’ payoff from wu/(w +
u) to w2/(3w − u). The designer’s payoff falls from w/(w + u) to (2w − u)/(3w −
u). In summary, the designer’s response to the threat of strategic ignorance is a modest
adjustment of the information structure. At values u = 1 and w = 1.5, for example, π
falls from 0.6 to 0.57.

3.2 Currency attacks
We next consider a model of currency attacks. Here the effect of strategic ignorance is
much more dramatic. There are N ≥ 2 symmetric players deciding whether or not to
attack a currency (a(ttack) or n(ot)). The currency may be either weak or strong with
equal probability. If the currency is weak, then one player is enough for a successful attack,
and so attacking is strictly dominant. If the currency is strong, then the attack succeeds if
and only if at least two players attack. We capture that setting with the following payoff
function, where player i’s payoff depends on the state ω ∈ {W (eak), S(trong)}, his own
action, and the number K of other players who play a:

ui (a,K;W ) =

{
2 if K < N − 1
x if K = N − 1

, ui (a,K;S) =

{
−1 if K = 0
1 if K > 0

,

where x ≥ 1, and
ui (n,K;ω) = 0 for all K,ω.

The designer wants to prevent a successful attack: she gets a payoff of 1 if (n, . . . , n)
is played in state W , or if at leastN−1 players play n in state S, and she gets 0 otherwise.

3.2.1 Baseline

At the prior, a is dominant, so the designer must provide the players some information in
order to get a positive payoff. The best that she can do is to publicly recommend n for
sure in state S, and to publicly recommend n in state W as often as possible subject to
the players’ attaching a high enough probability to ω = S after recommendation n for
(n, . . . , n) to be an equilibrium. Formally, the designer’s optimal information structure
with single action recommentations, (A, P̃ ), is

P̃ ((a, . . . , a) |ω = W ) = P̃ ((n, . . . , n) |ω = W ) =
1

2
, P̃ ((n, . . . , n) |ω = S) = 1.

The obedience constraint binds for a player who gets recommendation n: the updated
probability of state S is 0.5/(0.5 + 0.25) = 2/3, so both a and n yield expected payoff 0
given that the other player will choose n.
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The designer’s payoff is 3
4
, and the players’ payoff is 1

4
x.

3.2.2 With strategic ignorance

If the players can publicly Ignore their signals, then under that baseline information struc-
ture (A, P̃ ) there is no equilibrium in which all players Look at their recommendations
and follow them.

First suppose that x > 1, and suppose that Player i deviates to no-look. When Player i
is uninformed, then a is dominant: as shown in Figure 4, it gives a strictly positive payoff
against any strategy profile mapping states to actions for the other N − 1 players, while n
gives 0. We can summarize a strategy profile for the other players as (KW , KS) denoting
the number who play a in each state.

KW = N − 1, KW < N − 1, KW = N − 1, KW < N − 1,
KS > 0 KS = 0 KS = 0 KS > 0

a x+1
2

1
2

x−1
2

3
2

n 0 0 0 0

Pr (ω = W ) = Pr (ω = S) = 1
2

Figure 4: a is dominant for an uninformed player

In either state, the unique best response for any other player when Player i chooses a
is a. The outcome is thus (a, . . . , a) regardless of the designer’s recommendations, and
Player i’s resulting payoff is 1

2
· x + 1

2
· 1 > 1

4
x. It follows that deviating to Ignore is

profitable.
In fact, when x > 1 the designer cannot achieve any outcome other than (a, . . . , a)

regardless of the realized state, by the same reasoning. That action profile gives the players
their maximum possible payoff in either state, and under any information structure they
can achieve it in a BNE by deviating to Ignore. Requiring robustness to strategic ignorance
completely undoes the designer’s ability to use information design to her advantage.7

If x = 1, then the situation changes. From Figure 4, we see that now an uninformed
Player i’s expected payoff from playing a against a strategy of (a in state W , n in state S)

7This example illustrates the distinction between equilibrium selection and strategic ignorance. “Always
play (a, . . . , a)” is a BNE under the baseline information structure (A, P̃ ), but under advantageous selection
we assume that instead the agents play the designer’s preferred BNE. In contrast, if a player deviates to
Ignore, then the unique BNE under the resulting information structure is “always play (a, . . . , a),” and so
every equilibrium outcome at the Look-Ignore stage involves at least one player choosing Ignore. We are
still selecting the designer’s preferred equilibrium of the dynamic game, but there is only one outcome to
select from.
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by each other player (that is, KW = N − 1, KS = 0) is 0; both a and n are best responses.
The information structure (A, P̃ ) still does not work: a player’s message gives him

only partial information about the state, and so he cannot play strategy (W : a, S : n).
Player i’s unique best response to anything other than the strategy profile of (W : a, S : n)
for all opponents is a, and the rest of the argument is the same as in the x > 1 case.

In contrast to the x > 1 case, though, now the designer can achieve a positive payoff. In
particular, if a player’s message perfectly reveals the state, then (W : a, S : n) becomes a
feasible strategy. The new optimal direct information structure, (A , P ∗), is to recommend
action a to every player after every profile of others’ Look-Ignore choices with probability
1 in state W , and to recommend action n to every player after every profile of others’
Look-Ignore choices with probability 1 in state S. The designer’s payoff is 1

2
.

Under (A , P ∗), it is an equilibrium for all players to Look at and follow their rec-
ommendations, yielding payoff x/2 = 1

2
. If Player 1 deviates to Ignore, then there is a

BNE where he plays a and each other players follow their recommendation by playing
(W : a, S : n). That BNE gives Player 1 a payoff of 0 < 1

2
, so the deviation to Ignore is

not profitable.
An interesting feature of the optimal information structure (A , P ∗) is that, as just

argued, the constraint that players must be willing to view their signals is slack. In the
investment game, the designer optimally modified the baseline information structure by
slightly raising the players’ on-path payoffs and lowering the post-deviation payoffs until
the constraint was just satisfied. In the currency attack game with x = 1, the worst post-
deviation BNE payoff is constant with respect to the information until a discontinuous
downward jump when players become fully informed about the state. Consequently, the
constraint is either strictly violated or strictly satisfied. Another qualitative difference
is that in the investment game, the designer adjusts by giving the players less precise
information about the state, and in the currency attack game she gives them more precise
information. A qualitative similarity of the investment and the currency attack games is
that the players are better off under strategic ignorance.8 However, recall from Section 2.3
that this need not be the case in general. In Appendix C we provide an example where
both players are worse off under the ability to strategically ignore information.

4 Discussion and Conclusion
We have shown that the ability of agents to publicly refuse information has important
effects for information design in strategic settings. Requiring robustness to strategic ig-
norance significantly alters optimal information structures and the ensuing outcomes in

8The designer is always (weakly) worse off under strategic ignorance due to the added incentive con-
straints.

19



leading economic applications, and it undoes standard qualitative results from the infor-
mation design literature. Our findings are also relevant in settings where agents seek to
coordinate on what pre-play information to gather: the agreement that maximizes expected
payoffs ex ante may not be sustainable.

In future work, we believe that it will be productive to expand our analysis from static
(that is, one shot, simultaneous move) games to extensive form games. A particularly
interesting related topic is the optimal design of monitoring structures in repeated games
where players can publicly ignore their signals of each others’ actions.

Appendix
A Correlated Equilibrium Equivalence Result
We will start by providing the appropriate definition of BCE in our setting. Recall that
the designer can provide correlation of strategies only at the action stage and not at the
Look-Ignore stage, and only for those agents who choose Look. That limitation implies
that agents’ Look-Ignore choices must be independent of each other and independent of
the state ω, and that the action-stage choices of an agent who chose Ignore must be inde-
pendent of ω and of the actions of other agents (although the agent may condition on the
observed Look-Ignore choices of the other agents s−i).

Therefore, the object of interest is an element

(γ, βg, v) ∈ ×i

(
∆{`, g} ×

(
×s−i

∆Ai

))
×∆(A × Ω),

where γ denotes the Look-Ignore strategies, βg denotes the post-Ignore strategies, and v
denotes the post-Look strategies. For each s ∈ S, let v(mL(s), ω) :=

∑
mG(s)

v(mL(s),mG(s), ω),
and let v((mi(s−i))i∈L(s), ω) denote the corresponding projection of v(mL(s), ω). Let
aG := (ai)i∈G .

Definition 4. (γ, βg, v) is a BCE of G∗ if

1. (Consistency with the prior) v(A × {ω}) = µ(ω) for all ω ∈ Ω;

2. (Obedience for agent i who chose Look) for every s ∈ S, i ∈ L(s), mi ∈ Ai, and
a′i ∈ Ai
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∑
mL(s)\i,aG(s),ω

v(mi,mL(s)\i, ω)
∏

k∈G(s)

βg
k(ak|s−k)ui(mi(s−i), (mj(s−j))j∈L(s)\i, aG(s), ω)

≥
∑

mL(s)\i,aG(s),ω

v(mi,mL(s)\i, ω)
∏

k∈G(s)

βg
k(ak|s−k)ui(a

′
i, (mj(s−j))j∈L(s)\i, aG(s), ω)

(5)

3. (Obedience for agent i who chose Ignore) for every s ∈ S, i ∈ G(s), and ai, a′i ∈
Ai such that βg

i (ai|s−i) > 0∑
mL(s),aG(s)\i,ω

v(mL(s), ω)
∏

k∈G(s)\i

βg
k(ak|s−k)ui(ai, (mj(s−j))j∈L(s), aG(s)\i, ω)

≥
∑

mL(s),aG(s)\i,ω

v(mL(s), ω)
∏

k∈G(s)\i

βg
k(ak|s−k)ui(a

′
i, (mj(s−j))j∈L(s), aG(s)\i, ω)

(6)

4. (Obedience for agent i at the Look-Ignore stage) for every i ∈ I, si such that
γi(si) > 0, and s′i ∈ Si∑

s−i,mL(s),aG(s),ω

∏
j 6=i

γj(sj)v(mL(s), ω)
∏

k∈G(s)

βg
k(ak|s−k)ui((mj(s−j))j∈L(s), aG(s), ω)

≥
∑

s′−i,mL(s′),aG(s′),ω

∏
j 6=i

γj(s
′
j)v(mL(s′), ω)

∏
k∈G(s′)

βg
k(ak|s′−k)ui((mj(s

′
−j))j∈L(s′), aG(s′), ω)

(7)

where s ≡ (si, s−i) and s′ ≡
(
s′i, s

′
−i
)
.

Definition 5. Given a BCE distribution (γ, βg; v), let ṽ(γ, βg; v) ∈ ∆(A× Ω) defined as

ṽ(γ, βg, v)(a, ω) :=
∑
s∈S

∏
i∈I

γi(si)

 ∑
mL(s):(mj(s−j))j∈L(s)=aL(s)

v
(
mL(s), ω

) ∏
k∈G(s)

βg
k(ak|s−k)

for all a ∈ A and ω ∈ Ω, denote the resulting BCE outcome. Let BCE (G∗) denote the
set of BCE outcomes.
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Theorem 3. ∪(T,P )SE (G∗ (T, P )) = BCE (G∗).

Proof. First we prove that BCE (G∗) ⊆ ∪(T,P )SE (G∗ (T, P )). Take any ṽ(γ, βg; v) ∈
BCE (G∗). Consider the information structure (A , P ) with P (m|ω) := v(m,ω)/µ(ω)
for all m ∈ A , ω ∈ Ω.

Given profile s ∈ S of Look-Ignore choices, let AL(s) ≡ ×i∈L(s)Ai and PL(s)(mL(s)|ω) :=
v(ω,mL(s))/µ(ω). In G(AL(s), PL(s)) consider the following strategy for all player i ∈
L(s):

β̃s
i (ai|mi) =

{
1, if ai = mi(s−i)
0, if ai 6= mi(s−i),

for all mi ∈ Ai, and for all player i ∈ G(s), consider β̃s
i (ai) = βg

i (ai|s−i).
Given any s ∈ S, the interim payoff to agent i ∈ L(s) observing message mi ∈ Ai

and choosing action ai ∈ Ai when his opponents play according to β̃s
−i is given by∑

a−i,mL(s)\i,ω

µ(ω)PL(s)(mi,mL(s)\i|ω)
∏

j∈L(s)\i

β̃s
j (aj|mj)

∏
k∈G(s)

β̃s
k(ak)ui(ai, a−i, ω)

=
∑

mL(s)\i,aG(s),ω

v(mi,mL(s)\i, ω)
∏

k∈G(s)

βg
k(ak|s−k)ui(ai, (mj(s−j))j∈L(s)\i, aG(s), ω). (8)

Hence, by (5) we obtain∑
a−i,mL(s)\i,ω

µ(ω)PL(s)(mi,mL(s)\i|ω)
∏

j∈L(s)\i

β̃s
j (aj|mj)

∏
k∈G(s)

β̃s
k(ak)ui(mi(si), a−i, ω)

≥
∑

a−i,mL(s)\i,ω

µ(ω)PL(s)(mi,mL(s)\i|ω)
∏

j∈L(s)\i

β̃s
j (aj|mj)

∏
k∈G(s)

β̃s
k(ak)ui(a

′
i, a−i, ω).

(9)

for all i ∈ L(s), mi ∈ Ai, and a′i ∈ Ai. This establishes the BNE interim incentive
compatibility constraint (1) for all i ∈ L(s), mi ∈ Ai, and ai ∈ Ai such that β̃s

i (ai|mi) >
0.

Given any s ∈ S, the interim payoff to agent i ∈ G(s) choosing action ai ∈ Ai when
his opponents play according to β̃s

−i is given by∑
a−i,mL(s),ω

µ(ω)PL(s)(mL(s)|ω)
∏

j∈L(s)

β̃s
j (aj|mj)

∏
k∈G(s)\i

β̃s
k(ak)ui(ai, a−i, ω)

=
∑

mL(s),aG(s)\i,ω

v(mL(s), ω)
∏

k∈G(s)\i

βg
k(ak|s−k)ui(ai, (mj(s−j))j∈L(s), aG(s)\i, ω). (10)
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Hence, by (6) we obtain∑
a−i,mL(s),ω

µ(ω)PL(s)(mL(s)|ω)
∏

j∈L(s)

β̃s
j (aj|mj)

∏
k∈G(s)\i

β̃s
k(ak)ui(ai, a−i, ω)

≥
∑

a−i,mL(s),ω

µ(ω)PL(s)(mL(s)|ω)
∏

j∈L(s)

β̃s
j (aj|mj)

∏
k∈G(s)\i

β̃s
k(ak)ui(a

′
i, a−i, ω) (11)

for all i ∈ G(s), ai such that βg
i (ai|s−i) > 0, and a′i ∈ Ai. This establishes the BNE

interim incentive compatibility constraint (2) for all i ∈ G(s) and ai ∈ Ai with β̃s
i (ai) > 0.

By Definition 1 we conclude that for all s ∈ S, β̃s = (β̃s
i )i is a BNE ofG(TL(s), PL(s)).

Then v(β̃s) defined as

v(β̃s)(a, ω) :=
∑
mL(s)

µ(ω)PL(s)(mL(s)|ω)

 ∏
j∈L(s)

β̃s
j (aj|mj)

∏
k∈G(s)

β̃s
k(ak)


=
∑
mL(s)

v(mL(s), ω)

 ∏
j∈L(s)

β̃s
j (aj|mj)

∏
k∈G(s)

β̃s
k(ak)

 (12)

for all a ∈ A and ω ∈ Ω is a BNE outcome of G(TL(s), PL(s)).
Notice that for each i ∈ I and si, s′i ∈ Si such that γi(si) > 0, (7) can be equivalently

written as

∑
s−i,a,ω

∏
j 6=i

γj(sj)

∑
mL(s)

v(mL(s), ω)

 ∏
j∈L(s)

β̃s
j (aj|mj)

∏
k∈G(s)

β̃s
k(ak)

ui(ai, a−i, ω)

=
∑

s−i,a,ω

∏
j 6=i

γj(sj)v(β̃s)(a, ω)ui(ai, a−i, ω)

≥
∑

s−i,a,ω

∏
j 6=i

γj(sj)v(β̃s′)(a, ω)ui(ai, a−i, ω)

=
∑

s′−i,a,ω

∏
j 6=i

γj(sj)

∑
mL(s′)

v(mL(s′), ω)

 ∏
j∈L(s′)

β̃s′

j (aj|mj)
∏

k∈G(s′)

β̃s′

k (ak)

ui(ai, a−i, ω),

(13)

where s ≡ (si, s−i) and s′ ≡
(
s′i, s

′
−i
)
, which establishes (4).
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Hence,
(
γ, (β̃s)s

)
is a sequential equilibrium of G∗ (A , P ). Then v̂ ∈ ∆(A × Ω)

defined as
v̂(a, ω) :=

∑
s∈S

∏
i∈I

γi(si)v(β̃s)(a, ω)

for all a ∈ A and ω ∈ Ω is a sequential equilibrium outcome of G∗ (A , P ), that is
v̂ ∈ SE (G∗ (A , P )). Notice that for all a ∈ A and ω ∈ Ω

v̂(a, ω) =
∑
s∈S

∏
i∈I

γi(si)v(β̃s)(a, ω)

=
∑
s∈S

∏
i∈I

γi(si)

 ∑
mL(s):(mj(s−j))j∈L(s)=aL(s)

v
(
mL(s), ω

) ∏
k∈G(s)

βg
k(ak|s−k) = ṽ(γ, βg, v)(a, ω).

(14)

Thus, ṽ(γ, βg, v) ∈ SE (G∗ (A , P )).
Next, we prove thatBCE (G∗) ⊇ ∪(T,P )SE (G∗ (T, P )). Take any v̄ ∈ ∪(T,P )SE (G∗ (T, P )).

Hence, there exists an information structure (T, P ) and a sequential equilibrium strategy
profile

(
γ, (β̃s)s

)
of G∗ (T, P ) such that

v̄(a, ω) :=
∑
s∈S

∏
i∈I

γi(si)
∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)

 ∏
j∈L(s)

β̃s
j (aj|tj)

∏
k∈G(s)

β̃s
k(ak)


for all a ∈ A and ω ∈ Ω.

For all i ∈ I define βg
i : S−i → ∆Ai in the following way: for each s ∈ S such that

si = g, βg
i (ai|s−i) = β̃s

i (ai) for all ai ∈ Ai. Let βg = ×iβ
g
i . Define v ∈ ∆(A × Ω) such

that for all s ∈ S

v(mL(s), ω) =
∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)
∏

i∈L(s)

β̃s
i (ai|ti) (15)

for all aL(s) ∈ ×i∈L(s)Ai and mL(s) such that (mj(s−j))j∈L(s) = aL(s). Notice, this ensures
that v(A × {ω}) = µ(ω) for all ω ∈ Ω.

Multiplying both sides of (1) by β̃s
i (ai|ti) and summing across ti we obtain for all
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s ∈ S, i ∈ L(s), and ai, a′i ∈ Ai

∑
a−i,ω

∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)
∏

j∈L(s)

β̃s
j (aj|tj)

 ∏
k∈G(s)

β̃s
k(ak)ui(ai, a−i, ω)

=
∑

mL(s)\i,aG(s),ω

v(mL(s), ω)
∏

k∈G(s)

βg
k(ak|s−k)ui(mi(s−i), (mj(s−j))j∈L(s)\i, aG(s), ω)

≥
∑

mL(s)\i,aG(s),ω

v(mL(s), ω)
∏

k∈G(s)

βg
k(mk(s−k))ui(a

′
i, (mj(s−j))j∈L(s)\i, aG(s), ω)

=
∑
a−i,ω

∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)
∏

j∈L(s)

β̃s
j (aj|tj)

 ∏
k∈G(s)

β̃s
k(ak)ui(a

′
i, a−i, ω) (16)

which establishes (5).
For all s ∈ S, i ∈ G(s) and ai ∈ Ai with β̃s

i (ai) > 0, (2) can be equivalently written as

∑
a−i,ω

∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)
∏

j∈L(s)

β̃s
j (aj|tj)

 ∏
k∈G(s)\i

β̃s
k(ak)ui(ai, a−i, ω)

=
∑

mL(s),aG(s)\i,ω

v(mL(s), ω)
∏

k∈G(s)\i

βg
k(ak|s−k)ui(ai, (mj(s−j))j∈L(s), aG(s)\i, ω)

≥
∑

mL(s),aG(s)\i,ω

v(mL(s), ω)
∏

k∈G(s)\i

βg
k(ak|s−k)ui(a

′
i, (mj(s−j))j∈L(s), aG(s)\i, ω)

=
∑
a−i,ω

∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)
∏

j∈L(s)

β̃s
j (aj|tj)

 ∏
k∈G(s)\i

β̃s
k(ak)ui(a

′
i, a−i, ω), (17)

for all ai, a′i ∈ Ai such that βg
i (ai|s−i) > 0, which establishes (6).
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For all i ∈ I and si ∈ {`, g} with γi(si) > 0, (4) can be written as

∑
s−i,a,ω

∏
j 6=i

γj(sj)

∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)
∏

j∈L(s)

β̃s
j (aj|tj)

 ∏
k∈G(s)

β̃s
k(ak)ui(ai, a−i, ω)

=
∑

s−i,mL(s),aG(s),ω

∏
j 6=i

γj(sj)v(mL(s), ω)
∏

k∈G(s)

βg
k(ak|s−k)ui((mj(s−j))j∈L(s), aG(s), ω)

≥
∑

s′−i,mL(s′),aG(s′),ω

∏
j 6=i

γj(s
′
j)v(mL(s′), ω)

∏
k∈G(s′)

βg
k(ak|s′−k)ui((mj(s

′
−j))j∈L(s′), aG(s′), ω),

=
∑

s′−i,a,ω

∏
j 6=i

γj(sj)

∑
tL(s′)

µ(ω)PL(s′)(tL(s′)|ω)
∏

j∈L(s′)

β̃s′

j (aj|tj)

 ∏
k∈G(s′)

β̃s′

k (ak)ui(ai, a−i, ω)

(18)

for all s′i ∈ {`, g}, where s ≡ (si, s−i) and s′ ≡
(
s′i, s

′
−i
)
, which establishes (7).

Hence, (γ, βg, v) is a BCE of G∗. Then, ṽ(γ, βg, v) ∈ ∆(A×Ω) is a BCE outcome of
G∗, that is ṽ ∈ BCE(G∗). Notice that

ṽ(γ, βg, v)(a, ω) =
∑
s∈S

∏
i∈I

γi(si)

 ∑
mL(s):(mj(s−j))j∈L(s)=aL(s)

v
(
mL(s), ω

) ∏
k∈G(s)

βg
k(ak|s−k)

=
∑
s∈S

∏
i∈I

γi(si)
∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)

 ∏
j∈L(s)

β̃s
j (aj|tj)

∏
k∈G(s)

β̃s
k(ak)

 = v̄(a, ω) (19)

for all a ∈ A and ω ∈ Ω. Thus, v̄ ∈ BCE(G∗).

B Example: the necessity of ignorance
L Ra Rb Pa Pb P

A 3, 0 1, 1 1, 1 3, 0 3,−1 1,−1

M 2, 2 0, 0 0, 0 2, 0 2, 0 0, 0

B 0, 0 −2, 1 −2, 1 −2, 0 −2,−1 −2,−1

M ′ 0, 2 −1, 0 −1, 0 −1, 3 −1, 1 0, 2

ω = a

,
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L Ra Rb Pa Pb P

A 0, 0 −2, 1 −2, 1 −2,−1 −2,−1 −2,−1

M 2, 2 0, 0 0, 0 2, 0 2, 0 0, 0

B 3, 0 1, 1 1, 1 3,−1 3,−1 1,−1

M ′ 0, 2 −1, 0 −1, 0 −1, 1 −1, 3 0, 2

ω = b

Consider the following example with Ω = {a, b}. Each state is equally likely, so that
the prior is µ(a) = µ(b) = 1

2
. There are two players with action sets A1 = {A,M,B,M ′}

and A2 = {L,Ra, Rb, Pa, Pb, P}. The players’ state contingent payoffs are given by the
above payoff matrices, where the first entry in each cell corresponds to the payoff of Player
1, whose possible action choices are represented by the rows, and the second entry corre-
sponds to Player 2’s payoff, whose possible action choices are represented by the columns.

The designer gets a payoff of 1 if (A,Ra) is played in state a, or if (B,Rb) is played
in state b, and payoff 0 otherwise. The actions Ra and Rb are duplicates from the players’
point of view. Their role in the example is to make it so that Player 2 needs to know the
state in order to play the designer’s desired action.

Suppose that the state is common knowledge. In state a, A is dominant for Player 1,
and Ra is the unique best response for Player 2. In state b, B is dominant for Player 1, and
Rb is the unique best response for Player 2. The expected payoff vector for the players is
(1, 1) and the designer gets an expected payoff of 1.

At the prior, expected payoffs are

L Ra Rb Pa Pb P

A 1.5, 0 −1
2
, 1 −1

2
, 1 1

2
,−1 1

2
,−1 −1

2
,−1

M 2, 2 0, 0 0, 0 2, 0 2, 0 0, 0

B 1.5, 0 −1
2
, 1 −1

2
, 1 1

2
,−1 1

2
,−1 −1

2
,−1

M ′ 0, 2 −1, 0 −1, 0 −1, 2 −1, 2 0, 2

Suppose it is common knowledge that Player 1 knows the state and that Player 2’s
beliefs equal the prior. In state a, A is dominant for Player 1, and in state b, B is dominant.
In both cases, either Ra or Rb is a best response for Player 2. In both cases, irrespective
of which best response Player 2 plays, the expected payoff vector for the players is (1, 1).
However, the designer only gets a payoff of 1 if Player 2 plays Ra in state ω = a and Rb

in state ω = b.
Crucially, in this example, Player 1 can be punished effectively for choosing Ignore

only if it is common knowledge that Player 2’s belief equals the prior. The reason is the
following. Suppose first that it is common knowledge that both players’ beliefs equal the
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prior. Then M strictly dominates A and B, M weakly dominates M ′ for Player 1: M ′ is
a weak best response for Player 1 if and only if Player 2 plays P with probability 1. P is
a best response to M ′. So (M ′, P ) is an eqm with payoff (0, 2). Next, suppose Player 2
assigns belief p > 1

2
to state ω. Then P is not a best response to M ′: P gives payoff 2,

while Pω gives expected payoff 3p+ (1− p) = 2p+ 1 > 2.
Therefore, if it is common knowledge that Player 1’s belief equals the prior, and that

there is ex ante strictly positive probability that Player 2 has some information (i.e., assigns
belief p > 1

2
to one state or the other, then (M ′, P ) is not an eqm. Instead, M is dominant

against state-contingent strategies of Player 2 and the unique equilibrium is (M,L), giving
payoff (2, 2).

A mixed Look-Ignore outcome

Suppose the designer’s information structure is given by (A , P ) with

P (AA,RaL|ω = a) = P (BB,RbL|ω = b) = 1

which perfectly informs both players of the state. The first term in each player’s message
is the action recommendation to follow after the other player has chosen Look (`), while
the second term is the action recommendation to follow after the other player has chosen
Ignore (g).

Given this information structure, the following is an equilibrium of the Look-Ignore
stage: Player 1 plays `, i.e. γ1(`) = 1, and Player 2 randomizes with equal probability
over ` and g, that is γ2(`) = γ2(g) = 1

2
. On path, the payoff for the players is (1, 1),

regardless of Player 2’s Look-Ignore choice, and in expectation the designer gets a payoff
of 1

2
1 + 1

2
1
2

= 3
4
.

Next, we argue that following the action recommendations of the direct information
structure specified above is incentive compatible for some post-Ignore contingent strate-
gies, i.e. it is an equilibrium of the action stage:

• After (`, `): Player 1’s recommendation specifies his dominant action for the re-
vealed state (A orB), and Player 2’s recommendation is a best response. The payoff
vector is (1, 1).

• After (`, g): Player 1’s recommendation specifies his dominant action (A or B).
Player 2’s post-Ignore strategy is βg

2(Ra|`) = βg
2(Ra|`) = 1

2
, where he randomizes

between Ra or Rb, both of which are best responses. The payoff vector is (1, 1).

• After (g, `): Player 1’s post-Ignore strategy is βg
1(M |`) = 1; M is a best response to

Player 2’s recommendation L. For Player 2, L is the strict best response to M . The
payoff vector is (2, 2).
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• After (g, g): Consider the post-Ignore strategies βg
1(M ′|g) = 1 and βg

2(P |g) = 1.
At the prior, M ′ is a best response to P , and P is a best response to M ′. The payoff
vector is (0, 2).

At the Look-Ignore stage:

• Given that Player 1 plays `, Player 2 is indifferent between ` and g, as he gets a
payoff of 1 either way. Hence, Player 2 is willing to mix, as required.

• Given that Player 2 chooses ` with probability 1
2
, Player 1’s payoff from ` is 1

2
· 1 +

1
2
· 1 = 1. Deviating to g gives Player 1 a payoff of 1

2
2 + 1

2
0 = 1. Thus, ` is a best

response for Player 1, as required.

Trying to replicate in a pure Look-Look equilibrium

For the designer to get a payoff p > 1
2
, Player 2 must match the state with probability

at least p, so with strictly positive probability her recommendation must give her some
information about the state.

Consequently, if Player 1 deviates to g at the Look-Ignore stage, then the continuation
play after (g, `) must be (M,L), giving a payoff vector (2, 2). Thus, Player 1 must get a
payoff of at least 2 after (`, `) in order to satisfy his look constraint. It follows that the
designer’s preferred action profiles (which give Player 1 a payoff of 1) can be played with
probability no higher than 1

2
: Player 1’s highest possible payoff is 3, and 1x+3(1−x) ≥ 2

implies that x ≤ 1
2
. We conclude that the mixed Look-Ignore outcome in the previous

section cannot be duplicated in a pure Look-Look equilibrium.

C Example: the harm of ignorance
Consider the following symmetric game, where each state ω ∈ {0, 1} is equally likely, so
that µ(1) = µ(2) = 1

2
. The players’ state contingent payoffs are given by the following

payoff matrices, where the row player is Player 1 and the column player is Player 2:

X Y A1 B1 A2 B2

X 0, 0 0.1, 0.1 1.1, 0.12 1.12, 0.14 −1.1,−0.2 −1.12,−0.2

Y 0.1, 0.1 0.15, 0.15 1, 0.18 1.1, 0.16 1,−0.2 1.1,−0.2

A1 0.12, 1.1 0.18, 1 1.11, 1.11 1.111, 1.1 1.1, 0 1.1, 0

B1 0.14, 1.12 0.16, 1.1 1.1, 1.111 1.11, 1, 11 1.11, 0 1.11, 0

A2 −0.2,−1.1 −0.2, 1 0, 1.1 0, 1.11 0, 0 0, 0

B2 −0.2,−1.12 −0.2, 1.1 0, 1.1 0, 1.11 0, 0 0, 0

Payoffs in ω = 1

,
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X Y A1 B1 A2 B2

X 0, 0 0.1, 0.1 −1.1,−0.2 −1.12,−0.2 1.1, 0.12 1.12, 0.14

Y 0.1, 0.1 0.15, 0.15 1,−0.2 1.1,−0.2 1, 0.18 1.1, 0.16

A1 −0.2,−1.1 −0.2, 1 0, 0 0, 0 0, 1.1 0, 1.11

B1 −0.2,−1.12 −0.2, 1.1 0, 0 0, 0 0, 1.1 0, 1.11

A2 0.12, 1.1 0.18, 1 1.1, 0 1.1, 0 1.11, 1.11 1.111, 1.1

B2 0.14, 1.12 0.16, 1.1 1.11, 0 1.11, 0 1.1, 1.111 1.11, 1.11

Payoffs in ω = 2

.

At the prior, expected payoffs are

X Y A1 B1 A2 B2

X 0, 0 0.1, 0.1 0,−0.04 0,−0.03 0,−0.04 0,−0.03

Y 0.1, 0.1 0.15, 0.15 1,−0.01 1.1,−0.02 1,−0.01 1.1,−0.02

A1 −0.04, 0 −0.01, 1 0.555, 0.555 0.5555, 0.55 0.55, 0.55 0.55, 0.555

B1 −0.03, 0 −0.02, 1.1 0.55, 0.5555 0.555, 0.555 0.555, 0.55 0.555, 0.555

A2 −0.04, 0 −0.01, 1 0.55, 0.55 0.55, 0.555 0.555, 0.555 0.5555, 0.55

B2 −0.03, 0 −0.02, 1.1 0.555, 0.55 0.555, 0.555 0.55, 0.5555 0.555, 0.555

Pr (ω = 1) = 1
2

so that Y is strictly dominant for each player.
The designer gets a payoff equal to the sum of the payoffs of the two players. In the

baseline information design environment, where agents automatically observe their private
signals from the designer, the designer can achieve her maximum feasible payoff of 2.22
with a perfectly informative information structure that recommends action Aω in state ω
to each player:

• After (`, `): In this case the state is common knowledge. In state ω, action Aω
strictly dominates every action except Bω. The unique best response to any mixing
between Aω and Bω is Aω. Thus, the unique BNE is (Aω,Aω), and the payoffs are
u (`, `) = (1.11, 1.11).

• After (g, `): In this case it is common knowledge that Player 2 knows the state
and that Player 1’s beliefs are given by the prior. As above, in state ω, action Aω
strictly dominates every action except Bω for Player 2. Thus, Player 2 has four
undominated strategies: A1A2,A1B2, B1A2, and B1B2, where the first element
denotes the action in state 1 and the second element denotes the action in state 2.
Player 1’s expected payoffs against those strategies are as follows:
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A1A2 A1B2 B1A2 B1B2

X 1.1 1.11 1.11 1.12

Y 1 1.05 1.05 1.1

A1 0.555 0.555 0.5555 0.5555

B1 0.55 0.55 0.555 0.555

A2 0.555 0.5555 0.555 0.5555

B2 0.55 0.555 0.55 0.555

Pr (ω = 1) = 1
2

Player 1’s unique best response against any of those four strategies is X . Player 2’s
best response to X is B1B2. Thus, the unique BNE is (X,B1B2), and the payoffs
are u (g, `) = (1.12, 0.14).

• After (`, g): This case is symmetric to the preceding one.

• After (g, g): In this case it is common knowledge that both players’ beliefs are given
by the prior distribution, and, hence, Y is strictly dominant. Thus, the unique BNE
is (Y, Y ), and the payoffs are u (g, g) = (0.15, 0.15).

Equilibrium at the Look-Ignore Stage

After each combination of Look-Ignore choices, we have shown that there is a unique
BNE. Using these as the continuation payoffs, we can write the payoff matrix at the Look-
Ignore stage as follows:

` g

` 1.11, 1.11 0.14, 1.12

g 1.12, 0.14 0.15, 0.15

Ignore is strictly dominant, so the outcome is that both players choose Ignore and wind
up with payoff 0.15. Without the possibility of strategic ignorance, they would get payoff
1.11.

Interpretation

The example has the flavor of a prisoners’ dilemma, where Look corresponds to Coop-
erate, and Ignore corresponds to Defect. Intuitively, an informed player wants to match the
state with either Aω or Bω, but which is better depends on the action of the other player.
An uninformed player effectively commits to playing X against either Aω or Bω, and the

31



informed player’s best reponse is Bω, which is slightly better for the uninformed player
than Aω would be.

An informed player matched with an informed player chooses Aω. Thus, given that
Player 2 is informed, Player 1 prefers to be uninformed: the gain from getting Player 2 to
switch from Aω to Bω outweighs the loss from not being able to exactly best respond to
Bω. Player 2 loses more than Player 1 gains, because playing X instead of Aω gives the
informed opponent a low payoff.

Against an uninformed player, choosing Ignore effectively commits a player to playing
Y , and so the opponent’s response will also be Y . Thus, given that Player 2 is uninformed,
Player 1 prefers to be uninformed: the benefit from getting Player 2 to switch fromX to Y
outweighs the loss from not being able to exactly best respond to X . Player 2 loses more
than Player 1 gains, because playing Y instead of Bω gives the opponent a lower payoff.

An information structure robust to strategic ignorance

Suppose that the designer provides the following direct information structure:

Pr (A1A1, A1A1, ω = 1) = Pr (A2A2, A2A2, ω = 2) = p = 21/22,

Pr (A2A2, A2A2, ω = 1) = Pr (A1A1, A1A1, ω = 2) = 1− p = 1/22.

where the first term in the message is the recommendation of what action to play after the
other player chooses Look, and the second term is the recommendation for after the other
player chooses Ignore. That is, in state ω, the designer recommends action Aω to both
players with probability p = 21/22, and otherwise recommends action Aω′. Additionally,
a player’s recommendation is the same irrespective of the Look-Ignore choice of the other
player.

• After (`, `): Both players follow the message recommendation. The expected payoff
is 1.11p ≈ 1.060, i.e., u (`, `) = (1.060, 1.060).

• After (g, `): The uninformed Player 1 plays Y and the informed Player 2 follows the
received action recommendation for the case when his opponents has chosen Ignore.
The expected payoff for the uninformed player is 1, while for the informed player it
is 0.18p− 0.2(1− p) ≈ 0.163. Hence, u (g, `) = (1, 0.163).

• After (`, g): This case is symmetric to the preceding one.

• After (g, g): Y is strictly dominant for both players and the payoffs are u (g, g) =
(0.15, 0.15).

Under these continuation payoffs, the expected payoffs at the Look-Ignore stage are:
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` g

` 1.060, 1.060 0.163, 1

g 1, 0.163 0.15, 0.15

.

Now Look is dominant at the Look-Ignore stage.

Discussion

For an uninformed Player 1, playing Y is safe while X is risky if Player 2 sometimes
gets it wrong (that is, plays Aω′ or Bω′ instead of Aω or Bω). Under perfect information,
an informed Player 2 never gets it wrong, so Player 1 chooses X , leading Player 2 to
choose Bω instead of Aω, and Player 1 benefits.

Adding a little noise to the signals (p < 1) makes X too risky. Now Player 1 prefers
Y , so Player 2 plays Aω regardless of whether or not Player 1 chooses Look. When Player
1’s Look-Ignore choice does not change Player 2’s action, then Player 1 cannot possibly
gain from ignoring his signal. He can only lose from not being able to match his action to
the state.
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